Science.gov

Sample records for 8th international lisa

  1. EDITORIAL: Proceedings of the 8th International LISA Symposium, Stanford University, California, USA, 28 June-2 July 2010 Proceedings of the 8th International LISA Symposium, Stanford University, California, USA, 28 June-2 July 2010

    NASA Astrophysics Data System (ADS)

    Buchman, Sasha; Sun, Ke-Xun

    2011-05-01

    The international research community interested in the Laser Interferometric Space Antenna (LISA) program meets every two years to exchange scientific and technical information. From 28 June-2 July 2010, Stanford University hosted the 8th International LISA Symposium. The symposium was held on the campus of the SLAC National Accelerator Laboratory. Many of the foremost scientific and technological researchers in LISA and gravitational wave theory and detection presented their work and ideas. Over one hundred engineers and graduate students attended the meeting. The leadership from NASA and ESA research centers and programs joined the symposium. A total of 280 delegates participated in the 8th LISA Symposium, and enjoyed the scientific and social programs. The scientific program included 46 invited plenary lectures, 44 parallel talks, and 77 posters, totaling 167 presentations. The one-slide introduction presentation of the posters is a new format in this symposium and allowed graduate students the opportunity to talk in front of a large audience of scientists. The topics covered included LISA Science, LISA Interferometry, LISA PathFinder (LPF), LISA and LPF Data Analysis, Astrophysics, Numerical Relativity, Gravitational Wave Theory, GRS Technologies, Other Space Programs, and Ground Detectors. Large gravitational wave detection efforts, DECIGO, and LIGO were presented, as well as a number of other fundamental physics space experiments, with GP-B and STEP being examples. A public evening lecture was also presented at the symposium. Professor Bernard Schutz from the Albert Einstein Institute gave a general audience, multimedia presentation on `Gravitational waves: Listening to the music of spheres'. For more detailed information about the symposium and many presentation files, please browse through the website: http://www.stanford.edu/group/lisasymposium The Proceedings of the 8th International LISA Symposium are jointly published by Classical and Quantum Gravity

  2. Highlights of the 8th International Veterinary Immunology Symposium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Veterinary immunologists have expanded understanding of the immune systems for our companion animals and developed new vaccines and therapeutics. This manuscript summarizes the highlights of the 8th International Veterinary Immunology Symposium (8 th IVIS) held August 15th-19th, 2007, in Ouro Preto,...

  3. PREFACE: 10th International LISA Symposium

    NASA Astrophysics Data System (ADS)

    Ciani, Giacomo; Conklin, John W.; Mueller, Guido

    2015-05-01

    The LISA Symposia have become a mainstay of the gravitational wave community. Held every two years, they are the prime opportunity for our community to discuss the exciting science, technology, mission designs, and progress of the Laser Interferometer Space Antenna. The 8th LISA symposium, held at Stanford University in the summer of 2010 was the largest symposium so far and was dominated by progress and hopes that the LISA mission will soon excel following the expected launch of the LISA pathfinder (LPF), no later than 2012, and the expected prioritization by the Decadal survey which was released 6 weeks later. The following years were challenging. Although the Decadal survey ranked LISA very high, NASA's budget issues, mostly due to the cost increase of the James Webb Space Telescope, and continued delays in LPF put too much stress on the LISA project and it officially ended in 2011. The LISA International Science Team (LIST), the core group of LISA scientists and technologists, was dissolved and the community in the U.S. was struggling to maintain cohesion. In the wake of these events, ESA started a new selection process for their next three large missions, L1, L2, and L3, and the European LISA team developed the New Gravitational wave Observatory (NGO), an evolved LISA concept, as an ESA only L1 candidate. A few weeks before the 9th LISA Symposium, held in Paris in May 2012, ESA announced its decision to select JUICE, a planetary mission to Jupiter and its moons, as its next large science mission (L1). Despite having the highest ranked science case, NGO was not selected due to further delays in LPF and the general feeling outside the GW community that the technology is perhaps too challenging to be pulled off in time for the L1 launch in 2022. Many U.S. members of the LISA community cancelled their travel plans and the mood at that symposium ranged from resignation to defiance. Hope for a somewhat timely launch of a LISA-like mission rested upon L2, the next

  4. PREFACE: 10th International LISA Symposium

    NASA Astrophysics Data System (ADS)

    Ciani, Giacomo; Conklin, John W.; Mueller, Guido

    2015-05-01

    The LISA Symposia have become a mainstay of the gravitational wave community. Held every two years, they are the prime opportunity for our community to discuss the exciting science, technology, mission designs, and progress of the Laser Interferometer Space Antenna. The 8th LISA symposium, held at Stanford University in the summer of 2010 was the largest symposium so far and was dominated by progress and hopes that the LISA mission will soon excel following the expected launch of the LISA pathfinder (LPF), no later than 2012, and the expected prioritization by the Decadal survey which was released 6 weeks later. The following years were challenging. Although the Decadal survey ranked LISA very high, NASA's budget issues, mostly due to the cost increase of the James Webb Space Telescope, and continued delays in LPF put too much stress on the LISA project and it officially ended in 2011. The LISA International Science Team (LIST), the core group of LISA scientists and technologists, was dissolved and the community in the U.S. was struggling to maintain cohesion. In the wake of these events, ESA started a new selection process for their next three large missions, L1, L2, and L3, and the European LISA team developed the New Gravitational wave Observatory (NGO), an evolved LISA concept, as an ESA only L1 candidate. A few weeks before the 9th LISA Symposium, held in Paris in May 2012, ESA announced its decision to select JUICE, a planetary mission to Jupiter and its moons, as its next large science mission (L1). Despite having the highest ranked science case, NGO was not selected due to further delays in LPF and the general feeling outside the GW community that the technology is perhaps too challenging to be pulled off in time for the L1 launch in 2022. Many U.S. members of the LISA community cancelled their travel plans and the mood at that symposium ranged from resignation to defiance. Hope for a somewhat timely launch of a LISA-like mission rested upon L2, the next

  5. 8th International Symposium on Supramolecular and Macrocyclic Chemistry

    SciTech Connect

    Davis, Jeffery T.

    2015-09-18

    This report summarizes the 8th International Conference on Supramolecular and Macrocyclic Chemistry (ISMSC-8). DOE funds were used to make it more affordable for students, post-docs and junior faculty to attend the conference by covering their registration costs. The conference was held in Crystal City, VA from July 7-11, 2013. See http://www.indiana.edu/~ismsc8/ for the conference website. ISMSC-8 encompassed the broad scope and interdisciplinary nature of the field. We met our goal to bring together leading scientists in molecular recognition and supramolecular chemistry. New research directions and collaborations resulted this conference. The DOE funding was crucial for us achieving our primary goal.

  6. 8th International symposium on transport phenomena in combustion

    SciTech Connect

    1995-12-31

    The 8th International Symposium on Transport Phenomena in Combustion will be held in San Francisco, California, U.S.A., July 16-20, 1995, under the auspices of the Pacific Center of Thermal-Fluids Engineering. The purpose of the Symposium is to provide a forum for researchers and practitioners from around the world to present new developments and discuss the state of the art and future directions and priorities in the areas of transport phenomena in combustion. The Symposium is the eighth in a series; previous venues were Honolulu 1985, Tokyo 1987, Taipei 1988, Sydney 1991, Beijing 1992, Seoul 1993 and Acapulco 1994, with emphasis on various aspects of transport phenomena. The current Symposium theme is combustion. The Symposium has assembled a balanced program with topics ranging from fundamental research to contemporary applications of combustion theory. Invited keynote lecturers will provide extensive reviews of topics of great interest in combustion. Colloquia will stress recent advances and innovations in fire spread and suppression, and in low NO{sub x} burners, furnaces, boilers, internal combustion engines, and other practical combustion systems. Finally, numerous papers will contribute to the fundamental understanding of complex processes in combustion. This document contains abstracts of papers to be presented at the Symposium.

  7. SPECIAL ISSUE VETERINARY IMMUNOLOGY IMMUNOPATHOLOGY: PROCEEDINGS 8TH INTERNATIONAL VETERINARY IMMUNOLOGY SYMPOSIUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is the Special Issue of Vet. Immunol. Immunopathol. that summarizes the 8th International Veterinary Immunology Symposium (8 th IVIS) held August 15th-19th, 2007, in Ouro Preto, Brazil. The 8 th IVIS highlighted the importance of veterinary immunology for animal health, vaccinology, reproducti...

  8. Proceedings of the ASTM 8th international symposium zirconium in the nuclear industry

    SciTech Connect

    Van Swam, L.F.P.; Eucken, C.M.

    1989-01-01

    This book contains the proceedings of the ASTM 8th international symposium on zirconium in the nuclear industry. Topics covered include: Behavior of pressure tubes, Corrosion, Nodular corrosion, Basic metallurgy, and Creep and growth.

  9. 8th international conference on electronic spectroscopy and structure

    SciTech Connect

    Robinson, Art

    2000-10-16

    Gathering from 33 countries around the world, 408 registrants and a number of local drop-in participants descended on the Clark Kerr Campus of the University of California, Berkeley, from Monday, August 7 through Saturday, August 12, 2000 for the Eighth International Conference on Electronic Structure and Spectroscopy (ICESS8). At the conference, participants benefited from an extensive scientific program comprising more than 100 oral presentations (plenary lectures and invited and contributed talks) and 330 poster presentations, as well as ample time for socializing and a tour of the Advanced Light Source (ALS) at the nearby Lawrence Berkeley National Laboratory.

  10. PREFACE: 8th International Symposium of the Digital Earth (ISDE8)

    NASA Astrophysics Data System (ADS)

    2014-02-01

    Proceedings of the 8th International Symposium of Digital Earth (8th ISDE) 2013 Kuching, Sarawak, Malaysia, 26th-29th August, 2013 Conference logo This proceedings consists of the peer-reviewed papers from 8th International Symposium for Digital Earth (ISDE) held in Kuching, Sarawak, Malaysia during 26th-29th August, 2013. The 8th ISDE was a successful event in the Symposium Series of the International Society of Digital Earth, that was previously held in China (1999), Canada (2001), Czech Republic (2003), Japan (2005), the United States (2007), China (2009), and Australia (2011). The 8th ISDE, with the theme 'Transforming Knowledge into Sustainable Practice' aims to enable digital earth scientists, experts and professionals related to the field of geospatial science and technology to provide a brand new opportunity to share their ideas and insights on how we share knowledge and act together globally. In addition, the ISDE symposium series has been providing a venue for researchers and industry practitioners to discuss new ideas, collaborate to solve complex solutions to various complex problems, and importantly, pave new ways in digital earth environment. This 8th ISDE included 20 technical sessions, workshops and student sessions in various areas of digital earth; ranging from digital earth vision & innovation; earth observation technologies; ICT technologies (including spatial data infrastructures); empowering the community and engaging society; applications and innovation of digital earth for environmental applications such as hazard, pollution, flood, air quality, disaster and health, biodiversity, sustainability, forestry, early warning and emergency management, national security, natural resource management and agriculture; mining, energy and resources development; transformation towards sustainable low carbon society; digital city and green cities: towards urban sustainability; and managing water environment for sustainable development. The success of the 8

  11. PREFACE: 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP)

    NASA Astrophysics Data System (ADS)

    Williams, Jim F.; Buckman, Steve; Bieske, Evan J.

    2009-09-01

    These proceedings arose from the 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP) which was held at the University of Western Australia 24-28 November 2008. The history of AISAMP (Takayanagi and Matsuzawa 2002) recognizes its origin from the Japan-China meeting of 1985, and the first use of the name 'The First Asian International Seminar on Atomic and Molecular Physics (AISAMP)' in 1992. The initial attendees, Japan and China, were joined subsequently by scientists from Korea, Taiwan, India, Australia and recently by Malaysia, Thailand, Vietnam, Turkey Iran, UK and USA. The main purpose of the biennial AISAMP series is to create a wide forum for exchanging ideas and information among atomic and molecular scientists and to promote international collaboration. The scope of the AISAMP8 meeting included pure, strategic and applied research involving atomic and molecular structure and processes in all forms of matter and antimatter. For 2008 the AISAMP conference incorporated the Australian Atomic and Molecular Physics and Quantum Chemistry meeting. The topics for AISAMP8 embraced themes from earlier AISAMP meetings and reflected new interests, in atomic and molecular structures, spectroscopy and collisions; atomic and molecular physics with laser or synchrotron radiation; quantum information processing using atoms and molecules; atoms and molecules in surface physics, nanotechnology, biophysics, atmospheric physics and other interdisciplinary studies. The implementation of the AISAMP themes, as well as the international representation of research interests, is indicated both in the contents list of these published manuscripts as well as in the program for the meeting. Altogether, 184 presentations were made at the 8th AISAMP, including Invited Talks and Contributed Poster Presentations, of which 60 appear in the present Proceedings after review by expert referees in accordance with the usual practice of Journal of Physics: Conference Series of

  12. PREFACE: 8th International Conference on Advanced Infocomm Technology (ICAIT 2015)

    NASA Astrophysics Data System (ADS)

    Qiu, M.; Zhao, W.; Shum, P. Ping

    2016-02-01

    The 2015 IEEE 8th International Conference on Advanced Infocomm Technology (ICAIT 2015) was held in Hangzhou, China, during 25-27, October 2015, following the successes of previous events held in Shenzhan, Xi'an, Haikou, Wuhan, Paris, Hsinchu, and Fuzhou. This year the ICAIT 2015 aimed to bring together researchers, developers, and users in both industry and academia in the world for sharing state-of-art results, for exploring new areas of research and development, and to discuss emerging issues on advanced infocomm technology. The conference was hosted by Zhejiang University and China Satellite Maritime Tracking and Control Department. It was organized by the State Ley Laboratory of Modern Optical Instrumentation of Zhejiang University, in collaboration with the Joint International Research Laboratory of Photonics of Zhejiang University. More than 150 international participants from 9 foreign countries attended the conference. The ICAIT 2015 was featured with 4 plenary lectures (by Xiaoyi Bao, Benjamin J. Eggleton, Min Gu, and Chinlon Lin, respectively), and 40 invited talks, in which a wide range of topics were covered and the most recent significant results were presented. Including oral and poster presentations, 138 abstracts were presented in the conference, some of which were selected to publish in full papers in this edition of Journal of Physics: Conference Series. With the excellent quality of the presentations, the ICAIT 2015 was a success. We also wish to thank the sponsors of the conference, and particularly the technical program committee and the local organizing committee.

  13. Proceedings of the International Conference on Educational Data Mining (EDM) (8th, Madrid, Spain, June 26-29, 2015)

    ERIC Educational Resources Information Center

    Santos, Olga Cristina, Ed.; Boticario, Jesus Gonzalez, Ed.; Romero, Cristobal, Ed.; Pechenizkiy, Mykola, Ed.; Merceron, Agathe, Ed.; Mitros, Piotr, Ed.; Luna, Jose Maria, Ed.; Mihaescu, Cristian, Ed.; Moreno, Pablo, Ed.; Hershkovitz, Arnon, Ed.; Ventura, Sebastian, Ed.; Desmarais, Michel, Ed.

    2015-01-01

    The 8th International Conference on Educational Data Mining (EDM 2015) is held under auspices of the International Educational Data Mining Society at UNED, the National University for Distance Education in Spain. The conference held in Madrid, Spain, July 26-29, 2015, follows the seven previous editions (London 2014, Memphis 2013, Chania 2012,…

  14. PREFACE: The 8th China International NanoScience and Technology Symposium

    NASA Astrophysics Data System (ADS)

    Cong, Hailin

    2009-09-01

    The 8th China International NanoScience and Technology Symposium, Xiangtan (2009) - Nano-products Exposition, sponsored by Chinese Society of Miro-nanoTechnology and IEEE Nanotechnology Council, etc will be held on 23-27 October 2009 in Xiangtan, China. This symposium is held in order to promote the technology for the development of micro- and nano-scale, cross-scale integration, to share new micro/nano technologies, to exchange information and knowledge over all fields and promote the industrialization and development of nanotechnology. This is a leading professional and traditional conference with at least 400 participants every year. Famous experts, professors and government officials at home and abroad will give lectures during the symposium, which provides a good platform for delegates to discover the latest developments and dynamics of nanotechnology. Researchers, teachers and students in colleges, and technical personnel in the industrial community are welcome to contribute and actively participate in the symposium. In our last symposium held in 2008, over 600 participants from all over the world attended, and we received over 570 abstract and paper submissions for the proceedings published in different languages in famous professional journals. And this year, we have already received over 400 submissions. After strict peer review, 60 of them are published in this volume of Journal of Physics: Conference Series. We are confident that the event will be even more successful this year. Consequently, the organizing committee and proceedings editorial committee would like to thank our colleagues at the IOP Publishing, the invited speakers, our sponsors and all the delegates for their great contributions in this conference. Hailin Cong Vice Chair of the proceedings editorial committee

  15. PREFACE: SQM2004 The 8th International Conference on Strangeness in Quark Matter

    NASA Astrophysics Data System (ADS)

    Cleymans, Jean; Steinberg, Peter; Vilakazi, Zeblon

    2005-06-01

    The 8th International Conference on Strangeness in Quark Matter (SQM2004) was held at at the Breakwater Lodge, which is part of the Graduate School of Business of the University of Cape Town. The architecture of the Breakwater Lodge is a stark reminder of the fact that its original purpose was to serve as a municipal jail. It appears that the spectacular background of Table Mountain and the V&A Waterfront and an excellent set of speakers were sufficient to keep the lecture rooms full to capacity, despite the numerous temptations of Cape Town. This is the first time a major heavy ion conference has been held in South Africa, and the timing is fortuitous, with a long-delayed MoU between South Africa and CERN at last being signed and finalized. At last, funding is being made available for South African scientists to play a meaningful role and make contributions to the international effort in heavy ion physics. Despite the substantial distance from the major cities in the northern hemisphere, the conference was very well attended and the number of participants was about 50% larger than originally anticipated. Participants came from China, India, Japan, the United States, Brazil and many European countries. We would like to thank all of the SQM2004 participants for their efforts and, in particlular, all of the plenary and parallel speakers for their hard work in making this conference such a success. Of course, even more thanks go to all the chairpersons of the various sessions who struggled to keep the conference program on the (admittedly tight) schedule. For future conferences, we recommend keeping a bell handy! Photograph Participants gather on the UCT campus with Table Mountain in the backgound. We would like to thank Professor Tony Fairall for a most entertaining after-dinner talk about all that is unusual and fascinating about the southern hemisphere. It could not be emphasized enough that the daily working of the meeting would have ground to a halt without the

  16. PREFACE: 8th International Conference on Fine Particle Magnetism (ICFPM2013)

    NASA Astrophysics Data System (ADS)

    2014-06-01

    The 8th International Conference on Fine Particle Magnetism (ICFPM) was held in Perpignan from 24 to 27 June 2013, and was the continuation of the previous meetings held in Bangor (1996), Rome (1991), Barcelona (1999), Pittsburg (2002), London (2004), Rome (2007) and Uppsala (2010). The next meeting will be organized by Profs. Robert D. Shull, George Hadjipanayis and Cindi Dennis, in 2016 at NIST, Gaithersburg (USA). ICFPM is a small-sized conference focused on the magnetism of nanoparticles. It provides an international forum for discussing the state-of-the-art understanding of physics of these systems, of their properties and the underlying phenomena, as approached from a variety of directions: theory and modelling, experiments on well characterized or model systems (both fabricated and synthetised), as well as experiments on technologically-relevant non-ideal systems. This meeting brought together about 120 participants working on experimental, theoretical and applied topics of the multidisciplinary research areas covered by magnetic nanoparticles, with focused interest on either single-particle or collective phenomena. The technical program of the conference was based on keynote conferences, invited talks, oral contributions and poster sessions, covering the following aspects: . Fabrication, synthesis, characterization . Single particle, surface and finite-size effects on magnetic properties . Magnetization dynamics, micro-wave assisted switching, dynamical coupling . Assemblies, collective effects, self-assembling and nanostructuring . Applications : hyperthermia, drug delivery, magneto-caloric, magneto-resistance, magneto-plasmonics, magnetic particle imaging This ICFPM edition was organized by the group Nanoscale Spin Systems of the laboratory PROMES of the CNRS (UPR8521), and Université de Perpignan Via Domitia. The meeting took place at the Congress Center of the city of Perpignan providing high-quality facilities for the technical program as well for the

  17. PREFACE: 8th International Conference on 3D Radiation Dosimetry (IC3DDose)

    NASA Astrophysics Data System (ADS)

    Olsson, Lars E.; Bäck, S.; Ceberg, Sofie

    2015-01-01

    IC3DDose 2014, the 8th International Conference on 3D Radiation Dosimetry was held in Ystad, Sweden, from 4-7 September 2014. This grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose. The 7th and last meeting was held in Sydney, Australia from 4-8 November 2012. It is worth remembering that the conference series started at the very beginning of the intensity modulated radiotherapy era and that the dosimeters being developed then were, to some extent, ahead of the clinical need of radiotherapy. However, since then the technical developments in radiation therapy have been dramatic, with dynamic treatments, including tracking, gating and volumetric modulated arc therapy, widely introduced in the clinic with the need for 3D dosimetry thus endless. This was also reflected by the contributions at the meeting in Ystad. Accordingly the scope of the meeting has also broadened to IC3DDOSE - I See Three-Dimensional Dose. A multitude of dosimetry techniques and radiation detectors are now represented, all with the common denominator: three-dimensional or 3D. Additionally, quality assurance (QA) procedures and other aspects of clinical dosimetry are represented. The implementation of new dosimetric techniques in radiotherapy is a process that needs every kind of caution, carefulness and thorough validation. Therefore, the clinical needs, reformulated as the aims for IC3DDOSE - I See Three-Dimensional Dose, are: • Enhance the quality and accuracy of radiation therapy treatments through improved clinical dosimetry. • Investigate and understand the dosimetric challenges of modern radiation treatment techniques. • Provide

  18. PREFACE: 8th International Conference on Fine Particle Magnetism (ICFPM2013)

    NASA Astrophysics Data System (ADS)

    2014-06-01

    The 8th International Conference on Fine Particle Magnetism (ICFPM) was held in Perpignan from 24 to 27 June 2013, and was the continuation of the previous meetings held in Bangor (1996), Rome (1991), Barcelona (1999), Pittsburg (2002), London (2004), Rome (2007) and Uppsala (2010). The next meeting will be organized by Profs. Robert D. Shull, George Hadjipanayis and Cindi Dennis, in 2016 at NIST, Gaithersburg (USA). ICFPM is a small-sized conference focused on the magnetism of nanoparticles. It provides an international forum for discussing the state-of-the-art understanding of physics of these systems, of their properties and the underlying phenomena, as approached from a variety of directions: theory and modelling, experiments on well characterized or model systems (both fabricated and synthetised), as well as experiments on technologically-relevant non-ideal systems. This meeting brought together about 120 participants working on experimental, theoretical and applied topics of the multidisciplinary research areas covered by magnetic nanoparticles, with focused interest on either single-particle or collective phenomena. The technical program of the conference was based on keynote conferences, invited talks, oral contributions and poster sessions, covering the following aspects: . Fabrication, synthesis, characterization . Single particle, surface and finite-size effects on magnetic properties . Magnetization dynamics, micro-wave assisted switching, dynamical coupling . Assemblies, collective effects, self-assembling and nanostructuring . Applications : hyperthermia, drug delivery, magneto-caloric, magneto-resistance, magneto-plasmonics, magnetic particle imaging This ICFPM edition was organized by the group Nanoscale Spin Systems of the laboratory PROMES of the CNRS (UPR8521), and Université de Perpignan Via Domitia. The meeting took place at the Congress Center of the city of Perpignan providing high-quality facilities for the technical program as well for the

  19. 8th International Special Session on Current Trends in Numerical Simulation for Parallel Engineering Environments

    SciTech Connect

    Trinitis, C; Bader, M; Schulz, M

    2009-06-09

    In today's world, the use of parallel programming and architectures is essential for simulating practical problems in engineering and related disciplines. Significant progress in CPU architecture (multi- and many-core CPUs, SMT, transactional memory, virtualization support, shared caches etc.) system scalability, and interconnect technology, continues to provide new opportunities, as well as new challenges for both system architects and software developers. These trends are paralleled by progress in algorithms, simulation techniques, and software integration from multiple disciplines. In its 8th year, ParSim continues to build a bridge between application disciplines and computer science and to help fostering closer cooperations between these fields. Since its successful introduction in 2002, ParSim has established itself as an integral part of the EuroPVM/MPI conference series. In contrast to traditional conferences, emphasis is put on the presentation of up-to-date results with a short turn-around time. We believe that this offers a unique opportunity to present new aspects in this dynamic field and discuss them with a wide, interdisciplinary audience. The EuroPVM/MPI conference series, as one of the prime events in parallel computation, serves as an ideal surrounding for ParSim. This combination enables participants to present and discuss their work within the scope of both the session and the host conference. This year, five papers from authors in five countries were submitted to Par-Sim, and we selected three of them. They cover a range of different application fields including mechanical engineering, material science, and structural engineering simulations. We are confident that this resulted in an attractive special session and that this will be an informal setting for lively discussions as well as for fostering new collaborations. Several people contributed to this event. Thanks go to Jack Dongarra, the EuroPVM/MPI general chair, and to Jan Westerholm, Juha

  20. 8th International Symposium on Quantum Theory and Symmetries (QTS8)

    NASA Astrophysics Data System (ADS)

    Bijker, Roelof; Krötzsch, Guillermo; Rosas-Ortiz, Óscar; Wolf, Kurt Bernardo

    2014-05-01

    The Quantum Theory and Symmetries (QTS) international symposia are periodic biannual meetings of the mathematical physics community with special interest in the methods of group theory in their many incarnations, particularly in the symmetries that arise in quantum systems. The QTSs alternate with the International Colloquia on Group Theoretical Methods in Physics since 1999, when Professor Heinz-Dietrich Doebner organized the first one in Goslar, Germany. Subsequent symposia were held in Krakóow, Poland (2001), Cincinnati, USA (2003), Varna, Bulgaria (2005), Valladolid, Spain (2007), Lexington, USA (2009), and Praha, Czech Republic (2011); the eighth QTS was awarded to Mexico (2013), and the next one (2015) will take place in Yerevan, Armenia. Conference photograph Further details, including committees and members, are available in the PDF

  1. Proceedings of the 8th International Symposium on Remote Sensing of Environment, volume 1

    NASA Technical Reports Server (NTRS)

    Cook, J. J.

    1972-01-01

    These Proceedings contain papers presented at the Eighth International Symposium on Remote Sensing of Environment, held October 2nd through 6th, 1972, on the campus of the University of Michigan. The symposium was conducted by the Center for Remote Sensing Information and Analysis of the Environmental Research Institute of Michigan (formerly the University of Michigan's Willow Run Laboratories) as a part of a continuing program investigating current activities in the field of remote sensing. Presentations include those on the use of this technology by regional governmental units and by federal governmental agencies, as well as various applications in monitoring and managing the earth's resources and man's global environment. Ground-based, airborne, and spaceborne sensor systems and manual and machine-assisted data analysis and interpretation are included.

  2. INTRODUCTION: The 8th International Conference on Vacuum Ultraviolet Radiation Physics

    NASA Astrophysics Data System (ADS)

    Nilsson, Per Olof; Hedin, Lars

    1987-01-01

    The VUV conferences series The international conferences on vacuum ultraviolet radiation physics started in 1962, and are now being held every third year. VUV-8 took place at Lund University, August 4-8, 1986. VUV-9 will be arranged at the University of Hawaii, USA, August 14-18, 1989, with Prof. C S Fadley as conference chairman. Chairman of the international advisory board for the period 1986-89 is Prof. L Hedin. The theme of the series can be summarized as experimental and theoretical progress in research fields utilizing the interaction of VUV radiation with matter. The topics cover broad areas within atomic and molecular physics, solid state physics and VUV instrumentation. The conferences emphasize interdisciplinary aspects. To these belong common experimental techniques as, e.g., synchrotron radiation instrumentation, and common theoretical foundations for the description of photon interactions with matter. The VUV-8 conference The VUV-8 conference in Lund was attended by 300 participants from 26 countries. An address list of the participants is given at the end of this volume. There were 33 invited papers given as plenary or key-note talks. As many as 229 posters were presented; 49 of them were also given orally. These numbers are typical for the VUV conferences, except for the number of posters, which was unusually large. In the conference planning the poster sessions were stressed, and particular care was taken to provide a good atmosphere at these sessions. Thus the posters were kept up during the whole conference, coffee was served in the hail with the posters and there were convenient places to sit down close to the posters. Considering the wide scope of the conference it was necessary to emphasize a limited number of topics of high current interest and importance. Thus besides traditional topics, several rapidly expanding fields were discussed in special sessions. At VUV-8 there were the following sessions. Theory of atoms and molecules

  3. PREFACE: 8th International Conference on the Physics of Highly Charged Ions (HCI-96)

    NASA Astrophysics Data System (ADS)

    Awaya, Yohko; Kambara, Tadashi

    1997-01-01

    These proceedings contain the papers presented at the Eighth International Conference on the Physics of Highly Charged Ions (HCI-96) which was held on September 23-26, 1996 in Omiya, Saitama, Japan, hosted by the Institute of Physical and Chemical Research (RIKEN). The first conference of this series was held in Stockholm, Sweden in 1982. The subject was the "Production and Physics of Highly Charged Ions". The conference has since been held every other year; in Oxford, UK (1984), Groningen, the Netherlands (1986), Grenoble, France (1988), Giessen, Germany (1990), Manhattan, Kansas, USA (1992) and Vienna, Austria (1994). When the first conference of this series was held, various highly charged ions were available from many heavy ion accelerators, which had been constructed since the 1960's, and ion sources such as EBIS and ECRIS, which were then new facilities. Subsequently, many other experimental techniques have been developed to study or to control highly charged ions, such as ion traps, EBIT's, storage rings, high-brilliance synchrotron radiation, and so forth. Now the properties of highly charged ions themselves and their interactions with various kinds of materials can be studied systematically using ions of any element at various collision energies. These studies will result in a deeper insight into their nature as well as giving us important basic data for use in the fields closely related to atomic physics. About 190 scientists from 18 countries registered at the HCI-96. The number of invited talks was 21 and that of contrib- uted papers 215. In these proceedings, 20 papers of invited talks and 116 papers on contributions are included. They are classified into categories of "Structure and Spectroscopy of Highly Charged Ions and Fundamental Aspects", "Highly Charged Ions in Plasmas and Strong Fields", "Interactions of Highly Charged Ions with Atoms and Ions", "Dynamic Processes Related to Molecules and Clusters", "Interactions of Highly Charged Ions with

  4. PREFACE: NC-AFM 2005: Proceedings of the 8th International Conference on Non-Contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Reichling, M.; Mikosch, W.

    2006-04-01

    The 8th International Conference on Non-Contact Atomic Force Microscopy, held in Bad Essen, Germany, from 15 18th August 2005, attracted a record breaking number of participants presenting excellent contributions from a variety of scientific fields. This clearly demonstrated the high level of activity and innovation present in the community of NC-AFM researchers and the continuous growth of the field. The strongest ever participation of companies for a NC-AFM meeting is a sign for the emergence of new markets for the growing NC-AFM community; and the high standard of the products presented at the exhibition, many of them brand-new developments, reflected the unbroken progress in technology. The development of novel technologies and the sophistication of known techniques in research laboratories and their subsequent commercialization is still a major driving force for progress in this area of nanoscience. The conference was a perfect demonstration of how progress in the development of enabling technologies can readily be transcribed into basic research yielding fundamental insight with an impact across disciplines. The NC-AFM 2005 scientific programme was based on five cornerstones, each representing an area of vivid research and scientific progress. Atomic resolution imaging on oxide surfaces, which has long been a vision for the catalysis community, appears to be routine in several laboratories and after a period of demonstrative experiments NC-AFM now makes unique contributions to the understanding of processes in surface chemistry. These capabilities also open up new routes for the analysis of clusters and molecules deposited on dielectric surfaces where resolution limits are pushed towards the single atom level. Atomic precision manipulation with the dynamic AFM left the cradle of its infancy and flourishes in the family of bottom-up fabrication nanotechnologies. The systematic development of established and the introduction of new concepts of contrast

  5. DEVELOPMENTS AT INTERNATIONAL CONFERENCE ON WATER POLLUTION RESEARCH (8TH), HELD IN SYDNEY, AUSTRALIA ON OCTOBER 17-22, 1976

    EPA Science Inventory

    This report is a critical analysis of formal and informal developments of potential interest to the U.S. Environmental Protection Agency at the Eighth International Conference on Water Pollution Research held in Sydney, Australia, on October 17-22, 1976. The conference subject ma...

  6. Highlights of the 8th International Conference on Vaccines for Enteric Diseases: the Scottish Encounter To Defeat Diarrheal Diseases.

    PubMed

    Tennant, Sharon M; Steele, A Duncan; Pasetti, Marcela F

    2016-04-01

    Infectious diarrhea is a leading cause of morbidity and of mortality; the burden of disease affects individuals of all ages but particularly young children, especially those living in poor regions where the disease is endemic. It is also a health concern for international travelers to these areas. Experts on vaccines and enteric infections and advocates for global health improvement gathered in Scotland from 8 to 10 July 2015 to discuss recent advances in the assessment and understanding of the burden of enteric diseases and progress in the development and implementation of strategies to prevent these infections. Highlights of the meeting included description of advances in molecular assays to estimate pathogen-specific prevalence, methods to model epidemiologic trends, novel approaches to generate broad-spectrum vaccines, new initiatives to evaluate vaccine performance where they are most needed, renewed interest in human challenge models, immunological readouts as predictors of vaccine efficacy, maternal immunization to prevent enteric infections, and the impact of maternal immunity on the vaccine take of infants. A follow-up scientific gathering to advance Shigella and enterotoxigenic Escherichia coli (ETEC) vaccine efforts will be held from 28 to 30 June 2016 in Washington, DC. PMID:26936100

  7. PREFACE: Proceedings of the 7th International LISA Symposium, Barcelona, Spain, 16-20 June 2008

    NASA Astrophysics Data System (ADS)

    Lobo, Alberto; Sopuerta, Carlos F.

    2009-07-01

    In June 2006 the LISA International Science Team (LIST) accepted the bid presented by the Institut d'Estudis Espacials de Catalunya (IEEC) to host the 7th International LISA Symposium. This was during its 11th meeting at the University of Maryland, just before the 6th edition of the Symposium started in NASA's Goddard Space Flight Center. The 7th International LISA Symposium took place at the city of Barcelona, Spain, from 16-20 June 2008, in the premises of CosmoCaixa, a modern Science Museum located in the hills near Tibidabo. Almost 240 delegates registered for the event, a record breaking figure compared to previous editions of the Symposium. Many of the most renowned world experts in LISA, Gravitational Wave Science, and Astronomy, as well as Engineers, attended LISA 7 and produced state-of-the-art presentations, while everybody benefited from the opportunity to have live discussions during the week in a friendly environment. The programme included 31 invited plenary lectures in the mornings, and 8 parallel sessions in the afternoons. These were classified into 7 major areas of research: LISA Technology, LISA PathFinder, LISA PathFinder Data Analysis, LISA Data Analysis, Gravitational Wave sources, Cosmology and Fundamental Physics with LISA and Other Gravitational Wave Detectors. 138 abstracts for communications were received, of which a selection was made by the session convenors which would fit time constraints. Up to 63 posters completed the scientific programme. More details on the programme, including some of the talks, can be found at the Symposium website: http://www.ice.cat/research/LISA_Symposium. There was however a remarkable add-on: Professor Clifford Will delivered a startling presentation to the general public, who completely filled the Auditori—the main Conference Room, 320 seats—and were invited to ask questions to the speaker who had boldly guided them through the daunting world of Black Holes, Waves of Gravity, and other Warped Ideas of

  8. Precambrian and Mesozoic plate margins: Montana, Idaho and Wyoming with field guides for the 8th international conference on basement tectonics

    SciTech Connect

    Lewis, S.E.; Berg, R.B.

    1988-07-01

    Two field trips held in conjunction with the 8th International Conference on Basement Tectonics are the raison d'etre for this volume, which would perhaps otherwise seem an eclectic association. The unifying theme is an investigation of the nature of plate margins in time and space, consonant with the main theme of the conference, Characterization and Comparison of Precambrian Through Mesozoic Continental Margins. Papers presented at the conference will be published in a separate volume by the International Basement Tectonics Association, Inc. The first field trip is at least a preliminary attempt at an overview of the Precambrian (predominantly Archean) crystalline basement of southwestern Montana. A number of interesting investigations have been focused on this region in recent years. Thus, papers in the first part of this volume take the reader from the Stillwater Complex across the Beartooth Plateau, to the northern borders of Yellowstone National Park on to the southern Madison Range, and finally to some of the western-most (probable) Archean exposures in the Highland Mountains south of Butte. Moving considerably forward on the geologic time scale, the other broad topic dealt with in a second field trip and complementary articles is a relatively recent collisional terrane in central Idaho and eastern Oregon. Examined are portions of the Idaho batholith and its enigmatic and fascinating marginal rocks, and to the west, the heart of the suture zone itself in the Wallowa-Seven Devils terrane with its group of exotic intrusive, metavolcanic, and metasedimentary rocks. Individual papers are processed separately for the data base.

  9. Industrial Arts: Preparation for Life in a Technological World." Addresses and Proceedings of the 41st National and 8th International Annual Conference of the American Industrial Arts Association, (San Antonio, Texas, February 26-March 2, 1979).

    ERIC Educational Resources Information Center

    American Industrial Arts Association, Washington, DC.

    Included in this document are the addresses and proceedings of the 41st National and 8th International Annual Conference of the American Industrial Arts Association. The proceedings are organized by the following subject groups: curriculum, drafting, electricity/electronics, elementary school industrial arts, energy/power, evaluation, futurology,…

  10. What factors help or hinder the achievement of low SES students? An international comparison using TIMSS 2011 8th grade science data

    NASA Astrophysics Data System (ADS)

    Bruner, Justin L.

    Focusing on science from a cross-country perspective, this study explores the relationship between 8th grade science achievement and student, teacher, and school characteristics. More specifically, this study will pay special attention to low socio-economic status (SES) students and seek to understand why some disadvantaged students are able to have higher than expected achievement in science given their SES while other disadvantaged students are not able to achieve beyond what would be expected given their background. This study will explore the multi-level relationship between the characteristics of students, their teachers, their schools, and student achievement in science. While looking at students in classrooms and in schools, this work will create as precise as possible a measure of student SES by drawing on recommendations of an expert panel commissioned by the National Association of Educational Progress (NAEP) study. The study uses the most recent cycle (2011) of the Trends in International Math and Science Study (TIMSS), to strategically select a six-country sample from the 45 participating countries. This six-country sample was selected by using the country level achievement and the standard deviation of that achievement. This will create a sample that has a range of equality in achievement and strength in achievement. This allows for making comparisons both across and within countries to better understand variations in the factors of student performance, especially for disadvantaged students. This paper builds on the existing research around socio-economic status (SES) and achievement by exploring in more detail the conditions in schools and classrooms around the world that might magnify or reduce the effect of SES on student achievement. The analysis looks at these questions: "What conditions help low SES students achieve higher than what would be expected given their SES?" and "What conditions hinder low SES students to achieve at or below what would

  11. EDITORIAL: Special issue for papers selected from The 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2008) Special issue for papers selected from The 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2008)

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji

    2009-09-01

    This special issue of the Journal of Micromechanics and Microengineering features papers selected from The 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2008) with the 2nd Symposium on Micro Environmental Machine Systems (μMEMS 2008). The workshop was held in Sendai, Japan on 9-12 November 2008 by Tohoku University. This is the second time that the PowerMEMS workshop has been held in Sendai, following the first workshop in 2000. Power MEMS is one of the newest categories of MEMS, which encompasses microdevices and microsystems for power generation, energy conversion and propulsion. The first concept of Power MEMS was born in the late 1990's from a MEMS-based gas turbine project at Massachusetts Institute of Technology. After that, the research and development of Power MEMS have been promoted by the strong need for compact power sources with high energy and/or power density. Since its inception, Power MEMS has expanded to include not only various MEMS-based power generators but also small energy machines and microdevices for macro power generators. Previously, the main topics of the PowerMEMS workshop were miniaturized gas turbines and micro fuel cells, but recently, energy harvesting has been the hottest topic. In 2008, energy harvesting had a 41% share in the 118 accepted regular papers. This special issue includes 19 papers on various topics. Finally, I would like to express my sincere appreciation to the members of the International Steering Committee, the Technical Program Committee, the Local Organizing Committee and financial supporters. This special issue was edited in collaboration with the staff of IOP Publishing.

  12. EDITORIAL: Proceedings of the 7th International LISA Symposium, Barcelona, Spain, 16-20 June 2008 Proceedings of the 7th International LISA Symposium, Barcelona, Spain, 16-20 June 2008

    NASA Astrophysics Data System (ADS)

    Lobo, Alberto; Sopuerta, Carlos F.

    2009-05-01

    In June 2006 the LISA International Science Team (LIST) accepted the bid presented by the Institut d'Estudis Espacials de Catalunya (IEEC) to host the 7th International LISA Symposium. This was during its 11th meeting at the University of Maryland, just before the 6th edition of the symposium started at NASA's Goddard Space Flight Center. The 7th International LISA Symposium took place in the city of Barcelona, Spain, 16-20 June, 2008, in the premises of CosmoCaixa, a modern science museum located in the hills near Tibidabo. Almost 240 delegates registered for the event, a record breaking figure compared to previous editions of the symposium. Many of the most renowned world experts in LISA, gravitational wave science, and astronomy, as well as engineers, attended LISA #7 and produced state of the art presentations, while everybody benefited from the opportunity to have live discussions during the week in a friendly environment. The programme included 31 invited plenary lectures in the mornings, and eight parallel sessions in the afternoons. These were classified into seven major areas of research: LISA Technology, LISA PathFinder, LISA PathFinder Data Analysis, LISA Data Analysis, Gravitational Wave Sources, Cosmology and Fundamental Physics with LISA and Other Gravitational Wave Detectors. Abstracts for 138 communications were received, from which a selection was made by the session convenors which would fit time constraints. Up to 63 posters completed the scientific programme. More details on the programme, including some of the talks, can be found at the symposium website:http://www.ice.cat/research/LISA_Symposium. There was, however, a remarkable add-on: Professor Clifford Will delivered a startling presentation to the general public, who completely filled the Auditori—the main conference room, 320 seats—and were invited to ask questions to the speaker who boldly guided them through the daunting world of Black Holes, Waves of Gravity, and other Warped Ideas

  13. PREFACE: 8th Edoardo Amaldi Conference on Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Marka, Zsuzsa; Marka, Szabolcs

    2010-04-01

    (The attached PDF contains select pictures from the Amaldi8 Conference) At Amaldi7 in Sydney in 2007 the Gravitational Wave International Committee (GWIC), which oversees the Amaldi meetings, decided to hold the 8th Edoardo Amaldi Conference on Gravitational Waves at Columbia University in the City of New York. With this decision, Amaldi returned to North America after a decade. The previous two years have seen many advances in the field of gravitational wave detection. By the summer of 2009 the km-scale ground based interferometric detectors in the US and Europe were preparing for a second long-term scientific run as a worldwide detector network. The advanced or second generation detectors had well-developed plans and were ready for the production phase or started construction. The European-American space mission, LISA Pathfinder, was progressing towards deployment in the foreseeable future and it is expected to pave the ground towards gravitational wave detection in the milliHertz regime with LISA. Plans were developed for an additional gravitational wave detector in Australia and in Japan (in this case underground) to extend the worldwide network of detectors for the advanced detector era. Japanese colleagues also presented plans for a space mission, DECIGO, that would bridge the gap between the LISA and ground-based interferometer frequency range. Compared to previous Amaldi meetings, Amaldi8 had new elements representing emerging trends in the field. For example, with the inclusion of pulsar timing collaborations to the GWIC, gravitational wave detection using pulsar timing arrays was recognized as one of the prominent directions in the field and was represented at Amaldi8 as a separate session. By 2009, searches for gravitational waves based on external triggers received from electromagnetic observations were already producing significant scientific results and plans existed for pointing telescopes by utilizing gravitational wave trigger events. Such

  14. Examination of Science Achievement in the 8th Grade Level in Turkey in Terms of National and International Exams Depending upon Various Variables

    ERIC Educational Resources Information Center

    Atalmis, Erkan H.; Avgin, Sakine S.; Demir, Papatya; Yildirim, Bilal

    2016-01-01

    The aim of the present study is to examine the effect of demographic characteristics of students in Turkey upon their performance in TIMSS, an international assessment exam and Secondary Education Transition Examination which is a national exam (OGS). One of the fields of sciences, biology is taken into account as student performance. As a result…

  15. LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin

    2008-01-01

    USA Pathfinder is a space mission dedicated to demonstrating technology for the Laser Interferometer Space Antenna (LISA). LISA is a joint ESA/NASA mission to detect low-frequency gravitational waves on the 0.0001 to 0.1 Hz frequency band. LISA is expected to observe 100's of merging massive black hole binaries out z-15, tens of thousands of close compact binary systems in the Milky Way, merging intermediate-mass black hole binaries, tens of stellar-mass black holes falling into supermassive black holes in galactic centers, and possibly other exotic sources. Several critical LISA technologies have not been demonstrated at the requisite level of performance. In spaceflight, and some fight hardware cannot be tested in a 1-g environment. Hence, the LISA Pathfinder mission is being implemented to demonstrate these critical LISA technologies in a relevant flight environment. LISA Pathfinder mimics one arm of the LISA constellation by shrinking the 5-million-kilometer armlength down to a few tens of centimeters. The experimental concept is to measure the relative separation between two test masses nominally following their own geodesics, and thereby determine the relative residual acceleration between them near 1 mHz, about a decade above the lowest frequency required by LISA. To implement such a concept, disturbances on the test masses must be kept very small by many design features, but chiefly by "drag-free" flight. A drag-free spacecraft follows a free-falling test mass which it encloses, but has no mechanical connection to. The spacecraft senses it's orientation and separation with respect to the proof mass, and its propulsion system is commanded to keep the spacecraft centered about the test mass. Thus, the spacecraft shields the test mass from most external influences, and minimizes the effect of force gradients arising from the spacecraft, and acting on the test mass. LISA Pathfinder will compare the geodesic of one test mass against that of the other. Only a

  16. 8th Spacecraft Charging Technology Conference

    NASA Technical Reports Server (NTRS)

    Minor, J. L. (Compiler)

    2004-01-01

    The 8th Spacecraft Charging Technology Conference was held in Huntsville, Alabama, October 20-24, 2003. Hosted by NASA s Space Environments and Effects (SEE) Program and co-sponsored by the Air Force Research Laboratory (AFRL) and the European Space Agency (ESA), the 2003 conference saw attendance from eleven countries with over 65 oral papers and 18 poster papers. Presentation topics highlighted the latest in spacecraft charging mitigation techniques and on-orbit investigations, including: Plasma Propulsion and Tethers; Ground Testing Techniques; Interactions of Spacecraft and Systems With the Natural and Induced Plasma Environment; Materials Characterizations; Models and Computer Simulations; Environment Specifications; Current Collection and Plasma Probes in Space Plasmas; On-Orbit Investigations. A round-table discussion of international standards regarding electrostatic discharge (ESD) testing was also held with the promise of continued discussions in the off years and an official continuation at the next conference.

  17. Rightsizing LISA

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2008-01-01

    The LISA science requirements and conceptual design have been fairly stable for over a decade. In the interest of reducing costs, the LISA Project at NASA has looked for simplifications of the architecture, at downsizing of subsystems, and at descopes of the entire mission. This is a natural activity of the formulation phase, and one that is particularly timely in the current NASA budgetary context. There is, and will continue to be, enormous pressure for cost reduction from both ESA and NASA, reviewers and the broader research community. Here, we review the rationale for the baseline architecture. and report recent efforts to find simplifications and other reductions that might lead to savings. A few possible simplifications have been found in the LISA baseline architecture. In the interest of exploring cost sensitivity, one moderate and one aggressive descope have been evaluated; the cost savings are modest and the loss of science is not.

  18. Rightsizing LISA

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2009-01-01

    The LISA science requirements and conceptual design have been fairly stable for over a decade. In the interest of reducing costs, the LISA Project at NASA has looked for simplifications of the architecture, at downsizing of subsystems, and at descopes of the entire mission. This is a natural activity of the formulation phase, and one that is particularly timely in the current NASA budgetary context. There is, and will continue to be, enormous pressure for cost reduction from both ESA and NASA, reviewers and the broader research community. Here, the rationale for the baseline architecture is reviewed, and recent efforts to find simplifications and other reductions that might lead to savings are reported. A few possible simplifications have been found in the LISA baseline architecture. In the interest of exploring cost sensitivity, one moderate and one aggressive descope have been evaluated; the cost savings are modest and the loss of science is not.

  19. PREFACE: 8th Edoardo Amaldi Conference on Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Marka, Zsuzsa; Marka, Szabolcs

    2010-04-01

    (The attached PDF contains select pictures from the Amaldi8 Conference) At Amaldi7 in Sydney in 2007 the Gravitational Wave International Committee (GWIC), which oversees the Amaldi meetings, decided to hold the 8th Edoardo Amaldi Conference on Gravitational Waves at Columbia University in the City of New York. With this decision, Amaldi returned to North America after a decade. The previous two years have seen many advances in the field of gravitational wave detection. By the summer of 2009 the km-scale ground based interferometric detectors in the US and Europe were preparing for a second long-term scientific run as a worldwide detector network. The advanced or second generation detectors had well-developed plans and were ready for the production phase or started construction. The European-American space mission, LISA Pathfinder, was progressing towards deployment in the foreseeable future and it is expected to pave the ground towards gravitational wave detection in the milliHertz regime with LISA. Plans were developed for an additional gravitational wave detector in Australia and in Japan (in this case underground) to extend the worldwide network of detectors for the advanced detector era. Japanese colleagues also presented plans for a space mission, DECIGO, that would bridge the gap between the LISA and ground-based interferometer frequency range. Compared to previous Amaldi meetings, Amaldi8 had new elements representing emerging trends in the field. For example, with the inclusion of pulsar timing collaborations to the GWIC, gravitational wave detection using pulsar timing arrays was recognized as one of the prominent directions in the field and was represented at Amaldi8 as a separate session. By 2009, searches for gravitational waves based on external triggers received from electromagnetic observations were already producing significant scientific results and plans existed for pointing telescopes by utilizing gravitational wave trigger events. Such

  20. LISA Pathfinder and eLISA news

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira; Mueller, Guido

    2014-01-01

    Two important gatherings of the space-based gravitational-wave detector community were held in Zurich, Switzerland this past March. The first was a meeting of the Science Working Team for LISA Pathfinder (LPF), a dedicated technology demonstrator mission for a future LISA-like gravitational wave observatory. LPF is entering an extremely exciting phase with launch less than 15 months away. All flight components for both the European science payload, known as the LISA Technology Package (LTP), and the NASA science payload, known as the Space Technology 7 Disturbance Reduction System (ST7-DRS), have been delivered and are undergoing integration. The final flight component for the spacecraft bus, a cold-gas thruster based on the successful GAIA design, will be delivered later this year. Current focus is on completing integration of the science payload (see Figures 1 and 2) and preparation for operations and data analysis. After a launch in Summer 2015, LPF will take approximately 90 days to reach its operational orbit around the Earth-Sun Lagrange point (L1), where it will begin science operations. After 90 days of LTP operations followed by 90 days of DRS operations, LPF will have completed its prime mission of paving the way for a space-based observatory of gravitational waves in the milliHertz band. Immediately following the meeting of the LPF team, the eLISA consortium held its third progress meeting. The consortium (www.elisascience.org) is the organizing body of the European space-based gravitational-wave community, and it was responsible for the "The Gravitational Universe" whitepaper that resulted in the November 2013 election of a gravitational-wave science theme for ESA's Cosmic Visions L3 opportunity. In preparation for an L3 mission concept call, which is expected later this decade, and for launch in the mid 2030s, the eLISA consortium members are coordinating technology development and mission study activities which will build on the LPF results. The final

  1. CERT tribal internship program. Final intern report: D`Lisa Penney, 1994

    SciTech Connect

    1998-09-01

    The purpose of this intern`s project was to: education the Nez Perce people of the Hanford situation; begin researching into past and present health effects from the Hanford site; and inform and educate the Nez Perce people of the Hanford site and past exposures. The specific objectives were to begin researching the history of Nez Perce people and Hanford; create an understanding for the importance of this research; define the radiation and risks and how they occur; inform the Nez Perce people of the issue; and write the paper so it is easy to understand. This intern report contains a copy of the final paper written for the Nez Perce people. Because the dose reconstruction for Hanford is not complete, the health effects section is informative, but not definitive.

  2. 8th Annual European Antibody Congress 2012

    PubMed Central

    Beck, Alain; Carter, Paul J.; Gerber, Hans-Peter; Lugovskoy, Alexey A.; Wurch, Thierry; Junutula, Jagath R.; Kontermann, Roland E; Mabry, Robert

    2013-01-01

    The 8th European Antibody Congress (EAC), organized by Terrapin Ltd., was again held in Geneva, Switzerland, following on the tradition established with the 4th EAC. The new agenda format for 2012 included three parallel tracks on: (1) naked antibodies; (2) antibody drug conjugates (ADCs); and (3) bispecific antibodies and alternative scaffolds. The meeting started and closed with three plenary lectures to give common background and to share the final panel discussion and conclusions. The two day event included case studies and networking for nearly 250 delegates who learned of the latest advances and trends in the global development of antibody-based therapeutics. The monoclonal antibody track was focused on understanding the structure-function relationships, optimization of antibody design and developability, and processes that allow better therapeutic candidates to move through the clinic. Discussions on novel target identification and validation were also included. The ADC track was dedicated to evaluation of the ongoing success of the established ADC formats alongside the rise of the next generation drug-conjugates. The bispecific and alternative scaffold track was focused on taking stock of the multitude of bispecific formats being investigated and gaining insight into recent innovations and advancements. Mechanistic understanding, progression into the clinic and the exploration of multispecifics, redirected T cell killing and alternative scaffolds were extensively discussed. In total, nearly 50 speakers provided updates of programs related to antibody research and development on-going in the academic, government and commercial sectors. PMID:23493119

  3. Earth's Dynamic Systems, 8th Edition

    NASA Astrophysics Data System (ADS)

    Winterer, Edward L.

    From the very first edition, Hamblin and Christiansen's elementary geology text, Earth's Dynamic Systems, has stood above its competitors in the quality of its illustrations— all of them now in color. These are exceptionally well planned to bring out essential points of the text and are models of clarity and artistic design, especially the three-dimensional cutaway diagrams of tectonic and geomorphic features. Many new drawings and photos have been incorporated in this 8th edition, including dramatic pictures of planetary surfaces. Each of the 25 chapters begins with an opening statement that puts the chapter in a larger context and closes with a list of key terms, some thought-provoking review questions, a list of suggested readings in more advanced works, and—a novel and useful feature—a list of Web sites germane to the chapter. An illustrated glossary and a useful index complete the book. Pages feature wake-up questions for the student, such as “How do we know that streams erode the valleys through which they flow?”

  4. The Great Debate: Should All 8th Graders Take Algebra?

    ERIC Educational Resources Information Center

    McKibben, Sarah

    2009-01-01

    While 8th grade algebra was once reserved as a course for the gifted, today, more U.S. 8th graders take algebra than any other math course. This article discusses a report from the Brookings Institution which chronicles the history of the 8th-grade algebra surge and its impact on today's low-performing students. The report indicates that many of…

  5. Mathematics Teaching from a Constructivist Point of View. Proceedings of Topic Group 6 at the International Congress on Mathematical Education (8th, Seville, Spain, July 14-21, 1996). Faculty of Education Report No. 3.

    ERIC Educational Resources Information Center

    Bjorkqvist, Ole, Ed.

    The nationalities of the authors reflect the purpose of the Topic Group, to give an overview of international research on mathematics teaching within a constructivist framework as of 1996. The studies are theoretical as well as empirical, and show a variety of research interests. There is, however, evidence for an emphasis on social aspects within…

  6. Technology and Teacher Education Annual, 1997. Proceedings of the International Conference of the Society for Information Technology and Teacher Education (SITE) (8th, Orlando, Florida, April 1-5, 1997). Volumes I and II.

    ERIC Educational Resources Information Center

    Willis, Jerry, Ed.; Price, Jerry D., Ed.; McNeil, Sara, Ed.; Robin, Bernard, Ed.; Willis, Dee Anna, Ed.

    The 370 conference papers on information technology and teacher education are presented in two volumes. The 183 papers in the first volume include the following topics: use and evaluation of educational software; preservice and inservice training issues; multimedia portfolios; distance education; diversity and international perspectives; the…

  7. Tick-borne encephalitis--a European health challenge. Conference report of the 8th meeting of the International Scientific Working Group on Tick-borne Encephalitis (ISW TBE).

    PubMed

    Kunze, Ursula

    2006-06-01

    The annual 2006 meeting of the International Scientific Working Group on Tick-borne Encephalitis (ISW TBE) raised the topic "Tick-borne Encephalitis--a European Health Challenge". TBE incidence has more or less increased in all European countries with a TBE risk in the last years (excepting Austria). Additionally, TBE has become an international public health problem because of increasing mobility of people travelling to risk areas. TBE vaccination should be recommended when people travel to endemic regions and come into contact with nature, regardless of the duration of the stay. As no clear recommendations for travellers exist, it will be one of the major future challenges of the ISW TBE to increase problem awareness outside endemic regions and create general recommendations, which are valid for at least all European countries. PMID:16944370

  8. The LISA Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L. I.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    LISA Pathfinder (LPF), the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future spaceborne gravitational wave detectors, such as the proposed eLISA mission. LISA Pathfinder, and its scientific payload - the LISA Technology Package - will test, in flight, the critical technologies required for low frequency gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system. LISA Pathfinder is due to be launched in mid-2015, with first results on the performance of the system being available 6 months thereafter. The paper introduces the LISA Pathfinder mission, followed by an explanation of the physical principles of measurement concept and associated hardware. We then provide a detailed discussion of the LISA Technology Package, including both the inertial sensor and interferometric readout. As we approach the launch of the LISA Pathfinder, the focus of the development is shifting towards the science operations and data analysis - this is described in the final section of the paper

  9. Education and training in gastroenterology. Report from the OMGE symposia at the International Congress of Gastroenterology, Lisbon, Portugal, September 1984, and at the 8th World Congress of Gastroenterology, São Paulo, Brazil, September 1986.

    PubMed

    Myren, J; Hellers, G; Vilardell, F; Bouchier, I A

    1988-01-01

    Gastroenterology is recognized as a speciality in most countries, especially in Europe and North America. The requirements for being acknowledged as a specialist vary from 1 1/2 to 4 years of training and education in gastroenterology in addition to 1-6 years of training and education in internal medicine/surgery. The requirement of theoretical education varying from 40 to 300 h is practiced in some countries only. In some countries training in endoscopy is separated from gastroenterology. A formal examination and post-specialization training program is required in only some of the countries answering the questionnaire. The number of centres per million inhabitants recognized for training and education also varied greatly. The number of specialists per million inhabitants was 3.6 to 15. In the Middle and Far East the organisation of gastroenterology was much inferior to that in Europe and North America because of insufficient education and organization programs and lack of economic support to perform them. The answers from the gastroenterological associations and personal reporters agreed on the following: A speciality in medical and surgical gastroenterology should be established in all countries around the world. Programs for training and education should be agreed upon in recognized teaching and training institutions of gastroenterology, probably of 3 years' duration in combination with a speciality in internal medicine. A gastroenterologist will in most cases be dealing with other diseases as well. The number of specialists per million inhabitants may be estimated to 10, the exact number not being possible to determine at present. In most countries the post-specialization programs were not required but were offered, a problem that has to be clarified.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2900548

  10. The LISA Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Thorpe, james; McNamara, P. W.

    2011-01-01

    LISA Pathfinder is a dedicated technology demonstration space mission for the Laser Interferometer Space Antenna (LISA), a NASA/ESA collaboration to operate a space-based observatory for gravitational waves in the milli-Hertz band. Although the formal partnership between the agencies was dissolved in the Spring of 2011, both agencies are actively pursuing concepts for LISA-like gravitational wave observatories. These concepts take advantage of the significant technology development efforts that have already been made, especially those of the LISA Pathfinder mission. LISA Pathfinder, which is in the late stages of implementation, will place two test masses in drag-free flight and measure the relative acceleration between them. This measurement will validate a number of technologies that are critical to LISA-like gravitational wave instruments including sensing and control of the test masses, drag-free control laws, microNewton thrusters, and picometer-level laser metrology. We will present the current status of the LISA Pathfinder mission and associated activities.

  11. An Application of Cognitive Diagnostic Assessment on TIMMS-2007 8th Grade Mathematics Items

    ERIC Educational Resources Information Center

    Toker, Turker; Green, Kathy

    2012-01-01

    The least squares distance method (LSDM) was used in a cognitive diagnostic analysis of TIMSS (Trends in International Mathematics and Science Study) items administered to 4,498 8th-grade students from seven geographical regions of Turkey, extending analysis of attributes from content to process and skill attributes. Logit item positions were…

  12. Spatial Visualization as Mediating between Mathematics Learning Strategy and Mathematics Achievement among 8th Grade Students

    ERIC Educational Resources Information Center

    Rabab'h, Belal; Veloo, Arsaythamby

    2015-01-01

    Jordanian 8th grade students revealed low achievement in mathematics through four periods (1999, 2003, 2007 & 2011) of Trends in International Mathematics and Science Study (TIMSS). This study aimed to determine whether spatial visualization mediates the affect of Mathematics Learning Strategies (MLS) factors namely mathematics attitude,…

  13. A World Worth Living in ICAE 8th World Assembly Declaration (June 2011)

    ERIC Educational Resources Information Center

    Adult Learning, 2012

    2012-01-01

    This article presents the International Council of Adult Education (ICAE) 8th World Assembly Declaration (June 2011). This declaration focuses on adult educators' conviction in the possibility of a "world worth living in," and their declaration of their collective determination to work towards making it a reality all around the planet.

  14. LISA: Opening New Horizons

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2011-01-01

    The Laser Interferometer Space Antenna (LISA) is a space-borne observatory that will open the low frequency (approx.0.1-100 mHz) gravitational wave window on the universe. LISA will observe a rich variety of gravitational wave sources, including mergers of massive black holes, captures of stellar black holes by massive black holes in the centers of galaxies, and compact Galactic binaries. These sources are generally long-lived, providing unprecedented opportunities for multi-messenger astronomy in the transient sky. This talk will present an overview of these scientific arenas, highlighting how LISA will enable stunning discoveries in origins, understanding the cosmic order, and the frontiers of knowledge.

  15. An Overview of the Mock LISA Data Challenges

    NASA Technical Reports Server (NTRS)

    Arnaud, Keith A.; Babak, Stanislav; Baker, John G.; Benacquista, Matthew J.; Cornish, Neil J.; Cutler, Curt; Larson, Shane L.; Sathyaprakash, B. S.; Vallisneri, Michele; Vecchio, Alberto; Vinet, Jean-Yves

    2006-01-01

    The LISA International Science Team Working Group on Data Analysis (LIST-WG1B) is sponsoring several rounds of mock data challenges, with the purpose of fostering the development of LISA data-analysis capabilities, and of demonstrating technical readiness for the maximum science exploitation of the LISA data. The first round of challenge data sets were released at this Symposium. We describe the objectives, structure, and timeline of this program.

  16. LISA and its pathfinder

    NASA Astrophysics Data System (ADS)

    The LISA Pathfinder Team

    2015-08-01

    On astronomical scales, gravity is the engine of the Universe. The launch of LISA Pathfinder this year to prepare the technology to detect gravitational waves will help us 'listen' to the whole Universe.

  17. Testbed for LISA Photodetectors

    NASA Technical Reports Server (NTRS)

    Guzman, Felipe; Livas, Jeffrey; Silverberg, Robert

    2009-01-01

    The Laser Interferometer Space Antenna (LISA) is a gravitational wave observatory consisting of three spacecraft separated by 5 million km in an equilateral triangle whose center follows the Earth in orbit around the Sun but offset in orbital phase by 20 degrees. LISA is designed to observe sources in the frequency range of 0.1 mHz-100 mHz by measuring fluctuations of the inter-spacecraft separation with laser interferometry. Quadrant photodetectors are used to measure both separation and angular orientation. Noise level, phase and amplitude inhomogeneities of the semiconductor response, and channel cross-talk between quadrant cells need to be assessed in order to ensure the 10 pm/Square root(Hz) sensitivity required for the interferometric length measurement in LISA. To this end, we are currently developing a testbed that allows us to evaluate photodetectors to the sensitivity levels required for LISA. A detailed description of the testbed and preliminary results will be presented.

  18. Current LISA Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Merkowitz, Stephen

    2008-01-01

    The Laser Interferometer Space Antenna (LISA) mission, a space based gravitational wave detector, uses laser metrology to measure distance fluctuations between proof masses aboard three spacecraft. LISA is unique from a mission design perspective in that three spacecraft and their associated operations form one distributed science instrument, unlike more conventional missions where an instrument is a component of an individual spacecraft. The design of the LiSA spacecraft is also tightly coupled to the design and requirements of the scientific payload; for this reason it is often referred to as a "sciencecraft." A detailed discussion will be presented that describes the current spacecraft design and mission architecture needed to meet the LISA science requirements.

  19. The LISA Technology Package

    NASA Technical Reports Server (NTRS)

    Livas, Jeff

    2009-01-01

    The LISA Technology Package (LTP) is the payload of the European Space Agency's LISA Pathfinder mission. LISA Pathfinder was instigated to test, in a flight environment, the critical technologies required by LISA; namely, the inertial sensing subsystem and associated control laws and micro-Newton thrusters required to place a macroscopic test mass in pure free-fall. The UP is in the late stages of development -- all subsystems are currently either in the final stages of manufacture or in test. Available flight units are being integrated into the real-time testbeds for system verification tests. This poster will describe the UP and its subsystems, give the current status of the hardware and test campaign, and outline the future milestones leading to the UP delivery.

  20. Current LISA Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Merkowitz, S. M.; Castellucci, K. E.; Depalo, S. V.; Generie, J. A.; Maghami, P. G.; Peabody, H. L.

    2009-01-01

    The Laser Interferometer Space Antenna (LISA) mission. a space based gravitational wave detector. uses laser metrology to measure distance fluctuations between proof masses aboard three spacecraft. LISA is unique from a mission design perspective in that the three spacecraft and their associated operations form one distributed science instrument. unlike more conventional missions where an instrument is a component of an individual spacecraft. The design of the LISA spacecraft is also tightly coupled to the design and requirements of the scientific payload; for this reason it is often referred to as a "sciencecraft." Here we describe some of the unique features of the LISA spacecraft design that help create the quiet environment necessary for gravitational wave observations.

  1. The LISA Technology Package

    NASA Astrophysics Data System (ADS)

    Livas, Jeffrey C.; LISA Pathfinder Science Working Team

    2010-01-01

    The LISA Technology Package (LTP) is the payload of the European Space Agency's LISA Pathfinder mission. LISA Pathfinder was instigated to test, in a flight environment, the critical technologies required by LISA; namely, the inertial sensing subsystem and associated control laws and micro-Newton thrusters required to place a macroscopic test mass in pure free-fall. The LTP is in the late stages of development - all subsystems are currently either in the final stages of manufacture or in test. Available flight units are being integrated into the real-time testbeds for system verification tests. This poster will describe the LTP and its subsystems, give the current status of the hardware and test campaign, and outline the future milestones leading to the LTP delivery.

  2. The LISA Technology Package

    NASA Astrophysics Data System (ADS)

    McNamara, Paul

    The LISA Technology Package (LTP) is the payload of the European Space Agency's LISA Pathfinder mission. LISA Pathfinder was instigated to test, in a flight environment, the critical technologies required by LISA; namely, the inertial sensing subsystem and associated control laws and micro-Newton thrusters required to place a macroscopic test mass in pure free-fall. The LTP is in the late stages of development -all subsystems are currently either in the final stages of manufacture or in test. Available flight units are being integrated into the real-time testbeds for system verification tests. This poster will describe the LTP and its subsystems, give the current status of the hardware and test campaigns, and outline the future milestones leading to the LTP delivery.

  3. The Mock LISA Data Challenges: History, Status, Prospects

    NASA Technical Reports Server (NTRS)

    Vallisneri, Michele; Babak, Stas; Baker, John; Benacquista, Matt; Cornish, Neil; Crowder, Jeff; Cutler, Curt; Larson, Shane; Littenberg, Tyson; Porter, Edward; Vecchio, Alberto

    2007-01-01

    This slide presentation reviews the importance for the Mock LISA Data Challenges (MLDC). Laser Interferometer Space Antenna (LISA) is a gravitational wave (GW) observatory that will return data such that data analysis is integral to the measurement concept. Further rationale of the MLDC are to kickstart the development of a LISA data-analysis computational infrastructure, and to encourage, track, and compare progress in LISA data-analysis development in the open community. The MLDCs is a coordinated, voluntary effort in GW community, that will periodically issue datasets with synthetic noise and GW signals from sources of undisclosed parameters; increasing difficulty. The challenge participants return parameter estimates and descriptions of search methods. Some of the challenges and the resultant entries are reviewed. The aim is to show that LISA data analysis is possible, and to develop new techniques, using multiple international teams for the development of LISA core analysis tools

  4. The LISA Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin

    2009-01-01

    LISA Pathfinder (formerly known as SMART-2) is a European Space Agency (ESA) mission designed to pave the way for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission by testing in flight the critical technologies required for spaceborne gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. LISA Pathfinder is currently in the integration and test phase of the development, and is due to be launched on a dedicated launch vehicle in late 2011, with first results on the performance of the system being available approx 6 months later. This poster will describe the mission in detail, give the current status of the spacecraft development, and highlight the future milestones in the integration and test campaign.

  5. A LISA Interferometry Primer

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira

    2010-01-01

    A key challenge for all gravitational wave detectors in the detection of changes in the fractional difference between pairs of test masses with sufficient precision to measure astrophysical strains with amplitudes on the order of approx.10(exp -21). ln the case of the five million km arms of LISA, this equates to distance measurements on the ten picometer level. LISA interferometry utilizes a decentralized topology, in which each of the sciencecraft houses its own light sources, detectors, and electronics. The measurements made at each of the sciencecraft are then telemetered to ground and combined to extract the strain experienced by the constellation as a whole. I will present an overview of LISA interferometry and highlight some of the key components and technologies that make it possible.

  6. Science requirements for LISA

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2008-01-01

    Historically, gravitational wave antennas have been characterized by their detection capability. This is measured in terms of signal-to-noise ratio, and implies a rate of false positives and false negatives. But to do useful astrophysics, one would like to measure - or more properly, estimate - astrophysical parameters of the gravitational wave sources. In the interest of strengthening the connection between science objectives and a specific instrument performance, the LISA community has reformulated the Laser Interferometer Space Antenna (LlSA) science requirements around the anticipated uncertainty in astrophysical parameter estimation. The rationale for this characterization of LlSA and a summary of the astrophysics and fundamental physics that LISA can do will be given. LISA will be able to make precision measurements of sources out to z approximately equal to 10.

  7. The Status of LISA

    NASA Astrophysics Data System (ADS)

    Danzmann, Karsten

    The low-frequency part of the gravitational wave spectrum, from 100 micro-Hertz up to 1 Hz, contains the most spectacular sources of gravitational waves. Really high precision measure-ments are possible here, making this frequency range very interesting for both Astronomy and Fundamental Physics. To open this window for observations, we need an observatory in space! LISA, the Laser Interferometer Space Antenna, will comprise three satellites at the corners of an equilateral triangle with 5 Million km armlength. The constellation is inclined against the ecliptic by 60 degrees, following behind the earth in a distance of 50 Million km. Each satellite contains free-flying test masses on almost perturbation-free geodesic lines. Changes in the distances between the test masses will be measured by heterodyne laser interferometry with picometer resolution to detect the spacetime curvature caused by passing gravitational waves. LISA as a collaborative ESA/NASA mission is the most promising candidate for the L1 slot in the Cosmic Visions program of ESA with a launch in 2020. The Beyond Einstein Program Assessment Committee of NASA has just recently recommended LISA as a flagship mission for NASA. Key technologies for LISA will be demonstrated on the precursor mission LISA Pathfinder, to be launched by ESA in 2012. Among these are, in particular, lasers, interferometry, ion thrusters, and drag-free spacecraft control. Flight hardware manufacture for LISA Pathfinder has begun. These technologies will be useful for a variety of other missions, ranging from Fundamental Physics to Geodesy and even telecommunications.

  8. Preparing for LISA Data: The Testbed for LISA Analysis Project

    NASA Astrophysics Data System (ADS)

    Finn, Lee Samuel; Benacquista, Matthew J.; Larson, Shane L.; Rubbo, Louis J.

    2006-11-01

    The Testbed for LISA Analysis (TLA) Project aims to facilitate the development, validation, and comparison of different methods for LISA science data analysis by the broad LISA Science Community to meet the special challenges that LISA poses. It includes a well-defined Simulated LISA Data Product (SLDP), which provides a clean interface between the modeling of LISA, the preparation of LISA data, and the analysis of the LISA science data stream; a web-based clearinghouse (at ) providing SLDP software libraries, relevant software, papers and other documentation, and a repository for SLDP data sets; a set of mailing lists for communication between and among LISA simulator developers and LISA science analysts; a problem tracking system for SLDP support; and a program of workshops to allow the burgeoning LISA science community to further refine the SLDP definition, define specific LISA science analysis challenges, and report their results. This proceedings paper describes the TLA Project, the resources it provides immediately, its future plans, and invites the participation of the broader community in the furtherance of its goals.

  9. LISA Optical Bench Testbed

    NASA Astrophysics Data System (ADS)

    Lieser, M.; d'Arcio, L.; Barke, S.; Bogenstahl, J.; Diekmann, C.; Diepholz, I.; Fitzsimons, E. D.; Gerberding, O.; Henning, J.-S.; Hewitson, M.; Hey, F. G.; Hogenhuis, H.; Killow, C. J.; Lucarelli, S.; Nikolov, S.; Perreur-Lloyd, M.; Pijnenburg, J.; Robertson, D. I.; Sohmer, A.; Taylor, A.; Tröbs, M.; Ward, H.; Weise, D.; Heinzel, G.; Danzmann, K.

    2013-01-01

    The optical bench (OB) is a part of the LISA spacecraft, situated between the telescope and the testmass. For measuring the inter-spacecraft distances there are several interferometers on the OB. The elegant breadboard of the OB for LISA is developed for the European Space Agency (ESA) by EADS Astrium, TNO Science & Industry, University of Glasgow and the Albert Einstein Intitute (AEI), the performance tests then will be done at the AEI. Here we present the testbed that will be used for the performance tests with the focus on the thermal environment and the laser infrastructure.

  10. The LISA Integrated Model

    NASA Technical Reports Server (NTRS)

    Merkowitz, Stephen M.

    2002-01-01

    The Laser Interferometer Space Antenna (LISA) space mission has unique needs that argue for an aggressive modeling effort. These models ultimately need to forecast and interrelate the behavior of the science input, structure, optics, control systems, and many other factors that affect the performance of the flight hardware. In addition, many components of these integrated models will also be used separately for the evaluation and investigation of design choices, technology development and integration and test. This article presents an overview of the LISA integrated modeling effort.

  11. Brief Science Performance Evaluation on 8th Grade Students

    ERIC Educational Resources Information Center

    Mocanu, Gabriela

    2010-01-01

    This paper aims to provide some statistics concerning the science performance of a group of 59 8th graders, studying in three different classes (may be regarded as different study groups). Eight science items were used, two from each content domain: chemistry, biology, mathematics and physics. These items were taken from the 2007 edition of the…

  12. Investigation into How 8th Grade Students Define Fractals

    ERIC Educational Resources Information Center

    Karakus, Fatih

    2015-01-01

    The analysis of 8th grade students' concept definitions and concept images can provide information about their mental schema of fractals. There is limited research on students' understanding and definitions of fractals. Therefore, this study aimed to investigate the elementary students' definitions of fractals based on concept image and concept…

  13. LISA satellite formation control

    NASA Astrophysics Data System (ADS)

    Bik, J. J. C. M.; Visser, P. N. A. M.; Jennrich, O.

    The joint ESA-NASA Laser Interferometer Space Antenna (LISA) mission consists of a triangular formation of three satellites aiming at detecting gravitational waves. In linear approximation the LISA satellites describe a circle around a reference point, maintaining a fixed position with respect to each other. The reference point, the center of the triangle, orbits the Sun in a circular orbit, trailing the Earth at twenty degrees. In reality the distance between the satellites will vary by about one to two percent and the angle between the arms of the antenna will vary by about 0.5° over the course of one year for the nominal LISA satellite configuration. For measurement accuracy it is desirable that the pointing offset of the telescopes be kept small. This makes it necessary to actuate the telescopes or to control the formation. It was assumed that the LISA satellites are equipped with six μN engines that would allow to keep the two cubical proof masses within each satellite in almost perfect free fall. It was found that control forces up to about 700 μN are required for maintaining the absolute triangular LISA formation, leading to unacceptable excursions of the proof masses from free fall. However, these forces compensate predominantly very low frequency variations of the arm lengths and angles of the triangle, which are then to be compensated by the telescope actuators. The variations are outside the aimed LISA measurement bandwidth (10 -4-0.1 Hz). In addition, the effect of thruster noise, orbit determination errors and orbit injection errors was examined. The effect of these error sources on the arm lengths and orientation angles between the LISA satellites was assessed both in open loop and in closed loop, where the closed loop was based on a proportional-derivative (PD) controller. It was found that orbit determination errors of the order of a few km in position and a few mm/s in velocity lead to negligible closed loop control forces. In addition, orbit

  14. LISA Pathfinder ground testing

    NASA Astrophysics Data System (ADS)

    Guzman, Felipe; LISA Pathfinder Team

    2010-01-01

    The space-based gravitational wave observatory LISA is a joint NASA-ESA mission that requires challenging technology to ensure pure geodetic trajectories of test masses and the interferometric measurement of distance variations between them. The LISA Pathfinder mission is an ESA-launched technology demonstrator of key LISA subsystems such as spacecraft control with micronewton thrusters, test mass drag-free control, and precision laser interferometry between free-flying test masses. Ground testing of pre-flight hardware of the Gravitational Reference Sensor and Optical Metrology subsystems is currently ongoing. Studies have been carried out on very sensitive torsion pendulums that effectively reproduce a free-fall condition for the test mass within a horizontal plane in the lab, down to frequencies < 0.1 mHz. Thermal gradient induced effects, impact of gas molecules, noisy charging, surface charge patches, and other effects have been investigated and their physical models consolidated. A final upper limit on non-modeled disturbances has also been obtained within one order of magnitude of LISA requirements at 1 mHz. The interferometry system has also been extensively studied to identify noise sources and develop approaches to mitigate them. Engineering models of the optical bench, laser head and laser modulators have been interconnected and tested for functionality and noise level in closed-loop operation, demonstrating the required optical metrology sensitivity to test mass displacement. This poster presents the current status in the development and implementation of LISA Pathfinder pre-flight systems and latest results of the ongoing ground testing efforts.

  15. PREFACE: 8th European Conference on Applied Superconductivity (EUCAS'07)

    NASA Astrophysics Data System (ADS)

    Hoste, Serge; Ausloos, Marcel

    2008-03-01

    This issue of Journal of Physics: Conference Series contains contributed papers presented at the 8th European Conference on Applied Superconductivity (EUCAS'07) that was held in Brussels, Belgium from 16-20 September 2007. The plenary and invited papers were published in the journal Superconductor Science and Technology. The scientific aims of EUCAS'07 followed the tradition established at the preceding conferences in Göttingen (Germany), Edinburgh (United Kingdom), Eindhoven (The Netherlands), Sitges (Spain), Lyngby (Denmark), Sorrento (Italy) and Vienna (Austria). The focus was placed on the interplay between the most recent developments in superconductor research and the positioning of applications of superconductivity in the marketplace. Although initially founded as an exchange forum mainly for European scientists, it has gradually developed into a truly international meeting with a very significant attendance from the Far East and the United States. Under the guidance of ESAS (the European Society for Applied Superconductivity) this Brussels conference was jointly organized by the University of Ghent and the University of Liege and attracted 795 participants to the scientific programme including a healthy number of 173 students. Participants from 46 countries included a considerable 30% attendance from the Far East and 7% from the United States and Canada. Thirty companies presented their latest developments in the field; 13 plenary and 28 invited lectures highlighted the state-of-the-art in the areas of materials, large-scale as well as small-scale applications were given. Based on a refereed evaluation of all the papers and posters submitted, 347 papers were selected for publication in the IOP electronic journal Journal of Physics: Conference Series and in Superconductor Science and Technology. EUCAS'07 spread a lot of optimism and enthusiasm for this fascinating field of research and for its well established technological potential, especially among the

  16. LISA Pathfinder: mission and status

    NASA Astrophysics Data System (ADS)

    Antonucci, F.; Armano, M.; Audley, H.; Auger, G.; Benedetti, M.; Binetruy, P.; Boatella, C.; Bogenstahl, J.; Bortoluzzi, D.; Bosetti, P.; Caleno, M.; Cavalleri, A.; Cesa, M.; Chmeissani, M.; Ciani, G.; Conchillo, A.; Congedo, G.; Cristofolini, I.; Cruise, M.; Danzmann, K.; De Marchi, F.; Diaz-Aguilo, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Dunbar, N.; Fauste, J.; Ferraioli, L.; Fertin, D.; Fichter, W.; Fitzsimons, E.; Freschi, M.; García Marin, A.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gilbert, F.; Giardini, D.; Grimani, C.; Grynagier, A.; Guillaume, B.; Guzmán, F.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hough, J.; Hoyland, D.; Hueller, M.; Huesler, J.; Jeannin, O.; Jennrich, O.; Jetzer, P.; Johlander, B.; Killow, C.; Llamas, X.; Lloro, I.; Lobo, A.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mitchell, E.; Monsky, A.; Nicolini, D.; Nicolodi, D.; Nofrarias, M.; Pedersen, F.; Perreur-Lloyd, M.; Perreca, A.; Plagnol, E.; Prat, P.; Racca, G. D.; Rais, B.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Sanjuan, J.; Schleicher, A.; Schulte, M.; Shaul, D.; Stagnaro, L.; Strandmoe, S.; Steier, F.; Sumner, T. J.; Taylor, A.; Texier, D.; Trenkel, C.; Tombolato, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Weber, W. J.; Zweifel, P.

    2011-05-01

    LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology demonstrator for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission. The technologies required for LISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise led to the implementation of the LISA Pathfinder mission to test the critical LISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the LISA constellation by shrinking the 5 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the LISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. LISA Pathfinder is due to be launched in 2013 on-board a dedicated small launch vehicle (VEGA). After a series of apogee raising manoeuvres using an expendable propulsion module, LISA Pathfinder will enter a transfer orbit towards the first Sun-Earth Lagrange point (L1). After separation from the propulsion module, the LPF spacecraft will be stabilized using the micro-Newton thrusters, entering a 500 000 km by 800 000 km Lissajous orbit around L1. Science results will be available approximately 2 months after launch.

  17. Report on the 8th European Congress on Menopause.

    PubMed

    Eglinton, Elizabeth; Al-Azzawi, Farook

    2009-09-01

    The 8th European Congress on Menopause (EMAS), held 16-19 May 2009 in London, UK, was organized by the European Menopause and Andropause Society and hosted by the British Menopause Society (BMS). The Congress invited speakers from a range of European countries as well as some from the USA, Ecuador, Chile, Australia and South Africa, and attracted 1470 participants from over 70 countries as far afield as the Americas and East Asia. PMID:19702446

  18. Maker of SAT Aims New Test at 8th Graders

    ERIC Educational Resources Information Center

    Cech, Scott J.

    2008-01-01

    Officials at the New York City-based College Board last week rolled out their newest product: ReadiStep. No, it is not a new piece of exercise equipment or a whipped dessert topping--it is a test for 8th graders that some critics are calling a pre-PSAT, referring to the Preliminary SAT assessment taken by 9th and 10th graders and owned by the…

  19. The 8th Century Megadrought Across North America

    NASA Astrophysics Data System (ADS)

    Stahle, D. W.; Therrell, M. D.; Cleaveland, M. K.; Fye, F. K.; Cook, E. R.; Grissino-Mayer, H. D.; Acuna-Soto, R.

    2002-12-01

    Tree-ring data suggest that the 8th and 16th century megadroughts may have been the most severe and sustained droughts to impact North America in the past 1500 years. The 16th century megadrought may have persisted for up to 40 years, and extended from the tropics to the boreal forest and from the Pacific to Atlantic coasts. Evidence for the 8th century drought is sparse, but tree-ring and lake sediment data indicate that this drought extended from the northern Great Plains, across the southwestern United States, and into central Mexico and the Yucatan peninsula. Tree-ring data from Colorado and New Mexico document severe drought from A.D. 735-765, and may provide accurate and precise dating for the onset of the epic droughts reconstructed during the late first millennium A.D. with sedimentary data from Elk Lake, Minnesota; Moon Lake, South Dakota; La Piscina de Yuriria, Guanajuato; and Lake Chichancanab, Yucatan. If these chronological refinements are correct, then the sedimentary records suggest much greater persistence to the 8th century megadrought than indicated by the very high resolution tree-ring data, and a strong second pulse of prolonged drought late in the first millennium. Analyses of instrumental precipitation and drought indices during the 20th century, along with tree-ring reconstructions of climate in Mexico and the Southwest, indicate that annual and decadal droughts can both simultaneously impact the entire region from New Mexico and Texas down into central Mexico. The intensity and large-scale impact of drought across this region seem to be greatest when La Nina conditions and the low phase of the North Pacific oscillation prevail. The tree-ring dated 8th century megadrought occurred near the decline of the Classic Period civilizations at Teotihuacan in central Mexico and in the Mayan region of the Yucatan. The 8th century megadrought may have interacted with anthropogenic environmental degradation, epidemic disease, and social upheaval to

  20. LISA Telescope Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The results of a LISA telescope sensitivity analysis will be presented, The emphasis will be on the outgoing beam of the Dall-Kirkham' telescope and its far field phase patterns. The computed sensitivity analysis will include motions of the secondary with respect to the primary, changes in shape of the primary and secondary, effect of aberrations of the input laser beam and the effect the telescope thin film coatings on polarization. An end-to-end optical model will also be discussed.

  1. LISA Telescope Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    The Laser Interferometer Space Antenna (LISA) for the detection of Gravitational Waves is a very long baseline interferometer which will measure the changes in the distance of a five million kilometer arm to picometer accuracies. As with any optical system, even one with such very large separations between the transmitting and receiving, telescopes, a sensitivity analysis should be performed to see how, in this case, the far field phase varies when the telescope parameters change as a result of small temperature changes.

  2. 1. E Street (north) facade and 8th Street (east) side. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. E Street (north) facade and 8th Street (east) side. The next property south on 8th Street is the Potomac Electric Power Company station (422 8th Street), south of that is Lansburgh's Warehouse (410 8th Street), and south of that is 408 8th Street and then a parking lot. - Simon Oppenheimer & Brother Building, 800 E Street, Northwest, Washington, District of Columbia, DC

  3. Nursing in the 8th Evacuation Hospital, 1942-1945.

    PubMed

    Brown, William J

    2015-01-01

    This article describes the experiences of Army nurses in the University of Virginia sponsored 8th Evacuation Hospital during World War II. In addition, it examines gender and role differences within the Army Medical Department, and how nurses' contributions helped shape the profession. This research used traditional historical methods of inquiry to include both primary and secondary sources of information. Primary sources include newspaper clippings, letters, citations, and photographs from the archival collections of the 8th Evacuation Hospital located in the University of Virginia Historical Collections and Services, Charlottesville, VA, and journal articles from that period. Secondary sources consisted of bibliographical and historical texts. Evidence suggests that advances in the chain-of-evacuation, antibiotics, dissemination of blood products, and nurses' expanded roles all contributed to increased survival of the wounded. Nurses' performance garnered an enduring respect from combatants who received care, as well as the medical officers and enlisted personnel with whom they worked on a daily basis. Collaboration, mutual respect, and coordinated teamwork were critical for mission success. Army nurses demonstrated that they had the mettle to go into a war zone and perform in an exemplary manner. PMID:26606414

  4. 8th edition of the Table of Isotopes: 1998 Update

    NASA Astrophysics Data System (ADS)

    Firestone, Richard B.; Chu, S. Y. Frank; Baglin, Coral M.

    1997-10-01

    The 8th edition of the Table of Isotopes (John Wiley, New York) was published in 1996 as both a two-volume book and a CD-ROM. A 1998 update to the 8th edition CD-ROM is nearly completed. The 1998 update will include data added to the Evaluated Nuclear Structure Data File (ENSDF) since about 1995. Special effort was taken, for this update, to revise ENSDF for nuclides far-from-stability, superdeformed bands, and spontaneous fission. The update will contain data for over 3600 isotopes and isomers, nearly 500 more than the previous edition. The Table of Isotopes is being prepared in Acrobat PDF format and provided with Acrobat Reader software for most computers. This new version will be Internet enabled including local HTML links to additional data for nuclear astrophysics, atomic masses, radioactive decay, fission yields, and other information. The CD-ROM will also contain the ENSDF and Nuclear Science Reference (NSR) files. Isotope Explorer software (PC) will be provided to search the ENSDF database to display level scheme drawings, data tables, plots, nuclear charts, and to perform literature searches. An Internet publication of the Table of Isotopes is under developement.

  5. LISA Instrument Performance

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.; Thorpe, James Ira

    2008-01-01

    Laser Interferometer Space Antenna (LISA) is designed to observe gravitational waves in the frequency band from 10(exp -1) to 10(exp -4) Hz where a rich spectrum of sources is expected. The measurements must be made from space to avoid the large motions of the earth that prevent the current generations (eg. LIGO) from operating at these freq8uencies. The technology and expected performance behind this measurement capability will be reviewed with an emphasis on the interferometric measurement system., including recent laboratory results showing a novel tunable frequency stabilized laser.

  6. LISA Optical Bench Testing

    NASA Astrophysics Data System (ADS)

    Tröbs, M.; d'Arcio, L.; Barke, S.; Bogenstahl, J.; Diekmann, C.; Fitzsimons, E. D.; Gerberding, O.; Hennig, J.; Hey, F. G.; Hogenhuis, H.; Killow, C. J.; Lieser, M.; Lucarelli, S.; Nikolov, S.; Perreur-Lloyd, M.; Pijnenburg, J.; Robertson, D. I.; Sohmer, A.; Taylor, A.; Ward, H.; Weise, D.; Heinzel, G.; Danzmann, K.

    2013-01-01

    Each LISA satellite carries optical benches, one for each test mass, that measure the distance to the local test mass and to the remote optical bench on the distant satellite. Currently, an elegant bread board of the optical bench is developed for the European Space Agency (ESA) by EADS Astrium, TNO Science and Technology, University of Glasgow and the Albert Einstein Institute. To test the optical bench the two interferometers mentioned above must be completed by an external simulator, the test mass and telescope simulator. We give an overview of the simulator layout and performance predictions.

  7. Synthetic LISA: Simulating time delay interferometry in a model LISA

    SciTech Connect

    Vallisneri, Michele

    2005-01-15

    We report on three numerical experiments on the implementation of Time-Delay Interferometry (TDI) for LISA, performed with Synthetic LISA, a C++/Python package that we developed to simulate the LISA science process at the level of scientific and technical requirements. Specifically, we study the laser-noise residuals left by first-generation TDI when the LISA armlengths have a realistic time dependence; we characterize the armlength-measurement accuracies that are needed to have effective laser-noise cancellation in both first- and second-generation TDI; and we estimate the quantization and telemetry bitdepth needed for the phase measurements. Synthetic LISA generates synthetic time series of the LISA fundamental noises, as filtered through all the TDI observables; it also provides a streamlined module to compute the TDI responses to gravitational waves according to a full model of TDI, including the motion of the LISA array and the temporal and directional dependence of the armlengths. We discuss the theoretical model that underlies the simulation, its implementation, and its use in future investigations on system-characterization and data-analysis prototyping for LISA.

  8. Electrostatic modeling for LISA

    NASA Astrophysics Data System (ADS)

    Shaul, Diana N.; Sumner, Timothy J.

    2003-03-01

    LISA employs a capacitive sensing and positioning system to maintain the drag free environment of the test masses acting as interferometer mirror elements. The need for detailed electrostatic modelling of the test mass environment arises because any electric field gradient or variation associated with test mass motion can couple the test mass to its housing, and ultimately the spacecraft. Cross-couplings between components in the system can introduce direct couplings between sensing signals, sensing axes and the drive signal. A variation in cross-couplings or asymmetry in the system can introduce capacitance gradients and second derivatives, giving rise to unwanted forces and spring constant modifications. These effects will vary dependent on the precise geometry of the system and will also tend to increase the sensitivity to accumulated charge on the test-mass. Presented are the results of a systematic study of the effect of the principal geometry elements (e.g. machining imperfections, the caging mechanism) on the test mass electrostatic environment, using the finite element code ANSYS. This work is part of an ongoing ESA study into drag-free control for LISA and the LTP on SMART 2 and ultimately aims to eliminate geometries that introduce too large a disturbance and optimise the electrostatic design.

  9. LISA Long-Arm Interferometry

    NASA Technical Reports Server (NTRS)

    Thorpe, James I.

    2009-01-01

    An overview of LISA Long-Arm Interferometry is presented. The contents include: 1) LISA Interferometry; 2) Constellation Design; 3) Telescope Design; 4) Constellation Acquisition; 5) Mechanisms; 6) Optical Bench Design; 7) Phase Measurement Subsystem; 8) Phasemeter Demonstration; 9) Time Delay Interferometry; 10) TDI Limitations; 11) Active Frequency Stabilization; 12) Spacecraft Level Stabilization; 13) Arm-Locking; and 14) Embarassment of Riches.

  10. LISA and LISA Pathfinder: Gravitational Wave Observation in Space

    NASA Technical Reports Server (NTRS)

    Guzman, Felipe

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) is a planned NASA-ESA gravitational wave observatory in the frequency range of 0.1 mHz--100 mHz. This observation band is inaccessible to ground-based detectors due to fluctuations in the Earth gravitational field. Gravitational wave sources for LISA include galactic binaries, mergers of supermassive black-hole binaries, extreme-mass-ratio inspirals, and cosmology backgrounds and bursts. LISA is a constellation of three spacecraft separated by 5 million km in an equilateral triangle, whose center follows the Earth in a heliocentric orbit with an orbital phase offset of 20 degrees. Challenging technology is required to ensure pure geodetic trajectories of the six onboard test masses, whose distance fluctuations will be measured by interspacecraft laser interferometers with picometer accuracy. LISA Pathfinder is an ESA-launched technology demonstration mission of key LISA subsystems such as spacecraft control with micronewton thrusters, test mass drag-free control, and precision laser interferometry between free-flying test masses. Ground testing of hardware of the Gravitational Reference Sensor and Optical Metrology subsystems of LISA Pathfinder is currently ongoing. A detailed description of the two missions and an overview of current investigations conducted by the community will be discussed. The current status in development and implementation of LISA Pathfinder pre-flight systems and latest results of the ongoing ground testing efforts will also be presented.

  11. LISA Optics Model

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    The LISA experiment has six telescopes, in three spacecraft, in orbit about the sun. There is a continuous laser link between all of the spacecraft. Because of the large, 5 million kilometer distances, between the spacecraft and the need to perform picometer level interferometry and the fact that the optical system is dynamic precludes the use of standard optical codes in the design and analysis of this optical system. A detailed description of the approach used to model all of the optics, in the spacecraft in orbit, is presented and the ability of this model to analyze requirements is discussed. A dynamic computer simulation will be shown to illustrate the laser link and the effects of this dynamic environment on the interferometry.

  12. Spacetime Metrology with LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Congedo, Giuseppe

    2012-04-01

    LISA is the proposed ESA-NASA gravitational wave detector in the 0.1 mHz - 0.1 Hz band. LISA Pathfinder is the down-scaled version of a single LISA arm. The arm - named Doppler link - can be treated as a differential accelerometer, measuring the relative acceleration between test masses. LISA Pathfinder - the in-flight test of the LISA instrumentation - is currently in the final implementation and planned to be launched in 2014. It will set stringent constraints on the ability to put test masses in geodesic motion to within the required differential acceleration of 3times10^{-14} m s^{-2} Hz^{-1/2} and track their relative motion to within the required differential displacement measurement noise of 9times10^{-12} m Hz^{-1/2}, around 1 mHz. Given the scientific objectives, it will carry out - for the first time with such high accuracy required for gravitational wave detection - the science of spacetime metrology, in which the Doppler link between two free-falling test masses measures the curvature. This thesis contains a novel approach to the calculation of the Doppler response to gravitational waves. It shows that the parallel transport of 4-vectors records the history of gravitational wave signals. In practice, the Doppler link is implemented with 4 bodies in LISA and 3 bodies in LISA Pathfinder. To compensate for noise sources a control logic is implemented during the measurement. The closed-loop dynamics of LISA Pathfinder can be condensed into operators acting on the motion coordinates, handling the couplings, as well as the cross-talks. The scope of system identification is the optimal calibration of the instrument. This thesis describes some data analysis procedures applied to synthetic experiments and shows the relevance of system identification for the success of LISA Pathfinder in demonstrating the principles of spacetime metrology for all future space-based missions.

  13. EDITORIAL: Selected articles from `The 8th Edoardo Amaldi Conference on Gravitational Waves (Amaldi 8)', Columbia University, New York, 22-26 June 2009 Selected articles from `The 8th Edoardo Amaldi Conference on Gravitational Waves (Amaldi 8)', Columbia University, New York, 22-26 June 2009

    NASA Astrophysics Data System (ADS)

    Marka, Zsuzsa; Marka, Szabolcs

    2010-04-01

    At Amaldi7,which was held in Sydney in 2007, the Gravitational Wave International Committee (GWIC), which oversees the Amaldi meetings, decided to hold the 8th Edoardo Amaldi Conference on Gravitational Waves at Columbia University in the City of New York. With this decision, Amaldi returned to North America after a decade. The previous two years have seen many advances in the field of gravitational-wave detection. By the summer of 2009 the km-scale ground based interferometric detectors in the USA and Europe were preparing for a second long-term scientific run as a worldwide detector network. The advanced or second-generation detectors had well-developed plans and were ready for the production phase or had started construction. The European-American space mission, LISA Pathfinder, is progressing towards deployment in the foreseeable future and it is expected to pave the way towards gravitational-wave detection in the millihertz regime with LISA. Plans were developed for an additional gravitational-wave detector in Australia and in Japan (in this case underground) to extend the worldwide network of detectors for the advanced detector era. Japanese colleagues also presented plans for a space mission, DECIGO, that would bridge the gap between the LISA and ground-based interferometer frequency range. Compared to previous Amaldi meetings, Amaldi8 had new elements representing emerging trends in the field. For example, with the inclusion of pulsar timing collaborations to the GWIC, gravitational-wave detection using pulsar timing arrays was recognized as one of the prominent directions in the field and was represented at Amaldi8 as a separate session. By 2009, searches for gravitational waves based on external triggers received from electromagnetic observations were already producing significant scientific results and plans existed for pointing telescopes by utilizing gravitational-wave trigger events. Such multimessenger approaches to gravitational-wave detection also

  14. Laser Interferometry for Gravitational Wave Observation: LISA and LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Guzman, Felipe

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) is a planned NASA-ESA gravitational wave observatory in the frequency range of 0.1mHz-100mHz. This observation band is inaccessible to ground-based detectors due to the large ground motions of the Earth. Gravitational wave sources for LISA include galactic binaries, mergers of supermasive black-hole binaries, extreme-mass-ratio inspirals, and possibly from as yet unimagined sources. LISA is a constellation of three spacecraft separated by 5 million km in an equilateral triangle, whose center follows the Earth in a heliocentric orbit with an orbital phase offset oF 20 degrees. Challenging technology is required to ensure pure geodetic trajectories of the six onboard test masses, whose distance fluctuations will be measured by interspacecraft laser interferometers with picometer accuracy. LISA Pathfinder is an ESA-launched technology demonstration mission of key LISA subsystems such us spacecraft control with micro-newton thrusters, test mass drag-free control, and precision laser interferometry between free-flying test masses. Ground testing of flight hardware of the Gravitational Reference Sensor and Optical Metrology subsystems of LISA Pathfinder is currently ongoing. An introduction to laser interferometric gravitational wave detection, ground-based observatories, and a detailed description of the two missions together with an overview of current investigations conducted by the community will bc discussed. The current status in development and implementation of LISA Pathfinder pre-flight systems and latest results of the ongoing ground testing efforts will also be presented

  15. Novel Payload Architectures for LISA

    NASA Astrophysics Data System (ADS)

    Johann, Ulrich A.; Gath, Peter F.; Holota, Wolfgang; Schulte, Hans Reiner; Weise, Dennis

    2006-11-01

    As part of the current LISA Mission Formulation Study, and based on prior internal investigations, Astrium Germany has defined and preliminary assessed novel payload architectures, potentially reducing overall complexity and improving budgets and costs. A promising concept is characterized by a single active inertial sensor attached to a single optical bench and serving both adjacent interferometer arms via two rigidly connected off-axis telescopes. The in-plane triangular constellation ``breathing angle'' compensation is accomplished by common telescope in-field of view pointing actuation of the transmit/received beams line of sight. A dedicated actuation mechanism located on the optical bench is required in addition to the on bench actuators for differential pointing of the transmit and receive direction perpendicular to the constellation plane. Both actuators operate in a sinusoidal yearly period. A technical challenge is the actuation mechanism pointing jitter and the monitoring and calibration of the laser phase walk which occurs while changing the optical path inside the optical assembly during re-pointing. Calibration or monitoring of instrument internal phase effects e.g. by a laser metrology truss derived from the existing interferometry is required. The architecture exploits in full the two-step interferometry (strap down) concept, separating functionally inter spacecraft and intra-spacecraft interferometry (reference mass laser metrology degrees of freedom sensing). The single test mass is maintained as cubic, but in free-fall in the lateral degrees of freedom within the constellation plane. Also the option of a completely free spherical test mass with full laser interferometer readout has been conceptually investigated. The spherical test mass would rotate slowly, and would be allowed to tumble. Imperfections in roundness and density would be calibrated from differential wave front sensing in a tetrahedral arrangement, supported by added attitude

  16. 8th Annual Symposium on Self-Monitoring of Blood Glucose (SMBG): April 16–18, 2015, Republic of Malta

    PubMed Central

    Homberg, Anita; Hinzmann, Rolf

    2015-01-01

    Abstract International experts in the fields of diabetes, diabetes technology, endocrinology, mobile health, sport science, and regulatory issues gathered for the 8th Annual Symposium on Self-Monitoring of Blood Glucose (SMBG) with a focus on personalized diabetes management. The aim of this meeting was to facilitate new collaborations and research projects to improve the lives of people with diabetes. The 2015 meeting comprised a comprehensive scientific program, parallel interactive workshops, and two keynote lectures. PMID:26496678

  17. 8th Annual Symposium on Self-Monitoring of Blood Glucose (SMBG): April 16-18, 2015, Republic of Malta.

    PubMed

    Parkin, Christopher G; Homberg, Anita; Hinzmann, Rolf

    2015-11-01

    International experts in the fields of diabetes, diabetes technology, endocrinology, mobile health, sport science, and regulatory issues gathered for the 8(th) Annual Symposium on Self-Monitoring of Blood Glucose (SMBG) with a focus on personalized diabetes management. The aim of this meeting was to facilitate new collaborations and research projects to improve the lives of people with diabetes. The 2015 meeting comprised a comprehensive scientific program, parallel interactive workshops, and two keynote lectures. PMID:26496678

  18. LISA Technology Development at GSFC

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira; McWilliams, S.; Baker, J.

    2008-01-01

    The prime focus of LISA technology development efforts at NASA/GSFC has been in LISA interferometry, specifically in the area of laser frequency noise mitigation. Laser frequency noise is addressed through a combination of stabilization and common-mode rejection. Current plans call for two stages of stabilization, pre-stabilization to a local frequency reference and further stabilization using the constellation as a frequency reference. In order for these techniques to be used simultaneously, the pre-stabilization step must provide an adjustable frequency offset. Here, we report on a modification to the standard modulation/demodulation techniques used to stabilize to optical cavities that generates a frequency-tunable reference from a fixed-length cavity. This technique requires no modifications to the cavity itself and only minor modifications to the components. The measured noise performance and dynamic range of the laboratory prototype meets the LISA requirements.

  19. LISA Pathfinder: A Mission Status

    NASA Astrophysics Data System (ADS)

    Hewitson, Martin; LISA Pathfinder Team Team

    2016-03-01

    On December 3rd at 04:04 UTC, The European Space Agency launched the LISA Pathfinder satellite on board a VEGA rocket from Kourou in French Guiana. After a series of orbit raising manoeuvres and a 2 month long transfer orbit, LISA Pathfinder arrived at L1. Following a period of commissioning, the science operations commenced at the start of March, beginning the demonstration of technologies and methodologies which pave the way for a future large-scale gravitational wave observatory in space. This talk will present the scientific goals of the mission, discuss the technologies being tested, elucidate the link to a future space-based observatory, such as LISA, and present preliminary results from the in-orbit operations and experiments.

  20. LISA: Detecting Gravitational Waves from Space

    NASA Technical Reports Server (NTRS)

    Livas, Jeff

    2009-01-01

    The laser interferometer space antenna (LISA), a joint NASA/ESA mission, will be the first dedicated gravitational wave detector in space. This presentation will provide a tutorial of the LISA measurement concept.

  1. 1. 8th Street (east) facade and partial view of south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. 8th Street (east) facade and partial view of south side. To the rear is the PMI Parking Garage and to the north is Lansburgh's Warehouse (410 8th Street,partial view). - 408 Eighth Street (Commercial Building), Washington, District of Columbia, DC

  2. The Influence of Documentary Films on 8th Grade Students' Views about Nature of Science

    ERIC Educational Resources Information Center

    Seckin Kapucu, Munise; Cakmakci, Gultekin; Aydogdu, Cemil

    2015-01-01

    This quasi-experimental study aims to investigate the documentary films' influence on 8th grade students' nature of science views. The study's participants were 113 8th grade students from two different schools taught by two different teachers. The study was completed over a 6-week period, during which topics related to "Cell Division and…

  3. Evaluation of the Citizenship Consciousness of the 8th Year Students

    ERIC Educational Resources Information Center

    Tonga, Deniz; Keles, Hamza

    2014-01-01

    The prime purpose of this study is to elucidate the awareness level of citizenship of 8th year students. That was why the answer of the question "what is the level of citizenship consciousness of the 8th year students" was sought. The study was designed according to the descriptive survey method with the use of a scale with 7 open ended…

  4. The LISA Project at NASA

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2008-01-01

    Although officially in early Phase A, LISA is currently classified as "under-study" at NASA. It has a very high recommendation from the 2000 decadal survey. and has received strong endorsements at all reviews. Mission formulation and technology development continue at modest levels. The Project is starting preparations for the next decadal survey, expected to commence in 2009.

  5. Laser frequency stabilization for LISA

    NASA Technical Reports Server (NTRS)

    Mueller, Guido; McNamara, Paul; Thorpe, Ira; Camp, Jordan

    2005-01-01

    The requirement on laser frequency noise in the Laser Interferometer Space Antenna (LISA) depends on the velocity and our knowledge of the position of each spacecraft of the interferometer. Currently it is assumed that the lasers must have a pre-stabilized frequency stability of 30Hz/square root of Hz over LISA'S most sensitive frequency band (3 mHz - 30 mHz). The intrinsic frequency stability of even the most stable com- mercial lasers is several orders of magnitude above this level. Therefore it is necessary to stabilize the laser frequency to an ultra-stable frequency reference which meets the LISA requirements. The baseline frequency reference for the LISA lasers are high finesse optical cavities based on ULE spacers. We measured the stability of two ULE spacer cavities with respect to each other. Our current best results show a noise floor at, or below, 30 Hz/square root of Hz above 3 mHz. In this report we describe the experimental layout of the entire experiment and discuss the limiting noise sources.

  6. Interview with Lisa Shipley. Interviewed by Lisa Parks.

    PubMed

    Shipley, Lisa

    2013-08-01

    Lisa Shipley is Vice President of Pharmacokinetics, Pharmacodynamics and Drug Metabolism at Merck Research Laboratories. She is responsible for preclinical and clinical ADME activities and molecular biomarker assay development activities at all Merck research sites and support of all programs from discovery through to post-product launch. Prior to joining Merck in 2008, Shipley spent over 20 years at Eli Lilly and Company in roles of increasing responsibility, including the positions of executive director at Lean Six Sigma and vice president of Drug Disposition, PK/PD and Trial Simulations. Shipley obtained her undergraduate degree from McDaniel College and her doctoral degree in Pharmacology and Toxicology from the University of Maryland at Baltimore. This interview was conducted by Lisa Parks, Assistant Commissioning Editor of Bioanalysis. PMID:23905854

  7. Overview of the LISA Phasemeter

    NASA Technical Reports Server (NTRS)

    Shaddock, Daniel A.; Ware, B.; Halverson, P.; Spero, R. E.; Klipstein, B.

    2006-01-01

    The LISA phasemeter is required to measure the phase of an electrical signal with an error less than 3 (micro)cycles/pHz over times scales from 1 to 1000 seconds. This phase sensitivity must be achieved in the presence of laser phase fluctuations 108 times larger than the target sensitivity. Other challenging aspects of the measurement are that the heterodyne frequency varies from 2 to 20 MHz and the signal contains multiple frequency tones that must be measured. The phasemeter architecture uses high-speed analog to digital conversion followed by a digital phase locked loop. An overview of the phasemeter architecture is presented along with results for the breadboard LISA Phasemeter demonstrating that critical requirements are met.

  8. LISA technology department at JPL

    NASA Technical Reports Server (NTRS)

    Harb, Charles C.; Chiao, Meng P.; Gromov, Konstantin

    2003-01-01

    The Laser Interferometer Space Antenna (LISA) project requires technology developments on many fronts. A physical understanding of the LISA subsystems is a precursor to tacjling the requirements needed to ensure a successful mission. This can only be achieved by developing the concepts in the lab prior to developing the payload. This poster presents updates on laboratory activities intended to prove the feasibility of measuring proof mass back reaction forces of less than 3fN/(square root)Hz at 1 mHz; the sensing of the proof mass position with in 2 nm/(square root)above the 3 mHz; and the resolution and accuracy of the phase-meter to better than 10 pm/(square root)Hz above the 3 mHz.

  9. LISA Propulsion Module Separation Study

    NASA Technical Reports Server (NTRS)

    Merkowitz, Stephen

    2004-01-01

    The Laser Interferometer Space Antenna (LISA) mission is a space-borne gravitational wave detector consisting of three spacecraft in heliocentric orbit. Each spacecraft is delivered to it operational orbit by a propulsion module. Because of the strict thermal and mass balancing requirements of LISA, the baseline mission concept requires that the propulsion module separate from the sciencecraft after delivery. The only propulsion system currently baselined for the sciencecraft are micronewton level thrusters, such as FEEP or colloid thrusters, that are used to balance the 30-40 microN of solar radiation pressure and provide the drag-free and attitude control of the spacecraft. Due to these thrusters limited authority, the separation of the propulsion module from the sciencecraft must be well controlled to not induce a large tip-off rotation of the sciencecraft. We present here the results of a design study of the propulsion module separation system that is shown to safely deliver the LISA sciencecraft to its final operational orbit.

  10. LISA propulsion module separation study

    NASA Astrophysics Data System (ADS)

    Merkowitz, S. M.; Ahmad, A.; Hyde, T. T.; Sweetser, T.; Ziemer, J.; Conkey, S.; Kelly, W., III; Shirgur, B.

    2005-05-01

    The Laser Interferometer Space Antenna (LISA) mission is a space-borne gravitational wave detector consisting of three sciencecraft in heliocentric orbit. Each sciencecraft is delivered to its operational orbit by a propulsion module. Because of the strict thermal and mass balancing requirements of LISA, the baseline mission concept requires that the propulsion module separate from the sciencecraft after delivery. The only propulsion system currently included in the sciencecraft design are micronewton level thrusters, such as field emission electric propulsion (FEEP) or colloid thrusters, that are used to balance the 30 40 µN of solar radiation pressure and provide the drag-free and attitude control of the sciencecraft. Due to these thrusters' limited authority, the separation of the propulsion module from the sciencecraft must be well controlled to not induce a large tip-off rotation of the sciencecraft. We present here the results of a study of the propulsion module separation system requirements that are necessary to safely deliver the three LISA sciencecraft to their final operational orbits.

  11. Ligand Identification Scoring Algorithm (LISA)

    PubMed Central

    Zheng, Zheng; Merz, Kenneth M.

    2011-01-01

    A central problem in de novo drug design is determining the binding affinity of a ligand with a receptor. A new scoring algorithm is presented that estimates the binding affinity of a protein-ligand complex given a three-dimensional structure. The method, LISA (Ligand Identification Scoring Algorithm), uses an empirical scoring function to describe the binding free energy. Interaction terms have been designed to account for van der Waals (VDW) contacts, hydrogen bonding, desolvation effects and metal chelation to model the dissociation equilibrium constants using a linear model. Atom types have been introduced to differentiate the parameters for VDW, H-bonding interactions and metal chelation between different atom pairs. A training set of 492 protein-ligand complexes was selected for the fitting process. Different test sets have been examined to evaluate its ability to predict experimentally measured binding affinities. By comparing with other well known scoring functions, the results show that LISA has advantages over many existing scoring functions in simulating protein-ligand binding affinity, especially metalloprotein-ligand binding affinity. Artificial Neural Network (ANN) was also used in order to demonstrate that the energy terms in LISA are well designed and do not require extra cross terms. PMID:21561101

  12. Work Values of 5th, 8th, and 11th Grade Students

    ERIC Educational Resources Information Center

    Hales, Loyde W.; Fenner, Bradford

    1972-01-01

    Self Realization, Job Security, Money, and Altruism were found to be the most important work values, with 5th and 8th grade students differing from 11th grade students on Altruism and Self Realization. (Author)

  13. LISA telescope spacer design investigations

    NASA Astrophysics Data System (ADS)

    Sanjuan, Josep; Mueller, Guido; Livas, Jeffrey; Preston, Alix; Arsenovic, Petar; Castellucci, Kevin; Generie, Joseph; Howard, Joseph; Stebbins, Robin

    The Laser Interferometer Space Antenna (LISA) is a space-based gravitational wave observa-tory with the goal of observing Gravitational Waves (GWs) from astronomical sources in a frequency range from 30 µHz to 0.1 Hz. The detection of GWs at such low frequency requires measurements of distances at the pico-meter level between bodies separated by 5 million kilo-meters. The LISA mission consists of three identical spacecraft (SC) separated by 5 × 106 km forming an equilateral triangle. Each SC contains two optical assemblies and two vacuum en-closures housing one proof mass (PM) in geodesic (free fall) motion each. The two assemblies on one SC are each pointing towards an identical assembly on each of the other two SC to form a non-equal arm interferometer. The measurement of the GW strain is done by measuring the change in the length of the optical path between the PMs of one arm relative to the other arms caused by the pass of a GW. An important element of the Interferometric Measurement System (IMS) is the telescope which, on one hand, gathers the light coming from the far SC (˜100 pW) and, on the other hand, expands and collimates the small outgoing beam ( 1 W) and sends it to the far SC. Due to the very demanding sensitivity requirements care must be taken in the design and validation of the telescope not to degrade the IMS performance. For instance, the diameter of the telescope sets the the shot noise of the IMS and depends critically on the diameter of the primary and the divergence angle of the outgoing beam. As the telescope is rather fast telescope, the divergence angle is a critical function of the overall separation between the primary and secondary. Any long term changes of the distance of more than a a few micro-meter would be detrimental to the LISA mission. Similarly challenging are the requirements on the in-band path-length noise for the telescope which has to be kept below 1 pm Hz-1/2 in the LISA band. Different configurations (on-axis/off axis

  14. 1. Entrance at corner of E Street (north) and 8th ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Entrance at corner of E Street (north) and 8th Street (west). To the east along E Street is a small parking lot and then 800 E St. (Simon Oppenheimer & Brother). Adjacent to 8th Street facade of the 816 E Street is 437 9th Street. Both buildings were originally one property. - Riley Building, Sunny's Surplus, 816 E Street, Northwest, Washington, District of Columbia, DC

  15. LISA Telescope Spacer Design Issues

    NASA Technical Reports Server (NTRS)

    Livas, Jeff; Arsenovic, P.; Catelluci, K.; Generie, J.; Howard, J.; Stebbins, Howard R.; Preston, A.; Sanjuan, J.; Williams, L.; Mueller, G.

    2010-01-01

    The LISA mission observes gravitational waves by measuring the separations between freely floating proof masses located 5 million kilometers apart with an accuracy of - 10 picometers. The separations are measured interferometrically. The telescope is an afocal Cassegrain style design with a magnification of 80x. The entrance pupil has a 40 cm diameter and will either be centered on-axis or de-centered off-axis to avoid obscurations. Its two main purposes are to transform the small diameter beam used on the optical bench to a diffraction limited collimated beam to efficiently transfer the metrology laser between spacecraft, and to receive the incoming light from the far spacecraft. It transmits and receives simultaneously. The basic optical design and requirements are well understood for a conventional telescope design for imaging applications, but the LISA design is complicated by the additional requirement that the total optical path through the telescope must remain stable at the picometer level over the measurement band during the mission to meet the measurement accuracy. We describe the mechanical requirements for the telescope and the preliminary work that has been done to understand the materials and mechanical issues associated with the design of a passive metering structure to support the telescope and to maintain the spacing between the primary and secondary mirrors in the LISA on-orbit environment. This includes the requirements flowdown from the science goals, thermal modeling of the spacecraft and telescope to determine the expected temperature distribution, layout options for the telescope including an on- and off-axis design. Plans for fabrication and testing will be outlined.

  16. Preliminary LISA Telescope Spacer Design

    NASA Technical Reports Server (NTRS)

    Livas, J.; Arsenovic, P.; Catellucci, K.; Generie, J.; Howard, J.; Stebbins, R. T.

    2010-01-01

    The Laser Interferometric Space Antenna (LISA) mission observes gravitational waves by measuring the separations between freely floating proof masses located 5 million kilometers apart with an accuracy of approximately 10 picometers. The separations are measured interferometrically. The telescope is an afocal Cassegrain style design with a magnification of 80x. The entrance pupil has a 40 cm diameter and will either be centered on-axis or de-centered off-axis to avoid obscurations. Its two main purposes are to transform the small diameter beam used on the optical bench to a diffraction limited collimated beam to efficiently transfer the metrology laser between spacecraft, and to receive the incoming light from the far spacecraft. It transmits and receives simultaneously. The basic optical design and requirements are well understood for a conventional telescope design for imaging applications, but the LISA design is complicated by the additional requirement that the total optical path through the telescope must remain stable at the picometer level over the measurement band during the mission to meet the measurement accuracy. This poster describes the requirements for the telescope and the preliminary work that has been done to understand the materials and mechanical issues associated with the design of a passive metering structure to support the telescope and to maintain the spacing between the primary and secondary mirrors in the LISA on-orbit environment. This includes the requirements flowdown from the science goals, thermal modeling of the spacecraft and telescope to determine the expected temperature distribution,layout options for the telescope including an on- and off-axis design, and plans for fabrication and testing.

  17. Paths to the LISA Laser

    NASA Technical Reports Server (NTRS)

    Camp, Jordan B.

    2010-01-01

    The LISA mission requires a highly stable, low noise laser with 1 W output that will operate for the 5 year mission lifetime. The best way to achieve this is with a master oscillator power amplifier design, which allows the noise and lifetime requirements to be addressed to a large extent independently. We are working with two aerospace contractors who are performing reliability studies on oscillator designs that our laboratory at Goddard is evaluating. I will describe the oscillator designs we are considering and the reliability studies now underway.

  18. Characterization of Photoreceivers for LISA

    NASA Technical Reports Server (NTRS)

    Cervantes, F. Guzman; Livas, J.; Silverberg, R.; Buchanan, E.; Stebbins, R.

    2010-01-01

    LISA will use quadrant photo receivers as front-end devices for the phase meter measuring the motion of drag-free test masses in both angular orientation and separation. We have set up a laboratory testbed for the characterization of photo receivers. Some of the limiting noise sources have been identified and their contribution has been either measured or determined from the measured data. We have built a photo receiver with a 0.5 mm diameter quadrant photodiode with an equivalent input noise of better than 1.8 pA/(square root of)Hz below 20 MHz and a 3 dB bandwidth of 34 MHz.

  19. LISA Pathfinder Instrument Data Analysis

    NASA Technical Reports Server (NTRS)

    Guzman, Felipe

    2010-01-01

    LISA Pathfinder (LPF) is an ESA-launched demonstration mission of key technologies required for the joint NASA-ESA gravitational wave observatory in space, LISA. As part of the LPF interferometry investigations, analytic models of noise sources and corresponding noise subtraction techniques have been developed to correct for effects like the coupling of test mass jitter into displacement readout, and fluctuations of the laser frequency or optical pathlength difference. Ground testing of pre-flight hardware of the Optical Metrology subsystem is currently ongoing at the Albert Einstein Institute Hannover. In collaboration with NASA Goddard Space Flight Center, the LPF mission data analysis tool LTPDA is being used to analyze the data product of these tests. Furthermore, the noise subtraction techniques and in-flight experiment runs for noise characterization are being defined as part of the mission experiment master plan. We will present the data analysis outcome of preflight hardware ground tests and possible noise subtraction strategies for in-flight instrument operations.

  20. Black Holes, Gravitational Waves, and LISA

    NASA Technical Reports Server (NTRS)

    Baker, John

    2009-01-01

    Binary black hole mergers are central to many key science objectives of the Laser Interferometer Space Antenna (LISA). For many systems the strongest part of the signal is only understood by numerical simulations. Gravitational wave emissions are understood by simulations of vacuum General Relativity (GR). I discuss numerical simulation results from the perspective of LISA's needs, with indications of work that remains to be done. Some exciting scientific opportunities associated with LISA observations would be greatly enhanced if prompt electromagnetic signature could be associated. I discuss simulations to explore this possibility. Numerical simulations are important now for clarifying LISA's science potential and planning the mission. We also consider how numerical simulations might be applied at the time of LISA's operation.

  1. System modelling for LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Diaz-Aguiló, Marc; Grynagier, Adrien; Rais, Boutheina

    LISA Pathfinder is the technology demonstrator for LISA, a space-borne gravitational waves observatory. The goal of the mission is to characterise the dynamics of the LISA Technology Package (LTP) to prove that on-board experimental conditions are compatible with the de-tection of gravitational waves. The LTP is a drag-free dynamics experiment which includes a control loop with sensors (interferometric and capacitive), actuators (capacitive actuators and thrusters), controlled disturbances (magnetic coils, heaters) and which is subject to various endogenous or exogenous noise sources such as infrared pressure or solar wind. The LTP experiment features new hardware which was never flown in space. The mission has a tight operation timeline as it is constrained to about 100 days. It is therefore vital to have efficient and precise means of investigation and diagnostics to be used during the on-orbit operations. These will be conducted using the LTP Data Analysis toolbox (LTPDA) which allows for simulation, parameter identification and various analyses (covariance analysis, state estimation) given an experimental model. The LTPDA toolbox therefore contains a series of models which are state-space representations of each component in the LTP. The State-Space Models (SSM) are objects of a state-space class within the LTPDA toolbox especially designed to address all the requirements of this tool. The user has access to a set of linear models which represent every satellite subsystem; the models are available in different forms representing 1D, 2D and 3D systems, each with settable symbolic and numeric parameters. To limit the possible errors, the models can be automatically linked to produce composite systems and closed-loops of the LTP. Finally, for the sake of completeness, accuracy and maintainability of the tool, the models contain all the physical information they mimic (i.e. variable units, description of parameters, description of inputs/outputs, etc). Models

  2. EDITORIAL: Selected articles from `The 8th Edoardo Amaldi Conference on Gravitational Waves (Amaldi 8)', Columbia University, New York, 22-26 June 2009 Selected articles from `The 8th Edoardo Amaldi Conference on Gravitational Waves (Amaldi 8)', Columbia University, New York, 22-26 June 2009

    NASA Astrophysics Data System (ADS)

    Marka, Zsuzsa; Marka, Szabolcs

    2010-04-01

    At Amaldi7,which was held in Sydney in 2007, the Gravitational Wave International Committee (GWIC), which oversees the Amaldi meetings, decided to hold the 8th Edoardo Amaldi Conference on Gravitational Waves at Columbia University in the City of New York. With this decision, Amaldi returned to North America after a decade. The previous two years have seen many advances in the field of gravitational-wave detection. By the summer of 2009 the km-scale ground based interferometric detectors in the USA and Europe were preparing for a second long-term scientific run as a worldwide detector network. The advanced or second-generation detectors had well-developed plans and were ready for the production phase or had started construction. The European-American space mission, LISA Pathfinder, is progressing towards deployment in the foreseeable future and it is expected to pave the way towards gravitational-wave detection in the millihertz regime with LISA. Plans were developed for an additional gravitational-wave detector in Australia and in Japan (in this case underground) to extend the worldwide network of detectors for the advanced detector era. Japanese colleagues also presented plans for a space mission, DECIGO, that would bridge the gap between the LISA and ground-based interferometer frequency range. Compared to previous Amaldi meetings, Amaldi8 had new elements representing emerging trends in the field. For example, with the inclusion of pulsar timing collaborations to the GWIC, gravitational-wave detection using pulsar timing arrays was recognized as one of the prominent directions in the field and was represented at Amaldi8 as a separate session. By 2009, searches for gravitational waves based on external triggers received from electromagnetic observations were already producing significant scientific results and plans existed for pointing telescopes by utilizing gravitational-wave trigger events. Such multimessenger approaches to gravitational-wave detection also

  3. Characterization of Photodetectors for LISA

    NASA Technical Reports Server (NTRS)

    Guzman, Felipe; Livas, Jeffrey; Silverberg, Robert F.

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) is a gravitational wave observatory in the frequency range of 0.1 mHz - 100 mHz consisting of three spacecraft separated by :5 million km in an equilateral triangle whose center follows the Earth in a heliocentric orbit with an orbital phase offset of 20 degrees. Gravitational waves will be measured as distance fluctuations between test masses moving along geodetic trajectories that are located in different spacecraft. Quadrant photo diodes are used as detectors in inter-spacecraft laser interferometers to measure both angular orientation and separation with a sensitivity of better than 10 pm/(square root of (HZ)). A laboratory testbed for the characterization of photodetectors has been set up to measure noise levels, phase and amplitude spatial inhomogeneities and cross-talk level between detector quadrants We will present a detailed description of our test plan and current results of these investigations.

  4. Fiber Laser Development for LISA

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Chen, Jeffrey R.

    2009-01-01

    We have developed a linearly-polarized Ytterbium-doped fiber ring laser with single longitudinal-mode output at 1064nm for LISA and other space applications. Single longitudinal-mode selection was achieved by using a fiber Bragg grating (FBG) and a fiber Fabry-Perot (FFP). The FFP also serves as a frequency-reference within our ring laser. Our laser exhibits comparable low frequency and intensity noise to Non-Planar Ring Oscillator (NPRO). By using a fiber-coupled phase modulator as a frequency actuator, the laser frequency can be electro-optically tuned at a rate of 100kHz. It appears that our fiber ring laser is promising for space applications where robustness of fiber optics is desirable.

  5. Detecting galactic binaries with LISA

    NASA Astrophysics Data System (ADS)

    Cornish, Neil J.; Porter, Edward K.

    2005-09-01

    One of the main sources of gravitational waves for the LISA space-borne interferometer is galactic binary systems. The waveforms for these sources are represented by eight parameters of which four are intrinsic and four are extrinsic to the system. Geometrically, these signals exist in an 8D parameter space. By calculating the metric tensor on this space, we calculate the number of templates needed to search for such sources. We show in this study that below a particular monochromatic frequency of f0 ~ 1.6 × 10-3 Hz we can ignore one of the intrinsic parameters and search over a 7D space. Beyond this frequency, we have a change in dimensionality of the parameter space from 7 to 8 dimensions. This sudden change in dimensionality results in a change in the scaling of template number as a function of the monochromatic frequency from ~f1.250 to ~f5.880.

  6. Lasers for LISA: Overview and phase characteristics

    NASA Astrophysics Data System (ADS)

    Tröbs, M.; Barke, S.; Möbius, J.; Engelbrecht, M.; Kracht, D.; d'Arcio, L.; Heinzel, G.; Danzmann, K.

    2009-03-01

    We have investigated two alternative laser systems for the Laser Interferometer Space Antenna (LISA). One consisted of the laser of LISA's technology precursor LISA Pathfinder and a fiber amplifier originally designed for a laser communication terminal onboard TerraSar-X. The other consisted of a commercial fiber distributed feedback (DFB) laser seeding a fiber amplifier. We have shown that the TerraSar-X amplifier can emit more than 1W without the onset of stimulated Brillouin scattering as required by LISA. We have measured power noise and frequency noise of the LISA Pathfinder laser (LPL) and the fiber laser. The fiber laser shows comparable or even lower power noise than the LPL. LISA will use electro-optical modulators (EOMs) between seed laser and amplifier for clock noise comparison between spacecraft. This scheme requires that the excess noise added by the amplifiers be negligible. We have investigated the phase characteristics of two fiber amplifiers emitting 1 W and found them to be compatible with the LISA requirement on amplifier differential phase noise.

  7. Clarification on the Clarification on the April 8th Memorandum from H.E.W.

    ERIC Educational Resources Information Center

    Journal of the National Association for Bilingual Education, 1976

    1976-01-01

    The clarification of the April 8th memorandum is that "the Lau remedies are minimum requirements and that in cases depending on student language dominance, grade level, and academic achievement, a bilingual program 'is' the remedy, and the only educationally sound way of ensuring effective participation in the instructional program." (NQ)

  8. Changes in Math Proficiency between 8th and 10th Grades. Statistics in Brief.

    ERIC Educational Resources Information Center

    Rock, Don; And Others

    Between 8th and 10th grades, many students are asked to make curriculum-related decisions that may ultimately influence their achievement in core academic subjects such as mathematics. While past achievement often limits the level of courses available to a student, aspirations for postsecondary education ultimately determine the level of…

  9. A Chemistry Course for High Ability 8th, 9th, and 10th Graders.

    ERIC Educational Resources Information Center

    Kilker, Richard, Jr.

    1985-01-01

    Describes a chemistry course designed, in cooperation with local public school districts, to intellectually challenge a group of 8th, 9th, and 10th grade students. Organic chemistry and biochemistry are integrated into the course (titled Chemistry and Everyday Life) to emphasize practical applications of chemistry. The course syllabus is included.…

  10. Development of a Scale to Explore Technology Literacy Skills of Turkish 8th Graders

    ERIC Educational Resources Information Center

    Misirli, Zeynel A.; Akbulut, Yavuz

    2013-01-01

    The use of emerging technologies shape learners' knowledge creation and transformation processes. In this regard, this study aimed to develop a scale to investigate 8 th graders' competencies regarding the educational technology standards based on ISTE-NETS. After a review of relevant literature, an item pool was prepared. The pool was improved…

  11. Ready to Go: Using the EXPLORE Test to Increase 8th Grade Readiness for Success

    ERIC Educational Resources Information Center

    Rochford, Joseph A.; O'Neill, Adrienne; Gelb, Adele

    2010-01-01

    During the 2009-10 academic year, 1,444 8th grade students in the Canton City, Plain and Marlington Local School Districts (hereafter called Stark students) took the EXPLORE Test as part of a pilot project, "Ready to Go: Increasing Eighth Grade Readiness," sponsored by the Stark Education Partnership with funding from the Ohio College Access…

  12. Examining the Differences of the 8th-Graders' Estimation Performance between Contextual and Numerical Problems

    ERIC Educational Resources Information Center

    Yang, Der-Ching; Wu, Shin-Shin

    2012-01-01

    Two 12-question estimation instruments were designed to compare the differences of estimating strategies used by the 8th-graders when solving contextual and numerical problems. Both instruments are parallel, meaning that the numbers used in both instruments are the same; however, they were presented differently. One hundred and ninety-eight…

  13. 77 FR 9927 - Filing Dates for the Arizona Special Election in the 8th Congressional District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... From the Federal Register Online via the Government Publishing Office FEDERAL ELECTION COMMISSION Filing Dates for the Arizona Special Election in the 8th Congressional District AGENCY: Federal Election Commission. ACTION: Notice of filing dates for special election. SUMMARY: Arizona has scheduled elections...

  14. Determination of the Relationship between 8th Grade Students Learning Styles and TIMSS Mathematics Achievement

    ERIC Educational Resources Information Center

    Yilmaz, Gül Kaleli; Koparan, Timur; Hanci, Alper

    2016-01-01

    In this study, it is aimed to determination of the relationship between learning styles and TIMSS mathematics achievements of eighth grade students. Correlational research design that is one of the quantitative research methods, was used in this study. The sample of the research consists of 652 8th grade students 347 are male and 305 are female…

  15. The Effect on the 8th Grade Students' Attitude towards Statistics of Project Based Learning

    ERIC Educational Resources Information Center

    Koparan, Timur; Güven, Bülent

    2014-01-01

    This study investigates the effect of the project based learning approach on 8th grade students' attitude towards statistics. With this aim, an attitude scale towards statistics was developed. Quasi-experimental research model was used in this study. Following this model in the control group the traditional method was applied to teach statistics…

  16. Bibliography of Research Support for K-8th Grade Inclusive Education

    ERIC Educational Resources Information Center

    National Center on Schoolwide Inclusive School Reform: The SWIFT Center, 2014

    2014-01-01

    Presented here are references to books, chapters, and peer-reviewed journal articles that provide evidence for improved student outcomes through inclusive education in elementary and middle schools (K-8th grades). Not included here are the broad evidence bases for each feature in the SWIFT framework.

  17. Factors that Influence Mental Health Stigma among 8th Grade Adolescents

    ERIC Educational Resources Information Center

    Chandra, Anita; Minkovitz, Cynthia S.

    2007-01-01

    Unmet mental health need is a significant problem for adolescents. Although stigma is identified as a major barrier to the use of mental health services among youth, there is limited research on this topic. In-depth interviews (n = 57) among a sample of 8th grade students in a suburban, mid-Atlantic community portray adolescent mental health…

  18. Measuring the Confidence of 8th Grade Taiwanese Students' Knowledge of Acids and Bases

    ERIC Educational Resources Information Center

    Jack, Brady Michael; Liu, Chia-Ju; Chiu, Houn-Lin; Tsai, Chun-Yen

    2012-01-01

    The present study investigated whether gender differences were present on the confidence judgments made by 8th grade Taiwanese students on the accuracy of their responses to acid-base test items. A total of 147 (76 male, 71 female) students provided item-specific confidence judgments during a test of their knowledge of acids and bases. Using the…

  19. 8th Grade Algebra Teachers in Arkansas to Need State Nod

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2008-01-01

    Lindsay E. Carlton has taught mathematics to students at different grades, with different ability levels. Now, the young educator's state wants to recognize her ability to work with one group in particular: 8th graders enrolled in introductory algebra. Carlton is one of many math educators across Arkansas who plan to acquire a new, unusual state…

  20. A Structural Equation Model Explaining 8th Grade Students' Mathematics Achievements

    ERIC Educational Resources Information Center

    Yurt, Eyüp; Sünbül, Ali Murat

    2014-01-01

    The purpose of this study is to investigate, via a model, the explanatory and predictive relationships among the following variables: Mathematical Problem Solving and Reasoning Skills, Sources of Mathematics Self-Efficacy, Spatial Ability, and Mathematics Achievements of Secondary School 8th Grade Students. The sample group of the study, itself…

  1. Mitigation of Laser Frequency Noise for LISA

    NASA Technical Reports Server (NTRS)

    Thorpe, Ira J.

    2009-01-01

    The Laser Interferometer Space Antenna (LISA) is a proposed detector of gravitational waves in the 0.1 mHz - 0.1 Hz band. LISA will measure gravitational wave strain at the 10(exp -21) level by monitoring the distance between freely-falling test masses s(exp -11) m. These distance measurements will be made using heterodyne interferometry with multiple light sources on moving platforms with changing baselines, all of which cause frequency noise to couple into the displacement measurement. I will describe how LISA interferometry mitigates the effects of laser frequency noise through active suppression and common mode rejection. Recent laboratory developments will also be discussed.

  2. Multiphoton Processes: ICOMP VIII: 8th International Conference, AIP Conference Proceedings, No. 525 [APCPCS

    SciTech Connect

    DiMauro, L.F.; Freeman, R.R.; Kulander, K.C.

    2000-12-31

    Topics include: atoms in strong fields; stabilization; double ionization and multi-electron calculations; high-order harmonics; molecules in strong fields; multiphoton processes in clusters; coherent control; light sources; and relativistic effects.

  3. From Confrontation to Cooperation: 8th International Seminar on Nuclear War

    NASA Astrophysics Data System (ADS)

    Zichichi, A.; Dardo, M.

    1992-09-01

    The Table of Contents for the full book PDF is as follows: * OPENING SESSION * A. Zichichi: Opening Statements * R. Nicolosi: Opening Statements * MESSAGES * CONTRIBUTIONS * "The Contribution of the Erice Seminars in East-West-North-South Scientific Relations" * 1. LASER TECHNOLOGY * "Progress in laser technology" * "Progress in laboratory high gain ICF: prospects for the future" * "Applications of laser in metallurgy" * "Laser tissue interactions in medicine and surgery" * "Laser fusion" * "Compact X-ray lasers in the laboratory" * "Alternative method for inertial confinement" * "Laser technology in China" * 2. NUCLEAR AND CHEMICAL SAFETY * "Reactor safety and reactor design" * "Thereotical analysis and numerical modelling of heat transfer and fuel migration in underlying soils and constructive elements of nuclear plants during an accident release from the core" * "How really to attain reactor safely" * "The problem of chemical weapons" * "Long terms genetic effects of nuclear and chemical accidents" * "Features of the brain which are of importance in understanding the mode of operation of toxic substances and of radiation" * "CO2 and ultra safe reactors" * 3. USE OF MISSILES * "How to convert INF technology for peaceful scientific purposes" * "Beating words into plowshares: a proposal for the peaceful uses of retired nuclear warheads" * "Some thoughts on the peaceful use of retired nuclear warheads" * "Status of the HEFEST project" * 4. OZONE * "Status of the ozone layer problem" * 5. CONVENTIONAL AND NUCLEAR FORCE RESTRUCTURING IN EUROPE * 6. CONFLICT AVOIDANCE MODEL * 7. GENERAL DISCUSSION OF THE WORLD LAB PROJECTS * "East-West-North-South Collaboration in Subnuclear Physics" * "Status of the World Lab in the USSR" * CLOSING SESSION

  4. Theoretical summary of the 8th International Conference on Hadron Spectroscopy

    SciTech Connect

    Lipkin, H. J.

    1999-11-15

    The Constituent Quark Model has provided a remarkable description of the experimentally observed hadron spectrum but still has no firm theoretical basis. Attempts to provide a QCD justification discussed at Hadron99 include QCD Sum Rules, instantons, relativistic potential models and the lattice. Phenomenological analyses to clarify outstanding problems like the nature of the scalar and pseudoscalar mesons and the low branching ratio for {psi} {prime} {r_arrow} {rho} {r_arrow} {pi} were presented. New experimental puzzles include the observation of {anti p}p {r_arrow} {phi}{pi}.

  5. Hepatorenal syndrome: the 8th international consensus conference of the Acute Dialysis Quality Initiative (ADQI) Group

    PubMed Central

    2012-01-01

    Introduction Renal dysfunction is a common complication in patients with end-stage cirrhosis. Since the original publication of the definition and diagnostic criteria for the hepatorenal syndrome (HRS), there have been major advances in our understanding of its pathogenesis. The prognosis of patients with cirrhosis who develop HRS remains poor, with a median survival without liver transplantation of less than six months. However, a number of pharmacological and other therapeutic strategies have now become available which offer the ability to prevent or treat renal dysfunction more effectively in this setting. Accordingly, we sought to review the available evidence, make recommendations and delineate key questions for future studies. Methods We undertook a systematic review of the literature using Medline, PubMed and Web of Science, data provided by the Scientific Registry of Transplant Recipients and the bibliographies of key reviews. We determined a list of key questions and convened a two-day consensus conference to develop summary statements via a series of alternating breakout and plenary sessions. In these sessions, we identified supporting evidence and generated recommendations and/or directions for future research. Results Of the 30 questions considered, we found inadequate evidence for the majority of questions and our recommendations were mainly based on expert opinion. There was insufficient evidence to grade three questions, but we were able to develop a consensus definition for acute kidney injury in patients with cirrhosis and provide consensus recommendations for future investigations to address key areas of uncertainty. Conclusions Despite a paucity of sufficiently powered prospectively randomized trials, we were able to establish an evidence-based appraisal of this field and develop a set of consensus recommendations to standardize care and direct further research for patients with cirrhosis and renal dysfunction. PMID:22322077

  6. Beyond LISA: Exploring future gravitational wave missions

    NASA Astrophysics Data System (ADS)

    Crowder, Jeff; Cornish, Neil J.

    2005-10-01

    The Advanced Laser Interferometer Antenna (ALIA) and the Big Bang Observer (BBO) have been proposed as follow on missions to the Laser Interferometer Space Antenna (LISA). Here we study the capabilities of these observatories, and how they relate to the science goals of the missions. We find that the Advanced Laser Interferometer Antenna in Stereo (ALIAS), our proposed extension to the ALIA mission, will go considerably further toward meeting ALIA’s main scientific goal of studying intermediate mass black holes. We also compare the capabilities of LISA to a related extension of the LISA mission, the Laser Interferometer Space Antenna in Stereo (LISAS). Additionally, we find that the initial deployment phase of the BBO would be sufficient to address the BBO’s key scientific goal of detecting the Gravitational Wave Background, while still providing detailed information about foreground sources.

  7. Lisa's Lemonade Stand: Exploring Algebraic Ideas.

    ERIC Educational Resources Information Center

    Billings, Esther M. H.; Lakatos, Tracy

    2003-01-01

    Presents an activity, "Lisa's Lemonade Stand," that actively engages students in algebraic thinking as they analyze change by investigating relationships between variables and gain experience describing and representing these relationships graphically. (YDS)

  8. PREFACE: Proceedings of the 8th Gravitational Wave Data Analysis Workshop, Milwaukee, WI, USA, 17-20 December 2003

    NASA Astrophysics Data System (ADS)

    Allen, Bruce

    2004-10-01

    It is now almost two decades since Bernard Schutz organized a landmark meeting on data analysis for gravitational wave detectors at the University of Cardiff, UK [1]. The proceedings of that meeting make interesting reading. Among the issues discussed were optimal ways to carry out searches for binary inspiral signals, and ways in which the projected growth in computer speed, memory and networking bandwidth would influence searches for gravitational wave signals. The Gravitational Wave Data Analysis Workshop traces its history to the mid-1990s. With the construction of the US LIGO detectors and the European GEO and VIRGO detectors already underway, Kip Thorne and Sam Finn realized that it was important for the world-wide data analysis community to start discussing some of the big unsettled issues in analysis. What was the optimal way to perform a pulsar search? To ensure confident detection, how accurately did binary inspiral waveforms have to be calculated? It was largely Kip and Sam's initiative that got the GWDAW started. The first (official) GWDAW was hosted by Rai Weiss at Massachusetts Institute of Technology, USA in 1996, as a follow-on to an informal meeting organized in the previous year by Sam Finn. I have pleasant memories of this first MIT GWDAW. I was new to the field and remember my excitement at learning that I had many colleagues interested in (and working on) the important issues. I also remember how refreshing it was to hear a pair of talks by Pia Astone and Marialessandra Papa who were not only studying methods but had actually carried out serious pulsar and burst searches using data from the Rome resonant bar detectors. A lot has changed since then. This issue is the Proceedings of the 8th Annual Gravitational Wave Data Analysis Workshop, held on 17-20 December 2003 at the University of Wisconsin-Milwaukee, USA. Many of the contributions concern technical details of the analysis of real data from resonant mass and interferometric detectors

  9. The 8th Latin American congress on surface science: Surfaces, vacuum, and their applications. Proceedings

    SciTech Connect

    Hernandez-Calderon, I.; Asomoza, R.

    1997-01-01

    These proceedings represent papers presented at the 8th Latin American Congress on Surface Science and its Applications. The wide spectrum of subjects covered included theoretical and experimental research in low dimensional systems, vacuum system design, biomaterial interfaces, surface magnetism, superconductivity, catalysis, adsorption, surface imaging, porous and amorphous materials, surface spectroscopies, electronic properties, and other topics. There were 131 papers presented and 26 have been abstracted for the Energy Science and Technology database.(AIP)

  10. LISA in the gravitational wave decade

    NASA Astrophysics Data System (ADS)

    Conklin, John; Cornish, Neil

    2015-04-01

    With the expected direct detection of gravitational waves in the second half of this decade by Advanced LIGO and pulsar timing arrays, and with the launch of LISA Pathfinder in the summer of this year, this can arguably be called the decade of gravitational waves. Low frequency gravitational waves in the mHz range, which can only be observed from space, provide the richest science and complement high frequency observatories on the ground. A space-based observatory will improve our understanding of the formation and growth of massive black holes, create a census of compact binary systems in the Milky Way, test general relativity in extreme conditions, and enable searches for new physics. LISA, by far the most mature concept for detecting gravitational waves from space, has consistently ranked among the nation's top priority large science missions. In 2013, ESA selected the science theme ``The Gravitational Universe'' for its third large mission, L3, under the Cosmic Visions Program, with a planned launch date of 2034. Recently, NASA has decided to join with ESA on the L3 mission as a junior partner. Both agencies formed a committee to advise them on the scientific and technological approaches for a space based gravitational wave observatory. The leading mission design, Evolved LISA or eLISA, is a slightly de-scoped version of the earlier LISA design. This talk will describe activities of the Gravitational Wave Science Interest Group (GWSIG) under the Physics of the Cosmos Program Analysis Group (PhysPAG), focusing on LISA technology development in both the U.S. and Europe, including the LISA Pathfinder mission.

  11. The Implementation of Effective Teaching Practices in English Classroom for Grades 8th, 9th, and 10th.

    ERIC Educational Resources Information Center

    Al-Hilawani, Yasser A.; And Others

    This study explored teachers' behavior as related to effective teaching practices in 8th, 9th, and 10th grade English classrooms in Jordan. The study also examined some variables that could predict teachers' implementation of effective teaching practices and aimed at finding an estimate of the percentage of students in 8th, 9th, and 10th grades…

  12. Free-Flight Experiments in LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Thorpe, J. I.; Cutler, C. J.; Hewitson, M.; Jennrich, O.; Maghami, P.; Paczkowski, S.; Russano, G.; Vitale, S.; Weber, W. J.

    2014-01-01

    The LISA Pathfinder mission will demonstrate the technology of drag-free test masses for use as inertial references in future space-based gravitational wave detectors. To accomplish this, the Pathfinder spacecraft will perform drag-free flight about a test mass while measuring the acceleration of this primary test mass relative to a second reference test mass. Because the reference test mass is contained within the same spacecraft, it is necessary to apply forces on it to maintain its position and attitude relative to the spacecraft. These forces are a potential source of acceleration noise in the LISA Pathfinder system that are not present in the full LISA configuration. While LISA Pathfinder has been designed to meet it's primary mission requirements in the presence of this noise, recent estimates suggest that the on-orbit performance may be limited by this 'suspension noise'. The drift-mode or free-flight experiments provide an opportunity to mitigate this noise source and further characterize the underlying disturbances that are of interest to the designers of LISA-like instruments. This article provides a high-level overview of these experiments and the methods under development to analyze the resulting data.

  13. Galactic Binaries with eLISA

    NASA Astrophysics Data System (ADS)

    Nelemans, G.

    2013-01-01

    I review what eLISA will see from Galactic binaries — double stars with orbital periods less than a few hours and white dwarf (or neutron star/black hole) components. I discuss the currently known binaries that are guaranteed (or verification) sources and explain why the expected total number of eLISA Galactic binaries is several thousand, even though there are large uncertainties in our knowledge of this population, in particular that of the interacting AM CVn systems. I very briefly sketch the astrophysical questions that can be addressed once these thousands of systems are detected. I close with a short outline of the electro-magnetic facilities that will come on line before eLISA will fly and the importance of developing analysis plans using both electro-magnetic and gravitational wave data.

  14. Getting Astrophysical Information from LISA Data

    NASA Technical Reports Server (NTRS)

    Stebbins, R. T.; Bender, P. L.; Folkner, W. M.

    1997-01-01

    Gravitational wave signals from a large number of astrophysical sources will be present in the LISA data. Information about as many sources as possible must be estimated from time series of strain measurements. Several types of signals are expected to be present: simple periodic signals from relatively stable binary systems, chirped signals from coalescing binary systems, complex waveforms from highly relativistic binary systems, stochastic backgrounds from galactic and extragalactic binary systems and possibly stochastic backgrounds from the early Universe. The orbital motion of the LISA antenna will modulate the phase and amplitude of all these signals, except the isotropic backgrounds and thereby give information on the directions of sources. Here we describe a candidate process for disentangling the gravitational wave signals and estimating the relevant astrophysical parameters from one year of LISA data. Nearly all of the sources will be identified by searching with templates based on source parameters and directions.

  15. LISA Parameter Estimation using Numerical Merger Waveforms

    NASA Technical Reports Server (NTRS)

    Thorpe, J. I.; McWilliams, S.; Baker, J.

    2008-01-01

    Coalescing supermassive black holes are expected to provide the strongest sources for gravitational radiation detected by LISA. Recent advances in numerical relativity provide a detailed description of the waveforms of such signals. We present a preliminary study of LISA's sensitivity to waveform parameters using a hybrid numerical/analytic waveform describing the coalescence of two equal-mass, nonspinning black holes. The Synthetic LISA software package is used to simulate the instrument response and the Fisher information matrix method is used to estimate errors in the waveform parameters. Initial results indicate that inclusion of the merger signal can significantly improve the precision of some parameter estimates. For example, the median parameter errors for an ensemble of systems with total redshifted mass of 10(exp 6) deg M solar mass at a redshift of z is approximately 1 were found to decrease by a factor of slightly more than two when the merger was included.

  16. Unlocking the wasting enigma: Highlights from the 8th Cachexia Conference

    PubMed Central

    von Haehling, Stephan

    2016-01-01

    Abstract This article highlights pre‐clinical and clinical studies into the field of wasting disorders that were presented at the 8th Cachexia Conference held in Paris, France December 2015. This year some interesting results of clinical trials and different new therapeutic targets were shown. This article presents the biological and clinical significance of different markers and new drugs for the treatment of skeletal muscle wasting. Effective treatments of cachexia and wasting disorders are urgently needed in order to improve the patients' quality of life and their survival. PMID:27128291

  17. Proceedings of the 8th Annual Summer Conference: NASA/USRA Advanced Design Program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Papers presented at the 8th Annual Summer Conference are categorized as Space Projects and Aeronautics projects. Topics covered include: Systematic Propulsion Optimization Tools (SPOT), Assured Crew Return Vehicle Post Landing Configuration Design and Test, Autonomous Support for Microorganism Research in Space, Bioregenerative System Components for Microgravity, The Extended Mission Rover (EMR), Planetary Surface Exploration MESUR/Autonomous Lunar Rover, Automation of Closed Environments in Space for Human Comfort and Safety, Walking Robot Design, Extraterrestrial Surface Propulsion Systems, The Design of Four Hypersonic Reconnaissance Aircraft, Design of a Refueling Tanker Delivering Liquid Hydrogen, The Design of a Long-Range Megatransport Aircraft, and Solar Powered Multipurpose Remotely Powered Aircraft.

  18. Unlocking the wasting enigma: Highlights from the 8th Cachexia Conference.

    PubMed

    Ebner, Nicole; von Haehling, Stephan

    2016-03-01

    This article highlights pre-clinical and clinical studies into the field of wasting disorders that were presented at the 8th Cachexia Conference held in Paris, France December 2015. This year some interesting results of clinical trials and different new therapeutic targets were shown. This article presents the biological and clinical significance of different markers and new drugs for the treatment of skeletal muscle wasting. Effective treatments of cachexia and wasting disorders are urgently needed in order to improve the patients' quality of life and their survival. PMID:27128291

  19. Conference summary & recent advances: The 8th Conference on Metal Toxicity and Carcinogenesis

    PubMed Central

    Zhou, Xixi; Burchiel, Scott W.; Hudson, Laurie G.; Liu, Ke Jian

    2015-01-01

    Diseases caused by occupational and environmental exposure to metals are a public health concern. The underlying molecular mechanisms of metal toxicity and carcinogenicity remain largely unknown. Over 130 scientists attended the 8th Conference on Metal Toxicity and Carcinogenesis, presenting their various research concerns and recent findings to stimulate interactions and collaborations among scientists in the field. Several major areas were emphasized, including human & population studies, molecular & cellular mechanisms, biological targets, epigenetic effects, metabolism, and metal mixtures. Here we summarize presentations at the conference sessions and highlight the attendees’ latest work published in this special issue of Biological Trace Element Research. PMID:25975949

  20. Some basic principles of a "LISA"

    NASA Astrophysics Data System (ADS)

    Vinet, Jean-Yves

    2013-04-01

    A Laser Interferometer Space Antenna (LISA) is a concept studied and developed since a few decades both by European and American teams. Its aim is to study the gravitational wave signals emitted by astrophysical sources such as supermassive black hole (SMBH) coalescences, captures of compact objects by SMBHs, compact galactic binaries, etc. The LISA mission has been first an ESA/NASA mission (1998-2011), then became an ESA mission under the name of NGO (2012): it could hopefully be proposed for selection in 2013. The very basic principles of such a mission still deserve a presentation, being quite generic: this is the aim of the present article.

  1. Observing EMRIs with eLISA/NGO

    NASA Astrophysics Data System (ADS)

    Gair, J. R.; Porter, E. K.

    2013-01-01

    The extreme-mass-ratio inspirals (EMRIs) of stellar mass compact objects into massive black holes in the centres of galaxies are an important source of low-frequency gravitational waves for space-based detectors. We discuss the prospects for detecting these sources with the evolved Laser Interferometer Space Antenna (eLISA), recently proposed as an ESA mission candidate under the name NGO. We show that NGO could observe a few tens of EMRIs over its two year mission lifetime at redshifts z ≤ 0.5 and describe how the event rate changes under possible alternative specifications of the eLISA design.

  2. Angular Resolution of Multi-Lisa Constellations

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Gong, Xue-Fei

    2010-04-01

    In this article, we present a detailed derivation of the angular resolution of arbitrary sets of LISA (Laser Interferometer Space Antenna) constellations with a toy model for gravitational wave signals, and further generalized to more complicated cases with slowly varying gravitational wave signals of well-defined frequency at any time instant. For future space-borne LISA-like gravitational wave detectors, our results may serve as a conservative quick estimate of the detector's angular resolution and hopefully moreover a reference for the configuration designs.

  3. PREFACE: The 8th Workshop on Frontiers in Low Temperature Plasma Diagnostics The 8th Workshop on Frontiers in Low Temperature Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Sadeghi, Nader; Czarnetzki, Uwe

    2010-03-01

    The 8th Workshop on Frontiers in Low Temperature Plasma Diagnostics (FLTPD) was held in Blansko, near Brno, Czech Republic. FLTPD is a biennial European event in which scientists working on low temperature plasmas present their recent results, pointing out in particular the originality of the diagnostic techniques used. The idea of starting this series of workshops was born out of a discussion between Frieder Döbele, Bill Graham and one of us when travelling together from Bar Harbor, USA (after the 6th LAPD) to Montreal, Canada, in October 1993. It became evident that we had been lacking a European meeting that could bring together experts in the field of low temperature plasma diagnostics and facilitate sharing the knowledge of these diagnostics with a new generation of scientists. The first FLTPD was held in Les Houches, France, in February 1995. Since then it has been held in the spring of every other year in different European countries, as shown below. The next meeting will be held in Zinnowitz, near Greifswald, Germany, in May 2011. Year Location Chair of LOC 1995 Les Houches, France J Derouard 1997 Bad Honnef, Germany F Döbele 1999 Saillon, Switzerland Ch Hollenstein 2001 Rolduc, The Netherlands R van de Sanden 2003 Specchia, Italy S De Benedictis 2005 Les Houches, France N Sadeghi 2007 Cumbria, United Kingdom M Bowden 2009 Blansko, Czech Republic F Krčma To favour brainstorming and extended discussions between participants, FLTPD meetings have always been organized in isolated locations with the number of attendees limited to about 70. Workshops are held over three and a half days with about ten expert presentations by invited speakers (a few from overseas), as well as short oral or poster contributions. This special issue of Journal of Physics D: Applied Physics contains 20 articles representative of contributions to the last FLTPD in Blansko. All invited speakers and others who gave presentations, as selected by the Scientific Committee, were invited

  4. Examination of the 8th grade students' TIMSS mathematics success in terms of different variables

    NASA Astrophysics Data System (ADS)

    Kaleli-Yılmaz, Gül; Hanci, Alper

    2016-07-01

    The aim of this study is to determine how the TIMSS mathematics success of the 8th grade students differentiates according to the school type, gender, mathematics report mark, parents' education level, cognitive domains and cognitive domains by gender. Relational survey method was used in the study. Six-hundred fifty two 8th grade students studying in the same city in Turkey participated in this study. In this study, a 45 question test that was made up by choosing TIMSS 2011 mathematics questionnaire was used as a data collection tool. Quantitative data analysis methods were used in the data analysis, frequency, percentage, average, standard deviation, independent sample test, one-way analysis of variance and post-hoc tests were applied to data by using SPSS packaged software. At the end of the study, it was determined that the school type, mathematics school mark, parents' education level and cognitive domains influenced the students' TIMSS mathematics success but their gender was a neutral element. Moreover, it was seen that schools which are really successful in national exams are more successful in TIMSS exam; students whose mathematics school marks are 5 and whose parents graduated from university are more successful in TIMSS exams than others. This study was produced from Alper HANCİ's master thesis that is made consulting Asst. Prof. Gül KALELİ YILMAZ.

  5. Middle school science curriculum design and 8th grade student achievement in Massachusetts public schools

    NASA Astrophysics Data System (ADS)

    Clifford, Betsey A.

    The Massachusetts Department of Elementary and Secondary Education (DESE) released proposed Science and Technology/Engineering standards in 2013 outlining the concepts that should be taught at each grade level. Previously, standards were in grade spans and each district determined the method of implementation. There are two different methods used teaching middle school science: integrated and discipline-based. In the proposed standards, the Massachusetts DESE uses grade-by-grade standards using an integrated approach. It was not known if there is a statistically significant difference in student achievement on the 8th grade science MCAS assessment for students taught with an integrated or discipline-based approach. The results on the 8th grade science MCAS test from six public school districts from 2010 -- 2013 were collected and analyzed. The methodology used was quantitative. Results of an ANOVA showed that there was no statistically significant difference in overall student achievement between the two curriculum models. Furthermore, there was no statistically significant difference for the various domains: Earth and Space Science, Life Science, Physical Science, and Technology/Engineering. This information is useful for districts hesitant to make the change from a discipline-based approach to an integrated approach. More research should be conducted on this topic with a larger sample size to better support the results.

  6. 77 FR 56647 - Lisa Jean Sharp: Debarment Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-13

    ... HUMAN SERVICES Food and Drug Administration Lisa Jean Sharp: Debarment Order AGENCY: Food and Drug... the Federal Food, Drug, and Cosmetic Act (the FD&C Act) permanently debarring Lisa Jean Sharp from... base this order on a finding that Lisa Jean Sharp was convicted of a felony under Federal law...

  7. LISA in 2012 and Beyond: 20 Years After the First Proposal

    NASA Astrophysics Data System (ADS)

    Heinzel, Gerhard; Danzmann, Karsten

    After 20 years of study as a joint ESA-NASA mission, LISA had to be redesigned as an ESA-only mission in 2011/2012 to meet programmatic and budgetary constraints of the space agencies. The result is a mission concept called "eLISA" or "NGO" with two arms instead of three and one million km armlengths instead of 5, which results in smaller launch mass but still provides revolutionary science. Nevertheless, even the reduced science is expected to be revolutionary for the study of black holes and other astrophysical and cosmological questions. "eLISA"/"NGO" was not selected in ESA's call for the first ("L1") large mission in the Cosmic Vision program, but is a strong candidate for the L2 call, with possible international contributions from the US and/or China.

  8. The Mona Lisa of modern science.

    PubMed

    Kemp, Martin

    2003-01-23

    No molecule in the history of science has reached the iconic status of the double helix of DNA. Its image has been imprinted on all aspects of society, from science, art, music, cinema, architecture and advertising. This review of the Mona Lisa of science examines the evolution of its form at the hands of both science and art. PMID:12540913

  9. An electro-optical simulator for eLISA LOT: Lisa On Table

    NASA Astrophysics Data System (ADS)

    Gruning, P.; Halloin, H.; Brossard, J.; Prat, P.; Baron, S.; Buy, C.; Jimenez, P.

    2015-05-01

    This paper describes the progress on a hardware simulator of eLISA developed at the APC laboratory in Paris, France. It is designed to simulate realistic noise and the appropriate delays resulting from the huge distances the laser has to travel between the eLISA spacecrafts. We present the experimental setup consisting of an optical and electric interferometer. Also, the time delay interferometry noise reduction method and its performance on simulated signals in the simplest transponder case will be described.

  10. Regulation of Flowering in Brachypodium distachyon (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Amasino, Rick

    2013-03-01

    Rick Amasino of the University of Wisconsin on "Regulation of Flowering in Brachypodium distachyon" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  11. PMI: Plant-Microbe Interfaces (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Schadt, Christopher

    2013-03-01

    Christopher Schadt of Oak Ridge National Laboratory on "Plant-Microbe Interactions" in the context of poplar trees at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 held in Walnut Creek, Calif.

  12. Improving biofuel feedstocks by modifying xylan biosynthesis (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Lau, Jane

    2013-03-01

    Jane Lau of the Joint BioEnergy Institute on "Improving biofuel feedstocks by modifying xylan biosynthesis" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  13. Genomics of Climate Resilience (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Bermingham, Eldredge

    2013-03-27

    Eldredge Bermingham of the Smithsonian Tropical Research Institute-Panama on "Genomics of climate resilience" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  14. Pharmacovigilance Discussion Forum--The European Generic Medicines Association's 8th Annual Meeting (January 21, 2015--London, UK).

    PubMed

    Lam, S

    2015-01-01

    The practice and science of pharmacovigilance first emerged following the disaster caused by thalidomide in 1961, which led to the initiation of systemic international efforts to address drug safety issues spearheaded by the WHO. Systems were developed in member states of the WHO to analyze cases of adverse drug reactions (ADRs) and collate these data into a central database to aid national drug regulatory authorities in improving safety profiles of medicines. Pharmacovigilance is a key public health function for monitoring all medicinal products to assess their quality, efficacy and safety before and following authorization. These medicines are continually assessed to detect any aspect that could compromise their safety, and ensure that the necessary measures are taken. In July 2012, new legislation for pharmacovigilance in the E.U. came into effect as a result of the changes set out in the Directive 2010/84/EU and the European Commission (EC) implementing Regulation (EU) No 520/2012 to reduce the increasing number of ADRs. The latest developments in pharmacovigilance in Europe, including news on E.U. pharmacovigilance legislation, were discussed at the 8th European Generic Medicines Association (EGA) Pharmacovigilance Discussion Forum. The meeting facilitated constructive dialogue between regulators and industry on a range of topics including how to simplify pharmacovigilance activities and improve the processes of risk management plans, periodic safety update reports, signal detection, joint studies and inspections. PMID:25685861

  15. News and views from the 8th annual meeting of the Italian Society of Virology.

    PubMed

    Sartori, Elena; Salata, Cristiano; Calistri, Arianna; Palù, Giorgio; Parolin, Cristina

    2009-06-01

    The 8th annual meeting of the Italian Society of Virology (SIV) took place in Orvieto, Italy from the 21st to the 23rd of September 2008. The meeting covered different areas of Virology and the scientific sessions focused on: general virology and viral genetics; viral oncology, virus-host interaction and pathogenesis; emerging viruses and zoonotic, foodborne and environmental pathways of transmission; viral immunology and vaccines; viral biotechnologies and gene therapy; medical virology and antiviral therapy. The meeting had an attendance of about 160 virologists from all Italy. In this edition, a satellite workshop on "Viral biotechnologies" was organized in order to promote the role of virologists in the biotechnological research and teaching fields. A summary of the plenary lectures and oral selected presentations is reported. J. Cell. Physiol. 219: 797-799, 2009. (c) 2009 Wiley-Liss, Inc. PMID:19235903

  16. Charge It! Translating Electric Vehicle Research Results to Engage 7th and 8th Grade Girls

    NASA Astrophysics Data System (ADS)

    Egbue, Ona; Long, Suzanna; Ng, Ean-Harn

    2015-10-01

    Despite attempts to generate interest in science and technology careers, US students continue to show reduced interest in science, technology, engineering and mathematics (STEM) majors at the collegiate level. If girls are not engaged in STEM learning by the middle school level, studies show that they are even less likely to choose a science- or engineering-related major. This article presents results from a workshop for 7th and 8th grade girls designed to promote knowledge building in the area of sustainability and alternative energy use in transportation and to stimulate greater interest in STEM subjects. The workshop based on research conducted at University X focused on basic concepts of electric vehicles and electric vehicles' batteries. Tests were conducted to evaluate the students' knowledge and perceptions of electric vehicles and to determine the impact of the workshop. Early exposure to meaningful engineering experiences for these young girls may boost interest and the eventual pursuit of engineering and technology education paths.

  17. Mapping the Milky Way Galaxy with LISA

    NASA Technical Reports Server (NTRS)

    McKinnon, Jose A.; Littenberg, Tyson

    2012-01-01

    Gravitational wave detectors in the mHz band (such as the Laser Interferometer Space Antenna, or LISA) will observe thousands of compact binaries in the galaxy which can be used to better understand the structure of the Milky Way. To test the effectiveness of LISA to measure the distribution of the galaxy, we simulated the Close White Dwarf Binary (CWDB) gravitational wave sky using different models for the Milky Way. To do so, we have developed a galaxy density distribution modeling code based on the Markov Chain Monte Carlo method. The code uses different distributions to construct realizations of the galaxy. We then use the Fisher Information Matrix to estimate the variance and covariance of the recovered parameters for each detected CWDB. This is the first step toward characterizing the capabilities of space-based gravitational wave detectors to constrain models for galactic structure, such as the size and orientation of the bar in the center of the Milky Way

  18. Engineering the LISA Project: Systems Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Evans, Jordan P.

    2006-01-01

    The Laser Interferometer Space Antenna (LISA) is a joint NASA/ESA mission to detect and measure gravitational waves with periods from 1 s to 10000 s. The systems engineering challenges of developing a giant interferometer, 5 million kilometers on a side, an: numerous. Some of the key challenges are presented in this paper. The organizational challenges imposed by sharing the engineering function between three centers (ESA ESTEC, NASA GSFC, and JPL) across nine time zones are addressed. The issues and approaches to allocation of the acceleration noise and measurement sensitivity budget terms across a traditionally decomposed system are discussed. Additionally, using LISA to detect gravitational waves for the first time presents significant data analysis challenges, many of which drive the project system design. The approach to understanding the implications of science data analysis on the system is also addressed.

  19. Microthrust Propulsion of the LISA Mission

    NASA Technical Reports Server (NTRS)

    Ziemer, John K.; Merkowitz, Stephen M.

    2004-01-01

    We present the most recent propulsion requirements for the Laser Interferometer Space Antenna (LISA) Mission and describe potential microth ruster technology that can meet these requirements. LISA consists of three spacecraft in heliocentric orbits, forming a triangle with 5x l 0 (exp 6) km sides that are the arms of three Michelson-type interferometers. Reflective proof masses provide the reference surfaces at the end of the interferometer arms as part of the Gravitational Referenc e Sensor (GRS) designed to detect gravitational waves. The microthrus t propulsion system will be part of the Disturbance Reduction System (DRS), which is responsible for maintaining each spacecraft position w ithin approximately 10 nm around the proof masses. To provide the nec essary sensitivity, the GRS must not experience spurious acceleration s >15 (exp -10) m/ s(exp 2) in the 0.1 mHz to 1 Hz bandwidth, requiring precision formation flying and drag-free operation of the LISA spa cecraft. This leads to the following microthruster performance requir ements: a thrust range of 2-30 Micro N, a thrust resolution < 0.1 Mic ro N, and thrust noise <0.1 Hz(exp -1/2) over the LISA measurement bandwidth. The microthruster must provide this performance for 5 years c ontinuously, contain 10 years worth of propellant, and not disrupt th e science measurements. Potential microthruster technologies include Colloid, Field Emission Electric Propulsion (FEEP), and precision cold gas microthrusters. Each of these technologies is described in detai l with focus on the NASA microthruster development of the Busek Collo id Micro-Newton Thruster (CMNT).

  20. Data Analysis for the LISA Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira

    2009-01-01

    The LTP (LISA Technology Package) is the core part of the Laser Interferometer Space Antenna (LISA) Pathfinder mission. The main goal of the mission is to study the sources of any disturbances that perturb the motion of the freely-falling test masses from their geodesic trajectories as well as 10 test various technologies needed for LISA. The LTP experiment is designed as a sequence of experimental runs in which the performance of the instrument is studied and characterized under different operating conditions. In order to best optimize subsequent experimental runs, each run must be promptly analysed to ensure that the following ones make best use of the available knowledge of the instrument ' In order to do this, all analyses must be designed and tested in advance of the mission and have sufficient built-in flexibility to account for unexpected results or behaviour. To support this activity, a robust and flexible data analysis software package is also required. This poster presents two of the main components that make up the data analysis effort: the data analysis software and the mock-data challenges used to validate analysis procedures and experiment designs.

  1. Measuring Massive Black Hole Binaries with LISA

    NASA Technical Reports Server (NTRS)

    Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.

    2009-01-01

    The coalescence of two massive black holes produces gravitational waves (GWs) which can be detected by the space-based detector LISA. By measuring these waves, LISA can determine the various parameters which characterize the source. Measurements of the black hole masses and spins will provide information about the growth of black holes and their host galaxies over time. Measurements of a source's sky position and distance may help astronomers identify an electromagnetic counterpart to the GW event. The counterpart's redshift, combined with the GW-measured luminosity distance, can then be used to measure the Hubble constant and the dark energy parameter $w$. Because the potential science output is so high, it is useful to know in advance how well LISA can measure source parameters for a wide range of binaries. We calculate expected parameter estimation errors using the well-known Fisher matrix method. Our waveform model includes the physics of spin precession, as well as subleading harmonics. When these higher-order effects are not included, strong degeneracies between some parameters cause them to be poorly determined by a GW measurement. When precession and subleading harmonics are properly included, the degeneracies are broken, reducing parameter errors by one to several orders of magnitude.

  2. Bayesian model selection for LISA pathfinder

    NASA Astrophysics Data System (ADS)

    Karnesis, Nikolaos; Nofrarias, Miquel; Sopuerta, Carlos F.; Gibert, Ferran; Armano, Michele; Audley, Heather; Congedo, Giuseppe; Diepholz, Ingo; Ferraioli, Luigi; Hewitson, Martin; Hueller, Mauro; Korsakova, Natalia; McNamara, Paul W.; Plagnol, Eric; Vitale, Stefano

    2014-03-01

    The main goal of the LISA Pathfinder (LPF) mission is to fully characterize the acceleration noise models and to test key technologies for future space-based gravitational-wave observatories similar to the eLISA concept. The data analysis team has developed complex three-dimensional models of the LISA Technology Package (LTP) experiment onboard the LPF. These models are used for simulations, but, more importantly, they will be used for parameter estimation purposes during flight operations. One of the tasks of the data analysis team is to identify the physical effects that contribute significantly to the properties of the instrument noise. A way of approaching this problem is to recover the essential parameters of a LTP model fitting the data. Thus, we want to define the simplest model that efficiently explains the observations. To do so, adopting a Bayesian framework, one has to estimate the so-called Bayes factor between two competing models. In our analysis, we use three main different methods to estimate it: the reversible jump Markov chain Monte Carlo method, the Schwarz criterion, and the Laplace approximation. They are applied to simulated LPF experiments in which the most probable LTP model that explains the observations is recovered. The same type of analysis presented in this paper is expected to be followed during flight operations. Moreover, the correlation of the output of the aforementioned methods with the design of the experiment is explored.

  3. Status of the LISA Pathfinder LPF

    NASA Astrophysics Data System (ADS)

    Heinzel, G.; Ruediger, A.

    LISA Laser Interferometer Space Antenna is the joint Nasa ESA project for the detection of gravitational waves GWs It consists of three spacecraft in an equilateral triangle of 5 million km sides orbiting on an Earth-like orbit around the sun Each spacecraft houses two free-falling test masses that determine the distances to the other spacecraft Distance changes due to GWs are monitored by laser interferometry down to minute relative changes in the order of 10 -23 The extremely small GW signals make a technology demonstrator the LISA Pathfinder LPF very desirable to verify that the employed technologies of 1 laser stability 2 picometer interferometry 3 drag-free control and 4 micronewton thrusters can meet the challenge The LPF will be carried on the ESA Smart-2 mission to be placed near the Lagrange point L1 with launch expected for 2009 LPF will consist of one spacecraft with two independent test masses the distances between these two test masses and the position changes with respect to the optical bench spacecraft will be monitored with a resolution only one power of ten away from the requirements of LISA proper A flight module of the optical bench has been built and has passed the necessary tests for space qualification

  4. Promoting Original Scientific Research and Teacher Training Through a High School Science Research Program: A Five Year Retrospective and Analysis of the Impact on Mentored 8th Grade Geoscience Students and the Mentors Themselves

    NASA Astrophysics Data System (ADS)

    Danch, J. M.

    2015-12-01

    In 2010 a group of 8th grade geoscience students participated in an extracurricular activity allowing them to conduct original scientific research while being mentored by students enrolled in a 3 - year high school Science Research program. Upon entering high school the mentored students themselves enrolled in the Science Research program and continued for 4 years, culminating with their participation in Science Research 4. This allowed them to continue conducting original scientific research, act as mentors to 8th grade geoscience students and to provide teacher training for both middle and high school teachers conducting inquiry-based science lessons. Of the 7 Science Research 4 students participating since 2010, 100% plan on majoring or minoring in a STEM - related field in college and their individual research projects have been been granted over 70 different awards and honors in science fair and symposia including a 3rd and 4th place category awards at two different international science fairs - the International Sustainable Energy Engineering and Environment Project (iSWEEP) and the International Science and Engineering Fair (ISEF). Science Research 4 students developed and conducted a Society for Science and the Public affiliated science fair for middle school students enrolled in an 8th grade honors geoscience program allowing over 100 students from 5 middle schools to present their research and be judged by STEM professionals. Students with research judged in the top 10% were nominated for participation in the National Broadcom MASTERS program which they successfully entered upon further mentoring from the Science Research 4 students. 8th grade enrollment in the Science Research program for 2015 increased by almost 50% with feedback from students, parents and teachers indicating that the mentorship and participation in the 8th grade science fair were factors in increasing interest in continuing authentic scientific research in high school.

  5. 8(th) Annual European Antibody Congress 2012: November 27-28, 2012, Geneva, Switzerland.

    PubMed

    Beck, Alain; Carter, Paul J; Gerber, Hans-Peter; Lugovskoy, Alexey A; Wurch, Thierry; Junutula, Jagath R; Kontermann, Roland E; Mabry, Robert

    2013-01-01

    The 8th European Antibody Congress (EAC), organized by Terrapin Ltd., was again held in Geneva, Switzerland, following on the tradition established with the 4th EAC. The new agenda format for 2012 included three parallel tracks on: (1) naked antibodies; (2) antibody drug conjugates (ADCs); and (3) bispecific antibodies and alternative scaffolds. The meeting started and closed with three plenary lectures to give common background and to share the final panel discussion and conclusions. The two day event included case studies and networking for nearly 250 delegates who learned of the latest advances and trends in the global development of antibody-based therapeutics. The monoclonal antibody track was focused on understanding the structure-function relationships, optimization of antibody design and developability, and processes that allow better therapeutic candidates to move through the clinic. Discussions on novel target identification and validation were also included. The ADC track was dedicated to evaluation of the ongoing success of the established ADC formats alongside the rise of the next generation drug-conjugates. The bispecific and alternative scaffold track was focused on taking stock of the multitude of bispecific formats being investigated and gaining insight into recent innovations and advancements. Mechanistic understanding, progression into the clinic and the exploration of multispecifics, redirected T cell killing and alternative scaffolds were extensively discussed. In total, nearly 50 speakers provided updates of programs related to antibody research and development on-going in the academic, government and commercial sectors. PMID:23493119

  6. 8th Annual Glycoscience Symposium: Integrating Models of Plant Cell Wall Structure, Biosynthesis and Assembly

    SciTech Connect

    Azadi, Paratoo

    2015-09-24

    The Complex Carbohydrate Research Center (CCRC) of the University of Georgia holds a symposium yearly that highlights a broad range of carbohydrate research topics. The 8th Annual Georgia Glycoscience Symposium entitled “Integrating Models of Plant Cell Wall Structure, Biosynthesis and Assembly” was held on April 7, 2014 at the CCRC. The focus of symposium was on the role of glycans in plant cell wall structure and synthesis. The goal was to have world leaders in conjunction with graduate students, postdoctoral fellows and research scientists to propose the newest plant cell wall models. The symposium program closely followed the DOE’s mission and was specifically designed to highlight chemical and biochemical structures and processes important for the formation and modification of renewable plant cell walls which serve as the basis for biomaterial and biofuels. The symposium was attended by both senior investigators in the field as well as students including a total attendance of 103, which included 80 faculty/research scientists, 11 graduate students and 12 Postdoctoral students.

  7. A noise simulator for eLISA: Migrating LISA Pathfinder knowledge to the eLISA mission

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L. I.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    We present a new technical simulator for the eLISA mission, based on state space modeling techniques and developed in MATLAB. This simulator computes the coordinate and velocity over time of each body involved in the constellation, i.e. the spacecraft and its test masses, taking into account the different disturbances and actuations. This allows studying the contribution of instrumental noises and system imperfections on the residual acceleration applied on the TMs, the latter reflecting the performance of the achieved free-fall along the sensitive axis. A preliminary version of the results is presented.

  8. Direct Reactions with MoNA-LISA

    NASA Astrophysics Data System (ADS)

    Kuchera, Anthony

    2016-03-01

    Nuclear reactions can be used to probe the structure of nuclei. Direct reactions, which take place on short time scales, are well-suited for experiments with beams of short-lived nuclei. One such reaction is nucleon knockout where a proton or neutron is removed from the incoming beam from the interaction with a target. Single nucleon knockout reactions have been used to study the single-particle nature of nuclear wave functions. A recent experiment at the National Superconducting Cyclotron Laboratory was performed to measure cross sections from single nucleon knockout reactions for several p-shell nuclei. Detection of the residual nucleus in coincidence with any gamma rays emitted from the target allowed cross sections to ground and excited states to be measured. Together with input from reaction theory, ab initio structure theories can be tested. Simultaneously the accuracy of knockout reaction models can be validated by detecting the knocked out neutron with the Modular Neutron Array and Large multi-Institutional Scintillator Array (MoNA-LISA). Preliminary results from this experiment will be shown. Knockout reactions can also be used to populate nuclei which are neutron unbound, thus emit neutrons nearly instantaneously. The structure of these nuclei, therefore, cannot be probed with gamma ray spectroscopy. However, with large neutron detectors like MoNA-LISA the properties of these short-lived nuclei are able to be measured. Recent results using MoNA-LISA to study the structure of neutron-rich nuclei will be presented. The author would like to acknowledge support from the NNSA and NSF.

  9. LISA Beyond Einstein: From the Big Bang to Black Holes. LISA Technology Development at GSFC

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira

    2008-01-01

    This viewgraph presentation reviews the work that has been ongoing at the Goddard Space Flight Center (GSFC) in the development of the technology to be used in the Laser Interferometer Space Antenna (LISA) spacecrafts. The prime focus of LISA technology development efforts at NASA/GSFC has been in LISA interferometry. Specifically efforts have been made in the area of laser frequency noise mitigation. Laser frequency noise is addressed through a combination of stabilization and common-mode rejection. Current plans call for two stages of stabilization, pre-stabilization to a local frequency reference and further stabilization using the constellation as a frequency reference. In order for these techniques to be used simultaneously, the pre-stabilization step must provide an adjustable frequency offset. This presentation reports on a modification to the standard modulation/demodulation technique used to stabilize to optical cavities that generates a frequency-tunable reference from a fixed length cavity. This technique requires no modifications to the cavity itself and only minor modifications to the components. The measured noise performance and dynamic range of the laboratory prototype meet the LISA requirements.

  10. Performance of arm locking in LISA

    NASA Astrophysics Data System (ADS)

    McKenzie, Kirk; Spero, Robert E.; Shaddock, Daniel A.

    2009-11-01

    For the Laser Interferometer Space Antenna (LISA) to reach its design sensitivity, the coupling of the free-running laser frequency noise to the signal readout must be reduced by more than 14 orders of magnitude. One technique employed to reduce the laser frequency noise will be arm locking, where the laser frequency is locked to the LISA arm length. In this paper we detail an implementation of arm locking. We investigate orbital effects (changing arm lengths and Doppler frequencies), the impact of errors in the Doppler knowledge that can cause pulling of the laser frequency, and the noise limit of arm locking. Laser frequency pulling is examined in two regimes: at lock acquisition and in steady state. The noise performance of arm locking is calculated with the inclusion of the dominant expected noise sources: ultrastable oscillator (clock) noise, spacecraft motion, and shot noise. We find that clock noise and spacecraft motion limit the performance of dual arm locking in the LISA science band. Studying these issues reveals that although dual arm locking [A. Sutton and D. A. Shaddock, Phys. Rev. DPRVDAQ1550-7998 78, 082001 (2008)10.1103/PhysRevD.78.082001] has advantages over single (or common) arm locking in terms of allowing high gain, it has disadvantages in both laser frequency pulling and noise performance. We address this by proposing a modification to the dual arm-locking sensor, a hybrid of common and dual arm-locking sensors. This modified dual arm-locking sensor has the laser frequency pulling characteristics and low-frequency noise coupling of common arm locking, but retains the control system advantages of dual arm locking. We present a detailed design of an arm-locking controller and perform an analysis of the expected performance when used with and without laser prestabilization. We observe that the sensor phase changes beneficially near unity-gain frequencies of the arm-locking controller, allowing a factor of 10 more gain than previously believed

  11. An Overview of LISA Data Analysis Algorithms

    NASA Astrophysics Data System (ADS)

    Porter, Edward K.

    2009-07-01

    The development of search algorithms for gravitational wave sources in the LISA data stream is currently a very active area of research. It has become clear that not only does difficulty lie in searching for the individual sources, but in the case of galactic binaries, evaluating the fidelity of resolved sources also turns out to be a major challenge in itself. In this article we review the current status of developed algorithms for galactic binary, non-spinning supermassive black hole binary and extreme mass ratio inspiral sources. While covering the vast majority of algorithms, we will highlight those that represent the state of the art in terms of speed and accuracy.

  12. K-8th Grade Korean Students' Conceptions of 'Changes of State' and 'Conditions for Changes of State'. Research Report

    ERIC Educational Resources Information Center

    Paik, Seoung-Hey; Kim, Hyo-Nam; Cho, Boo-Kyoung; Park, Jae-Won

    2004-01-01

    This study investigates the various conceptions held by K-8th Korean grade students regarding the 'changes of state' and the 'conditions for changes of state'. The study used a sample of five kindergarteners, five secondgrade students, five fourth-grade students, five sixth-grade students, and five eighth-grade students. The 25 students attend…

  13. Primary School English Teachers' Perceptions of the English Language Curriculum of 6th, 7th and 8th Grades

    ERIC Educational Resources Information Center

    Ersen Yanik, Asli

    2008-01-01

    This study aims to investigate how the teachers who have different background characteristics perceive the goals and content of the English language curriculum implemented at the 6th, 7th and 8th grades of public primary schools. The study was conducted during the 2004-2005 school year with 368 English teachers selected from the seven regions of…

  14. How (and How Much) Do Schools Matter? Variation in K-8th Grade Achievement Trajectories in a National Sample

    ERIC Educational Resources Information Center

    Schwartz, Kate; Cappella, Elise; Scott, Marc; Seidman, Edward; Kim, Ha Yeon

    2015-01-01

    The current study extends research on the transition to early adolescence and middle grade schools by examining students' achievement trajectories from school entry through 8th grade in a national sample, and beginning to disassociate the role of school context and school grade configuration in achievement trajectories. Data were drawn from the…

  15. Brick and Click Libraries: Proceedings of an Academic Libraries Symposium (8th, Maryville, Missouri, November 7, 2008)

    ERIC Educational Resources Information Center

    Baudino, Frank, Ed.; Ury, Connie Jo, Ed.; Park, Sarah G., Ed.

    2008-01-01

    Eighteen scholarly papers and eighteen abstracts comprise the content of the 8th "Brick and Click Libraries Symposium," held annually at Northwest Missouri State University in Maryville, Missouri. The proceedings, authored by academic librarians and presented at the symposium, portray the contemporary and future face of librarianship. Many of the…

  16. 3D Visualization Types in Multimedia Applications for Science Learning: A Case Study for 8th Grade Students in Greece

    ERIC Educational Resources Information Center

    Korakakis, G.; Pavlatou, E. A.; Palyvos, J. A.; Spyrellis, N.

    2009-01-01

    This research aims to determine whether the use of specific types of visualization (3D illustration, 3D animation, and interactive 3D animation) combined with narration and text, contributes to the learning process of 13- and 14- years-old students in science courses. The study was carried out with 212 8th grade students in Greece. This…

  17. Examination of Gender Differences on Cognitive and Motivational Factors That Influence 8th Graders' Science Achievement in Turkey

    ERIC Educational Resources Information Center

    Acar, Ömer; Türkmen, Lütfullah; Bilgin, Ahmet

    2015-01-01

    We examined the influence of several students' cognitive and motivational factors on 8th graders' science achievement and also gender differences on factors that significantly contribute to the science achievement model. A total of 99 girls and 83 boys responded all the instruments used in this study. Results showed that girls outperformed boys on…

  18. Native American Students' Understanding of Geologic Time Scale: 4th-8th Grade Ojibwe Students' Understanding of Earth's Geologic History

    ERIC Educational Resources Information Center

    Nam, Younkyeong; Karahan, Engin; Roehrig, Gillian

    2016-01-01

    Geologic time scale is a very important concept for understanding long-term earth system events such as climate change. This study examines forty-three 4th-8th grade Native American--particularly Ojibwe tribe--students' understanding of relative ordering and absolute time of Earth's significant geological and biological events. This study also…

  19. The Effect of Internet-Based Education on Student Success in Teaching of 8th Grade Triangles Subject

    ERIC Educational Resources Information Center

    Kaya, Deniz; Kesan, Cenk; Izgiol, Dilek

    2013-01-01

    In the study, it was researched the effect of internet-based application on student success. Internet-based application was used at the teaching of triangles subject which is included in 8th grade units of triangles and algebra. The study was carried out over the internet with a computer software program: Vitamin Program. The study was carried out…

  20. Cultivating Environmental Virtue among 7th and 8th Graders in an Expeditionary Learning Outward Bound School

    ERIC Educational Resources Information Center

    Martin, Bruce; Bright, Alan; Cafaro, Philip; Mittelstaedt, Robin; Bruyere, Brett

    2008-01-01

    This study attempted to assess the development of environmental virtue in 7th and 8th grade students in an Expeditionary Learning Outward Bound school. The purpose of this study was twofold. First, the researchers were interested in introducing a virtue ethics perspective into their teaching of environmental ethics. Second, the researchers were…

  1. 8th Comparative Analysis of the Racine Unified School District: Demographics, Attendance, Finances, Student Engagement and Performance

    ERIC Educational Resources Information Center

    Browne, Jeffrey C.; Dickman, Anneliese M.; Schmidt, Jeffrey K.; Bartholin, Philippe

    2006-01-01

    This is the 8th annual report on conditions affecting the Racine Unified School District RUSD). Each study has confirmed that the Racine Unified School District (RUSD) faces greater challenges than its peers. Although these challenges have led Racine to spend slightly above the average amount per pupil, district performance tends to be below…

  2. Why Singaporean 8th Grade Students Gain Highest Mathematics Ranking in TIMSS (1999-2011)

    ERIC Educational Resources Information Center

    Lessani, Abdolreza; Yunus, Aida Suraya Md; Tarmiz, Rohani Ahmad; Mahmud, Rosnaini

    2014-01-01

    The international comparison of students' mathematics knowledge and competencies is an effective method of evaluating students' mathematics performance and developing policies to improve their achievements in mathematics. Trends in International Mathematics and Science Study (TIMSS) are among the most well-recognized international comparisons that…

  3. Why are urban Indian 6th graders using more tobacco than 8th graders? Findings from Project MYTRI

    PubMed Central

    Stigler, M H; Perry, C L; Arora, M

    2006-01-01

    Objective To investigate why urban Indian 6th graders may be using more tobacco than urban Indian 8th graders. Design Cross‐sectional survey of students conducted in the summer of 2004, as the baseline evaluation tool for a group‐randomised tobacco prevention intervention trial (Project MYTRI). Mixed‐effects regression models were used to (1) examine the relationship between 15 psychosocial risk factors and current use of any tobacco, by grade; and (2) examine differences in psychosocial risk factors, by grade. Setting Thirty‐two private (high socioeconomic status (SES)) and government (low‐mid SES) schools in two large cities in India (Delhi and Chennai). Subjects Students in the 6th and 8th grade in these schools (n  =  11642). Among these, 50.6% resided in Delhi (v Chennai), 61.4% attended a government school (v a private school), 52.9% were enrolled in 6th grade (v 8th), and 54.9% were male (v female). Main outcome measure Current (past 30 day) use of any tobacco, including chewing tobacco (for example, gutkha), bidis, or cigarettes. Result Almost all psychosocial factors were significantly related to tobacco use, for students in both grades. Some of the strongest correlates included social susceptibility to and social norms about use. Exposure to tobacco advertising was a strong correlate of tobacco use for 6th graders, but not for 8th graders. Sixth graders scored lower than 8th graders on almost all factors, indicating higher risk. Conclusions The “risk profile” of 6th graders suggests they would be vulnerable to use and to begin using tobacco, as well as to outside influences that may encourage use. PMID:16723678

  4. Wavefront Distortion Requirements for the LISA Mission

    NASA Astrophysics Data System (ADS)

    Bender, P. L.

    2004-12-01

    The Laser Interferometer Space Antenna (LISA) gravitational wave mission will make use of laser measurements of changes in distance between test masses in spacecraft 5 million km apart. Distortions in the far field wavefronts can interact with jitter in the transmitted beam directions to give apparent variations in the distances between the test masses. About 400 mm diameter telescopes will be used to send the laser beams between the spacecraft. Stabilization of the beam pointing directions will be done using the light from the distant spacecraft as very bright beacons to lock on to. Earlier studies of the beam pointing requirements for the LISA mission assumed only simple waveform distortions, such as cylindrical distortion or astigmatism. The analysis has now been repeated, including defocus, spherical aberration, and two components each of astigmatism and coma. These lower order aberrations are expected to be among the most damaging ones near the beam axis for a given rms wavefront distortion amplitude. This is because the higher order ones will cause the laser energy to be diffracted away from the axis more. Most of the aberration amplitude is expected to come from the optics before the telescope, rather than from the telescope itself. A total wavefront distortion amplitude of 0.05 wavelength (50 nm) rms or less appears to be adequate.

  5. Optical testbed for the LISA phasemeter

    NASA Astrophysics Data System (ADS)

    Schwarze, T. S.; Fernández Barranco, G.; Penkert, D.; Gerberding, O.; Heinzel, G.; Danzmann, K.

    2016-05-01

    The planned spaceborne gravitational wave detector LISA will allow the detection of gravitational waves at frequencies between 0.1 mHz and 1 Hz. A breadboard model for the metrology system aka the phasemeter was developed in the scope of an ESA technology development project by a collaboration between the Albert Einstein Institute, the Technical University of Denmark and the Danish industry partner Axcon Aps. It in particular provides the electronic readout of the main interferometer phases besides auxiliary functions. These include clock noise transfer, ADC pilot tone correction, inter-satellite ranging and data transfer. Besides in LISA, the phasemeter can also be applied in future satellite geodesy missions. Here we show the planning and advances in the implementation of an optical testbed for the full metrology chain. It is based on an ultra-stable hexagonal optical bench. This bench allows the generation of three unequal heterodyne beatnotes with a zero phase combination, thus providing the possibility to probe the phase readout for non-linearities in an optical three signal test. Additionally, the utilization of three independent phasemeters will allow the testing of the auxiliary functions. Once working, components can individually be replaced with flight-qualified hardware in this setup.

  6. PREFACE: 8th Ibero-American Congress on Sensors (IBERSENSOR 2012)

    NASA Astrophysics Data System (ADS)

    Ramos, Idalia; Santiago-Avilés, Jorge J.

    2013-03-01

    The 8th Ibero-American Congress on Sensors (IBERSENSOR 2012) was held in Carolina, Puerto Rico on 16-19 October 2012. IBERSENSOR is a forum of the Spanish and Portuguese speaking scientific community, working in the fields of sensors of every possible kind and their applications. Previous conferences in the series were successfully carried out in La Habana, Cuba (1998); Buenos Aires, Argentina (2000); Lima, Perú (2002); Puebla, México (2004); Montevideo, Uruguay (2006); Sao Paulo, Brasil (2008) and Lisboa, Portugal (2010). IBERSENSOR 2012 participants included researchers from eleven countries in the Americas and Europe, in particular young men and women. The conference was organized and sponsored by the Partnership for Research and Education in Materials (NSF-DMR-0934195) a collaborative program between the University of Puerto Rico at Humacao (UPRH) and the University of Pennsylvania (PENN) Materials Research Science and Engineering Center, sponsored by the USA National Science Foundation (NSF). Other sponsors included the Center for Advanced Nanoscale Materials of the University of Puerto Rico at Río Piedras and the Nano/Bio Interface Center (NBIC) at PENN. The Proceedings of IBERSENSOR 2012 include a selection of 21 research papers in the areas of Materials and Processes for Sensor Development, Nano-Sensors, Chemical Sensors, Mechanical Sensors, Optical Sensors, Wireless Sensors, Sensor signal conditioning and Instrumentation, Microfluidic Devices, and Biomedical and Environmental Applications. Editors Idalia Ramos University of Puerto Rico at Humacao, Puerto Rico Jorge J Santiago-Avilés University of Pennsylvania, USA Group photograph Logos Ibero-American Congress on Sensors Ibero-American Congress on Sensors (Ibersensor) Main Sponsors PENN-UPRH-PREM Partnership for Research and Education in Materials (PENN-UPRH-PREM) University of Puerto Rico at Humacao USA National Science Foundation USA National Science Foundation Other Sponsors Center for Advanced

  7. Laser interrogation of surface agents (LISA) for chemical agent reconnaissance

    NASA Astrophysics Data System (ADS)

    Higdon, N. S.; Chyba, Thomas H.; Richter, Dale A.; Ponsardin, Patrick L.; Armstrong, Wayne T.; Lobb, C. T.; Kelly, Brian T.; Babnick, Robert D.; Sedlacek, Arthur J., III

    2002-06-01

    Laser Interrogation of Surface Agents (LISA) is a new technique which exploits Raman scattering to provide standoff detection and identification of surface-deposited chemical agents. ITT Industries, Advanced Engineering and Sciences Division is developing the LISA technology under a cost-sharing arrangement with the US Army Soldier and Biological Chemical Command for incorporation on the Army's future reconnaissance vehicles. A field-engineered prototype LISA-Recon system is being designed to demonstrate on-the- move measurements of chemical contaminants. In this article, we will describe the LISA technique, data form proof-of- concept measurements, the LISA-Recon design, and some of the future realizations envisioned for military sensing applications.

  8. PREFACE: EUCAS '07: The 8th European Conference on Applied Superconductivity (Brussels Expo, Belgium, 16 20 September 2007)

    NASA Astrophysics Data System (ADS)

    Hoste, Serge; Donaldson, Gordon; Ausloos, Marcel

    2008-03-01

    This issue of Superconductor Science and Technology (SuST) contains plenary and invited papers presented at the 8th European Conference on Applied Superconductivity (EUCAS '07) held in Brussels, Belgium between 16-20 September 2007. All the papers that were submitted to the Conference Proceedings and accepted by the referees are published in Journal of Physics: Conference Series (JPCS). The scientific aims of EUCAS '07 followed the tradition established at the preceding conferences in Göttingen (Germany), Edinburgh (United Kingdom), Eindhoven (The Netherlands), Sitges (Spain), Lyngby (Denmark), Sorrento (Italy) and Vienna (Austria). The focus was on the interplay between the most recent developments in superconductor research and the positioning of applications of superconductivity in the marketplace. Although initially founded as an exchange forum mainly for European scientists, it has gradually developed into a truly international meeting with significant attendance from the Far East and the United States. Under the guidance of ESAS (the European Society for Applied Superconductivity), this Brussels conference was jointly organized by the University of Ghent and the University of Liège and attracted 795 participants to the scientific programme, including 173 students. Participants from 46 countries included considerable attendance from the Far East (30%) and from the United States and Canada (7%). The latest developments from 30 companies were presented, and 13 plenary and 28 invited lectures highlighted the state-of-the-art in the area of materials (large- as well as small-scale applications were presented). A total of 347 papers from those submitted were selected for publication in JPCS and SuST. EUCAS '07 stimulated optimism and enthusiasm for this fascinating field of research and its technological potential, especially among the numerous young researchers attending this conference. In addition, it gave the leading scientific authorities a forum in which

  9. Propulsion Options for the LISA Mission

    NASA Technical Reports Server (NTRS)

    Cardiff, Eric H.; Marr, Gregory C.

    2004-01-01

    The LISA mission is a constellation of three spacecraft operating at 1 AU from the Sun in a position trailing the Earth. After launch, a propulsion module provides the AV necessary to reach this operational orbit, and separates from the spacecraft. A second propulsion system integrated with the spacecraft maintains the operational orbit and reduces nongravitational disturbances on the instruments. Both chemical and electrical propulsion systems were considered for the propulsion module, and this trade is presented to show the possible benefits of an EP system. Several options for the orbit maintenance and disturbance reduction system are also briefly discussed, along with several important requirements that suggest the use of a FEEP thruster system.

  10. Why we use AT.Lisa multifocals?

    PubMed

    Filip, M; Nicolae, Miruna; Filip, A; Dragne, Carmen; Triantafyllidis, G; Antonescu, Cristina

    2014-01-01

    In this paper, the authors try to motivate their preference for implanting AT.Lisa Multifocals from all other premium IOL's from the market. It is emphasized, through clinical examples, that their choice comes after a long experience with this type of mul- tifocals IOL's. We make a short presentation of this particular type of MIOL's with their good but also weak points and try to motivate our decision to change from other types. We present the steps that each patient has to follow in our clinic prior to surgery itself, stressing out the idea that the discussion with the patient is very important in taking a decision regarding the implantation of a Premium IOL. PMID:25842626

  11. LISA Pathfinder Discharge Working Group: Activities, Results, and Lessons Learned for LISA/NGO

    NASA Astrophysics Data System (ADS)

    Ziegler, T.; Bergner, P.; Hechenblaikner, G.; Brandt, N.

    2013-01-01

    In 2011, the European Space Agency (ESA) entrusted Astrium GmbH to identify the root cause and corrective measures for the shortcomings of the LISA Pathfinder discharge system baseline that were identified during the system level testing in the torsion pendulum at the University of Trento. The main goal was to maximize the discharge system robustness under the given constraint to minimize the impact on manufacturing and the AIT process of the existing flight hardware. Astrium GmbH set-up a dedicated discharge working group (DWG) for 9 months, bringing together the expertise of surface scientists (DLR Stuttgart, Uni Würzburg, Uni Modena, BEAR Trieste) with the existing significant knowledge in the LTP community (Uni Trento, Imperial College London, CGS, Selex Galileo, TWT GmbH, ESA). The findings resulted in a recommendation to modify the baseline discharge system of LISA Pathfinder, including the definition of dedicated manufacturing and AIT requirements. These findings have relevance also for LISA/NGO, since they allow for a significantly more robust discharge system design.

  12. eLISA and the Gravitational Universe

    NASA Astrophysics Data System (ADS)

    Danzmann, Karsten

    2015-08-01

    The last century has seen enormous progress in our understanding of the Universe. We know the life cycles of stars, the structure of galaxies, the remnants of the big bang, and have a general understanding of how the Universe evolved. We have come remarkably far using electromagnetic radiation as our tool for observing the Universe. However, gravity is the engine behind many of the processes in the Universe, and much of its action is dark. Opening a gravitational window on the Universe will let us go further than any alternative. Gravity has its own messenger: Gravitational waves, ripples in the fabric of spacetime. They travel essentially undisturbed and let us peer deep into the formation of the first seed black holes, exploring redshifts as large as z ~ 20, prior to the epoch of cosmic re-ionisation. Exquisite and unprecedented measurements of black hole masses and spins will make it possible to trace the history of black holes across all stages of galaxy evolution, and at the same time constrain any deviation from the Kerr metric of General Relativity. eLISA will be the first ever mission to study the entire Universe with gravitational waves. eLISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using gravitational waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the early processes at TeV energies, has guaranteed sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales around singularities and black holes, all the way to cosmological dimensions.

  13. Alta FT-150: The Thruster for LISA Pathfinder and LISA/NGO Missions

    NASA Astrophysics Data System (ADS)

    Paita, L.; Cesari, U.; Nania, F.; Priami, L.; Rossodivita, A.; Giusti, N.; Andrenucci, M.; Estublier, D.

    2013-01-01

    FT-150© FEEP thruster has successfully completed an endurance test at Alta's Micropropulsion laboratory. The updated thruster design dramatically enhances performance with respect to previous FEEP devices and marks a major step forward in the LISA Pathfinder and NGO programmes as well as space propulsion capability in general. The test campaign took place in two parts. Firstly, the new design was tested to validate that the new configuration was compliant with the requirements of the Lisa Pathfinder mission with particular emphasis on the achievement of required total impulse and minimum and maximum thrust levels.The second part of the campaign was aimed at testing a worst-case DFACS profile of the LISA Pathfinder mission using the Elegant Breadboard Power Control Unit (EBB PCU) commanding at 10 Hz and acquiring at 50 Hz. Both purposes of the campaign were successfully met. A total impulse of more than 1080 Ns and a firing time of more than 3500 hours were achieved. No degradation of efficiency and performance was recorded over the entire test. During the first part, more then 600 Ns of total impulse and about 2000 hours of firing time were achieved. Different thrust profiles were commanded with an average thrust of about 87 μN. The minimum and maximum thrust were 1 μN and 150 μN respectively. Short periods at zero N (i.e. thruster switched-off) were also commanded. The measured mass efficiency and specific impulse, 60% and 8000 s respectively, demonstrated that the current design of the thruster is fully compatible with the much larger impulse requirement of LISA mission. The simulation of the worst-case DFACS cycles at 10 Hz was also successfully performed. Three different DFACS cycles representative of the worst cases were performed. These cycles highlighted one of the main advantages of this technology: the controllability and response time that can be verified immediately with electrical feedback parameters like total voltage and beam current (data

  14. Observing Massive Black Hole Binary Coalescences with LISA

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2005-01-01

    Massive black hole binary coalescences are among the most important astrophysical sources of gravitational waves to be observed by LISA. The ability to observe and characterize such sources with masses approximately equal to 105 M/odot and larger at high redshifts is strongly dependent on the sensitivity of LISA in the low frequency (0.1 mHz and below) regime. We examine LISA's ability to observe these systems at redshifts up to z approximately equal to 10 for various proposed values of the low frequency sensitivity, under current assumptions about the merger rates. The discussion will focus on the astrophysical information that can be gained by these observations.

  15. Simulations of laser locking to a LISA arm

    SciTech Connect

    Sylvestre, Julien

    2004-11-15

    We present detailed numerical simulations of a laser phase stabilization scheme for Laser Interferometer Space Antenna (LISA), where both lasers emitting along one arm are locked to each other. Including the standard secondary noises and spacecraft motions that approximately mimic LISA's orbit (excluding the rotation of the constellation), we verify that very stable laser phases can be obtained and that time delay interferometry can be used to remove the laser phase noise from measurements of gravitational wave strains. Most importantly, we show that this locking scheme can provide significant simplifications over LISA's baseline design in the implementation of time delay interferometry.

  16. Spaceflight dynamics 1993; AAS/NASA International Symposium, 8th, Greenbelt, MD, Apr. 26-30, 1993, Parts 1 & 2

    NASA Technical Reports Server (NTRS)

    Teles, Jerome (Editor); Samii, Mina V. (Editor)

    1993-01-01

    A conference on spaceflight dynamics produced papers in the areas of orbit determination, spacecraft tracking, autonomous navigation, the Deep Space Program Science Experiment Mission (DSPSE), the Global Positioning System, attitude control, geostationary satellites, interplanetary missions and trajectories, applications of estimation theory, flight dynamics systems, low-Earth orbit missions, orbital mechanics, mission experience in attitude dynamics, mission experience in sensor studies, attitude dynamics theory and simulations, and orbit-related experience. These papaers covered NASA, European, Russian, Japanese, Chinese, and Brazilian space programs and hardware.

  17. International Symposium on Gas Flow and Chemical Lasers, 8th, Madrid, Spain, Sept. 10-14, 1990, Proceedings

    SciTech Connect

    Orza, J.M.; Domingo, C.

    1991-01-01

    Papers are presented on current research developments and applications related to high-powered lasers. Recent advances in excimer laser technology, electron-beam-pumped excimer lasers, discharge technology for excimer lasers, and pulsed XeF lasers are examined. Consideration is given to short-wavelength lasers, chemical oxygen iodine lasers, and vibrational chemical lasers. Papers are presented on CO2, CO, N2O lasers, coupled CO2 lasers, laser induced perturbation in pulsed CO2 lasers, construction of sealed-off CO2 lasers, and computer modeling of discharge-excited CO gas flow. Topics discussed include gas-dynamic lasers, discharge and flow effects, matrix and laser optics and laser beam parameters. Laser-matter interactions, laser-induced surface plasma, plasma motion velocity along laser beams and thermocapillary effects are also discussed. Applications of laser technology are examined and high-speed laser welding, welding results, laser ablation, laser steel processing, and numerical modeling of laser-matter interaction in high-intensity laser applications are considered.

  18. Proceedings of the 8th International Symposium on Foundations of Quantum Mechanics in the Light of New Technology

    NASA Astrophysics Data System (ADS)

    Ishioka, Sachio; Fujikawa, Kazuo

    2006-06-01

    Preface -- Committees -- Opening address / H. Fukuyama -- Welcoming address / N. Osakabe -- Special lecture. Albert Einstein: opportunity and perception / C. N. Yang -- Quantum information and entanglement. Quantum optics with single atoms and photons / H. J. Kimble. Quantum information system experiments using a single photon source / Y. Yamamoto. Quantum communication and quantum computation with entangled photons / A. Zeilinger. High-fidelity quantum teleportation and a quantum teleportation network for continuous variables / N. Takei, A. Furusawa. Long lived entangled states / H. Häffner ... [et al.]. Quantum non-locality using tripartite entanglement with non-orthogonal states / J. V. Corbett, D. Home. Quantum entanglement and wedge product / H Heydari. Analysis of the generation of photon pairs in periodically poled lithium niobate / J. Söderholm ... [et al.]. Generation of entangled photons in a semiconductor and violation of Bell's inequality / G. Oohata, R. Shimizu, K. Edamatsu -- Quantum computing. Decoherence of a Josephson junction flux qubit / Y. Nakamura ... [et al.]. Spectroscopic analysis of a candidate two-qubit silicon quantum computer in the microwave regime / J. Gorman, D. G. Hasko, D. A. Williams. Berry phase detection in charge-coupled flux-qubits and the effect of decoherence / H. Nakano ... [et al.]. Locally observable conditions for the successful implementation of entangling multi-qubit quantum gates / H. F. Hofmann, R. Okamoto, S. Takeuchi. State control in flux qubit circuits: manipulating optical selection rules of microwave-assisted transitions in three-level artificial atoms / Y.-X. Liu ... [et al.]. The effect of local structure and non-uniformity on decoherence-free states of charge qubits / T. Tanamoto, S. Fujita. Entanglement-assisted estimation of quantum channels / A. Fujiwara. Superconducting quantum bit with ferromagnetic [symbol]-Junction / T. Yamashita, S. Takahashi, S. Maekawa. Generation of macroscopic Greenberger-Horne-Zeilinger states in Josephson systems / T. Fujii, M. Nishida, N. Hatakenaka -- Quantum-dot systems. Tunable tunnel and exchange couplings in double quantum dots / S. Tarucha, T. Hatano, M. Stopa. Coherent transport through quantum dots / S. Katsumoto ... [et al.]. Electrically pumped single-photon sources towards 1.3 [symbol]m / X. Xu ... [et al.]. Aharonov-Bohm-type effects in antidot arrays and their decoherence / M. Kato ... [et al.]. Nonequilibrium Kondo dot connected to ferromagnetic leads / Y. Utsumi ... [et al.]. Full counting-statistics in a single-electron transistor in the presence of strong quantum fluctuations / Y. Utsumi -- Anomalous Hall effect and Spin-Hall effect. Geometry and the anomalous Hall effect in ferromagnets / N. P. Ong, W.-L. Lee. Control of spin chirality, Berry phase, and anomalous Hall effect / Y. Tokura, Y. Taguchi. Quantum geometry and Hall effect in ferromagnets and semiconductors / N. Nagaosa. Spin-Hall effect in a semiconductor two-dimensional hole gas with strong spin-orbit coupling / J. Wunderlich ... [et al.]. Intrinsic spin Hall effect in semiconductors / S. Murakami -- Spin related phenomena. Theory of spin transfer phenomena in magnetic metals and semiconductors / A. S. Núñez, A. H. MacDonald. Spin filters of semiconductor nanostructures / T. Dietl, G. Grabecki, J. Wróbel. Experimental study on current-driven domain wall motion / T. Ono ... [et al.]. Magnetization reversal of ferromagnetic nano-dot by non local spin injection / Y. Otani, T. Kimura. Theory of current-driven domain wall dynamics / G. Tatara ... [et al.]. Magnetic impurity states and ferromagnetic interaction in diluted magnetic semiconductors / M. Ichimura ... [et al.]. Geometrical effect on spin current in magnetic nano-structures / M. Ichimura, S. Takahashi, S. Maekawa. Ferromagnetism in anatase TiO[symbol] codoped with Co and Nb / T. Hitosugi ... [et al.] -- Superconductivity in nano-systems. Nonlinear quantum effects in nanosuperconductors / C. Carballeira ... [et al.]. Coalescence and rearrangement of vortices in mesoscopic superconductors / A. Kan

  19. International Conference on Vacuum Ultraviolet Radiation Physics, 8th, Lunds Universitet, Sweden, Aug. 4-8, 1986, Proceedings

    NASA Technical Reports Server (NTRS)

    Nilsson, Per-Olof (Editor); Nordgren, Joseph (Editor)

    1987-01-01

    The interactions of VUV radiation with solids are explored in reviews and reports of recent theoretical and experimental investigations from the fields of atomic and molecular physics, solid-state physics, and VUV instrumentation. Topics examined include photoabsorption and photoionization, multiphoton processes, plasma physics, VUV lasers, time-resolved spectroscopy, synchrotron radiation centers, solid-state spectroscopy, and dynamical processes involving localized levels. Consideration is given to the fundamental principles of photoemission, spin-polarized photoemission, inverse photoemission, semiconductors, organic materials, and adsorbates.

  20. Proceedings of the Annual International Bilingual Bicultural Education Conference (8th, Seattle, Washington, May 4-9, 1979).

    ERIC Educational Resources Information Center

    National Clearinghouse for Bilingual Education, Arlington, VA.

    The following papers are included: "Bilingual Education in the Eighties: Making a Good Thing Better"; "How Bilingual Multicultural Education Can Save the World"; "Some Personal Reflections on the Bilingual Education Movement and the Challenge Ahead"; "Toward Understanding Cultural Difference in Public Education"; "Cultural Pluralism in Japan"; "A…

  1. Proceedings of the 8th International Symposium on Foundations of Quantum Mechanics in the Light of New Technology

    NASA Astrophysics Data System (ADS)

    Ishioka, Sachio; Fujikawa, Kazuo

    2006-06-01

    Preface -- Committees -- Opening address / H. Fukuyama -- Welcoming address / N. Osakabe -- Special lecture. Albert Einstein: opportunity and perception / C. N. Yang -- Quantum information and entanglement. Quantum optics with single atoms and photons / H. J. Kimble. Quantum information system experiments using a single photon source / Y. Yamamoto. Quantum communication and quantum computation with entangled photons / A. Zeilinger. High-fidelity quantum teleportation and a quantum teleportation network for continuous variables / N. Takei, A. Furusawa. Long lived entangled states / H. Häffner ... [et al.]. Quantum non-locality using tripartite entanglement with non-orthogonal states / J. V. Corbett, D. Home. Quantum entanglement and wedge product / H Heydari. Analysis of the generation of photon pairs in periodically poled lithium niobate / J. Söderholm ... [et al.]. Generation of entangled photons in a semiconductor and violation of Bell's inequality / G. Oohata, R. Shimizu, K. Edamatsu -- Quantum computing. Decoherence of a Josephson junction flux qubit / Y. Nakamura ... [et al.]. Spectroscopic analysis of a candidate two-qubit silicon quantum computer in the microwave regime / J. Gorman, D. G. Hasko, D. A. Williams. Berry phase detection in charge-coupled flux-qubits and the effect of decoherence / H. Nakano ... [et al.]. Locally observable conditions for the successful implementation of entangling multi-qubit quantum gates / H. F. Hofmann, R. Okamoto, S. Takeuchi. State control in flux qubit circuits: manipulating optical selection rules of microwave-assisted transitions in three-level artificial atoms / Y.-X. Liu ... [et al.]. The effect of local structure and non-uniformity on decoherence-free states of charge qubits / T. Tanamoto, S. Fujita. Entanglement-assisted estimation of quantum channels / A. Fujiwara. Superconducting quantum bit with ferromagnetic [symbol]-Junction / T. Yamashita, S. Takahashi, S. Maekawa. Generation of macroscopic Greenberger-Horne-Zeilinger states in Josephson systems / T. Fujii, M. Nishida, N. Hatakenaka -- Quantum-dot systems. Tunable tunnel and exchange couplings in double quantum dots / S. Tarucha, T. Hatano, M. Stopa. Coherent transport through quantum dots / S. Katsumoto ... [et al.]. Electrically pumped single-photon sources towards 1.3 [symbol]m / X. Xu ... [et al.]. Aharonov-Bohm-type effects in antidot arrays and their decoherence / M. Kato ... [et al.]. Nonequilibrium Kondo dot connected to ferromagnetic leads / Y. Utsumi ... [et al.]. Full counting-statistics in a single-electron transistor in the presence of strong quantum fluctuations / Y. Utsumi -- Anomalous Hall effect and Spin-Hall effect. Geometry and the anomalous Hall effect in ferromagnets / N. P. Ong, W.-L. Lee. Control of spin chirality, Berry phase, and anomalous Hall effect / Y. Tokura, Y. Taguchi. Quantum geometry and Hall effect in ferromagnets and semiconductors / N. Nagaosa. Spin-Hall effect in a semiconductor two-dimensional hole gas with strong spin-orbit coupling / J. Wunderlich ... [et al.]. Intrinsic spin Hall effect in semiconductors / S. Murakami -- Spin related phenomena. Theory of spin transfer phenomena in magnetic metals and semiconductors / A. S. Núñez, A. H. MacDonald. Spin filters of semiconductor nanostructures / T. Dietl, G. Grabecki, J. Wróbel. Experimental study on current-driven domain wall motion / T. Ono ... [et al.]. Magnetization reversal of ferromagnetic nano-dot by non local spin injection / Y. Otani, T. Kimura. Theory of current-driven domain wall dynamics / G. Tatara ... [et al.]. Magnetic impurity states and ferromagnetic interaction in diluted magnetic semiconductors / M. Ichimura ... [et al.]. Geometrical effect on spin current in magnetic nano-structures / M. Ichimura, S. Takahashi, S. Maekawa. Ferromagnetism in anatase TiO[symbol] codoped with Co and Nb / T. Hitosugi ... [et al.] -- Superconductivity in nano-systems. Nonlinear quantum effects in nanosuperconductors / C. Carballeira ... [et al.]. Coalescence and rearrangement of vortices in mesoscopic superconductors / A. Kanda ... [et al.]. Superconductivity in topologically nontrivial spaces / M. Hayashi ... [et al.]. DC-SQUID ratchet using atomic point contact / Y. Ootuka, H. Miyazaki, A. Kanda. Superconducting wire network under spatially modulated magnetic field / H. Sano ... [et al.]. Simple and stable control of mechanical break junction for the study of superconducting atomic point contact / H. Miyazaki ... [et al.]. Critical currents in quasiperiodic pinning arrays: one-dimensional chains and Penrose lattices / V. R. Misko, S. Savel'ev, F. Nori. Macroscopic quantum tunneling in high-Tc superconductor Josephson junctions / S. Kawabata -- Novel properties of carbon nanotubes. Carbon nanotubes and unique transport properties: importance of symmetry and channel number / T. Ando. Optical processes in single-walled carbon nanotubes threaded by a magnetic flux / J. Kono ... [et al.]. Non-equilibrium transport through a single-walled carbon nanotube with highly transparent coupling to reservoirs / P. Recher, N. Y. Kim, Y. Yamamoto -- Novel properties of nano-systems. Transport properties in low dimensional artificial lattice of gold nano-particles / S. Saito ... [et al.]. First principles study of dihydride-chain structures on H-terminated Si(100) surface / Y. Suwa ... [et al.]. Electrical property of Ag nanowires fabricated on hydrogen-terminated Si(100) surface / M. Fujimori, S. Heike, T. Hashizume. Effect of environment on ionization of excited atoms embedded in a solid-state cavity / M. Ando ... [et al.]. Development of universal virtual spectroscope for optoelectronics research: first principles software replacing dielectric constant measurements / T. Hamada ... [et al.]. Quantum Nernst effect / H Nakamura, N. Hatano, R. Shirasaki -- Precise measurements. Quantum phenomena visualized using electron waves / A. Tonomura. An optical lattice clock: ultrastable atomic clock with engineered perturbation / H. Katori ... [et al.]. Development of Mach-Zehnder interferometer and "coherent beam steering" technique for cold neutron / K. Taketani ... [et al.]. Surface potential measurement by atomic force microscopy using a quartz resonator / S. Heike, T. Hashizume -- Fundamental Problems in quantum physics. Berry's phases and topological properties in the Born-Oppenheimer approximation / K. Fujikawa. Self-trapping of Bose-Einstein condensates by oscillating interactions / H. Saito, M. Ueda. Spinor solitons in Bose-Einstein condensates - atomic spin transport / J. Ieda. Spin decoherence in a gravitational field / H. Terashima, M. Ueda. Berry's phase of atoms with different sign of the g-factor in a conical rotating magnetic field observed by a time-domain atom interferometer / A. Morinaga ... [et al.] -- List of participants.

  2. Laying the Foundation for Space-based Gravitational Wave Detection: LISA Pathfinder, the LISA Test Package, and ST7-DRS

    NASA Astrophysics Data System (ADS)

    Thorpe, James

    2014-08-01

    Efforts to develop space-based observatories of gravitational waves, such as the long-standing Laser Interferometer Space Antenna (LISA) or the more recent eLISA concept that motivated ESA’s selection of a gravitational wave mission for the L3 Mission Opportunity, have traditionally been praised for their scientific potential and criticized for their technological readiness. The LISA Pathfinder (LPF) mission is a dedicated technology demonstrator for such missions. Led by ESA and a consortium of European national agencies and with a minority contribution from NASA, LPF will demonstrate several key technologies for the LISA concept. LPF includes two scientific payloads: the European LISA Technology Package (LTP) and the NASA-provided ST7-DRS. The mission will place two test masses in drag-free flight and measure the relative acceleration between them. This measurement will validate a number of technologies that are critical to LISA-like gravitational wave instruments including sensing and control of the test masses, drag-free control laws, micro-Newton thrusters, and picometer-level laser metrology. LPF is currently in the late stages of integration and test and is planned to launch in 2015. We will present the current status of the LISA Pathfinder mission and the LTP and ST7-DRS payloads as well as the expected impact on the larger gravitational-wave effort.

  3. Laying the Foundation for Space-based Gravitational Wave Detection: LISA Pathfinder, the LISA Test Package, and ST7-DRS

    NASA Astrophysics Data System (ADS)

    Thorpe, James; Ziemer, J.; McNamara, P.; LPF Team; LTP Team; ST7-DRS Team

    2014-01-01

    Efforts to develop space-based observatories of gravitational waves such as the long-standing Laser Interferometer Space Antenna (LISA) effort or the more recent eLISA effort under consideration for ESA’s next large space mission, have traditionally been praised for their scientific potential and criticized for their technological readiness. The LISA Pathfinder (LPF) mission is a dedicated technology demonstrator for such missions. Led by ESA and a consortium of European national agencies and with a minority contribution from NASA, LPF will demonstrate several key technologies for the LISA concept. LPF includes two scientific payloads: the European LISA Technology Package (LTP) and the NASA-provided ST7-DRS. The mission will place two test masses in drag-free flight and measure the relative acceleration between them. This measurement will validate a number of technologies that are critical to LISA-like gravitational wave instruments including sensing and control of the test masses, drag-free control laws, micro-Newton thrusters, and picometer-level laser metrology. LPF is currently in the late stages of integration and test and is planned to launch in 2015. We will present the current status of the LISA Pathfinder mission and the LTP and ST7-DRS payloads as well as the expected impact on the larger gravitational-wave effort.

  4. The 8th and 9th Grades Students' Attitude towards Teaching and Learning Physics

    ERIC Educational Resources Information Center

    Stefan, Monica; Ciomos, Florentina

    2010-01-01

    The students' interest and attitude towards Physics have been the object of international testing, the most recent of which is the PISA testing from 2006. The students' attitude towards sciences is considered to be a significant predictor of their school results in science, respectively of pursuing a career in areas related to Science. The present…

  5. 77 FR 51842 - Social Security Acquiescence Ruling (AR) 12-X(8); Petersen v. Astrue, 633 F.3d 633 (8th Cir. 2011...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... From the Federal Register Online via the Government Publishing Office SOCIAL SECURITY ADMINISTRATION Social Security Acquiescence Ruling (AR) 12-X(8); Petersen v. Astrue, 633 F.3d 633 (8th Cir. 2011... Security. Acquiescence Ruling 12-X(8) Petersen v. Astrue, 633 F.3d 633 (8th Cir. 2011): Whether a...

  6. Effects of 8th Grade Algebra on High School Course-Taking and Math Achievement: Evidence from Changing Practices in a Large Urban District

    ERIC Educational Resources Information Center

    Rickles, Jordan; Phillips, Meredith; Yamashiro, Kyo

    2014-01-01

    Between 1990 and 2012, the percentage of 13-year-olds (most of whom are 8th graders) taking algebra more than doubled, from 15% to 34% (National Center for Education Statistics, 2013). Yet recent education policy changes suggest that this movement to encourage algebra-taking in 8th grade has begun to reverse course. Existing research suggests that…

  7. Longitudinal Investigation of Elementary Students' Science Academic Achievement in 4-8th Grades: Grade Level and Gender Differences

    ERIC Educational Resources Information Center

    Bursal, Murat

    2013-01-01

    This study investigated the change of the science academic achievement by grade level and gender where 222 elementary students' science and technology course scores between the 4th and 8th grades and science success percentages in 6th and 8th grades Level Determination Exam were longitudinally analyzed. Based on the findings of this study,…

  8. TABES 92: 8th Annual Technical and Business Exhibition and Symposium. Executive summaries and submitted papers

    SciTech Connect

    Not Available

    1992-01-01

    The Small Space Missions sessions presented some relatively inexpensive alternatives to current mission approaches. The alternatives discussed included: robotic, low orbit missions; a permanent return to the moon and then on to Mars with manned missions; and interplanetary exploration. The Space Technologies sessions discussed speedier vehicles, complex research, needs for efficient and exotic fuels and structures materials, and the need for multi-language abilities for joint international missions.

  9. Time Domain Simulations of Arm Locking in LISA

    NASA Technical Reports Server (NTRS)

    Thorpe, J. I.; Maghami, P.; Livas, Jeff

    2011-01-01

    Arm locking is a technique that has been proposed for reducing laser frequency fluctuations in the Laser Interferometer Space Antenna (LISA). a gravitational-wave observatory sensitive' in the milliHertz frequency band. Arm locking takes advantage of the geometric stability of the triangular constellation of three spacecraft that comprise LISA to provide a frequency reference with a stability in the LISA measurement band that exceeds that available from a standard reference such as an optical cavity or molecular absorption line. We have implemented a time-domain simulation of arm locking including the expected limiting noise sources (shot noise, clock noise. spacecraft jitter noise. and residual laser frequency noise). The effect of imperfect a priori knowledge of the LISA heterodyne frequencies and associated "pulling" of an arm locked laser is included. We find that our implementation meets requirements both on the noise and dynamic range of the laser frequency.

  10. LISA Pathfinder paves way for gravitational-wave probe

    NASA Astrophysics Data System (ADS)

    Johnston, Hamish

    2016-07-01

    Researchers working on the LISA Pathfinder space mission have successfully managed to isolate from the environment two 2 kg test masses at a special “Lagrangian point” between the Earth and the Sun.

  11. LISA Pathfinder as a micrometeorite instrument

    NASA Astrophysics Data System (ADS)

    Thorpe, James

    2016-03-01

    The Solar System contains a population of dust and small particles originating from asteroids, comets, and other bodies. These particles have been studied using a number of techniques ranging from in-situ satellite detectors to analysis of lunar microcraters to ground-based observations of zodiacal light. We describe an approach for using the LISA Pathfinder [LPF] mission as an instrument to detect and characterize the dynamics of dust particles in the vicinity of Earth-Sun L1. Launched on Dec. 3rd, 2015, LPF is a dedicated technology demonstrator mission that will validate several key technologies for a future space-based gravitational-wave observatory. The primary science instrument aboard LPF is a precision accelerometer which we show will be capable of sensing discrete momentum impulses as small as 4 × 10-8 N . s. We then estimate the rate of such impulses resulting from impacts of micrometeoroids based on standard models of the micrometeoroid environment in the inner solar system. We find that LPF may detect dozens to hundreds of individual events corresponding to impacts of particles with masses > 10-9 g during LPF's roughly six-month science operations phase.

  12. Wavefront distortion and beam pointing for LISA

    NASA Astrophysics Data System (ADS)

    Bender, Peter L.

    2005-05-01

    The dc pointing directions for the LISA laser beams will be chosen to minimize the sensitivity of the measured arm lengths to jitter in the beam pointing. The earliest studies of the effects of wavefront distortion included only astigmatism and defocus, so that the desired dc beam pointing directions were on the axis for the transmitting telescopes. But, if other aberrations cause the dc pointing directions to be considerably off axis, some of the laser beam intensity will be lost. A brief study of this effect has been carried out. As examples, several cases with defocus, spherical aberration, and two components each of astigmatism and coma have been investigated. Within this class of models, pure astigmatism turned out to give the maximum sensitivity to beam pointing jitter, for a given rms wavefront distortion. Although further study is needed, it appears that the usually quoted requirements of 3 × 10-8 rad for the dc beam pointing offsets and 8 × 10-9 rad Hz-1/2 for the pointing jitter are probably reasonable choices.

  13. Evidence-based practice guideline: increasing physical activity in schools--kindergarten through 8th grade.

    PubMed

    Bagby, Karen; Adams, Susan

    2007-06-01

    Because of the growing obesity epidemic across all age groups in the United States, interventions to increase physical activity and reduce sedentary behaviors have become a priority. Evidence is growing that interventions to increase physical activity and reduce sedentary behaviors have positive results and are generally inexpensive to implement. National and international health organizations are calling for a comprehensive approach for reducing obesity in children that includes increasing physical activity in the school setting. Although the call to increase activity levels in schools is clear, little guidance has been given to schools on specific methods to accomplish this task. This article provides an overview of an evidence-based guideline developed by a physical education teacher and a school nurse to provide inexpensive, easy-to-implement, effective strategies to increase physical activity in students. Tools are also included in the guideline to measure the effectiveness of the intervention. PMID:17536917

  14. Proceedings of the 8th Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Proceedings contain the papers presented at the Eight Annual Precise Time and Tme Interval PTTI Applications and Planning Meeting. The edited record of the discussions following the papers and the panel discussions are also included. This meeting provided a forum for the exchange of information on precise time and frequency technology among members of the scientific community and persons with program applications. The 282 registered attendees came from various U.S. Government agencies, private industry, universities and a number of foreign countries were represented. In this meeting, papers were presented that emphasized: (1) definitions and international regulations of precise time sources and users, (2) the scientific foundations of Hydrogen Maser standards, the current developments in this field and the application experience, and (3) how to measure the stability performance properties of precise standards. As in the previous meetings, update and new papers were presented on system applications with past, present and future requirements identified.

  15. Molecular laser stabilization and benchtop simulation for LISA

    NASA Astrophysics Data System (ADS)

    Hubert, Halloin; Jeannin, Olivier; Argence, Bérengère; Turazza, Oscar; Acef, Ouali; Auger, Gérard; Plagnol, Eric

    In a nutshell, the expected performance of LISA relies on two main technical challenges: the ability for the spacecrafts to precisely follow the free-flying masses and the outstanding precision of the phase shift measurement. This latter constraint requires frequency stabilized lasers and efficient numerical algorithms to account for the redundant, delayed noise propagation, thus canceling laser phase noise by many orders of magnitude (TDI methods). Recently involved in the technical developments for LISA, the goal of our team at APC (France) is to contribute on these two subjects: frequency reference for laser stabilization and benchtop simulation of the interferometer. In the present design of LISA, two stages of laser stabilization are used (not accounting for the "post-processed" TDI algorithm): laser pre-stabilization on a frequency reference and lock on the ultra stable distance between spacecrafts (arm-locking). While the foreseen (and deeply studied) laser reference consists of a Fabry-Perot cavity, other techniques may be suitable for LISA or future metrology missions. In particular, locking to a molecular reference (namely iodine in the case of the LISA Nd:YAG laser) is an interesting alternative. It offers the required performance with very good long-term stability (absolute frequency reference) though the reference can be slightly tuned to account for arm-locking. This technique is currently being investigated by our team and optimized for LISA (compactness, vacuum compatibility, ease of use and initialization, etc.). Ongoing results and prospects to increase the performance of the system will be presented at this session. Beyond the laser pre-stabilization, it is also desirable to test interferometric algorithms and devices, such as Time Delay Interferometry, arm-locking and phasemeters. To achieve this goal, we are currently designing an optical benchtop experiment representative of LISA measurements, that will be implemented in the near future. The

  16. The 10 to the 8th power bit solid state spacecraft data recorder. [utilizing bubble domain memory technology

    NASA Technical Reports Server (NTRS)

    Murray, G. W.; Bohning, O. D.; Kinoshita, R. Y.; Becker, F. J.

    1979-01-01

    The results are summarized of a program to demonstrate the feasibility of Bubble Domain Memory Technology as a mass memory medium for spacecraft applications. The design, fabrication and test of a partially populated 10 to the 8th power Bit Data Recorder using 100 Kbit serial bubble memory chips is described. Design tradeoffs, design approach and performance are discussed. This effort resulted in a 10 to the 8th power bit recorder with a volume of 858.6 cu in and a weight of 47.2 pounds. The recorder is plug reconfigurable, having the capability of operating as one, two or four independent serial channel recorders or as a single sixteen bit byte parallel input recorder. Data rates up to 1.2 Mb/s in a serial mode and 2.4 Mb/s in a parallel mode may be supported. Fabrication and test of the recorder demonstrated the basic feasibility of Bubble Domain Memory technology for such applications. Test results indicate the need for improvement in memory element operating temperature range and detector performance.

  17. Role of acidic residues in helices TH8-TH9 in membrane interactions of the diphtheria toxin T domain.

    PubMed

    Ghatak, Chiranjib; Rodnin, Mykola V; Vargas-Uribe, Mauricio; McCluskey, Andrew J; Flores-Canales, Jose C; Kurnikova, Maria; Ladokhin, Alexey S

    2015-04-01

    The pH-triggered membrane insertion of the diphtheria toxin translocation domain (T domain) results in transferring the catalytic domain into the cytosol, which is relevant to potential biomedical applications as a cargo-delivery system. Protonation of residues is suggested to play a key role in the process, and residues E349, D352 and E362 are of particular interest because of their location within the membrane insertion unit TH8-TH9. We have used various spectroscopic, computational and functional assays to characterize the properties of the T domain carrying the double mutation E349Q/D352N or the single mutation E362Q. Vesicle leakage measurements indicate that both mutants interact with the membrane under less acidic conditions than the wild-type. Thermal unfolding and fluorescence measurements, complemented with molecular dynamics simulations, suggest that the mutant E362Q is more susceptible to acid destabilization because of disruption of native intramolecular contacts. Fluorescence experiments show that removal of the charge in E362Q, and not in E349Q/D352N, is important for insertion of TH8-TH9. Both mutants adopt a final functional state upon further acidification. We conclude that these acidic residues are involved in the pH-dependent action of the T domain, and their replacements can be used for fine tuning the pH range of membrane interactions. PMID:25875295

  18. K-8th grade Korean students' conceptions of 'changes of state' and 'conditions for changes of state'

    NASA Astrophysics Data System (ADS)

    Paik, Seoung-Hey; Kim, Hyo-Nam; Cho, Boo-Kyoung; Park, Jae-Won

    2004-02-01

    This study investigates the various conceptions held by K-8th Korean grade students regarding the 'changes of state' and the 'conditions for changes of state'. The study used a sample of five kindergarteners, five secondgrade students, five fourth-grade students, five sixth-grade students, and five eighth-grade students. The 25 students attend schools in a rural district of South Korea. Some activities that involved a change in the state of water, including condensation, solidification, and melting, were chosen from K-8th grade science textbooks and attempted by the students. Subsequently, we conducted interviews with the students. While most kindergarteners and second-grade students were able to perceive the phenomena involving changes of state, they were unable to express conceptions related to the changes of state and the conditions under which the state the changes. The upper-grade students, on the other hand, had some conception of the invisible gas state. Most of these students held conceptions about the boiling water's change of state from liquid to gas, but few of them held conceptions about the changes of state involving condensation. Most students understood heat and temperature as conditions of the changes of state, but only applied the heat concept to situations involving rising temperatures. In situations involving cooling, students applied the temperature concept. The younger students understood the concept of heat without understanding the concept of temperature.

  19. Examining students' views on the nature of science: Results from Korean 6th, 8th, and 10th graders

    NASA Astrophysics Data System (ADS)

    Kang, Sukjin; Scharmann, Lawrence C.; Noh, Taehee

    2005-03-01

    In this study, students' views on the nature of science (NOS) were investigated with the use of a large-scale survey. An empirically derived multiple-choice format questionnaire was administered to 1702 Korean 6th, 8th, and 10th graders. The questionnaire consisted of five items that respectively examined students' views on five constructs concerning the NOS: purpose of science, definition of scientific theory, nature of models, tentativeness of scientific theory, and origin of scientific theory. Students were also asked to respond to an accompanying open-ended section for each item in order to collect information about the rationale(s) for their choices. The results indicated that the majority of Korean students possessed an absolutist/empiricist perspective about the NOS. It was also found that, on the whole, there were no clear differences in the distributions of 6th, 8th, and 10th graders' views on the NOS. In some questions, distinct differences between Korean students and those of Western countries were found. Educational implications are discussed.

  20. Technology development for the LISA using the UF Torsion Pendulu

    NASA Astrophysics Data System (ADS)

    Conklin, John W.; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Ciani, Giacomo; Mueller, Guido

    2015-08-01

    Space-based gravitational wave observatories like LISA measure picometer changes in the distances between free falling test masses separated by millions of kilometers caused by gravitational waves. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). LISA will observe gravitational wave sources ranging from super-massive black hole mergers to compact galactic binaries in the millihertz region, and LISA science has consistently been ranked in the top two for future large space missions in the last two NASA astrophysics decadal reviews. With the 2015 launch of LISA Pathfinder (LPF) and the expected detection of gravitational waves by aLIGO and/or Pulsar Timing Arrays within in the next several years, this can arguably be called the decade of gravitational waves. Following a successful demonstration of the baseline LISA GRS by LPF, the measurement principle will be carried forward, but improvements in several GRS components are possible over the next ten years that will lead to cost savings and potential noise reductions. The UF LISA group has constructed the UF Torsion Pendulum to increase U.S. competency in this critical area and to have a facility where new technologies can be developed and evaluated. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. This presentation will describe this facility, focusing on its mechanical design, capacitive sensing and electrostatic actuation systems, and overall acceleration noise performance

  1. The Challenges and Opportunities for Extending Plant Genomics to Climate (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Weston, David

    2013-03-01

    David Weston of Oak Ridge National Laboratory on "The challenges and opportunities for extending plant genomics to climate" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  2. Delineating Molecular Interaction Mechanisms in an In Vitro Microbial-Plant Community (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Larsen, Peter

    2013-03-01

    Peter Larsen of Argonne National Lab on "Delineating molecular interaction mechanisms in an in vitro microbial-plant community" at the 8th Annual Genomics of Energy & Environment Meeting in Walnut Creek, Calif.

  3. Genetic Regulation of Grass Biomass Accumulation and Biological Conversion Quality (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Hazen, Sam

    2013-03-01

    Sam Hazen of the University of Massachusetts on "Genetic Regulation of Grass Biomass Accumulation and Biological Conversion Quality" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  4. Succession of Phylogeny and Function During Plant Litter Decomposition (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Brodie, Eoin

    2013-03-01

    Eoin Brodie of Berkeley Lab on "Succession of phylogeny and function during plant litter decomposition" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  5. Modulation of Root Microbiome Community Assembly by the Plant Immune Response (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Lebeis, Sarah

    2013-03-01

    Sarah Lebeis of University of North Carolina on "Modulation of root microbiome community assembly by the plant immune response" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  6. TARA OCEANS: A Global Analysis of Oceanic Plankton Ecosystems (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Karsenti, Eric

    2013-03-01

    Eric Karsenti of EMBL delivers the closing keynote on "TARA OCEANS: A Global Analysis of Oceanic Plankton Ecosystems" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  7. Assembly-driven metagenomics of a hypersaline microbial ecosystem (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Allen, Eric

    2013-03-01

    Eric Allen of Scripps and UC San Diego on "Assembly-driven metagenomics of a hypersaline microbial ecosystem" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  8. Natural variation in Brachypodium disctachyon: Deep Sequencing of Highly Diverse Natural Accessions (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Gordon, Sean

    2013-03-01

    Sean Gordon of the USDA on "Natural variation in Brachypodium disctachyon: Deep Sequencing of Highly Diverse Natural Accessions" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  9. Biodiversity Monitoring Using NGS Approaches on Unusual Substrates (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Gilbert, Tom

    2013-03-01

    Tom Gilbert of the Natural History Museum of Denmark on "Biodiversity monitoring using NGS approaches on unusual substrates" at the 8th Annual Genomics of Energy & Environment Meeting in Walnut Creek, Calif.

  10. Metabolic Engineering of Clostridium thermocellum for Biofuel Production (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Guess, Adam

    2013-03-01

    Adam Guss of Oak Ridge National Lab on "Metabolic engineering of Clostridium thermocellum for biofuel production" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  11. New Approaches and Technologies to Sequence de novo Plant reference Genomes (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Schmutz, Jeremy

    2013-03-01

    Jeremy Schmutz of the HudsonAlpha Institute for Biotechnology on "New approaches and technologies to sequence de novo plant reference genomes" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  12. Characterizing spinning black hole binaries in eccentric orbits with LISA

    SciTech Connect

    Key, Joey Shapiro; Cornish, Neil J.

    2011-04-15

    The Laser Interferometer Space Antenna (LISA) is designed to detect gravitational wave signals from astrophysical sources, including those from coalescing binary systems of compact objects such as black holes. Colliding galaxies have central black holes that sink to the center of the merged galaxy and begin to orbit one another and emit gravitational waves. Some galaxy evolution models predict that the binary black hole system will enter the LISA band with significant orbital eccentricity, while other models suggest that the orbits will already have circularized. Using a full 17 parameter waveform model that includes the effects of orbital eccentricity, spin precession, and higher harmonics, we investigate how well the source parameters can be inferred from simulated LISA data. Defining the reference eccentricity as the value one year before merger, we find that for typical LISA sources, it will be possible to measure the eccentricity to an accuracy of parts in a thousand. The accuracy with which the eccentricity can be measured depends only very weakly on the eccentricity, making it possible to distinguish circular orbits from those with very small eccentricities. LISA measurements of the orbital eccentricity can help constraints theories of galaxy mergers in the early universe. Failing to account for the eccentricity in the waveform modeling can lead to a loss of signal power and bias the estimation of parameters such as the black hole masses and spins.

  13. Revisiting the LISA science case in a changing astrophysical landscape

    NASA Astrophysics Data System (ADS)

    Cornish, Neil

    2016-03-01

    While the basic LISA concept has changed little over the past 20 years, advances in astrophysics and cosmology over this time have been dramatic. Future missions such as JWST, Euclid, WFIRST and Athena will further reshape the landscape prior to the LISA launch in the 2030s, as may discoveries by gravitational wave detectors operating in other frequency bands. These developments require us to periodically revist the LISA science case, and identify new synergies with other observatories. For example, Euclid and WFIRST are expected to detect dozens of very high redshift (z > 8) AGN, revealing the high mass tail of the early black hole population, while a suitably configured LISA mission could provide complimentary information about lower mass systems at these redshifts. Closer to home, recent surveys indicate that there are far fewer compact binary sources than originally estimated, which may be the one time where having fewer gravitational wave sources is a good thing as the foreground ``noise'' is reduced, while the number of resolved galactic sources is essentially unchanged. I will discuss these, and many other changes to the LISA science landscape, and consider how they might impact the science case and the mission design.

  14. Nano-LISA for in vitro diagnostic applications

    NASA Astrophysics Data System (ADS)

    Maswadi, Saher; Glickman, Randolph D.; Elliott, Rowe; Barsalou, Norman

    2011-03-01

    We previously reported the detection of bacterial antigen with immunoaffinity reactions using laser optoacoustic spectroscopy and antibody-coupled gold nanorods (Ab-NR) as a contrast agent specifically targeted to the antigen of interest. The Nano-LISA (Nanoparticle Linked Immunosorbent Assay) method has been adapted to detect three very common blood-borne viral infectious agents, i.e. human T-lymphotropic virus (HTLV), human immunodeficiency virus (HIV) and hepatitis-B (Hep-B). These agents were used in a model test panel to illustrate the performance of the Nano-LISA technique. A working laboratory prototype of a Nano-LISA microplate reader-sensor was assembled and tested against the panel containing specific antigens of each of the infectious viral agents. Optoacoustic (OA) responses generated by the samples were detected using the probe beam deflection technique, an all-optical, non-contact technique. A LabView graphical user interface was developed for control of the instrument and real-time display of the test results. The detection limit of Nano-LISA is at least 1 ng/ml of viral antigen, and can reach 10 pg/ml, depending on the binding affinity of the specific detection antibody used to synthesize the Ab-NR. The method has sufficient specificity, i.e. the detection reagents do not cross-react with noncomplementary antigens. Thus, the OA microplate reader, incorporating NanoLISA, has adequate detection sensitivity and specificity for use in clinical in vitro diagnostic testing.

  15. LISA technology development using the UF precision torsion pendulum

    NASA Astrophysics Data System (ADS)

    Apple, Stephen; Chilton, Andrew; Olatunde, Taiwo; Ciani, Giacomo; Mueller, Guido; Conklin, John

    2015-04-01

    LISA will directly observe low-frequency gravitational waves emitted by sources ranging from super-massive black hole mergers to compact galactic binaries. A laser interferometer will measure picometer changes in the distances between free falling test masses separated by millions of kilometers. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). The demanding acceleration noise requirement for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in the fall of 2015. At the University of Florida we are developing a nearly thermally noise limited torsion pendulum for testing GRS technology enhancements that may improve the performance and/or reduce the cost of the LISA GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. Some of the technologies that will be demonstrated by this facility include a novel TM charge control scheme based on ultraviolet LEDs, an all-optical TM position and attitude sensor, and drift mode operation. This presentation will describe the design of the torsion pendulum facility, its current acceleration noise performance, and the status of the GRS technologies under development.

  16. Primary School 5th and 8th Graders' Understanding and Mental Models about the Shape of the World and Gravity

    ERIC Educational Resources Information Center

    Öztürk, Ayse; Doganay, Ahmet

    2013-01-01

    This study investigated primary school 5th and 8th graders' understanding and mental models related to the shape of the world and gravity, and how these models reflected the fact and what kind of a change there is from 5th to 8th graders. This research is based on a cross-sectional design. The study was conducted in a low socioeconomic level…

  17. First stage of LISA data processing. II. Alternative filtering dynamic models for LISA

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Heinzel, Gerhard; Danzmann, Karsten

    2015-08-01

    Space-borne gravitational wave detectors, such as (e)LISA, are designed to operate in the low-frequency band (mHz to Hz), where there is a variety of gravitational wave sources of great scientific value [arXiv:1305.5720 and S. Babak et al., Classical Quantum Gravity 28, 114001 (2011)]. To achieve the extraordinary sensitivity of these detectors, the precise synchronization of the clocks on the separate spacecraft and the accurate determination of the interspacecraft distances are important ingredients. In our previous paper [Y. Wang et al., Phys. Rev. D 90, 064016 (2014)], we have described a hybrid-extend Kalman filter with a full state vector to do this job. In this paper, we explore several different state vectors and their corresponding (phenomenological) dynamic models to reduce the redundancy in the full state vector, to accelerate the algorithm, and to make the algorithm easily extendable to more complicated scenarios.

  18. Neurobehavioral Evaluation System (NES): comparative performance of 2nd-, 4th-, and 8th-grade Czech children.

    PubMed

    Otto, D A; Skalik, I; House, D E; Hudnell, H K

    1996-01-01

    The Neurobehavioral Evaluation System was designed for field studies of workers, but many NES tests can be performed satisfactorily by children as young as 7 or 8 years old and a few tests, such as simple reaction time, can be performed by preschool children. However, little comparative data from children of different ages or grade levels are available. Studies of school children in the Czech Republic indicate that 2nd-grade children could perform the following NES tests satisfactorily: Finger Tapping, Visual Digit Span. Continuous Performance, Symbol-Digit Substitution, Pattern Comparison, and simpler conditions of Switching Attention. Comparative scores of boys and girls from the 2nd, 4th, and 8th grades and power analyses to estimate appropriate sample size were presented. Performance varied systematically with grade level and gender. Larger samples were needed with younger children to achieve comparable levels of statistical power. Gender comparisons indicated that boys responded faster, but made more errors than girls. PMID:8866533

  19. The LISA Pathfinder Mission. Tracing Einstein's Geodesics in Space

    NASA Astrophysics Data System (ADS)

    Racca, Giuseppe D.; McNamara, Paul W.

    2010-03-01

    LISA Pathfinder, formerly known as SMART-2, is the second of the European Space Agency’s Small Missions for Advance Research and Technology, and is designed to pave the way for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission, by testing the core assumption of gravitational wave detection and general relativity: that free particles follow geodesics. The new technologies to be demonstrated in a space environment include: inertial sensors, high precision laser interferometry to free floating mirrors, and micro-Newton proportional thrusters. LISA Pathfinder will be launched on a dedicated launch vehicle in late 2011 into a low Earth orbit. By a transfer trajectory, the sciencecraft will enter its final orbit around the first Sun-Earth Lagrange point. First science results are expected approximately 3 months thereafter. Here, we give an overview of the mission including the technologies being demonstrated.

  20. Bayesian statistics for the calibration of the LISA Pathfinder experiment

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Auger, G.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martin, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mitchell, E.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    The main goal of LISA Pathfinder (LPF) mission is to estimate the acceleration noise models of the overall LISA Technology Package (LTP) experiment on-board. This will be of crucial importance for the future space-based Gravitational-Wave (GW) detectors, like eLISA. Here, we present the Bayesian analysis framework to process the planned system identification experiments designed for that purpose. In particular, we focus on the analysis strategies to predict the accuracy of the parameters that describe the system in all degrees of freedom. The data sets were generated during the latest operational simulations organised by the data analysis team and this work is part of the LTPDA Matlab toolbox.

  1. Development of Fiber-Based Laser Systems for LISA

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2010-01-01

    We present efforts on fiber-based laser systems for the LISA mission at the NASA Goddard Space Flight Center. A fiber-based system has the advantage of higher robustness against external disturbances and easier implementation of redundancies. For a master oscillator, we are developing a ring fiber laser and evaluating two commercial products, a DBR linear fiber laser and a planar-waveguide external cavity diode laser. They all have comparable performance to a traditional NPRO at LISA band. We are also performing reliability tests of a 2-W Yb fiber amplifier and radiation tests of fiber laser/amplifier components. We describe our progress to date and discuss the path to a working LISA laser system design.

  2. LISA Pathfinder: picometers and femtoNewtons in space

    NASA Astrophysics Data System (ADS)

    Hewitson, Martin; LISA Pathfinder Team Team

    2016-03-01

    On December 3rd at 04:04 UTC, The European Space Agency launched the LISA Pathfinder satellite on board a VEGA rocket from Kourou in French Guiana. After a series of orbit raising manoeuvres and a 2 month long transfer orbit, LISA Pathfinder arrived at L1. Following a period of commissioning, the science operations commenced at the start of March, beginning the demonstration of technologies and methodologies which pave the way for a future large-scale gravitational wave observatory in space. This talk will present the scientific goals of the mission, discuss the technologies being tested, elucidate the link to a future space-based observatory, such as LISA, and present preliminary results from the in-orbit operations and experiments.

  3. Black-hole Merger Simulations for LISA Science

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.; Baker, John G.; vanMeter, James R.; Boggs, William D.; Centrella, Joan M.; McWilliams, Sean T.

    2009-01-01

    The strongest expected sources of gravitational waves in the LISA band are the mergers of massive black holes. LISA may observe these systems to high redshift, z>10, to uncover details of the origin of massive black holes, and of the relationship between black holes and their host structures, and structure formation itself. These signals arise from the final stage in the development of a massive black-hole binary emitting strong gravitational radiation that accelerates the system's inspiral toward merger. The strongest part of the signal, at the point of merger, carries much information about the system and provides a probe of extreme gravitational physics. Theoretical predictions for these merger signals rely on supercomputer simulations to solve Einstein's equations. We discuss recent numerical results and their impact on LISA science expectations.

  4. The Breadboard Model of the LISA Telescope Assembly

    NASA Astrophysics Data System (ADS)

    Lucarelli, Stefano; Scheulen, Dietmar; Kemper, Daniel; Sippel, Rudolf; Ende, David

    2012-07-01

    The primary goal of the LISA mission is the detection of gravitational waves from astronomical sources in a frequency range of 10-4 to 1 Hz. This requires operational stabilities in the picometer range as well as highly predictable mechanical distortions upon cooling down, outgassing in space, and gravity release. In March 2011 ESA announced a new way forward for the L-class candidate missions, including LISA. ESA and the scientific community are now studying options for European-only missions that offer a significant reduction of the costs, while maintaining their core science objectives. In the context of this reformulation exercise LISA has become the New Gravitational wave Observatory (NGO) [1]. Despite this reformulation, the need for dimensional stability in the picometer range remains valid, and ESA have continued the corresponding LISA Technology Development Activities (TDA’s) also in view of NGO. In such frame Astrium GmbH and xperion (Immenstaad/Friedrichshafen, Germany) have designed and manufactured an ultra-stable CFRP breadboard of the LISA telescope in order to experimentally demonstrate that the structure and the M1 & M2 mirror mounts are fulfilling the LISA requirements in the mission operational thermal environment. Suitable techniques to mount the telescope mirrors and to support the M1 & M2 mirrors have been developed, with the aim of measuring a system CTE of less than 10-7 K-1 during cooling down to -80 °C. Additionally to the stringent mass and stiffness specifications, the required offset design makes the control of relative tilts and lateral displacements between the M1 and M2 mirrors particularly demanding. The thermo-elastic performance of the telescope assembly is going to be experimentally verified by TNO (Delft, The Netherlands) starting from the second half of 2012. This paper addresses challenges faced in the design phase, and shows the resulting hardware.

  5. eLISA: Astrophysics and cosmology in the millihertz regime

    NASA Astrophysics Data System (ADS)

    Amaro-Seoane, Pau; Aoudia, Sofiane; Babak, Stanislav; Binétruy, Pierre; Berti, Emanuele; Bohé, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J.; Danzmann, Karsten; Dufaux, Jean-François; Gair, Jonathan; Hinder, Ian; Jennrich, Oliver; Jetzer, Philippe; Klein, Antoine; Lang, Ryan N.; Lobo, Alberto; Littenberg, Tyson; McWilliams, Sean T.; Nelemans, Gijs; Petiteau, Antoine; Porter, Edward K.; Schutz, Bernard F.; Sesana, Alberto; Stebbins, Robin; Sumner, Tim; Vallisneri, Michele; Vitale, Stefano; Volonteri, Marta; Ward, Henry; Wardell, Barry

    2013-05-01

    This document introduces the exciting and fundamentally new science and astronomy that the European New Gravitational Wave Observatory (NGO) mission (derived from the previous LISA proposal) will deliver. The mission (which we will refer to by its informal name ``eLISA'') will survey for the first time the low-frequency gravitational wave band (about 0:1 mHz to 1 Hz), with sufficient sensitivity to detect interesting individual astrophysical sources out to z = 15. The measurements described here will address the basic scientific goals that have been captured in ESA's ``New Gravitational Wave Observatory Science Requirements Document''; they are presented here so that the wider scientific community can have access to them. The eLISA mission will discover and study a variety of cosmic events and systems with high sensitivity: coalescences of massive black holes binaries, brought together by galaxy mergers; mergers of earlier, less-massive black holes during the epoch of hierarchical galaxy and black-hole growth; stellar-mass black holes and compact stars in orbits just skimming the horizons of massive black holes in galactic nuclei of the present era; extremely compact white dwarf binaries in our Galaxy, a rich source of information about binary evolution and about future Type Ia supernovae; and possibly most interesting of all, the uncertain and unpredicted sources, for example relics of inflation and of the symmetry-breaking epoch directly after the Big Bang. eLISA's measurements will allow detailed studies of these signals with high signal-to-noise ratio, addressing most of the key scientific questions raised by ESA's Cosmic Vision programme in the areas of astrophysics and cosmology. They will also provide stringent tests of general relativity in the strong-field dynamical regime, which cannot be probed in any other way. This document not only describes the science but also gives an overview on the mission design and orbits. LISA's heritage in the eLISA design

  6. Preparing for LISA in the Gravitational Wave Era

    NASA Astrophysics Data System (ADS)

    Larson, Shane

    2016-03-01

    Before the end of the decade, both LIGO and Pulsar Timing Arrays are expected to make the first detections of gravitational waves, and in all likelihood will have started the compilation of the first gravitational wave catalogs. Both LIGO and Pulsar Timing Arrays observe source populations that radiate in the LISA band at other points in their evolutionary history. In this talk, we'll discuss how early detections of supermassive black hole binaries (by PTAs) and ultra-compact binary mergers (by LIGO) will be important players in understanding the scope of LISA science.

  7. LISA and NASA's Physics of the Cosmos Theme

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2008-01-01

    In the past year, the LISA Project at NASA has completed a major review and has thoroughly reviewed its cost estimates. This talk will summarize the conclusions of the Beyond Einstein Program Assessment, and review the main conclusions of the cost estimation work done at NASA, including reduced mission concepts. Astro2010, the decadal review which sets priorities for astronomy and astrophysics projects in the U.S., is getting organized. Preparing for and participating in Astro2010 will be a crucial activity for the NASA side of the LISA Project in thc next 18 months.

  8. The UF Torsion Pendulum, a LISA Technology Testbed: Sensing System and Initial Results

    NASA Astrophysics Data System (ADS)

    Chilton, Andrew; Shelley, Ryan; Olatunde, Taiwo; Ciani, Giacomo; Conklin, John W.; Mueller, Guido

    2015-05-01

    The upcoming LISA Pathfinder mission will test the Gravitational Reference Sensor and the Disturbance Reduction System for a future LISA-like space mission. While LISA Pathfinder is expected to show that the technology for LISA exists and meets the LISA requirements, it is likely that LISA Pathfinder will also reveal areas where future improvements can be made and might be necessary. Some of these are already well known (such as the discharging system). After all, the technology for LISA Pathfinder was frozen about 10 years ago or about 30 years before a LISA-like mission will be launched. The case for continued testing and development of the technology is clear. The University of Florida is currently building a torsion pendulum-based test facility to explore new techniques and also to develop a base in the United States for state-of-the-art Gravitational Reference Sensor technologies.

  9. Tomographic approach to resolving the distribution of LISA Galactic binaries

    SciTech Connect

    Mohanty, Soumya D.; Nayak, Rajesh K.

    2006-04-15

    The space based gravitational wave detector LISA (Laser Interferometer Space Antenna) is expected to observe a large population of Galactic white dwarf binaries whose collective signal is likely to dominate instrumental noise at observational frequencies in the range 10{sup -4} to 10{sup -3} Hz. The motion of LISA modulates the signal of each binary in both frequency and amplitude--the exact modulation depending on the source direction and frequency. Starting with the observed response of one LISA interferometer and assuming only Doppler modulation due to the orbital motion of LISA, we show how the distribution of the entire binary population in frequency and sky position can be reconstructed using a tomographic approach. The method is linear and the reconstruction of a delta-function distribution, corresponding to an isolated binary, yields a point spread function (psf). An arbitrary distribution and its reconstruction are related via smoothing with this psf. Exploratory results are reported demonstrating the recovery of binary sources, in the presence of white Gaussian noise.

  10. A Detection Pipeline for Galactic Binaries in LISA Data

    NASA Technical Reports Server (NTRS)

    Littenberg, Tyson B.

    2012-01-01

    The Galaxy is suspected to contain hundreds of millions of binary white dwarf systems, a large fraction of which will have sufficiently small orbital period to emit gravitational radiation in band for space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). LISA's main science goal is the detection of cosmological events (supermassive black hole mergers) etc.) however the gravitational signal from the galaxy will be the dominant contribution to the data - including instrumental noise - over approximately two decades in frequency. The catalogue of detectable binary systems will serve as an unparalleled means of studying the Galaxy. Furthermore, to maximize the scientific return from the mission, the data must be "cleansed" of the galactic foreground. We will present an algorithm that can accurately resolve and subtract greater than or equal to 10000 of these sources from simulated data supplied by the Mock LISA Data Challenge Task Force. Using the time evolution of the gravitational wave frequency, we will reconstruct the position of the recovered binaries and show how LISA will sample the entire compact binary population in the Galaxy.

  11. Self-Gravity Analysis and Visualization Tool For LISA

    NASA Astrophysics Data System (ADS)

    Gopstein, Avi M.; Haile, William B.; Merkowitz, Stephen M.

    2006-11-01

    Self-gravity noise due to sciencecraft distortion and motion is expected to be a significant contributor to the LISA acceleration noise budget. To minimize these effects, the gravitational field at each proof mass must be kept as small, flat, and constant as possible. Most likely it will not be possible to directly verify that the LISA sciencecraft meets these requirements by measurements; they must be verified by models. The LISA Integrated Modeling team developed a new self-gravity tool that calculates the gravitational forces, moments, and gradients on the proof masses and creates a color coded map of the component contributions to the self-gravity field. The color mapping provides an easily recognized and intuitive interface for determining the self-gravity hot-spots of a spacecraft design. Self-gravity color maps can be generated as true representations of the steady-state, or as an approximation of the variability through computation of the difference values across multiple physical states. We present here an overview of the tool and the latest self-gravity results calculated using a recent design of LISA.

  12. 240 nm UV LEDs for LISA test mass charge control

    NASA Astrophysics Data System (ADS)

    Olatunde, Taiwo; Shelley, Ryan; Chilton, Andrew; Serra, Paul; Ciani, Giacomo; Mueller, Guido; Conklin, John

    2015-05-01

    Test Masses inside the LISA Gravitational Reference Sensor must maintain almost pure geodesic motion for gravitational waves to be successfully detected. LISA requires residual test mass accelerations below 3 fm/s2/√Hz at all frequencies between 0.1 and 3 mHz. One of the well-known noise sources is associated with the charges on the test masses which couple to stray electrical potentials and external electromagnetic fields. LISA Pathfinder will use Hg-discharge lamps emitting mostly around 254 nm to discharge the test masses via photoemission in its 2015/16 flight. A future LISA mission launched around 2030 will likely replace the lamps with newer UV-LEDs. Presented here is a preliminary study of the effectiveness of charge control using latest generation UV-LEDs which produce light at 240 nm with energy above the work function of pure Au. Their lower mass, better power efficiency and small size make them an ideal replacement for Hg lamps.

  13. "Multiplication Is for White People": An Interview with Lisa Delpit

    ERIC Educational Resources Information Center

    Sokolower, Jody

    2012-01-01

    In the introduction to her new book, ""Multiplication Is for White People": Raising Expectations for Other People's Children," Lisa Delpit describes her response when Diane Ravitch asked her why she hasn't spoken out against the devastation of public schools in her home state of Louisiana and the efforts to make New Orleans the national model. She…

  14. Testing new technologies for the LISA Gravitational Reference Senso

    NASA Astrophysics Data System (ADS)

    Conklin, John; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Ciani, Giacomo; Mueller, Guido

    2015-01-01

    LISA will directly observe low-frequency gravitational waves emitted by sources ranging from super-massive black hole mergers to compact galactic binaries. A laser interferometer will measure picometer changes in the distances between free falling test masses separated by millions of kilometers. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). The demanding acceleration noise requirement of < 3×10-15 m/sec2Hz1/2 for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in the summer of 2015. At the University of Florida we are developing a nearly thermally noise limited torsion pendulum for testing GRS technology enhancements and for understanding the dozens of acceleration noise sources that affect the performance of the GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. Some of the technologies that will be demonstrated by this facility include a novel TM charge control scheme based on ultraviolet LEDs, an all-optical TM position and attitude sensor, and drift mode operation. This presentation will describe the design of the torsion pendulum facility, its current acceleration noise performance, and the status of the GRS technologies under development.

  15. Time domain simulations of arm locking in LISA

    SciTech Connect

    Thorpe, J. I.; Livas, J.; Maghami, P.

    2011-06-15

    Arm locking is a proposed laser frequency stabilization technique for the Laser Interferometer Space Antenna (LISA), a gravitational-wave observatory sensitive in the milliHertz frequency band. Arm locking takes advantage of the geometric stability of the triangular constellation of three spacecraft that compose LISA to provide a frequency reference with a stability in the LISA measurement band that exceeds that available from a standard reference such as an optical cavity or molecular absorption line. We have implemented a time-domain simulation of a Kalman-filter-based arm-locking system that includes the expected limiting noise sources as well as the effects of imperfect a priori knowledge of the constellation geometry on which the design is based. We use the simulation to study aspects of the system performance that are difficult to capture in a steady-state frequency-domain analysis such as frequency pulling of the master laser due to errors in estimates of heterodyne frequency. We find that our implementation meets requirements on both the noise and dynamic range of the laser frequency with acceptable tolerances and that the design is sufficiently insensitive to errors in the estimated constellation geometry that the required performance can be maintained for the longest continuous measurement intervals expected for the LISA mission.

  16. Principal component analysis for LISA: The time delay interferometry connection

    SciTech Connect

    Romano, J.D.; Woan, G.

    2006-05-15

    Data from the Laser Interferometer Space Antenna (LISA) is expected to be dominated by frequency noise from its lasers. However, the noise from any one laser appears more than once in the data and there are combinations of the data that are insensitive to this noise. These combinations, called time delay interferometry (TDI) variables, have received careful study and point the way to how LISA data analysis may be performed. Here we approach the problem from the direction of statistical inference, and show that these variables are a direct consequence of a principal component analysis of the problem. We present a formal analysis for a simple LISA model and show that there are eigenvectors of the noise covariance matrix that do not depend on laser frequency noise. Importantly, these orthogonal basis vectors correspond to linear combinations of TDI variables. As a result we show that the likelihood function for source parameters using LISA data can be based on TDI combinations of the data without loss of information.

  17. Silicon Carbide Telescope Investigations for the LISA Mission

    NASA Technical Reports Server (NTRS)

    Sanjuan, J.; Spannagel, R.; Braxmaier, C.; Korytov, D.; Mueller, G.; Preston, A.; Livas, J.

    2013-01-01

    Space-based gravitational wave (GW) detectors are conceived to detect GWs in the low frequency range (mili-Hertz) by measuring the distance between free-falling proof masses in spacecraft (SC) separated by 5 Gm. The reference in the last decade has been the joint ESA-NASA mission LISA. One of the key elements of LISA is the telescope since it simultaneously gathers the light coming from the far SC (approximately or equal to 100 pW) and expands, collimates and sends the outgoing beam (2 W) to the far SC. Demanding requirements have been imposed on the telescope structure: the dimensional stability of the telescope must be approximately or equal to 1pm Hz(exp-1/2) at 3 mHz and the distance between the primary and the secondary mirrors must change by less than 2.5 micrometer over the mission lifetime to prevent defocussing. In addition the telescope structure must be light, strong and stiff. For this reason a potential on-axis telescope structure for LISA consisting of a silicon carbide (SiC) quadpod structure has been designed, constructed and tested. The coefficient of thermal expansion (CTE) in the LISA expected temperature range has been measured with a 1% accuracy which allows us to predict the shrinkage/expansion of the telescope due to temperature changes, and pico-meter dimensional stability has been measured at room temperature and at the expected operating temperature for the LISA telescope (around -6[deg]C). This work is supported by NASA Grants NNX10AJ38G and NX11AO26G,

  18. Active Thermal Control Experiments for LISA Ground Verification Testing

    NASA Astrophysics Data System (ADS)

    Higuchi, Sei; DeBra, Daniel B.

    2006-11-01

    The primary mission goal of LISA is detecting gravitational waves. LISA uses laser metrology to measure the distance between proof masses in three identical spacecrafts. The total acceleration disturbance to each proof mass is required to be below 3 × 10-15 m/s2√Hz . Optical path length variations on each optical bench must be kept below 40 pm/√Hz over 1 Hz to 0.1 mHz. Thermal variations due to, for example, solar radiation or temperature gradients across the proof mass housing will distort the spacecraft causing changes in the mass attraction and sensor location. We have developed a thermal control system developed for the LISA gravitational reference sensor (GRS) ground verification testing which provides thermal stability better than 1 mK/√Hz to f < 1 mHz and which by extension is suitable for in-flight thermal control for the LISA spacecraft to compensate solar irradiation. Thermally stable environment is very demanded for LISA performance verification. In a lab environment specifications can be met with considerable amount of insulation and thermal mass. For spacecraft, the very limited thermal mass calls for an active control system which can meet disturbance rejection and stability requirements simultaneously in the presence of long time delay. A simple proportional plus integral control law presently provides approximately 1 mK/√Hz of thermal stability for over 80 hours. Continuing development of a model predictive feed-forward algorithm will extend performance to below 1 mK/√Hz at f < 1 mHz and lower.

  19. Fast food consumption and food prices: evidence from panel data on 5th and 8th grade children.

    PubMed

    Khan, Tamkeen; Powell, Lisa M; Wada, Roy

    2012-01-01

    Fast food consumption is a dietary factor associated with higher prevalence of childhood obesity in the United States. The association between food prices and consumption of fast food among 5th and 8th graders was examined using individual-level random effects models utilizing consumption data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), price data from American Chamber of Commerce Researchers Association (ACCRA), and contextual outlet density data from Dun and Bradstreet (D&B). The results found that contextual factors including the price of fast food, median household income, and fast food restaurant outlet densities were significantly associated with fast food consumption patterns among this age group. Overall, a 10% increase in the price of fast food was associated with 5.7% lower frequency of weekly fast food consumption. These results suggest that public health policy pricing instruments such as taxes may be effective in reducing consumption of energy-dense foods and possibly reducing the prevalence of overweight and obesity among US children and young adolescents. PMID:22292115

  20. Fast Food Consumption and Food Prices: Evidence from Panel Data on 5th and 8th Grade Children

    PubMed Central

    Khan, Tamkeen; Powell, Lisa M.; Wada, Roy

    2012-01-01

    Fast food consumption is a dietary factor associated with higher prevalence of childhood obesity in the United States. The association between food prices and consumption of fast food among 5th and 8th graders was examined using individual-level random effects models utilizing consumption data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), price data from American Chamber of Commerce Researchers Association (ACCRA), and contextual outlet density data from Dun and Bradstreet (D&B). The results found that contextual factors including the price of fast food, median household income, and fast food restaurant outlet densities were significantly associated with fast food consumption patterns among this age group. Overall, a 10% increase in the price of fast food was associated with 5.7% lower frequency of weekly fast food consumption. These results suggest that public health policy pricing instruments such as taxes may be effective in reducing consumption of energy-dense foods and possibly reducing the prevalence of overweight and obesity among US children and young adolescents. PMID:22292115

  1. Remote ischemic conditioning: from experimental observation to clinical application: report from the 8th Biennial Hatter Cardiovascular Institute Workshop.

    PubMed

    Pickard, Jack M J; Bøtker, Hans Erik; Crimi, Gabriele; Davidson, Brian; Davidson, Sean M; Dutka, David; Ferdinandy, Peter; Ganske, Rocky; Garcia-Dorado, David; Giricz, Zoltan; Gourine, Alexander V; Heusch, Gerd; Kharbanda, Rajesh; Kleinbongard, Petra; MacAllister, Raymond; McIntyre, Christopher; Meybohm, Patrick; Prunier, Fabrice; Redington, Andrew; Robertson, Nicola J; Suleiman, M Saadeh; Vanezis, Andrew; Walsh, Stewart; Yellon, Derek M; Hausenloy, Derek J

    2015-01-01

    In 1993, Przyklenk and colleagues made the intriguing experimental observation that 'brief ischemia in one vascular bed also protects remote, virgin myocardium from subsequent sustained coronary artery occlusion' and that this effect'... may be mediated by factor(s) activated, produced, or transported throughout the heart during brief ischemia/reperfusion'. This seminal study laid the foundation for the discovery of 'remote ischemic conditioning' (RIC), a phenomenon in which the heart is protected from the detrimental effects of acute ischemia/reperfusion injury (IRI), by applying cycles of brief ischemia and reperfusion to an organ or tissue remote from the heart. The concept of RIC quickly evolved to extend beyond the heart, encompassing inter-organ protection against acute IRI. The crucial discovery that the protective RIC stimulus could be applied non-invasively, by simply inflating and deflating a blood pressure cuff placed on the upper arm to induce cycles of brief ischemia and reperfusion, has facilitated the translation of RIC into the clinical setting. Despite intensive investigation over the last 20 years, the underlying mechanisms continue to elude researchers. In the 8th Biennial Hatter Cardiovascular Institute Workshop, recent developments in the field of RIC were discussed with a focus on new insights into the underlying mechanisms, the diversity of non-cardiac protection, new clinical applications, and large outcome studies. The scientific advances made in this field of research highlight the journey that RIC has made from being an intriguing experimental observation to a clinical application with patient benefit. PMID:25449895

  2. Proposal for the 8th Edition of the AJCC/UICC Staging System for Nasopharyngeal Cancer in the Era of Intensity-Modulated Radiotherapy

    PubMed Central

    Pan, Jian Ji; Ng, Wai Tong; Zong, Jing Feng; Chan, Lucy L. K.; O’Sullivan, Brian; Lin, Shao Jun; Sze, Henry C. K.; Chen, Yun Bin; Choi, Horace C.W.; Guo, Qiao Juan; Kan, Wai Kuen; Xiao, You Ping; Wei, Xu; Le, Quynh Thu; Glastonbury, Christine M.; Colevas, A. Dimitrios; Weber, Randal S.; Shah, Jatin P.; Lee, Anne W. M.

    2016-01-01

    BACKGROUND An accurate staging system is crucial for cancer management. Evaluations for continual suitability and improvement are needed as staging and treatment methods evolve. METHODS This was a retrospective study of 1609 patients with nasopharyngeal carcinoma investigated by magnetic resonance imaging, staged with the 7th edition of the American Joint Committee on Cancer (AJCC)/International Union Against Cancer (UICC) staging system, and irradiated by intensity-modulated radiotherapy at 2 centers in Hong Kong and mainland China. RESULTS Among the patients without other T3/T4 involvement, there were no significant differences in overall survival (OS) between medial pterygoid muscle (MP)±lateral pterygoid muscle (LP), prevertebral muscle, and parapharyngeal space involvement. Patients with extensive soft tissue involvement beyond the aforementioned structures had poor OS similar to that of patients with intracranial extension and/or cranial nerve palsy. Only 2% of the patients had lymph nodes>6cm above the supraclavicular fossa (SCF), and their outcomes resembled the outcomes of those with low extension. Replacing SCF with the lower neck (extension below the caudal border of the cricoid cartilage) did not affect the hazard distinction between different N categories. With the proposed T and N categories, there were no significant differences in outcome between T4N0-2 and T1-4N3 disease. CONCLUSIONS After a review by AJCC/UICC preparatory committees, the changes recommended for the 8th edition include changing MP/LP involvement from T4 to T2, adding prevertebral muscle involvement as T2, replacing SCF with the lower neck and merging this with a maximum nodal diameter>6 cm as N3, and merging T4 and N3 as stage IVA criteria. These changes will lead not only to a better distinction of hazards between adjacent stages/categories but also to optimal balance in clinical practicability and global applicability. PMID:26588425

  3. Rapid prototyping and evaluation of programmable SIMD SDR processors in LISA

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Liu, Hengzhu; Zhang, Botao; Liu, Dongpei

    2013-03-01

    With the development of international wireless communication standards, there is an increase in computational requirement for baseband signal processors. Time-to-market pressure makes it impossible to completely redesign new processors for the evolving standards. Due to its high flexibility and low power, software defined radio (SDR) digital signal processors have been proposed as promising technology to replace traditional ASIC and FPGA fashions. In addition, there are large numbers of parallel data processed in computation-intensive functions, which fosters the development of single instruction multiple data (SIMD) architecture in SDR platform. So a new way must be found to prototype the SDR processors efficiently. In this paper we present a bit-and-cycle accurate model of programmable SIMD SDR processors in a machine description language LISA. LISA is a language for instruction set architecture which can gain rapid model at architectural level. In order to evaluate the availability of our proposed processor, three common baseband functions, FFT, FIR digital filter and matrix multiplication have been mapped on the SDR platform. Analytical results showed that the SDR processor achieved the maximum of 47.1% performance boost relative to the opponent processor.

  4. LISA Technology Development and Risk Reduction at NASA

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA project to design, build and operate a space-based gravitational wave detector based on a laser interferometer. LISA relies on several technologies that are either new to spaceflight or must perform at levels not previously demonstrated in a spaceflight environment. The ESA-led LISA Pathfinder mission is the main effort to demonstrate LISA technology. NASA also supports complementary ground-based technology development and risk reduction activities. This presentation will report the status of NASA work on micronewton thrusters, the telescope, the optical pointing subsystem and mission formulation. More details on some of these topics will be given in posters. Other talks and posters will describe NASA-supported work on the laser subsystem, the phasemeter, and aspects of the interferometry. Two flight-qualified clusters of four colloid micronewton thrusters, each capable of thrust Levels between 5 and 30 microNewton with a resolution less than 0.l microNewton and a thrust noise less than 0.1 microNewton/vHz (0.001 to 4 Hz), have been integrated onto the LISA Pathfinder spacecraft. The complementary ground-based development focuses on lifetime demonstration. Laboratory verification of failure models and accelerated life tests are just getting started. LISA needs a 40 cm diameter, afocal telescope for beam expansion/reduction that maintains an optical pathlength stability of approximately 1 pm/vHz in an extremely stable thermal environment. A mechanical prototype of a silicon carbide primary-secondary structure has been fabricated for stability testing. Two optical assemblies must point at different distant spacecraft with nanoradian accuracy over approximately 1 degree annual variation in the angle between the distant spacecraft. A candidate piezo-inchworm actuator is being tested in a suitable testbed. In addition to technology development, NASA has carried out several studies in support of the

  5. A study of the effects of constructivist-based vs. traditional direct instruction on 8th grade science comprehension

    NASA Astrophysics Data System (ADS)

    Berube, Clair Thompson

    2001-07-01

    Studies conducted nationwide over the past several decades point consistently to the evidence that American school children lag behind several other countries in science scores. Problems arise from this dilemma, including the question of the ability of our youngsters to compete nationally and globally in the sciences as adults. Current research in this area of scores currently studies mostly mathematics. The few studies conducted concerning science mainly highlight students in other countries and neglects minorities and females regarding outcomes. By contrast, this study investigated the effects of teacher types (also defined as teaching styles or classroom orientation) on student outcomes on two measures; the standardized Standards of Learning 8th grade science test for the state of Virginia, and the Higher-Order Skills test (Berube, 2001), which was a researcher-constricted comprehension measurement. Minority and gender interactions were analyzed as well. Teacher type was designated by using the Constructivist Learning Environment Survey (Taylor & Fraser, 1991). Participants included students from five large urban middle schools and thirteen middle school science teachers. Scores from the two measures were used to determine differences in student outcomes as they pertained to teacher type, gender and ethnicity. Analysis indicated that students who were taught by teachers with more traditional and mixed teaching styles performed better on the Higher-Order Skills comprehension measurement, while teachers with constructivist teaching styles actually had the lowest scoring students. Also, the interaction of ethnicity and teacher type was significant, indicating that Higher-Order Skills scores were influenced by that interaction, with Caucasians scoring the highest when taught by teachers with mixed teaching styles. Such findings could profit school administrators considering the interaction of student achievement and teaching styles on high-stakes testing

  6. The first mock data challenge for LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Monsky, A.; Hewitson, M.; Ferraioli, L.; Wanner, G.; Nofrarias, M.; Hueller, M.; Diepholz, I.; Grynagier, A.; Armano, M.; Benedetti, M.; Bogenstahl, J.; Bortoluzzi, D.; Bosetti, P.; Brandt, N.; Cavalleri, A.; Ciani, G.; Cristofolini, I.; Cruise, M.; Danzmann, K.; Dolesi, R.; Fauste, J.; Fertin, D.; Fichter, W.; García, A.; García, C.; Guzmán, F.; Fitzsimons, E.; Heinzel, G.; Hollington, D.; Hough, J.; Hoyland, D.; Jennrich, O.; Johlander, B.; Killow, C.; Lobo, A.; Mance, D.; Mateos, I.; McNamara, P. W.; Nicolini, D.; Nicolodi, D.; Perreur-Lloyd, M.; Plagnol, E.; Racca, G. D.; Ramos-Castro, J.; Robertson, D.; Sanjuan, J.; Schulte, M. O.; Shaul, D. N. A.; Smit, M.; Stagnaro, L.; Steier, F.; Sumner, T. J.; Tateo, N.; Tombolato, D.; Vischer, G.; Vitale, S.; Ward, H.; Waschke, S.; Wass, P.; Weber, W. J.; Ziegler, T.; Zweifel, P.

    2009-05-01

    The data analysis of the LISA Technology Package (LTP) will comprise a series of discrete experiments, each focusing on a particular noise measurement or characterization of the instrument in various operating modes. Each of these experiments must be analysed and planned in advance of the mission because the results of a given experiment will have an impact on those that follow. As such, a series of mock data challenges (MDCs) will be developed and carried out with the aim of preparing the analysis tools and optimizing the various planned analyses. The first of these MDCs (MDC1) is a simplified treatment of the dynamics along the axis joining the two test masses onboard LISA Pathfinder. The validation of the dynamical model by predicting the spectra of the interferometer output data is shown, a prediction for the data analysis is calculated and, finally, several simulated interferometer data sets are analysed and calibrated to equivalent out-of-loop test mass acceleration.

  7. Development of a US Gravitational Wave Laser System for LISA

    NASA Technical Reports Server (NTRS)

    Camp, Jordan B.; Numata, Kenji

    2015-01-01

    A highly stable and robust laser system is a key component of the space-based LISA mission architecture.In this talk I will describe our plans to demonstrate a TRL 5 LISA laser system at Goddard Space Flight Center by 2016.The laser system includes a low-noise oscillator followed by a power amplifier. The oscillator is a low-mass, compact 10mW External Cavity Laser, consisting of a semiconductor laser coupled to an optical cavity, built by the laser vendorRedfern Integrated Optics. The amplifier is a diode-pumped Yb fiber with 2W output, built at Goddard. I will show noiseand reliability data for the full laser system, and describe our plans to reach TRL 5 by 2016.

  8. Development of a US Gravitational Wave Laser System for LISA

    NASA Astrophysics Data System (ADS)

    Camp, Jordan; Numata, Kenji

    2015-04-01

    A highly stable and robust laser system is a key component of the space-based LISA mission architecture. In this talk I will describe our plans to demonstrate a TRL 5 LISA laser system at Goddard Space Flight Center by 2016. The laser system includes a low-noise oscillator followed by a power amplifier. The oscillator is a low-mass, compact 10 mW External Cavity Laser, consisting of a semiconductor laser coupled to an optical cavity, built by the laser vendor Redfern Integrated Optics. The amplifier is a diode-pumped Yb fiber with 2W output, built at Goddard. I will show noise and reliability data for the full laser system, and describe our plans to reach TRL 5 by 2016.

  9. Optoacoustic sensor for nanoparticle linked immunosorbent assay (NanoLISA)

    NASA Astrophysics Data System (ADS)

    Conjusteau, André; Liopo, Anton; Tsyboulski, Dmitri; Ermilov, Sergey A.; Elliott, William R., III; Barsalou, Norman; Maswadi, Saher M.; Glickman, Randolph D.; Oraevsky, Alexander A.

    2011-03-01

    We developed an optoacoustic biosensor intended for the detection of bloodborne microorganisms using immunoaffinity reactions of antibody-coupled gold nanorods as contrast agents specifically targeted to the antigen of interest. Optoacoustic responses generated by the samples are detected using a wide band ultrasonic transducer. The sensitivity of the technique has been assessed by determining minimally detectable optical density which corresponds to the minimum detectable concentration of the target viral surface antigens. Both ionic solutions and gold nanorods served as the contrast agent generating the optoacoustic response. The sensitivity of Nano-LISA is at least OD=10-6 which allows reliable detection of 1 pg/ml (depending on the commercial antibodies that are used). Adequate detection sensitivity, as well as lack of non-specific cross-reaction between antigens favors NanoLISA as a viable technology for biosensor development.

  10. DaVinci's Mona Lisa entering the next dimension.

    PubMed

    Carbon, Claus-Christian; Hesslinger, Vera M

    2013-01-01

    For several of Leonardo da Vinci's paintings, such as The Virgin and Child with St Anne or the Mona Lisa, there exist copies produced by his own studio. In case of the Mona Lisa, a quite exceptional, rediscovered studio copy was presented to the public in 2012 by the Prado Museum in Madrid. Not only does it mirror its famous counterpart superficially; it also features the very same corrections to the lower layers, which indicates that da Vinci and the 'copyist' must have elaborated their panels simultaneously. On the basis of subjective (thirty-two participants estimated painter-model constellations) as well as objective data (analysis of trajectories between landmarks of both paintings), we revealed that both versions differ slightly in perspective. We reconstructed the original studio setting and found evidence that the disparity between both paintings mimics human binocular disparity. This points to the possibility that the two Giocondas together might represent the first stereoscopic image in world history. PMID:24303752

  11. Development of a US Gravitational Wave Laser System for LISA

    NASA Astrophysics Data System (ADS)

    Camp, J.; Numata, K.

    2015-05-01

    A highly stable and robust laser system is a key component of the space-based LISA mission architecture. We will describe our plans to demonstrate a TRL 5 LISA laser system at Goddard Space Flight Center by 2016. The laser system includes a low-noise oscillator followed by a power amplifier. The oscillator is a low-mass, compact external cavity laser, consisting of a semiconductor laser coupled to an optical cavity, built by the laser vendor Redfern Integrated Optics. The amplifier is a diode-pumped Yb fiber with 2 W output, built at Goddard. We show noise and reliability data for the full laser system, and describe our plans to reach TRL 5 by 2016.

  12. The Status of the Mock LISA Data Challenges

    NASA Technical Reports Server (NTRS)

    Baker, John

    2009-01-01

    For the last four years, many gravitational-wave researchers around the world have participated in the Mock LISA Data Challenges (MLDCs), a program to demonstrate and encourage the development of LISA data-analysis capabilities, tools and techniques. In this poster, we present a summary of the results of MLDC 3, which was completed in 2009. During MLDC 3, 27 participants from 15 institutions successfully analyzed data sets that included Galactic binaries, coalescing spinning massive black holes, extreme-mass-ratio inspirals, cosmic-string cusp bursts and a stochastic gravitational-wave background. We also describe the technical and scientific challenges that will be addressed by future MLI)Cs, starting with MLDC 4, which is currently in progress.

  13. Near-Earth Asteroids Detection Rate with LISA

    NASA Technical Reports Server (NTRS)

    Tricarico, P.

    2009-01-01

    The LISA space mission, designed to monitor low frequency gravitational waves, is also sensitive to passages of asteroids nearby one of its three spacecrafts. We report the expected rate of detections of asteroid passages, using the known catalog of asteroids and a modeled population. The method adopted consists of determining for each known asteroid the critical encounter distance capable of producing a detectable event, and then computing the rate of encounters within this distance. Results are then scaled to the modeled population using its differential distribution in absolute magnitude, correcting for selection effects. We find that an average of 2.0 +/- 0.1 events per year at a signal-to-noise ratio of 1 will be detected by LISA, including all the asteroids in the modeled population with absolute magnitude H < 22, roughly equivalent to all asteroids with a diameter larger than 100 m.

  14. Preliminary Investigations of an Optical Assembly Tracking Mechanism for LISA

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira; Stebbins, Robin

    2010-01-01

    After injection into their specific orbits, the position of the LISA spacecraft are not actively controlled. Rather the spacecraft are allowed to passively follow their trajectories and the roughly equilateral triangular constellation is preserved. Slight variations in the orbits cause the constellation to experience both periodic and secular variations, one consequence of which is a variation in the interior angles of the constellation on the order of one degree. This variation is larger than the field of view of the LISA telescope, requiring a mechanism for each spacecraft to maintain pointing to its two companions. This Optical Assembly Tracking Mechanism (OATM) will be used to accommodate these variations while maintaining pointing at the ten nanoradian level to the far spacecraft. Here we report on a possible design for the OATM as well as initial results from a test campaign of a piezo-inchworm actuator used to drive the mechanism.

  15. State Space Modelling and Data Analysis Exercises in LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Nofrarias, M.; Antonucci, F.; Armano, M.; Audley, H.; Auger, G.; Benedetti, M.; Binetruy, P.; Bogenstahl, J.; Bortoluzzi, D.; Brandt, N.; Caleno, M.; Cavalleri, A.; Congedo, G.; Cruise, M.; Danzmann, K.; De Marchi, F.; Diaz-Aguilo, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Dunbar, N.; Fauste, J.; Ferraioli, L.; Ferroni, V.; Fichter, W.; Fitzsimons, E.; Freschi, M.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Grimani, C.; Grynagier, A.; Guzmán, F.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hoyland, D.; Hueller, M.; Huesler, J.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Korsakova, N.; Killow, C.; Llamas, X.; Lloro, I.; Lobo, A.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martin, V.; Mateos, I.; McNamara, P.; Mendes, J.; Mitchell, E.; Nicolodi, D.; Perreur-Lloyd, M.; Plagnol, E.; Prat, P.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Schleicher, A.; Shaul, D.; Sopuerta, C. F.; Sumner, T. J.; Taylor, A.; Texier, D.; Trenkel, C.; Tu, H. B.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Ziegler, T.; Zweifel, P.

    2013-01-01

    LISA Pathfinder is a mission planned by the European Space Agency (ESA) to test the key technologies that will allow the detection of gravitational waves in space. The instrument on-board, the LISA Technology package, will undergo an exhaustive campaign of calibrations and noise characterisation campaigns in order to fully describe the noise model. Data analysis plays an important role in the mission and for that reason the data analysis team has been developing a toolbox which contains all the functionality required during operations. In this contribution we give an overview of recent activities, focusing on the improvements in the modelling of the instrument and in the data analysis campaigns performed both with real and simulated data.

  16. Observing Massive Black-hole Binaries With A Redesigned Lisa

    NASA Astrophysics Data System (ADS)

    McWilliams, Sean T.

    2012-01-01

    In response to recent events in NASA and ESA, which necessitate the redesign of the Laser Interferometer Space Antenna (LISA) to lower its cost, we present results of a design study that evaluates the impact of various redesigns on the study of massive black-hole binaries (MBHB). As a result of the shift in sensitivity towards higher frequencies in all of the redesigns, the final merger signal will be even more critical for characterizing the coalescence of MBHBs. We assess the achievable parameter accuracy of MBHB measurements with various redesign options, and how well we expect the final design choices to perform. We include spinning mergers with higher harmonics in our calculation, which was never previously included in LISA calculations, and highlights the need to include all of the available physics in order to recover any performance lost in the redesign.

  17. Report on the second Mock LISA data challenge

    NASA Astrophysics Data System (ADS)

    Babak, Stanislav; Baker, John G.; Benacquista, Matthew J.; Cornish, Neil J.; Crowder, Jeff; Cutler, Curt; Larson, Shane L.; Littenberg, Tyson B.; Porter, Edward K.; Vallisneri, Michele; Vecchio, Alberto; data challenge task force, the Mock LISA; Auger, Gerard; Barack, Leor; Błaut, Arkadiusz; Bloomer, Ed; Brown, Duncan A.; Christensen, Nelson; Clark, James; Fairhurst, Stephen; Gair, Jonathan R.; Halloin, Hubert; Hendry, Martin; Jimenez, Arturo; Królak, Andrzej; Mandel, Ilya; Messenger, Chris; Meyer, Renate; Mohanty, Soumya; Nayak, Rajesh; Petiteau, Antoine; Pitkin, Matt; Plagnol, Eric; Prix, Reinhard; Robinson, Emma L.; Roever, Christian; Savov, Pavlin; Stroeer, Alexander; Toher, Jennifer; Veitch, John; Vinet, Jean–Yves; Wen, Linqing; Whelan, John T.; Woan, Graham; Challenge-2 participants, the

    2008-06-01

    The Mock LISA data challenges are a program to demonstrate LISA data-analysis capabilities and to encourage their development. Each round of challenges consists of several data sets containing simulated instrument noise and gravitational waves from sources of undisclosed parameters. Participants are asked to analyze the data sets and report the maximum information about the source parameters. The challenges are being released in rounds of increasing complexity and realism: here we present the results of Challenge 2, issued in Jan 2007, which successfully demonstrated the recovery of signals from nonspinning supermassive-black-hole binaries with optimal SNRs between ~10 and 2000, from ~20 000 overlapping galactic white-dwarf binaries (among a realistically distributed population of 26 million), and from the extreme-mass-ratio inspirals of compact objects into central galactic black holes with optimal SNRs ~100.

  18. Proceedings of the 30th Southern Conservation Agricultural Systems Conference and the 8th Annual Georgia Conservation Production Systems Training Conference, Tifton, Georgia, July 29-31, 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This 2008 conference to be held at the University of Georgia Tifton Campus Conference Center in Tifton, GA, on 29-31 July 2008, will be a joint effort of the 30th Southern Conservation Agricultural Systems Conference (SCASC) and the 8th Annual Conservation Production Systems Training Conference (CPS...

  19. The Effect of Using the Constructivist Learning Model in Teaching Science on the Achievement and Scientific Thinking of 8th Grade Students

    ERIC Educational Resources Information Center

    Qarareh, Ahmed O.

    2016-01-01

    The study aims to investigate the effect of using constructivist learning model in teaching science, especially in the subject of light: its nature, mirrors, lens, and properties, on the achievement of eighth-grade students and their scientific thinking. The study sample consisted of (136) male and female 8th graders were chosen from two basic…

  20. Assessing the Development of Environmental Virtue in 7th and 8th Grade Students in an Expeditionary Learning Outward Bound School

    ERIC Educational Resources Information Center

    Martin, Bruce; Bright, Alan; Cafaro, Philip; Mittelstaedt, Robin; Bruyere, Brett

    2009-01-01

    This study attempted to assess the development of environmental virtue in 7th and 8th grade students in an Expeditionary Learning Outward Bound (ELOB) school using an instrument developed for this study--the Children's Environmental Virtue Scale (CEVS). Data for this study were obtained by administering the CEVS survey (pretest and posttest) to…

  1. Efficient program for decoding the /255, 223/ Reed-Solomon code over GF/2 to the 8th/ with both errors and erasures, using transform decoding

    NASA Astrophysics Data System (ADS)

    Miller, R. L.; Truong, T. K.; Reed, I. S.

    1980-07-01

    The paper deals with a method developed for decoding a (255, 223) Reed-Solomon code over GF(2 to the 8th) with both errors and erasures. The matrix of decoding times for correcting errors and erasures of the code using a simplified decoder is presented. It is shown that the algorithm proposed is faster by a factor of from three to seven.

  2. An Assessment of 4th, 8th, and 11th Grade Students' Knowledge Related to Marine Science and Natural Resource Issues.

    ERIC Educational Resources Information Center

    Brody, Michael J.; Koch, Helmut

    In an effort to contribute information for science teachers and curriculum developers in Maine, this study generated base line data on 4th, 8th, and 11th grade students' knowledge of marine science and natural resources principles in relation to the Gulf of Maine. Five concept maps representing 15 major content principles were developed. Two…

  3. On the Relationship between Bonding Theory and Youth Gang Resistance in U.S. 8th Graders: Competing Structural Equation Models with Latent Structure Indirect Effects

    ERIC Educational Resources Information Center

    Vander Horst, Anthony

    2012-01-01

    In a study of 5285 8th graders from the Gang Resistance and Education Training (G.R.E.A.T.) research, this study applied Travis Hirschi's social bonding theory to examine the curriculum's efficacy in increasing conventional bonding (friends with positive peers, succeeding at education etc.) and decreasing non-conventional bonding (drug…

  4. A Comparative Analysis of Questions in American, Singaporean, and Turkish Mathematics Textbooks Based on the Topics Covered in 8th Grade in Turkey

    ERIC Educational Resources Information Center

    Ozer, Eren; Sezer, Renan

    2014-01-01

    This study offers a comparative analysis of questions found in Turkish, Singaporean, and American mathematics textbooks and workbooks based on topics covered in the 8th grade mathematics curriculum in Turkey. To this end, the study utilizes the 3-dimensional framework developed by Li. When the questions in the textbooks and workbooks…

  5. Science and Technology Teachers' Opinions about Problems Faced While Teaching 8th Grade Science Unit "Force and Motion" and Suggestions for Solutions

    ERIC Educational Resources Information Center

    Bozdogan, Aykut Emre; Uzoglu, Mustafa

    2015-01-01

    The aim of this study is to explore the problems encountered while teaching force and motion unit in 8th grade science and technology course from teachers' perspectives and offer solutions to eliminate these problems. The study was conducted with 248 science and technology teachers working in 7 regions in Turkey in 2012-2013 academic year.…

  6. A Study of 8th Graders' Perceptions of Socio-Cultural Perspective of Creativity by Using Information Technology Tools in Realisation of Homework Goals

    ERIC Educational Resources Information Center

    Ongun, Erdem; Atlas, Dilek; Demirag, Askin

    2011-01-01

    The study aims at evaluating the perceptions of 8th graders towards the use of information technologies ranging from the internet and multimedia tools in socio-cultural perspective of creativity while they are doing their homework in the light of the National Education Ministry's regulation related to elementary and secondary school students'…

  7. Massive Black Holes and the Laser Interferometer Space Antenna (LISA)

    NASA Technical Reports Server (NTRS)

    Blender, Peter L.; Hils, Dieter; Stebbins, Robin T.

    1998-01-01

    The goals of the USA mission include both astrophysical investigations and fundamental physics tests. The main astrophysical questions concern the space density, growth, mass function, and surroundings of massive black holes. Thus the crucial issue for the USA mission is the likelihood of observing signals from such sources. Four possible sources of this kind are discussed briefly in this paper. It appears plausible, or even likely. that one or more of these types of sources can be detected and studied by LISA.

  8. ST7-DRS on LISA Pathfinder: Initial Status

    NASA Astrophysics Data System (ADS)

    Cutler, Curt; Ziemer, John; Barela, Phil; Demmons, Nathaniel; Dunn, Charles; Hruby, Vlad; Hsu, Oscar; Liepack, Otfrid; Maghami, Peiman; O'Donnell, James; Slutsky, Jacob; Thorpe, James; Romero-Wolfe, Andrew

    2016-03-01

    LISA Pathfinder (LPF), a European Space Agency Mission to demonstrate technologies for future space-based gravitational wave observatories, was launched from French Guiana on Dec 3, 2015. A payload on LPF is the NASA-provided ST7 Disturbance Reduction System (ST7-DRS). We will describe the current state of ST7-DRS, including results from the initial on-orbit commissioning and the experimental plan for the ST7-DRS operations in the summer of 2016.

  9. Polarization Considerations for the Laser Interferometer Space Antenna (LISA)

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Pedersen, Trace R.; McNamara, Paul

    2005-01-01

    A polarization ray trace model of the Laser Interferometer Space Antenna's (LISA) optical path is being created. The model will be able to assess the effects of various polarizing elements and the optical coatings on the required picometer level interferometry. All of the computational steps are described in detail. This should eliminate any ambiguities associated with polarization ray trace modeling of interferometers and provide a basis for determining its limitations and serve as a clearly defined starting point for future improvements.

  10. Inflight magnetic characterization of the test masses onboard LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Diaz-Aguiló, Marc; García-Berro, Enrique; Lobo, Alberto

    2012-02-01

    Laser Interferometer Space Antenna (LISA) Pathfinder is a science and technology demonstrator of the European Space Agency within the framework of its LISA mission, the latter aiming to be the first space-borne gravitational wave observatory. The payload of LISA Pathfinder is the so-called LISA Technology Package, which is designed to measure relative accelerations between two test masses in nominal free fall. The diagnostics subsystem consists of several modules, one of which is the magnetic diagnostics unit. Its main function is the assessment of the differential acceleration noise between the test masses due to magnetic effects. This subsystem is composed of two onboard coils intended to produce controlled magnetic fields at the location of the test masses. These magnetic fields couple with the remanent magnetic moment and susceptibility and produce forces and torques on the test masses. These, in turn, produce kinematic excursions of the test masses which are sensed by the onboard interferometer. We prove that adequately processing these excursions, the magnetic properties of the test masses can be estimated using classical multiparameter estimation techniques. Moreover, we show that special processing procedures to minimize the effect of the multichannel cross-talks are needed. Finally, we demonstrate that the quality of our estimates is frequency-dependent. We also suggest that using a multiple frequency experiment, the global estimate can be obtained in such a way that the results of the magnetic experiment are more reliable. Finally, using our procedure, we compute the contribution of the magnetic noise to the total proof-mass acceleration noise.

  11. LISA Framework for Enhancing Gravitational Wave Signal Extraction Techniques

    NASA Technical Reports Server (NTRS)

    Thompson, David E.; Thirumalainambi, Rajkumar

    2006-01-01

    This paper describes the development of a Framework for benchmarking and comparing signal-extraction and noise-interference-removal methods that are applicable to interferometric Gravitational Wave detector systems. The primary use is towards comparing signal and noise extraction techniques at LISA frequencies from multiple (possibly confused) ,gravitational wave sources. The Framework includes extensive hybrid learning/classification algorithms, as well as post-processing regularization methods, and is based on a unique plug-and-play (component) architecture. Published methods for signal extraction and interference removal at LISA Frequencies are being encoded, as well as multiple source noise models, so that the stiffness of GW Sensitivity Space can be explored under each combination of methods. Furthermore, synthetic datasets and source models can be created and imported into the Framework, and specific degraded numerical experiments can be run to test the flexibility of the analysis methods. The Framework also supports use of full current LISA Testbeds, Synthetic data systems, and Simulators already in existence through plug-ins and wrappers, thus preserving those legacy codes and systems in tact. Because of the component-based architecture, all selected procedures can be registered or de-registered at run-time, and are completely reusable, reconfigurable, and modular.

  12. Characterization of the LISA Pathfinder Drag Reduction System

    NASA Astrophysics Data System (ADS)

    Slutsky, Jacob; LISA Pathfinder Team

    2015-04-01

    The LISA Pathfinder mission will be launched this year by ESA, and so it is urgent to simulate and characterize key experiments to optimize and validate the Gravitational Reference Sensor (GRS) performance. Success of this technology directly applies to any future LISA-like mission. Pathfinder is comprised of both European and NASA payloads, the LISA Technology Package (LTP) and Space Technology 7 (ST-7), respectively. ST-7 includes a Colloid Micro-Newton Thruster (CMNT) system, to maneuver the spacecraft with low noise, and a control system for spacecraft and test mass actuation. European partners have developed the LTP Data Analysis (LTPDA) Matlab suite, including state-space simulations of the full mission to create mock data, analysis pipelines constructed to reduce this and eventual actual data. We have adapted this infrastructure to reflect CMNT physics and control design where they differ from LTP. We analyze the residual GRS acceleration noise, paying particular attention to ST-7 specific CMNT noise characterization experiments and the performance differentials between using the inertial and interferometric sensing systems of Pathfinder in and out of loop. I will discuss our current results analyzing simulated ST-7 experimental runs and our future plans.

  13. Computer Studies Of The Isleworth And Louvre Mona Lisas

    NASA Astrophysics Data System (ADS)

    Asmus, John F.

    1989-07-01

    One of the most pervasive problems in the scholarship of classical paintings is that of authenticity. Traditionally, the attribution of a work of art rests on the subjective opinion of an art historian bolstered by scientific data pertaining to the types and possibly the ages of the materials of the artwork. To expand the range of technical information that may be applied to the painting authentication problem, the methods of computer image processing (IP) have been employed to compare the techniques in two paintings. One is the Mona Lisa del Gioconda by Leonardo da Vinci. The other is known as the Isleworth Mona Lisa and has also been attributed to Leonardo by a few scholars. Computer IP was used to compare statistical and geometrical features of the two paintings. It emerged that the Isleworth work is not a copy of the Louvre painting but does have numerous similarities in composition and execution. These findings lend support to the theory that the Louvre Mona Lisa may be a portrait of Costanza by Leonardo that had been thought lost.

  14. UV-LED-based charge control for LISA

    NASA Astrophysics Data System (ADS)

    Olatunde, Taiwo; Shelley, Ryan; Chilton, Andrew; Ciani, Giacomo; Mueller, Guido; Conklin, John

    2014-03-01

    The test masses inside the LISA gravitational reference sensors (GRS) must maintain almost pure geodesic motion for gravitational waves to be successfully detected. The residual accelerations have to stay below 3fm/s2/rtHz at all frequencies between 0.1 and 3 mHz. One of the well known noise sources is associated with the charges on the test masses which couple to stray electrical potentials and external electro-magnetic fields. The LISA pathfinder (LPF) will use Hg-discharge lamps emitting mostly around 253 nm to discharge the test masses via photoemission in its 2015/16 flight. A future LISA mission launched around 2030 will likely replace the lamps with newer UV-LEDs. UV-LEDs have a lower mass, a better power efficiency, and are smaller than their Hg counterparts. Furthermore, the latest generation produces light at 240 nm, with energy well above the work function of pure gold. I will describe a preliminary design for effective charge control through photoelectric effect by using these LEDs. The effectiveness of this method is verified by taking Quantum Efficiency (QE) measurements which relate the number of electrons emitted to the number of photons incident on the Au test mass surface. This presentation addresses our initial results and future plans which includes implementation and testing in the UF torsion pendulum and space-qualification in a small satellite mission which will launch in the summer of 2014, through a collaboration with Stanford, KACST, and NASA Ames Research Center.

  15. Nested sampling as a tool for LISA data analysis

    NASA Astrophysics Data System (ADS)

    Gair, Jonathan R.; Feroz, Farhan; Babak, Stanislav; Graff, Philip; Hobson, Michael P.; Petiteau, Antoine; Porter, Edward K.

    2010-05-01

    Nested sampling is a technique for efficiently computing the probability of a data set under a particular hypothesis, also called the Bayesian Evidence or Marginal Likelihood, and for evaluating the posterior. MULTINEST is a multi-modal nested sampling algorithm which has been designed to efficiently explore and characterize posterior probability surfaces containing multiple secondary solutions. We have applied the MULTINEST algorithm to a number of problems in gravitational wave data analysis. In this article, we describe the algorithm and present results for several applications of the algorithm to analysis of mock LISA data. We summarise recently published results for a test case in which we searched for two non-spinning black hole binary merger signals in simulated LISA data. We also describe results obtained with MULTINEST in the most recent round of the Mock LISA Data Challenge (MLDC), in which the algorithm was used to search for and characterise both spinning supermassive black hole binary inspirals and bursts from cosmic string cusps. In all these applications, the algorithm found the correct number of signals and efficiently recovered the posterior probability distribution. Moreover, in most cases the waveform corresponding to the best a-posteriori parameters had an overlap in excess of 99% with the true signal.

  16. Frequency-Tunable Pre-stabilized lasers for LISA via Stabilized Lasers for LISA via Sideband Locking

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey; Thorpe, James Ira; Numata, K.

    2008-01-01

    This viewgraph presentation discusses a major potential source of noise for the Laser Interferometer Space Antenna (LISA) that is the laser frequency noise and the proposed mechanism to suppress the unstabilized frequency fluctuations. These fluctuations must be suppresed by about 12 orders of magnitude to achieve a stability that is sufficient for the detection of gravitational waves. This presentation reviews present a modification to the traditional cavity locking technique that allows the laser to be locked to a cavity resonance with an adjustable frequency offset. This presentation also discusses measurements of the system stability, demonstrating that the pre-stabilization level satisfies LISA requirements and a demonstration of a phase-lock loop which utilizes the tunable sideband locking technique as a pre-stabilization stage.

  17. Simulating Gravitational Radiation from Binary Black Holes Mergers as LISA Sources

    NASA Technical Reports Server (NTRS)

    Baker, John

    2005-01-01

    A viewgraph presentation on the simulation of gravitational waves from Binary Massive Black Holes with LISA observations is shown. The topics include: 1) Massive Black Holes (MBHs); 2) MBH Binaries; 3) Gravitational Wavws from MBH Binaries; 4) Observing with LISA; 5) How LISA sees MBH binary mergers; 6) MBH binary inspirals to LISA; 7) Numerical Relativity Simulations; 8) Numerical Relativity Challenges; 9) Recent Successes; 10) Goddard Team; 11) Binary Black Hole Simulations at Goddard; 12) Goddard Recent Advances; 13) Baker, et al.:GSFC; 13) Starting Farther Out; 14) Comparing Initial Separation; 15) Now with AMR; and 16) Conclusion.

  18. Impact of LISA's Low Frequency Sensitivity on Observations of Massive Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Baker, J.; Centrella, J.

    2005-01-01

    LISA will be able to detect gravitational waves from inspiralling massive black hole (MBH) binaries out to redshifts z > 10. If the binary masses and luminosity distances can be extracted from the Laser Interferometer Space Antenna (LISA) data stream, this information can be used to reveal the merger history of MBH binaries and their host galaxies in the evolving universe. Since this parameter extraction generally requires that LISA observe the inspiral for a significant fraction of its yearly orbit, carrying out this program requires adequate sensitivity at low frequencies, f < 10(exp -4) Hz. Using several candidate low frequency sensitivities, we examine LISA's potential for characterizing MBH binary coalescences at redshifts z > 1.

  19. A Giant Leap Towards a Space-based Gravitational-Wave Observatory: LISA Pathfinder, the LISA Test Package, and ST7-DRS

    NASA Astrophysics Data System (ADS)

    Thorpe, James; McNamara, Paul; Ziemer, John; LPF Team, LTP Team, ST7-DRS Team

    2015-01-01

    The science case for a space-based gravitational wave instrument observing in the milliHertz band covers a wide area of topics in astrophysics and fundamental physics including galaxy formation and evolution, black hole growth, compact object demographics, gravitational physics, and cosmology. This strong science case is largely responsible for the high rankings received by the Laser Interferometer Space Antenna (LISA) mission in major reviews in both the US and Europe. A key element of the development of LISA is the LISA Pathfinder (LPF) technology demonstrator mission, which will launch in the coming year. Led by ESA and a consortium of European national agencies and with a minority contribution from NASA, LPF will demonstrate several key technologies for the LISA concept. LPF includes two scientific payloads: the European LISA Technology Package (LTP) and the NASA-provided ST7-DRS. The mission will place two test masses in drag-free flight and measure the relative acceleration between them. This measurement will validate a number of technologies that are critical to LISA-like gravitational wave instruments including sensing and control of the test masses, drag-free control laws, micro-Newton thrusters, and picometer-level laser metrology. We will present an overview of the LISA Pathfinder mission, the LTP and ST7-DRS payloads, and their expected impact on the larger effort to realize a space-based gravitational wave observatory.

  20. Laser Interferometer Space Antenna (LISA) Far Field Phase Patterns

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Obenschain, Arthur F. (Technical Monitor)

    2000-01-01

    The Laser Interferometer Space Antenna (LISA) consists of three spacecraft in orbit about the sun. The orbits are chosen such that the three spacecraft are always at (roughly) the vertices of a equilateral triangle with 5 million kilometer leg lengths. Even though the distances between the three spacecraft are 5 million kilometers, the expected phase shifts between any two beams, due to a gravitational wave, only correspond to a distance change of about 10 pico meters, which is about 10(exp -5) waves for a laser wavelength of 1064 nm. To obtain the best signal-to-noise ratio, noise sources such as changes in the apparent distances due to pointing jitter must be controlled carefully. This is the main reason for determining the far-field phase patterns of a LISA type telescope. Because of torque on the LISA spacecraft and other disturbances, continuous adjustments to the pointing of the telescopes are required. These pointing adjustments will be a "jitter" source. If the transmitted wave is perfectly spherical then rotations (Jitter) about its geometric center will not produce any effect at the receiving spacecraft. However, if the outgoing wave is not perfectly spherical, then pointing jitter will produce a phase variation at the receiving spacecraft. The following sections describe the "brute force" computational approach used to determine the scalar wave front as a function of exit pupil (Zernike) aberrations and to show the results (mostly graphically) of the computations. This approach is straightforward and produces believable phase variations to sub-pico meter accuracy over distances on the order of 5 million kilometers. As such this analyzes the far field phase sensitivity to exit pupil aberrations.

  1. Chemistry to music: Discovering how Music-based Teaching affects academic achievement and student motivation in an 8th grade science class

    NASA Astrophysics Data System (ADS)

    McCammon, William Gavin Lodge, Jr.

    Teachers should have access to new and innovative tools in order to engage and motivate their students in the classroom. This is especially important as many students view school as an antiquated and dull environment - which they must seemingly suffer through to advance. School need not be a dreaded environment. The use of music as a tool for learning can be employed by any teacher to create an engaging and exciting atmosphere where students actively participate and learn to value their classroom experience. Through this study, a product and process was developed that is now available for any 8th grade science teacher interested in using music to enhance their content. In this study 8th grade students (n=41) in a public school classroom actively interacted with modern songs created to enhance the teaching of chemistry. Data were collected and analyzed in order to determine the effects that the music treatment had on student achievement and motivation, compared to a control group (n=35). Current literature provides a foundation for the benefits for music listening and training, but academic research in the area of using music as a tool for teaching content was noticeably absent. This study identifies a new area of research called "Music-based Teaching" which results in increases in motivation for 8th grade students learning chemistry. The unintended results of the study are additionally significant as the teacher conducting the treatment experienced newfound enthusiasm, passion, and excitement for her profession.

  2. An interview with Alfredo Falcone and Lisa Salvatore: RECOURSE and trifluridine/tipiracil in metastatic colorectal cancer.

    PubMed

    Falcone, Alfredo; Salvatore, Lisa

    2016-09-01

    Professor Alfredo Falcone and Dr Lisa Salvatore speak to Roshaine Gunawardana, Managing Commissioning Editor: Professor Alfredo Falcone is the Director of the Department of Oncology and the Specialization School at the University Hospital of Pisa, Italy. He trained in Pisa and Genoa, Italy, and has held major positions in Italian oncology since 2000. He currently has more than 300 publications, including papers in peer-reviewed international and national journals, book chapters, and more than 600 abstracts of presentations to international and national conferences. The majority of his papers regard clinical and translational research, with a particular focus on metastatic colorectal cancer. Dr Lisa Salvatore is a medical oncologist in the Department of Translational Research and New Technologies in Medicine and Surgery at the University of Pisa. She has been an author on about 40 publications in major peer-reviewed publications and has made numerous presentations in national and international conferences. Her main interest is focused on clinical and translational research in metastatic colorectal cancer. PMID:27266889

  3. Modeling neutron events in MoNA-LISA using MCNPX

    NASA Astrophysics Data System (ADS)

    Elliston, Margaret; Peters, Alexander; Stryker, Kristen; Stephenson, Sharon; MoNA Collaboration

    2011-10-01

    The MoNA-LISA collaboration uses time-of-flight techniques and charged particle detectors to determine the structure of exotic nuclei such as 24 O and 12 Be . To determine the decay energy in particular, a neutron that hits the Modular Neutron Array and the Large multi-Institutional Scintillator Array has its energy, position and angle of incidence recorded if and only if the charged particle detector system detects an appropriate charged-particle fragment. However, the analysis uses only the first neutron to hit the detector array even in the case of 2n events, since the data acquisition system cannot distinguish between simultaneous but random 2n events and events due to 2n reactions. We are using MCNPX to model the reaction channels possible in the MoNA-LISA detector system in an effort to better improve the resolution on decay energy spectra for events with multiple neutrons. This work was supported in part by US National Science Foundation Award 0922335.

  4. Development of a Thrust Stand to Meet LISA Mission Requirements

    NASA Technical Reports Server (NTRS)

    Willis, William D., III; Zakrzwski, Charles M.; Merkowitz, Stephen M.

    2002-01-01

    A thrust stand has been built to measure the force-noise produced by electrostatic micro-Newton (muN) thrusters. The LISA mission's Disturbance Reduction System (DRS) requires thrusters that are capable of producing continuous thrust levels between 1-100 muN with a resolution of 0.1 muN. The stationary force-noise produced by these thrusters must not exceed 0.1 muN/dHz in the measurement bandwidth 10(exp -4) to 1 Hz. The LISA Thrust Stand (LTS) is a torsion-balance type thrust stand designed to meet the following requirements: stationary force-noise measurements from l0( -4) to 1 Hz with 0.1 muN/dHz sensitivity, absolute thrust measurements from 1-100 muN with better than 0.1 muN resolution, and dynamic thruster response from to 10 Hz. The LTS employs a unique vertical configuration, autocollimator for angular position measurements, and electrostatic actuators that are used for dynamic pendulum control and null-mode measurements. Force-noise levels are measured indirectly by characterizing the thrust stand as a spring-mass system. The LTS was initially designed to test the indium FEEP thruster developed by the Austrian Research Center in Seibersdorf (ARCS), but can be modified for testing other thrusters of this type.

  5. Characterization of the LISA Pathfinder Drag Reduction System

    NASA Astrophysics Data System (ADS)

    Slutsky, Jacob; LISA Pathfinder Team

    2016-03-01

    The LISA Pathfinder (LPF) mission launched in December 2015 with operations beginning March 2016. LPF is a technology demonstration mission built to prove and fully characterize the performance of the use of drag free test masses as Gravitational Reference Sensors (GRS) for future space based gravitational-wave observatories. As a joint ESA-NASA mission, LPF is comprised of both European and NASA payloads, the LISA Technology Package (LTP) and Disturbance Reduction System (DRS), respectively. DRS includes Colloid Micro-Newton Thruster (CMNT) systems, to precisely maneuver the spacecraft without disturbing the GRS, and a control system that directs spacecraft and test mass actuation. In order to fully characterize DRS/CMNT performance, we have developed a series of experiments, to take place during DRS operations beginning later this year. We have built analysis pipelines, validated on simulated data, to rapidly process experimental data and to identify any performance issues as they occur. European partners have developed the LTP Data Analysis (LTPDA) Matlab extension, and we have adapted and expanded this to DRS missions as the basis of our analysis pipelines. I will discuss the anticipated DRS performance and measurement accuracy, illustrated on simulated data.

  6. Weak-light Phase-locking for LISA

    NASA Technical Reports Server (NTRS)

    McNamara, Paul W.

    2004-01-01

    The long armlengths of the LISA interferometer, and the finite aperture of the telescope, leads to an optical power attenuation of approximately equal to 10(exp -10) of the transmitted to received light. Simple reflection at the end of the arm is therefore not an optimum interferometric design. Instead, a local laser is offset phase-locked to the weak incoming beam, transferring the phase information of the incoming to the outgoing light. This paper reports on an experiment to characterize a weak light phase-locking scheme suitable for LISA in which a diode-pumped, Nd:YAG, non-planar ring oscillator (NPRO) is offset phase-locked to a low power (13pW) frequency stabilised master NPRO. Preliminary results of the relative phase noise of the slave laser shows shot noise limited performance above 0.4 Hz. Excess noise is observed at lower frequencies, most probably due to thermal effects in the optical arrangement and phase sensing electronics.

  7. Discrete derivative estimation in LISA Pathfinder data reduction

    NASA Astrophysics Data System (ADS)

    Ferraioli, Luigi; Hueller, Mauro; Vitale, Stefano

    2009-05-01

    Data analysis for the LISA Technology package (LTP) experiment to be flown aboard the LISA Pathfinder mission requires the solution of the system dynamics for the calculation of the force acting on the test masses (TMs) starting from interferometer position data. The need for a solution to this problem has prompted us to implement a discrete time-domain derivative estimator suited for the LTP experiment requirements. We first report on the mathematical procedures for the definition of two methods; the first based on a parabolic fit approximation and the second based on a Taylor series expansion. These two methods are then generalized and incorporated into a more general class of five-point discrete derivative estimators. The same procedure employed for the second derivative can be applied to the estimation of the first derivative and of a data smoother allowing defining a class of simple five-point estimators for both. The performances of three particular realizations of the five-point second-derivative estimator are analyzed with simulated noisy data. This analysis pointed out that those estimators introducing large amount of high-frequency noise can determine systematic errors in the estimation of low-frequency noise levels.

  8. Development of A Thrust Stand to Meet LISA Mission Requirements

    NASA Technical Reports Server (NTRS)

    Willis, William D., III; Zakrzwski, C. M.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    A thrust stand has been built and tested that is capable of measuring the force-noise produced by electrostatic micro-Newton (micro-Newton) thrusters. The LISA mission's Disturbance Reduction System (DRS) requires thrusters that are capable of producing continuous thrust levels between 1-100 micro-Newton with a resolution of 0.1 micro-Newton. The stationary force-noise produced by these thrusters must not exceed 0.1 pN/4Hz in a 10 Hz bandwidth. The LISA Thrust Stand (LTS) is a torsion-balance type thrust stand designed to meet the following requirements: stationary force-noise measurements from 10(exp-4) to 1 Hz with 0.1 micro-Newton resolution, absolute thrust measurements from 1-100 micro-Newton with better than 0.1 micro-Newton resolution, and dynamic thruster response from 10(exp -4) to 10 Hz. The ITS employs a unique vertical configuration, autocollimator for angular position measurements, and electrostatic actuators that are used for dynamic pendulum control and null-mode measurements. Force-noise levels are measured indirectly by characterizing the thrust stand as a spring-mass system. The LTS was initially designed to test the indium FEEP thruster developed by the Austrian Research Center in Seibersdorf (ARCS), but can be modified for testing other thrusters of this type.

  9. Observing Merging Massive Black Hole Binaries with LISA

    NASA Technical Reports Server (NTRS)

    Thorpe, J.; McWillimas, S.; Baker, J.; Arnaud, K.

    2009-01-01

    The Laser Interferometer Space Antenna (LISA) is expected to detect gravitational radiation from the inspiral and merger of massive black hole binaries at high redshifts with large signal-to-noise ratios (SNRs). These high-SNR observations will make it possible to extract physical parameters such as hole masses and spins, luminosity distance, and sky position from the observed waveforms. LISA'S effectiveness as a tool for astrophysics will be influenced by the precision with which these parameters can be measured. In addition, the practicality of coordinated observations with other instruments will be affected by the temporal evolution of parameter errors such as sky position. We present estimates of parameter errors for the special case of non-spinning black holes. Our focus is on the contribution of the late inspiral and merger portions of the waveform, a regime which typically dominates the SNR but has not been extensively studied due to the historic lack of a precise description of the waveform. Advances in numerical relativity have recently made such studies possible. Initial results suggest that the portion of the waveform beyond the Schwarzchild inner-most stable circular orbit can reduce parameter uncertainties by up to a factor of two.

  10. AESF/EPA (AMERICAN ELECTROPLATERS AND SURFACE FINISHERS/ENVIRONMENTAL PROTECTION AGENCY) CONFERENCE ON POLLUTION CONTROL FOR THE METAL FINISHING INDUSTRY (8TH) HELD AT SAN DIEGO, CALIFORNIA, FEBRUARY 9-11, 1987

    EPA Science Inventory

    The 8th Annual AESF/EPA Conference and Exhibit on Pollution Control for the Metal Finishing Industry was held in San Diego, California, February 9, 10, and 11, 1987. The primary objective of the 8th Conference was to continue the dialogue established by the first AESF/EPA Confere...

  11. Numerical simulation of time delay interferometry for eLISA/NGO

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Ni, Wei-Tou

    2013-03-01

    eLISA/NGO is a new gravitational wave detection proposal with arm length of 106 km and one interferometer down-scaled from LISA. Just like LISA and ASTROD-GW, in order to attain the requisite sensitivity for eLISA/NGO, laser frequency noise must be suppressed to below the secondary noises such as the optical path noise, acceleration noise, etc. In previous papers, we have performed the numerical simulation of the time delay interferometry (TDI) for LISA and ASTROD-GW with one arm dysfunctional by using the CGC 2.7 ephemeris. The results are well below their respective limits in which the laser frequency noise is required to be suppressed. In this paper, we follow the same procedure to simulate the time delay interferometry numerically. To do this, we work out a set of 1000-day optimized mission orbits of the eLISA/NGO spacecraft starting on 1 January 2021 using the CGC 2.7 ephemeris framework. We then use the numerical method to calculate the residual optical path differences in the second-generation TDI solutions as in our previous papers. The maximum path length difference, for all configurations calculated, is below 13 mm (43 ps). It is well below the limit in which the laser frequency noise is required to be suppressed for eLISA/NGO. We compare and discuss the resulting differences due to the different arm lengths for various mission proposals—eLISA/NGO, an NGO-LISA-type mission with a nominal arm length of 2 × 106 km, LISA and ASTROD-GW.

  12. Geographical Variation in Health-Related Physical Fitness and Body Composition among Chilean 8th Graders: A Nationally Representative Cross-Sectional Study

    PubMed Central

    Garber, Michael D.; Sajuria, Marcelo; Lobelo, Felipe

    2014-01-01

    Purpose In addition to excess adiposity, low cardiorespiratory fitness (CRF) and low musculoskeletal fitness (MSF) are important independent risk factors for future cardio-metabolic disease in adolescents, yet global fitness surveillance in adolescents is poor. The objective of this study was to describe and investigate geographical variation in levels of health-related physical fitness, including CRF, MSF, body mass index (BMI), and waist circumference (WC) in Chilean 8th graders. Methods This cross-sectional study was based on a population-based, representative sample of 19,929 8th graders (median age = 14 years) in the 2011 National Physical Education Survey from Chile. CRF was assessed with the 20-meter shuttle run test, MSF with standing broad jump, and body composition with BMI and WC. Data were classified according to health-related standards. Prevalence of levels of health-related physical fitness was mapped for each of the four variables, and geographical variation was explored at the country level by region and in the Santiago Metropolitan Area by municipality. Results Girls had significantly higher prevalence of unhealthy CRF, MSF, and BMI than boys (p<0.05). Overall, 26% of boys and 55% of girls had unhealthy CRF, 29% of boys and 35% of girls had unhealthy MSF, 29% of boys and 44% of girls had unhealthy BMI, and 31% of adolescents had unhealthy WC. High prevalence of unhealthy fitness levels concentrates in the northern and middle regions of the country and in the North and Southwest sectors for the Santiago Metropolitan Area. Conclusion Prevalence of unhealthy CRF, MSF, and BMI is relatively high among Chilean 8th graders, especially in girls, when compared with global estimates. Identification of geographical regions and municipalities with high prevalence of unhealthy physical fitness presents opportunity for targeted intervention. PMID:25255442

  13. A Study of Grade Level and Gender Differences in Divergent Thinking among 8th and 11th Graders in a Mid-Western School District

    NASA Astrophysics Data System (ADS)

    Roue, Leah Christine

    This research study compared gender and grade level differences in divergent thinking among middle school and high school students in the Midwest, in an attempt to determine whether gender or grade level-based differences exist in divergent thinking. The instrument used was based on the Wallach and Kogan Creativity Test (WKCT). There were 166 public school students in the study from the 8th and 11th grades. The results were analyzed in an effort to answer two research questions: Are there gender differences in fluency, flexibility, or originality of a response? Are there grade level (age) differences in fluency, flexibility, or originality of a response? Quantitative and qualitative reporting is used.

  14. Orbit design for the Laser Interferometer Space Antenna (LISA)

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Li, Guangyu; Heinzel, Gerhard; Rüdiger, Albrecht; Luo, Yongjie

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA mission for detecting low-frequency gravitational waves in the frequency range from 0.1 mHz to 1 Hz, by using accurate laser interferometry between three spacecrafts, which will be launched around 2018 and one year later reach their operational orbits around the Sun. In order to operate successfully, it is crucial for the constellation of the three spacecrafts to have extremely high stability. Based on the study of operational orbits for a 2015 launch, we design the operational orbits of beginning epoch on 2019-03-01, and introduce the method of orbit design and optimization. We design the orbits of the transfer from Earth to the operational orbits, including launch phase and separation phase; furthermore, the relationship between energy requirement and flight time of these two orbit phases is investigated. Finally, an example of the whole orbit design is presented.

  15. Mock LISA data challenge for the Galactic white dwarf binaries

    SciTech Connect

    Blaut, Arkadiusz; Babak, Stanislav; Krolak, Andrzej

    2010-03-15

    We present data analysis methods used in the detection and estimation of parameters of gravitational-wave signals from the white dwarf binaries in the mock LISA data challenge. Our main focus is on the analysis of challenge 3.1, where the gravitational-wave signals from more than 6x10{sup 7} Galactic binaries were added to the simulated Gaussian instrumental noise. The majority of the signals at low frequencies are not resolved individually. The confusion between the signals is strongly reduced at frequencies above 5 mHz. Our basic data analysis procedure is the maximum likelihood detection method. We filter the data through the template bank at the first step of the search, then we refine parameters using the Nelder-Mead algorithm, we remove the strongest signal found and we repeat the procedure. We detect reliably and estimate parameters accurately of more than ten thousand signals from white dwarf binaries.

  16. The eLISA/NGO Data Processing Centre

    NASA Astrophysics Data System (ADS)

    Beckmann, V.; Petiteau, A.; Porter, E.; Auger, G.; Plagnol, E.; Binétruy, P.

    2013-01-01

    Data analysis for the eLISA/NGO mission is going to be performed in several steps. The telemetry is unpacked and checked at ESA's Science Operations Centre (SOC). The instrument teams are providing the necessary calibration files for the SOC to process the Level 1 data. The next steps, the source identification, parameter extraction and construction of a catalogue of sources is performed at the Data Processing Centre (DPC). This includes determining the physical and astrophysical parameters of the sources and their strain time series. At the end of the processing, the produced Level 2 and Level 3 data are then transferred back to the SOC, which provides the data archive and the interface for the scientific community. The DPC is organised by the member states of the consortium. In this paper we describe a possible outline of the data processing centre, including the tasks to be performed, and the organisational structure.

  17. Mock LISA data challenge for the Galactic white dwarf binaries

    NASA Astrophysics Data System (ADS)

    Błaut, Arkadiusz; Babak, Stanislav; Królak, Andrzej

    2010-03-01

    We present data analysis methods used in the detection and estimation of parameters of gravitational-wave signals from the white dwarf binaries in the mock LISA data challenge. Our main focus is on the analysis of challenge 3.1, where the gravitational-wave signals from more than 6×107 Galactic binaries were added to the simulated Gaussian instrumental noise. The majority of the signals at low frequencies are not resolved individually. The confusion between the signals is strongly reduced at frequencies above 5 mHz. Our basic data analysis procedure is the maximum likelihood detection method. We filter the data through the template bank at the first step of the search, then we refine parameters using the Nelder-Mead algorithm, we remove the strongest signal found and we repeat the procedure. We detect reliably and estimate parameters accurately of more than ten thousand signals from white dwarf binaries.

  18. Simulation and template generation for LISA Pathfinder Data Analysis

    NASA Astrophysics Data System (ADS)

    Rais, Boutheina; Grynagier, Adrien; Diaz-Aguiló, Marc; Armano, Michele

    The LISA PathFinder (LPF) mission is a technology demonstration mission which aims at testing a number of critical technical challenges that the future LISA (Gravitational wave detection in space) mission will face: LPF can be seen as a complex laboratory experiment in space. It is therefore critical to be able to define which measurements and which actuations will be applied during the scientific part of the mission. The LISA Technology Package (LTP), part of ESA's hardware contribution to LPF, outlines hence the importance of developing an appropriate simulation tool in order to test these strate-gies before launch and to analyse the dynamical behaviour of the system during the mission. The detailed model of the simulation can be used in an off-line mode for further planning: cor-rect estimation of timeline priorities, risk factors, duty cycles, data analysis readiness. The Lisa Technology Package Data Analysis (LTPDA) team has developed an object-oriented MATLAB toolbox for general case of data analysis needs. However, to meet specific needs of LPF mis-sion, a template generation tool has been developed. It provides a recognizable data pattern, avoiding the risk of missing the model during mission's analysis. The aim of the template generator tool is to provide tools to analyse LTP system modeled in State Space Model (SSM). The SSM class, the aim of this poster, includes this tools within the LTPDA toolbox. It can be used to generate the time-domain response for any given actuation and/or noise, the frequency response using bode diagrams and the steady state of the system. It allows the user to project noises on system outputs to get spectra of outputs for given input noises spectra. This class is sufficiently general to be used with a variety of systems once the SSM of the system is provided in the library. Furthermore, one of the main objectives of the data analysis for LPF (the estimation of different parameters of the system), can be achieved by a new

  19. Thematic Conference on Geologic Remote Sensing, 8th, Denver, CO, Apr. 29-May 2, 1991, Proceedings. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The proceedings contain papers discussing the state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing, along with the research and development activities aimed at increasing the future capabilities of this technology. The following topics are addressed: spectral geology, U.S. and international hydrocarbon exporation, radar and thermal infrared remote sensing, engineering geology and hydrogeology, mineral exploration, remote sensing for marine and environmental applications, image processing and analysis, geobotanical remote sensing, and data integration and geographic information systems. Particular attention is given to spectral alteration mapping with imaging spectrometers, mapping the coastal plain of the Congo with airborne digital radar, applications of remote sensing techniques to the assessment of dam safety, remote sensing of ferric iron minerals as guides for gold exploration, principal component analysis for alteration mappping, and the application of remote sensing techniques for gold prospecting in the north Fujian province.

  20. Thematic Conference on Geologic Remote Sensing, 8th, Denver, CO, Apr. 29-May 2, 1991, Proceedings. Vols. 1 2

    SciTech Connect

    Not Available

    1991-01-01

    The proceedings contain papers discussing the state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing, along with the research and development activities aimed at increasing the future capabilities of this technology. The following topics are addressed: spectral geology, US and international hydrocarbon exporation, radar and thermal infrared remote sensing, engineering geology and hydrogeology, mineral exploration, remote sensing for marine and environmental applications, image processing and analysis, geobotanical remote sensing, and data integration and geographic information systems. Particular attention is given to spectral alteration mapping with imaging spectrometers, mapping the coastal plain of the Congo with airborne digital radar, applications of remote sensing techniques to the assessment of dam safety, remote sensing of ferric iron minerals as guides for gold exploration, principal component analysis for alteration mappping, and the application of remote sensing techniques for gold prospecting in the north Fujian province.

  1. Time domain maximum likelihood parameter estimation in LISA Pathfinder data analysis

    NASA Astrophysics Data System (ADS)

    Congedo, G.; Ferraioli, L.; Hueller, M.; De Marchi, F.; Vitale, S.; Armano, M.; Hewitson, M.; Nofrarias, M.

    2012-06-01

    LISA is the upcoming space-based gravitational-wave detector. LISA Pathfinder, to be launched in the coming years, will be the in-flight test of the LISA arm, with a hardware (control scheme, sensors, and actuators) identical in design to LISA. LISA Pathfinder will collect a picture of all noise disturbances possibly affecting LISA, achieving the unprecedented pureness of geodesic motion of test masses necessary for the detection of gravitational waves. The first steps of both missions will crucially depend on a very precise calibration of the key system parameters. Moreover, robust parameters estimation has a fundamental importance in the correct assessment of the residual acceleration noise between the test masses, an essential part of the data preprocessing for LISA. In this paper, we present a maximum likelihood parameter estimation technique in time domain employed for system identification, being devised for this calibration, and show its proficiency on simulated data and validation through Monte Carlo realizations of independent noise runs. We discuss its robustness to nonstandard scenarios possibly arising during the real mission. Furthermore, we apply the same technique to data produced in missionlike fashion during operational exercises with a realistic simulator provided by European Space Agency. The result of the investigation is that parameter estimation is mandatory to avoid systematic errors in the estimated differential acceleration noise.

  2. College Perspective '77: Confrontation or Collegiality. Proceedings, Annual International Institute on the Community College (8th, Lambton College, Sarnia, Ontario, Canada, June 13-16, 1977).

    ERIC Educational Resources Information Center

    Delgrosso, George M., Ed.; And Others

    Papers and addresses on aspects of confrontation affecting community college productivity and viability are presented. Keynote speeches include: "Learning to Live While Learning to Make a Living" by George J. Bullied; "Communication and Collegiality" by Charles M. Galloway; "Is Education the One Profession Immune to Change?" by Richard Hagemeyer;…

  3. International Symposium on Remote Sensing of Environment, 8th, University of Michigan, Ann Arbor, Mich., October 2-6, 1972, Proceedings. Volumes 1 & 2.

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Recent developments in remote sensing techniques and applications are described in papers dealing with (1) ground-based, airborne, and space-borne sensor systems, (2) machine assisted data analysis and interpretation, and (3) specific uses of sensing techniques by various government units. Topics covered include monitoring of environmental quality factors, delineation of geological formations and mineral deposits, watershed management, observation of vegetative parameters in forestry and agriculture, design and performance details of various sensor systems and equipment, interpretation of multispectral imagery, and applications of ERTS-1 satellite imagery in resource study programs. Individual items are announced in this issue.

  4. THE LISA GRAVITATIONAL WAVE FOREGROUND: A STUDY OF DOUBLE WHITE DWARFS

    SciTech Connect

    Ruiter, Ashley J.; Belczynski, Krzysztof; Larson, Shane L. E-mail: kbelczyn@nmsu.ed E-mail: gabriel.j.williams@gmail.co

    2010-07-10

    Double white dwarfs (WDs) are expected to be a source of confusion-limited noise for the future gravitational wave observatory LISA. In a specific frequency range, this 'foreground noise' is predicted to rise above the instrumental noise and hinder the detection of other types of signals, e.g., gravitational waves arising from stellar-mass objects inspiraling into massive black holes. In many previous studies, only detached populations of compact object binaries have been considered in estimating the LISA gravitational wave foreground signal. Here, we investigate the influence of compact object detached and Roche-Lobe overflow (RLOF) Galactic binaries on the shape and strength of the LISA signal. Since >99% of remnant binaries that have orbital periods within the LISA sensitivity range are WD binaries, we consider only these binaries when calculating the LISA signal. We find that the contribution of RLOF binaries to the foreground noise is negligible at low frequencies, but becomes significant at higher frequencies, pushing the frequency at which the foreground noise drops below the instrumental noise to >6 mHz. We find that it is important to consider the population of mass-transferring binaries in order to obtain an accurate assessment of the foreground noise on the LISA data stream. However, we estimate that there still exists a sizeable number ({approx}11,300) of Galactic double WD binaries that will have a signal-to-noise ratio >5, and thus will be potentially resolvable with LISA. We present the LISA gravitational wave signal from the Galactic population of WD binaries, show the most important formation channels contributing to the LISA disk and bulge populations, and discuss the implications of these new findings.

  5. Longitudinal Study of Career Cluster Persistence from 8th Grade to 12th Grade with a Focus on the Science, Technology, Engineering, & Math Career Cluster

    NASA Astrophysics Data System (ADS)

    Wagner, Judson

    Today's technology driven global economy has put pressure on the American education system to produce more students who are prepared for careers in Science, Technology, Engineering, and Math (STEM). Adding to this pressure is the demand for a more diverse workforce that can stimulate the development of new ideas and innovation. This in turn requires more female and under represented minority groups to pursue future careers in STEM. Though STEM careers include many of the highest paid professionals, school systems are dealing with exceptionally high numbers of students, especially female and under represented minorities, who begin but do not persist to STEM degree completion. Using the Expectancy-Value Theory (EVT) framework that attributes student motivation to a combination of intrinsic, utility, and attainment values, this study analyzed readily available survey data to gauge students' career related values. These values were indirectly investigated through a longitudinal approach, spanning five years, on the predictive nature of 8 th grade survey-derived recommendations for students to pursue a future in a particular career cluster. Using logistic regression analysis, it was determined that this 8 th grade data, particularly in STEM, provides significantly high probabilities of a 12th grader's average grade, SAT-Math score, the math and science elective courses they take, and most importantly, interest in the same career cluster.

  6. Thermodynamic properties and theoretical rocket performance of hydrogen to 100,000 K and 1.01325 x 10 to the 8th power N/sq m

    NASA Technical Reports Server (NTRS)

    Patch, R. W.

    1971-01-01

    The composition and thermodynamic properties were calculated for 100 to 110,000 K and 1.01325 x 10 to the 2nd power to 1.01325 x 10 to the 8th power N/sq m for chemical equilibrium in the Debye-Huckel and ideal-gas approximations. Quantities obtained were the concentrations of hydrogen atoms, protons, free electrons, hydrogen molecules, negative hydrogen ions, hydrogen diatomic molecular ions, and hydrogen triatomic molecular ions, and the enthalpy, entropy, average molecular weight, specific heat at constant pressure, density, and isentropic exponent. Electronically excited states of H and H2 were included. Choked, isentropic, one-dimensional nozzle flow with shifting chemical equilibrium was calculated to the Debye-Huckel and ideal-gas approximations for stagnation temperatures from 2500 to 100,000 K. The mass flow per unit throat area and the sonic flow factor were obtained. The pressure ratio, temperature, velocity, and ideal and vacuum specific impulses at the throat and for pressure ratios as low as 0.000001 downstream were found. For high temperatures at pressures approaching 1.01325 x 10 to the 8th power N/sq m, the ideal-gas approximation was found to be inadequate for calculations of composition, precise thermodynamic properties, and precise nozzle flow. The greatest discrepancy in nozzle flow occurred in the exit temperature, which was as much as 21 percent higher when the Debye-Huckel approximation was used.

  7. PREFACE: IARD 2012: 8th Biennial Conference on Classical and Quantum Relativistic Dynamics of Particles and Fields

    NASA Astrophysics Data System (ADS)

    Horwitz, L. P.; Land, Martin C.; Gill, Tepper; Lusanna, Luca; Salucci, Paolo

    2013-04-01

    , local properties of spacetime structure. The scope of this series of conferences is, however, much wider. There have been recent developments in the understanding of general relativity concerning questions associated with dark energy and the dark matter problem, the distribution of stars in galaxies, and the distribution of galaxies in the visible universe, as well as the internal structure of stars. There are, moreover fundamental questions in the applications of relativistic dynamics to physical problems, and in its mathematical and logical structure. It was for this purpose, to bring together researchers from a wide variety of fields, such as particle physics, astrophysics, cosmology, heavy ion collisions, plasma research, and mathematical physics, with a common interest in relativistic dynamics, that this Association was founded. The International Association for Relativistic Dynamics was organized at its first meeting as an informal session of seminars among researchers with common interest in February 1998 in Houston, Texas, with John R Fanchi as president. The second meeting took place, in 2000, at Bar Ilan University in Ramat Gan, Israel, the third, in 2002, at Howard University in Washington, D.C., and the fourth, on 12--19 June 2004, in Saas Fee, Switzerland. In 2006, the meeting took place at the University of Connecticut campus in Storrs, Connecticut, and the sixth meeting, in Thessaloniki, Greece. The seventh meeting took place at the National Dong Hwa University in Hualien, Taiwan from 30 May to 1 June 2010, and the eighth meeting, reported here, at the Galileo Galilei Institute for Theoretical Physics (GGI) in Florence, Italy, 29 May to 1 June 2012. This meeting forms the basis for the Proceedings of IARD 2012, recorded in this volume of Journal of Physics: Conference Series. Along with the work of some of the founding members of the Association, we were fortunate to have lecturers from application areas that provided strong challenges for further

  8. Safety Characteristics in System Application of Software for Human Rated Exploration Missions for the 8th IAASS Conference

    NASA Technical Reports Server (NTRS)

    Mango, Edward J.

    2016-01-01

    NASA and its industry and international partners are embarking on a bold and inspiring development effort to design and build an exploration class space system. The space system is made up of the Orion system, the Space Launch System (SLS) and the Ground Systems Development and Operations (GSDO) system. All are highly coupled together and dependent on each other for the combined safety of the space system. A key area of system safety focus needs to be in the ground and flight application software system (GFAS). In the development, certification and operations of GFAS, there are a series of safety characteristics that define the approach to ensure mission success. This paper will explore and examine the safety characteristics of the GFAS development. The GFAS system integrates the flight software packages of the Orion and SLS with the ground systems and launch countdown sequencers through the 'agile' software development process. A unique approach is needed to develop the GFAS project capabilities within this agile process. NASA has defined the software development process through a set of standards. The standards were written during the infancy of the so-called industry 'agile development' movement and must be tailored to adapt to the highly integrated environment of human exploration systems. Safety of the space systems and the eventual crew on board is paramount during the preparation of the exploration flight systems. A series of software safety characteristics have been incorporated into the development and certification efforts to ensure readiness for use and compatibility with the space systems. Three underlining factors in the exploration architecture require the GFAS system to be unique in its approach to ensure safety for the space systems, both the flight as well as the ground systems. The first are the missions themselves, which are exploration in nature, and go far beyond the comfort of low Earth orbit operations. The second is the current exploration

  9. PREFACE: IARD 2012: 8th Biennial Conference on Classical and Quantum Relativistic Dynamics of Particles and Fields

    NASA Astrophysics Data System (ADS)

    Horwitz, L. P.; Land, Martin C.; Gill, Tepper; Lusanna, Luca; Salucci, Paolo

    2013-04-01

    , local properties of spacetime structure. The scope of this series of conferences is, however, much wider. There have been recent developments in the understanding of general relativity concerning questions associated with dark energy and the dark matter problem, the distribution of stars in galaxies, and the distribution of galaxies in the visible universe, as well as the internal structure of stars. There are, moreover fundamental questions in the applications of relativistic dynamics to physical problems, and in its mathematical and logical structure. It was for this purpose, to bring together researchers from a wide variety of fields, such as particle physics, astrophysics, cosmology, heavy ion collisions, plasma research, and mathematical physics, with a common interest in relativistic dynamics, that this Association was founded. The International Association for Relativistic Dynamics was organized at its first meeting as an informal session of seminars among researchers with common interest in February 1998 in Houston, Texas, with John R Fanchi as president. The second meeting took place, in 2000, at Bar Ilan University in Ramat Gan, Israel, the third, in 2002, at Howard University in Washington, D.C., and the fourth, on 12--19 June 2004, in Saas Fee, Switzerland. In 2006, the meeting took place at the University of Connecticut campus in Storrs, Connecticut, and the sixth meeting, in Thessaloniki, Greece. The seventh meeting took place at the National Dong Hwa University in Hualien, Taiwan from 30 May to 1 June 2010, and the eighth meeting, reported here, at the Galileo Galilei Institute for Theoretical Physics (GGI) in Florence, Italy, 29 May to 1 June 2012. This meeting forms the basis for the Proceedings of IARD 2012, recorded in this volume of Journal of Physics: Conference Series. Along with the work of some of the founding members of the Association, we were fortunate to have lecturers from application areas that provided strong challenges for further

  10. LISA Pathfinder and the road to space-based detection of gravitational waves

    NASA Astrophysics Data System (ADS)

    Thorpe, James

    2016-04-01

    The LISA Pathfinder spacecraft was launched on Dec 3rd, 2015 and began science operations in March 2016. Led by the European Space Agency with contributions from a number of European national agencies, universities, and NASA, LISA Pathfinder will demonstrate several key technologies and measurement technqiues for future space-based gravitational wave observatories. A successful LISA Pathfinder will retire much of the technical risk for such missions, which are the only proposed instruments capable of observing gravitational waves in the milliHertz band, a source-rich region expected to include singals from merging extragalactic massive black holes, capture of stellar-mass compact objects by massive black holes, and millions of individual close compact binaries in the Milky Way. I will present an overview of the LISA Pathfinder mission, it's current status, and the plans for operations and data analysis.

  11. Finally Here - The launch of LISA Pathfinder and the road to detecting Gravitational Waves in space

    NASA Astrophysics Data System (ADS)

    Thorpe, James; LISA Pathfinder Team

    2016-01-01

    The LISA Pathfinder spacecraft was launched in late 2015 and will begin science operations in early 2016. Led by the European Space Agency with contributions from a number of European national agencies, universities, and NASA, LISA Pathfinder will demonstrate several key technologies and measurement technqiues for future space-based gravitational wave observatories. A successful LISA Pathfinder will retire much of the technical risk for such missions, which are the only proposed instruments capable of observing gravitational waves in the milliHertz band, a source-rich region expected to include singals from merging extragalactic massive black holes, capture of stellar-mass compact objects by massive black holes, and millions of individual close compact binaries in the Milky Way. I will present an overview of the LISA Pathfinder mission, it's current status, and the plans for operations and data analysis.

  12. Bayesian parameter estimation in the second LISA Pathfinder mock data challenge

    NASA Astrophysics Data System (ADS)

    Nofrarias, M.; Röver, C.; Hewitson, M.; Monsky, A.; Heinzel, G.; Danzmann, K.; Ferraioli, L.; Hueller, M.; Vitale, S.

    2010-12-01

    A main scientific output of the LISA Pathfinder mission is to provide a noise model that can be extended to the future gravitational wave observatory, LISA. The success of the mission depends thus upon a deep understanding of the instrument, especially the ability to correctly determine the parameters of the underlying noise model. In this work we estimate the parameters of a simplified model of the LISA Technology Package instrument. We describe the LISA Technology Package by means of a closed-loop model that is used to generate the data, both injected signals and noise. Then, parameters are estimated using a Bayesian framework, and it is shown that this method reaches the optimal attainable error, the Cramér-Rao bound. We also address an important issue for the mission: how to efficiently combine the results of different experiments to obtain a unique set of parameters describing the instrument.

  13. Prospects of eLISA for detecting Galactic binary black holes similar to GW150914

    NASA Astrophysics Data System (ADS)

    Seto, Naoki

    2016-07-01

    We discuss the prospects of eLISA for detecting gravitational waves (GWs) from Galactic binary black holes (BBHs) similar to GW150914. For a comoving merger rate that is consistent with current observation, eLISA is likely to identify at least one BBH with a sufficient signal-to-noise ratio. In addition, eLISA has a potential to measure the eccentricity of the BBH as small as e ˜ 0.02, corresponding to the residual value e ˜ 10-6 at 10 Hz. Therefore, eLISA could provide us with a crucial information to understand the formation processes of relatively massive BBHs like GW150914. We also derive a simple scaling relation for the expected number of detectable Galactic BBHs.

  14. Colloid micro-Newton thruster development for the ST7-DRS and LISA missions

    NASA Technical Reports Server (NTRS)

    Ziemer, John K.; Gamero-Castano, Manuel; Hruby, Vlad; Spence, Doug; Demmons, Nate; McCormick, Ryan; Roy, Tom

    2005-01-01

    We present recent progress and development of the Busek Colloid Micro-Newton Thruster (CMNT) for the Space Technology 7 Disturbance Reduction System (ST7-DRS) and Laser Interferometer Space Antenna (LISA) Missions.

  15. Magnetic field measurement using chip-scale magnetometers in eLISA

    NASA Astrophysics Data System (ADS)

    Mateos, I.; Diaz-Aguiló, M.; Gesa, L.; Gibert, F.; Karnesis, N.; Lloro, I.; Lobo, A.; Martín, V.; Nofrarias, M.; Ramos-Castro, J.; Sopuerta, C. F.

    2015-05-01

    Magnetic sensors are necessary devices to map the magnetic field and gradient at eLISA test masses location. Their primary goal is assessing the contribution of the magnetic effects to the acceleration noise budget. Our experience, accumulated during the magnetic diagnostics system design for LISA Pathfinder, indicates that the accuracy of the magnetic field map interpolation at the test mass is critical issue. Therefore, taking into consideration eLISA increased performance demands, an enhancement of the LISA Pathfinder magnetic subsystem is deemed necessary. A goal pursued by using alternative magnetic sensing techniques. In this study, the accuracy improvements in the magnetic field map reconstruction obtained with the currently conceived instrumental layout are demonstrated.

  16. LISA Mission Concept Study, Laser Interferometer Space Antenna for the Detection and Observation of Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Bender, P. L.; Stebbins, R. T.

    1998-01-01

    This document presents the results of a design feasibility study for LISA (Laser Interferometer Space Antenna). The goal of LISA is to detect and study low-frequency astrophysical gravitational radiation from strongly relativistic regions. Astrophysical sources potentially visible to LISA include extra-galactic massive black hole binaries at cosmological distances, binary systems composed of a compact star and a massive black hole, galactic neutron star-black hole binaries, and background radiation from the Big Bang. The LISA mission will comprise three spacecraft located five million kilometers apart forming an equilateral triangle in an Earth-trailing orbit. Fluctuations in separation between shielded test masses located within each spacecraft will be determined by optical interferometry which determines the phase shift of laser light transmitted between the test masses.

  17. Report on the first round of the Mock LISA Data Challenges

    NASA Astrophysics Data System (ADS)

    Arnaud, K. A.; Auger, G.; Babak, S.; Baker, J. G.; Benacquista, M. J.; Bloomer, E.; Brown, D. A.; Camp, J. B.; Cannizzo, J. K.; Christensen, N.; Clark, J.; Cornish, N. J.; Crowder, J.; Cutler, C.; Finn, L. S.; Halloin, H.; Hayama, K.; Hendry, M.; Jeannin, O.; Królak, A.; Larson, S. L.; Mandel, I.; Messenger, C.; Meyer, R.; Mohanty, S.; Nayak, R.; Numata, K.; Petiteau, A.; Pitkin, M.; Plagnol, E.; Porter, E. K.; Prix, R.; Roever, C.; Stroeer, A.; Thirumalainambi, R.; Thompson, D. E.; Toher, J.; Umstaetter, R.; Vallisneri, M.; Vecchio, A.; Veitch, J.; Vinet, J.-Y.; Whelan, J. T.; Woan, G.

    2007-10-01

    The Mock LISA Data Challenges (MLDCs) have the dual purpose of fostering the development of LISA data analysis tools and capabilities, and demonstrating the technical readiness already achieved by the gravitational-wave community in distilling a rich science payoff from the LISA data output. The first round of MLDCs has just been completed: nine challenges consisting of data sets containing simulated gravitational-wave signals produced either by galactic binaries or massive black hole binaries embedded in simulated LISA instrumental noise were released in June 2006 with deadline for submission of results at the beginning of December 2006. Ten groups have participated in this first round of challenges. All of the challenges had at least one entry which successfully characterized the signal to better than 95% when assessed via a correlation with phasing ambiguities accounted for. Here, we describe the challenges, summarize the results and provide a first critical assessment of the entries.

  18. Comparison of Values in 5th, 6th, 7th and 8th Grade Primary Education Music Class Students'? Workbooks According to Rokeach?s and Akbas's Value Classifications

    ERIC Educational Resources Information Center

    Çakirer, H. Serdar

    2014-01-01

    The aim of the present study is to compare the values in the songs of 5th, 6th, 7th and 8th grade primary education music classes students? workbooks according to the value categorizations proposed by Rockeach and Akbas and which values among the categories mentioned are taught to the students in the 5th, 6th, 7th and 8th grade primary education…

  19. Guidelines for locoregional therapy in primary breast cancer in developing countries: The results of an expert panel at the 8th Annual Women's Cancer Initiative – Tata Memorial Hospital (WCI-TMH) Conference

    PubMed Central

    Munshi, Anusheel; Gupta, Sudeep; Anderson, Benjamin; Yarnold, John; Parmar, Vani; Jalali, Rakesh; Sharma, Suresh Chander; Desai, Sangeeta; Thakur, Meenakshi; Baijal, Gunjan; Sarin, Rajiv; Mittra, Indraneel; Ghosh, Jaya; Badwe, Rajendra

    2012-01-01

    Background: Limited guidelines exist for breast cancer management in developing countries. In this context, the Women's Cancer Initiative - Tata Memorial Hospital (WCI-TMH) organised its 8th Annual Conference to update guidelines in breast cancer. Materials and Methods: Appropriately formulated guideline questions on each topic and subtopic in the surgical, radiation and systemic management of primary breast cancer were developed by the scientific committee and shared with the guest faculty of the Conference. Majority of the questions had multiple choice answers. The opinion of the audience, comprising academic and community oncologists, was electronically cumulated, followed by focussed presentations by eminent national and international experts on each topic. The guidelines were finally developed through an expert panel that voted on each guideline question after all talks had been delivered and audience opinion elicited. Separate panels were constituted for locoregional and systemic therapy in primary breast cancer. Results: Based on the voting results of the expert panel, guidelines for locoregional therapy of breast cancer have been formulated. Voting patterns for each question are reported. Conclusions: The updated guidelines on locoregional management of primary breast cancer in the context of developing countries are presented in this article. These recommendations have been designed to allow centers in the developing world to improve the quality of care for breast cancer patients. PMID:22988354

  20. Continuing harmonization of terminology and innovations for methodologies in developmental toxicology: Report of the 8th Berlin Workshop on Developmental Toxicity, 14-16 May 2014.

    PubMed

    Solecki, Roland; Rauch, Martina; Gall, Andrea; Buschmann, Jochen; Clark, Ruth; Fuchs, Antje; Kan, Haidong; Heinrich, Verena; Kellner, Rupert; Knudsen, Thomas B; Li, Weihua; Makris, Susan L; Ooshima, Yojiro; Paumgartten, Francisco; Piersma, Aldert H; Schönfelder, Gilbert; Oelgeschläger, Michael; Schaefer, Christof; Shiota, Kohei; Ulbrich, Beate; Ding, Xuncheng; Chahoud, Ibrahim

    2015-11-01

    This article is a report of the 8th Berlin Workshop on Developmental Toxicity held in May 2014. The main aim of the workshop was the continuing harmonization of terminology and innovations for methodologies used in the assessment of embryo- and fetotoxic findings. The following main topics were discussed: harmonized categorization of external, skeletal, visceral and materno-fetal findings into malformations, variations and grey zone anomalies, aspects of developmental anomalies in humans and laboratory animals, and innovations for new methodologies in developmental toxicology. The application of Version 2 terminology in the DevTox database was considered as a useful improvement in the categorization of developmental anomalies. Participants concluded that initiation of a project for comparative assessments of developmental anomalies in humans and laboratory animals could support regulatory risk assessment and university-based training. Improvement of new methodological approaches for alternatives to animal testing should be triggered for a better understanding of developmental outcomes. PMID:26073002

  1. Demonstration of sub-meter GPS orbit determination and 1.5 parts in 10 to the 8th three-dimensional baseline accuracy

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.; Bertiger, Willy I.

    1989-01-01

    Strategies for the estimation of precise GPS orbits and ground baselines, designed to minimize error sources related to the GPS orbit accuracy and the tropospheric delay, are demonstrated. Using GPS data from field experiments conducted in 1985 and 1986, it is shown that, by carefully selecting well-known stations to serve as reference points and by using the GPS data to determine high-accuracy GPS orbits and to solve for wet tropospheric delay fluctuations, the 2000-km baselines in North America can now be estimated with the accuracy better than 1.5 parts in 10 to the 8th. Using these strategies, better than l-m accuracy was achieved for the two best-tracked satellites (of the seven total operational GPS satellites).

  2. Thermal gradient-induced forces on geodesic reference masses for LISA

    SciTech Connect

    Carbone, L.; Ciani, G.; Dolesi, R.; Hueller, M.; Tombolato, D.; Vitale, S.; Weber, W. J.; Cavalleri, A.

    2007-11-15

    The low frequency sensitivity of space-borne gravitational wave observatories will depend critically on the geodesic purity of the trajectories of orbiting test masses. Fluctuations in the temperature difference across the enclosure surrounding the free-falling test mass can produce noisy forces through several processes, including the radiometric effect, radiation pressure, and outgassing. We present here a detailed experimental investigation of thermal gradient-induced forces for the Laser Interferometer Space Antenna (LISA) gravitational wave mission and the LISA Pathfinder, employing high resolution torsion pendulum measurements of the torque on a LISA-like test mass suspended inside a prototype of the LISA gravitational reference sensor that will surround the test mass in orbit. The measurement campaign, accompanied by numerical simulations of the radiometric and radiation pressure effects, allows a more accurate and representative characterization of thermal-gradient forces in the specific geometry and environment relevant to LISA free-fall. The pressure dependence of the measured torques allows clear identification of the radiometric effect, in quantitative agreement with the model developed. In the limit of zero gas pressure, the measurements are most likely dominated by outgassing, but at a low level that does not threaten the current LISA noise estimate, which assumes a maximum net force per degree of temperature difference of 100(pN/K) for the overall thermal gradient-induced effects.

  3. LISA — An ESA cornerstone mission for the detection and observation of gravitational waves

    NASA Astrophysics Data System (ADS)

    Danzmann, K.; LISA Science Team

    2003-10-01

    The primary objective of the Laser Interferometer Space Antenna (LISA) is to detect and observe gravitational waves from massive black holes, galactive binary stars, and violent events in the Universe in a frequency range from 10 -4 to 10 -1 Hz which is totally inaccessible to ground based experiments. It uses highly stabilised laser light (Nd: YAG, λ = 1.064 μm) in a Michelson-type interferometer arrangement. A cluster of six spacecraft with two at each vertex of an equilateral triangle is placed in an Earth-like orbit at a distance of 1 AU from the Sun, and 20° behind the Earth. Three subsets of four adjacent spacecraft each form an interferometer comprising a central station, consisting of two relatively adjacent spacecraft (200 km apart), and two spacecraft placed at a distance of 5 × 10 6 km from the centre to form arms which make an angle of 60° with each other. Each spacecraft is equipped with a laser. A descoped LISA with only four spacecraft has undergone an ESA assessment study in the M3 cycle, and the full 6-spacecraft LISA mission has now been selected as a cornerstone mission in the ESA Horizons 2000 programme. The LISA Assessment Report is available as ESA document SCI(94)6, May 1994. Detailed information on the LISA cornerstone mission is contained in the LISA Pre-Phase A Report, available as MPQ Report MPQ 208 (1996) from the Max-Planck-Institut für Quantenoptik.

  4. Rates of Substance Use of American Indian Students in 8th, 10th, and 12th Grades Living on or Near Reservations: Update, 2009–2012

    PubMed Central

    Harness, Susan D.; Swaim, Randall C.; Beauvais, Fred

    2014-01-01

    Objectives Understanding the similarities and differences between substance use rates for American Indian (AI) young people and young people nationally can better inform prevention and treatment efforts. We compared substance use rates for a large sample of AI students living on or near reservations for the years 2009–2012 with national prevalence rates from Monitoring the Future (MTF). Methods We identified and sampled schools on or near AI reservations by region; 1,399 students in sampled schools were administered the American Drug and Alcohol Survey. We computed lifetime, annual, and last-month prevalence measures by grade and compared them with MTF results for the same time period. Results Prevalence rates for AI students were significantly higher than national rates for nearly all substances, especially for 8th graders. Rates of marijuana use were very high, with lifetime use higher than 50% for all grade groups. Other findings of interest included higher binge drinking rates and OxyContin® use for AI students. Conclusions The results from this study demonstrate that adolescent substance use is still a major problem among reservation-based AI adolescent students, especially 8th graders, where prevalence rates were sometimes dramatically higher than MTF rates. Given the high rates of substance use-related problems on reservations, such as academic failure, delinquency, violent criminal behavior, suicidality, and alcohol-related mortality, the costs to members of this population and to society will continue to be much too high until a comprehensive understanding of the root causes of substance use are established. PMID:24587550

  5. Planning for chemical disasters at Point Lisas, Trinidad and Tobago

    SciTech Connect

    Mathur, M.N.

    1995-12-31

    No major chemical disaster has taken place so far in Trinidad and Tobago. Even so, in view of the numerous hazards that the various chemical handling plants deal with at Point Lisas, the country has to be prepared to deal with chemical disasters. The country`s emergency preparedness plan for chemical disasters aims to localize the emergency, if possible, eliminate it and minimize the effects of the accident on people and property. The hazards of ammonia, hydrogen, chlorine, hydrocarbons and methanol release can have devastating effects on the workers and the residents in the vicinity of the plants. The Emergency Plan identifies an Emergency Co-ordinating Officer who would take command of the off-site activities and coordinate the activities of Works Management, Local Authority, Police, Fire Services, Defence Force, Health Authority and Factory Inspectorate. Resources of fire fighting, medical treatment, telecommunications, waste management and public education have to be enhanced immediately. In the long term a new fire station and a new county hospital have to be built, some housing settlements have to be phased out and non-essential staff relocated.

  6. Binary Black Hole Mergers, Gravitational Waves, and LISA

    NASA Astrophysics Data System (ADS)

    Centrella, Joan; Baker, J.; Boggs, W.; Kelly, B.; McWilliams, S.; van Meter, J.

    2007-12-01

    The final merger of comparable mass binary black holes is expected to be the strongest source of gravitational waves for LISA. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. We will present the results of new simulations of black hole mergers with unequal masses and spins, focusing on the gravitational waves emitted and the accompanying astrophysical "kicks.” The magnitude of these kicks has bearing on the production and growth of supermassive blackholes during the epoch of structure formation, and on the retention of black holes in stellar clusters. This work was supported by NASA grant 06-BEFS06-19, and the simulations were carried out using Project Columbia at the NASA Advanced Supercomputing Division (Ames Research Center) and at the NASA Center for Computational Sciences (Goddard Space Flight Center).

  7. Binary Black Hole Mergers, Gravitational Waves, and LISA

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Baker, J.; Boggs, W.; Kelly, B.; McWilliams, S.; vanMeter, J.

    2008-01-01

    The final merger of comparable mass binary black holes is expected to be the strongest source of gravitational waves for LISA. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. We will present the results of new simulations of black hole mergers with unequal masses and spins, focusing on the gravitational waves emitted and the accompanying astrophysical "kicks." The magnitude of these kicks has bearing on the production and growth of supermassive black holes during the epoch of structure formation, and on the retention of black holes in stellar clusters.

  8. Observing Mergers of Nonspinning Black Hole Binaries with LISA

    NASA Technical Reports Server (NTRS)

    McWilliams S.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly Bernard J.; Thorpe, J. Ira; vanMeter, James R.

    2008-01-01

    Recent advances in the field of numerical relativity now make it possible to calculate the final, most powerful merger phase of binary black hole coalescence. We present the application of nonspinning numerical relativity waveforms to the search for and precision measurement of black hole binary coalescences using LISA. In particular, we focus on the advances made in moving beyond the equal mass, nonspinning case into other regions of parameter space, focusing on the case of nonspinning holes with ever-increasing mass ratios. We analyze the available unequal mass merger waveforms from numerical relativity, and compare them to two models, both of which use an effective one body treatment of the inspiral, but which use fundamentally different approaches to the treatment of the merger-ringdown. We confirm the expected mass ratio scaling of the merger, and investigate the changes in waveform behavior and their observational impact with changing mass ratio. Finally, we investigate the potential contribution from the merger portion of the waveform to measurement uncertainties of the binary's parameters for the unequal mass case.

  9. 8th Annual Salary Survey

    ERIC Educational Resources Information Center

    Dessoff, Alan

    2008-01-01

    Given a strained economy with skyrocketing fuel prices and homeowner foreclosures that threaten property tax rolls, plus pressures to satisfy mandates for improved student achievement, district administrators must tighten belts, juggle priorities, and find creative solutions to situations that might challenge them as never before. Teachers are…

  10. Numerical simulation of time delay interferometry for NGO/eLISA

    NASA Astrophysics Data System (ADS)

    Ni, Wei-Tou; Wang, Gang

    2012-07-01

    NGA/eLISA is a new mission proposal with arm length 106 km and one interferometer down-scaled from LISA (http://elisa-ngo.org/). Just like LISA and ASTROD-GW, in order to attain the requisite sensitivity for NGO/eLISA, laser frequency noise must be suppressed below the secondary noises such as the optical path noise, acceleration noise etc. In previous papers, we have used the CGC 2.7 ephemeris to numerically simulate the time delay interferometry for LISA and ASTROD-GW with one arm dysfunctional and found that they are both well below the limit under which the laser frequency noise is required to be suppressed. In this paper, we follow the same procedure to simulate the time delay interferometry numerically. To do this, we work out a set of 3-year optimized mission orbits of NGO/eLISA spacecraft starting at January 1, 2021 using the CGC2.7 ephemeris framework. We then use this numerical solution to calculate the residual optical path differences in the second-generation solutions as in our previous papers. The accuracy of this calculation for path differences is better than 0.01 mm (about 0.03 ps). The maximum path length difference, for all configuration calculated, is below 12 mm (40 ps). This is well below the limit under which the laser frequency noise is required to be suppressed for NGO/eLISA. We compare and discuss the resulting differences due to arm lengths for various mission proposals.

  11. Detection and measurement of micrometeoroids with LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Thorpe, J. I.; Parvini, C.; Trigo-Rodríguez, J. M.

    2016-02-01

    The Solar System contains a population of dust and small particles originating from asteroids, comets, and other bodies. These particles have been studied using a number of techniques ranging from in-situ satellite detectors to analysis of lunar microcraters to ground-based observations of zodiacal light. In this paper, we describe an approach for using the LISA Pathfinder (LPF) mission as an instrument to detect and characterize the dynamics of dust particles in the vicinity of Earth-Sun L1. Launched on Dec. 3rd, 2015, LPF is a dedicated technology demonstrator mission that will validate several key technologies for a future space-based gravitational-wave observatory. The primary science instrument aboard LPF is a precision accelerometer which we show will be capable of sensing discrete momentum impulses as small as 4 × 10-8 N s. We then estimate the rate of such impulses resulting from impacts of micrometeoroids based on standard models of the micrometeoroid environment in the inner solar system. We find that LPF may detect dozens to hundreds of individual events corresponding to impacts of particles with masses >10-9g during LPF's roughly six-month science operations phase in a 5 × 105 km by 8 × 105 km Lissajous orbit around L1. In addition, we estimate the ability of LPF to characterize individual impacts by measuring quantities such as total momentum transferred, direction of impact, and location of impact on the spacecraft. Information on flux and direction provided by LPF may provide insight as to the nature and origin of the individual impact and help constrain models of the interplanetary dust complex in general. Additionally, this direct in situ measurement of micrometeoroid impacts will be valuable to designers of future spacecraft targeting the environment around L1.

  12. Precision Measurement of Black Hole Binary Dynamics: Analyzing the LISA Data Stream

    NASA Technical Reports Server (NTRS)

    McWilliams, Sean T.; Thorpe, James Ira; Baker, John G.; Arnaud, Keith A.; Kelly, Bernard J.

    2008-01-01

    One of the richest potential sources of insight into fundamental physics that LISA will be capable of observing is the inspiral of supermassive black hole binaries (BHBs). However, the data analysis challenge presented by the LISA data stream is quite unlike the situation for present day gravitational wave detectors. In order to make the precision measurements necessary to achieve LISA's science goals, the BHB signal must be distinguished from a data stream that not only contains instrumental noise, but potentially thousands of other signals as well, so that the "background" we wish to separate out to focus on the BHB signal is likely to be highly nonstationary and nongaussian, as well as being of scientific interest in its own right. In addition, whereas the theoretical templates that we calculate in order to ultimately estimate the parameters can afford to be somewhat inaccurate and still be effective for present day and near future detectors, this is not the case for LISA, and extremely high fidelity of the theoretical templates for high signal-to-noise signals will be required to prevent theoretical errors from dominating the parameter estimates. NVe, will describe efforts in the community of LISA data analysts to address the challenges regarding the specific issue of BHB signals. These efforts include using a Markov Chain Monte Carlo approach with the freedom to model the BHB and the other signals present in the data stream simultaneously, rather than trying to remove other signals and risk biasing the remaining data. The Mock LISA Data Challenge is a community of LISA scientists who generate rounds of simulated LISA noise with increasingly difficult signal content, and invite the LISA data analysis community to exercise their methods, or develop new methods, in an attempt to extract the parameters for the signals embedded in the mock data. In addition to practical approaches such ,is this to assess the level of parameter accuracy, one can apply the Fisher

  13. Verification of time-delay interferometry techniques using the University of Florida LISA interferometry simulator

    NASA Astrophysics Data System (ADS)

    Mitryk, Shawn J.; Wand, Vinzenz; Mueller, Guido

    2010-04-01

    Laser Interferometer Space Antenna (LISA) is a cooperative NASA/ESA mission proposed to directly measure gravitational waves (GW) in the frequency range from 30 \\,\\mu \\rm {Hz} to 1\\,\\rm {Hz} with an optimal strain sensitivity of 10^{-21}/\\sqrt{Hz} at 3\\,\\rm {mHz}. LISA will utilize a modified Michelson interferometer to measure length changes of 40\\,\\rm {pm}/\\sqrt{Hz} between drag-free proof masses located on three separate spacecraft (SC) separated by a distance of 5\\,\\rm {Gm}. The University of Florida has developed a hardware-in-the-loop simulator of the LISA constellation to verify the laser noise cancellation technique known as time-delay interferometry (TDI). We replicate the frequency stabilization of the laser on the local SC and the phase-locking of the lasers on the far SC. The laser photodetector beatnotes are electronically delayed, Doppler shifted and applied with a mock GW signal to simulate the laser link between the SC. The beatnotes are also measured with a LISA-like phasemeter and the data are used to extract the laser phase and residual phase-lock loop noise in post-processing through TDI. This uncovers the GW modulation signal buried under the laser noise. The results are then compared to the requirements defined by the LISA science collaboration.

  14. Sensing and actuation system for the University of Florida Torsion Pendulum for LISA

    NASA Astrophysics Data System (ADS)

    Chilton, Andrew; Shelley, Ryan; Olatunde, Taiwo; Ciani, Giacomo; Conklin, John; Mueller, Guido

    2014-03-01

    Space-based gravitational wave detectors like LISA are a necessity for understanding the low-frequency portion of the gravitational universe. They use test masses (TMs) which are separated by Gm and are in free fall inside their respective spacecraft. Their relative distance is monitored with laser interferometry at the pm/rtHz level in the LISA band, ranging from 0.1 to 100 mHz. Each TM is enclosed in a housing that provides isolation, capacitive sensing, and electrostatic actuation capabilities. The electronics must both be sensitive at the 1 nm/rtHz level and not induce residual acceleration noise above the requirement for LISA Pathfinder (3*10-15 m/sec2Hz1/2at 3 mHz). Testing and developing this technology is one of the roles of the University of Florida Torsion Pendulum, the only US testbed for LISA-like gravitational reference sensor technology. Our implementation of the sensing system functions by biasing our hollow LISA-like TMs with a 100 kHz sine wave and coupling a pair surrounding electrodes as capacitors to a pair of preamps and a differential amplifier; all other processing is done digitally. Here we report on the design of, implementation of, and preliminary results from the UF Torsion Pendulum.

  15. Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J. T.; Bassan, M.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Caleno, M.; Carbone, L.; Cavalleri, A.; Cesarini, A.; Ciani, G.; Congedo, G.; Cruise, A. M.; Danzmann, K.; de Deus Silva, M.; De Rosa, R.; Diaz-Aguiló, M.; Di Fiore, L.; Diepholz, I.; Dixon, G.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fichter, W.; Fitzsimons, E. D.; Flatscher, R.; Freschi, M.; García Marín, A. F.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Guzmán, F.; Grado, A.; Grimani, C.; Grynagier, A.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hoyland, D.; Hueller, M.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johann, U.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C. J.; Lobo, J. A.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Mance, D.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Madden, S.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Monsky, A.; Nicolodi, D.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Raïs, B.; Ramos-Castro, J.; Reiche, J.; Robertson, D. I.; Rozemeijer, H.; Rivas, F.; Russano, G.; Sanjuán, J.; Sarra, P.; Schleicher, A.; Shaul, D.; Slutsky, J.; Sopuerta, C. F.; Stanga, R.; Steier, F.; Sumner, T.; Texier, D.; Thorpe, J. I.; Trenkel, C.; Tröbs, M.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wand, V.; Wanner, G.; Ward, H.; Warren, C.; Wass, P. J.; Wealthy, D.; Weber, W. J.; Wissel, L.; Wittchen, A.; Zambotti, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2016-06-01

    We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 ±0.1 fm s-2/√{Hz } , or (0.54 ±0.01 ) ×10-15 g/√{Hz } , with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 ±0.3 ) fm /√{Hz } , about 2 orders of magnitude better than requirements. At f ≤0.5 mHz we observe a low-frequency tail that stays below 12 fm s-2/√{Hz } down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.

  16. Expanding applications for surface-contaminant sensing using the laser interrogation of surface agents (LISA) technique

    NASA Astrophysics Data System (ADS)

    Ponsardin, Patrick L.; Higdon, N. S.; Chyba, Thomas H.; Armstrong, Wayne T.; Sedlacek, Arthur J., III; Christesen, Steven D.; Wong, Anna

    2004-02-01

    Laser Interrogation of Surface Agents (LISA) is a UV-Raman technique that provides short-range standoff detection and identification of surface-deposited chemical agents. ITT Industries, Advanced Engineering and Sciences Division, is currently developing and expanding the LISA technology under several programs that span a variety of missions for homeland defense. We will present and discuss some of these applications, while putting in perspective the overall evolution undergone by the technique within the last years. These applications include LISA-Recon (now called the Joint Contaminated Surface Detector--JCSD) which was developed under a cost-sharing arrangement with the U.S. Army Soldier and Biological Chemical Command (SBCCOM) for incorporation on the Army"s future reconnaissance vehicles, and designed to demonstrate single-shot on-the-move measurements of chemical contaminants at concentration levels below the Army's requirements. In parallel, LISA-Shipboard is being developed to optimize the sensor technique for detection of surface contaminants in the operational environment of a ship. The most recently started activity is LISA-Inspector that is being developed to provide a transportable sensor in a 'cart-like' configuration.

  17. Gravitational-wave radiation from double compact objects with eLISA in the Galaxy

    NASA Astrophysics Data System (ADS)

    Liu, Jinzhong; Zhang, Yu

    2014-03-01

    The phase of inspiral of double compact objects (DCOs: NS + WD, NS + NS, BH + NS, and BH + BH binaries) in the disk field population of the Galaxy provides a potential source in the frequency range from 10-4 to 0.1 Hz, which can be detected by the European New Gravitational Observatory (NGO: eLISA is derived from the previous LISA proposal) project. In this frequency range, much stronger gravitational wave (GW) radiation can be obtained from DCO sources because they possess more mass than other compact binaries (e.g., close double white dwarfs). In this study, we aim to calculate the gravitational wave signals from the resolvable DCO sources in the Galaxy using a binary population synthesis approach, and determine physical properties of these binaries using Monte Carlo simulations. Combining the sensitivity curve of the eLISA detector and a confusion-limited noise floor of close double white dwarfs, we find that only a handful of DCO sources can be detected by the eLISA detector. The detectable number of DCO sources reaches 160; in the context of low-frequency eLISA observations we find that the number of NS + WD, NS + NS, BH + NS, and BH + BH objects are 132, 16, 3, and 6, respectively.

  18. Spurious Acceleration Noise on the LISA Spacecraft Due to Solar Irradiance

    NASA Astrophysics Data System (ADS)

    Piotrzkowski, Brandon; Frank, Barret; Bolen, Brett; Larson, Shane

    2016-03-01

    The Laser Interferometer Space Antenna (LISA) is a configuration of three satellites that will precisely measure the distance between each other in order to detect gravitational waves. Therefore, the stability of LISA satellite configuration will be crucial to its ability to measure gravitational waves, as will understanding the noise introduced in the measured gravitational wave signal from various environmental accelerations. Although solar irradiance will certainly be a large source of noise in the desired frequency band and will attempt to disrupt the satellite configuration, previous research has only considered zeroth order calculations of force by irradiance in static systems. To remedy this, we used a geometric and material based approach to calculate the force on the satellites' solar arrays, the only component facing the sun. Running our simulation of LISA based on irradiance data from the VIRGO (Variability of solar IRadiance and Gravity Oscillations) satellite, we examined the Fourier transform of force to find the associated acceleration noise within in the LISA frequency band due to solar irradiance. This research will help isolate the gravitational wave signal when LISA is flown. University of Mississippi.

  19. Hybrid local FEM/global LISA modeling of damped guided wave propagation in complex composite structures

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2016-09-01

    This paper presents a new hybrid modeling technique for the efficient simulation of guided wave generation, propagation, and interaction with damage in complex composite structures. A local finite element model is deployed to capture the piezoelectric effects and actuation dynamics of the transmitter, while the global domain wave propagation and interaction with structural complexity (structure features and damage) are solved utilizing a local interaction simulation approach (LISA). This hybrid approach allows the accurate modeling of the local dynamics of the transducers and keeping the LISA formulation in an explicit format, which facilitates its readiness for parallel computing. The global LISA framework was extended through the 3D Kelvin–Voigt viscoelasticity theory to include anisotropic damping effects for composite structures, as an improvement over the existing LISA formulation. The global LISA framework was implemented using the compute unified device architecture running on graphic processing units. A commercial preprocessor is integrated seamlessly with the computational framework for grid generation and material property allocation to handle complex structures. The excitability and damping effects are successfully captured by this hybrid model, with experimental validation using the scanning laser doppler vibrometry. To demonstrate the capability of our hybrid approach for complex structures, guided wave propagation and interaction with a delamination in a composite panel with stiffeners is presented.

  20. Study by Mars Express of the Response of the Martian Ionosphere to a Strong CME Directly Detected by MAVEN on March 8th, 2015

    NASA Astrophysics Data System (ADS)

    Duru, F.; Gurnett, D. A.; Morgan, D. D.; Halekas, J. S.; DeJong, W.; Ertl, C.; Venable, A.; Wilkinson, C.; Lundin, R. N. A.; Frahm, R. A.; Winningham, D.; Plaut, J. J.; Connerney, J. E. P.; Espley, J. R.; Mahaffy, P. R.

    2015-12-01

    This study summarizes the effects of a strong coronal mass ejection (CME) on Mars as detected by Mars Atmosphere and Volatile Evolution Mission (MAVEN) in the solar wind and by Mars Express (MEX) in the nightside ionosphere. The Solar Wind Ion Analyzer (SWIA) onboard MAVEN identified a strong CME on March 8th, 2015, characterized by an increase in the solar wind density and solar wind speeds up to about 800 km/s. Simultaneously with the MAVEN observations, the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on MEX detected unusually high local electron density and local magnetic field values in the nightside Martian ionosphere. The Ion Mass Analyzer (IMA) on Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) instrument, also on MEX, saw a sharp CME front followed by an increase in the ion speed and a sharp enhancement in the electron flux seen by the ASPERA-3 Electron Spectrometer (ELS) signals the CME. ASPERA-3 data also suggest an increase in the plasma temperature when the shock hits Mars. Finally, the peak ionospheric density obtained with MARSIS remote sounding exhibits a discrete enhancement over a period of about 30 hrs around the same latitude and local time. We believe that this high density ionospheric plasma is forced by the CME from dayside to the nightside towards high altitudes.

  1. Morphological and biomolecular evidence for tuberculosis in 8th century AD skeletons from Bélmegyer-Csömöki domb, Hungary.

    PubMed

    Molnár, Erika; Donoghue, Helen D; Lee, Oona Y-C; Wu, Houdini H T; Besra, Gurdyal S; Minnikin, David E; Bull, Ian D; Llewellyn, Gareth; Williams, Christopher M; Spekker, Olga; Pálfi, György

    2015-06-01

    Macromorphological analysis of skeletons, from 20 selected graves of the 8th century AD Bélmegyer-Csömöki domb, revealed 19 cases of possible skeletal tuberculosis. Biomolecular analyses provided general support for such diagnoses, including the individual without pathology, but the data did not show coherent consistency over the range of biomarkers examined. Amplification of ancient DNA fragments found evidence for the Mycobacterium tuberculosis complex DNA only in five graves. In contrast, varying degrees of lipid biomarker presence were recorded in all except two of the skeletons, though most lipid components appeared to be somewhat degraded. Mycobacterial mycolic acid biomarkers were absent in five cases, but the weak, possibly degraded profiles for the remainder were smaller and inconclusive for either tuberculosis or leprosy. The most positive lipid biomarker evidence for tuberculosis was provided by mycolipenic acid, with 13 clear cases, supported by five distinct possible cases. Combinations of mycocerosic acids were present in all but three graves, but in one case a tuberculosis-leprosy co-infection was indicated. In two specimens with pathology, no lipid biomarker evidence was recorded, but one of these specimens provided M. tuberculosis complex DNA fragments. PMID:25771204

  2. Quantitative analysis of LISA pathfinder test-mass noise

    NASA Astrophysics Data System (ADS)

    Ferraioli, Luigi; Congedo, Giuseppe; Hueller, Mauro; Vitale, Stefano; Hewitson, Martin; Nofrarias, Miquel; Armano, Michele

    2011-12-01

    LISA Pathfinder (LPF) is a mission aiming to test the critical technology for the forthcoming space-based gravitational-wave detectors. The main scientific objective of the LPF mission is to demonstrate test masses free falling with residual accelerations below 3×10-14ms-2/Hz at 1 mHz. Reaching such an ambitious target will require a significant amount of system optimization and characterization, which will in turn require accurate and quantitative noise analysis procedures. In this paper, we discuss two main problems associated with the analysis of the data from LPF: i) excess noise detection and ii) noise parameter identification. The mission is focused on the low-frequency region ([0.1, 10] mHz) of the available signal spectrum. In such a region, the signal is dominated by the force noise acting on test masses. At the same time, the mission duration is limited to 90 days and typical data segments will be 24 hours in length. Considering those constraints, noise analysis is expected to deal with a limited amount of non-Gaussian data, since the spectrum statistics will be far from Gaussian and the lowest available frequency is limited by the data length. In this paper, we analyze the details of the expected statistics for spectral data and develop two suitable excess noise estimators. One is based on the statistical properties of the integrated spectrum, the other is based on the Kolmogorov-Smirnov test. The sensitivity of the estimators is discussed theoretically for independent data, then the algorithms are tested on LPF synthetic data. The test on realistic LPF data allows the effect of spectral data correlations on the efficiency of the different noise excess estimators to be highlighted. It also reveals the versatility of the Kolmogorov-Smirnov approach, which can be adapted to provide reasonable results on correlated data from a modified version of the standard equations for the inversion of the test statistic. Closely related to excess noise detection, the

  3. Public health assessment for South 8th Street Landfill (A/K/A West Memphis Landfill), West Memphis, Crittenden County, Arkansas, Region 6. Cerclis No. ARD980496723. Final report

    SciTech Connect

    Not Available

    1994-11-22

    The South 8th Street Landfill site is located along South 8th Street on the west bank of the Mississippi River in West Memphis, Crittenden County, Arkansas. Previous studies and environmental sampling indicate that various wastes disposed of at the South 8th Street Landfill have contaminated the site with a number of contaminants including VOCs, PAHs, phenols, PCBs, pesticides, and heavy metals. Exposure to surface soil contaminants would have occurred through skin contact and incidental ingestion. In addition, persons who used the on-site pond for recreational activities (such as wading and swimming) were likely exposed to contaminants in the surface water and sediments through skin contact and incidental ingestion; and persons who consumed fish caught in the pond were likely exposed to contaminants (primarily mercury) in the fish.

  4. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    NASA Technical Reports Server (NTRS)

    Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.

  5. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    NASA Technical Reports Server (NTRS)

    Russell, Tiffany; Martinez, Armando; Boyd, Darren; SanSoucie, Michael; Farmer, Brandon; Schneider, Todd; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans/initial results.

  6. Magnetic Back Action Effect of Magnetic Sensors for eLISA/NGO

    NASA Astrophysics Data System (ADS)

    Mateos, I.; Diaz-Aguiló, M.; Gibert, F.; Lloro, I.; Lobo, A.; Nofrarias, M.; Ramos-Castro, J.

    2013-01-01

    The fluxgate magnetometers used in LISA Pathfinder mission are able to perform very low noise measurements at milli-Hertz frequency, however they need to be kept somehow away from the Test Masses (TMs) due to the quantity of ferromagnetic material contained in the fluxgate's core, which constitutes a potential source of disturbance to the performance. As a result, the estimation of the magnetic field and gradient in the TMs is very problematic, despite the excellent quality of the readout data. The design of a magnetic diagnostic measuring system able to deal with the magnetic constraints for eLISA/NGO will imply the magnetic characterization of the sensors in order to estimate the magnetic back action effect on their environment. The magnetic impact caused by the magnetometers also depends on the noise reduction techniques used in the signal conditioning circuit, which is being studied to develop criteria for the best choice of magnetic sensors for eLISA/NGO.

  7. Magnetic polarisation effects of temperature sensors and heaters in LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Sanjuán, J.; Lobo, A.; Nofrarias, M.; Ramos-Castro, J.; Mateos, N.; Xirgu, X.

    2009-03-01

    Temperature sensors and heaters belong in the diagnostics subsystem of the LISA Technology Package (LTP) on board LISA Pathfinder, the technology demonstrator for LISA. A number of these diagnostics items are placed at short distances from the LTP proof masses, and are negative temperature coefficient (NTC) thermistors. By design, these devices have tiny amounts of ferromagnetic materials which therefore constitute a potential source of disturbance to the performance of the LTP. We present a detailed magnetic characterisation of the NTC's, and use the data to evaluate their impact on the acceleration noise budget of the LTP. The effect is seen to be small, and can be further reduced if the NTC's are submitted to a demagnetisation process before they are attached. Re-magnetisation is unlikely, as rather strong fields (mili-Tesla) are required to re-magnetise the NTC's

  8. An overview of the second round of the Mock LISA Data Challenges

    NASA Astrophysics Data System (ADS)

    Arnaud, K. A.; Babak, S.; Baker, J. G.; Benacquista, M. J.; Cornish, N. J.; Cutler, C.; Finn, L. S.; Larson, S. L.; Littenberg, T.; Porter, E. K.; Vallisneri, M.; Vecchio, A.; Vinet, J.-Y.; Data Challenge Task Force, The Mock LISA

    2007-10-01

    The Mock Data Challenges (MLDCs) have the dual purpose of fostering the development of LISA data-analysis tools and capabilities and of demonstrating the technical readiness already achieved by the gravitational-wave community in distilling a rich science payoff from the LISA data. The first round of MLDCs has just been completed and the second-round data sets are being released shortly after this workshop. The second-round data sets contain radiation from an entire Galactic population of stellar-mass binary systems, from massive-black-hole binaries, and from extreme-mass-ratio inspirals. These data sets are designed to capture much of the complexity that is expected in the actual LISA data, and should provide a fairly realistic setting to test advanced data-analysis techniques, and in particular the global aspect of the analysis. Here we describe the second round of MLDCs and provide details about its implementation.

  9. The Mock LISA Data Challenges: from challenge 3 to challenge 4

    NASA Astrophysics Data System (ADS)

    Babak, Stanislav; Baker, John G.; Benacquista, Matthew J.; Cornish, Neil J.; Larson, Shane L.; Mandel, Ilya; McWilliams, Sean T.; Petiteau, Antoine; Porter, Edward K.; Robinson, Emma L.; Vallisneri, Michele; Vecchio, Alberto; Data Challenge Task Force, the Mock LISA; Adams, Matt; Arnaud, Keith A.; Błaut, Arkadiusz; Bridges, Michael; Cohen, Michael; Cutler, Curt; Feroz, Farhan; Gair, Jonathan R.; Graff, Philip; Hobson, Mike; Shapiro Key, Joey; Królak, Andrzej; Lasenby, Anthony; Prix, Reinhard; Shang, Yu; Trias, Miquel; Veitch, John; Whelan, John T.; participants, the Challenge 3

    2010-04-01

    The Mock LISA Data Challenges are a program to demonstrate LISA data-analysis capabilities and to encourage their development. Each round of challenges consists of one or more datasets containing simulated instrument noise and gravitational waves from sources of undisclosed parameters. Participants analyze the datasets and report best-fit solutions for the source parameters. Here we present the results of the third challenge, issued in April 2008, which demonstrated the positive recovery of signals from chirping galactic binaries, from spinning supermassive-black-hole binaries (with optimal SNRs between ~10 and 2000), from simultaneous extreme-mass-ratio inspirals (SNRs of 10-50), from cosmic-string-cusp bursts (SNRs of 10-100), and from a relatively loud isotropic background with Ωgw(f) ~ 10-11, slightly below the LISA instrument noise.

  10. An algorithm for the detection of extreme mass ratio inspirals in LISA data

    NASA Astrophysics Data System (ADS)

    Babak, Stanislav; Gair, Jonathan R.; Porter, Edward K.

    2009-07-01

    The gravitational wave signal from a compact object inspiralling into a massive black hole (MBH) is considered to be one of the most difficult sources to detect in the LISA data stream. Due to the large parameter space of possible signals and many orbital cycles spent in the sensitivity band of LISA, it has been estimated that ~1035 templates would be required to carry out a fully coherent search using a template grid, which is computationally impossible. Here we describe an algorithm based on a constrained Metropolis-Hastings stochastic search which allows us to find and accurately estimate parameters of isolated EMRI signals buried in Gaussian instrumental noise. We illustrate the effectiveness of the algorithm with results from searches of the Mock LISA Data Challenge round 1B data sets.

  11. A demonstration of arm-locking for LISA using the GRACE-FO Laser Ranging Instrument

    NASA Astrophysics Data System (ADS)

    Thorpe, Ira; McKenzie, Kirk; Sutton, Andrew

    2015-04-01

    The mitigation of laser frequency noise is a key challenge for the design of space-based interferometric gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA) and its derivatives. Arm locking is novel technique of stabilizing the laser frequency using the LISA arms that has been studied through simulations and in the laboratory. The Laser Ranging Instrument (LRI) on the upcoming GRACE-FO geodesy mission provides an opportunity to perform an on-orbit demonstration of arm-locking in a configuration that is representative of LISA in many aspects. In this talk, I will describe a potential arm-locking experiment for GRACE-FO and present preliminary results from time-domain simulations being used to refine the proposed experiment design.

  12. In-flight thermal experiments for LISA Pathfinder: Simulating temperature noise at the Inertial Sensors

    NASA Astrophysics Data System (ADS)

    Gibert, F.; Nofrarias, M.; Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, Ll; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Maghami, P.; Mance, D.; Martín, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    Thermal Diagnostics experiments to be carried out on board LISA Pathfinder (LPF) will yield a detailed characterisation of how temperature fluctuations affect the LTP (LISA Technology Package) instrument performance, a crucial information for future space based gravitational wave detectors as the proposed eLISA. Amongst them, the study of temperature gradient fluctuations around the test masses of the Inertial Sensors will provide as well information regarding the contribution of the Brownian noise, which is expected to limit the LTP sensitivity at frequencies close to 1 mHz during some LTP experiments. In this paper we report on how these kind of Thermal Diagnostics experiments were simulated in the last LPF Simulation Campaign (November, 2013) involving all the LPF Data Analysis team and using an end-to-end simulator of the whole spacecraft. Such simulation campaign was conducted under the framework of the preparation for LPF operations.

  13. In-flight thermal experiments for LISA Pathfinder: Simulating temperature noise at the Inertial Sensors

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, Ll; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Maghami, P.; Mance, D.; Martín, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-04-01

    Thermal Diagnostics experiments to be carried out on board LISA Pathfinder (LPF) will yield a detailed characterisation of how temperature fluctuations affect the LTP (LISA Technology Package) instrument performance, a crucial information for future space based gravitational wave detectors as the proposed eLISA. Amongst them, the study of temperature gradient fluctuations around the test masses of the Inertial Sensors will provide as well information regarding the contribution of the Brownian noise, which is expected to limit the LTP sensitivity at frequencies close to 1 mHz during some LTP experiments. In this paper we report on how these kind of Thermal Diagnostics experiments were simulated in the last LPF Simulation Campaign (November, 2013) involving all the LPF Data Analysis team and using an end-to-end simulator of the whole spacecraft. Such simulation campaign was conducted under the framework of the preparation for LPF operations.

  14. Searches for cosmic-string gravitational-wave bursts in Mock LISA Data

    NASA Astrophysics Data System (ADS)

    Cohen, Michael I.; Cutler, Curt; Vallisneri, Michele

    2010-09-01

    A network of observable, macroscopic cosmic (super-)strings may well have formed in the early Universe. If so, the cusps that generically develop on cosmic-string loops emit bursts of gravitational radiation that could be detectable by gravitational-wave interferometers, such as the ground-based LIGO/Virgo detectors and the planned, space-based LISA detector. Here we report on two versions of a LISA-oriented string-burst search pipeline that we have developed and tested within the context of the Mock LISA Data Challenges. The two versions rely on the publicly available MultiNest and PyMC software packages, respectively. To reduce the effective dimensionality of the search space, our implementations use the F-statistic to analytically maximize over the signal's amplitude and polarization, \\mathcal {A} and ψ, and use the FFT to search quickly over burst arrival times tC. The standard F-statistic is essentially a frequentist statistic that maximizes the likelihood; we also demonstrate an approximate, Bayesian version of the F-statistic that incorporates realistic priors on \\mathcal {A} and ψ. We calculate how accurately LISA can expect to measure the physical parameters of string-burst sources, and compare to results based on the Fisher-matrix approximation. To understand LISA's angular resolution for string-burst sources, we draw maps of the waveform fitting factor (maximized over (\\mathcal {A}, \\psi, t_C)) as a function of the sky position; these maps dramatically illustrate why (for LISA) inferring the correct sky location of the emitting string loop will often be practically impossible. In addition, we identify and elucidate several symmetries that are imbedded in this search problem, and we derive the distribution of cut-off frequencies fmax for observable bursts.

  15. The LTP Experiment on LISA Pathfinder: Operational Definition of TT Gauge in Space

    NASA Astrophysics Data System (ADS)

    Armano, Michele

    2011-10-01

    The European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA) are planning the Laser Interferometer Space Antenna (LISA) mission in order to detect GW. The need of accurate testing of free-fall and knowledge of noise in a space environment similar to LISA's is considered mandatory a pre-phase for the project. Therefore the LISA Pathfinder mission has been designed by ESA to fly the LISA Technology Package (LTP), aiming at testing free-fall by measuring the residual acceleration between two test-bodies in the dynamical scheme we address as "drag-free". The spectral map of the residual acceleration as function of frequency will convey information on the local noise level, thus producing a picture of the environmental working conditions for LISA itself. The thesis contains abundant material on the problem of compensating static gravity, the development of a theory of orthogonalization of reference and cross-talk for the LTP experiment. The construction of the laser detection procedure starting from GR and differential geometry arguments is carried on. Effort was put in pointing out the physical motivations for the choices made in several other papers by the author and colleagues. In this perspective the thesis is meant as a summary tool for the LTP collaboration. In the second part of the thesis we summarize our contributions for a measurement of G onboard LTP and review on possible tests of fundamental physics the mission might embody. A wide part of the thesis is now part of the LTP Operation Master Plan, describing the real science and operations onboard LISA Pathfinder. This thesis was defended on September 26th, 2006 at the University of Como, Italy.

  16. LISA technologies in new light: exploring alternatives for charge management and optical bench construction

    NASA Astrophysics Data System (ADS)

    Ciani, Giacomo; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Conklin, John W.; Mueller, Guido

    2015-08-01

    A LISA-like gravitational wave observatory is the choice candidate for ESA's L3 large mission scheduled to launch in 2034. The LISA Test Package (LTP) mission will launch later this year and test many critical technologies needed for such an observatory, among which are picometer interferometry in space and UV charge management of the Test Mass (TM). The design of these subsystems has been frozen many years ago during the final formulation of the LTP mission; since then, the LISA mission concept has evolved and new technologies have become available, making it possible to re-think the way these subsystem are implemented. With the final formulation of the L3 mission still years in the future and the LTP results expected in about one year, now is an ideal time look for areas of possible improvement and explore alternative implementations that can enhance performance, reduce costs or mitigate risks.Recently developed UV LED are lighter, cheaper and more powerful than traditional mercury lamps; in addition, their fast response time can be used to implement AC discharge techniques that can save even more space and power, and provide a more precise control of the charge.The most recent iteration of the mission baseline design allows for eliminating some of the optical components initially deemed essential; paired with the use of polarization multiplexing, this permits a redesign of the optical bench that simplifies the layout and enables a modular approach to machining and assembly, thus reducing the risks and costs associated with the current monolithic design without compromising the picometer stability of the optical path.Leveraging on extensive previous experience with LISA interferometry and the availability of a torsion pendulum-based LISA test-bed, the University of Florida LISA group is working at developing, demonstrating and optimizing both these technologies. I will describe the most recent advancements and results.

  17. Doing Science with eLISA: Astrophysics and Cosmology in the Millihertz Regime

    NASA Technical Reports Server (NTRS)

    Amaro, Seoane, Pau; Aoudia, Sofiane; Babak, Stanislav; Binetruy, Pierre; Berti, Amanuele; Bohe, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J.; Danzmann, Karsten; Dufaux, Jean-Francois; Gair, Jonathan; Jennrich, Oliver; Jetzer, Philippe; Klein, Antoine; Lang, Ryan N.; Lobo, Albsrto; Littenberg, Tyson; McWilliams, Sean T.; Nelemans, Gijs; Petiteau, Antoine; Porter, Edward K.; Schutz, Bernard F.; Stebbins, Robin; Vallisneri, Michele

    2012-01-01

    This document introduces the exciting and fundamentally new science and astronomy that the European New Gravitational Wave Observatory (NGO) mission (derived from the previous LISA proposal) will deliver. The mission (which we will refer to by its informal name eLISA ) will survey for the first time the low-frequency gravitational wave band (about 0.1 mHz to 1 Hz), with sufficient sensitivity to detect interesting individual astrophysical sources out to z = 15. The measurements described here will address the basic scientific goals that have been captured in ESA s New Gravitational Wave Observatory Science Requirements Document ; they are presented here so that the wider scientific community can have access to them. The eLISA mission will discover and study a variety of cosmic events and systems with high sensitivity: coalescences of massive black holes binaries, brought together by galaxy mergers; mergers of earlier, less-massive black holes during the epoch of hierarchical galaxy and black-hole growth; stellar-mass black holes and compact stars in orbits just skimming the horizons of massive black holes in galactic nuclei of the present era; extremely compact white dwarf binaries in our Galaxy, a rich source of information about binary evolution and about future Type Ia supernovae; and possibly most interesting of all, the uncertain and unpredicted sources, for example relics of inflation and of the symmetry-breaking epoch directly after the Big Bang. eLISA s measurements will allow detailed studies of these signals with high signal-to-noise ratio, addressing most of the key scientific questions raised by ESA s Cosmic Vision programme in the areas of astrophysics and cosmology. They will also provide stringent tests of general relativity in the strong-field dynamical regime, which cannot be probed in any other way. This document not only describes the science but also gives an overview on the mission design and orbits. LISA s heritage in the eLISA design will be

  18. The Mock LISA Data Challenge Round 3: New and Improved Sources

    NASA Technical Reports Server (NTRS)

    Baker, John

    2008-01-01

    The Mock LISA Data Challenges are a program to demonstrate and encourage the development of data-analysis capabilities for LISA. Each round of challenges consists of several data sets containing simulated instrument noise and gravitational waves from sources of undisclosed parameters. Participants are asked to analyze the data sets and report the maximum information they can infer about the source parameters. The challenges are being released in rounds of increasing complexity and realism. Challenge 3. currently in progress, brings new source classes, now including cosmic-string cusps and primordial stochastic backgrounds, and more realistic signal models for supermassive black-hole inspirals and galactic double white dwarf binaries.

  19. Observing the Final Moments of Massive Black Hole Mergers with LISA.

    NASA Technical Reports Server (NTRS)

    Baker, John

    2006-01-01

    Mergers of binary black hole systems are one of the strongest sources of gravitational radiation expected to be observed by LISA. Recent advances in modeling the final merger and ringdown of comparable-mass systems, particularly via numerical relativity simulations, are dramatically expanding our understanding of these systems and the radiation they generate. We summarize recent modeling results, highlighting the work of Goddard s numerical relativity group, and apply this emerging knowledge to the problem of observing the final moments of binary black hole mergers with LISA.

  20. Probing white dwarf interiors with LISA: periastron precession in eccentric double white dwarfs.

    PubMed

    Willems, B; Vecchio, A; Kalogera, V

    2008-02-01

    In globular clusters, dynamical interactions give rise to a population of eccentric double white dwarfs detectable by the Laser Interferometer Space Antenna (LISA) up to the Large Magellanic Cloud. In this Letter, we explore the detectability of periastron precession in these systems with LISA. Unlike previous investigations, we consider contributions due to tidal and rotational distortions of the binary components in addition to general relativistic contributions to the periastron precession. At orbital frequencies above a few mHz, we find that tides and stellar rotation dominate, opening up a possibly unique window to the study of the interior and structure of white dwarfs. PMID:18352253

  1. Development of an Optical Read-Out System for the LISA/NGO Gravitational Reference Sensor: A Status Report

    NASA Astrophysics Data System (ADS)

    Di Fiore, L.; De Rosa, R.; Garufi, F.; Grado, A.; Milano, L.; Spagnuolo, V.; Russano, G.

    2013-01-01

    The LISA group in Napoli is working on the development of an Optical Read-Out (ORO) system, based on optical levers and position sensitive detectors, for the LISA gravitational reference sensor. ORO is not meant as an alternative, but as an addition, to capacitive readout, that is the reference solution for LISA/NGO and will be tested on flight by LISA-Pathfinder. The main goal is the introduction of some redundancy with consequent mission risk mitigation. Furthermore, the ORO system is more sensitive than the capacitive one and its usage would allow a significant relaxation of the specifications on cross-couplings in the drag free control loops. The reliability of the proposed ORO device and the fulfilment of the sensitivity requirements have been already demonstrated in bench-top measurements and tests with the four mass torsion pendulum developed in Trento as a ground testing facility for LISA-Pathfinder and LISA hardware. In this paper we report on the present status of this activity presenting the last results and perspectives on some relevant aspects. 1) System design, measured sensitivity and noise characterization. 2) Possible layouts for integration in LISA/NGO and bench-top tests on real scale prototypes. 3) Search for space compatible components and preliminary tests. We will also discuss next steps in view of a possible application in LISA/NGO.

  2. Genomics Encyclopedia of Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB): a resource for microsymbiont genomes (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Reeve, Wayne

    2013-03-01

    Wayne Reeve of Murdoch University on "Genomics Encyclopedia of Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB): a resource for microsymbiont genomes" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  3. Efficient program for decoding the /255, 223/ Reed-Solomon code over GF/2 to the 8th/ with both errors and erasures, using transform decoding. [FFT-like algorithm

    NASA Technical Reports Server (NTRS)

    Miller, R. L.; Truong, T. K.; Reed, I. S.

    1980-01-01

    The paper deals with a method developed for decoding a (255, 223) Reed-Solomon code over GF(2 to the 8th) with both errors and erasures. The matrix of decoding times for correcting errors and erasures of the code using a simplified decoder is presented. It is shown that the algorithm proposed is faster by a factor of from three to seven.

  4. COMMENTS CONTRIBUTED BY ALAN HUBER TO AWMA AB-3 COMMITTEE FOR POSSIBLE INCLUSION IN THE COMMITTEE'S PRESENTATION AT EPA'S 8TH CONFERENCE ON AIR QUALITY MODELING - A&WMA AB-3 COMMENTS ON NONSTANDARD MODELING APPROACHES

    EPA Science Inventory

    Technical comments are provided to the Air and waste Management Associations AB-3 committee for potential inclusion into the committee's comments to be made at EPA's 8th Conference on Air Quality Modeling. Computational Fluid Dynamics (CFD) simulations can model specific cases wh...

  5. The Obstacles for the Teaching of 8th Grade TR History of Revolution and Kemalism Course According to the Constructivist Approach (An Example of Exploratory Sequential Mixed Method Design)

    ERIC Educational Resources Information Center

    Karademir, Yavuz; Demir, Selcuk Besir

    2015-01-01

    The aim of this study is to ascertain the problems social studies teachers face in the teaching of topics covered in 8th grade TRHRK Course. The study was conducted in line with explanatory sequential mixed method design, which is one of the mixed research method, was used. The study involves three phases. In the first step, exploratory process…

  6. A three-stage search for supermassive black-hole binaries in LISA data

    NASA Astrophysics Data System (ADS)

    Brown, Duncan A.; Crowder, Jeff; Cutler, Curt; Mandel, Ilya; Vallisneri, Michele

    2007-10-01

    Gravitational waves from the inspiral and coalescence of supermassive black-hole (SMBH) binaries with masses m1 ~ m2 ~ 106Modot are likely to be among the strongest sources for the Laser Interferometer Space Antenna (LISA). We describe a three-stage data-analysis pipeline designed to search for and measure the parameters of SMBH binaries in LISA data. The first stage uses a time frequency track-search method to search for inspiral signals and provide a coarse estimate of the black-hole masses m1, m2 and the coalescence time of the binary tc. The second stage uses a sequence of matched-filter template banks, seeded by the first stage, to improve the measurement accuracy of the masses and coalescence time. Finally, a Markov chain Monte Carlo search is used to estimate all nine physical parameters of the binary (masses, coalescence time, distance, initial phase, sky position and orientation). Using results from the second stage substantially shortens the Markov chain burn-in time and allows us to determine the number of SMBH-binary signals in the data before starting parameter estimation. We demonstrate our analysis pipeline using simulated data from the first Mock LISA Data Challenge. We discuss our plan for improving this pipeline and the challenges that will be faced in real LISA data analysis.

  7. LISA: the Italian CRG beamline for x-ray Absorption Spectroscopy at ESRF

    NASA Astrophysics Data System (ADS)

    d'Acapito, F.; Trapananti, A.; Puri, A.

    2016-05-01

    LISA is the acronym of Linea Italiana per la Spettroscopia di Assorbimento di raggi X (Italian beamline for X-ray Absorption Spectroscopy) and is the upgrade of the former GILDA beamline installed on the BM08 bending magnet port of European Synchrotron Radiation Facility (ESRF). Within this contribution a full description of the project is provided.

  8. Interpolation of the magnetic field at the test masses in eLISA

    NASA Astrophysics Data System (ADS)

    Mateos, I.; Díaz-Aguiló, M.; Ramos-Castro, J.; García-Berro, E.; Lobo, A.

    2015-08-01

    A feasible design for a magnetic diagnostics subsystem for eLISA will be based on that of its precursor mission, LISA Pathfinder. Previous experience indicates that magnetic field estimation at the positions of the test masses has certain complications. This is due to two reasons. The first is that magnetometers usually back-act due to their measurement principles (i.e., they also create their own magnetic fields), while the second is that the sensors selected for LISA Pathfinder have a large size, which conflicts with space resolution and with the possibility of having a sufficient number of them to properly map the magnetic field around the test masses. However, high-sensitivity and small-sized sensors that significantly mitigate the two aforementioned limitations exist, and have been proposed to overcome these problems. Thus, these sensors will be likely selected for the magnetic diagnostics subsystem of eLISA. Here we perform a quantitative analysis of the new magnetic subsystem, as it is currently conceived, and assess the feasibility of selecting these sensors in the final configuration of the magnetic diagnostic subsystem.

  9. A Strategy to Characterize the LISA-Pathfinder Cold Gas Thruster System

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; Garcia Marirrodriga, C.; Gerndt, R.; Gesa, L. I.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martin, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    The cold gas micro-propulsion system that will be used during the LISA-Pathfinder mission will be one of the most important component used to ensure the "free-fall" of the enclosed test masses. In this paper we present a possible strategy to characterize the effective direction and amplitude gain of each of the 6 thrusters of this system.

  10. Accelerated prospective parameter estimation for observing black hole mergers with LISA

    NASA Astrophysics Data System (ADS)

    Baker, John; Marsat, Sylvain; Graff, Philip

    2016-03-01

    LISA, a candidate for the European Space Agency's planned L3 gravitational wave mission, is expected to provide tremendous capabilities in observing merging black holes out to very high redshifts with much higher signal-to-noise ratios than are likely with ground-based observations. Understanding precisely how well we may be able to measure these systems requires detailed Bayesian analysis with the best available theoretical waveform predictions and a full treatment of LISA's instrumental response. Highly accurate representations of general relativity's signal predictions, such as those of the Effective-One-Body formalism, are becoming available but these are too slow to compute directly. We address the practical challenge of computing the signals and response both accurately and quickly with frequency-domain reduced order signal models and apt approximation techniques for LISA's instrumental response to achieve millisecond likelihood evaluations. We apply these techniques to study of the impact of higher-harmonics in LISA observations of non-spinning mergers. Supported by NASA Grant 11-ATP-046.

  11. LISA: a java API for performing simulations of trajectories for all types of balloons

    NASA Astrophysics Data System (ADS)

    Conessa, Huguette

    2016-07-01

    LISA (LIbrarie de Simulation pour les Aerostats) is a java API for performing simulations of trajectories for all types of balloons (Zero Pressure Balloons, Pressurized Balloons, Infrared Montgolfier), and for all phases of flight (ascent, ceiling, descent). This library has for goals to establish a reliable repository of Balloons flight physics models, to capitalize developments and control models used in different tools. It is already used for flight physics study software in CNES, to understand and reproduce the behavior of balloons, observed during real flights. It will be used operationally for the ground segment of the STRATEOLE2 mission. It was developed with quality rules of "critical software." It is based on fundamental generic concepts, linking the simulation state variables to interchangeable calculation models. Each LISA model defines how to calculate a consistent set of state variables combining validity checks. To perform a simulation for a type of balloon and a phase of flight, it is necessary to select or create a macro-model that is to say, a consistent set of models to choose from among those offered by LISA, defining the behavior of the environment and the balloon. The purpose of this presentation is to introduce the main concepts of LISA, and the new perspectives offered by this library.

  12. CFRP Dimensional Stability Investigations for Use on the LISA Mission Telescope

    NASA Technical Reports Server (NTRS)

    Sanjuan, J.; Korytov, D.; Spector, A.; Mueller, G.; Preston, A.; Livas, J.; Freise, A.; Dixon, G.

    2011-01-01

    The Laser Interferometer Space Antenna (LISA) is a mission designed to detect low frequency gravitational-waves. In order for LISA to succeed in its goal of direct measurement of gravitational waves, many subsystems must work together to measure the distance between proof masses on adjacent spacecraft. One such subsystem, the telescope, plays a critical role as it is the laser transmission and reception link between spacecraft. Not only must the material that makes up the telescope support structure be strong, stiff and light, but it must have a dimensional stability of better than 1 pm Hz(exp -1/2) at 3 mHz and the distance between the primary and the secondary mirrors must change by less than 2.5 micron over the mission lifetime. CFRP is the current baseline materiaL however, it has not been tested to the pico-meter level as required by the LISA mission. In this paper we present dimensional stability results, outgassing effects occurring in the cavity and discuss its feasibility for use as the telescope spacer for the LISA spacecraft.

  13. Sky Localization of Complete Inspiral-Merger-Ringdown Signals for Nonspinning Black Hole Binaries with LISA

    NASA Technical Reports Server (NTRS)

    McWilliams, Sean T.; Lang, Ryan N.; Baker, John G.; Thorpe, James Ira

    2011-01-01

    We investigate the capability of LISA to measure the sky position of equal-mass, nonspinning black hole binaries, including for the first time the entire inspiral-merger-ringdown signal, the effect of the LISA orbits, and the complete three-channel LISA response. For an ensemble of systems near the peak of LISA's sensitivity band, with total rest mass of 2 x l0(exp 6) Stellar Mass at a redshift of z = 1 with random orientations and sky positions, we find median sky localization errors of approximately approx. 3 arcminutes. This is comparable to the field of view of powerful electromagnetic telescopes, such as the James Webb Space Telescope, that could be used to search for electromagnetic signals associated with merging black holes. We investigate the way in which parameter errors decrease with measurement time, focusing specifically on the additional information provided during the merger-ringdown segment of the signal. We find that this information improves all parameter estimates directly, rather than through diminishing correlations with any subset of well-determined parameters.

  14. Lisa Loeb Fellowship: Cultural Encounters as a Lens for Foreign Language Acquisition and Pedagogy.

    ERIC Educational Resources Information Center

    LaBelle, Melissa Tobey

    2000-01-01

    Investigated the interplay of second language pedagogy and cultural insights through the lens of Boston University's Lisa Loeb cross-cultural travel fellowship. Three graduate students in the Modern Foreign Language education program spent 6 weeks in the countries that spoke the languages they taught. The fellowship offered participants an…

  15. Massive black-hole binary inspirals: results from the LISA parameter estimation taskforce

    NASA Astrophysics Data System (ADS)

    Arun, K. G.; Babak, Stas; Berti, Emanuele; Cornish, Neil; Cutler, Curt; Gair, Jonathan; Hughes, Scott A.; Iyer, Bala R.; Lang, Ryan N.; Mandel, Ilya; Porter, Edward K.; Sathyaprakash, Bangalore S.; Sinha, Siddhartha; Sintes, Alicia M.; Trias, Miquel; Van Den Broeck, Chris; Volonteri, Marta

    2009-05-01

    The LISA Parameter Estimation Taskforce was formed in September 2007 to provide the LISA Project with vetted codes, source distribution models and results related to parameter estimation. The Taskforce's goal is to be able to quickly calculate the impact of any mission design changes on LISA's science capabilities, based on reasonable estimates of the distribution of astrophysical sources in the universe. This paper describes our Taskforce's work on massive black-hole binaries (MBHBs). Given present uncertainties in the formation history of MBHBs, we adopt four different population models, based on (i) whether the initial black-hole seeds are small or large and (ii) whether accretion is efficient or inefficient at spinning up the holes. We compare four largely independent codes for calculating LISA's parameter-estimation capabilities. All codes are based on the Fisher-matrix approximation, but in the past they used somewhat different signal models, source parametrizations and noise curves. We show that once these differences are removed, the four codes give results in extremely close agreement with each other. Using a code that includes both spin precession and higher harmonics in the gravitational-wave signal, we carry out Monte Carlo simulations and determine the number of events that can be detected and accurately localized in our four population models.

  16. Science with the space-based interferometer eLISA: Supermassive black hole binaries

    NASA Astrophysics Data System (ADS)

    Klein, Antoine; Barausse, Enrico; Sesana, Alberto; Petiteau, Antoine; Berti, Emanuele; Babak, Stanislav; Gair, Jonathan; Aoudia, Sofiane; Hinder, Ian; Ohme, Frank; Wardell, Barry

    2016-01-01

    We compare the science capabilities of different eLISA mission designs, including four-link (two-arm) and six-link (three-arm) configurations with different arm lengths, low-frequency noise sensitivities and mission durations. For each of these configurations we consider a few representative massive black hole formation scenarios. These scenarios are chosen to explore two physical mechanisms that greatly affect eLISA rates, namely (i) black hole seeding, and (ii) the delays between the merger of two galaxies and the merger of the black holes hosted by those galaxies. We assess the eLISA parameter estimation accuracy using a Fisher matrix analysis with spin-precessing, inspiral-only waveforms. We quantify the information present in the merger and ringdown by rescaling the inspiral-only Fisher matrix estimates using the signal-to-noise ratio from nonprecessing inspiral-merger-ringdown phenomenological waveforms, and from a reduced set of precessing numerical relativity/post-Newtonian hybrid waveforms. We find that all of the eLISA configurations considered in our study should detect some massive black hole binaries. However, configurations with six links and better low-frequency noise will provide much more information on the origin of black holes at high redshifts and on their accretion history, and they may allow the identification of electromagnetic counterparts to massive black hole mergers.

  17. Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results.

    PubMed

    Armano, M; Audley, H; Auger, G; Baird, J T; Bassan, M; Binetruy, P; Born, M; Bortoluzzi, D; Brandt, N; Caleno, M; Carbone, L; Cavalleri, A; Cesarini, A; Ciani, G; Congedo, G; Cruise, A M; Danzmann, K; de Deus Silva, M; De Rosa, R; Diaz-Aguiló, M; Di Fiore, L; Diepholz, I; Dixon, G; Dolesi, R; Dunbar, N; Ferraioli, L; Ferroni, V; Fichter, W; Fitzsimons, E D; Flatscher, R; Freschi, M; García Marín, A F; García Marirrodriga, C; Gerndt, R; Gesa, L; Gibert, F; Giardini, D; Giusteri, R; Guzmán, F; Grado, A; Grimani, C; Grynagier, A; Grzymisch, J; Harrison, I; Heinzel, G; Hewitson, M; Hollington, D; Hoyland, D; Hueller, M; Inchauspé, H; Jennrich, O; Jetzer, P; Johann, U; Johlander, B; Karnesis, N; Kaune, B; Korsakova, N; Killow, C J; Lobo, J A; Lloro, I; Liu, L; López-Zaragoza, J P; Maarschalkerweerd, R; Mance, D; Martín, V; Martin-Polo, L; Martino, J; Martin-Porqueras, F; Madden, S; Mateos, I; McNamara, P W; Mendes, J; Mendes, L; Monsky, A; Nicolodi, D; Nofrarias, M; Paczkowski, S; Perreur-Lloyd, M; Petiteau, A; Pivato, P; Plagnol, E; Prat, P; Ragnit, U; Raïs, B; Ramos-Castro, J; Reiche, J; Robertson, D I; Rozemeijer, H; Rivas, F; Russano, G; Sanjuán, J; Sarra, P; Schleicher, A; Shaul, D; Slutsky, J; Sopuerta, C F; Stanga, R; Steier, F; Sumner, T; Texier, D; Thorpe, J I; Trenkel, C; Tröbs, M; Tu, H B; Vetrugno, D; Vitale, S; Wand, V; Wanner, G; Ward, H; Warren, C; Wass, P J; Wealthy, D; Weber, W J; Wissel, L; Wittchen, A; Zambotti, A; Zanoni, C; Ziegler, T; Zweifel, P

    2016-06-10

    We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2±0.1  fm s^{-2}/sqrt[Hz], or (0.54±0.01)×10^{-15}  g/sqrt[Hz], with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8±0.3)  fm/sqrt[Hz], about 2 orders of magnitude better than requirements. At f≤0.5  mHz we observe a low-frequency tail that stays below 12  fm s^{-2}/sqrt[Hz] down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA. PMID:27341221

  18. Evaluation of new technologies for the LISA gravitational reference sensor using the UF torsion pendulum

    NASA Astrophysics Data System (ADS)

    Conklin, John; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Aitken, Michael; Ciani, Giacomo; Mueller, Guido

    2016-01-01

    The Laser Interferometer Space Antenna (LISA) is the most mature concept for detecting gravitational waves from space. The LISA design has been studied for more than 20 years as a joint effort between NASA and the European Space Agency. LISA consists of three Sun-orbiting spacecraft that form an equilateral triangle, with each side measuring 1-5 million kilometers in length. Each spacecraft houses two free-floating test masses, which are protected from all disturbing forces so that they follow pure geodesics. A single test mass together with its protective housing and associated components is referred to as a gravitational reference sensor. A drag-free control system is supplied with measurements of the test mass position from these sensors and commands external micronewton thrusters to force the spacecraft to fly in formation with the test masses. Laser interferometry is used to measure the minute variations in the distance, or light travel time, between these purely free-falling TMs, caused by gravitational waves. We have constructed a new torsion pendulum facility with a force sensitivity in the range of pN/Hz1/2 around 1 mHz for testing new gravitational reference sensor technologies. This experimental facility consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by their electrode housings. With the aid of this facility, we are (a) developing a novel test mass charge control scheme based on ultraviolet LEDs, (b) examining alternate test mass and electrode housing coatings, and (c) evaluating alternate operational modes of the LISA gravitational reference sensor. This presentation will describe this facility and the development status of these new technologies.

  19. LISA — a study of the ESA cornerstone mission for observing gravitational waves

    NASA Astrophysics Data System (ADS)

    Edwards, T.; Sandford, M. C. W.; Hammesfahr, A.

    2001-03-01

    The primary objective of the Laser Interferometer Space Antenna (LISA) mission is to detect and observe gravitational waves from massive black holes and galactic binaries in the frequency range 10 -4 to 10 -1 Hz. This low-frequency range is inaccessible to ground-based interferometers because of the unshieldable background of local gravitational noise and because ground-based interferometers are limited in length to a few km. LISA is an ESA cornerstone mission and recently had a system study (Ref. 1) carried out by a consortium led by Astrium, which confirmed the basic configuration for the payload with only minor changes, and provided detailed concepts for the spacecraft and mission design. The study confirmed the need for a drag-free technology demonstration mission to develop the inertial sensors for LISA, before embarking on the build of the flight sensors. With a technology demonstration flight in 2005, it would be possible to carry out LISA as a joint ESA-NASA mission with a launch by 2010 subject to the funding programmatics. The baseline for LISA is three disc-like spacecraft each of which consist of a science module which carries the laser interferometer payload (two in each science module) and a propulsion module containing an ion drive and the hydrazine thrusters of the AOCS. The propulsion module is used for the transfer from earth escape trajectory provided by the Delta II launch to the operational orbit. Once there the propulsion module is jettisoned to reduce disturbances on the payload. Detailed analysis of thermal and gravitational disturbances, a model of the drag-free control and of the interferometer operation confirm that the strain sensitivity of the interferometer will be achieved.

  20. MONA, LISA and VINCI Soon Ready to Travel to Paranal

    NASA Astrophysics Data System (ADS)

    2000-11-01

    First Instruments for the VLT Interferometer Summary A few months from now, light from celestial objects will be directed for the first time towards ESO's Very Large Telescope Interferometer (VLTI) at the Paranal Observatory (Chile). During this "First Light" event and the subsequent test phase, the light will be recorded with a special test instrument, VINCI (VLT INterferometer Commissioning Instrument). The main components of this high-tech instrument are aptly named MONA (a system that combines the light beams from several telescopes by means of optical fibers) and LISA (the infrared camera). VINCI was designed and constructed within a fruitful collaboration between ESO and several research institutes and industrial companies in France and Germany . It is now being assembled at the ESO Headquarters in Garching (Germany) and will soon be ready for installation at the telescope on Paranal. With the VLTI and VINCI, Europe's astronomers are now entering the first, crucial phase of an exciting scientific and technology venture that will ultimately put the world's most powerful optical/IR interferometric facility in their hands . PR Photo 31/00 : VINCI during tests at the ESO Headquarters in Garching. The VLT Interferometer (VLTI) ESO Press Photo 31/00 ESO Press Photo 31/00 [Preview; JPEG: 400 x 301; 43k] [Normal; JPEG: 800 x 602;208xk] [Full-Res; JPEG: 1923 x 1448; 2.2Mb] PR Photo 31/00 shows the various components of the complex VINCI instrument for the VLT Interferometer , during the current tests at the Optical Laboratory at the ESO Headquarters in Garching (Germany). It will later be installed in "clean-room" conditions within the Interferometric Laboratory at the Paranal Observatory. This electronic photo was obtained for documentary purposes. VINCI (VLT INterferometer Commissioning Instrument) is the "First Light" instrument for the Very Large Telescope Interferometer (VLTI) at the Paranal Observatory (Chile). Early in 2001, it will be used for the first tests

  1. Results from the LISA Commissioning Experiment on the decay of 24O* --> 22O + n

    NASA Astrophysics Data System (ADS)

    Rogers, Warren F.; MoNA Collaboration

    2014-09-01

    The Large multi-Institutional Scintillator Array (LISA) at NSCL, Michigan State University was constructed and tested by undergraduate students from several institutions in the MoNA (Modular Neutron Array) collaboration. LISA is used in conjunction with MoNA for detection of neutrons at large angles to the beam axis, corresponding to high energy decays from exotic nuclei at or beyond the neutron dripline. The LISA commissioning experiment was designed to measure and resolve neutron decays from the first two excited states (2+ and 1+) of 24O to the 23O ground state, using proton-knockout of 26F on a thin Be target. The trajectories of charged fragments at the site of the decay were identified using the Sweeper Magnet chamber detectors and inverse-tracking through the magnet. The two scintillator arrays measured the time of flight path of neutrons. Decay energies were determined using these decay kinematics and invariant mass spectroscopy. The two 24O states were previously observed, but with insufficient resolution to separate the two cleanly. This experiment provided sufficiently resolution to separate the two states cleanly. Results for the decay energies and comparison with Monte Carlo simulations will be presented. The Large multi-Institutional Scintillator Array (LISA) at NSCL, Michigan State University was constructed and tested by undergraduate students from several institutions in the MoNA (Modular Neutron Array) collaboration. LISA is used in conjunction with MoNA for detection of neutrons at large angles to the beam axis, corresponding to high energy decays from exotic nuclei at or beyond the neutron dripline. The LISA commissioning experiment was designed to measure and resolve neutron decays from the first two excited states (2+ and 1+) of 24O to the 23O ground state, using proton-knockout of 26F on a thin Be target. The trajectories of charged fragments at the site of the decay were identified using the Sweeper Magnet chamber detectors and inverse

  2. Kolmogorov-Smirnov like test for time-frequency Fourier spectrogram analysis in LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Ferraioli, Luigi; Armano, Michele; Audley, Heather; Congedo, Giuseppe; Diepholz, Ingo; Gibert, Ferran; Hewitson, Martin; Hueller, Mauro; Karnesis, Nikolaos; Korsakova, Natalia; Nofrarias, Miquel; Plagnol, Eric; Vitale, Stefano

    2015-03-01

    A statistical procedure for the analysis of time-frequency noise maps is presented and applied to LISA Pathfinder mission synthetic data. The procedure is based on the Kolmogorov-Smirnov like test that is applied to the analysis of time-frequency noise maps produced with the spectrogram technique. The influence of the finite size windowing on the statistic of the test is calculated with a Monte Carlo simulation for 4 different windows type. Such calculation demonstrate that the test statistic is modified by the correlations introduced in the spectrum by the finite size of the window and by the correlations between different time bins originated by overlapping between windowed segments. The application of the test procedure to LISA Pathfinder data demonstrates the test capability of detecting non-stationary features in a noise time series that is simulating low frequency non-stationary noise in the system.

  3. Possible Periodic Orbit Control Maneuvers for an eLISA Mission

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.; Welter, Gary L.

    2012-01-01

    This paper investigates the possible application of periodic orbit control maneuvers for so-called evolved-LISA (eLISA) missions, i.e., missions for which the constellation arm lengths and mean distance from the Earth are substantially reduced. We find that for missions with arm lengths of 106 km and Earth-trailing distance ranging from approx. 12deg to 20deg over the science lifetime, the occasional use of the spacecraft micro-Newton thrusters for constellation configuration maintenance should be able to essentially eliminate constellation distortion caused by Earth-induced tidal forces at a cost to science time of only a few percent. With interior angle variation kept to approx. +/-0:1deg, the required changes in the angles between the laser beam pointing directions for the two arms from any spacecraft could be kept quite small. This would considerably simplify the apparatus necessary for changing the transmitted beam directions.

  4. Search for spinning black hole binaries in mock LISA data using a genetic algorithm

    SciTech Connect

    Petiteau, Antoine; Shang Yu; Babak, Stanislav; Feroz, Farhan

    2010-05-15

    Coalescing massive black hole binaries are the strongest and probably the most important gravitational wave sources in the LISA band. The spin and orbital precessions bring complexity in the waveform and make the likelihood surface richer in structure as compared to the nonspinning case. We introduce an extended multimodal genetic algorithm which utilizes the properties of the signal and the detector response function to analyze the data from the third round of mock LISA data challenge (MLDC3.2). The performance of this method is comparable, if not better, to already existing algorithms. We have found all five sources present in MLDC3.2 and recovered the coalescence time, chirp mass, mass ratio, and sky location with reasonable accuracy. As for the orbital angular momentum and two spins of the black holes, we have found a large number of widely separated modes in the parameter space with similar maximum likelihood values.

  5. Development of a US Laser System for the Gravitational Wave Mission LISA

    NASA Astrophysics Data System (ADS)

    Camp, Jordan; Numata, Kenji

    2016-07-01

    A highly stable and robust laser system is a key component of the space-based, Gravitational Wave mission LISA architecture. In this talk I will describe our plans to demonstrate a TRL 5 LISA laser system at Goddard Space Flight Center by 2017. The laser system includes a low-noise oscillator followed by a power amplifier. The oscillator is a low-mass, compact 10 mW External Cavity Laser, consisting of a semiconductor laser coupled to an optical cavity, built by the laser vendor Redfern Integrated Optics. The amplifier is a diode-pumped Yb fiber with 2.5 W output, built at Goddard. I will show noise and reliability data for the full laser system, and describe our plans to reach TRL 5 by 2017.

  6. Possible Periodic Orbit Control Maneuvers for an eLISA Mission

    NASA Astrophysics Data System (ADS)

    Bender, P. L.; Welter, G. L.

    2013-01-01

    This paper investigates the possible application of periodic orbit control maneuvers for so-called evolved-LISA (eLISA) missions, i.e., missions for which the constellation arm lengths and mean distance from the Earth are substantially reduced. We find that for missions with arm lengths of ˜ 106 km and Earth-trailing distance ranging from ˜ 12° to 20° over the science lifetime, the occasional use of the spacecraft micro-Newton thrusters for constellation configuration maintenance should be able to essentially eliminate constellation distortion caused by Earth-induced tidal forces at a cost to science time of only a few percent. With interior angle variation kept to ˜ ± 0.1°, the required changes in the angles between the laser beam pointing directions for the two arms from any spacecraft could be kept quite small. This would considerably simplify the apparatus necessary for changing the transmitted beam directions.

  7. Construction of an optical test-bed for eLISA

    NASA Astrophysics Data System (ADS)

    Lieser, Maike; Fitzsimons, E.; Isleif, K.-S.; Killow, C.; Perreur-Lloyd, M.; Robertson, D.; Schuster, S.; Tröbs, M.; Veith, S.; Ward, H.; Heinzel, G.; Danzmann, K.

    2016-05-01

    In the planned eLISA mission a key part of the system is the optical bench that holds the interferometers for reading out the inter-spacecraft distance and the test mass position. We report on ongoing technology development for the eLISA optical system like the back-link between the optical benches and the science interferometer where the local beam is interfered with the received beam from the distant spacecraft. The focus will be on a setup to investigate the tilt-to-pathlength coupling in the science interferometer. To test the science interferometer in the lab a second bench providing a laser beam and a reference interferometer is needed. We present a setup with two ultra-stable low expansion glass benches and bonded optics. To suppress the tilt-to-pathlength coupling to the required level (few μm/rad) imaging optics are placed in front of the interferometer photo diodes.

  8. Searching for massive black hole binaries in the first Mock LISA Data Challenge

    NASA Astrophysics Data System (ADS)

    Cornish, Neil J.; Porter, Edward K.

    2007-10-01

    The Mock LISA Data Challenge is a worldwide effort to solve the LISA data analysis problem. We present here our results for the massive black hole binary (BBH) section of round 1. Our results cover challenge 1.2.1, where the coalescence of the binary is seen, and challenge 1.2.2, where the coalescence occurs after the simulated observational period. The data stream is composed of Gaussian instrumental noise plus an unknown BBH waveform. Our search algorithm is based on a variant of the Markov chain Monte Carlo method that uses Metropolis Hastings sampling and thermostated frequency annealing. We present results from the training data sets where we know the parameter values a priori and the blind data sets where we were informed of the parameter values after the challenge had finished. We demonstrate that our algorithm is able to rapidly locate the sources, accurately recover the source parameters and provide error estimates for the recovered parameters.

  9. Effect of higher harmonic corrections on the detection of massive black hole binaries with LISA

    NASA Astrophysics Data System (ADS)

    Porter, Edward K.; Cornish, Neil J.

    2008-09-01

    Massive black hole binaries are key targets for the space based gravitational wave Laser Interferometer Space Antenna (LISA). Several studies have investigated how LISA observations could be used to constrain the parameters of these systems. Until recently, most of these studies have ignored the higher harmonic corrections to the waveforms. Here we analyze the effects of the higher harmonics in more detail by performing extensive Monte Carlo simulations. We pay particular attention to how the higher harmonics impact parameter correlations, and show that the additional harmonics help mitigate the impact of having two laser links fail, by allowing for an instantaneous measurement of the gravitational wave polarization with a single interferometer channel. By looking at parameter correlations we are able to explain why certain mass ratios provide dramatic improvements in certain parameter estimations, and illustrate how the improved polarization measurement improves the prospects for single interferometer operation.

  10. The Mock LISA Data Challenges: from Challenge 1B to Challenge 3

    NASA Astrophysics Data System (ADS)

    Babak, Stanislav; Baker, John G.; Benacquista, Matthew J.; Cornish, Neil J.; Crowder, Jeff; Larson, Shane L.; Plagnol, Eric; Porter, Edward K.; Vallisneri, Michele; Vecchio, Alberto; Data Challenge Task Force, The Mock LISA; Arnaud, Keith; Barack, Leor; Błaut, Arkadiusz; Cutler, Curt; Fairhurst, Stephen; Gair, Jonathan; Gong, Xuefei; Harry, Ian; Khurana, Deepak; Królak, Andrzej; Mandel, Ilya; Prix, Reinhard; Sathyaprakash, B. S.; Savov, Pavlin; Shang, Yu; Trias, Miquel; Veitch, John; Wang, Yan; Wen, Linqing; Whelan, John T.; Challenge-1B participants, the

    2008-09-01

    The Mock LISA Data Challenges are a programme to demonstrate and encourage the development of LISA data-analysis capabilities, tools and techniques. At the time of this workshop, three rounds of challenges had been completed, and the next was about to start. In this paper we provide a critical analysis of the entries to the latest completed round, Challenge 1B. The entries confirm the consolidation of a range of data-analysis techniques for galactic and massive-black-hole binaries, and they include the first convincing examples of detection and parameter estimation of extreme-mass-ratio inspiral sources. In this paper we also introduce the next round, Challenge 3. Its data sets feature more realistic waveform models (e.g., galactic binaries may now chirp, and massive-black-hole binaries may precess due to spin interactions), as well as new source classes (bursts from cosmic strings, isotropic stochastic backgrounds) and more complicated nonsymmetric instrument noise.

  11. Precision Measurement of Complete Black Hole Binary Inspiral-Merger-Ringdown Signals with LISA

    NASA Technical Reports Server (NTRS)

    McWilliams, Sean T.

    2009-01-01

    Until recently, only the inspiral and ringdown phases of black hole binary (131-113) coalescences had been modeled. The merger signals, which were expected to be the most luminous portion of the total signal, were unavailable due to the technical difficulty of calculating the behavior of a BHB in this highly dynamical and non-linear regime. Advancements in the field of numerical relativity make it possible to include the merger segment of 131113 coalescence in the search for and characterization of gravitational wave signals. The implications for LISA include an increase in the event rate due to the increase in achievable signal-to-noise ratio, as well as potentially improved accuracy regarding the extraction of the source parameters. We investigate the degree to which mergers improve parameter estimation, by studying the impact of including mergers on achievable parameter accuracy over a significant range of masses and mass ratios for nonspinning systems, and its impact on LISA science.

  12. Thermo-elastic induced phase noise in the LISA Pathfinder spacecraft

    NASA Astrophysics Data System (ADS)

    Gibert, F.; Nofrarias, M.; Karnesis, N.; Gesa, L.; Martín, V.; Mateos, I.; Lobo, A.; Flatscher, R.; Gerardi, D.; Burkhardt, J.; Gerndt, R.; Robertson, D. I.; Ward, H.; McNamara, P. W.; Guzmán, F.; Hewitson, M.; Diepholz, I.; Reiche, J.; Heinzel, G.; Danzmann, K.

    2015-02-01

    During the on-station thermal test campaign of the LISA Pathfinder, the diagnostics subsystem was tested in nearly space conditions for the first time after integration in the satellite. The results showed the compliance of the temperature measurement system, obtaining temperature noise around {{10}-4} K H{{z}-1/2} in the frequency band 1-30 mHz. In addition, controlled injection of heat signals to the suspension struts anchoring the LISA Technology Package (LTP) core assembly to the satellite structure allowed us to experimentally estimate, for the first time, the phase noise contribution through thermo-elastic distortion of the LTP interferometer, the satellite's main instrument. Such contribution was found to be at {{10}-12} mH{{z}-1/2}, a factor of 30 below the measured noise at the lower end of the measurement bandwidth (1 mHz).

  13. A new torsion pendulum for testing enhancements to the LISA Gravitational Reference Sensor

    NASA Astrophysics Data System (ADS)

    Conklin, John; Chilton, A.; Ciani, G.; Mueller, G.; Olatunde, T.; Shelley, R.

    2014-01-01

    The Laser Interferometer Space Antenna (LISA), the most mature concept for observing gravitational waves from space, consists of three Sun-orbiting spacecraft that form a million km-scale equilateral triangle. Each spacecraft houses two free-floating test masses (TM), which are protected from disturbing forces so that they follow pure geodesics in spacetime. A single test mass together with its housing and associated components is referred to as a gravitational reference sensor (GRS). Laser interferometry is used to measure the minute variations in the distance between these free-falling TMs, caused by gravitational waves. The demanding acceleration noise requirement of 3E-15 m/sec^2Hz^1/2 for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in 2015. Recently, efforts have begun in the U.S. to design and assemble a new, nearly thermally noise limited torsion pendulum for testing GRS technology enhancements and for understanding the dozens of acceleration noise sources that affect the performance of the GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and will consist of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. The GRS technology enhancements under development include a novel TM charge control scheme based on ultraviolet LEDs, simplified capacitive readout electronics, and a six degree-of-freedom, all-optical TM sensor. This presentation will describe the design of the torsion pendulum facility, its expected performance, and the potential technology enhancements.

  14. Low-Frequency Gravitational-Wave Science with eLISA/ NGO

    NASA Technical Reports Server (NTRS)

    Amaro-Seoane, Pau; Aoudia, Sofiane; Babak, Stanislav; Binetruy, Pierre; Berti, Emanuele; Bohe, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J.; Danzmann, Karsten; Dufaux, Jean-Francois; Gair, Jonathan; Jennrich, Oliver; Jetzer, Philippe; Klein, Antoine; Lang, Ryan N.; Lobo, Alberto; Littenberg, Tyson; McWilliams, Sean T.; Nelemans, Gijs; Petiteau, Antoine; Porter, Edward K.; Schutz, Bernard F.; Stebbins, Robin; Vallisneri, Michele

    2011-01-01

    We review the expected science performance of the New Gravitational-Wave Observatory (NGO, a.k.a. eLISA), a mission under study by the European Space Agency for launch in the early 2020s. eLISA will survey the low-frequency gravitational-wave sky (from 0.1 mHz to 1 Hz), detecting and characterizing a broad variety of systems and events throughout the Universe, including the coalescences of massive black holes brought together by galaxy mergers; the inspirals of stellar-mass black holes and compact stars into central galactic black holes; several millions of ultracompact binaries, both detached and mass transferring, in the Galaxy; and possibly unforeseen sources such as the relic gravitational-wave radiation from the early Universe. eLISA's high signal-to-noise measurements will provide new insight into the structure and history of the Universe, and they will test general relativity in its strong-field dynamical regime.

  15. Renormalized second post-Newtonian spin contributions to the accumulated orbital phase for LISA sources

    SciTech Connect

    Gergely, Laszlo Arpad; Mikoczi, Balazs

    2009-03-15

    We give here a new third post-Newtonian (3PN) spin-spin contribution (in the PN parameter {epsilon}) to the accumulated orbital phase of a compact binary, arising from the spin-orbit precessional motion of the spins. In the equal mass case, this contribution vanishes, but Laser Interferometer Space Antenna (LISA) sources of merging supermassive binary black holes have typically a mass ratio of 1:10. For such nonequal masses, this 3PN correction is periodic in time, with a period approximately {epsilon}{sup -1} times larger than the period of gravitational waves. We derive a renormalized and simpler expression of the spin-spin coefficient at 2PN, as an average over the time scale of this period of the combined 2PN and 3PN contribution. We also find that for LISA sources the quadrupole-monopole contribution to the phase dominates over the spin-spin contribution, while the self-spin contribution is negligible even for the dominant spin. Finally, we define a renormalized total spin coefficient {sigma} to be employed in the search for gravitational waves emitted by LISA sources.

  16. Metals in sediments and fish from Sea Lots and Point Lisas Harbors, Trinidad and Tobago

    USGS Publications Warehouse

    Mohammed, A.; May, T.; Echols, K.; Walther, M.; Manoo, A.; Maraj, D.; Agard, J.; Orazio, C.

    2012-01-01

    Concentrations of heavy metals were determined in nearshore marine sediments and fish tissue from Sea Lots area on the west coast, at Caroni Lagoon National Park, and in the Point Lisas harbor, Trinidad. The most dominant metals found in sediments were Al, Fe and Zn with mean concentrations highest at Sea Lots (Al-39420 ??g/g; Fe-45640 ??g/g; Zn-245 ??g/g), when compared to sediments from Point Lisas (Al-11936 ??g/g; Fe-30171 ??g/g; Zn-69 ??g/g) and Caroni (Al-0400 ??g/g; Fe-19000 ??g/g; Zn-32 ??g/g), High concentration of Cu, Al, Fe and Zn were also detected in fish tissue from Point Lisas and Caroni. Metal concentrations in fish tissue showed significant correlation with sediment metals concentration, which suggests that tissue levels are influenced by sediment concentration. Of the metals, only Zn, Hg and Cu had a bioaccumulation factor (BAF) greater than one, which suggests a high bioaccumulation potential for these metals. ?? 2011 Elsevier Ltd.

  17. Metals in sediments and fish from Sea Lots and Point Lisas harbors, Trinidad and Tobago

    USGS Publications Warehouse

    Mohammed, Azad; May, Thomas; Echols, Kathy; Walther, Mike; Manoo, Anton; Maraj, Dexter; Agard, John; Orazio, Carl

    2012-01-01

    Concentrations of heavy metals were determined in nearshore marine sediments and fish tissue from Sea Lots area on the west coast, at Caroni Lagoon National Park, and in the Point Lisas harbor, Trinidad. The most dominant metals found in sediments were Al, Fe and Zn with mean concentrations highest at Sea Lots (Al-39420 μg/g; Fe-45640 μg/g; Zn-245 μg/g), when compared to sediments from Point Lisas (Al-11936 μg/g; Fe-30171 μg/g; Zn-69 μg/g) and Caroni (Al-0400 μg/g; Fe-19000 μg/g; Zn-32 μg/g), High concentration of Cu, Al, Fe and Zn were also detected in fish tissue from Point Lisas and Caroni. Metal concentrations in fish tissue showed significant correlation with sediment metals concentration, which suggests that tissue levels are influenced by sediment concentration. Of the metals, only Zn, Hg and Cu had a bioaccumulation factor (BAF) greater than one, which suggests a high bioaccumulation potential for these metals.

  18. Improving Bayesian analysis for LISA Pathfinder using an efficient Markov Chain Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Ferraioli, Luigi; Porter, Edward K.; Armano, Michele; Audley, Heather; Congedo, Giuseppe; Diepholz, Ingo; Gibert, Ferran; Hewitson, Martin; Hueller, Mauro; Karnesis, Nikolaos; Korsakova, Natalia; Nofrarias, Miquel; Plagnol, Eric; Vitale, Stefano

    2014-02-01

    We present a parameter estimation procedure based on a Bayesian framework by applying a Markov Chain Monte Carlo algorithm to the calibration of the dynamical parameters of the LISA Pathfinder satellite. The method is based on the Metropolis-Hastings algorithm and a two-stage annealing treatment in order to ensure an effective exploration of the parameter space at the beginning of the chain. We compare two versions of the algorithm with an application to a LISA Pathfinder data analysis problem. The two algorithms share the same heating strategy but with one moving in coordinate directions using proposals from a multivariate Gaussian distribution, while the other uses the natural logarithm of some parameters and proposes jumps in the eigen-space of the Fisher Information matrix. The algorithm proposing jumps in the eigen-space of the Fisher Information matrix demonstrates a higher acceptance rate and a slightly better convergence towards the equilibrium parameter distributions in the application to LISA Pathfinder data. For this experiment, we return parameter values that are all within ˜1 σ of the injected values. When we analyse the accuracy of our parameter estimation in terms of the effect they have on the force-per-unit of mass noise, we find that the induced errors are three orders of magnitude less than the expected experimental uncertainty in the power spectral density.

  19. TDI and clock noise removal for the split interferometry configuration of LISA

    NASA Astrophysics Data System (ADS)

    Otto, Markus; Heinzel, Gerhard; Danzmann, Karsten

    2012-10-01

    Laser phase noise is the dominant noise source in the on-board measurements of the space-based gravitational wave detector LISA (Laser Interferometer Space Antenna). A well-known data analysis technique, the so-called time-delay interferometry (TDI), provides synthesized data streams free of laser phase noise. At the same time, TDI also removes the next largest noise source: phase fluctuations of the on-board clocks which distort the sampling process. TDI needs precise information about the spacecraft separations, sampling times and differential clock noise between the three spacecrafts. These are measured using auxiliary modulations on the laser light. Hence, there is a need for algorithms that account for clock noise removal schemes combined with TDI while preserving the gravitational wave signal. In this paper, we will present the mathematical formulation of the LISA-like data streams and discuss a compliant algorithm that corrects for both clock and laser noise in the case of a rotating, non-breathing LISA constellation. In contrast to previous papers, we consider the current optical bench design (split interferometry configuration), i.e. the test mass readout is done by the local oscillators only, instead of reflecting the weak inter-spacecraft light off the test mass. Furthermore, the absolute order of laser frequencies is taken into account and it can be shown that the TDI equations remain invariant. This is a crucial issue and was, up to now, completely neglected in the analysis.

  20. Imbalance of mononuclear cell infiltrates in the placental tissue from foetuses after spontaneous abortion versus therapeutic termination from 8th to 12th weeks of gestational age.

    PubMed

    Lambropoulou, M; Tamiolakis, D; Venizelos, J; Liberis, V; Galazios, G; Tsikouras, P; Karamanidis, D; Petrakis, G; Constantinidis, T; Menegaki, M; Papadopoulos, N

    2006-12-01

    Placental macrophages (Hofbauer cells) are located close to trophoblastic cells and foetal capillaries, which make them perfect candidates for involvement in regulatory processes within the villous core. Their capacity of producing several cytokines and prostaglandin-synthesising enzymes, and expressing vascular endothelial growth factor, indicate a possible role in placental development and angiogenesis in order to support pregnancy. Common cells to Hofbauer macrophages sharing similar cell surface markers (HLA-A, -B, -C and leukocyte common antigen) have been reported in the stroma, decidua and amnion, indicating additional foetal protection. Yet this is not always the case. Most spontaneous abortions occur before 12 weeks' gestation, and most are due to chromosomal errors in the conceptus. Relatively few truly spontaneous abortions take place between 12 and 20 weeks' gestation. Thereafter, between 20 and 30 weeks, another type of premature spontaneous termination becomes prevalent, which is due to ascending infection. The numbers of cells expressing the various markers of the monocytemacrophage lineage change throughout pregnancy. In the present study, we investigated the immunohistochemical expression of mononuclear infiltrations in paraffin-embedded placentas, from foetuses after spontaneous abortion (8th, 10th and 12th weeks of gestational age), and those after therapeutic abortion at the same time, using a panel of monoclonal antibodies for the identification of leukocytes (CD45/LCA), B-lymphocytes (CD20/L-26), T lymphocytes (CD45RO/UCHL1), CD68 and CD14 cells. Immunologic factors in human reproductive failure are plausible mechanisms of infertility and spontaneous abortion. Approximately 25% of cases of premature ovarian failure appear to result from an autoimmune aetiology. Unfortunately, current therapeutic options for these women are limited to exogenous hormone or gamete substitution. Local inflammations at the sites of endometriosis implants are

  1. Library Cooperation: Trends, Possibilities and Conditions. Proceedings of the Meeting of IATUL (8th, Enschede, The Netherlands, May 28-June 1, 1979).

    ERIC Educational Resources Information Center

    Fjallbrant, Nancy, Ed.

    This collection of 26 presentations on library cooperation from the 1979 meeting of the International Association of Technological University Libraries (IATUL) includes the following: "Is Cooperation a Good Thing?" by M. B. Line; "The Organisation of Co-Operation" by M. R. van Gils; "Co-Operation in Library and Information Service: The Role of…

  2. Topics in gravitation - numerical simulations of event horizons and parameter estimation for LISA

    NASA Astrophysics Data System (ADS)

    Cohen, Michael Isaac

    2011-08-01

    In Part I, we consider numerical simulations of event horizons. Event horizons are the defining physical features of black hole spacetimes, and are of considerable interest in studying black hole dynamics. Here, we reconsider three techniques to find event horizons in numerical spacetimes, and find that straightforward integration of geodesics backward in time is most robust. We apply this method to various systems, from a highly spinning Kerr hole through to an asymmetric binary black hole inspiral. We find that the exponential rate at which outgoing null geodesics diverge from the event horizon of a Kerr black hole is the surface gravity of the hole. In head-on mergers we are able to track quasi-normal ringing of the merged black hole through seven oscillations, covering a dynamic range of about 10^5. In the head-on "kick" merger, we find that computing the Landau-Lifshitz velocity of the event horizon is very useful for an improved understanding of the kick behaviour. Finally, in the inspiral simulations, we find that the topological structure of the black holes does not produce an intermediate toroidal phase, though the structure is consistent with a potential re-slicing of the spacetime in order to introduce such a phase. We further discuss the topological structure of non-axisymmetric collisions. In Part II, we consider parameter estimation of cosmic string burst gravitational waves in Mock LISA data. A network of observable, macroscopic cosmic (super-)strings may well have formed in the early Universe. If so, the cusps that generically develop on cosmic-string loops emit bursts of gravitational radiation that could be detectable by gravitational-wave interferometers, such as the ground-based LIGO/Virgo detectors and the planned, space-based LISA detector. We develop two versions of a LISA-oriented string-burst search pipeline within the context of the Mock LISA Data Challenges, which rely on the publicly available MultiNest and PyMC software packages

  3. Hybrid local FEM/global LISA modeling of guided wave propagation and interaction with damage in composite structures

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2015-03-01

    This paper presents a hybrid modeling technique for the efficient simulation of guided wave propagation and interaction with damage in composite structures. This hybrid approach uses a local finite element model (FEM) to compute the excitability of guided waves generated by piezoelectric transducers, while the global domain wave propagation, wave-damage interaction, and boundary reflections are modeled with the local interaction simulation approach (LISA). A small-size multi-physics FEM with non-reflective boundaries (NRB) was built to obtain the excitability information of guided waves generated by the transmitter. Frequency-domain harmonic analysis was carried out to obtain the solution for all the frequencies of interest. Fourier and inverse Fourier transform and frequency domain convolution techniques are used to obtain the time domain 3-D displacement field underneath the transmitter under an arbitrary excitation. This 3-D displacement field is then fed into the highly efficient time domain LISA simulation module to compute guided wave propagation, interaction with damage, and reflections at structural boundaries. The damping effect of composite materials was considered in the modified LISA formulation. The grids for complex structures were generated using commercial FEM preprocessors and converted to LISA connectivity format. Parallelization of the global LISA solution was achieved through Compute Unified Design Architecture (CUDA) running on Graphical Processing Unit (GPU). The multi-physics local FEM can reliably capture the detailed dimensions and local dynamics of the piezoelectric transducers. The global domain LISA can accurately solve the 3-D elastodynamic wave equations in a highly efficient manner. By combining the local FEM with global LISA, the efficient and accurate simulation of guided wave structural health monitoring procedure is achieved. Two numerical case studies are presented: (1) wave propagation in a unidirectional CFRP composite plate

  4. Humans in earth orbit and planetary exploration missions; IAA Man in Space Symposium, 8th, Tashkent, Uzbek SSR, Sept. 29-Oct. 3, 1990, Selection of Papers

    NASA Technical Reports Server (NTRS)

    Grigor'ev, A. I. (Editor); Klein, K. E. (Editor); Nicogossian, A. (Editor)

    1991-01-01

    The present conference on findings from space life science investigations relevant to long-term earth orbit and planetary exploration missions, as well as considerations for future research projects on these issues, discusses the cardiovascular system and countermeasures against its deterioration in the microgravity environment, cerebral and sensorimotor functions, findings to date in endocrinology and immunology, the musculoskeletal system, and health maintenance and medical care. Also discussed are radiation hazards and protective systems, life-support and habitability factors, and such methodologies and equipment for long space mission research as the use of animal models, novel noninvasive techniques for space crew health monitoring, and an integrated international aerospace medical information system.

  5. The Hospital Microbiome Project: Meeting Report for the 1st Hospital Microbiome Project Workshop on sampling design and building science measurements, Chicago, USA, June 7th-8th 2012

    PubMed Central

    Smith, Daniel; Alverdy, John; An, Gary; Coleman, Maureen; Garcia-Houchins, Sylvia; Green, Jessica; Keegan, Kevin; Kelley, Scott T.; Kirkup, Benjamin C.; Kociolek, Larry; Levin, Hal; Landon, Emily; Olsiewski, Paula; Knight, Rob; Siegel, Jeffrey; Weber, Stephen; Gilbert, Jack

    2013-01-01

    This report details the outcome of the 1st Hospital Microbiome Project workshop held on June 7th-8th, 2012 at the University of Chicago, USA. The workshop was arranged to determine the most appropriate sampling strategy and approach to building science measurement to characterize the development of a microbial community within a new hospital pavilion being built at the University of Chicago Medical Center. The workshop made several recommendations and led to the development of a full proposal to the Alfred P. Sloan Foundation as well as to the creation of the Hospital Microbiome Consortium. PMID:23961316

  6. Frequency-Tuneable Pre-Stabilized Lasers for LISA via Sideband Locking

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira; Numata, Kenji; Livas, jeffery

    2008-01-01

    Laser frequency noise mitigation is one of the most challenging aspects of the LISA interferometric measurement system. The unstabilized frequency fluctuations must be suppressed by roughly twelve orders of magnitude in order to achieve a stability sufficient for gravitational wave detection. This enormous suppression will be achieved through a combination of stabilization and common-mode rejection. The stabilization component will itself be achieved in two stages: pre-stabilization to a local optical cavity followed by arm-locking to some combination of the inter-spacecraft distances. In order for these two stabilization stages to work simultaneously, the lock-point of the pre-stabilization loop must be frequency tunable. The current baseline stabilization technique, locking to an optical cavity, does not provide tunability between cavity resonance, which are typically spaced by 100s of MHz. Here we present a modification to the traditional Pound-Drever-Hall cavity locking technique that allows the laser to be locked to a cavity resonance with an adjustable frequency offset. This technique requires no modifications to the optical cavity itself, thus preserving the stability of the frequency reference. We present measurements of the system stability, demonstrating that the pre-stabilization level satisfies LISA requirements. We also present a demonstration of a phase-lock loop which utilizes the tunable sideband locking technique as a pre-stabilizations tage. The performance of the pre-stabilized phase-lock-loop indicates that the tunable sideband technique will meet the requirements as an actuator for arm-locking in LISA.

  7. LISA, the next generation: from a web-based application to a fat client.

    PubMed

    Pierlet, Noëlla; Aerts, Werner; Vanautgaerden, Mark; Van den Bosch, Bart; De Deurwaerder, André; Schils, Erik; Noppe, Thomas

    2008-01-01

    The LISA application, developed by the University Hospitals Leuven, permits referring physicians to consult the electronic medical records of their patients over the internet in a highly secure way. We decided to completely change the way we secured the application, discard the existing web application and build a completely new application, based on the in-house developed hospital information system, used in the University Hospitals Leuven. The result is a fat Java client, running on a Windows Terminal Server, secured by a commercial SSL-VPN solution. PMID:18953122

  8. Effects of different eLISA-like configurations on massive black hole parameter estimation

    NASA Astrophysics Data System (ADS)

    Porter, Edward K.

    2015-09-01

    As the theme for the future L3 Cosmic Vision mission, ESA has recently chosen the "Gravitational Wave Universe." Within this program, a mission concept called eLISA has been proposed. This observatory has a current initial configuration consisting of four laser links between the three satellites, which are separated by a distance of one million kilometers, constructing a single-channel Michelson interferometer. However, the final configuration for the observatory will not be fixed until the end of this decade. With this in mind, we investigate the effect of different eLISA-like configurations on massive black hole detections. This work compares the results of a Bayesian inference study of 120 massive black hole binaries out to a redshift of z ˜13 for a 106 km arm length eLISA with four and six links, as well as a 2 ×106 km arm length observatory with four links. We demonstrate that the original eLISA configuration should allow us to recover the luminosity distance of the source with an error of less than 10% out to a redshift of z ˜4 , and a sky error box of Δ Ω ≤102 deg2 out to z ˜0.1 . In contrast, both alternative configurations suggest that we should be able to conduct the same parameter recovery with errors of less than 10% in luminosity distance out to z ˜12 and Δ Ω ≤102 deg2 out to z ˜0.4 . Using the information from these studies, we also infer that if we were able to construct a 2 Gm, six-link detector, the above values would shift to z ˜20 for luminosity distance and z ˜0.9 for sky error. While the final configuration will also be dependent on both technological and financial considerations, our study suggests that increasing the size of a two-arm detector is a viable alternative to the inclusion of a third arm in a smaller detector. More importantly, this work further suggests no clear scientific loss between either choice.

  9. Orbit Design and Optimization for the Gravitational Wave Detection of LISA

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Li, G.; Luo, Y.; Yi, Z.; Heinzel, G.; Rüdiger, A.

    2010-04-01

    The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA mission for detecting low-frequency gravitational waves, by using accurate distance measurements with laser interferometry between three spacecrafts, which will be launched around 2018 and one year later reach their operational orbits around the Sun. In order to operate successfully, it is crucial for the constellation of the three spacecrafts to have extremely high stability. Based on the study of operational orbits for a 2015 launch, we designed the operational orbits of beginning epoch on 2019-03-01, analyzed the acceptable error range of the injection, and introduced the method of orbit design and optimization.

  10. Massive Black Hole Mergers: Can We "See" what LISA will "Hear"?

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2010-01-01

    The final merger of massive black holes produces strong gravitational radiation that can be detected by the space-borne LISA. If the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We will review current efforts to simulate these systems, and discuss possibilities for observing the electromagnetic signals they produce.

  11. Qualifciation test series of the indium needle FEEP micro-propulsion system for LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Scharlemann, C.; Buldrini, N.; Killinger, R.; Jentsch, M.; Polli, A.; Ceruti, L.; Serafini, L.; DiCara, D.; Nicolini, D.

    2011-11-01

    The Laser Interferometer Space Antenna project (LISA) is a co-operative program between ESA and NASA to detect gravitational waves by measuring distortions in the space-time fabric. LISA Pathfinder is the precursor mission to LISA designed to validate the core technologies intended for LISA. One of the enabling technologies is the micro-propulsion system based on field emission thrusters necessary to achieve the uniquely stringent propulsion requirements. A consortium consisting of Astrium GmbH and the University of Applied Sciences Wiener Neustadt (formerly AIT) was commissioned by ESA to develop and qualify the micro-propulsion system based on the Indium Needle FEEP technology. Several successful tests have verified the proper Needle Field Emission Electric Propulsion (FEEP) operation and the thermal and mechanical design of subcomponents of the developed system. For all functional tests, the flight representative Power Control Unit developed by SELEX Galileo S.p.A (also responsible for the Micro-Propulsion Subsystem (MPS) development) was used. Measurements have shown the exceptional stability of the thruster. An acceptance test of one Thruster Cluster Assembly (TCA) over 3600 h has shown the stable long term operation of the developed system. During the acceptance test compliance to all the applicable requirements have been shown such as a thrust resolution of 0.1 μN, thrust range capability between 0 and 100 μN, thrust overshoot much lower than the required 0.3 μN+3% and many others. In particular important is the voltage stability of the thruster (±1% over the duration of the testing) and the confirmation of the very low thrust noise. Based on the acceptance test the lifetime of the thruster is expected to exceed 39,000 h generating a total impulse bit of 6300 Ns at an average thrust level of 50 μN. A flight representative qualification model of the Needle FEEP Cluster Assembly (DM1) equipped with one active TCA has performed a qualification program

  12. Interferometric characterization and modeling of pathlength errors resulting from beamwalk across mirror surfaces in LISA.

    PubMed

    Kögel, Harald; Gerardi, Domenico; Pijnenburg, Joep; Gohlke, Martin; Schuldt, Thilo; Johann, Ulrich; Braxmaier, Claus; Weise, Dennis

    2013-05-20

    An alternative payload concept with in-field pointing for the laser interferometer space antenna utilizes an actuated mirror in the telescope for beam tracking to the distant satellite. This actuation generates optical pathlength variations due to the resulting beamwalk over the surface of subsequent optical components, which could possibly have a detrimental influence on the accuracy of the measurement instrument. We have experimentally characterized such pathlength errors caused by a λ/10 mirror surface and used the results to validate a theoretical model. This model is then applied to predict the impact of this effect for the current optical design of the LISA off-axis wide-field telescope. PMID:23736238

  13. Impact of Merger/Ringdown on SMBHB Parameter Estimation with LISA

    NASA Technical Reports Server (NTRS)

    Thorpe, James I.

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) will measure gravitational waves from the inspiral and merger of supermassive black hole bina ries (SMBHBs) at high redshift with large signal to noise. These meas urements will allow extraction of the SMBHB parameters (component mas ses, spins, binary orbital parameters, sky location, and distance) wi th exquisite accuracy. Here we present a study of the impact on measu red parameter precision from the inclusion of accurate waveforms for the merger/ringdown portion of the signal. we focus specifically on s ky-position and luminosity distance, the most important parameters fo r constraining searches for potential electromagnetic counterparts to SMBHB merger events.

  14. Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions

    NASA Astrophysics Data System (ADS)

    Caprini, Chiara; Hindmarsh, Mark; Huber, Stephan; Konstandin, Thomas; Kozaczuk, Jonathan; Nardini, Germano; No, Jose Miguel; Petiteau, Antoine; Schwaller, Pedro; Servant, Géraldine; Weir, David J.

    2016-04-01

    We investigate the potential for the eLISA space-based interferometer to detect the stochastic gravitational wave background produced by strong first-order cosmological phase transitions. We discuss the resulting contributions from bubble collisions, magnetohydrodynamic turbulence, and sound waves to the stochastic background, and estimate the total corresponding signal predicted in gravitational waves. The projected sensitivity of eLISA to cosmological phase transitions is computed in a model-independent way for various detector designs and configurations. By applying these results to several specific models, we demonstrate that eLISA is able to probe many well-motivated scenarios beyond the Standard Model of particle physics predicting strong first-order cosmological phase transitions in the early Universe.

  15. Upper limits to surface-force disturbances on LISA proof masses and the possibility of observing galactic binaries

    SciTech Connect

    Carbone, Ludovico; Ciani, Giacomo; Dolesi, Rita; Hueller, Mauro; Tombolato, David; Vitale, Stefano; Weber, William Joseph; Cavalleri, Antonella

    2007-02-15

    We have measured surface-force noise on a hollow replica of a LISA proof mass surrounded by its capacitive motion sensor. Forces are detected through the torque exerted on the proof mass by means of a torsion pendulum in the 0.1-30 mHz range. The sensor and electronics have the same design as for the flight hardware, including 4 mm gaps around the proof mass. The measured upper limit for forces would allow detection of a number of galactic binaries signals with signal-to-noise ratio up to {approx_equal}40 for 1 yr integration. We also discuss how LISA Pathfinder will substantially improve this limit, approaching the LISA performance.

  16. Mechanical design of the University of Florida Torsion Pendulum for testing the LISA Gravitational Reference Sensor

    NASA Astrophysics Data System (ADS)

    Shelley, Ryan; Chilton, Andrew; Olatunde, Tawio; Ciani, Giacomo; Mueller, Guido; Conklin, John

    2014-03-01

    The Laser Interferometer Space Antenna (LISA) requires free falling test masses, whose acceleration must be below 3 fm/s2/rtHz in the lower part of LISA's frequency band ranging from 0.1 to 100 mHz. Gravitational reference sensors (GRS) house the test masses, shield them from external disturbances, control their orientation, and sense their position at the nm/rtHz level. The GRS torsion pendulum is a laboratory test bed for GRS technology. By decoupling the system of test masses from the gravity of the Earth, it is possible to identify and quantify many sources of noise in the sensor. The mechanical design of the pendulum is critical to the study of the noise sources and the development of new technologies that can improve performance and reduce cost. The suspended test mass is a hollow, gold-coated, aluminum cube which rests inside a gold-coated, aluminum housing with electrodes for sensing and actuating all six degrees of freedom. This poster describes the design, analysis, and assembly of the mechanical subsystems of the UF Torsion Pendulum.

  17. Metal-amplified Density Assays, (MADAs), including a Density-Linked Immunosorbent Assay (DeLISA).

    PubMed

    Subramaniam, Anand Bala; Gonidec, Mathieu; Shapiro, Nathan D; Kresse, Kayleigh M; Whitesides, George M

    2015-02-21

    This paper reports the development of Metal-amplified Density Assays, or MADAs - a method of conducting quantitative or multiplexed assays, including immunoassays, by using Magnetic Levitation (MagLev) to measure metal-amplified changes in the density of beads labeled with biomolecules. The binding of target analytes (i.e. proteins, antibodies, antigens) to complementary ligands immobilized on the surface of the beads, followed by a chemical amplification of the binding in a form that results in a change in the density of the beads (achieved by using gold nanoparticle-labeled biomolecules, and electroless deposition of gold or silver), translates analyte binding events into changes in density measureable using MagLev. A minimal model based on diffusion-limited growth of hemispherical nuclei on a surface reproduces the dynamics of the assay. A MADA - when performed with antigens and antibodies - is called a Density-Linked Immunosorbent Assay, or DeLISA. Two immunoassays provided a proof of principle: a competitive quantification of the concentration of neomycin in whole milk, and a multiplexed detection of antibodies against Hepatitis C virus NS3 protein and syphilis T. pallidum p47 protein in serum. MADAs, including DeLISAs, require, besides the requisite biomolecules and amplification reagents, minimal specialized equipment (two permanent magnets, a ruler or a capillary with calibrated length markings) and no electrical power to obtain a quantitative readout of analyte concentration. With further development, the method may be useful in resource-limited or point-of-care settings. PMID:25474561

  18. CONSTRAINING THE DARK ENERGY EQUATION OF STATE USING LISA OBSERVATIONS OF SPINNING MASSIVE BLACK HOLE BINARIES

    SciTech Connect

    Petiteau, Antoine; Babak, Stanislav; Sesana, Alberto

    2011-05-10

    Gravitational wave (GW) signals from coalescing massive black hole (MBH) binaries could be used as standard sirens to measure cosmological parameters. The future space-based GW observatory Laser Interferometer Space Antenna (LISA) will detect up to a hundred of those events, providing very accurate measurements of their luminosity distances. To constrain the cosmological parameters, we also need to measure the redshift of the galaxy (or cluster of galaxies) hosting the merger. This requires the identification of a distinctive electromagnetic event associated with the binary coalescence. However, putative electromagnetic signatures may be too weak to be observed. Instead, we study here the possibility of constraining the cosmological parameters by enforcing statistical consistency between all the possible hosts detected within the measurement error box of a few dozen of low-redshift (z < 3) events. We construct MBH populations using merger tree realizations of the dark matter hierarchy in a {Lambda}CDM universe, and we use data from the Millennium simulation to model the galaxy distribution in the LISA error box. We show that, assuming that all the other cosmological parameters are known, the parameter w describing the dark energy equation of state can be constrained to a 4%-8% level (2{sigma} error), competitive with current uncertainties obtained by type Ia supernovae measurements, providing an independent test of our cosmological model.

  19. Improved analytic extreme-mass-ratio inspiral model for scoping out eLISA data analysis

    NASA Astrophysics Data System (ADS)

    Chua, Alvin J. K.; Gair, Jonathan R.

    2015-12-01

    The space-based gravitational-wave detector eLISA has been selected as the ESA L3 mission, and the mission design will be finalized by the end of this decade. To prepare for mission formulation over the next few years, several outstanding and urgent questions in data analysis will be addressed using mock data challenges, informed by instrument measurements from the LISA Pathfinder satellite launching at the end of 2015. These data challenges will require accurate and computationally affordable waveform models for anticipated sources such as the extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive black holes. Previous data challenges have made use of the well-known analytic EMRI waveforms of Barack and Cutler, which are extremely quick to generate but dephase relative to more accurate waveforms within hours, due to their mismatched radial, polar and azimuthal frequencies. In this paper, we describe an augmented Barack-Cutler model that uses a frequency map to the correct Kerr frequencies, along with updated evolution equations and a simple fit to a more accurate model. The augmented waveforms stay in phase for months and may be generated with virtually no additional computational cost.

  20. Development of a Micro-Thruster Test Facility which fulfils the LISA requirements

    NASA Astrophysics Data System (ADS)

    Hey, Franz Georg; Keller, A.; Johann, U.; Braxmaier, C.; Tajmar, M.; Fitzsimons, E.; Weise, D.

    2015-05-01

    In the context of investigations for a sufficient attitude control thruster for LISA, we have developed a thruster test facility which consists of a highly precise thrust balance coupled with plasma diagnostics. In parallel to the test facility development, investigations to downscale a High Efficiency Multistage Plasma Thruster (HEMP-T) are also being carried out. The thruster has been used to demonstrate the measurement capabilities of the facility. The setup allows a parallel operation of all instruments and can also be used for other types of μN propulsion systems including cold gas thrusters. The thrust balance consists of two pendulums. As read out a heterodyne laser interferometer is used. Differential wave front sensing (DWS) enables the measurement of the pendulum tilt which, via suitable calibration using an electrostatic comb, can be converted to a thrust. The whole setup is a symmetric configuration enabling a common-mode rejection of the dominant noise sources (e.g. seismic noise etc.). The thrust balance has a demonstrated precision of 0.1 μN. Based on our unique design, this precision can be attained down to 10-3 Hz. Thus, the measurement setup is especially suitable for characterising the thrust noise of potential eLISA propulsion candidates. We give an overview of the design, the present performance and the future plans.

  1. Lightweight Innovative Solar Array (LISA): Providing Higher Power to Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John; Fabisinski, Leo; Russell,Tiffany; Smith, Leigh

    2015-01-01

    Affordable and convenient access to electrical power is essential for all spacecraft and is a critical design driver for the next generation of smallsats, including cubesats, which are currently extremely power limited. The Lightweight Innovative Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space. This flexible technology has many wide-ranging applications from serving small satellites to providing abundant power to large spacecraft in GEO and beyond. By using very thin, ultra-flexible solar arrays adhered to an inflatable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume. The LISA array comprises a launch-stowed, orbit-deployed structure on which lightweight photovoltaic devices and, potentially, transceiver elements are embedded. The system will provide a 2.5 to 5 fold increase in specific power generation (Watts/kilogram) coupled with a >2x enhancement of stowed volume (Watts/cubic-meter) and a decrease in cost (dollars/Watt) when compared to state-of-the-art solar arrays.

  2. Rapid, automated, parallel quantitative immunoassays using highly integrated microfluidics and AlphaLISA

    NASA Astrophysics Data System (ADS)

    TakYu, Zeta; Guan, Huijiao; Ki Cheung, Mei; McHugh, Walker M.; Cornell, Timothy T.; Shanley, Thomas P.; Kurabayashi, Katsuo; Fu, Jianping

    2015-06-01

    Immunoassays represent one of the most popular analytical methods for detection and quantification of biomolecules. However, conventional immunoassays such as ELISA and flow cytometry, even though providing high sensitivity and specificity and multiplexing capability, can be labor-intensive and prone to human error, making them unsuitable for standardized clinical diagnoses. Using a commercialized no-wash, homogeneous immunoassay technology (‘AlphaLISA’) in conjunction with integrated microfluidics, herein we developed a microfluidic immunoassay chip capable of rapid, automated, parallel immunoassays of microliter quantities of samples. Operation of the microfluidic immunoassay chip entailed rapid mixing and conjugation of AlphaLISA components with target analytes before quantitative imaging for analyte detections in up to eight samples simultaneously. Aspects such as fluid handling and operation, surface passivation, imaging uniformity, and detection sensitivity of the microfluidic immunoassay chip using AlphaLISA were investigated. The microfluidic immunoassay chip could detect one target analyte simultaneously for up to eight samples in 45 min with a limit of detection down to 10 pg mL-1. The microfluidic immunoassay chip was further utilized for functional immunophenotyping to examine cytokine secretion from human immune cells stimulated ex vivo. Together, the microfluidic immunoassay chip provides a promising high-throughput, high-content platform for rapid, automated, parallel quantitative immunosensing applications.

  3. Coupling characterization and noise studies of the optical metrology system onboard the LISA Pathfinder mission

    SciTech Connect

    Hechenblaikner, Gerald; Gerndt, Ruediger; Johann, Ulrich; Luetzow-Wentzky, Peter; Wand, Vinzenz; Audley, Heather; Danzmann, Karsten; Garcia-Marin, Antonio; Heinzel, Gerhard; Nofrarias, Miquel; Steier, Frank

    2010-10-10

    We describe the first investigations of the complete engineering model of the optical metrology system (OMS), a key subsystem of the LISA Pathfinder science mission to space. The latter itself is a technological precursor mission to LISA, a spaceborne gravitational wave detector. At its core, the OMS consists of four heterodyne Mach-Zehnder interferometers, a highly stable laser with an external modulator, and a phase meter. It is designed to monitor and track the longitudinal motion and attitude of two floating test masses in the optical reference frame with (relative) precision in the picometer and nanorad range, respectively. We analyze sensor signal correlations and determine a physical sensor noise limit. The coupling parameters between motional degrees of freedom and interferometer signals are analytically derived and compared to measurements. We also measure adverse cross-coupling effects originating from system imperfections and limitations and describe algorithmic mitigation techniques to overcome some of them. Their impact on system performance is analyzed within the context of the Pathfinder mission.

  4. Low-frequency gravitational-wave science with eLISA/NGO

    NASA Astrophysics Data System (ADS)

    Amaro-Seoane, Pau; Aoudia, Sofiane; Babak, Stanislav; Binétruy, Pierre; Berti, Emanuele; Bohé, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J.; Danzmann, Karsten; Dufaux, Jean-François; Gair, Jonathan; Jennrich, Oliver; Jetzer, Philippe; Klein, Antoine; Lang, Ryan N.; Lobo, Alberto; Littenberg, Tyson; McWilliams, Sean T.; Nelemans, Gijs; Petiteau, Antoine; Porter, Edward K.; Schutz, Bernard F.; Sesana, Alberto; Stebbins, Robin; Sumner, Tim; Vallisneri, Michele; Vitale, Stefano; Volonteri, Marta; Ward, Henry

    2012-06-01

    We review the expected science performance of the New Gravitational-Wave Observatory (NGO, a.k.a. eLISA), a mission under study by the European Space Agency for launch in the early 2020s. eLISA will survey the low-frequency gravitational-wave sky (from 0.1 mHz to 1 Hz), detecting and characterizing a broad variety of systems and events throughout the Universe, including the coalescences of massive black holes brought together by galaxy mergers; the inspirals of stellar-mass black holes and compact stars into central galactic black holes; several millions of ultra-compact binaries, both detached and mass transferring, in the Galaxy; and possibly unforeseen sources such as the relic gravitational-wave radiation from the early Universe. eLISA’s high signal-to-noise measurements will provide new insight into the structure and history of the Universe, and they will test general relativity in its strong-field dynamical regime.

  5. Rapid, automated, parallel quantitative immunoassays using highly integrated microfluidics and AlphaLISA

    PubMed Central

    Tak For Yu, Zeta; Guan, Huijiao; Ki Cheung, Mei; McHugh, Walker M.; Cornell, Timothy T.; Shanley, Thomas P.; Kurabayashi, Katsuo; Fu, Jianping

    2015-01-01

    Immunoassays represent one of the most popular analytical methods for detection and quantification of biomolecules. However, conventional immunoassays such as ELISA and flow cytometry, even though providing high sensitivity and specificity and multiplexing capability, can be labor-intensive and prone to human error, making them unsuitable for standardized clinical diagnoses. Using a commercialized no-wash, homogeneous immunoassay technology (‘AlphaLISA’) in conjunction with integrated microfluidics, herein we developed a microfluidic immunoassay chip capable of rapid, automated, parallel immunoassays of microliter quantities of samples. Operation of the microfluidic immunoassay chip entailed rapid mixing and conjugation of AlphaLISA components with target analytes before quantitative imaging for analyte detections in up to eight samples simultaneously. Aspects such as fluid handling and operation, surface passivation, imaging uniformity, and detection sensitivity of the microfluidic immunoassay chip using AlphaLISA were investigated. The microfluidic immunoassay chip could detect one target analyte simultaneously for up to eight samples in 45 min with a limit of detection down to 10 pg mL−1. The microfluidic immunoassay chip was further utilized for functional immunophenotyping to examine cytokine secretion from human immune cells stimulated ex vivo. Together, the microfluidic immunoassay chip provides a promising high-throughput, high-content platform for rapid, automated, parallel quantitative immunosensing applications. PMID:26074253

  6. A Possible U.S. Contribution to eLISA, a Gravitational-Wave Mission Concept for ESA’s L2 Opportunity

    NASA Astrophysics Data System (ADS)

    Stebbins, Robin T.

    2013-04-01

    Scientists from the member states of the European Space Agency (ESA) that proposed the New Gravitational Wave Observatory (NGO) have organized the eLISA Consortium to propose for ESA's next large mission opportunity, called L2. The Evolved Laser Interferometer Space Antenna (eLISA) concept is derived from the well studied LISA concept for a space-based, gravitational-wave mission. eLISA will use the technology being developed in the LISA Pathfinder mission in a two-arm version that achieves much of the LISA science endorsed by the Decadal Survey. If invited, NASA could join the project as a junior partner with a ~15% share. This could enable a third arm and substantially augment the science return. While the details of the eLISA concept to be proposed have not yet been finalized, the SGO Mid concept, recently studied in the U.S., constitutes a possible augmented concept for an ESA/NASA partnership. The eLISA concept and the SGO Mid concept are described and compared.

  7. Magnetic resonance imaging of the internal auditory canal

    SciTech Connect

    Daniels, D.L.; Herfkins, R.; Koehler, P.R.; Millen, S.J.; Shaffer, K.A.; Williams, A.L.; Haughton, V.M.

    1984-04-01

    Three patients with exclusively or predominantly intracanalicular neuromas and 5 with presumably normal internal auditory canals were examined with prototype 1.4- or 1.5-tesla magnetic resonance (MR) scanners. MR images showed the 7th and 8th cranial nerves in the internal auditory canal. The intracanalicular neuromas had larger diameter and slightly greater signal strength than the nerves. Early results suggest that minimal enlargement of the nerves can be detected even in the internal auditory canal.

  8. LISA-PF radiation monitor performance during the evolution of SEP events for the monitoring of test-mass charging

    NASA Astrophysics Data System (ADS)

    Grimani, C.; Ao, X.; Fabi, M.; Laurenza, M.; Li, G.; Lobo, A.; Mateos, I.; Storini, M.; Verkhoglyadova, O.; Zank, G. P.

    2014-02-01

    Cosmic rays of solar and galactic origin at energies >100 MeV/n charge and induce spurious forces on free-floating test masses on board interferometers devoted to gravitational wave detection in space. LISA Pathfinder (LISA-PF), the technology testing mission for eLISA/NGO, will carry radiation monitors for on board test-mass charging monitoring. We present here the results of a simulation of radiation monitor performance during the evolution of solar energetic particle (SEP) events of different intensity. This simulation was carried out with the Fluka Monte Carlo package by taking into account for the first time both energy and spatial distributions of solar protons for the SEP events of 23 February 1956, 15 November 1960 and 7 May 1978. Input data for the Monte Carlo simulations was inferred from neutron monitor measurements. Conversely, for the SEP event of 13 December 2006 observed by the PAMELA experiment in space, we used the proton pitch angle distribution (PAD) computed from the Particle Acceleration and Transport in the Heliosphere (PATH) code. We plan to adopt this approach at the time of LISA-PF data analysis in order to optimize the correlation between radiation monitor observations and test-mass charging. The results of this work can be extended to the future space interferometers and other space missions carrying instruments for SEP detection.

  9. Simple Enough--Even for Web Virgins: Lisa Mitten's Access to Native American Web Sites. Web Site Review Essay.

    ERIC Educational Resources Information Center

    Belgarde, Mary Jiron

    1998-01-01

    A mixed-blood Mohawk urban Indian and university librarian, Lisa Mitten provides access to Web sites with solid information about American Indians. Links are provided to 10 categories--Native nations, Native organizations, Indian education, Native media, powwows and festivals, Indian music, Native arts, Native businesses, and Indian-oriented home…

  10. A Mind-Body Problem? A Reply to Lisa Taylor's Article "Canadian Culture," Cultural Difference and ESL Pedagogy.

    ERIC Educational Resources Information Center

    Courchene, Robert

    1997-01-01

    Comments on the distinction that Lisa Taylor, in a previous article, makes between "cultural diversity" and "cultural difference." The article notes that when new Canadians arrive in Canada, their point of reference is their own culture. The journey for new Canadians toward cultural integration into Canadian society is a progression beginning with…

  11. 78 FR 10172 - Lisa Anne Cornell and G. Ware Cornell, Jr. v. Princess Cruise Lines, Ltd. (Corp), Carnival PLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... Lisa Anne Cornell and G. Ware Cornell, Jr. v. Princess Cruise Lines, Ltd. (Corp), Carnival PLC, and..., Jr., hereinafter ``Complainants,'' against Princess Cruise Lines, Ltd (Corp), Carnival plc, and... common carrier for hire of passengers from ports in the United States;'' Respondent Carnival plc ``is...

  12. Injection of a Body into a Geodesic: Lessons Learnt from the LISA Pathfinder Case

    NASA Technical Reports Server (NTRS)

    Bortoluzzi, Daniele; Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Conklin, J.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Slutsky, J.; Thorpe, J.

    2016-01-01

    Launch lock and release mechanisms constitute a common space business, however, some science missions due to very challenging functional and performance requirements need the development and testing of dedicated systems. In the LISA Pathfinder mission, a gold-coated 2-kg test mass must be injected into a nearly pure geodesic trajectory with a minimal residual velocity with respect to the spacecraft. This task is performed by the Grabbing Positioning and Release Mechanism, which has been tested on-ground to provide the required qualification. In this paper, we describe the test method that analyzes the main contributions to the mechanism performance and focuses on the critical parameters affecting the residual test mass velocity at the injection into the geodesic trajectory. The test results are also presented and discussed.

  13. gLISA: geosynchronous laser interferometer space antenna concepts with off-the-shelf satellites.

    PubMed

    Tinto, M; DeBra, D; Buchman, S; Tilley, S

    2015-01-01

    We discuss two geosynchronous gravitational wave (GW) mission concepts, which we generically name gLISA. One relies on the science instrument hosting program onboard geostationary commercial satellites, while the other takes advantage of recent developments in the aerospace industry that result in dramatic satellite and launching vehicle cost reductions for a dedicated geosynchronous mission. To achieve the required level of disturbance free-fall onboard these large and heavy platforms, we propose a new drag-free system, which we have named "two-stage" drag-free. It incorporates the Modular Gravitational Reference Sensor (developed at Stanford University) and does not rely on the use of μN thrusters. Although both mission concepts are characterized by different technical and programmatic challenges, individually they could be flown and operated at a cost significantly lower than those of previously envisioned gravitational wave missions, and in the year 2015 we will perform at JPL a detailed selecting mission analysis. PMID:25638101

  14. gLISA: geosynchronous laser interferometer space antenna concepts with off-the-shelf satellites

    NASA Astrophysics Data System (ADS)

    Tinto, M.; DeBra, D.; Buchman, S.; Tilley, S.

    2015-01-01

    We discuss two geosynchronous gravitational wave (GW) mission concepts, which we generically name gLISA. One relies on the science instrument hosting program onboard geostationary commercial satellites, while the other takes advantage of recent developments in the aerospace industry that result in dramatic satellite and launching vehicle cost reductions for a dedicated geosynchronous mission. To achieve the required level of disturbance free-fall onboard these large and heavy platforms, we propose a new drag-free system, which we have named "two-stage" drag-free. It incorporates the Modular Gravitational Reference Sensor (developed at Stanford University) and does not rely on the use of μN thrusters. Although both mission concepts are characterized by different technical and programmatic challenges, individually they could be flown and operated at a cost significantly lower than those of previously envisioned gravitational wave missions, and in the year 2015 we will perform at JPL a detailed selecting mission analysis.

  15. The Radiation Environment for the LISA/Laser Interferometry Space Antenna

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Xapsos, Michael; Poivey, Christian

    2005-01-01

    The purpose of this document is to define the radiation environment for the evaluation of degradation due to total ionizing and non-ionizing dose and of single event effects (SEES) for the Laser Interferometry Space Antenna (LISA) instruments and spacecraft. The analysis took into account the radiation exposure for the nominal five-year mission at 20 degrees behind Earth's orbit of the sun, at 1 AU (astronomical unit) and assumes a launch date in 2014. The transfer trajectory out to final orbit has not yet been defined, therefore, this evaluation does not include the impact of passing through the Van Allen belts. Generally, transfer trajectories do not contribute significantly to degradation effects; however, single event effects and deep dielectric charging effects must be taken into consideration especially if critical maneuvers are planned during the van Allen belt passes.

  16. Lightweight Integrated Solar Array (LISA): Providing Higher Power to Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John; Fabisinski, Leo; Lockett, Tiffany Russell

    2015-01-01

    Affordable and convenient access to electrical power is essential for all spacecraft and is a critical design driver for the next generation of smallsats, including CubeSats, which are currently extremely power limited. The Lightweight Integrated Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space. This flexible technology has many wide-ranging applications from serving small satellites to providing abundant power to large spacecraft in GEO and beyond. By using very thin, ultraflexible solar arrays adhered to an inflatable or deployable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume.

  17. A constrained Metropolis Hastings search for EMRIs in the Mock LISA Data Challenge 1B

    NASA Astrophysics Data System (ADS)

    Gair, Jonathan R.; Porter, Edward; Babak, Stanislav; Barack, Leor

    2008-09-01

    We describe a search for the extreme-mass-ratio inspiral sources in the Round 1B Mock LISA Data Challenge data sets. The search algorithm is a Monte Carlo search based on the Metropolis Hastings algorithm, but also incorporates simulated, thermostated and time annealing, plus a harmonic identification stage designed to reduce the chance of the chain locking onto secondary maxima. In this paper, we focus on describing the algorithm that we have been developing. We give the results of the search of the Round 1B data, although parameter recovery has improved since that deadline. Finally, we describe several modifications to the search pipeline that we are currently investigating for incorporation in future searches.

  18. Massive Black Hole Mergers: Can we see what LISA will hear?

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2009-01-01

    Coalescing massive black hole binaries are formed when galaxies merge. The final stages of this coalescence produce strong gravitational wave signals that can be detected by the space-borne LISA. When the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a first step towards this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We report on the results of these initial simulations and discuss their likely importance for future hydrodynamical simulations.

  19. A stroll with eLISA through the mHz gravitational-wave zoo

    NASA Astrophysics Data System (ADS)

    Littenberg, Tyson

    2013-04-01

    No great scientific endeavor has been without setbacks, and space-based gravitational wave (GW) astronomy has seen its fair share. Despite programmatic challenges, the science-case for a gravitational wave observatory operating in the mHz regime has never been stronger. Improvements in both theoretical understanding of the sources, and advancements in techniques for extracting signals from the data, have allowed the anticipated science impact of a space borne detector to survive imposed reductions in mission scope. I will lay out the case for the GW sources which we predict will play a starring role in the eLISA/NGO source catalog, and highlight how inferences made from these systems will help answer pressing questions in both physics and astronomy.

  20. An optical readout system for the drag free control of the LISA spacecraft

    NASA Astrophysics Data System (ADS)

    de Rosa, R.; di Fiore, L.; Garufi, F.; Grado, A.; La Rana, A.; Milano, L.

    2011-01-01

    LISA is an ESA-NASA joint project for the realization of a space interferometric gravitational wave (GW) antenna. LISA is designed for the measurement of GWs in a very low frequency band (0.1-100 mHz). The antenna is composed by three spacecraft (SC) in suitable heliocentric orbits placed at the corners of a huge equilateral triangle, each side being 5 million km long. The SCs are linked by lasers, forming a sort of optical transponder. By means of phase locking techniques, any round-trip phase delay change gives a measurement of a change in the SC distance (measured as light transit time), due to incoming GWs. An essential requirement is that the SCs are set as close as possible to pure geodetic motion, in the measurement frequency band. This is hardly fulfilled because the SCs are disturbed by several external forces, like solar radiation pressure, cosmic rays etc. In each SC there are two free falling proof masses (PM) that are as much isolated as possible by all external force but gravity. The relative position between each PM and the SC is measured, in six degrees of freedom, by the so-called inertial sensor (IS). The IS signal is then used for drag-free servo-loops that force the SC to follow the geodetic motion of the PMs. The current solution for the IS is the adoption of capacitive sensing. This gives a reliable device but poses several limitations due to back action and cross couplings. In this work, we present an optical lever sensor as an alternative solution. In particular we analyze the potential sensitivity and discuss the advantages in terms of relaxed specifications for the drag free control loops. We also report on bench-top measurements that confirm the performance in the required frequency band.

  1. A Novel High-Throughput 1536-well Notch1 γ-Secretase AlphaLISA Assay

    PubMed Central

    Chau, De-ming; Shum, David; Radu, Constantin; Bhinder, Bhavneet; Gin, David; Gilchrist, M. Lane; Djaballah, Hakim; Li, Yue-Ming

    2013-01-01

    The Notch pathway plays a crucial role in cell fate decisions through controlling various cellular processes. Overactive Notch signal contributes to cancer development from leukemias to solid tumors. γ-Secretase is an intramembrane protease responsible for the final proteolytic step of Notch that releases the membrane-tethered Notch fragment for signaling. Therefore, γ-secretase is an attractive drug target in treating Notch-mediated cancers. However, the absence of high-throughput γ-secretase assay using Notch substrate has limited the identification and development of γ-secretase inhibitors that specifically target the Notch signaling pathway. Here, we report on the development of a 1536-well γ-secretase assay using a biotinylated recombinant Notch1 substrate. We effectively assimilated and miniaturized this newly developed Notch1 substrate with the AlphaLISA detection technology and demonstrated its robustness with a calculated Z’ score of 0.66. We further validated this optimized assay by performing a pilot screening against a chemical library consisting of ~5,600 chemicals and identified known γ-secretase inhibitors e.g. DAPT, and Calpeptin; as well as a novel γ-secretase inhibitor referred to as KD-I-085. This assay is the first reported 1536-well AlphaLISA format and represents a novel high-throughput Notch1-γ-secretase assay, which provides an unprecedented opportunity to discover Notch-selective γ-secretase inhibitors that can be potentially used for the treatment of cancer and other human disorders. PMID:23448293

  2. FPGA wavelet processor design using language for instruction-set architectures (LISA)

    NASA Astrophysics Data System (ADS)

    Meyer-Bäse, Uwe; Vera, Alonzo; Rao, Suhasini; Lenk, Karl; Pattichis, Marios

    2007-04-01

    The design of an microprocessor is a long, tedious, and error-prone task consisting of typically three design phases: architecture exploration, software design (assembler, linker, loader, profiler), architecture implementation (RTL generation for FPGA or cell-based ASIC) and verification. The Language for instruction-set architectures (LISA) allows to model a microprocessor not only from instruction-set but also from architecture description including pipelining behavior that allows a design and development tool consistency over all levels of the design. To explore the capability of the LISA processor design platform a.k.a. CoWare Processor Designer we present in this paper three microprocessor designs that implement a 8/8 wavelet transform processor that is typically used in today's FBI fingerprint compression scheme. We have designed a 3 stage pipelined 16 bit RISC processor (NanoBlaze). Although RISC μPs are usually considered "fast" processors due to design concept like constant instruction word size, deep pipelines and many general purpose registers, it turns out that DSP operations consume essential processing time in a RISC processor. In a second step we have used design principles from programmable digital signal processor (PDSP) to improve the throughput of the DWT processor. A multiply-accumulate operation along with indirect addressing operation were the key to achieve higher throughput. A further improvement is possible with today's FPGA technology. Today's FPGAs offer a large number of embedded array multipliers and it is now feasible to design a "true" vector processor (TVP). A multiplication of two vectors can be done in just one clock cycle with our TVP, a complete scalar product in two clock cycles. Code profiling and Xilinx FPGA ISE synthesis results are provided that demonstrate the essential improvement that a TVP has compared with traditional RISC or PDSP designs.

  3. Picometer stable scan mechanism for gravitational wave detection in space: LISA PAAM

    NASA Astrophysics Data System (ADS)

    Pijnenburg, Joep; Rijnveld, Niek; Sheard, Benjamin

    Picometer stable scan mechanism for gravitational wave detection in space: LISA PAAM Detection and observation of gravitational waves requires extreme stability in the frequency range 1E-4 to 1 Hz. The Laser Interferometer Space Antenna (LISA) mission will attain this by creating a giant interferometer in space, based on free floating proof masses in three spacecrafts. Due to orbit evolution and time delay in the interferometer arms, the direction of transmitted light changes. To solve this problem, an extremely stable Point Ahead Angle Mechanism (PAAM) was designed, built and tested. The PAAM concept is based on a rotatable mirror. The critical requirements are the contri-bution to the optical path delay (less than 1.4 pm / rt Hz) and the angular jitter (less than 8 nrad / rt Hz). To meet these requirements, the PAAM is designed for extreme mechanical and thermal stability. Extreme mechanical stability is achieved by manufacturing a monolithical Haberland hinge mechanism out of Ti-6Al-4V, through high precision wire erosion. Cross-talk is minimized by separation of the mirror rotation and actuation by a strut, resulting in a min-imum of parasitical forces. Extreme thermal stability is realized by placing the thermal center on the surface of the mirror. Because of piezo actuator noise and leakage, the PAAM has to be controlled in closed-loop. To meet the requirements in the low frequencies, an active target charge integration capacitance-to-digital converter is used. Interferometric measurements with a triangular resonant cavity in high vacuum proved that the PAAM meets the requirements. The critical component in the performance is the low frequency capacitive sensor noise.

  4. Summary of the results of the LISA-Pathfinder Test Mass release

    NASA Astrophysics Data System (ADS)

    Zanoni, C.; Bortoluzzi, D.; Conklin, J. W.; Köker, I.; Seutchat, B.; Vitale, S.

    2015-05-01

    The challenging goal of LISA-Pathfinder in terms of maximum non-gravitational forces applied on the test mass poses tight constraints on the design of the Gravitational Reference Sensor. In particular, large gaps (3-4 mm) must exist between the test mass and its housing and any system there located must be either gold coated or made of a gold-based material. As a consequence, a significant adhesion may arise between the test mass and the mechanism designed to cage it during the spacecraft launch and to release it to free-fall. The criticality of the latter phase is enhanced by the control force authority exerted to the test mass by the surrounding electrodes. Such a force is limited by the large gaps (order of μN). Since the expected adhesion force between the test mass and its holding devices is much larger than the force authority, a dynamic release must be realized. However, following this procedure adhesion converts into test mass velocity, which can be controlled by the capacitive force only if it is smaller than 5 μm/s. At the University of Trento (Italy) the Transferred Momentum Measurement Facility has been designed and developed to measure the impulse produced by metallic adhesion upon quick rupture, in representative conditions of the LISA-Pathfinder test mass release to free-fall. Large sets of data have been collected and a mathematical model of the in-flight release dynamics has been developed, in order to estimate the test mass release velocity. A summary of the results is presented, together with an overview of the recent developments and a prediction of the in-flight performance.

  5. Compulsory Education: Schools, Pupils, Teachers, Programs and Methods. Conference Papers for the 8th Session of the International Standing Conference for the History of Education (Parma, Italy, September 3-6, 1986). Volume II.

    ERIC Educational Resources Information Center

    Genovesi, Giovanni, Ed.

    This second of four volumes on the history of compulsory education among the nations of Europe and the western hemisphere covers schools, pupils, teachers, programs, and methods. Of the volume's 16 selections, 13 are written in English and 3 are written in Italian. Most selections contain summaries; summaries of the Italian articles are written in…

  6. Compulsory Education: Statistics, Methodology, Reforms and New Tendencies. Conference Papers for the 8th Session of the International Standing Conference for the History of Education (Parma, Italy, September 3-6, 1986). Volume IV.

    ERIC Educational Resources Information Center

    Genovesi, Giovanni, Ed.

    This collection, the last of four volumes on the history of compulsory education among the nations of Europe and the western hemisphere, analyzes statistics, methodology, reforms, and new tendencies. Twelve of the document's 18 articles are written in English, 3 are written in French and 3 are in Italian. Summaries accompany most articles; three…

  7. Social-Economic Life and Compulsory Education. Conference Papers for the 8th Session of the International Standing Conference for the History of Education (Parma, Italy, September 3-6, 1986). Volume III.

    ERIC Educational Resources Information Center

    Genovesi, Giovanni, Ed.

    Socioeconomic life is the theme of this third of four volumes on the history of compulsory education among the nations of Europe and the western hemisphere. Of the document's 18 articles, 15 are written in English and 3 are written in French. Most selections offer summaries; one of the three articles written in French provides a resume in English.…

  8. Introduction, Development and Extension of Compulsory Education. Conference Papers for the 8th Session of the International Standing Conference for the History of Education (Parma, Italy, September 3-6, 1986). Volume I.

    ERIC Educational Resources Information Center

    Genovesi, Giovanni, Ed.

    This first of four volumes on the history of compulsory education among the nations of Europe and the Western hemisphere deals with historical antecedents and early development. Of the 29 total articles, 18 are in English and 2 have English summaries. Many selections include bibliographies. Titles and authors are as follows: "The Political…

  9. Overview of environmental and occupational vanadium exposure and associated health outcomes: an article based on a presentation at the 8th International Symposium on Vanadium Chemistry, Biological Chemistry, and Toxicology, Washington DC, August 15-18, 2012.

    PubMed

    Fortoul, T I; Rojas-Lemus, M; Rodriguez-Lara, V; Gonzalez-Villalva, A; Ustarroz-Cano, M; Cano-Gutierrez, G; Gonzalez-Rendon, S E; Montaño, L F; Altamirano-Lozano, M

    2014-01-01

    Vanadium (V) has a variety of applications that make it suitable for use in ceramic production and decoration, production of pigments for a variety of products, an accelerator for drying paint, production of aniline black dye, and as a mordant in coloring textiles. Taking advantage of its hardness, resilience, ability to form alloys, and its resistance to corrosion, V is also used in the production of tools, steel, machinery, and surgical implants. V is employed in producing photographic developers, batteries, and semi-conductors, and in catalyst-based recycling processes. As technologies have evolved, the use of V has increased in jet aircraft and space technology, as well as in manufacture of ultraviolet filter glass to prevent radiation injury. Due to these myriad uses, the potential for occupational exposure to V is ever-evident. Similarly, there is an increased risk for environmental contamination by V agents themselves or as components of by-products released into the environment. For example, the use of V in sulfuric acid production results in the release of soot and/or fly ash rich in vanadium pentoxide. Petroleum refinery, smelting, welding, and cutting of V-rich steel alloy, the cleaning and repair of oil-fired boilers, and catalysis of chemical productions are other sources of increased airborne V-bearing particles in local/distant environments. Exposure of non-workers to V is an increasing health concern. Studies have demonstrated associations between exposure to airborne V-bearing particles (as part of air pollution) and increased risks of a variety of pathologies like hypertension, dysrhythmia, systemic inflammation, hyper-coagulation, cancers, and bronchial hyper-reactivity. This paper will provide a review of the history of V usage in occupational settings, documented exposure levels, environmental levels of V associated with pollution, epidemiologic data relating V exposure(s) to adverse health outcomes, and governmental responses to protect both workers and non-workers from exposure to this metal. PMID:23659523

  10. Physics 152 Laboratory Manual, 8th Edition.

    ERIC Educational Resources Information Center

    MacIssac, Dan; And Others

    This document is the laboratory manual for the Physics 152 course at Purdue University. It includes a laboratory introduction, hardware and software guide, and laboratory report guide. Labs include: (1) "Measurement Uncertainty and Propagation"; (2) "Introduction to Computer Data Acquisition and Relationships between Position, Velocity, and…

  11. Cosmic swarms: a search for supermassive black holes in the LISA data stream with a hybrid evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Gair, Jonathan R.; Porter, Edward K.

    2009-11-01

    We describe a hybrid evolutionary algorithm that can simultaneously search for multiple supermassive black hole binary (SMBHB) inspirals in LISA data. The algorithm mixes evolutionary computation, Metropolis-Hastings methods and Nested Sampling. The inspiral of SMBHBs presents an interesting problem for gravitational wave data analysis since, due to the LISA response function, the sources have a bi-modal sky solution. We show here that it is possible not only to detect multiple SMBHBs in the data stream, but also to investigate simultaneously all the various modes of the global solution. In all cases, the algorithm returns parameter determinations within 5σ (as estimated from the Fisher matrix) of the true answer, for both the actual and antipodal sky solutions.

  12. A frequency-domain approach for fast analysis of binary black hole parameter estimation capability of LISA-like instruments

    NASA Astrophysics Data System (ADS)

    Baker, John G.; Marsat, Sylvain N.; Graff, Philip

    2015-08-01

    Space-based gravitational-wave instruments such as LISA will provide extraordinary precise information about the central black holes in early galaxies. Fine details about merging black holes are encoded in the gravitational waveforms that these instruments will measure, and sky position information is encoded in the measured signals through the rich structure of the instrumental transfer function. Estimating of our ability to extract this information has so far been an arduous time-consuming process allowing few comprehensive studies and often requiring shortcuts which may impact the accuracy of the results. We report on an effort to speed up the generation of accurate response signals for LISA-type instruments based on Effective-One-Body (EOB) gravitational wave signal models. Our approach begins with reduced order models of the EOB waveforms directly in the Fourier domain. We then apply fast yet accurate techniques for encoding the time-dependent response of LISA-type detectors in Fourier domain and for computing the integrals required in estimating the parameter measurement capability. Our ultimate aim is to provide tools that make it easy for astrophysicists with other expertise to rapidly assess how space-based gravitational wave observations could impact their field.

  13. Development, Qualification And Test Of A Power Control Unit For LISA Pathfinder FEEP Micro-Propulsion Subsystem

    NASA Astrophysics Data System (ADS)

    Ceruti, Luca; Polli, Aldo

    2011-10-01

    In the frame of the Field Emission Electrical Propulsion (FEEP) development activities for LISA Pathfinder mission aimed to grow two different European technologies and then to provide and fly a Space- Qualified FEEP Subsystem, the design and development of a flexible electronic package (Power Control Unit), capable to feed and drive both two FEEP propulsion technology, have been completed successfully, with SELEX Galileo responsible both at PCU and Micro- Propulsion Subsystem (MPS) level. After selection of one of the two FEEP technologies (Slit technology) and following successful qualification and Critical Design Review, the manufacturing and testing of a full set of Power Control Unit flight hardware has been positively completed, leading to the timely delivery of three PCU to the LISA Pathfinder spacecraft integrator. In view of that, this paper is presenting an up-to-date status of the main LISA Pathfinder FEEP Subsystem achievements, in particular aiming at providing an overview of the Power Control Unit design, qualification achievements and presentation of the main outcome from the integrations and compatibility tests carried out between the PCU and the other FEEP Subsystem elements (i.e. thrusters and Neutraliser).

  14. Frequency-tunable Pre-stabilized Lasers for LISA via Sideband-locking

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.; Thorpe, James I.; Numata, Kenji; Mitryk, Shawn; Mueller, Guido; Wand, Vinzenz

    2008-01-01

    Laser frequency noise mitigation is one of the most challenging aspects of the LISA interferometric measurement system. The unstabilized frequency fluctuations must be suppressed by roughly twelve orders of magnitude in order to achieve stability sufficient for gravitational wave detection. This enormous suppression will be achieved through a combination of stabilization and common-mode rejection. The stabilization component will itself be achieved in two stages: pre-stabilization to a local optical cavity followed by arm-locking to some combination of the inter-spacecraft distances. In order for these two stabilization stages to work simultaneously, the lock-point of the pre-stabilization loop must be frequency tunable. The current baseline stabilization technique, locking to an optical cavity, does not provide tunability between cavity resonances, which are typically spaced by 100s of MHz. Here we present a modification to the traditional Pound-Drever-Hall cavity locking technique that allows the laser to be locked to a cavity resonance with an adjustable frequency offset. This technique requires no modifications to the optical cavity itself, thus preserving the stability of the frequency reference. We present measurements of the system performance and demonstrate that we can meet implement the first two stages of stabilization.

  15. PETER: A Hardware Simulator for the Test Mass-GRS System of LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Marconi, L.; Stanga, R.; Bassan, M.; De Marchi, F.; Pucacco, G.; Visco, M.; Di Fiore, L.; De Rosa, R.; Garufi, F.

    2013-01-01

    Each LISA PathFinder test mass (TM) will be sensitive to forces along all its 6 Degrees of Freedom (DoFs). Extensive ground testing is required in order to evaluate the influence of cross-talks from the read-out and actuator channels. In the INFN laboratory of Firenze we have developed a facility for a good representation of the free fall conditions of the TM on flight. A hollow replica of a TM hanging from a double torsion pendulum can move inside a Gravitational Reference Sensor (GRS) with quasi free fall condition on two Dofs, in the frequency band (0.1 ÷ 100)mHz. On both DoFs, the target residual accelerations (yet to be achieved) at the low end frequency range are ≤ 3 × 10-13ms-2, limited by the thermal noise of the fibres. At higher frequencies, the sensitivity is limited by the readout noise of the readout, a replica of the flight electronics. After a long commissioning, we are now in operating conditions, and can carry out a series of experiments to better qualify the interaction between TM and GRS. In this paper we will show some significant qualification measurements and a first scientific measurements, i.e. the measurement and compensation of the DC bias in the GRS using two independent channels, as well as a measurement of the residual acceleration of the translational DoF, with the feedback loop closed on the rotational one, and viceversa.

  16. Supermassive black hole tests of general relativity with eLISA

    NASA Astrophysics Data System (ADS)

    Huwyler, Cédric; Porter, Edward K.; Jetzer, Philippe

    2015-01-01

    Motivated by the parametrized post-Einsteinian (ppE) scheme devised by Yunes and Pretorius, which introduces corrections to the post-Newtonian coefficients of the frequency domain gravitational waveform in order to emulate alternative theories of gravity, we compute analytical time domain waveforms that, after a numerical Fourier transform, aim to represent (phase corrected only) ppE waveforms. In this formalism, alternative theories manifest themselves via corrections to the phase and frequency, as predicted by general relativity (GR), at different post-Newtonian (PN) orders. To present a generic test of alternative theories of gravity, we assume that the coupling constant of each alternative theory is manifestly positive, allowing corrections to the GR waveforms to be either positive or negative. By exploring the capabilities of massive black hole binary GR waveforms in the detection and parameter estimation of corrected time domain ppE signals, using the current eLISA configuration (as presented for the European Space Agency Cosmic Vision L3 mission), we demonstrate that for corrections arising at higher than 1PN order in phase and frequency GR waveforms are sufficient for both detecting and estimating the parameters of alternative theory signals. However, for theories introducing corrections at the 0 and 0.5PN orders, GR waveforms are not capable of covering the entire parameter space, requiring the use of non-GR waveforms for detection and parameter estimation.

  17. Understanding and Measuring Student Engagement in School: The Results of an International Study from 12 Countries

    ERIC Educational Resources Information Center

    Lam, Shui-fong; Jimerson, Shane; Wong, Bernard P. H.; Kikas, Eve; Shin, Hyeonsook; Veiga, Feliciano H.; Hatzichristou, Chryse; Polychroni, Fotini; Cefai, Carmel; Negovan, Valeria; Stanculescu, Elena; Yang, Hongfei; Liu, Yi; Basnett, Julie; Duck, Robert; Farrell, Peter; Nelson, Brett; Zollneritsch, Josef

    2014-01-01

    The objective of the present study was to develop a scale that is appropriate for use internationally to measure affective, behavioral, and cognitive dimensions of student engagement. Psychometric properties of this scale were examined with data of 3,420 students (7th, 8th, and 9th grade) from 12 countries (Austria, Canada, China, Cyprus, Estonia,…

  18. Integration and Testing of the Inertial Sensor for LISA Pathfinder mission

    NASA Astrophysics Data System (ADS)

    Sarra, Paolo

    High-precision technologies are essential for space-borne gravitational wave observatory, but full on-ground testing is not feasible. The ESA (European Space Agency) mission LISA Pathfinder (LPF) is aimed to perform in-flight verification of these key technologies, among them the Inertial Sensor, also known as Gravitational Reference Sensor (GRS). The core of the Inertial Sensor is the gravitational reference test mass: a cube of 46 mm made of Au/Pt used as mirror of the LPF interferometer. The “free floating” test mass is surrounded by a capacitive sensor providing the information to perform the “drag-free” control loop required to keep the spacecraft centred with respect to some fiducial points. The Inertial Sensor is equipped with two mechanisms. The caging and venting mechanism lock the test mass during on-ground activities and at launch. It also open the valve for Inertial Sensor venting to space. The grabbing, positioning and release mechanism controls the test mass during in-flight operational phases from caged to free-floating condition. Charge control of the free floating test mass is performed by illuminating its surface, or the electrodes surfaces, with UV light. The Inertial Sensor is equipped with optical fibers and feed-throughs for UV photons supply. Another key component of the Inertial Sensor is the balance mass. Balance masses are required to null the self-gravitational fields seen by the test mass. The test mass, the sensing electrodes, the mechanisms, the balance masses and the UV optical fibers are accommodated inside a dedicated high-vacuum chamber. The vacuum chamber is maintained in static vacuum during on-ground phase an then vented to space to provide the required in-flight vacuum environment around the test mass. A challenging alignment accuracy is required for the manufacturing, assembly and integration of the various equipment composing the Inertial Sensor. In particular for the test mass and the capacitance sensor micron level

  19. Unveiling the cosmological QCD phase transition through the eLISA/NGO detector

    NASA Astrophysics Data System (ADS)

    Mourão Roque, V. R. C.; Lugones, G.

    2013-04-01

    We study the evolution of turbulence in the early Universe at the QCD epoch using a state-of-the-art equation of state derived from lattice QCD simulations. Since the transition is a crossover we assume that temperature and velocity fluctuations were generated by some event in the previous history of the Universe and survive until the QCD epoch due to the extremely large Reynolds number of the primordial fluid. The fluid at the QCD epoch is assumed to be nonviscous, based on the fact that the viscosity per entropy density of the quark gluon plasma obtained from heavy-ion collision experiments at the Relativistic Heavy Ion Collider and the LHC is extremely small. Our hydrodynamic simulations show that the velocity spectrum is very different from the Kolmogorov power law considered in studies of primordial turbulence that focus on first order phase transitions. This is due to the fact that there is no continuous injection of energy into the system and the viscosity of the fluid is negligible. Thus, as kinetic energy cascades from the larger to the smaller scales, a large amount of kinetic energy is accumulated at the smallest scales due to the lack of dissipation. We have obtained the spectrum of the gravitational radiation emitted by the motion of the fluid finding that, if typical velocity and temperature fluctuations have an amplitude (Δv)/c≳10-2 and/or ΔT/Tc≳10-3, they would be detected by eLISA at frequencies larger than ˜10-4Hz.

  20. Cosmological backgrounds of gravitational waves and eLISA/NGO: phase transitions, cosmic strings and other sources

    SciTech Connect

    Binétruy, Pierre; Dufaux, Jean-François; Caprini, Chiara E-mail: bohe@iap.fr E-mail: dufaux@apc.univ-paris7.fr

    2012-06-01

    We review several cosmological backgrounds of gravitational waves accessible to direct-detection experiments, with a special emphasis on those backgrounds due to first-order phase transitions and networks of cosmic (super-)strings. For these two particular sources, we revisit in detail the computation of the gravitational wave background and improve the results of previous works in the literature. We apply our results to identify the scientific potential of the NGO/eLISA mission of ESA regarding the detectability of cosmological backgrounds.