Science.gov

Sample records for 9-million-gallon-per-year ethanol synfuel

  1. Feasibility study report for the Imperial Valley Ethanol Refinery: a 14. 9-million-gallon-per-year ethanol synfuel refinery utilizing geothermal energy

    SciTech Connect

    Not Available

    1981-03-01

    The construction and operation of a 14,980,000 gallon per year fuel ethanol from grain refinery in the Imperial Valley of California is proposed. The Imperial Valley Ethanol Refinery (refinery) will use hot geothermal fluid from geothermal resources at the East Mesa area as the source of process energy. In order to evaluate the economic viability of the proposed Project, exhaustive engineering, cost analysis, and financial studies have been undertaken. This report presents the results of feasibility studies undertaken in geothermal resource, engineering, marketing financing, management, environment, and permits and approvals. The conclusion of these studies is that the Project is economically viable. US Alcohol Fuels is proceeding with its plans to construct and operate the Refinery.

  2. The greening of synfuels

    SciTech Connect

    Kintisch, E.

    2008-04-15

    Synfuels emit less carbon dioxide than oil and even reduce the amount of carbon in the atmosphere. For making synfuels green is by using large amounts of plant biomass along with coal and storing in the ground the CO{sub 2} emitted during the production of synfuels. The process of making synfuel is by turning coal into gas, which creates carbon monoxide and hydrogen. The resulting syngas is converted into diesel fuel, jet fuel, or chemical feedstock.

  3. Synfuels from biomass grow slowly

    SciTech Connect

    Black, J.; Wedlock, J.C.

    1982-01-01

    Current developments in the manufacture of synfuels are discussed with emphasis on the sources of biomass suitable for synfuels production, processes for converting biomass to synfuels, and the economics of the technology. The sources include wood, nonwood crops, root crops, aquatic biomass, and oils from plants such as soybean, safflower, and peanut. The biomass conversion processes discussed include pyrolysis, gasification, liquefaction, and aerobic and anaerobic digestion.

  4. Review of fusion synfuels

    SciTech Connect

    Fillo, J.A.

    1980-01-01

    Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  5. Handbook of synfuels technology

    SciTech Connect

    Meyers, R.A.

    1984-01-01

    This book explores various methods of producing synthetic fuels. Topics considered include coal liquefaction, Exxon Donor Solvent Coal Liquefaction Process, the H-Coal Process, the SRC-I Coal Liquefaction Process, the coal hydrogenation plant at Bottrop, production of liquid fuels from coal-derived synthesis gas, the Sasol plant, the ICI low pressure methanol process, Mobil Methanol-to-Gasoline (MTG) Process, the Lurgi low pressure methanol process, coal gasification the Texaco Coal Gasification Process, the Shell Coal Gasification Process, the Combustion Engineering Coal Gasification Process, British Gas/Lurgi Slagging Gasifier, KBW Coal Gasification, fluidized-bed coal gasification process (type Winkler), Lurgi coal gasification (dry bottom gasifier), Foster Wheeler Stoic Process, the WD-GI two stage coal gasifier, the Saarberg/Otto Coal Gasification Process, Allis-Chalmers KILnGAS Process, the purification of gases derived from coal, shale oil, Lurgi-Ruhrgas Process, the Tosco II Process, Paraho oil shale retorting processes, Occidental Modified In-Situ (MIS) Process, the geokinetics in-situ retorting process, oil shale pre-beneficiation, additional oil shale technologies, oil from oil sand, Suncor Hot Water Process, emerging technologies for oil from oil sands, synfuels upgrading and refining, Exxon fluid coking/flexicoking processes for synfuels upgrading applications, H-Oil processes, LC-Fining Process, and The Modified Litol Process for benzene production.

  6. Assessment of synfuel spill cleanup options

    SciTech Connect

    Petty, S.E.; Wakamiya, W.; English, C.J.; Strand, J.A.; Mahlum, D.D.

    1982-04-01

    Existing petroleum-spill cleanup technologies are reviewed and their limitations, should they be used to mitigate the effects of synfuels spills, are discussed. The six subsections of this report address the following program goals: synfuels production estimates to the year 2000; possible sources of synfuel spills and volumes of spilled fuel to the year 2000; hazards of synfuels spills; assessment of existing spill cleanup technologies for oil spills; assessment of cleanup technologies for synfuel spills; and disposal of residue from synfuel spill cleanup operations. The first goal of the program was to obtain the most current estimates on synfuel production. These estimates were then used to determine the amount of synfuels and synfuel products likely to be spilled, by location and by method of transportation. A review of existing toxicological studies and existing spill mitigation technologies was then completed to determine the potential impacts of synthetic fuel spills on the environment. Data are presented in the four appendixes on the following subjects: synfuel production estimates; acute toxicity of synfuel; acute toxicity of alcohols.

  7. Environmental implications of synfuel development

    SciTech Connect

    DeCicco, S.G.

    1983-02-25

    The synthetic fuel industry is perhaps the only industry ever to be subjected to a nationwide review of potential environmental consequences before the first commercial scale plant is built. The first wave of synfuel plants will continue to be scrutinized by a suspicious public that has witnessed a decade of increasing environmental regulation, Three Mile Island, and Love Canal. The EPA will not be issuing pollutant discharge limits for synfuel facilities in the near future. Instead, the first plants will be regulated on a case-by-case basis using the environmental permit system. In general, synfuel plants should be capable of complying with applicable environmental standards by adapting commercial pollution control technology. There should be no acute environmental impacts from a properly suited, designed, and controlled plant. However, because no commercial-scale plants exist for most synfuel technologies, many environmental questions remain unanswered. The major questions deal with: (1) the long-term effects on workers and the environment of low-level exposure to synfuel chemicals; (2) the characteristics of actual gaseous, liquid, and solid waste from large-scale facilities; and (3) the adaptability effectiveness, and reliability of commercially available pollution control technology. Specific issues relate to the need for quantitative health risk assessments, the implications of the Toxic Substances Control Act, the practicality of the mandate for zero wastewater discharge, the control of fugitive hydrocarbon emissions, the effects of solid waste disposal, and the cumulative impacts of regional energy development (especially socioeconomics). Environmental monitoring will play a large role in understanding the technologies, characterizing pollutants and the effectiveness of control technology, developing realistic environmental standards, and determining the effects of synfuel chemicals on workers and the environment.

  8. Final Technical Report

    SciTech Connect

    John Cuzens; Necitas Sumait

    2012-09-13

    BlueFire Ethanol, Inc., a U.S. based corporation with offices in Irvine, California developed a cellulosic biorefinery to convert approximately 700 dry metric tons per day in to 18.9 million gallons per year of cellulosic ethanol. The Project is proposed to be located in the city of Fulton, County of Itawamba, Mississippi.

  9. Synfuel production in nuclear reactors

    DOEpatents

    Henning, C.D.

    Apparatus and method for producing synthetic fuels and synthetic fuel components by using a neutron source as the energy source, such as a fusion reactor. Neutron absorbers are disposed inside a reaction pipe and are heated by capturing neutrons from the neutron source. Synthetic fuel feedstock is then placed into contact with the heated neutron absorbers. The feedstock is heated and dissociates into its constituent synfuel components, or alternatively is at least preheated sufficiently to use in a subsequent electrolysis process to produce synthetic fuels and synthetic fuel components.

  10. Synfuels: nukes of the 80's

    SciTech Connect

    Feeney, A.

    1980-05-01

    Toxic pollutants released to the air and water, as well as the impacts of massive strip mining, will characterize the era of synfuel development as a time of environmental costs which could be life-threatening. Tough water regulations in the western states may result in a few states bearing all the related social and economic impacts. Government incentives for utilities to develop synfuels have already resulted in major development projects in Illinois, Tennessee, Kentucky, and Alabama. Synfuel research by the Electric Power Research Institute has been costly, rivaling nuclear power as a main focus of interest and burying the scattered opposition. How the utilities will overcome the lack of a reliable synfuels market should be of interest to critics as well as the environmental implication. (DCK)

  11. Great Plains Synfuels` hidden treasures

    SciTech Connect

    Kuhn, A.K.; Duncan, D.H.

    1996-12-31

    The Great Plains Synfuels Project was commissioned 12 years ago. While demonstrating success regarding SNG production, DGC quietly started development of chemical products derived from the liquid by-product streams of Lurgi moving bed gasifiers. Naphtha, crude phenol, and tar oil are the primary by-products, and these contain valuable compounds such as phenol, cresylic acid, catechols, naphthols, fluorene, and BTX. Process technologies have been developed for (1) separation of various impurities from cresylic acid distillate fractions or from whole cresylic acid; (2) extracting cresylic acid from tar oil; (3) conversion of tar pitch to a blend stock used in making anode binder pitch; and (4) separating high purity catechol and methyl catechols. As a result of this work, DGC built a phenol/cresylic acid facility. The cresylic acid side supplies over 10 percent of the world market. The achievement with the catechols is presently leading to bench scale routes for synthesis of chemical intermediates which ultimately may include compounds such as vanillin, pyrogallol, sesamol, homoveratrylamine, and many others, penetrating the fields of flavors and fragrances, pharmaceuticals, pesticides, photographic chemicals, dyes, etc. These efforts stimulate DGC`s growth and will provide an economic uplift. By-products already contribute more than 10% of revenues and are destined to rival natural gas in importance.

  12. Employment benefits of urban synfuel facilities

    SciTech Connect

    Wernette, D.; McCarthy, K.; Nagle, J.; South, D.

    1982-06-01

    The construction and operation of a synthetic fuel plant could significantly reduce local unemployment. Two synfuel technologies and two urban areas are studied in this report. HYGAS coal gasification and SRC-II coal liquefaction were used since they are near commercial development and have detailed work force estimates. Buffalo, New York, and Cleveland, Ohio, were chosen for their similar economic structures and their proximity to coal supplies. The employment benefits of a synfuel facility in an urban area are influenced by several assumptions. The level of occupational mobility between specific jobs affects the proportion of local to in-migrant workers. Also, estimates of total employment depend on the multiplier chosen to estimate secondary employment. In general, however, a gasification plant reduces unemployment more than a liquefaction plant, and either type of plant brings about a greater drop in the local unemployment rate in Buffalo than in Cleveland. As unemployment drops, public expenditures and unemployment compensation are proportionately reduced.

  13. Determination of total solutes in synfuel wastewaters

    SciTech Connect

    Wallace, J.R.; Bonomo, F.S.

    1984-03-01

    Efforts to investigate both lyophilization and the measurement of colligative properties as an indication of total solute content are described. The objective of the work described is to develop a method for measuring total dissolved material in retort wastewaters which is simple and rugged enough to be performed in a field laboratory in support of pollution control tests. The analysis should also be rapid enough to provide timely and pertinent data to the pollution control plant operator. To be of most value, the technique developed also should be applicable to other synfuel wastewaters, most of which contain similar major components as oil shale retort waters. 4 references, 1 table.

  14. Preparation of environmental analyses for synfuel and unconventional gas technologies

    SciTech Connect

    Reed, R.M.

    1982-09-01

    Government agencies that offer financial incentives to stimulate the commercialization of synfuel and unconventional gas technologies usually require an analysis of environmental impacts resulting from proposed projects. This report reviews potentially significant environmental issues associated with a selection of these technologies and presents guidance for developing information and preparing analyses to address these issues. The technologies considered are western oil shale, tar sand, coal liquefaction and gasification, peat, unconventional gas (western tight gas sands, eastern Devonian gas shales, methane from coal seams, and methane from geopressured aquifers), and fuel ethanol. Potentially significant issues are discussed under the general categories of land use, air quality, water use, water quality, biota, solid waste disposal, socioeconomics, and health and safety. The guidance provided in this report can be applied to preparation and/or review of proposals, environmental reports, environmental assessments, environmental impact statements, and other types of environmental analyses. The amount of detail required for any issue discussed must, by necessity, be determined on a case-by-case basis.

  15. Synfuels from coal: progress in the USA

    SciTech Connect

    Mills, G.A.

    1982-06-01

    A change in government policy has been instituted. Responsibility for pilot and demonstration plants have been shifted from the Department of Energy (DOE) to industry and the Synthetic Fuels Corporation. This decision was made to improve the climate for technical innovation in the private sector, while allowing for reduction in federal expenditures. A system in which private funds are invested, with the potential for significant return, is viewed as the best basis for building energy security. Accordingly, the fossil energy budget of the Department of Energy has significantly decreased. Based on mutuality of interests, to share high costs of coal-technology development, to pool talents, to avoid duplication, and to be able to introduce technology earlier, the United States has entered into a number of agreements under the auspices of the International Energy Agency. The status of DOE supported synfuel projects is reviewed. 1 table.

  16. Literature survey of properties of synfuels derived from coal

    NASA Technical Reports Server (NTRS)

    Reynolds, T. W.; Niedzwiecki, R. W.; Clark, J. S.

    1980-01-01

    A literature survey of the properties of synfuels for ground-based gas turbine applications is presented. Four major concepts for converting coal into liquid fuels are described: solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction. Data on full range syncrudes, various distillate cuts, and upgraded products are presented for fuels derived from various processes, including H-coal, synthoil, solvent-refined coal, donor solvent, zinc chloride hydrocracking, co-steam, and flash pyrolysis. Some typical ranges of data for coal-derived low Btu gases are also presented.

  17. Concentration of synfuel process condensates by reverse osmosis

    SciTech Connect

    McCray, S.B.; Ray, R.J.

    1987-01-01

    In this paper the authors will discuss the use of a novel, fouling-resistant, inside-skinned hollow-fiber membrane configuration as an energy-efficient and cost-effective alternative to conventional treatment of synfuel process condensate waters. Reverse osmosis has been used in the past only to polish condensate waters that were first treated by conventional means. In the work described in this paper, a reverse-osmosis system actually replaces traditional biotreatment of condensate waters or replaces the solvent-extraction process in the treatment train. The membranes used in this reverse-osmosis system are capable of rejecting at least 90% of the phenols as well as high percentages of other organics contained in actual process condensate waters. Furthermore, these membranes have operated for several months on synfuel condensate waters and showed no significant decrease in performance. Energy and cost estimates of a reverse-osmosis system based on such membranes will be discussed in detail, including a comparison of operating costs of this system with the operating costs of conventional treatment systems.

  18. Efficiency of coal use, electricity for EVs versus synfuels for ICEs

    NASA Astrophysics Data System (ADS)

    Mueller, H. G.; Wouk, V.

    1980-02-01

    Data are presented to show how electric vehicles will travel approximately twice as far per ton of coal burned to produce electricity for EV propulsion, than will an ICE vehicle burning the synfuel produced from an equal amount of coal. These figures are based on pessimistic calculations of the efficiencies of electricity generation, transmission, battery charging and EV drivetrains. The synfuel calculations are based on optimistic upper limits of coal conversion efficiency and ICE systems' efficiencies. EVs are less harmful to the environment than conventional vehicles. The emissions from coal-burning power plants are more readily controlled than the pollutants from refineries that convert coal to synfuel. The emissions from EVs are negligible, whereas those from ICEs still have not been reduced to the levels originally mandated for 1976. Synfuels should be reserved mainly for those applications for which electricity is impractical or impossible, such as planes, long-haul trucks and buses, and the petrochemical industry.

  19. Mirror Advanced Reactor Study (MARS). Final report. Volume 2. Commercial fusion synfuels plant

    SciTech Connect

    Donohue, M.L.; Price, M.E.

    1984-07-01

    Volume 2 contains the following chapters: (1) synfuels; (2) physics base and parameters for TMR; (3) high-temperature two-temperature-zone blanket system for synfuel application; (4) thermochemical hydrogen processes; (5) interfacing the sulfur-iodine cycle; (6) interfacing the reactor with the thermochemical process; (7) tritium control in the blanket system; (8) the sulfur trioxide fluidized-bed composer; (9) preliminary cost estimates; and (10) fuels beyond hydrogen. (MOW)

  20. Literature survey of properties of synfuels derived from coal

    NASA Technical Reports Server (NTRS)

    Flores, F.

    1982-01-01

    A literature survey of the properties of synfuels for ground-based turbine applications is presented. The four major concepts for converting coal into liquid fuels (solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction), and the most important concepts for coal gasification (fixed bed, fluidized bed, entrained flow, and underground gasification) are described. Upgrading processes for coal derived liquid fuels are also described. Data presented for liquid fuels derived from various processes, including H-coal, synthoil, solvent refined coal, COED, donor solvent, zinc chloride hydrocracking, co-steam, and flash pyrolysis. Typical composition, and property data is also presented for low and medium-BTU gases derived from the various coal gasification processes.

  1. Verification of the foreign synfuels industrialization experience. Final report

    SciTech Connect

    Not Available

    1981-09-01

    A survey of foreign commercial gasifiers has been conducted for the US Department of Energy (DOE). The purpose of this effort was to provide DOE with information on the type of data that is currently available from the foreign commercial gasifier experience. From this program effort, the potential availability and value of data from foreign facilities to the US synfuels development effort may be assessed by DOE. The specific objectives of this program were to develop and verify a master list of commercial gasifiers operating in foreign countries and to conduct two case studies (site visits) of specific facilities. The list of operating foreign gasifiers is presented in Appendix A of this report. The master list contains facilities which are currently operating or have been shut down for less than five years. For this study, it was assumed that facilities which have been shut down for a period greater than five years would not represent viable sources of information. This list represents the set of sources from which gasifier operation information is potentially available.

  2. Proceedings of the opportunities in the synfuels industry

    SciTech Connect

    Not Available

    1992-12-31

    World interest in coal-based synthetic fuels technology is like a roller coaster ride. Interest soars when energy prices are high or world oil supplies are threatened. When energy is inexpensive and oil is plentiful, interest plummets. However, some people remain undaunted by the ups and downs of the synfuels industry. They cling tenaciously to the idea that coal-based synthetic fuels are the world`s energy future. They are the select group attending the SynOps `92 symposium in Bismarck, North Dakota. SynOps `92 participants represent an extraordinary combination of visionaries and practical thinkers. They believe the ``coal refinery`` concept will eventually provide the most efficient and productive use of our coal resources. They know that coal is a valuable resource which can be used to produce a huge variety of valuable nonfuel products. They also recognize that until technology can make alternative fuels economically feasible, the world will continue to rely heavily on fossil fuels--especially coal, the world`s most abundant energy resource. Individual papers have been entered.

  3. Synfuels report covers major synthetic fuel projects. [350 projects worldwide surveyed

    SciTech Connect

    Doerell, P.E.

    1982-01-01

    The policy of low government aid overlooks the fact that secure energy supplies are the basis of economic survival. Whether the policy of transferring the economic incentive for the development of a synthetic fuels industry from the public to the private sector is wise remains to be seen. If the private sector is not able to develop a synfuels industry, government may have to act to support its development. The WORLD SYNFUELS PROJECT REPORT will be published in March 1982 by Miller Freeman Publications. In it will be lists of all the major synthetic fuel developments going on in the world today. This report is timely, for although development has slowed, now is the critical time for decisions to develop a commercial synfuels industry to be made. A large part of the report is dedicated to coal-based synfuel developments (gasification, liquefaction, and coal-oil mixtures), but there is significant coverage on work being done on oil shale, tar sands, biomass, and energy from waste. Also, a survey of the synfuels policies of more than 60 countries is included. Working through participating governments, the OECD/IEA group surveyed 350 commercial-scale projects planned for the 1980's. The study concentrated on six basic technologies - extraction and processing of tar sands and oil shale, direct and indirect coal liquefaction, coal gasification, biomass, liquid fuel production from natural gas, and new coal combustion techniques. According to the results of the OECD/IEA study, coal-based synthetic fuels will be able to meet the objectives set at the 1980 Venice Economic Summit to double coal use by the early 1990's. The longer-term significance of achieving these 1990 output levels is that a first generation industrial synfuels industrial base will be created.

  4. Instrumental methods of analysis of sulfur compounds in synfuel process streams. Quarterly technical progress report, October-December 1983

    SciTech Connect

    Jordan, J.; Sexton, E.; Talbott, J.; Yakupkovic, J.

    1984-01-01

    Task 1. Methods development for the speciation of the polysulfides. The contributions of this project to the electrochemical analysis of sulfides and polysulfides are reviewed and summarized. Electrochemical reduction at the dropping mercury electrode (DME) is the method of choice for the determination of polysulfidic sulfur. Total sulfidic sulfur can conveniently be quantitated in mixtures of sulfides and polysulfides, by measuring diffusion currents engendered by the anodic depolarization of the DME in the presence of the moieties HS/sup -/ and S/sub x//sup 2 -/. Task 2. Methods development for the speciation of dithionite and polythionates. In a solvent consisting of 40% ethanol-60% water, electrocapillary curves substantiated the adsorption of ethanol at the dropping mercury electrode. The potentials where adsorption occurred paralleled a shift of 1 volt in the polarographic half potential of the reaction: S/sub 4/O/sub 6//sup 2 -/ + 2e = 2S/sub 2/O/sub 3//sup 2 -/. Task 3. Total accounting of the sulfur balance in representative samples of synfuel process streams. Two H-Coal liquefaction sour water samples were analyzed representing different stages in the PETC clean-up procedures. One specimen was a sample stripped of H/sub 2/S and ammonia; the other, resulting from a different batch, was stripped and subsequently extracted with methyl isobutyl ketone. The stripped effluent contained less than 0.001 M concentrations of sulfide, polysulfide, thiosulfate, and sulfate. On the other hand, sulfate accounted for 90% of the total sulfur present in the stripped and extracted sample; the remainder consisted of sulfidic and polysulfidic sulfur as well as thiosulfate. 13 references, 2 figures, 3 tables.

  5. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    SciTech Connect

    Werner, R.W.

    1982-11-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

  6. Utility researchers plan future - with our money: EPRI's drive for centralized power, synfuels, and more nukes

    SciTech Connect

    Peters, A.

    1981-06-01

    Research efforts by the Electric Power Research Institute (EPRI) focus on synfuels, coal, and nuclear energy at the expense of renewable energy sources and regulations to protect safety and the environment. EPRI is accused of pursuing industry profits, downgrading regulations, and centralized power. Evidence for these accusations is drawn from the EPRI budget, memos, and EPRI studies on nuclear projects, renewables, fuel cells, and battery technology. Funds have been diverted to alternative research programs in two states, but EPRI commands about $2.60 per year from each utility customer for its $260 million (1980) budget, which funds the industry's major research effort. (DCK)

  7. Syn-Fuel reciprocating charge pump improvement program. Quarterly technical project report, April-June 1984

    SciTech Connect

    Not Available

    1984-01-01

    Major accomplishments during the second quarter of 1984 were completion of the Diaphragm Separation Seal clear liquid testing, and initiation of Phase III Field Testing. Diaphragm operational testing was conducted on a clear water test loop. The test goals were to ensure; mechanical reliability of the Diaphragm Seal, safe operation with simulated component failure, and proper operation of the Diaphragm Buffer Volume Control System. This latter system is essential in controlling the phasing of the diaphragm with its driving plunger. These tests were completed successfully. All operational problems were solved. However, it must be emphasized that the Diaphragm Seal would be damaged by allowing the pump to operate in a cavitating condition for an extended period of time. A change in the Field Test phase of the program was made regarding choice of field test site. There is no operating Syn-Fuel pilot plant capable of inexpensively producing the slurry stream required for the reciprocating pump testing. The Field Tests will now be conducted by first testing the prototype pump and separation seals in an ambient temperature sand water slurry. This will determine resistence to abrasive wear and determine any operation problems at pressure over a lengthy period of time. After successful conclusion of these tests the pump and seals will be operated with a high temperature oil, but without solids, to identify any problems associated with thermal gradients, thermal shock and differential growth. After successful completion of the high temperature clean oil tests the pump will be deemed ready for in-line installation at a designated Syn-Fuel pilot plant. The above approach avoids the expense and complications of a separate hot slurry test loop. It also reduces risk of operational problems while in-line at the pilot plant. 5 figs.

  8. Tri-State Synfuels Project Review: Volume 12. Fluor project status. [Proposed Henderson, Kentucky coal to gasoline plant; engineering

    SciTech Connect

    Not Available

    1982-06-01

    The purpose of this report is to document and summarize activities associated with Fluor's efforts on the Tri-State Synfuels Project. The proposed facility was to be coal-to-transport fuels facility located in Henderson, Kentucky. Tri-State Synfuels Company was participating in the project as a partner of the US Department of Energy per terms of a Cooperative Agreement resulting from DOE's synfuel's program solicitation. Fluor's initial work plan called for preliminary engineering and procurement services to the point of commitment for construction for a Sasol Fischer-Tropsch plant. Work proceeded as planned until October 1981 when results of alternative coal-to-methanol studies revealed the economic disadvantage of the Synthol design for US markets. A number of alternative process studies followed to determine the best process configuration. In January 1982 Tri-State officially announced a change from Synthol to a Methanol to Gasoline (MTG) design basis. Further evaluation and cost estimates for the MTG facility eventually led to the conclusion that, given the depressed economic outlook for alternative fuels development, the project should be terminated. Official announcement of cancellation was made on April 13, 1982. At the time of project cancellation, Fluor had completed significant portions of the preliminary engineering effort. Included in this report are descriptions and summaries of Fluor's work during this project. In addition location of key project data and materials is identified and status reports for each operation are presented.

  9. The Technical and Economic Feasibility of Siting Synfuels Plants in Wyoming

    SciTech Connect

    Anastasia M Gandrik; Rick A Wood; David Bell; William Schaffers; Thomas Foulke; Richard D Boardman

    2011-09-01

    A comprehensive study has been completed to determine the feasibility of constructing and operating gasification and reforming plants which convert Wyoming fossil resources (coal and natural gas) into the higher value products of power, transportation fuels, and chemical feedstocks, such as ammonia and methanol. Detailed plant designs, simulation models, economic models and well-to-wheel greenhouse gas models were developed, validated by national-level engineering firms, which were used to address the following issues that heretofore have prevented these types of projects from going forward in Wyoming, as much as elsewhere in the United States: 1. Quantification of plant capital and operating expenditures 2. Optimization of plant heat integration 3. Quantification of coal, natural gas, electricity, and water requirements 4. Access to raw materials and markets 5. Requirements for new infrastructure, such as electrical power lines and product pipelines 6. The possible cost-benefit tradeoffs of using natural gas reforming versus coal gasification 7. The extent of labor resources required for plant construction and for permanent operations 8. Options for managing associated CO2 emissions, including capture and uses in enhanced oil recovery and sequestration 9. Options for reducing water requirements such as recovery of the high moisture content in Wyoming coal and use of air coolers rather than cooling towers 10. Permitting requirements 11. Construction, and economic impacts on the local communities This paper will summarize the analysis completed for two major synfuels production pathways, methanol to gasoline and Fischer-Trosph diesel production, using either coal or natural gas as a feedstock.

  10. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels

    SciTech Connect

    Hill, J. |; Tilman, D.; Polasky, S.; Tiffany, D.

    2006-07-25

    Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. The authors use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3% and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass, could provide much greater supplies and environmental benefits than food-based biofuels.

  11. Ethanol Basics

    SciTech Connect

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  12. Fuel ethanol

    SciTech Connect

    Not Available

    1989-02-01

    This report discusses the Omnibus Trade and Competitiveness Act of 1988 which requires GAO to examine fuel ethanol imports from Central America and the Caribbean and their impact on the U.S. fuel ethanol industry. Ethanol is the alcohol in beverages, such as beer, wine, and whiskey. It can also be used as a fuel by blending with gasoline. It can be made from renewable resources, such as corn, wheat, grapes, and sugarcane, through a process of fermentation. This report finds that, given current sugar and gasoline prices, it is not economically feasible for Caribbean ethanol producers to meet the current local feedstock requirement.

  13. Processing needs and methodology for wastewaters from the conversion of coal, oil shale, and biomass to synfuels

    SciTech Connect

    Not Available

    1980-05-01

    The workshop identifies needs to be met by processing technology for wastewaters, and evaluates the suitability, approximate costs, and problems associated with current technology. Participation was confined to DOE Environmental Control Technology contractors to pull together and integrate past wastewater-related activities, to assess the status of synfuel wastewater treatability and process options, and to abet technology transfer. Particular attention was paid to probable or possible environmental restrictions which cannot be economically met by present technology. Primary emphasis was focussed upon process-condensate waters from coal-conversion and shale-retorting processes. Due to limited data base and time, the workshop did not deal with transients, upsets, trade-offs and system optimization, or with solids disposal. The report is divided into sections that, respectively, survey the water usage and effluent situation (II); identify the probable and possible water-treatment goals anticipated at the time when large-scale plants will be constructed (III); assess the capabilities, costs and shortcomings of present technology (IV); explore particularly severe environmental-control problems (V); give overall conclusions from the Workshop and recommendations for future research and study (VI); and, finally, present Status Reports of current work from participants in the Workshop (VII).

  14. From the Cover: Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels

    NASA Astrophysics Data System (ADS)

    Hill, Jason; Nelson, Erik; Tilman, David; Polasky, Stephen; Tiffany, Douglas

    2006-07-01

    Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. We use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3%, and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-based biofuels. corn | soybean | life-cycle accounting | agriculture | fossil fuel

  15. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels.

    PubMed

    Hill, Jason; Nelson, Erik; Tilman, David; Polasky, Stephen; Tiffany, Douglas

    2006-07-25

    Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. We use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3%, and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-based biofuels.

  16. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels

    PubMed Central

    Hill, Jason; Nelson, Erik; Tilman, David; Polasky, Stephen; Tiffany, Douglas

    2006-01-01

    Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. We use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3%, and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-based biofuels. PMID:16837571

  17. Analysis of organizational options for the uranium enrichment enterprise in relation to asset divesture. [BPA; TVA; SYNFUELS; CONRAIL; British TELECOM; COMSTAT

    SciTech Connect

    Harrer, B.J.; Hattrup, M.P.; Dase, J.E.; Nicholls, A.K.

    1986-08-01

    This report presents a comparison of the characteristics of some prominent examples of independent government corporations and agencies with respect to the Department of Energy's (DOE) uranium enrichment enterprise. The six examples studied were: the Bonneville Power Administration (BPA); the Tennessee Valley Authority (TVA); the Synthetic Fuels Corporation (SYNFUELS); the Consolidated Rail Corporation (CONRAIL); the British Telecommunications Corporation (British TELECOM); and the Communications Satellite Organization (COMSAT), in order of decreasing levels of government ownership and control. They range from BPA, which is organized as an agency within DOE, to COMSAT, which is privately owned and free from almost all regulations common to government agencies. Differences in the degree of government involvement in these corporations and in many other characteristics serve to illustrate that there are no accepted standards for defining the characteristics of government corporations. Thus, historical precedent indicates considerable flexibility would be available in the development of enabling legislation to reorganize the enrichment enterprise as a government corporation or independent government agency.

  18. Power-to-Syngas - an enabling technology for the transition of the energy system? Production of tailored synfuels and chemicals using renewably generated electricity.

    PubMed

    Foit, Severin; Eichel, Rüdiger-A; Vinke, Izaak C; de Haart, Lambertus G J

    2016-10-07

    Power-to-X concepts promise a significant reduction of greenhouse gas emissions and simultaneously guaranteeing a safe energy supply even at high share of renewable power generation, thus becoming a cornerstone of a sustainable energy system. Power-to-Syngas, i.e. the electrochemical conversion of steam and carbon dioxide with the use of renewably generated electricity to syngas for the production of synfuels and high-value chemicals, offers an efficient technology to couple different energy-intense sectors, such as 'traffic and transportation' and 'chemical industry'. Consequently, co-electrolysis can be regarded as a key-enabling step for a transition of the energy system that offers additionally features of CO2-valorization and closed carbon cycles. In this Minireview, we outline and discuss advantages and current technical limitations of low- and high-temperature co-electrolysis. Advances in both, a fundamental understanding of the basic reaction schemes and in stable high-performance materials are essential to further promote co-electrolysis.

  19. Tri-State Synfuels Project Review: Volume 8. Commercial status of licensed process units. [Proposed Henderson, Kentucky coal to gasoline plant; licensed commercial processes

    SciTech Connect

    Not Available

    1982-06-01

    This document demonstrates the commercial status of the process units to be used in the Tri-State Synfuels Project at Henderson, Kentucky. The basic design philosophy as established in October, 1979, was to use the commercial SASOL II/III plants as a basis. This was changed in January 1982 to a plant configuration to produce gasoline via a methanol and methanol to gasoline process. To accomplish this change the Synthol, Oil workup and Chemical Workup Units were eliminated and replaced by Methanol Synthesis and Methanol to Gasoline Units. Certain other changes to optimize the Lurgi liquids processing eliminated the Tar Distillation and Naphtha Hydrotreater Units which were replaced by the Partial Oxidation Unit. The coals to be gasified are moderately caking which necessitates the installation of stirring mechanism in the Lurgi Dry Bottom gasifier. This work is in the demonstration phase. Process licenses either have been obtained or must be obtained for a number of processes to be used in the plant. The commercial nature of these processes is discussed in detail in the tabbed sections of this document. In many cases there is a list of commercial installations at which the licensed equipment is used.

  20. Kansas Ethanol Lyons Approval

    EPA Pesticide Factsheets

    This update August 9, 2016 letter from EPA approves, with modifications, the petition from Kansas Ethanol, LLC, Lyons facility, regarding non-grandfathered ethanol produced through a dry mill process, qualifying under the Clean Air Act for renewable fuel

  1. Anaphylactoid reaction to ethanol.

    PubMed

    Kelso, J M; Keating, M U; Squillace, D L; O'Connell, E J; Yunginger, J W; Sachs, M I

    1990-05-01

    We studied a 14-year-old boy who developed a pruritic rash and facial swelling after ingestion of beer or wine. A blinded challenge with purified ethanol was positive demonstrating ethanol itself to be the offending agent. An IgE-mediated reaction to ethanol or one of its metabolites as a hapten is possible, or the reaction may involve unusual metabolism of ethanol with accumulation of acetaldehyde and/or direct mast cell degranulation.

  2. Ethanol Basics (Fact Sheet)

    SciTech Connect

    Not Available

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  3. Fermentation method producing ethanol

    DOEpatents

    Wang, Daniel I. C.; Dalal, Rajen

    1986-01-01

    Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

  4. Ethanol immunosuppression in vitro

    SciTech Connect

    Kaplan, D.R.

    1986-03-01

    Ethanol in concentrations equivalent to levels achieved by the ingestion of moderate to large amounts of alcoholic beverages has been shown to inhibit mitogen and anti-CD3 stimulated human T lymphocyte proliferation. This inhibition was monophasic suggesting that ethanol affected a single limiting component of T cell proliferation. In experiments designed to test the effect of ethanol on various aspects of proliferation, it was demonstrated that ethanol inhibited the capacity of exogenously supplied interleukin 2 to stimulate proliferation of T cells that had previously acquired interleukin 2 receptors in a monophasic, dose-dependent manner. Moreover, there was no suppression of interleukin 2 production or interleukin 2 receptor acquisition. Thus, ethanol was shown to mediate immunosuppression by a mechanism specific to one component of proliferation. Additive inhibition of T cell proliferation was seen with ethanol plus cyclosporin A which inhibits interleukin 2 production. The level of inhibition with 250 ng/ml cyclosporin A alone was equivalent to the level seen with 62 ng/ml cyclosporin A plus 20 mM (94 mg%) ethanol. Ethanol also suppressed an immune effector mechanism. NK cytotoxicity was depressed in a monophasic, dose-dependent manner. Thus, ethanol might be considered as a possible adjunct in immunosuppressive therapy.

  5. Ethanol tolerance in bacteria.

    PubMed

    Ingram, L O

    1990-01-01

    The adverse effects of ethanol on bacterial growth, viability, and metabolism are caused primarily by ethanol-induced leakage of the plasma membrane. This increase in membrane leakage is consistent with known biophysical properties of membranes and ethanolic solutions. The primary actions of ethanol result from colligative effects of the high molar concentrations rather than from specific interactions with receptors. The ethanol tolerance of growth in different microorganisms appears to result in large part from adaptive and evolutionary changes in cell membrane composition. Different cellular activities vary in their tolerance to ethanol. Therefore, it is essential that the aspect of cellular function under study be specifically defined and that comparisons of ethanol tolerance among systems share this common definition. Growth is typically one of the most sensitive cellular activities to inhibition by ethanol, followed by survival, or loss of reproductive ability. Glycolysis is the most resistant of these three activities. Since glycolysis is an exergonic process, a cell need not be able to grow or remain viable for glycolysis to occur.

  6. Tri-State Synfuels Project Coal Sampling and Testing Program: Volume 1. Sampling and results. [Proposed Henderson, Kentucky coal to gasoline plant; sampling and testing other potential coal reserves for Lurgi gasification

    SciTech Connect

    Not Available

    1982-06-01

    This report focuses on the sampling and testing program of run-of-mine Illinois Basin coals which was conducted for the supply and design program of the Tri-State Synfuels Project. The basic objective was to identify coals suitable for Lurgi gasification which would supplement the Camp 1 coal used as the design coal for the Tri-State Synfuels Project. The Camp 1 coal had been selected for the commercial scale gasification test at Sasolburg on the basis of its proximity to the Towhead Island Reserves, plant site and similarity of coal quality. The information developed was used as technical guidance for: assessing reserves potentially available for the project during supply negotiations; establishing a sensitivity range for the Lurgi design which used the Camp 1 coal for heat and material balances (the maximum heat rates and flow rates were used to specify requirements for major equipment); and establishing environmental design criteria in the areas of wastewater treatment and solids disposal. These results are covered in the project review reports for development, engineering and environmental aspects. The sampling and testing program consisted of selecting, collecting, preparing and analyzing samples from ten mines in Kentucky, Indiana and Illinois. The mines were operated by Peabody, Island Creek, Amax and Old Ben coal companies and represented a mix of underground - both continuous and conventional mining - and strip mining. The two predominant seams in each of the three states were sampled. The resulting technical data were judged to be representative of the coal available from reserves of the various operators. Paul Weir Company was responsible for conducting the program.

  7. Process for producing ethanol

    SciTech Connect

    Lantero, O.J.; Fish, J.J.

    1993-07-27

    A process is described for producing ethanol from raw materials containing a high dry solid mash level having fermentable sugars or constituents which can be converted into sugars, comprising the steps of: (a) liquefaction of the raw materials in the presence of an alpha amylase to obtain liquefied mash; (b) saccharification of the liquefied mash in the presence of a glucoamylase to obtain hydrolysed starch and sugars; (c) fermentation of the hydrolysed starch and sugars by yeast to obtain ethanol; and (d) recovering the obtained ethanol, wherein an acid fungal protease is introduced to the liquefied mash during the saccharification and/or to the hydrolysed starch and sugars during the fermentation, thereby increasing the rate of production of ethanol as compared to a substantially similar process conducted without the introduction of the protease.

  8. Biofuel Ethanol Transport Risk

    EPA Science Inventory

    Ethanol production has increased rapidly over the last 10 years and many communities lack awareness of the increased and growing extent of biofuel transportation through their jurisdictions. These communities and their emergency responders may not have the information and resour...

  9. Biofuel Ethanol Transport Risk

    EPA Science Inventory

    Ethanol production has increased rapidly over the last 10 years and many communities lack awareness of the increased and growing extent of biofuel transportation through their jurisdictions. These communities and their emergency responders may not have the information and resour...

  10. Ethanol production from lignocellulose

    DOEpatents

    Ingram, Lonnie O.; Wood, Brent E.

    2001-01-01

    This invention presents a method of improving enzymatic degradation of lignocellulose, as in the production of ethanol from lignocellulosic material, through the use of ultrasonic treatment. The invention shows that ultrasonic treatment reduces cellulase requirements by 1/3 to 1/2. With the cost of enzymes being a major problem in the cost-effective production of ethanol from lignocellulosic material, this invention presents a significant improvement over presently available methods.

  11. Membranes: role in synfuels plants

    SciTech Connect

    Not Available

    1984-05-28

    A news item reports that reverse osmosis is to be used in a demonstration project for recycling waste water from a coal processing plant. Bend Research Inc. have a US Department of Energy contract to build a plant to treat about 2000 gal/day. They will use polysulphone, hollow-fibre reverse-osmosis membrane packed into 10 tubular modules, each having some 25 ft/SUP/2 of membrane surface area. The objective is the development of a suitable water-recycling system for synthetic fuels plants, which typically use very large quantities of water and are located in areas of water scarcity.

  12. Ethanol tolerance in yeasts.

    PubMed

    Casey, G P; Ingledew, W M

    1986-01-01

    It is now certain that the inherent ethanol tolerance of the Saccharomyces strain used is not the prime factor regulating the level of ethanol that can be produced in a high sugar brewing, wine, sake, or distillery fermentation. In fact, in terms of the maximum concentration that these yeasts can produce under batch (16 to 17% [v/v]) or fed-batch conditions, there is clearly no difference in ethanol tolerance. This is not to say, however, that under defined conditions there is no difference in ethanol tolerance among different Saccharomyces yeasts. This property, although a genetic determinant, is clearly influenced by many factors (carbohydrate level, wort nutrition, temperature, osmotic pressure/water activity, and substrate concentration), and each yeast strain reacts to each factor differently. This will indeed lead to differences in measured tolerance. Thus, it is extremely important that each of these be taken into consideration when determining "tolerance" for a particular set of fermentation conditions. The manner in which each alcohol-related industry has evolved is now known to have played a major role in determining traditional thinking on ethanol tolerance in Saccharomyces yeasts. It is interesting to speculate on how different our thinking on ethanol tolerance would be today if sake fermentations had not evolved with successive mashing and simultaneous saccharification and fermentation of rice carbohydrate, if distillers' worts were clarified prior to fermentation but brewers' wort were not, and if grape skins with their associated unsaturated lipids had not been an integral part of red wine musts. The time is now ripe for ethanol-related industries to take advantage of these findings to improve the economies of production. In the authors' opinion, breweries could produce higher alcohol beers if oxygenation (leading to unsaturated lipids) and "usable" nitrogen source levels were increased in high gravity worts. White wine fermentations could also, if

  13. Ethanol Impacts on BTEX Plumes

    EPA Science Inventory

    The impacts of ethanol on benzene, toluene, ethylbenzene and xylenes (BTEX) are beginning to become established through laboratory, modeling and field research. Usage of ethanol, which increased due to federal mandates, drives interest and potential impacts on BTEX. Through co...

  14. Ethanol Myths Fact Sheet

    SciTech Connect

    2009-10-27

    Ethanol is a clean, renewable fuel that is helping to reduce our nation’s dependence on oil and can offer additional economic and environmental benefits in the future. This fact sheet is intended to address some common misconceptions about this important alternative fuel.

  15. Sorghum to Ethanol Research

    SciTech Connect

    Dahlberg, Jeffrey A.; Wolfrum, Edward J.

    2010-09-28

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  16. Neuropeptide Y suppresses ethanol drinking in ethanol-abstinent, but not non-ethanol-abstinent, Wistar rats.

    PubMed

    Gilpin, Nicholas W; Stewart, Robert B; Badia-Elder, Nancy E

    2008-11-01

    In outbred rats, increases in brain neuropeptide Y (NPY) activity suppress ethanol consumption in a variety of access conditions, but only following a history of ethanol dependence. NPY reliably suppresses ethanol drinking in alcohol-preferring rats, and this effect is augmented following a period of ethanol abstinence. The purpose of this experiment was to examine the effects of NPY on two-bottle choice ethanol drinking and feeding in Wistar rats that had undergone chronic ethanol vapor exposure, cycles of ethanol abstinence, or both. Ethanol-drinking Wistar rats were given 6 weeks of access to 15% (vol/vol) ethanol and water followed by either: two cycles of 1 week ethanol vapor exposure and 2 weeks with no ethanol; two cycles of 1 week ethanol bottle availability and 2 weeks with no ethanol; or 2 weeks of ethanol vapor exposure. Rats were infused intracerebroventricularly with one of four NPY doses (0.0, 2.5, 5.0, or 10.0 microg) following the ethanol exposure patterns described above, and tested for ethanol drinking and feeding in a two-bottle choice situation. NPY dose dependently increased food intake regardless of ethanol exposure history, but suppressed ethanol drinking only in rats that underwent cycles of ethanol access and ethanol abstinence. These results support the notion that dysregulation of brain NPY systems during chronic intermittent ethanol exposure is important in the motivational drive for subsequent relapse to ethanol drinking.

  17. Ethanol Sensitization during Adolescence or Adulthood Induces Different Patterns of Ethanol Consumption without Affecting Ethanol Metabolism

    PubMed Central

    Carrara-Nascimento, Priscila F.; Hoffmann, Lucas B.; Contó, Marcos B.; Marcourakis, Tania; Camarini, Rosana

    2017-01-01

    In previous study, we demonstrated that ethanol preexposure may increase ethanol consumption in both adolescent and adult mice, in a two-bottle choice model. We now questioned if ethanol exposure during adolescence results in changes of consumption pattern using a three-bottle choice procedure, considering drinking-in-the-dark and alcohol deprivation effect as strategies for ethanol consumption escalation. We also analyzed aldehyde dehydrogenase (ALDH) activity as a measurement of ethanol metabolism. Adolescent and adult Swiss mice were treated with saline (SAL) or 2.0 g/kg ethanol (EtOH) during 15 days (groups: Adolescent-SAL, Adolescent-EtOH, Adult-SAL and Adult-EtOH). Five days after the last injection, mice were exposed to the three-bottle choice protocol using sucrose fading procedure (4% + sucrose vs. 8%–15% ethanol + sucrose vs. water + sucrose) for 2 h during the dark phase. Sucrose was faded out from 8% to 0%. The protocol was composed of a 6-week acquisition period, followed by four withdrawals and reexposures. Both adolescent and adult mice exhibited ethanol behavioral sensitization, although the magnitude of sensitization in adolescents was lower than in adults. Adolescent-EtOH displayed an escalation of 4% ethanol consumption during acquisition that was not observed in Adult-EtOH. Moreover, Adult-EtOH consumed less 4% ethanol throughout all the experiment and less 15% ethanol in the last reexposure period than Adolescent-EtOH. ALDH activity varied with age, in which older mice showed higher ALDH than younger ones. Ethanol pretreatment or the pattern of consumption did not have influence on ALDH activity. Our data suggest that ethanol pretreatment during adolescence but not adulthood may influence the pattern of ethanol consumption toward an escalation in ethanol consumption at low dose, without exerting an impact on ALDH activity. PMID:28386220

  18. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae.

    PubMed

    Stanley, D; Bandara, A; Fraser, S; Chambers, P J; Stanley, G A

    2010-07-01

    Saccharomyces cerevisiae is traditionally used for alcoholic beverage and bioethanol production; however, its performance during fermentation is compromised by the impact of ethanol accumulation on cell vitality. This article reviews studies into the molecular basis of the ethanol stress response and ethanol tolerance of S. cerevisiae; such knowledge can facilitate the development of genetic engineering strategies for improving cell performance during ethanol stress. Previous studies have used a variety of strains and conditions, which is problematic, because the impact of ethanol stress on gene expression is influenced by the environment. There is however some commonality in Gene Ontology categories affected by ethanol assault that suggests that the ethanol stress response of S. cerevisiae is compromised by constraints on energy production, leading to increased expression of genes associated with glycolysis and mitochondrial function, and decreased gene expression in energy-demanding growth-related processes. Studies using genome-wide screens suggest that the maintenance of vacuole function is important for ethanol tolerance, possibly because of the roles of this organelle in protein turnover and maintaining ion homoeostasis. Accumulation of Asr1 and Rat8 in the nucleus specifically during ethanol stress suggests S. cerevisiae has a specific response to ethanol stress although this supposition remains controversial.

  19. Xylose fermentation to ethanol

    SciTech Connect

    McMillan, J.D.

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  20. Binge ethanol exposure in late gestation induces ethanol aversion in the dam but enhances ethanol intake in the offspring and affects their postnatal learning about ethanol

    PubMed Central

    Chotro, M. Gabriela; Arias, Carlos; Spear, Norman E.

    2009-01-01

    Previous studies show that exposure to 1 or 2 g/kg ethanol during the last days of gestation increases ethanol acceptance in infant rats. We tested whether prenatal exposure to 3 g/kg, a relatively high ethanol dose, generates an aversion to ethanol in both the dam and offspring, and whether this prenatal experience affects the expression of learning derived from ethanol exposure postnatally. The answer was uncertain, since postnatal administration of a 3 g/kg ethanol dose induces an aversion to ethanol after postnatal day 10 but increases ethanol acceptance when administered during the first postnatal week. In the present study pregnant rats received intragastric administrations of water or ethanol (3 g/kg) on gestation days 17-20. On postnatal days 7-8 or 10-11 the offspring were administered water or ethanol (3 g/kg). Intake of ethanol and water, locomotor activity in an open-field and ethanol odor preference were evaluated in the pups, while the mothers were evaluated in terms of ethanol intake. Results indicated an aversion to ethanol in dams that had been administered ethanol during gestation, despite a general increase in ethanol intake observed in their pups relative to controls. The prenatal ethanol exposure also potentiated the increase in ethanol intake observed after intoxication on postnatal days 7-8. Ethanol intoxication on postnatal days 10-11 reduced ethanol consumption; this ethanol aversion was still evident in infant rats exposed prenatally to ethanol despite their general increase in ethanol intake. No effects of prenatal ethanol exposure were observed in terms of motor activity or odor preference. It is concluded that prenatal exposure to ethanol, even in a dose that induces ethanol aversion in the gestating dam, increases ethanol intake in infant rats and that this experience modulates age-related differences in subsequent postnatal learning about ethanol. PMID:19801275

  1. Operant ethanol self-administration in ethanol dependent mice.

    PubMed

    Lopez, Marcelo F; Becker, Howard C

    2014-05-01

    While rats have been predominantly used to study operant ethanol self-administration behavior in the context of dependence, several studies have employed operant conditioning procedures to examine changes in ethanol self-administration behavior as a function of chronic ethanol exposure and withdrawal experience in mice. This review highlights some of the advantages of using operant conditioning procedures for examining the motivational effects of ethanol in animals with a history of dependence. As reported in rats, studies using various operant conditioning procedures in mice have demonstrated significant escalation of ethanol self-administration behavior in mice rendered dependent via forced chronic ethanol exposure in comparison to nondependent mice. This paper also presents a summary of these findings, as well as suggestions for future studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Precipitation of DNA with Ethanol.

    PubMed

    Green, Michael R; Sambrook, Joseph

    2016-12-01

    DNA can be precipitated out of solution for the removal of salts and/or for resuspension in an alternative buffer. Either ethanol or isopropanol can be used to achieve this purpose; however, the use of ethanol is generally preferred. Cations, provided as salts, are typically included to neutralize the negative charge of the DNA phosphate backbone. This method describes ethanol precipitation of DNA in microcentrifuge tubes.

  3. Ethanol from municipal cellulosic wastes

    NASA Astrophysics Data System (ADS)

    Parker, A. J., Jr.; Timbario, T. J.; Mulloney, J. A., Jr.

    This paper addresses the use of municipal cellulosic wastes as a feedstock for producing ethanol fuels, and describes the application of enzymatic hydrolysis technology for their production. The concept incorporates recent process technology developments within the framework of an existing industry familiar with large-scale ethanol fermentation (the brewing industry). Preliminary indications are that the cost of producing ethanol via enzymatic hydrolysis in an existing plant with minimal facility modifications (low capital investment) can be significantly less than that of ethanol from grain fermentation.

  4. Tri-State Synfuels Project Commercial Scale Coal Test: Volume 3A. Gasification test at Sasolburg, overview. [Proposed Henderson, Kentucky coal to gasoline plant; Sasolburg test of Illinois Basin coals in Lurgi Mark IV

    SciTech Connect

    Not Available

    1982-06-01

    The SASOL test was conducted in order to confirm the operability of the Lurgi process with Western Kentucky coal and determine the preliminary design basis for the Tri-State Synfuels Project. The test plan was structured to optimize design parameters of both the gasification and associated plants and their component units by: demonstrating the need for additional gasifiers over the 36 estimated in the feasibility study; determining the steam requirement, which was about 6% higher than for the feasibility study; confirming the oxygen requirement estimated for the feasibility study; confirming design and performance of the distributor/stirrer to be satisfactory for Illinois Basin type coal; confirming that moderately swelling and strongly caking Illinois Basin coals can be gasified in a Mark IV gasifier fitted with a distributor/stirrer when using a non-caking coal for start-up; determining coal handling and preparation should provide a proper size and minimize fines generation and reject rock material to provide a constant specific gravity coal to gasifier. Confirming that dusty tar injection is feasible up to certain limits and that all the tar injected is gasified; determining that no oil is produced directly from the gasifier; determining that no shift unit is required to adjust the hydrogen-to-carbon monoxide ratio to that required for the input to the Fischer-Tropsch Synthol Units; determining a required increase in frequency of monitoring and quality control measures; and determining that direct use of stripped gas liquor for plant cooling purposes is not practical nor economical due to the excessively high chloride levels.

  5. Atmospheric chemistry: Ethanol and ozone

    NASA Astrophysics Data System (ADS)

    Madronich, Sasha

    2014-06-01

    Ethanol has been heralded as a cleaner fuel for cars than gasoline. An analysis of air quality data suggests that a switch from ethanol to gasoline use in São Paulo in response to changing prices led unexpectedly to lower local levels of ozone pollution.

  6. Thermophilic microbes in ethanol production

    SciTech Connect

    Slapack, G.E.; Russell, I.; Stewart, G.G.

    1987-01-01

    General and specific properties of thermophilic ethanol-producing bacteria are reviewed and their relative merits in ethanol production assessed. The studies examine the use of bacteria in mono- and co-culture fermentations for ethanol production from cellulosics; in particular, the cellulase system of Clostridium thermocellum is considered. Thermotolerant yeasts and physiological factors influencing their growth and fermentation at high temperatures are discussed. Emphasis is placed on multidisciplinary approaches to develop economical processes for ethanol production at high temperatures. Relevant topics considered include: adaptation, nutrition, heat shock, ethanol tolerance, metabolic control, genetic improvement, and fermentation/process design. General aspects of thermophily for both bacteria and yeasts (definitions, ecological aspects, merits and limitations, other industrial uses, thermostability of cellular components, and consequences of thermophilic fermentation) are discussed and the volume references over 1100 relevant articles.

  7. Electrophoretically mediated microanalysis of ethanol.

    PubMed

    Harmon, B J; Patterson, D H; Regnier, F E

    1993-12-31

    Capillary electrophoresis was used to determine ethanol by the methodology of electrophoretically mediated microanalysis (EMMA). In EMMA, spatially distinct analyte and analytical reagent zones of differing electrophoretic mobility are merged under the influence of an electric field, and the resulting product is transported to the detector. The enzymatic oxidation of ethanol to acetaldehyde by alcohol dehydrogenase was utilized, and the concurrent reduction of NAD+ to NADH was monitored at 340 nm as a measure of the quantity of ethanol injected. Quantitation using an internal standard and normalization for peak migration time yielded a R.S.D. of 2.7%, and the linear range extended to that quantity of ethanol which could be reacted prior to passing by the detection window. Comparison of the EMMA technique to the Sigma spectrophotometric procedure revealed that the two methods do not yield significantly different values for the determination of ethanol. The EMMA method offered the advantages of electrophoretic mixing and miniaturization.

  8. Fermentation method producing ethanol

    SciTech Connect

    Wang, D.I.C.; Dalal, R.

    1986-02-04

    This patent describes a process for preparing and isolating a mutant strain of Clostridium thermosaccharolyticum. The mutant strain is able to ferment hexose and pentose carbohydrates to produce ethanol and acetic acid in gram ratios of at least about 8:1. The process includes the steps of: 1.) exposing Clostridium thermosaccharolyticum cells to a mutagenic agent sufficient to effect mutation of the cells; 2.) culturing the mutated cells in a growth medium containing minimal carbon sources and pyruvate for a predetermined time period; 3.) enriching the growth medium with at least one antibiotic, the antibiotic killing the actively growing cells in the medium without substantially affecting the non-actively growing cells; and 4.) isolating a mutant Clostridium thermosaccharolyticium strain from the non-actively growing cells via the inability to utilize pyruvate as a carbon source.

  9. Environmental Releases in the Fuel Ethanol Industry

    EPA Science Inventory

    Corn ethanol is the largest produced alternate biofuel in the United States. More than 13 billion gallons of ethanol were produced in 2010. The projected corn ethanol production is 15 billion gallons by 2015. With increased production of ethanol, the environmental releases from e...

  10. Environmental Releases in the Fuel Ethanol Industry

    EPA Science Inventory

    Corn ethanol is the largest produced alternate biofuel in the United States. More than 13 billion gallons of ethanol were produced in 2010. The projected corn ethanol production is 15 billion gallons by 2015. With increased production of ethanol, the environmental releases from e...

  11. Plant cell walls to ethanol.

    USDA-ARS?s Scientific Manuscript database

    Conversion of plant cell walls to ethanol constitutes generation 2 bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation, and separation. Ultimately, it is desired to combine as man...

  12. Government support for ethanol withers

    NASA Astrophysics Data System (ADS)

    2011-08-01

    The United States looks set to slash its maize subsidies. This will be good for many reasons, including combating climate change -- and it shouldn't even hurt the US ethanol industry that much, writes Anna Petherick.

  13. Ethanol-Drug Metabolic Interactions

    DTIC Science & Technology

    1984-06-13

    ethanol, the mice were first characterized for the inductive effects of the classical microsomal enzyme inducers (PB), 3-raethylcholanthrene (3-MC...that ethanol differs in its inducing properties, when compared to the properties of the two classical hepatic microsomal enzyme inducers PB and 3-MC...substrate for this enzyme , whereas p-amlnobenzoic acid (PABA) showed high activity and was polymorphically acetylated. Neither acute nor chronic

  14. Ethanol: A Strategic Energy Source?

    DTIC Science & Technology

    2009-05-04

    REPORT DATE (DD-MM-YYYY) 04-05-2009 2. REPORT TYPE Program Research Paper 3 . DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER...radical terrorists richer.” 3 This research project examines the viability of ethanol as an alternative fuel source. It will identify whether an ethanol...Japan in 1941 went to war to secure its energy supplies. The United States must 3 prepare for these shortages if we are to maintain our economic

  15. Ethanol-induced analgesia

    SciTech Connect

    Pohorecky, L.A.; Shah, P.

    1987-09-07

    The effect of ethanol (ET) on nociceptive sensitivity was evaluated using a new tail deflection response (TDR) method. The IP injection of ET (0.5 - 1.5 g/kg) produced raid dose-dependent analgesia. Near maximal effect (97% decrease in TDR) was produced with the 1.5 g/kg dose of ET ten minutes after injection. At ninety minutes post-injection there was still significant analgesia. Depression of ET-induced nociceptive sensitivity was partially reversed by a 1 mg/kg dose of naloxone. On the other hand, morphine (0.5 or 5.0 mg/kg IP) did not modify ET-induced analgesia, while 3.0 minutes of cold water swim (known to produce non-opioid mediated analgesia) potentiated ET-induced analgesic effect. The 0.5 g/kg dose of ET by itself did not depress motor activity in an open field test, but prevented partially the depression in motor activity produced by cold water swim (CWS). Thus, the potentiation by ET of the depression of the TDR produced by CWS cannot be ascribed to the depressant effects of ET on motor activity. 21 references, 4 figures, 1 table.

  16. Renewable energy: ethanol from biomass

    SciTech Connect

    Mullins, J.T.; NeSmith, C.C.

    1985-08-01

    Information is provided on the current status of renewable energy in Florida. Florida can expect continued increases in the use of ethanol for blends of unleaded gasoline. The sales for 1984 represent about 10% of Florida gasoline consumption. Federal and state tax incentives and other financial assistance are in place to encourage the development and growth of the fuel ethanol industry in Florida. However, it is not expected that Florida will become a major force in the production of ethanol in the short term. All existing commercial ethanol producing facilities employ established fermentation processes that utilize grain or molasses for the most part as feedstocks. Florida is not a large grain producing state and there is not a sufficient supply of molasses to support large scale ethanol production. The use of these feedstocks for Florida ethanol producing facilities is not competitive with the Mid-West grain areas, for example. Research has shown that much of the abundant biomass materials naturally or commercially grown in Florida can be converted to alcohol, but commercial scale facilities have not yet been built. To attract investment money, the non-commercial fermentation technology must progress beyond the laboratory stage and reach a proven and tested pilot plant stage. If the pilot stage indicates a full scale plant will be economical, then the next step is commercialization. 23 refs.

  17. Stress, Ethanol, and Neuroactive Steroids

    PubMed Central

    Biggio, Giovanni; Concas, Alessandra; Follesa, Paolo; Sanna, Enrico; Serra, Mariangela

    2010-01-01

    Neurosteroids play a crucial role in stress, alcohol dependence and withdrawal, and other physiological and pharmacological actions by potentiating or inhibiting neurotransmitter action. This review article focuses on data showing that the interaction among stress, ethanol, and neuroactive steroids may result in plastic molecular and functional changes of GABAergic inhibitory neurotransmission. The molecular mechanisms by which stress-ethanol-neuroactive steroids interactions can produce plastic changes in GABAA receptors have been studied using different experimental models in vivo and in vitro in order to provide useful evidence and new insights into the mechanisms through which acute and chronic ethanol and stress exposure modulate the activity of GABAergic synapses. We show detailed data on a) the effect of acute and chronic stress on peripheral and brain neurosteroid levels and GABAA receptor gene expression and function; b) ethanol-stimulated brain steroidogenesis; c) plasticity of GABAA receptor after acute and chronic ethanol exposure. The implications of these new mechanistic insights to our understanding of the effects of ethanol during stress are also discussed. The understanding of these neurochemical and molecular mechanisms may shed new light on the physiopathology of diseases, such as anxiety, in which GABAergic transmission play a pivotal role. These data may also lead to the need for new anxiolytic, hypnotic and anticonvulsant selective drugs devoid of side effects. PMID:17555824

  18. From Ethanol to Salsolinol: Role of Ethanol Metabolites in the Effects of Ethanol

    PubMed Central

    Peana, Alessandra T.; Rosas, Michela; Porru, Simona; Acquas, Elio

    2016-01-01

    In spite of the global reputation of ethanol as the psychopharmacologically active ingredient of alcoholic drinks, the neurobiological basis of the central effects of ethanol still presents some dark sides due to a number of unanswered questions related to both its precise mechanism of action and its metabolism. Accordingly, ethanol represents the interesting example of a compound whose actions cannot be explained as simply due to the involvement of a single receptor/neurotransmitter, a scenario further complicated by the robust evidence that two main metabolites, acetaldehyde and salsolinol, exert many effects similar to those of their parent compound. The present review recapitulates, in a perspective manner, the major and most recent advances that in the last decades boosted a significant growth in the understanding on the role of ethanol metabolism, in particular, in the neurobiological basis of its central effects. PMID:27891052

  19. Ethanol metabolism, cirrhosis and alcoholism.

    PubMed

    Lieber, C S

    1997-01-03

    Alcohol-induced tissue damage results from associated nutritional deficiencies as well as some direct toxic effects, which have now been linked to the metabolism of ethanol. The main pathway involves liver alcohol dehydrogenase which catalyzes the oxidation of ethanol to acetaldehyde, with a shift to a more reduced state, and results in metabolic disturbances, such as hyperlactacidemia, acidosis, hyperglycemia, hyperuricemia and fatty liver. More severe toxic manifestations are produced by an accessory pathway, the microsomal ethanol oxidizing system involving an ethanol-inducible cytochrome P450 (2E1). After chronic ethanol consumption, there is a 4- to 10-fold induction of 2E1, associated not only with increased acetaldehyde generation but also with production of oxygen radicals that promote lipid peroxidation. Most importantly, 2E1 activates many xenobiotics to toxic metabolites. These include solvents commonly used in industry, anaesthetic agents, medications such as isoniazid, over the counter analgesics (acetaminophen), illicit drugs (cocaine), chemical carcinogens, and even vitamin A and its precursor beta-carotene. Furthermore, enhanced microsomal degradation of retinoids (together with increased hepatic mobilization) promotes their depletion and associated pathology. Induction of 2E1 also yields increased acetaldehyde generation, with formation of protein adducts, resulting in antibody production, enzyme inactivation, decreased DNA repair, impaired utilization of oxygen, glutathione depletion, free radical-mediated toxicity, lipid peroxidation, and increased collagen synthesis. New therapies include adenosyl-L-methionine which, in baboons, replenishes glutathione, and attenuates mitochondrial lesions. In addition, polyenylphosphatidylcholine (PPC) fully prevents ethanol-induced septal fibrosis and cirrhosis, opposes ethanol-induced hepatic phospholipid depletion, decreased phosphatidylethanolamine methyltransferase activity and activation of hepatic

  20. Ethanol in Olive Fruit. Changes during Ripening.

    PubMed

    Beltrán, Gabriel; Bejaoui, Mohamed A; Jimenez, Antonio; Sanchez-Ortiz, Araceli

    2015-06-10

    Ethanol is one of the precursors of ethyl esters, the virgin olive oil quality parameter for the "extra" category recently adopted by the European Union and International Olive Oil Council. Although ethyl ester content has great importance for virgin olive oil classification, the origin of ethanol is not clear. A possible source of ethanol may be the olive fruit itself while it remains on the tree. Variation of fruit ethanol content during ripening was studied for three different olive cultivars: 'Picual', 'Hojiblanca', and 'Arbequina'. Ethanol was measured in fruit homogenates by HS-SPME-GC-FID. The ethanol content varied between 0.56 and 58 mg/kg. 'Hojiblanca' fruits showed the highest ethanol concentration. For all of the cultivars, ethanol content of fruit increased during the ripening process, although a clear cultivar-dependent effect was observed because 'Hojiblanca' fruits showed the most significant raise. Therefore, results indicated that ethanol can be accumulated during fruit maturation on the olive tree.

  1. Ethanol Modulation of Synaptic Plasticity

    PubMed Central

    McCool, Brian A.

    2011-01-01

    Synaptic plasticity in the most general terms represents the flexibility of neurotransmission in response to neuronal activity. Synaptic plasticity is essential both for the moment-by-moment modulation of neural activity in response to dynamic environmental cues and for long-term learning and memory formation. These temporal characteristics are served by an array of pre- and post-synaptic mechanisms that are frequently modulated by ethanol exposure. This modulation likely makes significant contributions to both alcohol abuse and dependence. In this review, I discuss the modulation of both short-term and long-term synaptic plasticity in the context of specific ethanol-sensitive cellular substrates. A general discussion of the available preclinical, animal-model based neurophysiology literature provides a comparison between results from in vitro and in vivo studies. Finally, in the context of alcohol abuse and dependence, the review proposes potential behavioral contributions by ethanol modulation of plasticity. PMID:21195719

  2. Ethanol production method and system

    DOEpatents

    Chen, M.J.; Rathke, J.W.

    1983-05-26

    Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

  3. Ethanol Metabolism and Osmolarity Modify Behavioral Responses to Ethanol in C. elegans

    PubMed Central

    Alaimo, Joseph T.; Davis, Scott J.; Song, Sam S.; Burnette, Christopher R.; Grotewiel, Mike; Shelton, Keith L.; Pierce-Shimomura, Jonathan T.; Davies, Andrew G.; Bettinger, Jill C.

    2012-01-01

    Background Ethanol is metabolized by a two-step process in which alcohol dehydrogenase (ADH) oxidizes ethanol to acetaldehyde, which is further oxidized to acetate by aldehyde dehydrogenase (ALDH). Although variation in ethanol metabolism in humans strongly influences the propensity to chronically abuse alcohol, few data exist on the behavioral effects of altered ethanol metabolism. Here, we used the nematode C. elegans to directly examine how changes in ethanol metabolism alter behavioral responses to alcohol during an acute exposure. Additionally, we investigated ethanol solution osmolarity as a potential explanation for contrasting published data on C. elegans ethanol sensitivity. Methods We developed a gas chromatography assay and validated a spectrophotometric method to measure internal ethanol in ethanol-exposed worms. Further, we tested the effects of mutations in ADH and ALDH genes on ethanol tissue accumulation and behavioral sensitivity to the drug. Finally, we tested the effects of ethanol solution osmolarity on behavioral responses and tissue ethanol accumulation. Results Only a small amount of exogenously applied ethanol accumulated in the tissues of C. elegans and consequently their tissue concentrations were similar to those that intoxicate humans. Independent inactivation of an ADH-encoding gene (sodh-1) or an ALDH-encoding gene (alh-6 or alh-13) increased the ethanol concentration in worms and caused hypersensitivity to the acute sedative effects of ethanol on locomotion. We also found that the sensitivity to the depressive effects of ethanol on locomotion is strongly influenced by the osmolarity of the exogenous ethanol solution. Conclusions Our results indicate that ethanol metabolism via ADH and ALDH has a statistically discernable but surprisingly minor influence on ethanol sedation and internal ethanol accumulation in worms. In contrast, the osmolarity of the medium in which ethanol is delivered to the animals has a more substantial effect on

  4. Ethanol Demand in United States Gasoline Production

    SciTech Connect

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  5. Ethanol Pharmacokinetics in Neonates and Infants

    PubMed Central

    Marek, Elizabeth; Kraft, Walter K.

    2014-01-01

    Introduction Ethanol has been used for years in neonatal and infant liquid medications, yet the pharmacokinetics, pharmacodynamics, and safety of ethanol in this vulnerable population have not been well characterized. The purpose of this review is to raise awareness of ethanol use as an excipient in neonatal and infant medications and to provide insight, based on the available evidence, into clearance rates of ethanol in babies. We also discuss ethanol pharmacokinetics in adults, theoretical pharmacokinetic changes in neonates and infants as it may apply to ethanol disposition, and case reports involving ethanol exposure in neonates and infants. Materials and methods This study was a narrative review in which relevant papers were selected using databases and scientific search engines such as PubMed with the key words ethanol, infant, and newborninfant. Results It remains unclear what ethanol exposure is safe for neonates and infants. The Food and Drug Administration and American Academy of Pediatrics have both taken action, by either setting limits of ethanol content in over-the-counter medications or by recommending restricted exposure to ethanol-containing pediatric formulations. Conclusions Until the short- and long-term health effects of chronic ethanol administration can be further characterized, ethanol-containing medications should be used with caution. PMID:25379066

  6. Feasibility of producing ethanol from food waste.

    PubMed

    Kim, Jae Hyung; Lee, Jun Cheol; Pak, Daewon

    2011-01-01

    Food waste generated in Korea is rich in carbohydrate as high as 65% of total solids. Using the food waste, the feasibility of ethanol production was investigated in a lab-scale fermentor. Pretreatment with hydrolyzing enzymes including carbohydrase, glucoamylase, cellulase and protease were tested for hydrolysis of food waste. The carbohydrase was able to hydrolyze and produce glucose with a glucose yield of 0.63 g glucose/g total solid. Enzymatic hydrolysis and ethanol fermentation by using carbohydrase and Saccharomyces cerevisiae were conducted in the batch mode. For separated hydrolysis and fermentation (SHF), ethanol concentration reached at the level corresponding to an ethanol yield of 0.43 g ethanol/g total solids. For simultaneous saccharification and fermentation (SSF), the ethanol yield was 0.31 g ethanol/g total solids. During the continuous operation of SHF, the volumetric ethanol production rate was 1.18 g/lh with an ethanol yield of 0.3g ethanol/g total solids. For SSF process, the volumetric ethanol production rate was 0.8 g/lh with an ethanol yield of 0.2g ethanol/g total solids.

  7. Enabling High Efficiency Ethanol Engines

    SciTech Connect

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

  8. Producing ethanol from solid waste

    SciTech Connect

    Logsdon, G.

    1991-07-01

    A Florida company has patented a commercial system that processes agricultural residues, industrial sludges and municipal solid wastes as feedstock for ethanol. The process uses a strain of Escherichia coli that can convert five-carbon sugars from biomass into ethanol as efficiently as using six-carbon sugars from grains, sorghum and sugar cane. The difference is that this process uses plant stems and leaves from agricultural waste, yard waste, paper sludges and even municipal solid waste. Markets in public works, food processing plants, municipal solid waste plants and agriculture have been identified.

  9. [Ethanol content of Kefir water].

    PubMed

    Rabl, W; Liniger, B; Sutter, K; Sigrist, T

    1994-03-01

    The question of the influence of kefir on blood-alcohol-level has been asked in a legal proceeding. The questioned recipe consisted of 21 water, 6 soup-spoons of kefir granules (about 120 g), 150 g sugar, 2 figs and one lemon. The consumption took place after two days of fermentation. Experimentally we found, that one liter of this kefir product may contain up to 38 g/l ethanol after 7 to 10 days. On the second day we measured up to 16 g/l ethanol. Our results may be import for expert appraisements concerning unability of driving.

  10. A Quantitative Gas Chromatographic Ethanol Determination.

    ERIC Educational Resources Information Center

    Leary, James J.

    1983-01-01

    Describes a gas chromatographic experiment for the quantitative determination of volume percent ethanol in water ethanol solutions. Background information, procedures, and typical results are included. Accuracy and precision of results are both on the order of two percent. (JN)

  11. Kinetics of ethanol inhibition in alcohol fermentation.

    PubMed

    Luong, J H

    1985-03-01

    The inhibitory effect of ethanol on yeast growth and fermentation has been studied for the strain Saccharomyces cerevisiae ATCC No. 4126 under anaerobic batch conditions. The results obtained reveal that there is no striking difference between the response of growth and ethanol fermentation. Two kinetic models are also proposed to describe the kinetic pattern of ethanol inhibition on the specific rates of growth and ethanol fermentation: microi/micro0 = 1 - (P/Pm)alpha (for growth) nui/nu0 = 1 - (P/P'm)beta (for ethanol production). The maximum allowable ethanol concentration above which cells do not grow was predicted to be 112 g/L. The ethanol-producing capability of the cells was completely inhibited at 115 g/L ethanol. The proposed models appear to accurately represent the experimental data obtained in this study and the literature data.

  12. A Quantitative Gas Chromatographic Ethanol Determination.

    ERIC Educational Resources Information Center

    Leary, James J.

    1983-01-01

    Describes a gas chromatographic experiment for the quantitative determination of volume percent ethanol in water ethanol solutions. Background information, procedures, and typical results are included. Accuracy and precision of results are both on the order of two percent. (JN)

  13. Prenatal ethanol exposure leads to greater ethanol-induced appetitive reinforcement.

    PubMed

    Pautassi, Ricardo M; Nizhnikov, Michael E; Spear, Norman E; Molina, Juan C

    2012-09-01

    Prenatal ethanol significantly heightens later alcohol consumption, but the mechanisms that underlie this phenomenon are poorly understood. Little is known about the basis of 'this effect of prenatal ethanol on the sensitivity to ethanol's reinforcing effects. One possibility is that prenatal ethanol exposure makes subjects more sensitive to the appetitive effects of ethanol or less sensitive to ethanol's aversive consequences. The present study assessed ethanol-induced second-order conditioned place preference (CPP) and aversion and ethanol-induced conditioned taste aversion (CTA) in infant rats prenatally exposed to ethanol (2.0 g/kg) or vehicle (water) or left untreated. The involvement of the κ opioid receptor system in ethanol-induced CTA was also explored. When place conditioning occurred during the ascending limb of the blood-ethanol curve (Experiment 1), the pups exposed to ethanol in utero exhibited greater CPP than untreated controls, with a shift to the right of the dose-response curve. Conditioning during a later phase of intoxication (30-45 min post-administration; Experiment 2) resulted in place aversion in control pups exposed to vehicle during late gestation but not in pups that were exposed to ethanol in utero. Ethanol induced a reliable and similar CTA (Experiment 3) in the pups treated with vehicle or ethanol during gestation, and CTA was insensitive to κ antagonism. These results suggest that brief exposure to a moderate ethanol dose during late gestation promotes ethanol-mediated reinforcement and alters the expression of conditioned aversion by ethanol. This shift in the motivational reactivity to ethanol may be an underlying basis of the effect of prenatal ethanol on later ethanol acceptance.

  14. Re-engineering bacteria for ethanol production

    SciTech Connect

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  15. Advanced Biorefineries for Production of Fuel Ethanol

    USDA-ARS?s Scientific Manuscript database

    This review, "Advanced biorefineries for production of fuel ethanol," is a chapter in the Wiley book entitled Biomass to Biofuels: Strategies for Global Industries and is intended to cover all major ethanol production processes to date. The chapter discusses current fuel ethanol production processe...

  16. Mechanisms of Ethanol Tolerance in Saccharomyces cerevisiae

    USDA-ARS?s Scientific Manuscript database

    Saccharomyces cerevisiae is a superb ethanol producer, yet is also sensitive to higher ethanol concentrations especially under high gravity or very high gravity fermentation conditions. Ethanol tolerance is associated with interplay of complex networks at the genome level. Although significant eff...

  17. Cellulosic ethanol byproducts as a bulking agent

    Treesearch

    J.M. Considine; D. Coffin; J.Y. Zhu; D.H. Mann; X. Tang

    2017-01-01

    Financial enhancement of biomass value prior to pulping requires subsequent use of remaining materials; e.g., high value use of remaining stock material after cellulosic ethanol production would improve the economics for cellulosic ethanol. In this work, use of enzymatic hydrolysis residual solids (EHRS), a cellulosic ethanol byproduct, were investigated as a bulking...

  18. Binge ethanol intoxication heightens subsequent ethanol intake in adolescent, but not adult, rats.

    PubMed

    Fabio, María Carolina; Nizhnikov, Michael E; Spear, Norman E; Pautassi, Ricardo Marcos

    2014-04-01

    A question still to be answered is whether ethanol initiation has a greater effect on ethanol consumption if it occurs during adolescence than in adulthood. This study assessed the effect of ethanol initiation during adolescence or adulthood on voluntary ethanol consumption when animals were still within the same age range. Adolescent or adult rats were given 5, 2, or 0 ethanol exposures. The animals were tested for ethanol consumption through two-bottle choice tests, before undergoing a 1-week deprivation. A two-bottle assessment was conducted after the deprivation. Adolescents, but not adults, given two ethanol administrations during initiation exhibited significantly higher ethanol intake during the pre-deprivation period. These adolescents also exhibited a threefold increase in ethanol intake after 7 days of drug withdrawal, when compared with controls. These findings suggest that very brief experience with binge ethanol intoxication in adolescence, but not in adulthood, impacts later predisposition to drink.

  19. THE ONTOGENY OF ETHANOL AVERSION

    PubMed Central

    Saalfield, Jessica; Spear, Linda

    2016-01-01

    Recent work has suggested separate developmental periods within the broader framework of adolescence, with data suggesting distinct alterations and vulnerabilities within these intervals. While previous research has suggested reduced sensitivity to the aversive effects of alcohol in adolescence relative to adults, a more detailed ontogeny of this effect has yet to be conducted. The adolescent brain undergoes significant transitions throughout adolescence, including in regions linked with drug reward and aversion. The current study aimed to determine the ontogeny of ethanol aversion by utilizing a conditioned taste aversion procedure at six different ages to test the hypothesis that the transitions into, through, and out of adolescence are associated with ontogenetic alterations in sensitivity to the aversive properties of ethanol. Non-deprived animals given Boost® as the conditioned stimulus (CS) were used in Experiment 1, whereas Experiment 2 used water-restricted animals provided with a saccharin/sucrose solution as the CS. In both experiments, an attenuated sensitivity to the aversive properties of ethanol was evident in adolescents compared to adults, although more age differences were apparent in water deprived animals than when a highly palatable CS was given to ad libitum animals. Overall, the data suggest an attenuated sensitivity to the aversive properties of ethanol that is most pronounced during pre- and early adolescence, declining thereafter to reach the enhanced aversive sensitivity of adults. PMID:26774181

  20. Ethanol production by recombinant hosts

    DOEpatents

    Ingram, Lonnie O.; Beall, David S.; Burchhardt, Gerhard F. H.; Guimaraes, Walter V.; Ohta, Kazuyoshi; Wood, Brent E.; Shanmugam, Keelnatham T.

    1995-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  1. Ethanol production by recombinant hosts

    DOEpatents

    Fowler, David E.; Horton, Philip G.; Ben-Bassat, Arie

    1996-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  2. Ethanol production in recombinant hosts

    DOEpatents

    Ingram, Lonnie O'Neal; Barbosa-Alleyne, Maria D.

    2005-02-01

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  3. Ethanol fermentation using novel techniques

    SciTech Connect

    Kim, K.

    1984-01-01

    Potato starch, sweet potato, and Jerusalem artichoke were hydrolyzed using high pressure extrusion and/or acid and the hydrolysates were utilized as substrates for ethanol fermentation. The first extrusion at 13,000 to 40,000 psi did not completely hydrolyze the starch solution to fermentable sugar. At elevated temperatures (79-97/sup 0/C) and in the presence of HCl, the high pressure extrusion (13,000 psi) effectively hydrolyzed starch into fermentable sugars to yield 12.1, 22.4, and 30.5 dextrose equivalent (DE) in 1, 2, and 3 N HCl, respectively. Maximal reducing sugar value of 84.2 DE and 0.056% hydroxymethylfurfural (HMF) was achieved after heating 8% sweet potato slurry (SPS) in 1 N HCl at 110/sup 0/C for 15 min. The degraded SPS was then fermented at 37/sup 0/C using an alcohol-tolerant strain of Saccharomyces cerevisiae to give 41.6 g of 200 proof ethanol from 400 g fresh Georgia Red Sweet potato tuber. A maximal reducing sugar value of 83.5 fructose equivalent and 0.004% HMF was formed from Jerusalem artichoke slurry (JAS) containing 8% total solid following heating in 0.1 N HCl at 97/sup 0/C for 10 min. The degraded JAS was then fermented at 37 C and 29.1 g 200 proof ethanol was produced from 320 g fresh tuber of Jerusalem artichoke. Continuous ethanol fermentation was successfully achieved using a bioreactor where cells were immobilized onto inorganic, channeled porous alumina beads. A maximum productivity (27.0/g ethanol/l.h) was achieved with the bioreactor at 35 C using malt yeast extract broth containing 10% glucose as the feedstock. The immobilized cell system showed good operational and storage stability, and could be stored for more than five months without loss of productivities.

  4. Fetal ethanol exposure increases ethanol intake by making it smell and taste better.

    PubMed

    Youngentob, Steven L; Glendinning, John I

    2009-03-31

    Human epidemiologic studies reveal that fetal ethanol exposure is highly predictive of adolescent ethanol avidity and abuse. Little is known about how fetal exposure produces these effects. It is hypothesized that fetal ethanol exposure results in stimulus-induced chemosensory plasticity. Here, we asked whether gestational ethanol exposure increases postnatal ethanol avidity in rats by altering its taste and odor. Experimental rats were exposed to ethanol in utero via the dam's diet, whereas control rats were either pair-fed an iso-caloric diet or given food ad libitum. We found that fetal ethanol exposure increased the taste-mediated acceptability of both ethanol and quinine hydrochloride (bitter), but not sucrose (sweet). Importantly, a significant proportion of the increased ethanol acceptability could be attributed directly to the attenuated aversion to ethanol's quinine-like taste quality. Fetal ethanol exposure also enhanced ethanol intake and the behavioral response to ethanol odor. Notably, the elevated intake of ethanol was also causally linked to the enhanced odor response. Our results demonstrate that fetal exposure specifically increases ethanol avidity by, in part, making it taste and smell better. More generally, they establish an epigenetic chemosensory mechanism by which maternal patterns of drug use can be transferred to offspring. Given that many licit (e.g., tobacco products) and illicit (e.g., marijuana) drugs have noteworthy chemosensory components, our findings have broad implications for the relationship between maternal patterns of drug use, child development, and postnatal vulnerability.

  5. Adaptation of yeast cell membranes to ethanol

    SciTech Connect

    Jimenez, J.; Benitez, T.

    1987-05-01

    A highly ethanol-tolerant Saccharomyces wine strain is able, after growth in the presence of ethanol, to efficiently improve the ethanol tolerance of its membrane. A less-tolerant Saccharomyces laboratory strain, however, is unable to adapt its membrane to ethanol. Furthermore, after growth in the presence of ethanol, the membrane of the latter strain becomes increasingly sensitive, although this is a reversible process. Reversion to a higher tolerance occurs only after the addition of an energy source and does not take place in the presence of cycloheximide.

  6. Transport and degradation of ethanol in groundwater

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Khan, Imtiyaz A.; Chen, Xun-Hong; Spalding, Roy F.

    2006-01-01

    Ethanol is rapidly replacing methyl tert-butyl ether (M tBE), the primary fuel oxygenate in the US, and ethanol releases from spills and leaky underground storage tanks (LUSTs) are anticipated. Ethanol has received little attention as a potential groundwater contaminant. This study investigates the fate and transport of ethanol under transient conditions in a sand and gravel aquifer. A pulse containing approximately 220 mg L - 1 ethanol and 16 mg L - 1 bromide was injected into the shallow sand and gravel aquifer and monitored to estimate its persistence and transport. The plume was monitored for 2.5 months using downgradient multilevel samplers (MLSs). Values for ethanol retardation were measured from ethanol and bromide breakthrough data and compared to estimates using published Koc values for low carbon aquifer sediments ( foc = 10 μg C g - 1 sediment). Ethanol transport was not retarded ( R = 0.99). A 3-dimensional model reasonably simulated bromide and ethanol breakthrough curves. An average first-order decay constant was estimated to be 0.32 d - 1 ( t1 / 2 = 2.2 d). At the second fence, 75% of the injected bromide and less than 3% of ethanol remained in the plume. Monitored terminal electron acceptor concentrations demonstrated that the majority of the ethanol was transformed by anaerobic processes other than denitrification and sulfate reduction.

  7. Transport and degradation of ethanol in groundwater.

    PubMed

    Zhang, Yi; Khan, Imtiyaz A; Chen, Xun-Hong; Spalding, Roy F

    2006-01-10

    Ethanol is rapidly replacing methyl tert-butyl ether (MtBE), the primary fuel oxygenate in the US, and ethanol releases from spills and leaky underground storage tanks (LUSTs) are anticipated. Ethanol has received little attention as a potential groundwater contaminant. This study investigates the fate and transport of ethanol under transient conditions in a sand and gravel aquifer. A pulse containing approximately 220 mg L-1 ethanol and 16 mg L-1 bromide was injected into the shallow sand and gravel aquifer and monitored to estimate its persistence and transport. The plume was monitored for 2.5 months using downgradient multilevel samplers (MLSs). Values for ethanol retardation were measured from ethanol and bromide breakthrough data and compared to estimates using published Koc values for low carbon aquifer sediments (foc=10 microg C g-1 sediment). Ethanol transport was not retarded (R=0.99). A 3-dimensional model reasonably simulated bromide and ethanol breakthrough curves. An average first-order decay constant was estimated to be 0.32 d-1 (t1/2=2.2 d). At the second fence, 75% of the injected bromide and less than 3% of ethanol remained in the plume. Monitored terminal electron acceptor concentrations demonstrated that the majority of the ethanol was transformed by anaerobic processes other than denitrification and sulfate reduction.

  8. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae.

    PubMed

    Ma, Menggen; Liu, Z Lewis

    2010-07-01

    Saccharomyces cerevisiae is a superb ethanol producer, yet is also sensitive to higher ethanol concentrations especially under high gravity or very high gravity fermentation conditions. Ethanol tolerance is associated with interplay of complex networks at the genome level. Although significant efforts have been made to study ethanol stress response in past decades, mechanisms of ethanol tolerance are not well known. With developments of genome sequencing and genomic technologies, our understanding of yeast biology has been revolutionarily advanced. More evidence of mechanisms of ethanol tolerance have been discovered involving multiple loci, multi-stress, and complex interactions as well as signal transduction pathways and regulatory networks. Transcription dynamics and profiling studies of key gene sets including heat shock proteins provided insight into tolerance mechanisms. A transient gene expression response or a stress response to ethanol does not necessarily lead to ethanol tolerance in yeast. Reprogrammed pathways and interactions of cofactor regeneration and redox balance observed from studies of tolerant yeast demonstrated the significant importance of a time-course study for ethanol tolerance. In this review, we focus on current advances of our understanding for ethanol-tolerance mechanisms of S. cerevisiae including gene expression responses, pathway-based analysis, signal transduction and regulatory networks. A prototype of global system model for mechanisms of ethanol tolerance is presented.

  9. PRENATAL ETHANOL EXPOSURE LEADS TO GREATER ETHANOL-INDUCED APPETITIVE REINFORCEMENT

    PubMed Central

    Pautassi, Ricardo M.; Nizhnikov, Michael E.; Spear, Norman E.; Molina, Juan C.

    2012-01-01

    Prenatal ethanol significantly heightens later alcohol consumption, but the mechanisms that underlie this phenomenon are poorly understood. Little is known about the basis of this effect of prenatal ethanol on the sensitivity to ethanol’s reinforcing effects. One possibility is that prenatal ethanol exposure makes subjects more sensitive to the appetitive effects of ethanol or less sensitive to ethanol’s aversive consequences. The present study assessed ethanol-induced second-order conditioned place preference (CPP) and aversion and ethanol-induced conditioned taste aversion (CTA) in infant rats prenatally exposed to ethanol (2.0 g/kg) or vehicle (water) or left untreated. The involvement of the κ opioid receptor system in ethanol-induced CTA was also explored. When place conditioning occurred during the ascending limb of the blood-ethanol curve (Experiment 1), the pups exposed to ethanol in utero exhibited greater CPP than untreated controls, with a shift to the right of the dose-response curve. Conditioning during a later phase of intoxication (30–45 min post-administration; Experiment 2) resulted in place aversion in control pups exposed to vehicle during late gestation but not in pups that were exposed to ethanol in utero. Ethanol induced a reliable and similar CTA (Experiment 3) in the pups treated with vehicle or ethanol during gestation, and CTA was insensitive to κ antagonism. These results suggest that brief exposure to a moderate ethanol dose during late gestation promotes ethanol-mediated reinforcement and alters the expression of conditioned aversion by ethanol. This shift in the motivational reactivity to ethanol may be an underlying basis of the effect of prenatal ethanol on later ethanol acceptance. PMID:22698870

  10. Daidzin decreases ethanol consumption in rats.

    PubMed

    Heyman, G M; Keung, W M; Vallee, B L

    1996-09-01

    In a previous study, daidzin, a constituent of an ancient Chinese herbal treatment for alcoholism, decreased home-cage ethanol consumption in laboratory Syrian golden hamsters. The present study tested the generality of daidzin's antidipsotropic effects. Rats served as subjects in a two-lever choice procedure. At one lever, responses earned 10% ethanol, flavored with saccharin. At the other lever, responses earned an isocaloric starch solution. Daidzin decreased both ethanol and starch consumption, but the decreases in ethanol intake were larger. Changes in consumption were dose dependent, and differences in ethanol and food consumption increased slightly (but significantly) as dose increased. Daidzin produced a similar pattern of decreases in lever pressing. In baseline, there was an approximately equal distribution of responses between the two levers; at the highest daidzin dose, the relative number of responses at the ethanol lever decreased to 30%. These results replicate and extend earlier findings, and they encourage further research on daidzin's capacity to decrease ethanol consumption.

  11. Kinetics of ethanol inhibition in alcohol fermentation

    SciTech Connect

    Luong, J.H.T.

    1985-01-01

    The inhibitory effect of ethanol on yeast growth and fermentation has been studied for the strain Saccharo-myces cerevisiae ATCC No. 4126 under anaerobic batch conditions. The results obtained reveal that there is no striking difference between the response of growth and ethanol fermentation. Two kinetic models are also proposed to describe the kinetic pattern of ethanol inhibition on the specific rates of growth and ethanol fermentation. The maximum allowable ethanol concentration above which cells do not grow was predicted to be 112 g/L. The ethanol-producing capability of the cells was completely inhibited at 115 g/L ethanol. The proposed models appear to accurately represent the experimental data obtained in this study and the literature data.

  12. Properties of ethanol fermentation by Flammulina velutipes.

    PubMed

    Mizuno, Ryoji; Ichinose, Hitomi; Maehara, Tomoko; Takabatake, Koji; Kaneko, Satoshi

    2009-10-01

    Basidiomycetes have the ability to degrade lignocellulosic biomass, and some basidiomycetes produce alcohol dehydrogenase. These characteristics may be useful in the direct production of ethanol from lignocellulose. Ethanol fermentation by basidiomycetes was investigated to examine the possibility of ethanol production by consolidated bioprocessing (CBP) using Flammulina velutipes. F. velutipes converted D-glucose to ethanol with a high efficiency (a theoretical ethanol recovery rate of 88%), but ethanol production from pentose was not observed. These properties of F. velutipes are similar to those of Saccharomyces cerevisiae, but the basidiomycete converted not only sucrose, but also maltose, cellobiose, cellotriose, and cellotetraose to ethanol, with almost the same efficiency as that for D-glucose. From these results, we concluded that F. velutipes possesses advantageous characteristics for use in CBP.

  13. Health effects of synfuels technology: a review

    SciTech Connect

    Sanathanan, L.P.; Reilly, C.A.; Marshall, S.A.; Wilzbach, K.E.

    1981-04-01

    This document contains annotated synopses of available information pertinent to health impacts of synthetic fuel technologies under development, and identifies needs for further information. The report focuses on carcinogenesis, which appears to be a special problem with coal conversion technologies. This review is intended to serve as a reference for the NEPA Affairs Division of DOE in its evaluation of the overall synthetic fuel program and specific projects in the program. Updated versions of this document are expected to be prepared annually or semiannually as new information becomes available.

  14. Tritium management in fusion synfuel designs

    SciTech Connect

    Galloway, T.R.

    1980-04-25

    Two blanket types are being studied: a lithium-sodium pool boiler and a lithium-oxide- or lithium-sodium pool boiler and a lithium-oxide- or aluminate-microsphere moving bed. For each, a wide variety of current technology was considered in handling the tritium. Here, we show the pool boiler with the sulfur-iodine thermochemical cycle first developed and now being piloted by the General Atomic Company. The tritium (T/sub 2/) will be generated in the lithium-sodium mixture where the concentration is approx. 10 ppM and held constant by a scavenging system consisting mainly of permeators. An intermediate sodium loop carries the blanket heat to the thermochemical cycle, and the T/sub 2/ in this loop is held to 1 ppM by a similar scavenging system. With this design, we have maintained blanket inventory at 1 kg of tritium, kept thermochemical cycle losses to 5 Ci/d and environmental loss to 10 Ci/d, and held total plant risk inventory at 7 kg tritium.

  15. HYFIRE II: a fusion/synfuel producer

    SciTech Connect

    Fillo, J.A.

    1981-01-01

    HYFIRE II is a point design study of a commercial fusion Tokamak reactor coupled to a high-temperature electrolysis (HTE) system for the production of hydrogen and oxygen. The purpose of the study is to assess the technical and economic feasibility of the application of fusion energy for the production of these basic fuels. The HYFIRE II fusion reactor design is based on the STARFIRE commercial power reactor, the primary differences are in the type of blankets between the two reactors, the power cycle design and in the increased thermal power rating (to 6000 MW(th)). Otherwise, the major features of STARFIRE which are maintained include: steady-state operation; rf drive; mechanical limiters; number of TF coils; etc. Based on HYFIRE conceptual design studies to date, the following observations are made: a) blanket designs have been identified to simultaneously meet global tritium breeding requirements and required energy splits between process steam and helium; b) attractive tritium breeders such as LiAlO/sub 2/ and liquid lead with dissolved lithium have been identified; c) gross power cycle efficiencies in the 40 to 45% range appear achievable; and d) high H/sub 2/ production efficiencies in the 50 to 55% range appear achievable.

  16. Synfuels from natural gas: The ethermix process

    SciTech Connect

    Antonelli, G.B.; Micheli, E.; Miracca, I.

    1996-12-31

    Ethermix is a technology under development for the transformation of the dry fraction of natural gas into ethers, mainly MTBE. The process is performed in a series of steps that include the reforming of methane to a mixture of hydrogen and carbon monoxide, the combined synthesis of methanol and branched higher alcohols, mainly isobutanol, the dehydration of higher alcohols to the corresponding olefins, and the etherification of said olefins with methanol to form a mixture of ethers. The state-of-art on the subject is reported, including evaluation of the blending properties of the product and a preliminary economical analysis. 4 refs., 2 figs., 1 tab.

  17. Economics of synfuel and gasification systems

    SciTech Connect

    Hahn, O.J.

    1981-01-01

    The performance characteristics of several gasification systems are discussed. Cost estimates of various synthetic fuels are presented. The lowest cost synthetic fuel is significantly above the current natural gas price of about $2.75/MMBtu and about equivalent to present oil prices at the plant gate. Gas prices for the Welman-Galusha gasifier would have to be increased significantly if the plant ran on two shifts only or if the gasifiers were not fully loaded. For industrial application the lowest cost fuel is probably the direct use of low sulfur coal with some post combustion pollution control. This is followed by the atmospheric fluidized bed combustor. Coal/oil mixtures and solvent refined coal liquids (SRC I or SRC II) are the next options. High Btu gas from a large coal gasification plant will be more competitive for industrial use. Large industrial uses in the range of 1000 tons of coal a day may find reduced costs with an entrained coal conversion unit such as a Texaco or the Saarberg-Otto Gasifiers. However, before 1985 when the gas price decontrol has been felt, it is unlikely that low Btu gas, medium Btu gas and methanol will be an economical choice for industrial users.

  18. Georgia Power's Coal-Derived Synfuel Proposal

    EPA Pesticide Factsheets

    This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Policy and Guidance Database available at www2.epa.gov/title-v-operating-permits/title-v-operating-permit-policy-and-guidance-document-index. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  19. Summary of synfuel characterization and combustion studies

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1983-01-01

    Combustion component research studies aimed at evolving environmentally acceptable approaches for burning coal derived fuels for ground power applications were performed at the NASA Lewis Research Center under a program titled the ""Critical Research and Support Technology Program'' (CRT). The work was funded by the Department of Energy and was performed in four tasks. This report summarizes these tasks which have all been previously reported. In addition some previously unreported data from Task 4 is also presented. The first, Task 1 consisted of a literature survey aimed at determining the properties of synthetic fuels. This was followed by a computer modeling effort, Task 2, to predict the exhaust emissions resulting from burning coal liquids by various combustion techniques such as lean and rich-lean combustion. The computer predictions were then compared to the results of a flame tube rig, Task 3, in which the fuel properties were varied to simulate coal liquids. Two actual SRC 2 coal liquids were tested in this flame tube task.

  20. Ethanol-mediated operant learning in the infant rat leads to increased ethanol intake during adolescence

    PubMed Central

    Ponce, Luciano Federico; Pautassi, Ricardo Marcos; Spear, Norman E; Molina, Juan Carlos

    2008-01-01

    Recent studies indicate that the infant rat has high affinity for ethanol ingestion and marked sensitivity to the drug’s reinforcing effects (Spear & Molina, 2005). A novel operant technique was developed to analyze reinforcing effects of ethanol delivery during the third postnatal week. The impact of this ethanol-reinforcement experience upon subsequent ethanol consumption during adolescence (postnatal weeks 5–6 was also examined. In Experiment 1, pups (postnatal days 14–17 were given an explicit contingency between nose-poking behavior and intraoral delivery of either water or 3.75% v/v ethanol (paired groups). Yoked controls (pups receiving either reinforcer independently of their behavior) were also included. Paired subjects reinforced with ethanol exhibited rapid and robust operant conditioning leading to blood ethanol concentrations in the 25–48 mg% range. In Experiment 2, a higher ethanol concentration (7.5% v/v) provided significant reinforcement. During adolescence, animals originally reinforced with 3.75% v/v ethanol exhibited greater ingestion of ethanol than control animals without prior ethanol reinforcement. These results indicate that, without extensive initiation to ethanol, infant rats rapidly learn to gain access to ethanol and that this experience has a significant impact upon later ethanol intake patterns. PMID:18571224

  1. Synthesis of nanoparticles using ethanol

    DOEpatents

    Wang, Jia Xu

    2017-01-24

    The present disclosure relates to methods for producing nanoparticles. The nanoparticles may be made using ethanol as the solvent and the reductant to fabricate noble-metal nanoparticles with a narrow particle size distributions, and to coat a thin metal shell on other metal cores. With or without carbon supports, particle size is controlled by fine-tuning the reduction power of ethanol, by adjusting the temperature, and by adding an alkaline solution during syntheses. The thickness of the added or coated metal shell can be varied easily from sub-monolayer to multiple layers in a seed-mediated growth process. The entire synthesis of designed core-shell catalysts can be completed using metal salts as the precursors with more than 98% yield; and, substantially no cleaning processes are necessary apart from simple rinsing. Accordingly, this method is considered to be a "green" chemistry method.

  2. Ethanol annual report FY 1990

    SciTech Connect

    Texeira, R.H.; Goodman, B.J.

    1991-01-01

    This report summarizes the research progress and accomplishments of the US Department of Energy (DOE) Ethanol from Biomass Program, field managed by the Solar Energy Research Institute, during FY 1990. The report includes an overview of the entire program and summaries of individual research projects. These projects are grouped into the following subject areas: technoeconomic analysis; pretreatment; cellulose conversion; xylose fermentation; and lignin conversion. Individual papers have been indexed separately for inclusion on the data base.

  3. Ethanol Production from Ulva fasciata

    NASA Astrophysics Data System (ADS)

    Masutani, Evan M.; Yoza, Brandon A.

    The theoretical potential yield of Ulva fasciata as a biomass feedstock for fermentative ethanol was found to be about 310 L per tonne, dry weight. U. fasciata has numerous characteristics that render it a suitable mariculture energy crop. Specifically, it forms large complex structures that grow quickly, with high (14%) dry to wet weight percentages, holocellulose content for the dry mass of 51%, carbohydrate content of 5%, and relatively low (5%) lignin content. Enzymatic saccharification with a commercial cellulase (Accelerase) from Genencor was investigated: After a 12 hr digestion, 25% of the potential glucose was recovered from the cellulose fraction. The hydrolysate was supplemented with a modified YM medium and used directly for batch fermentation. A 12 hr incubation resulted in complete utilization of the glucose and production of ethanol. In this preliminary investigation, the ethanol yield corresponded to approximately 126 L per tonne (dry weight) of macroalga, or 43% of the theoretical alcohol yield with respect to only the cellulose and carbohydrate contents. Theoretical yields are higher when the hemicellulose fraction is considered. While sugar recovery needs further optimization, the data suggest that additional work is warranted.

  4. Chronobiology of ethanol: animal models.

    PubMed

    Rosenwasser, Alan M

    2015-06-01

    Clinical and epidemiological observations have revealed that alcohol abuse and alcoholism are associated with widespread disruptions in sleep and other circadian biological rhythms. As with other psychiatric disorders, animal models have been very useful in efforts to better understand the cause and effect relationships underlying the largely correlative human data. This review summarizes the experimental findings indicating bidirectional interactions between alcohol (ethanol) consumption and the circadian timing system, emphasizing behavioral studies conducted in the author's laboratory. Together with convergent evidence from multiple laboratories, the work summarized here establishes that ethanol intake (or administration) alters fundamental properties of the underlying circadian pacemaker. In turn, circadian disruption induced by either environmental or genetic manipulations can alter voluntary ethanol intake. These reciprocal interactions may create a vicious cycle that contributes to the downward spiral of alcohol and drug addiction. In the future, such studies may lead to the development of chronobiologically based interventions to prevent relapse and effectively mitigate some of the societal burden associated with such disorders.

  5. Theophylline blocks ethanol withdrawal-induced hyperalgesia.

    PubMed

    Gatch, Michael B; Selvig, Meghan

    2002-01-01

    This study examined the effects of theophylline on the hyperalgesia produced by ethanol withdrawal using a radiant heat tail-flick assay. Chronic effects of ethanol were tested in four groups of rats which received 10 days exposure to a liquid diet [ethanol alone or with theophylline [0.5 and 1.0 mg/kg, twice daily, intraperitoneally (i.p.)], and dextrin control diet]. Ethanol withdrawal was tested 12 h after removal of the liquid diet. Effects of cumulative doses of the non-selective adenosine agonist 2-chloroadenosine (2-CADO; 0.6-10 mg/kg, i.p.) were tested during withdrawal in the ethanol-treated groups. Chronic exposure to ethanol produced antinociception, and hyperalgesia was seen during withdrawal. Subchronic administration of theophylline (0.5-1.0 mg/kg, twice daily, i.p.) dose-dependently prevented the ethanol-withdrawal-induced hyperalgesia. During ethanol withdrawal, 2-CADO was less potent than when given to non-dependent rats and this effect was prevented by subchronic administration of theophylline (1.0 mg/kg). These findings provide behavioural evidence in agreement with earlier work on the role of adenosine in the development of ethanol tolerance and withdrawal, and suggest that adenosine receptors play an important role in the development of hyperalgesia during ethanol withdrawal.

  6. Ultrasound improved ethanol fermentation from cassava chips in cassava-based ethanol plants.

    PubMed

    Nitayavardhana, Saoharit; Shrestha, Prachand; Rasmussen, Mary L; Lamsal, Buddhi P; van Leeuwen, J Hans; Khanal, Samir Kumar

    2010-04-01

    The effects of ultrasound and heat pretreatments on ethanol yields from cassava chips were investigated. Cassava slurries were sonicated for 10 and 30 s at the amplitudes of 80, 160, and 320 microm(pp) (peak to peak amplitude in microm) corresponding to low, medium, and high power levels, respectively. The sonicated and non-sonicated (control) samples were then subjected to simultaneous liquefaction-saccharification and ethanol fermentation. Cassava starch-to-ethanol conversion efficiencies showed that higher ethanol yields were directly related to sonication times, but not to power levels. Significantly higher ethanol yields were observed only for sonicated samples at the high power level. The ethanol yield from the sonicated sample was 2.7-fold higher than yield from the control sample. Starch-to-ethanol conversion rates from sonicated cassava chips were also significantly higher; the fermentation time could be reduced by nearly 24 h for sonicated samples to achieve the same ethanol yield as control samples. Thus, ultrasound pretreatment enhanced both the overall ethanol yield and fermentation rate. When compared to heat-treated samples, the sonicated samples produced nearly 29% more ethanol yield. Combined heat and ultrasound treatment had no significant effect on overall ethanol yields from cassava chips. Ultrasound is also preferable to heat pretreatment because of lower energy requirements, as indicated by energy balances. Integration of ultrasound application in cassava-based ethanol plants can significantly improve ethanol yields and reduce the overall production costs. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Simultaneous prenatal ethanol and nicotine exposure affect ethanol consumption, ethanol preference and oxytocin receptor binding in adolescent and adult rats.

    PubMed

    Williams, Sarah K; Cox, Elizabeth T; McMurray, Matthew S; Fay, Emily E; Jarrett, Thomas M; Walker, Cheryl H; Overstreet, David H; Johns, Josephine M

    2009-01-01

    Ethanol consumption and smoking during pregnancy are common, despite the known adverse effects on the fetus. The teratogenicity of each drug independently is well established; however, the effects of concurrent exposure to ethanol and nicotine in preclinical models remain unclear. This study examined the impact of simultaneous prenatal exposure to both ethanol and nicotine on offspring ethanol preference behaviors and oxytocin system dynamics. Rat dams were given liquid diet (17% ethanol derived calories (EDC)) on gestational day (GD) 5 and 35% EDC from GD 6-20 and concurrently an osmotic minipump delivered nicotine (3-6mg/kg/day) from GD 4-postpartum day 10. Offspring were tested for ethanol preference during adolescence (postnatal day (PND) 30-43) and again at adulthood (PND 60-73), followed by assays for oxytocin mRNA expression and receptor binding in relevant brain regions. Prenatal exposure decreased ethanol preference in males during adolescence, and decreased consumption and preference in females during adulthood compared to controls. Oxytocin receptor binding in the nucleus accumbens and hippocampus was increased in adult prenatally exposed males only. Prenatal exposure to these drugs sex-specifically decreased ethanol preference behavior in offspring unlike reports for either drug separately. The possible role of oxytocin in reduction of ethanol consumption behavior is highlighted.

  8. Simultaneous Prenatal Ethanol and Nicotine Exposure Affect Ethanol Consumption, Ethanol Preference and Oxytocin Receptor Binding in Adolescent and Adult Rats

    PubMed Central

    Williams, Sarah K.; Cox, Elizabeth T.; McMurray, Matthew S.; Fay, Emily E.; Jarrett, Thomas M.; Walker, Cheryl H.; Overstreet, David H.; Johns, Josephine M.

    2009-01-01

    Ethanol consumption and smoking during pregnancy are common, despite the known adverse effects on the fetus. The teratogenicity of each drug independently is well established; however, the effects of concurrent exposure to ethanol and nicotine in preclinical models remain unclear. This study examined the impact of simultaneous prenatal exposure to both ethanol and nicotine on offspring ethanol preference behaviors and oxytocin system dynamics. Rat dams were given liquid diet (17% ethanol derived calories(EDC)) on gestational day (GD) 5 and 35% EDC fromGD 6-20 and concurrently an osmotic minipump delivered nicotine (3-6 mg/kg/day) from GD 4 - postpartum day 10. Offspring were tested for ethanol preference during adolescence (postnatal day (PND) 30-43) and again at adulthood (PND 60-73), followed by assays for oxytocin mRNA expression and receptor binding in relevant brain regions. Prenatal exposure decreased ethanol preference in males during adolescence, and decreased consumption and preference in females during adulthood compared to controls. Oxytocin receptor binding in the nucleus accumbens and hippocampus was increased in adult prenatally exposed males only. Prenatal exposure to these drugs sex-specifically decreased ethanol preference behavior in offspring unlike reports for either drug separately. The possible role of oxytocin in reduction of ethanol consumption behavior is highlighted. PMID:19539752

  9. The Role of Cellulosic Ethanol in Transportation

    SciTech Connect

    Robert M. Neilson, Jr.

    2007-10-01

    Petroleum provides essentially all of the energy used today in the transportation sector. To reduce this dependence on fossil energy, other fuels are beginning to be used, notably ethanol and biodiesel. Almost all fuel ethanol is produced by the conversion of corn grain to starch with subsequent fermentation to ethanol. In 2006, almost 5 billion gallons of fuel ethanol were produced, which used 17% of domestic corn production. The DOE has a goal to displace 30% of motor gasoline demand or 60 billion gallons per year by 2030. To achieve this goal, production of ethanol from lignocellulosic sources (e.g., agricultural residues, forest residues, and dedicated energy crops) is needed. This paper will describe the production of cellulosic ethanol as well as the issues and benefits associated with its production.

  10. Process for producing ethanol from syngas

    SciTech Connect

    Krause, Theodore R; Rathke, Jerome W; Chen, Michael J

    2013-05-14

    The invention provides a method for producing ethanol, the method comprising establishing an atmosphere containing methanol forming catalyst and ethanol forming catalyst; injecting syngas into the atmosphere at a temperature and for a time sufficient to produce methanol; and contacting the produced methanol with additional syngas at a temperature and for a time sufficient to produce ethanol. The invention also provides an integrated system for producing methanol and ethanol from syngas, the system comprising an atmosphere isolated from the ambient environment; a first catalyst to produce methanol from syngas wherein the first catalyst resides in the atmosphere; a second catalyst to product ethanol from methanol and syngas, wherein the second catalyst resides in the atmosphere; a conduit for introducing syngas to the atmosphere; and a device for removing ethanol from the atmosphere. The exothermicity of the method and system obviates the need for input of additional heat from outside the atmosphere.

  11. 2008 National dry mill corn ethanol survey.

    PubMed

    Mueller, Steffen

    2010-09-01

    Emerging regulations require an examination of corn ethanol's greenhouse gas emissions on a life cycle basis, including emissions from energy consumed at the plant level. However, comprehensive survey data of the industry's average performance dates back to 2001, prior to the industry's expansion phase. Responding to the need for updated data, we conducted a survey to collect energy and processing data for average dry mill ethanol produced during 2008. The study finds that the average liter of anhydrous corn ethanol produced during 2008 requires 28% less thermal energy than 2001 ethanol: 7.18 MJ/l compared to 10 MJ/l. Also, 2008 ethanol requires 32% less electricity: 0.195 kWh/l compared to 0.287 kWh/l, but anhydrous ethanol yields from corn are 5.3% higher and total 0.416 l/kg compared to 0.395 l/kg. Findings also suggest that older plants installed energy efficiency retrofits.

  12. Solid state production of ethanol from sorghum

    SciTech Connect

    Henk, L.L.; Linden, J.C.

    1995-12-01

    Ethanol, produced from renewable resources, such as corn, sugar cane and sweet sorghum, is used as an oxygenate in reformulated gasoline. For biofuels to become economical, means of lowering production costs must be found. Our research focuses on using a modified method of ensiling to produce ethanol from sorghum. Formic acid, +/- cellulase, and yeast were applied to fresh field-chopped sorghum and then packed tightly into five-gallon plastic silos. Counter-current extraction methods were used as a means of biofuel separation. Sorghum receiving 5 IU/grain dry weight cellulase produced 37.7 liters of ethanol per metric ton on a wet weight basis. Sorghum not receiving cellulose additives produced 23.4 liters of ethanol per metric ton. An ethanol plant of intermediate size (565,272 liters of anhydrous ethanol/year) can operate using sorghum grown on less than 1400 acres.

  13. Influence of nitrogen sources on ethanol fermentation in an integrated ethanol-methane fermentation system.

    PubMed

    Wang, Ke; Mao, Zhonggui; Zhang, Chengming; Zhang, Jianhua; Zhang, Hongjian; Tang, Lei

    2012-09-01

    An integrated ethanol-methane fermentation system was proposed to resolve wastewater pollution in cassava ethanol production. In the integrated system, wastewater originating from ethanol distillation was treated by two-stage anaerobic digestion and then used in medium for the next batch of ethanol fermentation. Ammonium and other components in the effluent promoted yeast growth and fermentation rate but did not increase the yield of ethanol. Fermentations with the effluent as the nitrogen source showed higher growth and ethanol production rates (0.215 h(-1) and 1.276 g/L/h, respectively) than urea that resulted in corresponding rates of 0.176 h(-1) and 0.985 g/L/h, respectively. Results indicated that anaerobic digestion effluent can be used as nitrogen source for the ethanol fermentation instead of urea in the ethanol-methane fermentation system.

  14. Biological production of ethanol fom coal

    SciTech Connect

    Not Available

    1992-05-01

    Research is continuing in an attempt to increase both the ethanol concentration and product ratio using C. ljungdahlii. The purpose of this report is to present data (acetate to ethanol) utilizing a medium prepared especially for C. ljungdahlii. Medium development studies are presented, as well as reactor studies with the new medium in batch reactors. Continuous stirred tank reactor (CSTR) with cell recycle. The use of this new medium has resulted in significant improvements in cell concentration, ethanol concentration and product ratio.

  15. Ethanol production and employment. Agriculture information bulletin

    SciTech Connect

    Petrulis, M.; Sommer, J.; Hines, F.

    1993-07-01

    Increased U.S. production of ethanol could create 28,000-108,000 new jobs by the year 2000. Ethanol, distilled chiefly from corn, can be mixed with gasoline to reduce the level of hydrocarbon pollutants created by fuel combustion in gasoline engines. Job gains will be concentrated in the rural Midwest, where most of the Nation's corn is grown. Small communities elsewhere can benefit through new biomass technologies that can distill ethanol from organic matter other than corn.

  16. Ethanol fuels: use, production, and economics. [Textbook

    SciTech Connect

    Not Available

    1981-05-01

    This text is intended for use at the junior college or community college level. It contains the following chapters: issues and concerns; the production and use of alcohol fuels; ethanol-potential as fuel extender or alternative; ethanol production plausibility and feasibility in specific situations, feedstock considerations; introduction to basis chemistry, microbiology, and heat transfer; production of ethanol fuel; plant design considerations; plant operations; production economics; and safety. (MHR)

  17. Early exposure to ethanol differentially affects ethanol preference at adult age in two inbred mouse strains.

    PubMed

    Molet, Jenny; Bouaziz, Elodie; Hamon, Michel; Lanfumey, Laurence

    2012-08-01

    Although the acute effects of ethanol exposure on brain development have been extensively studied, the long term consequences of juvenile ethanol intake on behavior at adult age, regarding especially ethanol consumption, are still poorly known. The aim of this study was to analyze the consequences of ethanol ingestion in juvenile C57BL/6J and DBA/2J mice on ethanol intake and neurobiological regulations at adulthood. Mice were given intragastric ethanol at 4 weeks of age under different protocols and their spontaneous ethanol consumption was assessed in a free choice paradigm at adulthood. Both serotonin 5-HT(1A) and cannabinoid CB1 receptors were investigated using [(35)S]GTP-γ-S binding assay for the juvenile ethanol regimens which modified adult ethanol consumption. In DBA/2J mice, juvenile ethanol ingestion dose-dependently promoted adult spontaneous ethanol consumption. This early ethanol exposure enhanced 5-HT(1A) autoreceptor-mediated [(35)S]GTP-γ-S binding in the dorsal raphe nucleus and reduced CB1 receptor-mediated G protein coupling in both the striatum and the globus pallidus at adult age. In contrast, early ethanol ingestion by C57BL/6J mice transiently lowered spontaneous ethanol consumption and increased G protein coupling of postsynaptic 5-HT(1A) receptors in the hippocampus but had no effect on CB1 receptors at adulthood. These results show that a brief and early exposure to ethanol can induce strain-dependent long-lasting changes in both behavior toward ethanol and key receptors of central 5-HT and CB systems in mice.

  18. Ethanol self-administration in rats responding under concurrent schedules for milk or ethanol plus milk.

    PubMed

    Paronis, Carol A

    2013-09-01

    The relative reinforcing strength of drugs can be characterized by the distribution of operant behavior during the availability of other reinforcing stimuli. 'Choice' procedures are not widely used in rats, with the exception of ethanol self-administration in which there often is a choice between ethanol and water, which typically does not maintain much responding. A procedure was developed to evaluate the relative reinforcing strength of ethanol in rats when a similar appetitive reinforcer is concurrently available. Rats were trained to respond on two levers under concurrent fixed-ratio schedules of reinforcement with milk (1-50%) or ethanol+milk (4-32% ethanol+5-10% milk). Daily 60-min sessions began with a forced sample of each reinforcer, followed by the concurrent schedules. Under this schedule, rats preferentially allocated their responding to the ethanol-associated lever under conditions of ethanol+5% milk versus 5% milk, but neither preferred nor avoided ethanol when ethanol+10% milk versus 10% milk was available. When 8% ethanol+5% milk was available, 85±6% of responses were directed toward the ethanol-associated lever and the mean ethanol intake was 1.55±0.10 g/kg. The response rate decreased monotonically with the concentration of ethanol. Naltrexone injections did not affect the distribution of responding, but slightly decreased ethanol intake. It is concluded that stable behavior can be maintained under concurrent fixed-ratio schedules of ethanol and milk presentation in rats, resulting in intake of behaviorally active amounts of ethanol.

  19. Pervaporation of ethanol produced from banana waste.

    PubMed

    Bello, Roger Hoel; Linzmeyer, Poliana; Franco, Cláudia Maria Bueno; Souza, Ozair; Sellin, Noeli; Medeiros, Sandra Helena Westrupp; Marangoni, Cintia

    2014-08-01

    Banana waste has the potential to produce ethanol with a low-cost and sustainable production method. The present work seeks to evaluate the separation of ethanol produced from banana waste (rejected fruit) using pervaporation with different operating conditions. Tests were carried out with model solutions and broth with commercial hollow hydrophobic polydimethylsiloxane membranes. It was observed that pervaporation performance for ethanol/water binary mixtures was strongly dependent on the feed concentration and operating temperature with ethanol concentrations of 1-10%; that an increase of feed flow rate can enhance the permeation rate of ethanol with the water remaining at almost the same value; that water and ethanol fluxes was increased with the temperature increase; and that the higher effect in flux increase was observed when the vapor pressure in the permeate stream was close to the ethanol vapor pressure. Better results were obtained with fermentation broth than with model solutions, indicated by the permeance and membrane selectivity. This could be attributed to by-products present in the multicomponent mixtures, facilitating the ethanol permeability. By-products analyses show that the presence of lactic acid increased the hydrophilicity of the membrane. Based on this, we believe that pervaporation with hollow membrane of ethanol produced from banana waste is indeed a technology with the potential to be applied.

  20. Ethanol from sugar crops: a critical review

    SciTech Connect

    Lipinsky, E.S.; Allen, B.R.; Bose, A.; Kresovich, S.

    1981-01-01

    Due to the hardships resulting from rising oil prices and periodic production shortfalls, many developing countries, especially those with warm humid climates, have explored ethanol production from sugar crops. This critical review offers information on ethanol production for development planners. Two sugar crop-based ethanol systems, raw sugar facility retrofit and conventional juice extraction, are first examined. The agronomy of sugar crops (cane, beet, sorghum) is then described, as are the steps in crop processing (extraction, fermentation, distillation, stillage disposal). The costs of producing ethanol from a typical sugarcane processing plant and from a state-of-the-art molasses processing facility are presented, and the trade-offs between producing ethanol or raw sugar from sugarcane weighed. Finally, the properties of ethanol in automotive fuels are outlined, along with important storage, handling, and safety considerations. Three major problems are cited in ethanol production from sugar crops: adverse environmental effects (10 gallons of waste to 1 gallon of ethanol); the high cost of conventional milling equipment; and the loss of potential revenue from raw sugar sales. A future possibility of producing ethanol from fibrous residues (bagasse) is noted. Included are a 64-item bibliography (1936-1980) and 31 tables.

  1. Basis of the Gabamimetic Profile of Ethanol

    PubMed Central

    Breese, G. R.; Criswell, H. E.; Carta, M.; Dodson, P. D.; Hanchar, H. J.; Khisti, R. T.; Mameli, M.; Ming, Z.; Morrow, A. L.; Olsen, R. W.; Otis, T. S.; Parsons, L. H.; Penland, S. N.; Roberto, M.; Siggins, G. R.; Valenzuela, C. F.; Wallner, M.

    2010-01-01

    This article summarizes the proceedings of a symposium held at the 2005 Research Society on Alcoholism meeting. The initial presentation by Dr. Wallner provided evidence that selected GABAA receptors containing the δ subunit display sensitivity to low intoxicating ethanol concentrations and this sensitivity is further increased by a mutation in the cerebellar α6 subunit, found in alcohol-hypersensitive rats. Dr. Mameli reported that ethanol affects γ-aminobutyric acid (GABA) function by affecting neural circuits that influence GABA release. Dr. Parsons presented data from electrophysiological and microdialysis investigations that ethanol is capable of releasing GABA from presynaptic terminals. Dr. Morrow demonstrated that systemic ethanol increases neuroactive steroids in brain, the absence of which alters various functional responses to ethanol. Dr. Criswell presented evidence that the ability of ethanol to increase GABA was apparent in some, but not all, brain regions indicative of regional specificity. Further, Dr. Criswell demonstrated that neurosteroids alone and when synthesized locally by ethanol act postsynaptically to enhance the effect of GABA released by ethanol in a region specific manner. Collectively, this series of reports support the GABAmimetic profile of acutely administered ethanol being dependent on several specific mechanisms distinct from a direct effect on the major synaptic isoforms of GABAA receptors. PMID:16573592

  2. Continuous membrane fermentor separator for ethanol fermentation

    SciTech Connect

    Cho, C.

    1987-01-01

    The inhibiting effect of ethanol on yeast growth and ethanol production has been studied using the strain Saccharomyces cerevisiae NRRL-Y-2034 under anaerobic conditions. Batch and continuous fermentation data were fitted to a kinetic model. The integration of continuous fermentation and separation of ethanol in the same unit has been proposed. Pervaporation with ethanol selective silicone rubber hollow fiber membranes was considered for separation. A laboratory scale Continuous Membrane Fermentor Separator (CMFS) unit utilizing a shell and tube configuration was designed and fabricated. Two types of continuous fermentation experiments were carried out: fermentation with dead membranes as the reference and fermentation with live membranes through which ethanol was continuously removed by pervaporation from the fermentor. Performance of the CMFS results in higher yeast cell densities, reduction of ethanol inhibition, longer residence time of substrate, more glucose consumption, and recovery of clean and concentrated ethanol. A mathematical model was developed and used to determine the effects of design and operation parameters of the CMFS, including dilution rate, dimensionless membrane volume, substrate concentration, membrane properties, etc. Computer simulation results indicated that the CMFS could provide significant improvements not only in ethanol productivity but also in glucose consumption for highly concentrated substrate when the dimensionless membrane volume and/or permeability of ethanol was increased.

  3. Growth characteristics of bakers' yeast in ethanol

    SciTech Connect

    Wasungu, K.M.; Simard, R.E.

    1980-05-01

    The influence of temperature (15 - 40 degrees C) and pH (2.5 - 6.0) on the continuous growth of bakers' yeast (Saccharomyces cerevisiae) at steady state in 1% ethanol was investigated. Optimal temperature and pH were 30 degrees C and 4.5, respectively. The short-term effect of ethanol concentration (0.1 - 10.0%) on the yeast growth was assessed in batch culture. Up to 1% of ethanol, the yeast growth increased in function of the ethanol concentration in the medium. The biomass reached a maximum within the interval of 1-4% of ethanol (7.9 and 31.6 g/L, respectively) and decreased at higher concentrations. The residual ethanol concentration in the medium increased rapidly when the initial ethanol concentration exceeded 4%. The best-fit model obtained for growth inhibition as a function of ethanol concentrations was that of Tseng and Wayman: mu m S/(K+S) - i (S-S0). With this model, the specific growth rate (mu) decreased linearly as the ethanol concentration increased between the threshold value (S0) of 11.26 g/L to be fully inhibited at 70.00 g/L (S); an inhibition constant (i) of 0.0048 g/L/hour, a maximum specific growth rate (mu m) of 0.284/hour, and a saturation constant (K) of 0.611 g/L were obtained. (Refs. 17).

  4. Intracellular accumulation of ethanol in yeast

    SciTech Connect

    Loueiro, V.; Ferreira, H.G.

    1983-09-01

    Ethanol produced in the course of a batch fermentation by Saccharomyces cerevisiae or added from the outside, affects adversely the specific rate of growth of the yeast population, its viability, its specific rate of fermentation, and the specific rates of the uptake of sugar and amino acids. The underlying mechanisms are many and include irreversible denaturation and hyperbolic noncompetitive inhibition of glycolytic enzymes, the exponential noncompetitive inhibition of glucose, maltose, and ammonium transport, the depression of the optimum and the maximum temperature for growth, the increase of the minimum temperature for growth, and the enhancement of thermal death and petite mutation. Nagodawithana and Steinkraus reported that added ethanol was less toxic for S. cerevisiae than ethanol produced by the yeast. The death rates were lower in the presence of added ethanol than those measured at similar external ethanol concentrations endogenously produced. They proposed that, due to an unbalance between the rates of production and the net outflux of ethanol, there would be an intracellular accumulation of ethanol which in turn would explain the apparently greater inhibitory potency of endogenously produced ethanol present in the medium. This hypothesis was supported by the findings of several authors who reported that the intracellular concentration of ethanol, in the course of batch fermentation, is much higher than its concentration in the extracellular medium. The present work is an attempt to clarify this matter. (Refs. 32).

  5. Mixed waste paper to ethanol fuel

    SciTech Connect

    Not Available

    1991-01-01

    The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

  6. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOEpatents

    Ljungdahl, L.G.; Carriera, L.H.

    1983-05-24

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  7. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOEpatents

    Ljungdahl, Lars G.; Carriera, Laura H.

    1983-01-01

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  8. Repeated binge-like ethanol drinking alters ethanol drinking patterns and depresses striatal GABAergic transmission.

    PubMed

    Wilcox, Mark V; Cuzon Carlson, Verginia C; Sherazee, Nyssa; Sprow, Gretchen M; Bock, Roland; Thiele, Todd E; Lovinger, David M; Alvarez, Veronica A

    2014-02-01

    Repeated cycles of binge alcohol drinking and abstinence are key components in the development of dependence. However, the precise behavioral mechanisms underlying binge-like drinking and its consequences on striatal synaptic physiology remain unclear. In the present study, ethanol and water drinking patterns were recorded with high temporal resolution over 6 weeks of binge-like ethanol drinking using the 'drinking in the dark' (DID) protocol. The bottle exchange occurring at the beginning of each session prompted a transient increase in the drinking rate that might facilitate the acquisition of ethanol binge-like drinking. Ethanol drinking mice also displayed a 'front-loading' behavior, in which the highest rate of drinking was recorded during the first 15 min. This rate increased over weeks and paralleled the mild escalation of blood ethanol concentrations. GABAergic and glutamatergic transmission in the dorsal striatum were examined following DID. Spontaneous glutamatergic transmission and the density of dendritic spines were unchanged after ethanol drinking. However, the frequency of GABAA receptor-mediated inhibitory postsynaptic currents was depressed in medium spiny neurons of ethanol drinking mice. A history of ethanol drinking also increased ethanol preference and altered the acute ethanol effects on GABAergic transmission differentially in dorsolateral and dorsomedial striatum. Together, the study shows that the bottle exchange during DID promotes fast, voluntary ethanol drinking and that this intermittent pattern of ethanol drinking causes a depression of GABAergic transmission in the dorsal striatum.

  9. Gestational Exposure to Inhaled Vapors of Ethanol and Gasoline-Ethanol Blends in Rats

    EPA Science Inventory

    The US automotive fleet is powered primarily by gasoline-ethanol fuel blends containing up to 10% ethanol (ElO). Uncertainties regarding the health risks associated with exposure to ElO prompted assessment of the effects of prenatal exposure to inhaled vapors of gasoline-ethanol ...

  10. Gestational Exposure to Inhaled Vapors of Ethanol and Gasoline-Ethanol Blends in Rats

    EPA Science Inventory

    The US automotive fleet is powered primarily by gasoline-ethanol fuel blends containing up to 10% ethanol (ElO). Uncertainties regarding the health risks associated with exposure to ElO prompted assessment of the effects of prenatal exposure to inhaled vapors of gasoline-ethanol ...

  11. Repeated Binge-Like Ethanol Drinking Alters Ethanol Drinking Patterns and Depresses Striatal GABAergic Transmission

    PubMed Central

    Wilcox, Mark V; Carlson, Verginia C Cuzon; Sherazee, Nyssa; Sprow, Gretchen M; Bock, Roland; Thiele, Todd E; Lovinger, David M; Alvarez, Veronica A

    2014-01-01

    Repeated cycles of binge alcohol drinking and abstinence are key components in the development of dependence. However, the precise behavioral mechanisms underlying binge-like drinking and its consequences on striatal synaptic physiology remain unclear. In the present study, ethanol and water drinking patterns were recorded with high temporal resolution over 6 weeks of binge-like ethanol drinking using the ‘drinking in the dark' (DID) protocol. The bottle exchange occurring at the beginning of each session prompted a transient increase in the drinking rate that might facilitate the acquisition of ethanol binge-like drinking. Ethanol drinking mice also displayed a ‘front-loading' behavior, in which the highest rate of drinking was recorded during the first 15 min. This rate increased over weeks and paralleled the mild escalation of blood ethanol concentrations. GABAergic and glutamatergic transmission in the dorsal striatum were examined following DID. Spontaneous glutamatergic transmission and the density of dendritic spines were unchanged after ethanol drinking. However, the frequency of GABAA receptor-mediated inhibitory postsynaptic currents was depressed in medium spiny neurons of ethanol drinking mice. A history of ethanol drinking also increased ethanol preference and altered the acute ethanol effects on GABAergic transmission differentially in dorsolateral and dorsomedial striatum. Together, the study shows that the bottle exchange during DID promotes fast, voluntary ethanol drinking and that this intermittent pattern of ethanol drinking causes a depression of GABAergic transmission in the dorsal striatum. PMID:23995582

  12. Ethanol: a brief economic evaluation

    SciTech Connect

    Not Available

    1980-09-01

    Del Rio Farms, Inc. has a large farm in the Imperial Valley area of California, a known geothermal resource area. The 10 MW geothermal flash steam power plant, operated by Union Oil Company, is located on their property. Presently the owners have under consideration a 10 million gallon per year ethanol plant. The initial feed to the plant would be corn, with sugar beets as a possible alternate feed. The ultimate plan is to use waste products and biomass feed stocks. Geothermal water would provide the necessary process heat for the plant. An economic evaluation was performed to assist in the planning. Each of the following conclusions are based on an ethanol plant that produces 10 million gallons of ethanol per year. Over a 20 year period, the plant using a corn feed stock would generate a rate of return of +12% on a total equity capital investment of $33,000,000. Over a 15 year period, the plant using a corn feed stock is probably not economically feasible since it would have a rate of return less than 12% or a total equity capital investment of $33,000,000. A corn feed stock plant operates at a loss for the first seven years if 95% of the $33,000,000 cost is debt financed. The plant is economically feasible only if offsetting energy income from other profitable operation permits taking advantage of investment tax credits and depletion allowances that are available. If this is true, the project is highly feasible, paying back twice the 5% equity capital in the first year.

  13. Ethanol sensitivity of rice and oat coleoptiles.

    PubMed

    Kato-Noguchi, Hisashi

    2002-05-01

    The ability to avoid the ethanol-induced injury was evaluated in rice (Oryza sativa L.) and oat (Avena sativa L.) coleoptiles. The growth of the rice and oat coleoptiles was inhibited by ethanol exogenously applied at concentrations greater than 200 and 30 mM, respectively. At 300 mM ethanol, oat coleoptiles were brown and flaccid but rice coleoptiles did not show any visible symptoms of toxicity. The acetaldehyde level in rice and oat coleoptiles was increased by exogenously applied ethanol and the increases were greater in oat than in rice coleoptiles under aerobic and anaerobic conditions. At 300 mM ethanol, the acetaldehyde concentrations in the rice and oat coleoptiles were 46 and 87 nmol g-1 FW under aerobic conditions, respectively, and 52 and 124 nmol g-1 FW under anaerobic conditions, respectively. The activity of alcohol dehydrogenase (ADH; EC 1.1.1.1) in the direction of ethanol to acetaldehyde was greater in oat than in rice coleoptiles and ADH protein in oat coleoptiles was more induced by exogenously applied ethanol than that in rice coleoptiles. These results suggest that in vivo conversion rate of ethanol to acetaldehyde by ADH is lower in rice than oat coleoptiles, which may be one of the reasons that ethanol sensitivity of rice is much lower than that of oat coleoptiles. The great ability of rice to avoid the ethanol-induced injuries may contribute its anoxia tolerance when glycolysis and ethanolic fermentation replace the Krebs cycle as the main source of energy under anaerobic conditions.

  14. Ethanol elimination rates in an ED population.

    PubMed

    Brennan, D F; Betzelos, S; Reed, R; Falk, J L

    1995-05-01

    Knowledge of the rate of ethanol elimination is essential in the assessment of the intoxicated patient. Surprisingly little literature is available regarding ethanol elimination rates in emergency department (ED) patients; prior studies almost exclusively examined populations of alcoholics or normal controls. Consequently, this prospective observational study was undertaken to assess the rate of ethanol elimination in an ED population. Twenty-four consecutive adult ED patients clinically suspected of intoxication who had serum ethanol determinations drawn were enrolled. Patients underwent serial ethanol determinations via breathalyzer (Intoxilyzer 1400, CMI Inc., Owensboro, KY). Linear regression analysis of the plot of decrease in ethanol level over time was performed to determine the rate of ethanol elimination. Initial ethanol levels in the 24 patients ranged from 58 to 447 mg/dL (mean, 249 +/- 109 [SD] mg/dL). Patients were observed for a minimum of 2 and a maximum of 9 observations (mean, 3.9 +/- 1.7), over a period of 0.5 to 12.1 hours (mean, 4.4 +/-3.5 h). Clinical features of intoxication were poorly correlated with ethanol level (r < .5). The rate of ethanol elimination in the ED population was 19.6 mg/dL/h (r = .83; 95% confidence interval [CI], 16.9 to 22.3 mg/dL/h). Subgroup analysis found differences that were statistically significant but small. Multiple regression analysis showed that time was the major variable useful in predicting changes in ethanol level (P < .001).(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Ethanol induces cytostasis of cortical basal progenitors.

    PubMed

    Riar, Amanjot Kaur; Narasimhan, Madhusudhanan; Rathinam, Mary Latha; Henderson, George I; Mahimainathan, Lenin

    2016-01-19

    Developing brain is a major target for alcohol's actions and neurological/functional abnormalities include microencephaly, reduced frontal cortex, mental retardation and attention-deficits. Previous studies have shown that ethanol altered the lateral ventricular neuroepithelial cell proliferation. However, the effect of ethanol on subventricular basal progenitors which generate majority of the cortical layers is not known. We utilized spontaneously immortalized rat brain neuroblasts obtained from cultures of 18-day-old fetal rat cerebral cortices using in vitro ethanol exposures and an in utero binge model. In the in vitro acute model, cells were exposed to 86 mM ethanol for 8, 12 and 24 h. The second in vitro model comprised of chronic intermittent ethanol (CIE) exposure which consisted of 14 h of ethanol treatment followed by 10 h of withdrawal with three repetitions. E18 neuroblasts expressing Tbr2 representing immature basal progenitors displayed significant reduction of proliferation in response to ethanol in both the models. The decreased proliferation was accompanied by absence of apoptosis or autophagy as illustrated by FACS analysis and expression of apoptotic and autophagic markers. The BrdU incorporation assay indicated that ethanol enhanced the accumulation of cells at G1 with reduced cell number in S phase. In addition, the ethanol-inhibited basal neuroblasts proliferation was connected to decrease in cyclin D1 and Rb phosphorylation indicating cell cycle arrest. Further, in utero ethanol exposure in pregnant rats during E15-E18 significantly decreased Tbr2 and cyclin D1 positive cell number in cerebral cortex of embryos as assessed by cell sorting analysis by flow cytometry. Altogether, the current findings demonstrate that ethanol impacts the expansion of basal progenitors by inducing cytostasis that might explain the anomalies of cortico-cerebral development associated with fetal alcohol syndrome.

  16. The Role of Acetaldehyde in the Increased Acceptance of Ethanol after Prenatal Ethanol Exposure.

    PubMed

    Gaztañaga, Mirari; Angulo-Alcalde, Asier; Spear, Norman E; Chotro, M Gabriela

    2017-01-01

    Recent studies show that acetaldehyde, the first metabolite in the oxidation of ethanol, can be responsible for both, the appetitive and the aversive effects produced by ethanol intoxication. More specifically, it has been hypothesized that acetaldehyde produced in the periphery by the liver is responsible for the aversive effects of ethanol, while the appetitive effects relate to the acetaldehyde produced centrally through the catalase system. On the other hand, from studies in our and other laboratories, it is known that ethanol exposure during the last gestational days (GD) consistently enhances the postnatal acceptance of ethanol when measured during early ontogeny in the rat. This increased liking of ethanol is a conditioned appetitive response acquired by the fetus by the association of ethanol's flavor and an appetitive reinforcer. Although this reinforcer has not yet been fully identified, one possibility points to acetaldehyde produced centrally in the fetus as a likely candidate. This hypothesis is supported by data showing that very early in the rat's ontogeny brain catalases are functional, while the liver's enzymatic system is still immature. In this study, rat dams were administered on GD 17-20 with water or ethanol, together with an acetaldehyde-sequestering agent (D-penicillamine). The offspring's responses to ethanol was then assessed at different postnatal stages with procedures adequate for each developmental stage: on day 1, using the "odor crawling locomotion test" to measure ethanol's odor attractiveness; on day 5, in an operant conditioning procedure with ethanol as the reinforcer; and on day 14 in an ethanol intake test. Results show that the absence of acetaldehyde during prenatal ethanol exposure impeded the observation of the increased acceptance of ethanol at any age. This seems to confirm the crucial role of acetaldehyde as a reinforcer in the appetitive learning occurring during prenatal ethanol exposure.

  17. Role of ethanol-derived acetaldehyde in operant oral self-administration of ethanol in rats.

    PubMed

    Peana, Alessandra T; Porcheddu, Valeria; Bennardini, Federico; Carta, Antonio; Rosas, Michela; Acquas, Elio

    2015-12-01

    The role of ethanol-derived acetaldehyde has not been examined yet on performance in a model of operant oral self-administration. However, previous studies reported that an acetaldehyde-sequestering agent, D-penicillamine (DP) and an inhibitor of catalase-mediated acetaldehyde production, 3-amino-1,2,4-triazole (3-AT) reduce voluntary ethanol consumption. The aim of our investigation was to evaluate the effects of DP and 3-AT on acquisition and maintenance of oral operant ethanol self-administration. Using operant chambers, rats learned to nose poke in order to receive ethanol solution (5-10 % v/v) under an FR1 schedule of reinforcement in which discrete light and tone cues were presented during ethanol delivery. DP and 3-AT impair the acquisition of ethanol self-administration, whereas its maintenance is not affected neither by drug given alone for both 10 or 5 % ethanol nor by drugs association for 5 % ethanol. Moreover, when the concentration of ethanol was diminished from 10 to 5 %, rats increased the rate of self-administration behaviour. These findings suggest that brain acetaldehyde plays a critical role during acquisition of operant self-administration in ethanol-naïve rats. In contrast, during the maintenance phase, acetaldehyde could contribute to ethanol self-administration by a combined mechanism: On one hand, its lack (by DP or 3-AT) might result in further ethanol-seeking and taking and, on the other, inhibition of ethanol metabolism (by 3-AT) might release an action of the un-metabolised fraction of ethanol that does not overall result in compromising maintenance of ethanol self-administration.

  18. Urticarial reaction caused by ethanol.

    PubMed

    Nakagawa, Yukinobu; Sumikawa, Yasuyuki; Nakamura, Toshiaki; Itami, Satoshi; Katayama, Ichiro; Aoki, Toshiyuki

    2006-12-01

    We report a case of an urticarial reaction after drinking alcohol beverages. The patient was a 47-year-old man suffering urticarial and anaphylactoid reaction to alcohol for two years. These reactions were observed at every alcohol beverages intake. We performed a prick test with diluted ethanol, alcohol beverages and their metabolites (acetaldehyde, acetic acid). Only acetic acid showed a positive result. Oral challenge test with diluted-ethanol caused pruritus and swelling of his lips. An oral challenge test with 8% diluted Shochu (Japanese distilled alcohol from rice or wheat) caused wheals on his upper back. Only acetic acid, a metabolite of alcohol, induced a positive prick test in the patient with alcohol-induced urticaria. This result was not observed in normal volunteers. An oral challenge test with diluted-alcohol or Shochu showed a positive wheal reaction in a dose dependent-manner which suggests that urticaria seen in this patient might be induced by alcohol-intolerance. However possible allergic reaction to acetaldehyde could not be excluded.

  19. Cocaine attenuates vasoconstriction to ethanol

    SciTech Connect

    Bove, A.A.; Morley, D.; Vosacek, R.; Zhang, X.Y.; Shah, R. )

    1991-03-11

    The purpose of this study was to determine the combined effects of cocaine and ethanol on vasomotor tone. Using a standard isolated vascular ring preparation, 24 rings from 7 New Zealand White Rabbits were studied. All rings were denuded as verified by methacholine challenge. The dose response to NE for each ring was used as a standard for vasoconstrictors Dose response curves to ETH and C were done in random order. Concentrations of both ETH and C employed were physiologically attainable in man and below thresholds for coma or death. The dose response curve to ETH was repeated after addition of 4 {times} 10{sup {minus}5} M C to the arterial bath. After adding 1,500 ug/ml of ETH, the dose response curve to C was repeated. Ethanol, alone caused significant vasoconstriction of arterial rings. After the addition of C to the bath, the dose response to ETH was significantly shifted to the right, peak contraction achieved was 36.6 {plus minus} 3.2% of maximal NE contraction. Cocaine alone did not result in any change in resting tension of the rings. When ETH was added to the bath, C caused vasoconstriction, the peak value equivalent to 12.5 {plus minus} 2.2% of maximal contraction to NE.

  20. SOCIAL CONSEQUENCES OF ETHANOL: IMPACT OF AGE, STRESS AND PRIOR HISTORY OF ETHANOL EXPOSURE

    PubMed Central

    Varlinskaya, Elena I.; Spear, Linda P.

    2014-01-01

    The adolescent period is associated with high significance of interactions with peers, high frequency of stressful situations, and high rates of alcohol use. At least two desired effects of alcohol that may contribute to heavy and problematic drinking during adolescence are its abilities to both facilitate interactions with peers and to alleviate anxiety, perhaps especially anxiety seen in social contexts. Ethanol-induced social facilitation can be seen using a simple model of adolescence in the rat, with normal adolescents, but not their more mature counterparts, demonstrating this ethanol-related social facilitation. Prior repeated stress induces expression of ethanol-induced social facilitation in adults and further enhances socially facilitating effects of ethanol among adolescent rats. In contrast, under normal circumstances, adolescent rats are less sensitive than adults to the social inhibition induced by higher ethanol doses and are insensitive to the socially anxiolytic effects of ethanol. Sensitivity to the socially anxiolytic effects of ethanol can be modified by prior stress or ethanol exposure at both ages. Shortly following repeated restraint or ethanol exposure, adolescents exhibit social anxiety-like behavior, indexed by reduced social preference, and enhanced sensitivity to the socially anxiolytic effects of ethanol, indexed through ethanol-associated reinstatement of social preference in these adolescents. Repeated restraint, but not repeated ethanol, induces similar effects in adults as well, eliciting social anxiety-like behavior and increasing their sensitivity to the socially anxiolytic effects of acute ethanol; the stressor also decreases sensitivity of adults to ethanol-induced social inhibition. The persisting consequences of early adolescent ethanol exposure differ from its immediate consequences, with males exposed early in adolescence, but not females or those exposed later in adolescence, showing social anxiety-like behavior when tested

  1. Actions of Ethanol on Voltage-Sensitive Sodium Channels: Effects of Acute and Chronic Ethanol Treatment

    DTIC Science & Technology

    1987-01-01

    No. 2 C4"ght 0 1967 by "he Amusca Soiety for Pharmacolog and Kxporuont Therpadu" Prud m U.S.A. Actions of Ethanol on Voltage-Sensitive Sodium ...inhibitory effect of ethanol in vitro on sodium benzoate binding to neuronal sodium channels were studi-d in uptake for up to 20 days after withdrawal...adapt rapidly to some sodium uptake in the absence of ethanol in vitro, however, a effects of ethanol and that chronic ethanol administration can

  2. Social consequences of ethanol: Impact of age, stress, and prior history of ethanol exposure.

    PubMed

    Varlinskaya, Elena I; Spear, Linda P

    2015-09-01

    The adolescent period is associated with high significance of interactions with peers, high frequency of stressful situations, and high rates of alcohol use. At least two desired effects of alcohol that may contribute to heavy and problematic drinking during adolescence are its abilities to both facilitate interactions with peers and to alleviate anxiety, perhaps especially anxiety seen in social contexts. Ethanol-induced social facilitation can be seen using a simple model of adolescence in the rat, with normal adolescents, but not their more mature counterparts, demonstrating this ethanol-related social facilitation. Prior repeated stress induces expression of ethanol-induced social facilitation in adults and further enhances socially facilitating effects of ethanol among adolescent rats. In contrast, under normal circumstances, adolescent rats are less sensitive than adults to the social inhibition induced by higher ethanol doses and are insensitive to the socially anxiolytic effects of ethanol. Sensitivity to the socially anxiolytic effects of ethanol can be modified by prior stress or ethanol exposure at both ages. Shortly following repeated restraint or ethanol exposure, adolescents exhibit social anxiety-like behavior, indexed by reduced social preference, and enhanced sensitivity to the socially anxiolytic effects of ethanol, indexed through ethanol-associated reinstatement of social preference in these adolescents. Repeated restraint, but not repeated ethanol, induces similar effects in adults as well, eliciting social anxiety-like behavior and increasing their sensitivity to the socially anxiolytic effects of acute ethanol; the stressor also decreases sensitivity of adults to ethanol-induced social inhibition. The persisting consequences of early adolescent ethanol exposure differ from its immediate consequences, with males exposed early in adolescence, but not females or those exposed later in adolescence, showing social anxiety-like behavior when tested

  3. HIGH ETHANOL DOSE DURING EARLY ADOLESCENCE INDUCES LOCOMOTOR ACTIVATION AND INCREASES SUBSEQUENT ETHANOL INTAKE DURING LATE ADOLESCENCE

    PubMed Central

    Acevedo, María Belén; Molina, Juan Carlos; Nizhnikov, Michael E.; Spear, Norman E.; Pautassi, Ricardo Marcos

    2011-01-01

    Adolescent initiation of ethanol consumption is associated with subsequent heightened probability of ethanol-use disorders. The present study examined the relationship between motivational sensitivity to ethanol initiation in adolescent rats and later ethanol intake. Experiment 1 determined that ethanol induces locomotor activation shortly after administration but not if tested at a later post-administration interval. In Experiment 2, adolescents were assessed for ethanol-induced locomotor activation on postnatal day 28. These animals were then evaluated for ethanol-mediated conditioned taste aversion and underwent a 16-day-long ethanol intake protocol. Ethanol-mediated aversive effects were unrelated to ethanol locomotor stimulation or subsequent ethanol consumption patterns. Ethanol intake during late adolescence was greatest in animals initiated to ethanol earliest at postnatal day 28. Females that were more sensitive to ethanol’s locomotor-activating effects showed a transient increase in ethanol self-administration. Blood ethanol concentrations during initiation were not related to ethanol-induced locomotor activation. Adolescent rats appeared sensitive to the locomotor-stimulatory effects of ethanol. Even brief ethanol exposure during adolescence may promote later ethanol intake. PMID:20373327

  4. Integrated Biosensor Systems for Ethanol Analysis

    NASA Astrophysics Data System (ADS)

    Alhadeff, Eliana M.; Salgado, Andrea M.; Cós, Oriol; Pereira, Nei; Valero, Francisco; Valdman, Belkis

    Different integrated systems with a bi-enzymatic biosensor, working with two different methods for ethanol detection—flow injection analysis (FIA) or sequential injection analysis (SIA)—were developed and applied for ethanol extracted from gasohol mixtures, as well as for samples of alcoholic beverages and fermentation medium. A detection range of 0.05-1.5 g ethanol/l, with a correlation coefficient of 0.9909, has been reached when using FIA system, working with only one microreactor packed with immobilized alcohol oxidase and injecting free horseradish peroxidase. When using both enzymes, immobilized separately in two microreactors, the detection ranges obtained varied from 0.001 to 0.066 g ethanol/l, without on-line dilution to 0.010-0.047 g ethanol/l when a 1:7,000 dilution ratio was employed, reaching correlation coefficients of 0.9897 and 0.9992, respectively. For the integrated biosensor SIA system with the stop-flow technique, the linear range was 0.005-0.04 g/l, with a correlation coefficient of 0.9922.

  5. Ethanol emission from loose corn silage

    USDA-ARS?s Scientific Manuscript database

    Silage and silage-containing feed on dairy farms have recently been identified as a source of volatile organic compound (VOC) emissions. In this work, we present measurements of ethanol (a dominant silage VOC) emission from loose corn silage samples made using a wind tunnel system. Flux of ethanol f...

  6. Outlook for Biomass Ethanol Production and Demand

    EIA Publications

    2000-01-01

    This paper presents a midterm forecast for biomass ethanol production under three different technology cases for the period 2000 to 2020, based on projections developed from the Energy Information Administration's National Energy Modeling System. An overview of cellulose conversion technology and various feedstock options and a brief history of ethanol usage in the United States are also presented.

  7. Methamphetamine and ethanol interactions in humans.

    PubMed

    Mendelson, J; Jones, R T; Upton, R; Jacob, P

    1995-05-01

    Methamphetamine and ethanol are commonly used together. We examined the effects of intravenous methamphetamine (30 mg), oral ethanol (1 gm/kg), and the combination of methamphetamine (30 mg) and ethanol (1 gm/kg). Eight methamphetamine and ethanol users were studied in a double-blind, double-placebo, within-subject, balanced Latin-square design. Ethanol was administered in six drinks over 30 minutes. Methamphetamine was injected 60 minutes after the first drink was begun. Cardiovascular, subjective, and neuropsychologic effects of the drug combinations were measured for 6 hours. Methamphetamine and amphetamine in plasma and urine were measured by capillary gas chromatography for 48 hours. Data were analyzed by repeated-measures ANOVA. Compared with methamphetamine alone, the combination increased heart rate but decreased systolic blood pressure. The net cardiovascular effect was an increase in rate pressure product, an index of cardiac work and myocardial oxygen consumption. The combination diminished the subjective effects of ethanol while not affecting the subjective effects of methamphetamine. Methamphetamine pharmacokinetics were not altered by the concurrent administration of ethanol, with the exception of lowering the apparent volume of distribution at steady state for methamphetamine. As a potent sympathomimetic drug with alpha-agonist-like effects, methamphetamine increased systolic blood pressure, with minimal change in heart rate. The concurrent administration of methamphetamine and ethanol increased cardiac work, which could produce more adverse cardiovascular effects than either drug taken alone. The increased perceived global intoxication may explain the popularity of this drug combination.

  8. Manufacturing Ethyl Acetate From Fermentation Ethanol

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Ingham, John D.

    1991-01-01

    Conceptual process uses dilute product of fermentation instead of concentrated ethanol. Low-concentration ethanol, extracted by vacuum from fermentation tank, and acetic acid constitutes feedstock for catalytic reaction. Product of reaction goes through steps that increases ethyl acetate content to 93 percent by weight. To conserve energy, heat exchangers recycle waste heat to preheat process streams at various points.

  9. Fuel ethanol production from agricultural residues

    USDA-ARS?s Scientific Manuscript database

    Ethanol is a renewable oxygenated fuel. In 2012, about 13.3 billion gallons of fuel ethanol was produced from corn in the USA which makes up 10% of gasoline supply. Various agricultural residues such as corn stover, wheat straw, rice straw and barley straw can serve as low-cost lignocellulosic fee...

  10. SEPARATION AND CONCENTRATION OF ETHANOL BY PERVAPORATION

    EPA Science Inventory

    A significant issue affecting widespread acceptance of bioethanol as a sustainable fuel is the energy used to grow the feedstock, ferment the feedstock to ethanol, and separate dry ethanol from the fermentation broth. For the latter, the best current technology is two-step disti...

  11. Integrated biosensor systems for ethanol analysis.

    PubMed

    Alhadeff, Eliana M; Salgado, Andrea M; Cós, Oriol; Pereira, Nei; Valero, Francisco; Valdman, Belkis

    2008-03-01

    Different integrated systems with a bi-enzymatic biosensor, working with two different methods for ethanol detection--flow injection analysis (FIA) or sequential injection analysis (SIA)--were developed and applied for ethanol extracted from gasohol mixtures, as well as for samples of alcoholic beverages and fermentation medium. A detection range of 0.05-1.5 g ethanol/l, with a correlation coefficient of 0.9909, has been reached when using FIA system, working with only one microreactor packed with immobilized alcohol oxidase and injecting free horseradish peroxidase. When using both enzymes, immobilized separately in two microreactors, the detection ranges obtained varied from 0.001 to 0.066 g ethanol/l, without on-line dilution to 0.010-0.047 g ethanol/l when a 1:7,000 dilution ratio was employed, reaching correlation coefficients of 0.9897 and 0.9992, respectively. For the integrated biosensor SIA system with the stop-flow technique, the linear range was 0.005-0.04 g/l, with a correlation coefficient of 0.9922.

  12. SEPARATION AND CONCENTRATION OF ETHANOL BY PERVAPORATION

    EPA Science Inventory

    A significant issue affecting widespread acceptance of bioethanol as a sustainable fuel is the energy used to grow the feedstock, ferment the feedstock to ethanol, and separate dry ethanol from the fermentation broth. For the latter, the best current technology is two-step disti...

  13. Controlled Antibiotic use during Fuel Ethanol Production

    USDA-ARS?s Scientific Manuscript database

    The production of fuel ethanol from corn feedstock is a rapidly growing industry in the US. The ability to make a profit in ethanol production from corn is marginal, and depends heavily on the sale of byproducts of the fermentation process. The fermentation reaction is optimized for yeast growth a...

  14. Composition and Behavior of Fuel Ethanol

    EPA Science Inventory

    Ethanol usage in the United States has increased due in part to the elimination of methyl tert-butyl ether from the fuel supply and to the mandates of Congress. Two samples, one each from a wet mill and a dry mill ethanol plant, were obtained before denaturing. Each of these ...

  15. Sweden will build an ethanol plant

    SciTech Connect

    Not Available

    1981-09-16

    It is reported that a 10 million dollar demonstration plant for producing ethanol by continuous fermentation will be built in Sweden. The plant will have a capacity of 20,000 liters/day of ethanol and 30.5 metric tons/day of protein-rich cattle fodder using potatoes and grain as feedstock.

  16. Antidepressant Effect of Aminophylline After Ethanol Exposure

    PubMed Central

    Escudeiro, Sarah Souza; Soares, Paula Matias; Almeida, Anália Barbosa; de Freitas Guimarães Lobato, Rodrigo; de Araujo, Dayane Pessoa; Macedo, Danielle Silveira; Sousa, Francisca Cléa Florenço; Patrocínio, Manoel Cláudio Azevedo; Vasconcelos, Silvânia Maria Mendes

    2013-01-01

    This work investigated the association of acute ethanol and aminophylline administration on behavioral models of depression and prefrontal monoamine levels (i.e. norepinephrine and dopamine) in mice. The animals received a single dose of ethanol (2 g/kg) or aminophylline (5 or 10 mg/kg) alone or in association. Thirty minutes after the last drug administration, the animals were assessed in behavioral models by the forced swimming and tail suspension tests. After these tests, the animals were sacrificed and the prefrontal cortices dissected to measure monoamine content. Results showed that ethanol presented depression-like activity in the forced swimming and tail suspension tests. These effects were reversed by the association with aminophylline in all tests. Norepinephrine and dopamine levels decreased, while an increase in the dopamine metabolite, (4-hydroxy-3-methoxyphenyl)acetic acid (DOPAC), after ethanol administration was observed. On the contrary, the association of ethanol and aminophylline increased the norepinephrine and dopamine content, while it decreased DOPAC when compared to the ethanol group, confirming the alterations observed in the behavioral tests. These data reinforce the involvement of the adenosinergic system on ethanol effects, highlighting the importance of the norepinephrine and dopamine pathways in the prefrontal cortex to the effects of ethanol. PMID:23641339

  17. Manufacturing Ethyl Acetate From Fermentation Ethanol

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Ingham, John D.

    1991-01-01

    Conceptual process uses dilute product of fermentation instead of concentrated ethanol. Low-concentration ethanol, extracted by vacuum from fermentation tank, and acetic acid constitutes feedstock for catalytic reaction. Product of reaction goes through steps that increases ethyl acetate content to 93 percent by weight. To conserve energy, heat exchangers recycle waste heat to preheat process streams at various points.

  18. Composition and Behavior of Fuel Ethanol

    EPA Science Inventory

    Ethanol usage in the United States has increased due in part to the elimination of methyl tert-butyl ether from the fuel supply and to the mandates of Congress. Two samples, one each from a wet mill and a dry mill ethanol plant, were obtained before denaturing. Each of these ...

  19. Hulless winter barley for ethanol production

    USDA-ARS?s Scientific Manuscript database

    Hulless barley is viable feedstock alternative to corn for ethanol production in areas where small grains are produced. The first barley-based ethanol plant in the US is currently under construction by Osage BioEnergy LLC in Hopewell, VA. New hulless winter barley varieties developed by Virginia T...

  20. Ethanol as an economic competitor to gasoline

    USDA-ARS?s Scientific Manuscript database

    Fuel ethanol is one of the technology success stories of the 21st century. In less then one third of a century it has gone from being a material produced rather inefficiently in small quantities to a major commercial product. This success can be attributed not only to the fact that ethanol is a rene...

  1. Ethanol production using engineered mutant E. coli

    DOEpatents

    Ingram, Lonnie O.; Clark, David P.

    1991-01-01

    The subject invention concerns novel means and materials for producing ethanol as a fermentation product. Mutant E. coli are transformed with a gene coding for pyruvate decarboxylase activity. The resulting system is capable of producing relatively large amounts of ethanol from a variety of biomass sources.

  2. GM1 ganglioside reduces ethanol intoxication and the development of ethanol dependence.

    PubMed

    Wallis, C J; Rezazadeh, S M; Lal, H

    1995-01-01

    The monosialoganglioside, GM1, protects the nervous system against a variety of insults. In this study, we evaluated the protective properties of GM1 on ethanol intoxication and development of dependence. GM1 (20-40 mg/kg, IP) reduced the extent and duration of ataxia produced by ethanol (2 g/kg, IP, 15-95 min), and delayed the onset of loss and reduced the duration of the righting reflex (LORR) produced by ethanol (4.2 g/kg, IP). GM1 did not alter ethanol-induced hypothermia or the rate of ethanol clearance. Rather, GM1 increased the waking blood ethanol concentration. In animals fed a complete liquid diet containing 4.5% ethanol, concurrent administration of GM1 (40 mg/kg/day) blocked the tremors, hypolocomotion, and anxiety-like behavior associated with ethanol withdrawal. These findings demonstrate that GM1 reduces both ethanol's acute intoxication and the signs and symptoms of ethanol withdrawal by a mechanism not related to ethanol pharmacokinetics.

  3. An integrative analysis of transcriptomic response of ethanol tolerant strains to ethanol in Saccharomyces cerevisiae.

    PubMed

    Kasavi, Ceyda; Eraslan, Serpil; Oner, Ebru Toksoy; Kirdar, Betul

    2016-02-01

    The accumulation of ethanol is one of the main environmental stresses that Saccharomyces cerevisiae cells are exposed to in industrial alcoholic beverage and bioethanol production processes. Despite the known impacts of ethanol, the molecular mechanisms underlying ethanol tolerance are still not fully understood. Novel gene targets leading to ethanol tolerance were previously identified via a network approach and the investigations of the deletions of these genes resulted in the improved ethanol tolerance of pmt7Δ/pmt7Δ and yhl042wΔ/yhl042wΔ strains. In the present study, an integrative system based approach was used to investigate the global transcriptional changes in these two ethanol tolerant strains in response to ethanol and hence to elucidate the mechanisms leading to the observed tolerant phenotypes. In addition to strain specific biological processes, a number of common and already reported biological processes were found to be affected in the reference and both ethanol tolerant strains. However, the integrative analysis of the transcriptome with the transcriptional regulatory network and the ethanol tolerance network revealed that each ethanol tolerant strain had a specific organization of the transcriptomic response. Transcription factors around which most important changes occur were determined and active subnetworks in response to ethanol and functional clusters were identified in all strains.

  4. The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum

    DOE PAGES

    Hon, Shuen; Olson, Daniel G.; Holwerda, Evert K.; ...

    2017-06-27

    Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields andmore » titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. Here, this suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum.« less

  5. The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum.

    PubMed

    Hon, Shuen; Olson, Daniel G; Holwerda, Evert K; Lanahan, Anthony A; Murphy, Sean J L; Maloney, Marybeth I; Zheng, Tianyong; Papanek, Beth; Guss, Adam M; Lynd, Lee R

    2017-07-01

    Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields and titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. This suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Ethanol from biomass - The quest for efficiency

    NASA Astrophysics Data System (ADS)

    Deyoung, H. G.

    1982-02-01

    Methods for the production of ethanol to be used as an energy source from readily renewable biomass, natural materials based largely on cellulose, are reviewed. Current procedures for ethanol production utilize energy-inefficient processes and costly materials, such as corn, and thus are highly impractical for the large-scale ethanol production which is envisioned as a partial solution for US energy needs. The use of cellulosic raw materials is at the center of present research efforts, but no reliable and high-yielding conversion technique has yet been demonstrated. Methods of ethanol production are discussed and attention is focused on new fermentation technologies which potentially could overcome the problems associated with the use of cellulosic raw materials. For example, a strain of yeast is being developed which has the capability to convert up to twice as much of our agricultural wastes to ethanol than was thought possible just a year ago

  7. Measurement of ethanol using fluorescence quenching

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Quantrill, Nigel Stuart Michael

    1994-06-01

    A new assay procedure for the measurement of ethanol concentrations is described is based on fluorescence quenching of an indicator. The method makes use of the photo reaction between a fluorophore (thionine) and NADH. The latter is generated during an enzymic reaction between ethanol and alcohol dehydrogenase (ADH) in the presence of nicotinamide adenine dinucleotide (NAD +) cofactor. An empirical relation is used to analyse the observed quenching, and a quenching constant of 27.2(±2.8)M -1 is obtained for the substrate induced quenching (SIQ) of thionine by ethanol. The reported method is suitable over a range of 0-40 mM with a detection limit of 0.15 mM. A theoretical model for the overall ethanol assay is developed, and its validity is shown by comparison with the experimental results. Various applications of the reactions are discussed, including its use to construct a fibre optic biosensor for ethanol.

  8. Infrastructure Requirements for an Expanded Fuel Ethanol Industry

    SciTech Connect

    Reynolds, Robert E.

    2002-01-15

    This report provides technical information specifically related to ethanol transportation, distribution, and marketing issues. This report required analysis of the infrastructure requirements for an expanded ethanol industry.

  9. Adolescent intermittent ethanol exposure diminishes anhedonia during ethanol withdrawal in adulthood.

    PubMed

    Boutros, Nathalie; Semenova, Svetlana; Markou, Athina

    2014-06-01

    Adolescent alcohol use may interfere with neurodevelopment, increasing the likelihood of adult alcohol use disorders (AUDs). We investigated whether adolescent intermittent ethanol (AIE) exposure alters the adult reward response to ethanol. Adolescent rats were administered ethanol once (moderate exposure; Cohort 1) or three times per day (severe exposure; Cohort 2) in a 2 days on/2 days off pattern. In adulthood, subjects responded for electrical stimulation directed at the posterior lateral hypothalamus in a discrete-trial intracranial self-stimulation (ICSS) procedure that provides current-intensity thresholds as a measure of brain reward function. The effects of ethanol administration and withdrawal were assessed. Control rats showed dose-dependent threshold elevations after acute ethanol, indicating reward deficits. A majority of moderately AIE-exposed rats (Cohort 1) showed threshold lowering after ethanol, suggesting ethanol-induced reward enhancement in this sub-set of rats. Rats exposed to severe AIE (Cohort 2) showed no threshold elevation or lowering, suggesting a blunted affective ethanol response. Daily ethanol induced threshold elevations 24h after administration in control rats but not in either group of AIE-exposed rats, suggesting decreased sensitivity to the negative affective state of ethanol withdrawal. Withdrawal from a 4-day ethanol binge produced robust and enduring threshold elevations in all rats, although threshold elevations were diminished in rats exposed to severe AIE. These results indicate that AIE exposure diminished reward deficits associated with ethanol intoxication and withdrawal and may have increased ethanol-induced reward enhancement in a sub-set of rats. In humans, enhanced ethanol reward accompanied by reduced withdrawal severity may contribute to the development of AUDs.

  10. Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria.

    PubMed

    Haft, Rembrandt J F; Keating, David H; Schwaegler, Tyler; Schwalbach, Michael S; Vinokur, Jeffrey; Tremaine, Mary; Peters, Jason M; Kotlajich, Matthew V; Pohlmann, Edward L; Ong, Irene M; Grass, Jeffrey A; Kiley, Patricia J; Landick, Robert

    2014-06-24

    The molecular mechanisms of ethanol toxicity and tolerance in bacteria, although important for biotechnology and bioenergy applications, remain incompletely understood. Genetic studies have identified potential cellular targets for ethanol and have revealed multiple mechanisms of tolerance, but it remains difficult to separate the direct and indirect effects of ethanol. We used adaptive evolution to generate spontaneous ethanol-tolerant strains of Escherichia coli, and then characterized mechanisms of toxicity and resistance using genome-scale DNAseq, RNAseq, and ribosome profiling coupled with specific assays of ribosome and RNA polymerase function. Evolved alleles of metJ, rho, and rpsQ recapitulated most of the observed ethanol tolerance, implicating translation and transcription as key processes affected by ethanol. Ethanol induced miscoding errors during protein synthesis, from which the evolved rpsQ allele protected cells by increasing ribosome accuracy. Ribosome profiling and RNAseq analyses established that ethanol negatively affects transcriptional and translational processivity. Ethanol-stressed cells exhibited ribosomal stalling at internal AUG codons, which may be ameliorated by the adaptive inactivation of the MetJ repressor of methionine biosynthesis genes. Ethanol also caused aberrant intragenic transcription termination for mRNAs with low ribosome density, which was reduced in a strain with the adaptive rho mutation. Furthermore, ethanol inhibited transcript elongation by RNA polymerase in vitro. We propose that ethanol-induced inhibition and uncoupling of mRNA and protein synthesis through direct effects on ribosomes and RNA polymerase conformations are major contributors to ethanol toxicity in E. coli, and that adaptive mutations in metJ, rho, and rpsQ help protect these central dogma processes in the presence of ethanol.

  11. Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria

    PubMed Central

    Haft, Rembrandt J. F.; Keating, David H.; Schwaegler, Tyler; Schwalbach, Michael S.; Vinokur, Jeffrey; Tremaine, Mary; Peters, Jason M.; Kotlajich, Matthew V.; Pohlmann, Edward L.; Ong, Irene M.; Grass, Jeffrey A.; Kiley, Patricia J.; Landick, Robert

    2014-01-01

    The molecular mechanisms of ethanol toxicity and tolerance in bacteria, although important for biotechnology and bioenergy applications, remain incompletely understood. Genetic studies have identified potential cellular targets for ethanol and have revealed multiple mechanisms of tolerance, but it remains difficult to separate the direct and indirect effects of ethanol. We used adaptive evolution to generate spontaneous ethanol-tolerant strains of Escherichia coli, and then characterized mechanisms of toxicity and resistance using genome-scale DNAseq, RNAseq, and ribosome profiling coupled with specific assays of ribosome and RNA polymerase function. Evolved alleles of metJ, rho, and rpsQ recapitulated most of the observed ethanol tolerance, implicating translation and transcription as key processes affected by ethanol. Ethanol induced miscoding errors during protein synthesis, from which the evolved rpsQ allele protected cells by increasing ribosome accuracy. Ribosome profiling and RNAseq analyses established that ethanol negatively affects transcriptional and translational processivity. Ethanol-stressed cells exhibited ribosomal stalling at internal AUG codons, which may be ameliorated by the adaptive inactivation of the MetJ repressor of methionine biosynthesis genes. Ethanol also caused aberrant intragenic transcription termination for mRNAs with low ribosome density, which was reduced in a strain with the adaptive rho mutation. Furthermore, ethanol inhibited transcript elongation by RNA polymerase in vitro. We propose that ethanol-induced inhibition and uncoupling of mRNA and protein synthesis through direct effects on ribosomes and RNA polymerase conformations are major contributors to ethanol toxicity in E. coli, and that adaptive mutations in metJ, rho, and rpsQ help protect these central dogma processes in the presence of ethanol. PMID:24927582

  12. Oxidation of ethanol in the rat brain and effects associated with chronic ethanol exposure.

    PubMed

    Wang, Jie; Du, Hongying; Jiang, Lihong; Ma, Xiaoxian; de Graaf, Robin A; Behar, Kevin L; Mason, Graeme F

    2013-08-27

    It has been reported that chronic and acute alcohol exposure decreases cerebral glucose metabolism and increases acetate oxidation. However, it remains unknown how much ethanol the living brain can oxidize directly and whether such a process would be affected by alcohol exposure. The questions have implications for reward, oxidative damage, and long-term adaptation to drinking. One group of adult male Sprague-Dawley rats was treated with ethanol vapor and the other given room air. After 3 wk the rats received i.v. [2-(13)C]ethanol and [1, 2-(13)C2]acetate for 2 h, and then the brain was fixed, removed, and divided into neocortex and subcortical tissues for measurement of (13)C isotopic labeling of glutamate and glutamine by magnetic resonance spectroscopy. Ethanol oxidation was seen to occur both in the cortex and the subcortex. In ethanol-naïve rats, cortical oxidation of ethanol occurred at rates of 0.017 ± 0.002 µmol/min/g in astroglia and 0.014 ± 0.003 µmol/min/g in neurons, and chronic alcohol exposure increased the astroglial ethanol oxidation to 0.028 ± 0.002 µmol/min/g (P = 0.001) with an insignificant effect on neuronal ethanol oxidation. Compared with published rates of overall oxidative metabolism in astroglia and neurons, ethanol provided 12.3 ± 1.4% of cortical astroglial oxidation in ethanol-naïve rats and 20.2 ± 1.5% in ethanol-treated rats. For cortical astroglia and neurons combined, the ethanol oxidation for naïve and treated rats was 3.2 ± 0.3% and 3.8 ± 0.2% of total oxidation, respectively. (13)C labeling from subcortical oxidation of ethanol was similar to that seen in cortex but was not affected by chronic ethanol exposure.

  13. Behavior of sheep drinking ethanol solution.

    PubMed

    Blair-West, J R; Deam, D R; Denton, D A; Tarjan, E; Weisinger, R S

    1995-06-01

    Sheep that were habituated to drinking 10% (vol/vol) ethanol solution instead of water were subjected to proven thirst stimuli to study the effect of chronic ethanol intake on brain mechanisms subserving thirst. Sheep that had not previously drunk 10% ethanol were also tested. All sheep were trained to press a pedal that delivered 50 ml/press of fluid (either 10% ethanol or water) into a drinking cup. In some experiments, fluids were presented in bins. All animals had access to only one fluid at a time. Five ethanol-drinking sheep appeared healthy and maintained body weight over 18 mo. They always preferred water to 10% ethanol. The intracerebroventricular (icv) infusion of angiotensin II (ANG II) at 3.8 micrograms/h for 2 h increased ethanol intake from 15 +/- 10 to 200 +/- 55 ml in the 1st h, but 2,850 +/- 320 ml of water was drunk in the 2nd h. The icv infusion of 500 mM NaCl had a similar effect. After fluid deprivation for 22 or 46 h, ethanol intake in 1 h of access was only 280 +/- 40 and 400 +/- 90 ml, respectively, and 24-h intake was not increased. Water-drinking sheep drank 1,300 +/- 195 ml of water in 1 h after 22-h water deprivation, and 24-h intake was 1.5 times normal. The icv infusion of ANG II in these sheep increased water intake in 1 h from 10 +/- 10 to 1,630 +/- 250 ml and intake of 10% ethanol to only 310 +/- 60 ml. In conclusion, sheep accept 10% ethanol as a substitute for water for daily drinking.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Removal of atmospheric ethanol by wet deposition

    NASA Astrophysics Data System (ADS)

    Felix, J. David; Willey, Joan D.; Thomas, Rachel K.; Mullaugh, Katherine M.; Avery, G. Brooks; Kieber, Robert J.; Mead, Ralph N.; Helms, John; Giubbina, Fernanda F.; Campos, M. Lucia A. M.; Cala, John

    2017-02-01

    The global wet deposition flux of ethanol is estimated to be 2.4 ± 1.6 Tg/yr with a conservative range of 0.2-4.6 Tg/yr based upon analyses of 219 wet deposition samples collected at 12 locations globally. This estimate calculated by using observed wet deposition ethanol concentrations is in agreement with previous models (1.4-5 Tg/yr) predicting the wet deposition sink using Henry's law coefficients and atmospheric ethanol concentrations. Wet deposition is estimated to remove between 6 and 17% of the total ethanol emitted to the atmosphere on an annual basis. The concentration of ethanol in marine rain (25 ± 6 nM) is an order of magnitude less than in the majority of terrestrial rains (345 ± 280 nM). Terrestrial rain samples collected in locations impacted by high local sources of biofuel usage and locations downwind from ethanol distilleries were an order of magnitude higher in ethanol concentration (3090 ± 448 nM) compared to rain collected in terrestrial locations not impacted by these sources. These results indicate that wet deposition of ethanol is heavily influenced by local sources. Results of this study are important because they suggest that as biofuel production and usage increase, the concentration of ethanol in the atmosphere will increase as well the wet deposition flux. Additional research constraining the sources, sinks, and atmospheric impacts of ethanol is necessary to better assist in the debate as whether or not to increase consumption of the alcohol as a biofuel.

  15. Cellulosic ethanol: status and innovation

    DOE PAGES

    Lynd, Lee R.; Liang, Xiaoyu; Biddy, Mary J.; ...

    2017-05-18

    Although the purchase price of cellulosic feedstocks is competitive with petroleum on an energy basis, the cost of lignocellulose conversion to ethanol using today's technology is high. Cost reductions can be pursued via either in-paradigm or new-paradigm innovation. Here, as an example of new-paradigm innovation, consolidated bioprocessing using thermophilic bacteria combined with milling during fermentation (cotreatment) is analyzed. Acknowledging the nascent state of this approach, our analysis indicates potential for radically improved cost competitiveness and feasibility at smaller scale compared to current technology, arising from (a) R&D-driven advances (consolidated bioprocessing with cotreatment in lieu of thermochemical pretreatment and added fungalmore » cellulase), and (b) configurational changes (fuel pellet coproduction instead of electricity, gas boiler(s) in lieu of a solid fuel boiler).« less

  16. Plant cell walls to ethanol.

    PubMed

    Jordan, Douglas B; Bowman, Michael J; Braker, Jay D; Dien, Bruce S; Hector, Ronald E; Lee, Charles C; Mertens, Jeffrey A; Wagschal, Kurt

    2012-03-01

    Conversion of plant cell walls to ethanol constitutes second generation bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation and separation. Ultimately, it is desirable to combine as many of the biochemical steps as possible in a single organism to achieve CBP (consolidated bioprocessing). A commercially ready CBP organism is currently unreported. Production of second generation bioethanol is hindered by economics, particularly in the cost of pretreatment (including waste management and solvent recovery), the cost of saccharification enzymes (particularly exocellulases and endocellulases displaying kcat ~1 s-1 on crystalline cellulose), and the inefficiency of co-fermentation of 5- and 6-carbon monosaccharides (owing in part to redox cofactor imbalances in Saccharomyces cerevisiae).

  17. Cellulosic ethanol: status and innovation.

    PubMed

    Lynd, Lee R; Liang, Xiaoyu; Biddy, Mary J; Allee, Andrew; Cai, Hao; Foust, Thomas; Himmel, Michael E; Laser, Mark S; Wang, Michael; Wyman, Charles E

    2017-06-01

    Although the purchase price of cellulosic feedstocks is competitive with petroleum on an energy basis, the cost of lignocellulose conversion to ethanol using today's technology is high. Cost reductions can be pursued via either in-paradigm or new-paradigm innovation. As an example of new-paradigm innovation, consolidated bioprocessing using thermophilic bacteria combined with milling during fermentation (cotreatment) is analyzed. Acknowledging the nascent state of this approach, our analysis indicates potential for radically improved cost competitiveness and feasibility at smaller scale compared to current technology, arising from (a) R&D-driven advances (consolidated bioprocessing with cotreatment in lieu of thermochemical pretreatment and added fungal cellulase), and (b) configurational changes (fuel pellet coproduction instead of electricity, gas boiler(s) in lieu of a solid fuel boiler). Copyright © 2017. Published by Elsevier Ltd.

  18. Cellulosic ethanol: status and innovation

    SciTech Connect

    Lynd, L; Liang, Xiaoyu; Biddy, Mary; Allee, Andrew; Cai, Hao; Foust, Thomas; Himmel, Michael E.; Laser, Mark; Wang, Michael; Wyman, Charles

    2017-01-01

    Although the purchase price of cellulosic feedstocks is competitive with petroleum on an energy basis, the cost of lignocellulose conversion to ethanol using today’s technology is high. Cost reductions can be pursued via either in-paradigm or new-paradigm innovation. As an example of new-paradigm innovation, consolidated bioprocessing using thermophilic bacteria combined with milling during fermentation (cotreatment) is analyzed. Acknowledging the nascent state of this approach, our analysis indicates potential for radically improved cost competitiveness and feasibility at smaller scale compared to current technology, arising from (a) R&D-driven advances (consolidated bioprocessing with cotreatment in lieu of thermochemical pretreatment and added fungal cellulase), and (b) configurational changes (fuel pellet coproduction instead of electricity, gas boiler(s) in lieu of a solid fuel boiler).

  19. Ethanol-Regulated Genes That Contribute to Ethanol Sensitivity and Rapid Tolerance in Drosophila

    PubMed Central

    Kong, Eric C.; Allouche, Lorien; Chapot, Paul A.; Vranizan, Karen; Moore, Monica S.; Heberlein, Ulrike; Wolf, Fred W.

    2010-01-01

    Background Increased ethanol intake, a major predictor for the development of alcohol use disorders, is facilitated by the development of tolerance to both the aversive and pleasurable effects of the drug. The molecular mechanisms underlying ethanol tolerance development are complex and are not yet well understood. Methods To identify genetic mechanisms that contribute to ethanol tolerance, we examined the time course of gene expression changes elicited by a single sedating dose of ethanol in Drosophila, and completed a behavioral survey of strains harboring mutations in ethanol-regulated genes. Results Enrichment for genes in metabolism, nucleic acid binding, olfaction, regulation of signal transduction, and stress suggests that these biological processes are coordinately affected by ethanol exposure. We also detected a coordinate up-regulation of genes in the Toll and Imd innate immunity signal transduction pathways. A multi-study comparison revealed a small set of genes showing similar regulation, including increased expression of 3 genes for serine biosynthesis. A survey of Drosophila strains harboring mutations in ethanol-regulated genes for ethanol sensitivity and tolerance phenotypes revealed roles for serine biosynthesis, olfaction, transcriptional regulation, immunity, and metabolism. Flies harboring deletions of the genes encoding the olfactory co-receptor Or83b or the sirtuin Sir2 showed marked changes in the development of ethanol tolerance. Conclusions Our findings implicate novel roles for these genes in regulating ethanol behavioral responses. PMID:19951294

  20. Repeated episodes of chronic intermittent ethanol promote insensitivity to devaluation of the reinforcing effect of ethanol.

    PubMed

    Lopez, M F; Becker, H C; Chandler, L J

    2014-11-01

    Studies in animal models have shown that repeated episodes of alcohol dependence and withdrawal promote escalation of drinking that is presumably associated with alterations in the addiction neurocircuitry. Using a lithium chloride-ethanol pairing procedure to devalue the reinforcing properties of ethanol, the present study determined whether multiple cycles of chronic intermittent ethanol (CIE) exposure by vapor inhalation also alters the sensitivity of drinking behavior to the devaluation of ethanol's reinforcing effects. The effect of devaluation on operant ethanol self-administration and extinction was examined in mice prior to initiation of CIE (short drinking history) and after repeated cycles of CIE or air control exposure (long drinking history). Devaluation significantly attenuated the recovery of baseline ethanol self-administration when tested either prior to CIE or in the air-exposed controls that had experienced repeated bouts of drinking but no CIE. In contrast, in mice that had undergone repeated cycles of CIE exposure that promoted escalation of ethanol drinking, self-administration was completely resistant to the effect of devaluation. Devaluation had no effect on the time course of extinction training in either pre-CIE or post-CIE mice. Taken together, these results are consistent with the suggestion that repeated cycles of ethanol dependence and withdrawal produce escalation of ethanol self-administration that is associated with a change in sensitivity to devaluation of the reinforcing properties of ethanol. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Repeated episodes of chronic intermittent ethanol promote insensitivity to devaluation of the reinforcing effect of ethanol

    PubMed Central

    Lopez, M. F.; Becker, H. C.; Chandler, L. J.

    2014-01-01

    Studies in animal models have shown that repeated episodes of alcohol dependence and withdrawal promote escalation of drinking that is presumably associated with alterations in the addiction neurocircuitry. Using a lithium chloride-ethanol pairing procedure to devalue the reinforcing properties of ethanol, the present study determined whether multiple cycles of chronic intermittent ethanol (CIE) exposure by vapor inhalation also alters the sensitivity of drinking behavior to the devaluation of ethanol's reinforcing effects. The effect of devaluation on operant ethanol self-administration and extinction was examined in mice prior to initiation of CIE (short drinking history) and after repeated cycles of CIE or air control exposure (long drinking history). Devaluation significantly attenuated the recovery of baseline ethanol self-administration when tested either prior to CIE or in the air-exposed controls that had experienced repeated bouts of drinking but no CIE. In contrast, in mice that had undergone repeated cycles of CIE exposure that promoted escalation of ethanol drinking, self-administration was completely resistant to the effect of devaluation. Devaluation had no effect on the time course of extinction training in either pre-CIE or post-CIE mice. Taken together, these results are consistent with the suggestion that repeated cycles of ethanol dependence and withdrawal produce escalation of ethanol self-administration that is associated with a change in sensitivity to devaluation of the reinforcing properties of ethanol. PMID:25266936

  2. The Role of Acetaldehyde in the Increased Acceptance of Ethanol after Prenatal Ethanol Exposure

    PubMed Central

    Gaztañaga, Mirari; Angulo-Alcalde, Asier; Spear, Norman E.; Chotro, M. Gabriela

    2017-01-01

    Recent studies show that acetaldehyde, the first metabolite in the oxidation of ethanol, can be responsible for both, the appetitive and the aversive effects produced by ethanol intoxication. More specifically, it has been hypothesized that acetaldehyde produced in the periphery by the liver is responsible for the aversive effects of ethanol, while the appetitive effects relate to the acetaldehyde produced centrally through the catalase system. On the other hand, from studies in our and other laboratories, it is known that ethanol exposure during the last gestational days (GD) consistently enhances the postnatal acceptance of ethanol when measured during early ontogeny in the rat. This increased liking of ethanol is a conditioned appetitive response acquired by the fetus by the association of ethanol’s flavor and an appetitive reinforcer. Although this reinforcer has not yet been fully identified, one possibility points to acetaldehyde produced centrally in the fetus as a likely candidate. This hypothesis is supported by data showing that very early in the rat’s ontogeny brain catalases are functional, while the liver’s enzymatic system is still immature. In this study, rat dams were administered on GD 17–20 with water or ethanol, together with an acetaldehyde-sequestering agent (D-penicillamine). The offspring’s responses to ethanol was then assessed at different postnatal stages with procedures adequate for each developmental stage: on day 1, using the “odor crawling locomotion test” to measure ethanol’s odor attractiveness; on day 5, in an operant conditioning procedure with ethanol as the reinforcer; and on day 14 in an ethanol intake test. Results show that the absence of acetaldehyde during prenatal ethanol exposure impeded the observation of the increased acceptance of ethanol at any age. This seems to confirm the crucial role of acetaldehyde as a reinforcer in the appetitive learning occurring during prenatal ethanol exposure. PMID:28197082

  3. Correlation between ethanol behavioral sensitization and midbrain dopamine neuron reactivity to ethanol.

    PubMed

    Didone, Vincent; Masson, Sébastien; Quoilin, Caroline; Seutin, Vincent; Quertemont, Etienne

    2016-03-01

    Repeated ethanol injections lead to a sensitization of its stimulant effects in mice. Some recent results argue against a role for ventral tegmental area (VTA) dopamine neurons in ethanol behavioral sensitization. The aim of the present study was to test whether in vivo ethanol locomotor sensitization correlates with changes in either basal- or ethanol-evoked firing rates of dopamine neurons in vitro. Female Swiss mice were daily injected with 2.5 g/kg ethanol (or saline in the control group) for 7 days and their locomotor activity was recorded. At the end of the sensitization procedure, extracellular recordings were made from dopaminergic neurons in midbrain slices from these mice. Significantly higher spontaneous basal firing rates of dopamine neurons were recorded in ethanol-sensitized mice relative to control mice, but without correlations with the behavioral effects. The superfusion of sulpiride, a dopamine D2 antagonist, induced a stronger increase of dopamine neuron firing rates in ethanol-sensitized mice. This shows that the D2 feedback in dopamine neurons is preserved after chronic ethanol administration and argues against a reduced D2 feedback as an explanation for the increased dopamine neuron basal firing rates in ethanol-sensitized mice. Finally, ethanol superfusion (10-100 mM) significantly increased the firing rates of dopamine neurons and this effect was of higher magnitude in ethanol-sensitized mice. Furthermore, there were significant correlations between such a sensitization of dopamine neuron activity and ethanol behavioral sensitization. These results support the hypothesis that changes in brain dopamine neuron activity contribute to the behavioral sensitization of the stimulant effects of ethanol. © 2014 Society for the Study of Addiction.

  4. Prenatal ethanol increases sucrose reinforcement, an effect strengthened by postnatal association of ethanol and sucrose.

    PubMed

    Culleré, Marcela Elena; Spear, Norman E; Molina, Juan Carlos

    2014-02-01

    Late prenatal exposure to ethanol recruits sensory processing of the drug and of its motivational properties, an experience that leads to heightened ethanol affinity. Recent studies indicate common sensory and neurobiological substrates between this drug and sweet tastants. Using a recently developed operant conditioning technique for infant rats, we examined the effects of prenatal ethanol history upon sucrose self-administration (postnatal days, PDs 14-17). Prior to the last conditioning session, a low (0.5 g/kg) or a high (2.5 g/kg) ethanol dose were paired with sucrose. The intention was to determine if ethanol would inflate or devalue the reinforcing capability of the tastant and if these effects are dependent upon prenatal ethanol history. Male and female pups prenatally exposed to ethanol (2.0 g/kg) responded more when reinforced with sucrose than pups lacking this antenatal experience. Independently of prenatal status, a low ethanol dose (0.5 g/kg) enhanced the reinforcing capability of sucrose while the highest dose (2.5 g/kg) seemed to ameliorate the motivational properties of the tastant. During extinction (PD 18), two factors were critical in determining persistence of responding despite reinforcement omission. Pups prenatally exposed to ethanol that subsequently experienced the low ethanol dose paired with sucrose, showed higher resistance to extinction. The effects here reported were not associated with differential blood alcohol levels across prenatal treatments. These results indicate that fetal ethanol experience promotes affinity for a natural sweet reinforcer and that low doses of ethanol are also capable of enhancing the positive motivational consequences of sucrose when ethanol and sucrose are paired during infancy.

  5. Soymilk products affect ethanol absorption and metabolism in rats during acute and chronic ethanol intake.

    PubMed

    Kano, M; Ishikawa, F; Matsubara, S; Kikuchi-Hayakawa, H; Shimakawa, Y

    2002-02-01

    In this study we evaluated the effects of soy products on ethanol metabolism during periods of acute and chronic consumption in rats. Gastric ethanol content and blood ethanol and acetaldehyde concentrations were investigated after the oral administration of ethanol (34 mmol/kg) plus soy products such as soymilk (SM) or fermented soymilk (FSM). The gastric ethanol concentration of the FSM group was greater than that of the control group, whereas portal and aortal blood ethanol concentrations of the FSM group were lower than in controls. The aortal acetaldehyde concentration in the FSM group was lower than that of the control group. The direct effect of isoflavones on liver function was investigated by using hepatocytes isolated from untreated rats. Genistein (5 micromol/L) decreased ethanol (P = 0.045) and tended to decrease acetaldehyde (P = 0.10) concentrations in the culture filtrate. Some variables of ethanol metabolism in the liver were investigated after chronic ethanol exposure for 25 d. Rats consumed a 5% ethanol fluid plus the SM diet, the FSM diet or a control diet. Microsomal ethanol oxidizing activity was significantly lower in the FSM group than the control group. Furthermore, cytosolic glutathione S-transferase activity was higher in the SM and FSM groups than in the control group. Acetaldehyde dehydrogenase activity (low K(m)) in the FSM group (P = 0.15), but not in the SM group (P = 0.31), tended to be greater than in the control group. The amount of thiobarbituric acid reacting substances in the liver of the SM and FSM groups tended to be less than that of the control group (P = 0.18 and 0.10, respectively). These results demonstrate that soymilk products inhibit ethanol absorption and enhance ethanol metabolism in rats.

  6. Prenatal Ethanol Increases Sucrose Reinforcement, an Effect Strengthened by Postnatal Association of Ethanol and Sucrose

    PubMed Central

    Culleré, Marcela Elena; Spear, Norman E.; Molina, Juan Carlos

    2014-01-01

    Late prenatal exposure to ethanol recruits sensory processing of the drug and of its motivational properties, an experience that leads to heightened ethanol affinity. Recent studies indicate common sensory and neurobiological substrates between this drug and sweet tastants. Using a recently developed operant conditioning technique for infant rats, we examined the effects of prenatal ethanol history upon sucrose self-administration (postnatal days, PDs 14–17). Prior to the last conditioning session, a low (0.5 g/kg) or a high (2.5 g/kg) ethanol dose were paired with sucrose. The intention was to determine if ethanol would inflate or devalue the reinforcing capability of the tastant and if these effects are dependent upon prenatal ethanol history. Male and female pups prenatally exposed to ethanol (2.0 g/kg) responded more when reinforced with sucrose than pups lacking this antenatal experience. Independently of prenatal status, a low ethanol dose (0.5 g/kg) enhanced the reinforcing capability of sucrose while the highest dose (2.5 g/kg) seemed to ameliorate the motivational properties of the tastant. During extinction (PD 18), two factors were critical in determining persistence of responding despite reinforcement omission. Pups prenatally exposed to ethanol that subsequently experienced the low ethanol dose paired with sucrose, showed higher resistance to extinction. The effects here reported were not associated with differential blood alcohol levels across prenatal treatments. These results indicate that fetal ethanol experience promotes affinity for a natural sweet reinforcer and that low doses of ethanol are also capable of enhancing the positive motivational consequences of sucrose when ethanol and sucrose are paired during infancy. PMID:24398347

  7. Ethanol production from potato peel waste (PPW).

    PubMed

    Arapoglou, D; Varzakas, Th; Vlyssides, A; Israilides, C

    2010-10-01

    Considerable concern is caused by the problem of potato peel waste (PPW) to potato industries in Europe. An integrated, environmentally-friendly solution is yet to be found and is currently undergoing investigation. Potato peel is a zero value waste produced by potato processing plants. However, bio-ethanol produced from potato wastes has a large potential market. If Federal Government regulations are adopted in light of the Kyoto agreement, the mandatory blending of bio-ethanol with traditional gasoline in amounts up to 10% will result in a demand for large quantities of bio-ethanol. PPW contain sufficient quantities of starch, cellulose, hemicellulose and fermentable sugars to warrant use as an ethanol feedstock. In the present study, a number of batches of PPW were hydrolyzed with various enzymes and/or acid, and fermented by Saccharomyces cerevisae var. bayanus to determine fermentability and ethanol production. Enzymatic hydrolysis with a combination of three enzymes, released 18.5 g L(-1) reducing sugar and produced 7.6 g L(-1) of ethanol after fermentation. The results demonstrate that PPW, a by-product of the potato industry features a high potential for ethanol production.

  8. Sleepiness and ethanol effects on simulated driving.

    PubMed

    Roehrs, T; Beare, D; Zorick, F; Roth, T

    1994-02-01

    Twelve healthy young men were assessed in each of four experimental conditions presented in a Latin Square design: 8-hr time in bed (TIB) and placebo, 4-hr TIB and placebo, 8-hr TIB and ethanol, and 4-hr TIB and ethanol. After consuming ethanol (0.6 g/kg) or placebo (0900-0930 hr) with 20% supplements at 1030 and 1100 hr, subjects were tested for sleepiness (Multiple Sleep Latency Test at 1000, 1200, 1400, and 1600 hr) and divided attention (1030 hr) performance on day 1, and for simulated driving and divided attention (1000-1200 and 1400-1600 hr) performance on day 2. In the morning testing, with breath ethanol concentrations (BECs) averaging 0.049%, sleepiness was increased, divided attention reaction times increased (on both days), and simulated driving performance was disturbed in the ethanol and 4-hr TIB relative to placebo. Similarly in the afternoon, with BECs averaging 0.013%, the ethanol and 4-hr TIB condition increased sleepiness and disrupted divided attention and simulated driving performance. The results show that sleepiness and low-dose ethanol combine to impair simulated automobile driving, an impairment that extends beyond the point at which BEC reaches zero. They provide a possible explanation for the incidence of alcohol-related automobile accidents at low BECs.

  9. Lithium protects ethanol-induced neuronal apoptosis

    SciTech Connect

    Zhong Jin . E-mail: jizhong@iupui.edu; Yang Xianlin; Yao Weiguo; Lee Weihua

    2006-12-01

    Lithium is widely used for the treatment of bipolar disorder. Recent studies have demonstrated its neuroprotective effect. Ethanol is a potent neurotoxin that is particularly harmful to the developing nervous system. In this study, we evaluated lithium's neuroprotection against ethanol-induced apoptosis. Transient exposure of infant mice to ethanol caused apoptotic cell death in brain, which was prevented significantly by administering a low dose of lithium 15 min later. In cultured cerebellar granule neurons, ethanol-induced apoptosis and activation of caspase-3/9, both of which were prevented by lithium. However, lithium's protection is not mediated by its commonly known inhibition of glycogen synthase3{beta}, because neither ethanol nor lithium has significant effects on the phosphorylation of Akt (ser473) or GSK3{beta} (ser9). In addition, the selective GSK-3{beta} inhibitor SB-415286 was unable to prevent ethanol-induced apoptosis. These data suggest lithium may be used as a potential preventive measure for ethanol-induced neurological deficits.

  10. Ethanol for the treatment of cardiac arrhythmias

    PubMed Central

    Schurmann, Paul; Peñalver, Jorge; Valderrábano, Miguel

    2015-01-01

    Introduction Ethanol infusion was an early mode of ablative treatment for cardiac arrhythmias. Its initial descriptions involved coronary intra-arterial delivery, targeting arrhythmogenic substrates in drug-refractory ventricular tachycardia or the atrioventricular node. Largely superseded by radiofrequency ablation (RFA) and other contact-based technologies as a routine ablation strategy, intracoronary arterial ethanol infusion remains as an alternative option in the treatment of ventricular tachycardia when conventional ablation fails. Arrhythmic foci that are deep-seated in the myocardium may not be amenable to catheter ablation from either the endocardium or the epicardium by RFA, but they can be targeted by an ethanol infusion. Recent findings Recently, we have explored ethanol injection through cardiac venous systems, in order to avoid the risks of complications and limitations of coronary arterial instrumentation. Vein of Marshall ethanol infusion is being studied as an adjunctive procedure in ablation of atrial fibrillation, and coronary venous ethanol infusion for ventricular tachycardia. Conclusion Ethanol ablation remains useful as a bail-out technique for refractory cases to RFA, or as an adjunctive therapy that may improve the efficacy of catheter ablation procedures. PMID:26049378

  11. Cellulose to ethanol production. Final report

    SciTech Connect

    Not Available

    1985-01-01

    The original proposed project was followed until February of 1982 when it became apparent that until further work is completed on development of enzymes, the conversion of cellulose (namely paper mill waste) to ethanol for commercial sale is not feasible. Our approach to the project at this time was to still meet our goal of a economical 100,000 gallon/year ethanol plant. In the early part of 1981 we inquired about fodder beets for conversion to ethanol and through Pacific Seed Production Company and purchased seed for planting in 1981. We planted a quarter acre which was harvested in late fall of 1981. The fodder beets were kept in cold storage until we were ready for testing. Tests were run in February and March. Results indicated that it would be economically feasible to produce ethanol in a 100,000 gallon/year plant using fodder beets. This final report is in two sections. The first section covers the tests on conversion of cellulose to ethanol and the second section covers tests on conversion of fodder beets to ethanol. A 100,000 gallon/year ethanol plant will require 7850 tons of Monarose fodder beets and 157 acres at 50 ton per acre.

  12. Ethanol cytotoxic effect on trophoblast cells.

    PubMed

    Clave, S; Joya, X; Salat-Batlle, J; Garcia-Algar, O; Vall, O

    2014-03-03

    Prenatal ethanol exposure may cause both, altered fetal neurodevelopment and impaired placental function. These disturbances can lead to growth retardation, which is one of the most prevalent features in Fetal Alcohol Syndrome (FAS). It is not known whether there is a specific pattern of cytotoxicity caused by ethanol that can be extrapolated to other cell types. The aim of this study was to determine the cytotoxic effects caused by sustained exposure of trophoblast cells to ethanol. The cytotoxic effect of sustained exposure to standard doses of ethanol on an in vitro human trophoblast cell line, JEG3, was examined. Viable cell count by exclusion method, total protein concentration, lactate dehydrogenase (LDH) activity and activation of apoptotic markers (P-H2AX, caspase-3 and PARP-1) were determined. Sustained exposure to ethanol decreased viable cell count and total protein concentration. LDH activity did not increased in exposed cells but apoptotic markers were detected. In addition, there was a dose-dependent relationship between ethanol concentration and apoptotic pathways activation. Sustained ethanol exposure causes cellular cytotoxicity by apoptotic pathways induction as a result of DNA damage. This apoptotic induction may partially explain the altered function of placental cells and the damage previously detected in other tissues.

  13. Endoplasmic Reticulum Stress and Ethanol Neurotoxicity.

    PubMed

    Yang, Fanmuyi; Luo, Jia

    2015-10-14

    Ethanol abuse affects virtually all organ systems and the central nervous system (CNS) is particularly vulnerable to excessive ethanol exposure. Ethanol exposure causes profound damages to both the adult and developing brain. Prenatal ethanol exposure induces fetal alcohol spectrum disorders (FASD) which is associated with mental retardation and other behavioral deficits. A number of potential mechanisms have been proposed for ethanol-induced brain damage; these include the promotion of neuroinflammation, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, and thiamine deficiency. The endoplasmic reticulum (ER) regulates posttranslational protein processing and transport. The accumulation of unfolded or misfolded proteins in the ER lumen triggers ER stress and induces unfolded protein response (UPR) which are mediated by three transmembrane ER signaling proteins: pancreatic endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6). UPR is initiated to protect cells from overwhelming ER protein loading. However, sustained ER stress may result in cell death. ER stress has been implied in various CNS injuries, including brain ischemia, traumatic brain injury, and aging-associated neurodegeneration, such as Alzheimer's disease (AD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). However, effects of ethanol on ER stress in the CNS receive less attention. In this review, we discuss recent progress in the study of ER stress in ethanol-induced neurotoxicity. We also examine the potential mechanisms underlying ethanol-mediated ER stress and the interaction among ER stress, oxidative stress and autophagy in the context of ethanol neurotoxicity.

  14. Ethanol production using nuclear petite yeast mutants.

    PubMed

    Hutter, A; Oliver, S G

    1998-05-01

    Two respiratory-deficient nuclear petites, FY23 delta pet191 and FY23 delta cox5a, of the yeast Saccharomyces cerevisiae were generated using polymerase-chain-reaction-mediated gene disruption, and their respective ethanol tolerance and productivity assessed and compared to those of the parental grande, FY23WT, and a mitochondrial petite, FY23 rho(0). Batch culture studies demonstrated that the parental strain was the most tolerant to exogenously added ethanol with an inhibition constant, Ki, of 2.3% (w/v) and a specific rate of ethanol production, qp, of 0.90 g ethanol g dry cells-1 h-1. FY23 rho(0) was the most sensitive to ethanol, exhibiting a Ki of 1.71% (w/v) and qp of 0.87 ethanol g dry cells-1 h-1. Analyses of the ethanol tolerance of the nuclear petites demonstrate that functional mitochondria are essential for maintaining tolerance to the toxin with the 100% respiratory-deficient nuclear petite, FY23 delta pet191, having a Ki of 2.14% (w/v) and the 85% respiratory-deficient FY23 delta cox5a, having a Ki of 1.94% (w/v). The retention of ethanol tolerance in the nuclear petites as compared to that of FY23 rho(0) is mirrored by the ethanol productivities of these nuclear mutants, being respectively 43% and 30% higher than that of the respiratory-sufficient parent strain. This demonstrates that, because of their respiratory deficiency, the nuclear petites are not subject to the Pasteur effect and so exhibit higher rates of fermentation.

  15. Molecular pathways underpinning ethanol-induced neurodegeneration.

    PubMed

    Goldowitz, Dan; Lussier, Alexandre A; Boyle, Julia K; Wong, Kaelan; Lattimer, Scott L; Dubose, Candis; Lu, Lu; Kobor, Michael S; Hamre, Kristin M

    2014-01-01

    While genetics impacts the type and severity of damage following developmental ethanol exposure, little is currently known about the molecular pathways that mediate these effects. Traditionally, research in this area has used a candidate gene approach and evaluated effects on a gene-by-gene basis. Recent studies, however, have begun to use unbiased approaches and genetic reference populations to evaluate the roles of genotype and epigenetic modifications in phenotypic changes following developmental ethanol exposure, similar to studies that evaluated numerous alcohol-related phenotypes in adults. Here, we present work assessing the role of genetics and chromatin-based alterations in mediating ethanol-induced apoptosis in the developing nervous system. Utilizing the expanded family of BXD recombinant inbred mice, animals were exposed to ethanol at postnatal day 7 via subcutaneous injection (5.0 g/kg in 2 doses). Tissue was collected 7 h after the initial ethanol treatment and analyzed by activated caspase-3 immunostaining to visualize dying cells in the cerebral cortex and hippocampus. In parallel, the levels of two histone modifications relevant to apoptosis, γH2AX and H3K14 acetylation, were examined in the cerebral cortex using protein blot analysis. Activated caspase-3 staining identified marked differences in cell death across brain regions between different mouse strains. Genetic analysis of ethanol susceptibility in the hippocampus led to the identification of a quantitative trait locus on chromosome 12, which mediates, at least in part, strain-specific differential vulnerability to ethanol-induced apoptosis. Furthermore, analysis of chromatin modifications in the cerebral cortex revealed a global increase in γH2AX levels following ethanol exposure, but did not show any change in H3K14 acetylation levels. Together, these findings provide new insights into the molecular mechanisms and genetic contributions underlying ethanol-induced neurodegeneration.

  16. Biological production of ethanol from coal

    SciTech Connect

    Not Available

    1990-01-01

    Previous results have shown that the medium pH, the composition of the medium and concentration of medium constituents significantly affect the ratio of ethanol to acetate in the product stream when fermenting CO, CO{sub 2} and H{sub 2} in synthesis gas to products by Clostridium ljungdahlii. An additional batch study was carried out varying the agitation rate at pH 4, 4.5 and 5.0. It was speculated that increased agitation rates in combination with low pH might result in increased ethanol production while, at the same time, yielding higher cell concentrations which could eventually result in higher ethanol concentrations.

  17. Wastepaper as a feedstock for ethanol production

    SciTech Connect

    Bergeron, P.W.; Riley, C.J.

    1991-11-01

    The possibility of using wastepaper as a cheap feedstock for production of ethanol is discussed. As the single largest material category in the municipal solid waste (MSW) stream, wastepaper is the main target of efforts to reduce the volume of MSW. And in the process for producing ethanol from lignocellulosics, the feedstock represents the highest cost. If wastepaper could be obtained cheaply in large enough quantities and if conversion process cost and efficiency prove to be similar to those for wood, the cost of ethanol could be significantly reduced. At the same time, the volume of wastepaper that must be disposed of in landfills could be lessened. 13 refs., 3 figs., 7 tabs.

  18. Environmental analysis of biomass-ethanol facilities

    SciTech Connect

    Corbus, D.; Putsche, V.

    1995-12-01

    This report analyzes the environmental regulatory requirements for several process configurations of a biomass-to-ethanol facility. It also evaluates the impact of two feedstocks (municipal solid waste [MSW] and agricultural residues) and three facility sizes (1000, 2000, and 3000 dry tons per day [dtpd]) on the environmental requirements. The basic biomass ethanol process has five major steps: (1) Milling, (2) Pretreatment, (3) Cofermentation, (4) Enzyme production, (5) Product recovery. Each step could have environmental impacts and thus be subject to regulation. Facilities that process 2000 dtpd of MSW or agricultural residues would produce 69 and 79 million gallons of ethanol, respectively.

  19. Pharmacokinetics of Ethanol - Issues of Forensic Importance.

    PubMed

    Jones, A W

    2011-07-01

    A reliable method for the quantitative analysis of ethanol in microvolumes (50-100 μL) of blood became available in 1922, making it possible to investigate the absorption, distribution, metabolism, and excretion (ADME) of ethanol in healthy volunteers. The basic principles of ethanol pharmacokinetics were established in the 1930s, including the notion of zero-order elimination kinetics from blood and distribution of the absorbed dose into the total body water. The hepatic enzyme alcohol dehydrogenase (ADH) is primarily responsible for the oxidative metabolism of ethanol. This enzyme was purified and characterized in the early 1950s and shown to have a low Michaelis constant (km), being about ~0.1 g/L. Liver ADH is therefore saturated with substrate after the first couple of drinks and for all practical purposes the concentration-time (C-T) profiles of ethanol are a good approximation to zero-order kinetics. However, because of dose-dependent saturation kinetics, the entire postabsorptive declining part of the blood-alcohol concentration (BAC) curve looks more like a hockey stick rather than a straight line. A faster rate of ethanol elimination from blood in habituated individuals (alcoholics) is explained by participation of a high km microsomal enzyme (CYP2E1), which is inducible after a period of chronic heavy drinking. Owing to the combined influences of genetic and environmental factors, one expects a roughly threefold difference in elimination rates of ethanol from blood (0.1-0.3 g/L/h) between individuals. The volume of distribution (Vd) of ethanol, which depends on a person's age, gender, and proportion of fat to lean body mass, shows a twofold variation between individuals (0.4-0.8 L/kg). This forensic science review traces the development of forensic pharmacokinetics of ethanol from a historical perspective, followed by a discussion of important issues related to the disposition and fate of ethanol in the body, including (a) quantitative evaluation of

  20. Gangliosides, or sialic acid, antagonize ethanol intoxication

    SciTech Connect

    Klemm, W.R.; Boyles, R.; Matthew, J.; Cherian, L.

    1988-01-01

    Because ethanol elicits a dose-dependent hydrolysis of brain sialogangliosides, the authors tested the possibility that injected gangliosides might antagonize intoxicating doses of ethanol. Clear anti-intoxication effects were seen at 24 hr post-injection of mixed mouse-brain gangliosides at 125-130 mg/kg, but not at lower or higher doses. Sleep time was reduced on the order of 50%, and roto-rod agility was significantly enhanced. Sialic acid (SA) similarly antagonized ethanol; however, the precursor of SA, N-acetyl-D-mannosamine, as well as ceramide and asialoganglioside did not.

  1. Assessment of Ethanol Trends on the ISS

    NASA Technical Reports Server (NTRS)

    Perry, Jay; Carter, Layne; Kayatin, Matthew; Gazda, Daniel; McCoy, Torin; Limero, Thomas

    2016-01-01

    The International Space Station (ISS) Environmental Control and Life Support System (ECLSS) provides a working environment for six crewmembers through atmosphere revitalization and water recovery systems. In the last year, elevated ethanol levels have presented a unique challenge for the ISS ECLSS. Ethanol is monitored on the ISS by the Air Quality Monitor (AQM). The source of this increase is currently unknown. This paper documents the credible sources for the increased ethanol concentration, the monitoring provided by the AQM, and the impact on the atmosphere revitalization and water recovery systems.

  2. PRENATAL ETHANOL EXPOSURE INCREASES ETHANOL INTAKE AND REDUCES C-FOS EXPRESSION IN INFRALIMBIC CORTEX OF ADOLESCENT RATS

    PubMed Central

    Fabio, Maria Carolina; March, Samanta M.; Molina, Juan Carlos; Nizhnikov, Michael E; Spear, Norman E; Pautassi, Ricardo Marcos

    2013-01-01

    Prenatal ethanol exposure significantly increases later predisposition for alcohol intake, but the mechanisms associated with this phenomenon remain hypothetical. This study analyzed (Exp. 1) ethanol intake in adolescent inbred WKAH/Hok Wistar rats prenatally exposed to ethanol (2.0 g/kg) or vehicle, on gestational days 17–20. Subsequent Experiments (2, 3 and 4) tested several variables likely to underlie the effect of gestational ethanol on adolescent ethanol preference, including ethanol-induced locomotor activation (LMA), ethanol-induced emission of ultrasonic vocalizations (USVs) after exposure to a rough exteroceptive stimulus, and induction of the immediate early gene C-fos in brain areas associated with processing of reward stimuli and with the retrieval and extinction of associative learning. Prenatal ethanol induced a two-fold increase in ethanol intake. Adolescents exhibited significant ethanol-induced LMA, emitted more aversive than appetitive USVs, and postnatal ethanol administration significantly exacerbated the emission of USVs. These effects, however, were not affected by prenatal ethanol. Adolescents prenatally exposed to ethanol as fetuses exhibited reduced neural activity in infralimbic cortex (but not in prelimbic cortex or nucleus accumbens core or shell), an area that has been implicated in the extinction of drug-mediated associative memories. Ethanol metabolism was not affected by prenatal ethanol. Late gestational exposure to ethanol significantly heightened drinking in the adolescent offspring of an inbred rat strain. Ethanol-induced LMA and USVs were not associated with differential ethanol intake due to prenatal ethanol exposure. Prenatal ethanol, however, altered basal neural activity in the infralimbic prefrontal cortex. Future studies should analyze the functionality of medial prefrontal cortex after prenatal ethanol and its potential association with predisposition for heightened ethanol intake. PMID:23266368

  3. Prenatal ethanol exposure increases ethanol intake and reduces c-Fos expression in infralimbic cortex of adolescent rats.

    PubMed

    Fabio, Maria Carolina; March, Samanta M; Molina, Juan Carlos; Nizhnikov, Michael E; Spear, Norman E; Pautassi, Ricardo Marcos

    2013-02-01

    Prenatal ethanol exposure significantly increases later predisposition for alcohol intake, but the mechanisms associated with this phenomenon remain hypothetical. This study analyzed (Experiment 1) ethanol intake in adolescent inbred WKAH/Hok Wistar rats prenatally exposed to ethanol (2.0g/kg) or vehicle, on gestational days 17-20. Subsequent Experiments (2, 3 and 4) tested several variables likely to underlie the effect of gestational ethanol on adolescent ethanol preference, including ethanol-induced locomotor activation (LMA), ethanol-induced emission of ultrasonic vocalizations (USVs) after exposure to a rough exteroceptive stimulus, and induction of the immediate early gene C-fos in brain areas associated with processing of reward stimuli and with the retrieval and extinction of associative learning. Prenatal ethanol induced a two-fold increase in ethanol intake. Adolescents exhibited significant ethanol-induced LMA, emitted more aversive than appetitive USVs, and postnatal ethanol administration significantly exacerbated the emission of USVs. These effects, however, were not affected by prenatal ethanol. Adolescents prenatally exposed to ethanol as fetuses exhibited reduced neural activity in infralimbic cortex (but not in prelimbic cortex or nucleus accumbens core or shell), an area that has been implicated in the extinction of drug-mediated associative memories. Ethanol metabolism was not affected by prenatal ethanol. Late gestational exposure to ethanol significantly heightened drinking in the adolescent offspring of an inbred rat strain. Ethanol-induced LMA and USVs were not associated with differential ethanol intake due to prenatal ethanol exposure. Prenatal ethanol, however, altered basal neural activity in the infralimbic prefrontal cortex. Future studies should analyze the functionality of medial prefrontal cortex after prenatal ethanol and its potential association with predisposition for heightened ethanol intake.

  4. Ethanol production: energy, economic, and environmental losses.

    PubMed

    Pimentel, David; Patzek, Tad; Cecil, Gerald

    2007-01-01

    The prime focus of ethanol production from corn is to replace the imported oil used in American vehicles, without expending more fossil energy in ethanol production than is produced as ethanol energy. In a thorough and up-to-date evaluation of all the fossil energy costs of ethanol production from corn, every step in the production and conversion process must be included. In this study, 14 energy inputs in average U.S. corn production are included. Then, in the fermentation/distillation operation, 9 more identified fossil fuel inputs are included. Some energy and economic credits are given for the by-products, including dried distillers grains (DDG). Based on all the fossil energy inputs, a total of 1.43 kcal fossil energy is expended to produced 1 kcal ethanol. When the energy value of the DDG, based on the feed value of the DDG as compared to that of soybean meal, is considered, the energy cost of ethanol production is reduced slightly, to 1.28 kcal fossil energy input per 1 kcal ethanol produced. Several proethanol investigators have overlooked various energy inputs in U.S. corn production, including farm machinery, processing machinery, and the use of hybrid corn. In other studies, unrealistic, low energy costs were attributed to such inputs as nitrogen fertilizer, insecticides, and herbicides. Controversy continues concerning the energy and economic credits that should be assigned to the by-products. The U.S. Department of Energy reports that 17.0 billion L ethanol was produced in 2005. This represents only less than 1% of total oil use in the U.S. These yields are based on using about 18% of total U.S. corn production and 18% of cornland. Because the production of ethanol requires large inputs of both oil and natural gas in production, the U.S. is importing both oil and natural gas to produce ethanol. Furthermore, the U.S. Government is spending about dollar 3 billion annually to subsidize ethanol production, a subsidy of dollar 0.79/L ethanol produced. With

  5. Process engineering of high-ethanol-tolerance yeast for the manufacture of ethanol

    SciTech Connect

    Krishnan, M.S.; Xia, Y.; Tsao, G.T.

    1995-12-31

    Inhibitory effects of ethanol and glucose on a high-ethanol-tolerance yeast strain (fusion product of Saccharomyces diastaticus and Saccharomyces uvarum) having high osmotic and ethanol tolerance were studied in batch cultures. A model incorporating both substrate and product inhibition was developed that represented the experimental data quite well. By performing fed-batch fermentation, an ethanol concentration of 13.3% (w/v) was obtained. The maximum allowable ethanol concentration for cell growth was predicted to be 129.9 g/L and ethanol-producing capability of cells was found to be completely inhibited at 136.4 g/L. On-line monitoring of the fermentation was performed using an ion trap mass spectrometer and a triple quadrupole mass spectrometer. Preliminary results are reported.

  6. Developing Biofuel in the Teaching Laboratory: Ethanol from Various Sources

    ERIC Educational Resources Information Center

    Epstein, Jessica L.; Vieira, Matthew; Aryal, Binod; Vera, Nicolas; Solis, Melissa

    2010-01-01

    In this series of experiments, we mimic a small-scale ethanol plant. Students discover that the practical aspects of ethanol production are determined by the quantity of biomass produced per unit land, rather than the volume of ethanol produced per unit of biomass. These experiments explore the production of ethanol from different sources: fruits,…

  7. EFFECT OF ETHANOL ON THE NATURAL ANAEROBIC BIODEGRADATION OF BENZENE

    EPA Science Inventory

    Ethanol is commonly used as a fuel oxygenate. A concern has been raised that the presence of ethanol from a spill of gasoline may inhibit the natural biodegradation of fuel hydrocarbons, including benzene. Ethanol is miscible in water, and ethanol is readily metabolized by micr...

  8. KINETICS OF ETHANOL BIODEGRADATION UNDER METHANOGENIC CONDITIONS IN GASOLINE SPILLS

    EPA Science Inventory

    Ethanol is commonly used as a fuel oxygenate. A concern has been raised that biodegradation of ethanol from a spill of gasoline may inhibit the natural biodegradation of fuel hydrocarbons, including benzene. Ethanol is miscible in water, and ethanol is readily metabolized by mi...

  9. EFFECT OF ETHANOL ON THE NATURAL ANAEROBIC BIODEGRADATION OF BENZENE

    EPA Science Inventory

    Ethanol is commonly used as a fuel oxygenate. A concern has been raised that the presence of ethanol from a spill of gasoline may inhibit the natural biodegradation of fuel hydrocarbons, including benzene. Ethanol is miscible in water, and ethanol is readily metabolized by micr...

  10. KINETICS OF ETHANOL BIODEGRADATION UNDER METHANOGENIC CONDITIONS IN GASOLINE SPILLS

    EPA Science Inventory

    Ethanol is commonly used as a fuel oxygenate. A concern has been raised that biodegradation of ethanol from a spill of gasoline may inhibit the natural biodegradation of fuel hydrocarbons, including benzene. Ethanol is miscible in water, and ethanol is readily metabolized by mi...

  11. Developing Biofuel in the Teaching Laboratory: Ethanol from Various Sources

    ERIC Educational Resources Information Center

    Epstein, Jessica L.; Vieira, Matthew; Aryal, Binod; Vera, Nicolas; Solis, Melissa

    2010-01-01

    In this series of experiments, we mimic a small-scale ethanol plant. Students discover that the practical aspects of ethanol production are determined by the quantity of biomass produced per unit land, rather than the volume of ethanol produced per unit of biomass. These experiments explore the production of ethanol from different sources: fruits,…

  12. Survey of U.S. fuel ethanol plants

    USDA-ARS?s Scientific Manuscript database

    The ethanol industry is progressively growing in response to increased consumer demands for fuel as well as the renewable fuel standard. Corn ethanol processing creates the following products: 1/3 ethanol, 1/3 distillers grains, and 1/3 carbon dioxide. As the production of ethanol increases so too ...

  13. Ethanol enrichment from ethanol-water mixtures using high frequency ultrasonic atomization.

    PubMed

    Kirpalani, D M; Suzuki, K

    2011-09-01

    The influence of high frequency ultrasound on the enrichment of ethanol from ethanol-water mixtures was investigated. Experiments performed in a continuous enrichment system showed that the generated atomized mist was at a higher ethanol concentration than the feed and the enrichment ratio was higher than the vapor liquid equilibrium curve for ethanol-water above 40 mol%. Well-controlled experiments were performed to analyze the effect of physical parameters; temperature, carrier gas flow and collection height on the enrichment. Droplet size measurements of the atomized mist and visualization of the oscillating fountain jet formed during sonication were made to understand the separation mechanism.

  14. Synergistic temperature and ethanol effect on Saccharomyces cerevisiae dynamic behaviour in ethanol bio-fuel production.

    PubMed

    Aldiguier, A S; Alfenore, S; Cameleyre, X; Goma, G; Uribelarrea, J L; Guillouet, S E; Molina-Jouve, C

    2004-07-01

    The impact of ethanol and temperature on the dynamic behaviour of Saccharomyces cerevisiae in ethanol biofuel production was studied using an isothermal fed-batch process at five different temperatures. Fermentation parameters and kinetics were quantified. The best performances were found at 30 and 33 degrees C around 120 g l(-1) ethanol produced in 30 h with a slight benefit for growth at 30 degrees C and for ethanol production at 33 degrees C. Glycerol formation, enhanced with increasing temperatures, was coupled with growth for all fermentations; whereas, a decoupling phenomenon occurred at 36 and 39 degrees C pointing out a possible role of glycerol in yeast thermal protection.

  15. Northeastern California Ethanol Manufacturing Feasibility Study

    SciTech Connect

    Not Available

    1997-11-01

    This report is a compilation of work by several different organizations and includes the NREL researched report, 'Biomass to Ethanol, Facility Design, Cost Estimate, and Financial Evaluation' Volumes I and II.

  16. Treatment of biomass to obtain ethanol

    DOEpatents

    Dunson, Jr., James B.; Elander, Richard T [Evergreen, CO; Tucker, III, Melvin P.; Hennessey, Susan Marie [Avondale, PA

    2011-08-16

    Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

  17. Biological production of ethanol from coal

    SciTech Connect

    Not Available

    1991-01-01

    Previously studies have shown the importance of both medium composition and concentration and medium pH on ethanol production of Clostridium ljungdahlii in fermenting CO, CO{sub 2} and H{sub 2} in synthesis gas. Four additional batch experiments involving medium composition and concentration were carried out in modified basal medium without yeast extract at pH 4.0. These experiments indicate that basal medium with only small amounts of B-vitamins can yield significant cell growth while yielding ethanol as the major product. Product ratios as high as 11.0 g ethanol per g acetate were obtained with half strength B-vitamins. Further experiments indicates that Ca-pantothenate may be necessary for the growth of C. ljungdahlii and that growth and ethanol production can occur simultaneously.

  18. Production of ethanol from sugar cane

    SciTech Connect

    Hayes, F.W.

    1982-04-20

    An integrated process is provided for producing ethanol from sugar cane. Harvested cane is chopped and shredded to provide a mass of fiber and juice which is digested in a first digester with a hemicellulase enzyme. Fibrous residue is separated by centrifuge and passed to a second digester for digestion with a mixed culture of a cellulase enzyme and an ethanol-producing culture. Fibrous residue from is pressed to provide a recycle juice extract and then burned to provide at least part of the heat energy requirement of the process. Juice extracts from digesters separated by centrifuges are combined, sterilized, flashed and passed to a fermentor for fermentation with an ethanol-producing microorganism. Ethanol is recovered from the process by separation utilizing a membrane.

  19. Interaction of ethanol with opiate receptors

    SciTech Connect

    Yukhananov, R.Y.; Bujov, Y.V.; Maiskii, A.I.

    1986-04-01

    The authors study the action of ethanol on membrane-bound opiate receptors. Ethanol at 37/sup 0/C was shown to produce dose-dependent inhibition of binding of /sup 3/H-naloxone with opiate receptors. ID/sub 50/ under these conditions was 462 mM. Temperature-dependent inhibition of ligand-receptor binding suggests that ethanol does not compete for the stereospecific binding site of /sup 3/H-naloxone. Analysis of the inhibitory action of ethanol on /sup 3/H-naloxone binding in animals at different stages of experimental alcoholism revealed no differences between the control and experimental animals after 3.5 and 10 months of voluntary alcoholization.

  20. Energy balance of wheat conversion to ethanol

    SciTech Connect

    Stumborg, M.A.; Zentner, R.P.; Coxworth, E.

    1996-12-31

    The Western Canadian ethanol industry uses wheat as the preferred feed stock. The net energy balance of an ethanol system based on this starchy feed stock is of interest if Canada utilizes ethanol fuels from wheat as one of its measures to meet international commitments for greenhouse gas reduction and energy conservation under the Green Plan. The wheat to ethanol production systems for the Brown and Thin Black soil zones of the Canadian Prairies were analyzed from soil to processing completion to determine the net energy balance. The data clearly demonstrates the positive net energy balance, with the energy balance ranging from 1.32 to 1.63:1 for the Brown soil zone, and from 1.19 to 1.47:1 for the Thin Black soil zone. The final energy balance depends upon the agronomic practices and wheat variety assumed for the production system.

  1. Xylose fermentation to ethanol by Pachysolen tannophilus

    SciTech Connect

    Schvester, P.; Robinson, C.W.; Moo-Young, M.

    1983-01-01

    Results of batch studies on the bioconversion of D-xylose by the pentose-fermenting yeast Pachysolen tannophilus are reported. A significant level of aeration was found to be necessary to stimulate biomass growth and to enhance the rate of ethanol production. Ethanol production appears to be restricted by substrate inhibition at initial D-xylose concentrations in excess of about 40 g/l. At this value, a maximum ethanol yield from substrate of only 27.4 mass % was achieved, which was only 53.7% of the theoretical maximum. Significant amounts (up to 14% mass yield) of by-product xylitol also were produced. The advantages and disadvantages of this direct bioconversion process for industrial application are discussed and compared to other ethanol production processes. 15 references, 10 figures, 4 tables.

  2. The Formation of Ethanol in Postmortem Tissues

    DTIC Science & Technology

    2004-02-01

    for ethanol analysis. The postmortem tissue specimens received by our laboratory have generally been subjected to severe trauma and may have been...Furthermore, the tissue specimens received by our laboratory typically have been subjected to trauma as a result of the violent nature of avia- tion...uoride, t-butanol, acetaldehyde , methanol, 2-propanol, acetone, n-propanol, isobutanol, n-butanol, sec-butanol and ethanol were purchased from Sigma

  3. Biological production of ethanol from coal

    SciTech Connect

    Not Available

    1992-01-01

    Research is continuing in an attempt to increase both the ethanol concentration and product ratio using C. ljungdahlii. The purpose of this report is to present data utilizing a medium prepared especially for C. ljungdahlii. Medium development studies are presented, as well as reactor studies with the new medium in batch reactors. CSTRs and CSTRs with cell recycle. The use of this new medium has resulted in significant improvements in cell concentration, ethanol concentration and product ratio.

  4. Microbial contamination of fuel ethanol fermentations.

    PubMed

    Beckner, M; Ivey, M L; Phister, T G

    2011-10-01

    Microbial contamination is a pervasive problem in any ethanol fermentation system. These infections can at minimum affect the efficiency of the fermentation and at their worse lead to stuck fermentations causing plants to shut down for cleaning before beginning anew. These delays can result in costly loss of time as well as lead to an increased cost of the final product. Lactic acid bacteria (LAB) are the most common bacterial contaminants found in ethanol production facilities and have been linked to decreased ethanol production during fermentation. Lactobacillus sp. generally predominant as these bacteria are well adapted for survival under high ethanol, low pH and low oxygen conditions found during fermentation. It has been generally accepted that lactobacilli cause inhibition of Saccharomyces sp. and limit ethanol production through two basic methods; either production of lactic and acetic acids or through competition for nutrients. However, a number of researchers have demonstrated that these mechanisms may not completely account for the amount of loss observed and have suggested other means by which bacteria can inhibit yeast growth and ethanol production. While LAB are the primary contaminates of concern in industrial ethanol fermentations, wild yeast may also affect the productivity of these fermentations. Though many yeast species have the ability to thrive in a fermentation environment, Dekkera bruxellensis has been repeatedly targeted and cited as one of the main contaminant yeasts in ethanol production. Though widely studied for its detrimental effects on wine, the specific species-species interactions between D. bruxellensis and S. cerevisiae are still poorly understood.

  5. Wernicke encephalopathy and ethanol-related syndromes.

    PubMed

    Kim, Tae Eun; Lee, Eun Ja; Young, Jeong Bo; Shin, Dong Jae; Kim, Ji Hoon

    2014-04-01

    Ethanol causes diverse neurologic conditions caused by acute and chronic brain damage. This review provides an overview of Wernicke encephalopathy and other ethanol-related brain changes, such as chronic brain atrophy, Marchiafava-Bignami disease, osmotic demyelination syndrome, chronic hepatic encephalopathy, and acute alcohol withdrawal. As clinical symptoms of this spectrum of diseases have nonspecific neurologic alterations, radiologists should have current radiologic information and understand the imaging findings pertaining to the pathophysiology to support diagnosis.

  6. Low temperature hydrolysis for ethanol production

    SciTech Connect

    Garcia, A.; Fischer, J.R.; Iannotti, E.L.

    1982-12-01

    Hydrolysis of corn was compared at two temperatures of 100/sup 0/C and 75/sup 0/C. Starch conversion to dextrose and then ethanol were determined. Yields were 10.69% ethanol in the fermented beer for 100/sup 0/C and 9.89% for 75/sup 0/C. The 75/sup 0/C hydrolysis required about 100 MJ less thermal energy than the 100/sup 0/C hydrolysis. The effects of contamination and respiration were also assessed.

  7. High Speed/ Low Effluent Process for Ethanol

    SciTech Connect

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  8. Ethanol production by extractive fermentation.

    PubMed

    Minier, M; Goma, G

    1982-07-01

    The ideal method to produce a terminal metabolite inhibitor of cell growth and production is to remove and recover it from the fermenting broth as it formed. Extractive fermentation is achieved in the case of ethanol production by coupling both fermentation and liquid-liquid extraction, The solvent of extraction is 1-dodecanol (or a mixture 1-dedecanol, 1-tetradecanol); study of the inhibitory effect of primary aliphatic alcohols of different chain lengths shows that no growth is observed in the presence of alcohols which have between 2 and 12 carbons. This effect is suppressed when the carbon number is 12 or higher. A new reactor has been used-1 pulsed packed column. Pulsation is performed pneumatically. Porous material used as a package adsorbs the cells. The fermentation broth is pulsed in order to (1) increase the interfacial area between the aqueous phase and the dodecanol, (2) decrease gas holdup. Alcoholic fermentation, performed at 35 degrees C on glucose syrup, permits the total utilization of glucose solution of 409 g/L with a yeast which cannot-in classical process- completely use solutions with 200 g/L of glucose. The feasibility of a new method of fermentation coupling both liquid-liquid extraction and fermentation is demonstrated. Extension of this method is possible to any microbial production inhibited by its metabolite excretion.

  9. Sorption equilibria of ethanol on cork.

    PubMed

    Lequin, Sonia; Chassagne, David; Karbowiak, Thomas; Bellat, Jean-Pierre

    2013-06-05

    We report here for the first time a thermodynamic study of gaseous ethanol sorption on raw cork powder and plate. Our study aims at a better understanding of the reactivity of this material when used as a stopper under enological conditions, thus in close contact with a hydroethanolic solution, wine. Sorption−desorption isotherms were accurately measured by thermogravimetry at 298 K in a large range of relative pressures. Sorption enthalpies were determined by calorimetry as a function of loading. Sorption−desorption isotherms exhibit a hysteresis loop probably due to the swelling of the material and the absorption of ethanol. Surprisingly, the sorption enthalpy of ethanol becomes lower than the liquefaction enthalpy as the filling increases. This result could be attributed to the swelling of the material, which would generate endothermic effects. Sorption of SO₂ on cork containing ethanol was also studied. When the ethanol content in cork is 2 wt %, the amount of SO₂ sorbed is divided by 2. Thus, ethanol does not enhance the sorption rate for SO₂ but, on the contrary, decreases the SO₂ sorption activity onto cork, probably because of competitive sorption mechanisms.

  10. Modulation of BK channels by ethanol

    PubMed Central

    Dopico, Alex M.; Bukiya, Anna N.; Kuntamallappanavar, Guruprasad; Liu, Jianxi

    2017-01-01

    In alcohol-naïve systems, ethanol (<100 mM) exposure of calcium-gated BK channels perturbs physiology and behavior. Brief (several minutes) ethanol exposure usually leads to increased BK current, which results from ethanol interaction with a pocket mapped to the BK channel-forming slo1 protein cytosolic tail domain. The importance of this region in alcohol-induced intoxication has been addressed in Caenorhabditis elegans slo1 mutants. However, ethanol-induced BK activation is not universal as refractoriness and inhibition have been reported. The final effect depends on many factors, including intracellular calcium levels, slo1 isoform, BK beta subunit composition, post-translational modification of BK proteins, channel lipid microenvironment and type of ethanol administration. Studies in Drosophila melanogaster, Caenorhabditis elegans and rodents show that protracted/repeated ethanol administration leads to tolerance to alcohol-induced modification of BK-driven physiology and behavior. Unveiling the mechanisms underlying tolerance is of major importance, as tolerance to alcohol has been proposed as predictor of risk for alcoholism. PMID:27238266

  11. Role of water activity in ethanol fermentations

    SciTech Connect

    Jones, R.P.; Greenfield, P.F.

    1986-01-01

    A separate role for water activity in the conversion of sugars to ethanol by two strains of yeast is identified. During fermentation of both single and mixed sugar substrates, the water activity was shown to remain constant during the logarithmic growth phase. This is despite the changes in concentration of substrates and production, the constancy reflecting the fact that the greater influence of ethanol on the solution activity is counterbalanced, in the early stages of the fermentation, by its low yield. The end of the log phase of growth coincides with the start of a period of gradually decreasing water activity. For the more ethanol-tolerant strain UQM66Y, growth was found to cease at a constant value of water activity while that for the less tolerant strain UQM70Y depended on both ethanol concentration and water activity. It is argued that water activity is a more appropriate variable than ethanol concentration for describing some of the nonspecific inhibitory effects apparent in ethanol fermentations. A straightforward method for the calculation of water activity during such fermentations based on the use of solution osmolarity is presented.

  12. The kinetics of transdermal ethanol exchange.

    PubMed

    Anderson, Joseph C; Hlastala, Michael P

    2006-02-01

    The kinetics of ethanol transport from the blood to the skin surface are incompletely understood. We present a mathematical model to predict the transient exchange of ethanol across the skin while it is being absorbed from the gut and eliminated from the body. The model simulates the behavior of a commercial device that is used to estimate the blood alcohol concentration (BAC). During the elimination phase, the stratum corneum of the skin has a higher ethanol concentration than the blood. We studied the effect of varying the maximum BAC and the absorption rate from the gut on the relationship between BAC and equivalent concentration in the gas phase above the skin. The results showed that the ethanol concentration in the gas compartment always took longer to reach its maximum, had a lower maximum, and had a slower apparent elimination rate than the BAC. These effects increased as the maximum BAC increased. Our model's predictions are consistent with experimental data from the literature. We performed a sensitivity analysis (using Latin hypercube sampling) to identify and rank the importance of parameters. The analysis showed that outputs were sensitive to solubility and diffusivity within the stratum corneum, to stratum corneum thickness, and to the volume of gas in the sampling chamber above the skin. We conclude that ethanol transport through the skin is primarily governed by the washin and washout of ethanol through the stratum corneum. The dynamics can be highly variable from subject to subject because of variability in the physical properties of the stratum corneum.

  13. Disulfirm-ethanol reaction: a complex mechanism

    SciTech Connect

    Yourick, J.J.; Faiman, M.D.

    1986-03-01

    Hypothermia has previously been shown to be a component of the disulfiram-ethanol reaction (DER). In rats, hypothermia correlated with the hypotension and tachycardia observed when ethanol was administered 8 hours after disfulfiram treatment. These studies have now been extended, and in addition, the role of diethyldithiocarbamate (DDTC) and diethyldithiocarbamate-methyl ester (DDTC-MF) in the DER have been examined. In rats challenged with ethanol (1g/kg, i.p.) 4 and 24 hours after disulfiram (75 mg/kg, i.p.) no hypothermia was observed, but was found when ethanol was given 8, 12 and 16 hours after disulfiram. Hypotension and tachycardia were found at all time periods studied. Low Km ALDH also was inhibited at the 4, 8, 16 and 24 hour time periods. Although pretreatment with DDTC and DDTC-ME failed to produce hypothermia, hypotension and tachycardia were observed in rats challenged with ethanol. As with disulfiram administration, hypothermia did not correlate with ALDH inhibition in the DDTC and DDTC-ME studies. These studies support the known myriad of effects produced during the DER, and provide additional evidence that difference mechanisms contribute to the complexity of the disulfiram-ethanol reaction.

  14. Density Measurement of Ethanol Blended Fuels

    NASA Astrophysics Data System (ADS)

    Man, John

    Density measurements for petro-ethanol blended fuels of various mixture ratios were conducted at temperatures from 5°C to 40°C using an oscillatory densitometer at the National Measurement Institute, Australia (NMIA). The petrol and ethanol fuels used for the preparation of samples of ethanol blends were supplied directly from a local petroleum refinery. Results were within the lower end of 0.06% repeatability and 0.3% reproducibility of the ASTM D4052-2011 method. The volume correction factors (VCF) for petrol and ethanol obtained from the measurement results agreed to within 0.1% and 0.01% of the values calculated as per American Petroleum Institute Standard 2540 Chapter 11.1 and 11.3.3 respectively. Based on a simple volume-mixture model, an equation was derived to calculate the VCF for petrol-ethanol blends. The measured and calculated values of VCF were in agreement within 0.1%. This paper presents the measurement method, results and the development of an equation for calculation of VCF for petro-ethanol blends. Note from Publisher: This article contains the abstract only.

  15. Ethanol withdrawal induces hyperalgesia mediated by PKCepsilon.

    PubMed

    Dina, Olayinka A; Messing, Robert O; Levine, Jon D

    2006-07-01

    Symptoms of ethanol withdrawal include heightened responses to sensory stimuli, as well as tremors and convulsions. We tested the hypothesis that repeated episodes of ethanol intake and withdrawal exacerbate the symptoms of alcohol-induced peripheral neuropathy. In contrast to the hyperalgesia produced when an alcohol (6.5%)-containing diet was fed continuously to male rats which took 4 weeks to develop (Dina et al., 2000), feeding alcohol (6.5%) in repeated cycles of 4 days of alcohol followed by 3 days without alcohol resulted in a withdrawal-induced hyperalgesia that began at the end of one weekly cycle and reached a maximum during the fourth cycle. For ethanol withdrawal to produce hyperalgesia, ethanol consumption needed to be terminated for a period of 2 days. Paradoxically, as the amount of alcohol consumed decreased, the hyperalgesia induced by withdrawal developed more rapidly, being maximal between 1.4 and 1.6% ethanol. These results suggest that continued exposure to ethanol also has a neuroprotective effect. Withdrawal-induced hyperalgesia, similar to the hyperalgesia induced by continuous, chronic alcohol intake, was inhibited reversibly by intrathecal administration of an antisense oligodeoxynucleotide to protein kinase C (PKC)epsilon.

  16. Mechanisms of ethanol-drug-nutrition interactions.

    PubMed

    Lieber, C S

    1994-01-01

    Mechanisms of the toxicologic manifestations of ethanol abuse are reviewed. Hepatotoxicity of ethanol results from alcohol dehydrogenase-mediated excessive hepatic generation of nicotinamide adenine dinucleotide and acetaldehyde. It is now recognized that acetaldehyde is also produced by an accessory (but inducible) pathway, the microsomal ethanol-oxidizing system, which involves a specific cytochrome P450. It generates oxygen radicals and activates many xenobiotics to toxic metabolites, thereby explaining the increased vulnerability of heavy drinkers to industrial solvents, anesthetics, commonly used drugs, over-the-counter medications and carcinogens. The contribution of gastric alcohol dehydrogenase to the first pass metabolism of ethanol and alcohol-drug interactions is now recognized. Alcohol also alters the degradation of key nutrients, thereby promoting deficiencies as well as toxic interactions with vitamin A and beta-carotene. Conversely, nutritional deficits may affect the toxicity of ethanol and acetaldehyde, as illustrated by the depletion in glutathione, ameliorated by S-adenosyl-L-methionine. Other supernutrients include polyenylphosphatidylcholine, shown to correct the alcohol-induced hepatic phosphatidylcholine depletion and to prevent alcoholic cirrhosis in non-human primates. Thus, a better understanding of the pathology induced by ethanol has now generated improved prospects for therapy.

  17. Improved ethanol tolerance and ethanol production from glycerol in a streptomycin-resistant Klebsiella variicola mutant obtained by ribosome engineering.

    PubMed

    Suzuki, Toshihiro; Seta, Kohei; Nishikawa, Chiaki; Hara, Eri; Shigeno, Toshiya; Nakajima-Kambe, Toshiaki

    2015-01-01

    To improve the ethanol tolerance of the Klebsiella variicola strain TB-83, we obtained the streptomycin-resistant, ethanol-tolerant mutant strain TB-83D by a ribosome engineering approach. Strain TB-83D was able to grow in the presence of 7% (v/v) ethanol and it showed higher ethanol production than strain TB-83. Examination of various culture conditions revealed that yeast extract was essential for ethanol production and bacterial growth. In addition, ethanol production was elevated to 32g/L by the addition of yeast extract; however, ethanol production was inhibited by formate accumulation. With regard to cost reduction, the use of corn steep liquor (CSL) markedly decreased the formate concentration, and 34g/L ethanol was produced by combining yeast extract with CSL. Our study is the first to improve ethanol tolerance and productivity by a ribosome engineering approach, and we found that strain TB-83D is effective for ethanol production from glycerol.

  18. Pharmacokinetics and pharmacodynamics of ethanol, whiskey, and ethanol with n-propyl, n-butyl, and iso-amyl alcohols.

    PubMed

    Auty, R M; Branch, R A

    1977-08-01

    Plasma ethanol concentration, reaction time, and electroencephalogram (EEG) were recorded in 6 normal men after ingestion of ethanol along (Group 1), whiskey (Group 2), or a mixture of ethanol, n-propanol, n-butanol, and iso-amyl alcohol (Group 3). The peak plasma ethanol concentration and the total area under the plasma concentration:time curve of ethanol did not depend upon the type of drink given, but the half-life of the terminal exponential phase of ethanol elimination was longer in Group 3. In each study period reaction time increased, there was a relative increase in delta activity (2 to 3 Hz) and a fall in mean dominant frequency in EEG activity. The extent of increase in reaction time depended on the rate of increase in plasma ethanol concentration and correlated with the concentration of ethanol while the plasma concentration of ethanol was falling. Differences in the effects of ethanol between study periods were minimal.

  19. Oral ethanol self-administration in inbred Roman high- and low-avoidance rats: gradual versus abrupt ethanol presentation.

    PubMed

    Manzo, Lidia; Gómez, M José; Callejas-Aguilera, José E; Fernández-Teruel, Alberto; Papini, Mauricio R; Torres, Carmen

    2012-12-25

    Outbred Roman high-avoidance rats are known to consume more ethanol than inbred Roman low-avoidance rats. To determine whether ethanol consumption in inbred strains could be modulated by experiential factors, preference for a target 10% ethanol concentration was tested after either the gradual introduction of ethanol in increasing concentrations or the abrupt introduction of the target concentration. Whereas high-avoidance rats consumed more ethanol at lower concentrations, consumption and preference for ethanol over water were not differential across strains and administration procedure (gradual vs. abrupt). At the 4% concentration, ethanol was preferred over water by Roman high-avoidance rats, but water was preferred over ethanol by Roman low-avoidance rats. Ethanol consumption and preference for a 10% concentration appear to be immune to modification by either the gradual or abrupt ethanol presentation.

  20. Regulation of adenosine transport by acute and chronic ethanol exposure

    SciTech Connect

    Nagy, L.E.; Casso, D.; Diamond, I.; Gordon, A.S. )

    1989-02-09

    Chronic exposure to ethanol results in a desensitization of adenosine receptor-stimulated cAMP production. Since adenosine is released by cells and is known to desensitize its own as well as other receptors, it may be involved in ethanol-induced desensitization of adenosine receptor function. Therefore, we have examine the acute and chronic effects of ethanol on the transport of adenosine via the nucleoside transport. Acute exposure to ethanol caused an inhibition of adenosine uptake in S49 lymphoma cells. This decrease in uptake resulted in accumulation of extracellular adenosine after ethanol exposure. The effect of ethanol was specific to nucleoside transport. Uptake of uridine, also transported by the nucleoside transporter, was inhibited by ethanol to the same degree as adenosine uptake, while neither isoleucine nor deoxyglucose uptake was altered by ethanol treatment. Inhibition of adenosine uptake by ethanol was non-competitive and dependent on the concentration of ethanol. After chronic exposure to ethanol, cells became tolerant to the acute effects of ethanol. There was no longer an acute inhibition of adenosine uptake, nor was these accumulation of extracellular adenosine. Chronic ethanol exposure also resulted in a decrease in the absolute rate of adenosine uptake. Binding studies using a high affinity lignad for the nucleoside transporter, nitrobenzylthioinosine (NBMPR), indicate that this decreased uptake was due to a decrease in the maximal number of binding sites. These ethanol-induced changes in adenosine transport may be important for the acute and chronic effects of ethanol.

  1. The effects of dietary thiamin on voluntary ethanol drinking and ethanol metabolism in the rat.

    PubMed

    Eriksson, K; Pekkanen, L; Rusi, M

    1980-01-01

    1. The influence of a deficiency or surplus of thiamin in the diet on voluntary ethanol consumption, ethanol elimination rate and blood acetaldehyde concentration was studied in rats. 2. Both the high-thiamin diet containing 20 mg thiamin hydrochloride/kg and the thiamin deficient diet containing no measurable thiamin produced obvious functional effects on thiamin metabolism in rat tissues after 4 weeks as demonstrated by measurements of the blood transketolase (sedoheptulose-7-phosphate: D-glyceraldehyde-3-phosphate glycolaldehyde-transferase; EC 2.2.1.1) activity and the extent of thiamin pyrophosphate-stimulation of the enzyme. 3. During the first week on the test diets the prospective ethanol free-choice groups had 1.72 M-ethanol as their only drinking-fluid. Subsequently they had a choice between ethanol and tap water for three weeks. During the free-choice period the rats on the high-thiamin diet drank only one-fifth as much ethanol as the rats given the optimum diet with 4 mg thiamin hydrochloride/kg. 4. The thiamin-deficient rats showed a significant tendency to increase ethanol drinking, when intake was expressed relative to total energy intake, but their intake of ethanol on a g/kg body-weight basis was approximately the same as that of the group given the optimum-diet. 5. The observed differences in voluntary ethanol drinking associated with different levels of dietary thiamin cannot be explained by changes in the ethanol elimination rate or the acetaldehyde accumulation in blood during the oxidation of ethanol.

  2. Chronic intermittent ethanol exposure during adolescence: effects on social behavior and ethanol sensitivity in adulthood

    PubMed Central

    Varlinskaya, Elena I.; Truxell, Eric; Spear, Linda P.

    2014-01-01

    This study assessed long-lasting consequences of repeated ethanol exposure during two different periods of adolescence on 1) baseline levels of social investigation, play fighting, and social preference and 2) sensitivity to the social consequences of acute ethanol challenge. Adult male and female Sprague-Dawley rats were tested 25 days after repeated exposure to ethanol (3.5 g/kg intragastrically [i.g.], every other day for a total of 11 exposures) in a modified social interaction test. Early-mid adolescent intermittent exposure (e-AIE) occurred between postnatal days (P) 25–45, whereas late adolescent intermittent exposure (l-AIE) was conducted between P45–65. Significant decreases in social investigation and social preference were evident in adult male rats, but not their female counterparts following e-AIE, whereas neither males nor females demonstrated these alterations following l-AIE. In contrast, both e-AIE and l-AIE produced alterations in sensitivity to acute ethanol challenge in males tested 25 days after adolescent exposure. Ethanol-induced facilitation of social investigation and play fighting, reminiscent of that normally seen during adolescence, was evident in adult males after e-AIE, whereas control males showed an age-typical inhibition of social behavior. Males after l-AIE were found to be insensitive to the socially suppressing effects of acute ethanol challenge, suggesting the development of chronic tolerance in these animals. In contrast, females showed little evidence for alterations in sensitivity to acute ethanol challenge following either early or late AIE. The results of the present study demonstrate a particular vulnerability of young adolescent males to long-lasting detrimental effects of repeated ethanol. Retention of adolescent-typical sensitivity to the socially facilitating effects of ethanol could potentially make ethanol especially appealing to these males, therefore promoting relatively high levels of ethanol intake later in

  3. Ethanol elimination kinetics following massive ingestion in an ethanol naive child.

    PubMed

    Wiener, Sage W; Olmedo, R; Howland, Ma; Nelson, Ls; Hoffman, Rs

    2013-07-01

    At low-to-moderate concentrations, ethanol elimination follows zero-order kinetics. It is unknown whether renal, pulmonary or other first-order processes become significant in patients with very high serum ethanol concentrations. Additionally, it is unclear whether ethanol naive subjects induce their metabolism during acute intoxication. We present the toxicokinetic analysis in a child with a massive ingestion of ethanol. A 15-year-old girl without significant medical history presented to the Emergency Department after drinking 24 ounces of tequila. She was found unresponsive at home with a Glasgow Coma Score of 3. Her presenting vitals were as follows: 118/69 mmHg blood pressure; pulse rate was 88 beats per minute; respiratory rate of 20 breaths per minute; pulse-oximetry is 96% on room air. Other than obtundation, her physical examination was normal. She was intubated for airway protection and admitted to the ICU. Her initial serum ethanol concentration was 543 mg/dL. A repeat level 3 h later was 722 mg/dL. Post-absorptive ethanol concentrations decreased from 693 mg/dL to 291 mg/dL over the following 15.5 h. The patient had spontaneous eye opening 24 h after presentation. Her projected serum ethanol concentration at that time was 215 mg/dL. She was extubated 2 h later and had an uneventful recovery. The elimination of ethanol in the post-absorptive phase remained zero-order at a rate of 26.3 mg/dL/h (5.7 mmol/L/h) with a Pearson's correlation coefficient (R (2)) of 0.9968 (p < 0.01). There was no evidence of acute induction in metabolism although pharmacodynamic tolerance likely occurred. Even at very high ethanol concentrations in ethanol naive subjects, elimination of ethanol follows a zero-order toxicokinetic model.

  4. Chronic intermittent ethanol exposure during adolescence: effects on social behavior and ethanol sensitivity in adulthood.

    PubMed

    Varlinskaya, Elena I; Truxell, Eric; Spear, Linda P

    2014-08-01

    This study assessed long-lasting consequences of repeated ethanol exposure during two different periods of adolescence on 1) baseline levels of social investigation, play fighting, and social preference and 2) sensitivity to the social consequences of acute ethanol challenge. Adult male and female Sprague-Dawley rats were tested 25 days after repeated exposure to ethanol (3.5 g/kg intragastrically [i.g.], every other day for a total of 11 exposures) in a modified social interaction test. Early-mid adolescent intermittent exposure (e-AIE) occurred between postnatal days (P) 25 and 45, whereas late adolescent intermittent exposure (l-AIE) was conducted between P45 and P65. Significant decreases in social investigation and social preference were evident in adult male rats, but not their female counterparts following e-AIE, whereas neither males nor females demonstrated these alterations following l-AIE. In contrast, both e-AIE and l-AIE produced alterations in sensitivity to acute ethanol challenge in males tested 25 days after adolescent exposure. Ethanol-induced facilitation of social investigation and play fighting, reminiscent of that normally seen during adolescence, was evident in adult males after e-AIE, whereas control males showed an age-typical inhibition of social behavior. Males after l-AIE were found to be insensitive to the socially suppressing effects of acute ethanol challenge, suggesting the development of chronic tolerance in these animals. In contrast, females showed little evidence for alterations in sensitivity to acute ethanol challenge following either early or late AIE. The results of the present study demonstrate a particular vulnerability of young adolescent males to long-lasting detrimental effects of repeated ethanol. Retention of adolescent-typical sensitivity to the socially facilitating effects of ethanol could potentially make ethanol especially appealing to these males, therefore promoting relatively high levels of ethanol intake later

  5. Ethanol-induced male infertility: impairment of spermatozoa.

    PubMed

    Anderson, R A; Willis, B R; Oswald, C; Zaneveld, L J

    1983-05-01

    Ethanol is generally regarded as a reproductive toxin. However, the mechanism(s) of ethanol-induced infertility remain poorly understood. As male fertility depends upon the ability of spermatozoa to fertilize ova, it was the purpose of the present study to examine the effects of chronic ethanol treatment on several parameters related to sperm fertility. Male C57Bl/6J mice of proven fertility were administered liquid diets as follows: 5% (v/v) ethanol for either 1) 5 weeks; 2) 10 weeks; 3) 20 weeks; or 4) 6% (v/v) ethanol for 5 weeks. After each treatment, epididymal spermatozoa were evaluated with respect to quantity, motility, morphology and the ability to fertilize. A biphasic effect on sperm content was noted: 5- and 10-week treatments with 5% ethanol increased content by 80 and 65%, respectively, whereas 20-week treatment with 5% ethanol and 5-week treatment with 6% ethanol decreased content by 52 and 71%, respectively. Although the proportion of motile spermatozoa was unaffected by ethanol, average forward progression velocity was reduced, the effect being dependent on ethanol dose and duration of exposure. Similarly, the frequency of abnormal spermatozoa was increased; 20-week treatment with 5% ethanol and 5-week treatment with 6% ethanol increased the frequency of sperm morphological anomalies by 50 and 40%, respectively. Fertility of spermatozoa was reduced as a function of ethanol dose and duration of exposure. The ability of sperm to fertilize mouse ova in vitro was reduced by 34% (P less than .02) and 62% (P less than .001) subsequent to 20-week treatment with 5% ethanol and 5-week treatment with 6% ethanol, respectively. An animal model has been developed which describes ethanol-induced male infertility. The degree of reproductive impairment varies with the amount of ethanol ingested, and the duration of ethanol exposure. The continuum of effects should make possible the evaluation of putative mechanisms of male sterility resulting from chronic ethanol

  6. Rates of Ethanol Metabolism Decrease in Sons of Alcoholics Following a Priming Dose of Ethanol

    PubMed Central

    Bradford, Blair U.; Jackson, Jennifer K.; Powell, Linda L.; Garbutt, James C.

    2007-01-01

    Rapid changes in rates of ethanol metabolism in response to acute ethanol administration have been observed in animals and humans. To examine whether this phenomenon might vary by risk for alcoholism, 23 young men with a positive family history of alcoholism (FHP) were compared to 15 young men without a family history of alcoholism (FHN). Rates of ethanol metabolism were measured in all subjects first after an initial ethanol dose (0.85 g/kg) and then, several hours later, a second dose (0.3 g/kg), and the two rates were compared. The two groups of subjects were similar in their histories of ethanol consumption. FHP subjects demonstrated faster initial rates of ethanol metabolism, 148 ± 36 mg/kg/hr, compared to FHN subjects, 124 ± 18 mg/kg/hr, p=.01. However, FHN subjects increased their rate of metabolism by 10 ± 27 percent compared to a decrease of -15 ± 24 percent in FHP subjects, p =.007. Fifty-two percent of the FHP and none of the FHN subjects exhibited a decline in metabolic rate of 20% or more, p=.0008. Since a significant proportion of FHP subjects exhibited a decrease in the second rate of ethanol metabolism, these preliminary data might help to partly explain why FHP individuals differ in their sensitivity to ethanol and are more likely to develop alcohol dependence. PMID:17521843

  7. Liquid scintillation counting of /sup 14/C for differentiation of synthetic ethanol from ethanol of fermentation

    SciTech Connect

    Martin, G.E.; Noakes, J.E.; Alfonso, F.C.; Figert, D.M.

    1981-09-01

    Samples containing ethanol are fractionated on a column so that the resultant ethanol content is > 93%. Determination of /sup 14/C by liquid scintillation counting on the ethanol fraction differentiates ethanol produced by fermentation from synthetic ethanol produced from fossil fuel sources. Twenty-seven samples were fractionated and analyzed for the /sup 14/C isotope. Six samples were synthetic ethanol derived from ethylene gas (direct and indirect process), and yielded a mean value for /sup 14/C isotope of 0.167 dpm/g carbon with a standard deviation (SD) of 0.066 dpm/g carbon (disintegrations per minute per gram of carbon). The remaining samples were ethanol derived from the fermentation of natural materials, such as corn, pear, sugar cane, grape, cherry, and blackberry, and yielded a mean value for /sup 14/C isotope of 16.11 dpm/g carbon with an SD of 1.27. The /sup 14/C values for specific mixtures of a synthetic and a natural ethanol compare favorably with the analytical values obtained by this procedure.

  8. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol-methanol mixtures.

    PubMed

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-12-01

    This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol-methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol-methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1-2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol-methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.

  9. Maximizing cellulosic ethanol potentials by minimizing wastewater generation and energy consumption: Competing with corn ethanol.

    PubMed

    Liu, Gang; Bao, Jie

    2017-08-21

    Energy consumption and wastewater generation in cellulosic ethanol production are among the determinant factors on overall cost and technology penetration into fuel ethanol industry. This study analyzed the energy consumption and wastewater generation by the new biorefining process technology, dry acid pretreatment and biodetoxification (DryPB), as well as by the current mainstream technologies. DryPB minimizes the steam consumption to 8.63GJ and wastewater generation to 7.71tons in the core steps of biorefining process for production of one metric ton of ethanol, close to 7.83GJ and 8.33tons in corn ethanol production, respectively. The relatively higher electricity consumption is compensated by large electricity surplus from lignin residue combustion. The minimum ethanol selling price (MESP) by DryPB is below $2/gal and falls into the range of corn ethanol production cost. The work indicates that the technical and economical gap between cellulosic ethanol and corn ethanol has been almost filled up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Congenital brain serotonin deficiency leads to reduced ethanol sensitivity and increased ethanol consumption in mice.

    PubMed

    Sachs, Benjamin D; Salahi, A Ayten; Caron, Marc G

    2014-02-01

    Serotonergic dysfunction has been hypothesized to play an important role in the pathophysiology of alcoholism. However, whether congenital serotonin (5-HT) deficiency leads to increased alcohol consumption or affects ethanol-related behaviors has not been established. Here, we use a transgenic mouse line that expresses a hypofunctional variant of the 5-HT synthesis enzyme, tryptophan hydroxylase 2, to examine the impact of 5-HT deficiency on responses to alcohol. We demonstrate that these 5-HT-deficient transgenic animals (Tph2KI mice) recover their righting reflex more rapidly than wild-type controls following a high dose of ethanol and exhibit blunted locomotor retardation in response to repeated ethanol administration. In addition, compared to WT controls, 5-HT-deficient animals consume significantly more ethanol and exhibit increased preference for ethanol in two-bottle choice tests. Our data also suggest that 5-HT plays a critical role in mediating the effects of ethanol on Akt/GSK3β signaling in the nucleus accumbens. Overall, our results corroborate previous theories regarding the importance of brain 5-HT levels in mediating responsiveness to alcohol and demonstrate, for the first time, that congenital 5-HT deficiency leads to increased ethanol consumption and decreased sensitivity to the sedative-like effects of ethanol, perhaps in part through modulating Akt/GSK3β signaling.

  11. Integrated process of starch ethanol and cellulosic lactic acid for ethanol and lactic acid production.

    PubMed

    Tang, Yong; Zhu, Liwei; Zhang, Weiming; Shang, Xinhui; Jiang, Jianxin

    2013-03-01

    The sequential production of bioethanol and lactic acid from starch materials and lignocellulosic materials was investigated as ethanol fermentation broth (EFB) can provide nutrients for lactic acid bacteria. A complete process was developed, and all major operations are discussed, including ethanol fermentation, broth treatment, lactic acid fermentation, and product separation. The effect of process parameters, including ethanol fermentation conditions, treatment methods, and the amount of EFB used in simultaneous saccharification and fermentation (SSF), is investigated. Under the selected process conditions, the integrated process without additional chemical consumption provides a 1.08 acid/alcohol ratio (the broth containing 22.4 g/L ethanol and 47.6 g/L lactic acid), which corresponds to a polysaccharide utilization ratio of 86.9 %. Starch ethanol can thus promote cellulosic lactic acid by providing important nutrients for lactic acid bacteria, and in turn, cellulosic lactic acid could promote starch ethanol by improving the profit of the ethanol production process. Two process alternatives for the integration of starch ethanol and cellulosic lactic acid are compared, and some suggestions are given regarding the reuse of yeast following the cellulosic SSF step for lactic acid production.

  12. Technology advances in the production of ethanol: Impacts of ethanol on agriculture revisited

    SciTech Connect

    Peters, M.A.; House, R.M.

    1992-12-01

    Adoption of cellulosic conversion technology by ethanol producers dos not have a major impact on U.S. agriculture. Increased ethanol production increases net cash farm income and reduces deficiency payments. Corn producers gain, but livestock, soybean, and vegetable producers are negatively affected.

  13. Effects of acute acamprosate and homotaurine on ethanol intake and ethanol-stimulated mesolimbic dopamine release.

    PubMed

    Olive, M Foster; Nannini, Michelle A; Ou, Christine J; Koenig, Heather N; Hodge, Clyde W

    2002-02-15

    The purpose of the present study was to determine the acute effects of the anticraving compound acamprosate (calcium acetylhomotaurinate) and the closely related compound homotaurine on ethanol intake and ethanol-stimulated dopamine release in the nucleus accumbens. Male rats were treated with acamprosate (200 or 400 mg/kg intraperitoneally, i.p.) or homotaurine (10, 50, or 100 mg/kg i.p.) 15 min prior to access to 10% ethanol and water for 1 h in a two-bottle choice restricted access paradigm. A separate group of rats was implanted with microdialysis probes in the nucleus accumbens and given an acute injection of ethanol (1.5 g/kg i.p.) that was preceded by saline, acamprosate, or homotaurine. Acamprosate and homotaurine dose-dependently reduced ethanol intake and preference. These compounds also delayed or suppressed ethanol-stimulated increases in nucleus accumbens dopamine release, suggesting that acamprosate and homotaurine may reduce ethanol intake by interfering with the ability of ethanol to activate the mesolimbic dopamine reward system.

  14. Development of an ethanol model using social insects: III. Preferences for ethanol solutions.

    PubMed

    Abramson, Charles I; Kandolf, Andreja; Sheridan, Audrey; Donohue, Darius; Bozic, Janko; Meyers, Julia E; Benbassat, Danny

    2004-02-01

    Experiments are designed to assess whether free-flying honey bees have an aversion to an ethanol solution when given a choice between targets containing an ethanol solution in sucrose or sucrose only. Animals given a choice between a 1% ethanol solution and sucrose only show no aversion to the ethanol solution either in acquisition or extinction. Honey bees given a choice between a 5% ethanol solution and sucrose only show no differences in the initial choice of targets but some ees do switch over to the sucrose-only target. Performance during extinction indicates that bees landed on the previously reinforced sucrose-only target more than the target previously containing the 5% ethanol solution. An experiment in which bees were given a single 5%, ethanol target showed that of 20 bees, 11 returned for the entire 12 trials of the experiment. All bees returned at least 6 times to the 5% ethanol target. Additional experiments were run on harnessed foragers in a palatability study of alcoholic beverages consumed by humans. The results of the palatability experiment indicate that in general, bees prefer more sweet drinks with less alcohol.

  15. Market penetration of biodiesel and ethanol

    NASA Astrophysics Data System (ADS)

    Szulczyk, Kenneth Ray

    This dissertation examines the influence that economic and technological factors have on the penetration of biodiesel and ethanol into the transportation fuels market. This dissertation focuses on four aspects. The first involves the influence of fossil fuel prices, because biofuels are substitutes and have to compete in price. The second involves biofuel manufacturing technology, principally the feedstock-to-biofuel conversion rates, and the biofuel manufacturing costs. The third involves prices for greenhouse gas offsets. The fourth involves the agricultural commodity markets for feedstocks, and biofuel byproducts. This dissertation uses the Forest and Agricultural Sector Optimization Model-Greenhouse Gas (FASOM-GHG) to quantitatively examine these issues and calculates equilibrium prices and quantities, given market interactions, fossil fuel prices, carbon dioxide equivalent prices, government biofuel subsidies, technological improvement, and crop yield gains. The results indicate that for the ranges studied, gasoline prices have a major impact on aggregate ethanol production but only at low prices. At higher prices, one runs into a capacity constraint that limits expansion on the capacity of ethanol production. Aggregate biodiesel production is highly responsive to gasoline prices and increases over time. (Diesel fuel price is proportional to the gasoline price). Carbon dioxide equivalent prices expand the biodiesel industry, but have no impact on ethanol aggregate production when gasoline prices are high again because of refinery capacity expansion. Improvement of crop yields shows a similar pattern, expanding ethanol production when the gasoline price is low and expanding biodiesel. Technological improvement, where biorefinery production costs decrease over time, had minimal impact on aggregate ethanol and biodiesel production. Finally, U.S. government subsidies have a large expansionary impact on aggregate biodiesel production. Finally, U.S. government

  16. Ontogeny of the enhanced fetal-ethanol-induced behavioral and neurophysiologic olfactory response to ethanol odor.

    PubMed

    Eade, Amber M; Sheehe, Paul R; Youngentob, Steven L

    2010-02-01

    Studies report a fundamental relationship between chemosensory function and the responsiveness to ethanol, its component orosensory qualities, and its odor as a consequence of fetal ethanol exposure. Regarding odor, fetal exposed rats display enhanced olfactory neural and behavioral responses to ethanol odor at postnatal (P) day 15. Although these consequences are absent in adults (P90), the behavioral effect has been shown to persist into adolescence (P37). Given the developmental timing of these observations, we explored the decay in the response to ethanol odor by examining ages between P37 and young adulthood. Moreover, we sought to determine whether the P15 neurophysiologic effect persists, at least, to P40. Behavioral and olfactory epithelial (OE) responses of fetal ethanol exposed and control rats were tested at P40, P50, P60, or P70. Whole-body plethysmography was used to quantify each animal's innate behavioral response to ethanol odor. We then mapped the odorant-induced activity across the OE in response to different odorants, including ethanol, using optical recording methods. Relative to controls, ethanol exposed animals showed an enhanced behavioral response to ethanol odor that, while significant at each age, decreased in magnitude. These results, in conjunction with previous findings, permitted the development of an ontologic odor response model of fetal exposure. The fitted model exemplifies that odor-mediated effects exist at birth, peak in adolescence and then decline, becoming absent by P90. There was no evidence of an effect on the odor response of the OE at any age tested. Fetal exposure yields an enhanced behavioral response to ethanol odor that peaks in adolescence and wanes through young adulthood. This occurs absent an enhanced response of the OE. This latter finding suggests that by P40 the OE returns to an ethanol "neutral" status and that central mechanisms, such as ethanol-induced alterations in olfactory bulb circuitry, underlie the

  17. Fetal Exposure to Moderate Ethanol Doses: Heightened Operant Responsiveness elicited by Ethanol-Related Reinforcers

    PubMed Central

    March, Samanta M.; Abate, Paula; Spear, Norman E.; Molina, Juan Carlos

    2011-01-01

    Background Prenatal exposure to moderate ethanol doses during late gestation modifies postnatal ethanol palatability and ingestion. The use of Pavlovian associative procedures, has indicated that these prenatal experiences broaden the range of ethanol doses capable of supporting appetitive conditioning. Recently, a novel operant technique aimed at analyzing neonatal predisposition to gain access to ethanol has been developed. Experiment 1 tested the operant conditioning technique for developing rats described by Arias et al. (2007) and Bordner et al. (2008). In Experiment 2 we analyzed changes in the disposition to gain access to ethanol as a result of moderate prenatal exposure to the drug. Methods In Experiment 1 newborn pups were intraorally cannulated and placed in a supine position that allowed access to a touch-sensitive sensor. Paired pups received an intraoral administration of a given reinforcer (milk or quinine) contingent upon physical contact with the sensor. Yoked controls received similar reinforcers only when Paired pups activated the circuit. In Experiment 2, natural reinforcers (water or milk) as well as ethanol (3% or 6 % v/v) or an ethanol-related reinforcer (sucrose compounded with quinine) were tested. In this Experiment pups had been exposed to water or ethanol (1 or 2 g/kg) during gestational days 17–20. Results Experiment 1 confirmed previous results showing that 1-day-old pups rapidly learn an operant task to gain access to milk, but not to gain access to a bitter tastant. Experiment 2 showed that water and milk were highly reinforcing across prenatal treatments. Furthermore, general activity during training was not affected by prenatal exposure to ethanol. Most importantly, prenatal ethanol exposure facilitated conditioning when the reinforcer was 3% v/v ethanol or a psychophysical equivalent of ethanol’s gustatory properties (sucrose-quinine). Conclusions The present results suggest that late prenatal experience with ethanol changes

  18. Process of concentrating ethanol from dilute aqueous solutions thereof

    DOEpatents

    Oulman, C.S.; Chriswell, C.D.

    1981-07-07

    Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%. 5 figs.

  19. Process of concentrating ethanol from dilute aqueous solutions thereof

    DOEpatents

    Oulman, Charles S. [Ames, IA; Chriswell, Colin D. [Slater, IA

    1981-07-07

    Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%.

  20. [Ethanol production with starch-based Tetraselmis subcordiformis grown with CO2 produced during ethanol fermentation].

    PubMed

    Liao, Sha; Yao, Changhong; Xue, Song; Zhang, Wei; Bai, Fengwu

    2011-09-01

    A system coupling ethanol fermentation with microalgae culture was developed, in which CO2 produced during ethanol fermentation was used as carbon source for the growth of Tetraselmis subcordiformis, a microalgae accumulating starch intracellularly. The biomass concentration about 2.0 g DCW/L was achieved within the photobioreactor for the batch culture of 7 days, and intracellular starch accumulation was about 45%. Furthermore, ultrasonic pretreatment and enzymatic hydrolysis were applied to the microalgae biomass, and 71.1% of the intracellular starch was converted into glucose that was fermented sequentially to ethanol by Saccharomyces cerevisiae with an ethanol yield of 87.6% of the theoretical value, indicating that the microalgae biomass could be an alternative feedstock for ethanol production to save grain consumption, and in the meantime mitigate the CO2 emission.

  1. Environmental implications of municipal solid waste-derived ethanol.

    PubMed

    Kalogo, Youssouf; Habibi, Shiva; MacLean, Heather L; Joshi, Satish V

    2007-01-01

    We model a municipal solid waste (MSW)-to-ethanol facility that employs dilute acid hydrolysis and gravity pressure vessel technology and estimate life cycle energy use and air emissions. We compare our results, assuming the ethanol is utilized as E85 (blended with 15% gasoline) in a light-duty vehicle, with extant life cycle assessments of gasoline, corn-ethanol, and energy crop-cellulosic-ethanol fueled vehicles. We also compare MSW-ethanol production, as a waste management alternative, with landfilling with gas recovery options. We find that the life cycle total energy use per vehicle mile traveled for MSW-ethanol is less than that of corn-ethanol and cellulosic-ethanol; and energy use from petroleum sources for MSW-ethanol is lower than for the other fuels. MSW-ethanol use in vehicles reduces net greenhouse gas (GHG) emissions by 65% compared to gasoline, and by 58% when compared to corn-ethanol. Relative GHG performance with respect to cellulosic ethanol depends on whether MSW classification is included or not. Converting MSW to ethanol will result in net fossil energy savings of 397-1830 MJ/MT MSW compared to net fossil energy consumption of 177-577 MJ/MT MSW for landfilling. However, landfilling with LFG recovery either for flaring or for electricity production results in greater reductions in GHG emissions compared to MSW-to-ethanol conversion.

  2. Alterations in splanchnic blood flow following chronic ethanol exposure.

    PubMed

    Piano, M R; Ferguson, J L; Melchior, C L

    1990-08-01

    The purpose of these experiments was to determine whether or not tolerance develops to the effect of 3.0 g/kg ethanol on total and regional splanchnic blood flow in male Wistar rats. The animals were given the Lieber-DeCarli liquid diet containing ethanol for 10 days; ethanol-fed animals were withdrawn 24 hr prior to experiments. Regional blood flow and cardiac output (CO) were measured by the reference microsphere technique after an intraperitoneal injection of 3.0 g/kg of ethanol. Acute ethanol administration produced early nonsustained increases in portal vein blood flow in animals fed ethanol for 10 days and withdrawn for 24 hr and in control animals. However, after chronic exposure to ethanol, the pattern of increase in blood flow in response to ethanol in the splanchnic organs was different between the ethanol-fed and control groups. Increases in portal vein flow in control groups were due to concomitant increases in small intestinal, colonic, and cecal blood flow while the increase in the ethanol-fed group was due to a rise in small intestinal and stomach blood flow. The increase in stomach blood flow that occurred in the animals treated chronically with ethanol may be viewed as a conditioned response to ethanol, since this was not found in the control group. These results, demonstrate that the pattern of increase in blood flow in the splanchnic organs produced by an acute dose of ethanol depends on the animal's previous exposure to ethanol.

  3. Adolescent rats are resistant to the development of ethanol-induced chronic tolerance and ethanol-induced conditioned aversion.

    PubMed

    Pautassi, Ricardo Marcos; Godoy, Juan Carlos; Molina, Juan Carlos

    2015-11-01

    The analysis of chronic tolerance to ethanol in adult and adolescent rats has yielded mixed results. Tolerance to some effects of ethanol has been reported in adolescents, yet other studies found adults to exhibit greater tolerance than adolescents or comparable expression of the phenomena at both ages. Another unanswered question is how chronic ethanol exposure affects subsequent ethanol-mediated motivational learning at these ages. The present study examined the development of chronic tolerance to ethanol's hypothermic and motor stimulating effects, and subsequent acquisition of ethanol-mediated odor conditioning, in adolescent and adult male Wistar rats given every-other-day intragastric administrations of ethanol. Adolescent and adult rats exhibited lack of tolerance to the hypothermic effects of ethanol during an induction phase; whereas adults, but not adolescents, exhibited a trend towards a reduction in hypothermia at a challenge phase (Experiment 1). Adolescents, unlike adults, exhibited ethanol-induced motor activation after the first ethanol administration. Adults, but not adolescents, exhibited conditioned odor aversion by ethanol. Subsequent experiments conducted only in adolescents (Experiment 2, Experiment 3 and Experiment 4) manipulated the context, length and predictability of ethanol administration. These manipulations did not promote the expression of ethanol-induced tolerance. This study indicated that, when moderate ethanol doses are given every-other day for a relatively short period, adolescents are less likely than adults to develop chronic tolerance to ethanol-induced hypothermia. This resistance to tolerance development could limit long-term maintenance of ethanol intake. Adolescents, however, exhibited greater sensitivity than adults to the acute motor stimulating effects of ethanol and a blunted response to the aversive effects of ethanol. This pattern of response may put adolescents at risk for early initiation of ethanol intake.

  4. Evaluation of acute effects of melatonin on ethanol drinking in ethanol naïve rats

    PubMed Central

    Rather, Zahoor Ahmad; Chowta, Mukta N.; Bolumbu, Ganaraja; Rakesh, K. B.

    2015-01-01

    Objective: The objective was to evaluate the acute effect of melatonin on ethanol drinking in ethanol naïve rats and to determine the specificity of the effect of melatonin on ethanol intake as compared to an intake of plain tap water or sugar water. Materials and Methods: A total of three experiments (2 weeks duration each) using different drinking solutions (ethanol, plain tap water, sugar water) was conducted in individually housed male wistar rats of 5 weeks age. Each animal had access to bottles containing drinking solutions for 2 h a day. In each experiment, on day 1, day 2, day 4, day 5, day 8, day 9, day 11, day 12 rats received drinking solutions. Each individual rat received single doses of saline, melatonin (50 mg and 100 mg/kg), and naltrexone on day 2, 5, 9, and 12, 1-h before receiving drinking solution. The order of drug administration is permuted such a way that each animal received the drugs in a different order in different experiments. Results: Melatonin has significantly decreased ethanol consumption by the rats and effect is dose-dependent. Naltrexone also has caused a significant reduction in the ethanol consumption. The maximum reduction in ethanol consumption was seen with melatonin 100 mg/kg dose compared to melatonin 50 mg/kg and naltrexone. There was no statistically significant effect of melatonin on plain water and sugar solution intake. Conclusions: Melatonin decreases ethanol consumption in ethanol naïve rats. The effect of melatonin is similar to naltrexone affecting selectively ethanol consumption, but not plain water and sugar water consumption. PMID:26288469

  5. Interaction of biogenic amines with ethanol.

    PubMed

    Smith, A A

    1975-01-01

    Ethanol through its primary catabolite, acetaldehyde, competitively inhibits oxidation of aldehyde dehydrogenase substrates. As a consequence biogenic amines form increased quantities of alcohols rather than the corresponding acids. During this biotransformation, condensation reactions between deaminated and intact amines may occur which can yield tetrahydropapaverolines. These compounds are closely related to precursors of opioids which is cause to link ethanol abuse to morphine addiction. There is, however, no pharmacological or clinical evidence suggesting similarities between ethanol dependence or opiod addiction. Acetaldehyde plays an additional role in alkaloidal formation in vitro. Biogenic amines may react with acetaldehyde to form isoquinoline or carboline compounds. Some of these substances have significant pharmacological activity. Furthermore, they may enter neural stores and displace the natural neurotransmitter. Thus, they can act as false neurotransmitters. Some investigators believe that chronic ethanol ingestion leads to significant formation of such aberrant compounds which may then upset autonomic nervous system balance. This disturbance may explain the abnormal sympathetic activity seen in withdrawal. While these ideas about the etiology of alcohol abuse have a definite appeal, they are naturally based on in vitro preliminary work. Much study of the quantitative pharmacology of these compounds in animals is required before judgement can be made as to the merits of the proposed hypotheses. In the meantime, pharmacological studies on the ability of ethanol to depress respiration in the mouse has revealed that unlike opioids or barbituates, respiratory depression induced by ethanol requires the presence in brain of serotonin. This neurotransmitter also mediates the respiratory effects of several other alcohols but curiously, not chloral hydrate, yet this compound is purported to alter biogenic amine metabolism much like ethanol. Thus, the response

  6. An Indirect Route for Ethanol Production

    SciTech Connect

    Eggeman, T.; Verser, D.; Weber, E.

    2005-04-29

    The ZeaChem indirect method is a radically new approach to producing fuel ethanol from renewable resources. Sugar and syngas processing platforms are combined in a novel way that allows all fractions of biomass feedstocks (e.g. carbohydrates, lignins, etc.) to contribute their energy directly into the ethanol product via fermentation and hydrogen based chemical process technologies. The goals of this project were: (1) Collect engineering data necessary for scale-up of the indirect route for ethanol production, and (2) Produce process and economic models to guide the development effort. Both goals were successfully accomplished. The projected economics of the Base Case developed in this work are comparable to today's corn based ethanol technology. Sensitivity analysis shows that significant improvements in economics for the indirect route would result if a biomass feedstock rather that starch hydrolyzate were used as the carbohydrate source. The energy ratio, defined as the ratio of green energy produced divided by the amount of fossil energy consumed, is projected to be 3.11 to 12.32 for the indirect route depending upon the details of implementation. Conventional technology has an energy ratio of 1.34, thus the indirect route will have a significant environmental advantage over today's technology. Energy savings of 7.48 trillion Btu/yr will result when 100 MMgal/yr (neat) of ethanol capacity via the indirect route is placed on-line by the year 2010.

  7. Microscale ethanol vapor ejector and injector

    NASA Astrophysics Data System (ADS)

    Gardner, William G.; Wang, Ivan; Brikner, Natalya A.; Jaworski, Justin W.; Protz, Jonathan M.

    2010-04-01

    Two non-rotating pumping components, a jet ejector and injector, were designed and tested. Two jet ejectors were designed and tested to induce a suction draft using a supersonic micronozzle. Three-dimensional axisymmetric nozzles were microfabricated to produce throat diameters of 187 μm and 733 μm with design expansion ratios near 2.5:1. The motive nozzles achieved design mass flow efficiencies above 95% compared to isentropic calculations. Ethanol vapor was used to motivate and entrain ambient air. Experimental data indicate that the ejector can produce a sufficient suction draft to satisfy both microengine mass flow and power off-take requirements to enable its substitution for high speed microscale pumping turbomachinery. An ethanol vapor driven injector component was designed and tested to pressurize feed liquid ethanol. The injector was supplied with 2.70 atmosphere ethanol vapor and pumped liquid ethanol up to a total pressure of 3.02 atmospheres. Dynamic pressure at the exit of the injector was computed by measuring the displacement of a cantilevered beam placed over the outlet stream. The injector employed a three-dimensional axisymmetric nozzle with a throat diameter of 733 μm and a three-dimensional converging axisymmetric nozzle. The experimental data indicate that the injector can pump feed liquid into a pressurized boiler, enabling small scale liquid pumping without any moving parts. Microscale injectors could enable microscale engines and rockets to satisfy pumping and feedheating requirements without high speed microscale turbomachinery.

  8. Acetaldehyde and ethanol production by Helicobacter pylori.

    PubMed

    Salmela, K S; Roine, R P; Höök-Nikanne, J; Kosunen, T U; Salaspuro, M

    1994-04-01

    By virtue of possessing alcohol dehydrogenase activity, cytosol prepared from Helicobacter pylori produces toxic acetaldehyde from ethanol in vitro. To approach the in vivo situation in the stomach, we have now investigation whether intact H. pylori--without addition of exogenous nicotinamide adenine dinucleotide--also forms acetaldehyde. Furthermore, to assess the energy metabolism of H. pylori, we determined whether the alcohol dehydrogenase-catalyzed reaction can run in the opposite direction with ethanol as the end-product and thereby yield energy for the organism. Intact H. pylori formed acetaldehyde already at low ethanol concentrations (at 0.5% ethanol, acetaldehyde, 64 +/- 21 and 75 +/- 9 mumol/l (mean +/- SEM) for strains NCTC 11637 and NCTC 11638, respectively). H. pylori produced ethanol in concentrations that can be significant for the energy metabolism of the organism. Acetaldehyde production by H. pylori may be an important factor in the pathogenesis of gastroduodenal diseases associated with the organism. The primary function of H. pylori alcohol dehydrogenase may, however, be alcoholic fermentation and consequent energy production under microaerobic conditions.

  9. Rewiring Lactococcus lactis for Ethanol Production

    PubMed Central

    Dehli, Tore; Jensen, Peter Ruhdal

    2013-01-01

    Lactic acid bacteria (LAB) are known for their high tolerance toward organic acids and alcohols (R. S. Gold, M. M. Meagher, R. Hutkins, and T. Conway, J. Ind. Microbiol. 10:45–54, 1992) and could potentially serve as platform organisms for production of these compounds. In this study, we attempted to redirect the metabolism of LAB model organism Lactococcus lactis toward ethanol production. Codon-optimized Zymomonas mobilis pyruvate decarboxylase (PDC) was introduced and expressed from synthetic promoters in different strain backgrounds. In the wild-type L. lactis strain MG1363 growing on glucose, only small amounts of ethanol were obtained after introducing PDC, probably due to a low native alcohol dehydrogenase activity. When the same strains were grown on maltose, ethanol was the major product and lesser amounts of lactate, formate, and acetate were formed. Inactivating the lactate dehydrogenase genes ldhX, ldhB, and ldh and introducing codon-optimized Z. mobilis alcohol dehydrogenase (ADHB) in addition to PDC resulted in high-yield ethanol formation when strains were grown on glucose, with only minor amounts of by-products formed. Finally, a strain with ethanol as the sole observed fermentation product was obtained by further inactivating the phosphotransacetylase (PTA) and the native alcohol dehydrogenase (ADHE). PMID:23377945

  10. Autophagy and ethanol-induced liver injury

    PubMed Central

    Jr, Terrence M Donohue

    2009-01-01

    The majority of ethanol metabolism occurs in the liver. Consequently, this organ sustains the greatest damage from ethanol abuse. Ethanol consumption disturbs the delicate balance of protein homeostasis in the liver, causing intracellular protein accumulation due to a disruption of hepatic protein catabolism. Evidence indicates that ethanol or its metabolism impairs trafficking events in the liver, including the process of macroautophagy, which is the engulfment and degradation of cytoplasmic constituents by the lysosomal system. Autophagy is an essential, ongoing cellular process that is highly regulated by nutrients, endocrine factors and signaling pathways. A great number of the genes and gene products that govern the autophagic response have been characterized and the major metabolic and signaling pathways that activate or suppress autophagy have been identified. This review describes the process of autophagy, its regulation and the possible mechanisms by which ethanol disrupts the process of autophagic degradation. The implications of autophagic suppression are discussed in relation to the pathogenesis of alcohol-induced liver injury. PMID:19291817

  11. Ethanol production on dairy farms. Final report

    SciTech Connect

    Labrenz, K.L.

    1982-06-01

    The purpose of this project was to set up a model ethanol still on a dairy farm for demonstration purposes and to determine the technical feasibility of producing fuel grade ethanol by recovering waste heat from milk as it is cooled. For purposes of this demonstration, solar heated hot water replaced hot milk as the heat source. A vacuum still having the capacity of producing 6 to 8 gallons of ethanol per hour has been constructed for this demonstration project. To make the still as practical as possible, a continuous flow still was built, requiring several more pumps than originally proposed. This did add to the cost of the still, but also provided a better means for producing the ethanol. The result of this demonstration project has not been quite as good as projected. The proposed production for the still was placed at 6 gallons per hour. Actual production capabilities are only in the 1 to 2 gallon per hour range. Thus, while is is possible to produce ethanol with this method, the practical feasibility, economically speaking would not support widespread use of this method, unless other technical problems could be solved.

  12. Biological production of ethanol from coal

    SciTech Connect

    Not Available

    1992-12-01

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H[sub 2], CO[sub 2], CH[sub 4] and sulfur gases, is first produced using traditional gasification techniques. The CO, CO[sub 2] and H[sub 2] are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the wild strain'' produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  13. Urine ethanol concentration and alcohol hangover severity.

    PubMed

    Van de Loo, Aurora; Mackus, Marlou; Korte-Bouws, Gerdien; Brookhuis, Karel; Garssen, Johan; Verster, Joris

    2017-01-01

    The aim of this study was to examine the relationship between urine ethanol concentration and alcohol hangover severity. N = 36 healthy social drinkers participated in a naturalistic study, comprising a hangover day and a control day. N = 18 of them have regular hangovers (the hangover group), while the other N = 18 claim to be hangover immune (hangover-immune group). On each test day at 9.30 am, urine samples were collected. Participants rated their overall hangover severity on a scale from 0 (absent) to 10 (extreme), as well as 18 individual hangover symptoms. Urine ethanol concentration was significantly higher on the hangover day when compared to the control day (p = 0.006). On the hangover day, urine ethanol concentration was significantly lower in the hangover-immune group when compared to the hangover group (p = 0.027). In the hangover-immune group, none of the correlations of urine ethanol concentration with individual hangover symptoms was significant. In contrast, in the hangover group, significant correlations were found with a variety of hangover symptoms, including nausea, concentration problems, sleepiness, weakness, apathy, sweating, stomach pain, thirst, heart racing, anxiety, and sleep problems. Urine ethanol levels are significantly associated with the presence and severity of several hangover symptoms.

  14. Survey of US fuel ethanol plants.

    PubMed

    Saunders, J A; Rosentrater, K A

    2009-07-01

    The ethanol industry is growing in response to increased consumer demands for fuel as well as the renewable fuel standard. Corn ethanol processing creates the following products: 1/3 ethanol, 1/3 distillers grains, and 1/3 carbon dioxide. As the production of ethanol increases so does the generation of its coproducts, and viable uses continually need to be developed. A survey was mailed to operational US ethanol plants to determine current practices. It inquired about processes, equipment used, end products, and desired future directions for coproducts. Results indicated that approximately one-third of plant managers surveyed expressed a willingness to alter current drying time and temperature if it could result in a higher quality coproduct. Other managers indicated hesitation, based on lack of economic incentives, potential cost and return, and capital required. Respondents also reported the desire to use their coproducts in some of the following products: fuels, extrusion, pellets, plastics, and human food applications. These results provide a snapshot of the industry, and indicate that operational changes to the current production of DDGS must be based upon the potential for positive economic returns.

  15. Ethanol biosensors based on alcohol oxidase.

    PubMed

    Azevedo, Ana M; Prazeres, D Miguel F; Cabral, Joaquim M S; Fonseca, Luís P

    2005-08-15

    The detection and quantification of ethanol with high sensitivity, selectivity and accuracy is required in many different areas. A variety of methods and strategies have been reported for the determination of this analyte including gas chromatography, liquid chromatography, refractometry and spectrophotometry, among other. The use of the enzyme alcohol oxidase (AOX) on the analysis of ethanol in complex samples allows a considerable enhancement in specificity. This paper reviews the state of the art on ethanol determination based on AOX sensors, using either electrochemical electrodes or immobilised enzyme reactors. Almost all AOX-based ethanol sensors developed so far are based on the monitoring of O2 consumption or H2O2 formation. This has been mostly achieved using amperometric electrodes set at appropriate potentials namely, -600 mV for O2 monitoring or +600 mV for H2O2 monitoring. Mediated and non-mediated bienzymatic systems have also been assembled using AOX coupled to horseradish peroxidase (HRP). Different types of electrodes have been proposed for the detection of ethanol, namely, membrane electrode, carbon paste electrodes, screen-printed electrodes and self-assembled monolayers. Another approach to work with this sensitive enzyme is to use high amounts of AOX in order to create an enzyme reservoir, a strategy which can be implemented using immobilised enzyme reactors. These reactors can be combined with a colorimetric detection in a flow-injection analysis system or with electrochemical transducers.

  16. Bacterial conversion of lignocellulose to ethanol

    SciTech Connect

    Ingram, L.O.

    1996-10-01

    Technologies for fuel ethanol production from lignocellulose are currently available. The challenge today is to assemble these technologies into a commercial demonstration plant. Bacteria such as Escherichia coli strain KO11 have been specifically engineered to produce ethanol at greater than 90% of theoretical yield (40 g ethanol/L in 48 h) from all sugar constituents in hemicellulose (pentoses and hexoses). Methods have been developed to produce fermentable hemicellulose syrups containing high concentrations of sugars. The effectiveness of strain KO11 has been demonstrated with hemicellulose syrups at the 150-liter scale and with laboratory sugars at the 10,000-liter scale. Additional organisms such as Klebsiella oxytoca strain P2 have been engineered for the simultaneous saccharification and fermentation of cellulose (SSF). Cellulase enzymes is one of the major costs associated with all SSF processes. The new organisms eliminate the need for added cellobiase and in some cases produce part of the endoglucanase. Strain P2 has been tested with bagasse, purified cellulose and mixed waste office paper. A simple method of enzyme recycling was tested using strain P2 with office paper as a substrate. Ethanol yields were prejected to be over 539 liters per metric ton. With onsite production, the estimated cost of cellulose for this process is 8.5 cents (U.S.) per liter.

  17. Catalytic depolymerization of lignin in supercritical ethanol.

    PubMed

    Huang, Xiaoming; Korányi, Tamás I; Boot, Michael D; Hensen, Emiel J M

    2014-08-01

    One-step valorization of soda lignin in supercritical ethanol using a CuMgAlOx catalyst results in high monomer yield (23 wt%) without char formation. Aromatics are the main products. The catalyst combines excellent deoxygenation with low ring-hydrogenation activity. Almost half of the monomer fraction is free from oxygen. Elemental analysis of the THF-soluble lignin residue after 8 h reaction showed a 68% reduction in O/C and 24% increase in H/C atomic ratios as compared to the starting Protobind P1000 lignin. Prolonged reaction times enhanced lignin depolymerization and reduced the amount of repolymerized products. Phenolic hydroxyl groups were found to be the main actors in repolymerization and char formation. 2D HSQC NMR analysis evidenced that ethanol reacts by alkylation and esterification with lignin fragments. Alkylation was found to play an important role in suppressing repolymerization. Ethanol acts as a capping agent, stabilizing the highly reactive phenolic intermediates by O-alkylating the hydroxyl groups and by C-alkylating the aromatic rings. The use of ethanol is significantly more effective in producing monomers and avoiding char than the use of methanol. A possible reaction network of the reactions between the ethanol and lignin fragments is discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ethanol Administration Impairs Pancreatic Repair Following Injury

    PubMed Central

    Mahan Schneider, Katrina J.; Scheer, Marc; Suhr, Mallory; Clemens, Dahn L.

    2012-01-01

    Objectives Alcohol abuse is one of the most common factors associated with acute and chronic pancreatitis. Although it is evident that alcohol abuse can have an important role in the development of pancreatitis, it does not appear that alcohol abuse alone is responsible for this disease. We investigated the involvement of ethanol in impairment of pancreatic repair after induction of pancreatitis. Methods A biologically relevant mouse model of alcoholic pancreatitis, combining chronic ethanol consumption and coxsackievirus infection, was used to investigate the effects of ethanol on pancreatic regeneration. Tissues were harvested and analyzed by RT-PCR and immunoblot. Results These studies demonstrate that chronic ethanol consumption impairs the structural repair of the exocrine pancreas. This is accompanied by a delay in the restitution of lipase expression. Additionally, impaired expression of the critical pancreatic transcription factors, PDX1 and PTF1, and the mediator of Notch signaling, HES1, were observed. Conclusions Chronic ethanol consumption impairs the structural repair and functional restitution of the pancreas after severe injury. These impairments may, in part, be explained by impaired expression of factors important in the development and maintenance of the exocrine pancreas. Impaired pancreatic regeneration may have a role in the pathogenesis of alcoholic pancreatitis. PMID:22617711

  19. The degradation of salbutamol in ethanolic solutions.

    PubMed

    Cope, Mike; Bautista-Parra, Fernando

    2010-06-05

    The degradation pathways of salbutamol in ethanolic solutions have been investigated and three potential ethyl ether degradation products have been identified. Two have been confirmed as salbutamol ethyl ethers and the third as a diethyl ether. All three degradation products have been structurally elucidated by LC-MS-MS (TOF and tandem quadrupole). The two ethyl ethers have a molecular weight of 267 Da (28 units higher than salbutamol) and are structural isomers (molecules with the same molecular weight but different structural arrangements). The molecular weight of the two ethyl ethers is consistent with the addition of one ethyl group to the salbutamol molecule and elimination of one water molecule. The molecular weight of the diethyl ether is 295 Da (56 units higher than salbutamol) and is consistent with the addition of two ethyl groups to the salbutamol molecule and elimination of two water molecules. A plausible degradation mechanism for the formation of the salbutamol ethyl ethers is the acid-catalysed dehydration of alcohols. Acidic pH is required to drive the degradation of salbutamol in ethanolic solution. Higher degradation levels of salbutamol ethyl ethers are achieved in acidic pH solutions. Levels of the two salbutamol ethyl ethers reach a maximum at an ethanol concentration of around 20%. Levels of the diethyl ether increase linearly with ethanol concentration, until it becomes the major degradation product in high concentration ethanolic solutions (>or=30%).

  20. Rewiring Lactococcus lactis for ethanol production.

    PubMed

    Solem, Christian; Dehli, Tore; Jensen, Peter Ruhdal

    2013-04-01

    Lactic acid bacteria (LAB) are known for their high tolerance toward organic acids and alcohols (R. S. Gold, M. M. Meagher, R. Hutkins, and T. Conway, J. Ind. Microbiol. 10:45-54, 1992) and could potentially serve as platform organisms for production of these compounds. In this study, we attempted to redirect the metabolism of LAB model organism Lactococcus lactis toward ethanol production. Codon-optimized Zymomonas mobilis pyruvate decarboxylase (PDC) was introduced and expressed from synthetic promoters in different strain backgrounds. In the wild-type L. lactis strain MG1363 growing on glucose, only small amounts of ethanol were obtained after introducing PDC, probably due to a low native alcohol dehydrogenase activity. When the same strains were grown on maltose, ethanol was the major product and lesser amounts of lactate, formate, and acetate were formed. Inactivating the lactate dehydrogenase genes ldhX, ldhB, and ldh and introducing codon-optimized Z. mobilis alcohol dehydrogenase (ADHB) in addition to PDC resulted in high-yield ethanol formation when strains were grown on glucose, with only minor amounts of by-products formed. Finally, a strain with ethanol as the sole observed fermentation product was obtained by further inactivating the phosphotransacetylase (PTA) and the native alcohol dehydrogenase (ADHE).

  1. A modified method for calculating practical ethanol yield at high lignocellulosic solids content and high ethanol titer.

    PubMed

    Zhang, Jian; Bao, Jie

    2012-07-01

    A modified method for calculating practical ethanol yield in the simultaneous saccharification and fermentation (SSF) at high lignocellulosic solids content and high ethanol titer is proposed considering the liquid volume change caused by high titer ethanol generation and the water consumed during cellulose degradation. This modified method was applied to determine the practical ethanol yields of several practical SSF operations and the results compared to those using the conventional method. The results show that the liquid volume increase with ethanol formation during SSF was approximately five times greater than the volume decrease duo to water consumption during cellulose degradation. Furthermore, the practical ethanol yields calculating using traditional method were underestimated and the underestimated errors increased with the increasing ethanol titer. The present work may provide a convenient and accurate method for calculating practical ethanol yield in a high solids and high ethanol titer SSF systems.

  2. Epigenetic effects of ethanol on liver and gastrointestinal injury.

    PubMed

    Shukla, Shivendra D; Aroor, Annayya R

    2006-09-07

    Alcohol consumption causes cellular injury. Recent developments indicate that ethanol induces epigenetic alterations, particularly acetylation, methylation of histones, and hypo- and hypermethylation of DNA. This has opened up a new area of interest in ethanol research and is providing novel insight into actions of ethanol at the nucleosomal level in relation to gene expression and patho-physiological consequences. The epigenetic effects are mainly attributable to ethanol metabolic stress (Emess), generated by the oxidative and non-oxidative metabolism of ethanol, and dysregulation of methionine metabolism. Epigenetic changes are important in ethanol-induced hepatic steatosis, fibrosis, carcinoma and gastrointestinal injury. This editorial highlights these new advances and its future potential.

  3. Ethanol fermentation from biomass resources: current state and prospects.

    PubMed

    Lin, Yan; Tanaka, Shuzo

    2006-02-01

    In recent years, growing attention has been devoted to the conversion of biomass into fuel ethanol, considered the cleanest liquid fuel alternative to fossil fuels. Significant advances have been made towards the technology of ethanol fermentation. This review provides practical examples and gives a broad overview of the current status of ethanol fermentation including biomass resources, microorganisms, and technology. Also, the promising prospects of ethanol fermentation are especially introduced. The prospects included are fermentation technology converting xylose to ethanol, cellulase enzyme utilized in the hydrolysis of lignocellulosic materials, immobilization of the microorganism in large systems, simultaneous saccharification and fermentation, and sugar conversion into ethanol.

  4. Ethanol-induced alterations of c-Fos immunoreactivity in specific limbic brain regions following ethanol discrimination training.

    PubMed

    Besheer, Joyce; Schroeder, Jason P; Stevenson, Rebekah A; Hodge, Clyde W

    2008-09-26

    The discriminative stimulus properties of ethanol are functionally regulated by ionotropic GABA(A) and NMDA receptors in specific limbic brain regions including the nucleus accumbens, amygdala, and hippocampus, as determined by microinjection studies. The purpose of the present work was to further investigate potential neural substrates of ethanol's discriminative stimulus effects by examining if ethanol discrimination learning produces changes in brain regional response to ethanol. To accomplish this goal, immunohistochemistry was used to assess the effects of ethanol (2 g/kg) on c-Fos immunoreactivity (Fos-IR). Comparisons in ethanol-induced Fos-IR were made between a group of rats that was trained to discriminate the stimulus properties of ethanol (2 g/kg, IG) from water (IG) and a drug/behavior-matched control group that did not receive differential reinforcement for lever selection, which precluded acquisition of discriminative stimulus control by ethanol. In some brain regions discrimination training had no effect on ethanol-induced Fos-IR changes (caudate putamen, bed nucleus of the stria terminalis, and CA1 region of the hippocampus). In contrast, discrimination training altered the pattern of ethanol-induced Fos-IR in the nucleus accumbens (core), medial septum, and the hippocampus (dentate and CA3). These results indicate that having behavior under the stimulus control of ethanol can change ethanol-induced Fos-IR in some brain regions. This suggests that learning about the subjective properties of ethanol produces adaptive changes in how the brain responds to acute ethanol exposure.

  5. Ethanol exposure during late gestation and nursing in the rat: Effects upon maternal care, ethanol metabolism and infantile milk intake

    PubMed Central

    Pueta, Mariana; Abate, Paula; Haymal, Olga B.; Spear, Norman E.; Molina, Juan C.

    2008-01-01

    Ethanol experiences, during late gestation as well as during nursing, modify the behavioral dynamics of the dam/pup dyad, and leads to heightened ethanol intake in the offspring. This study focuses on: a) behavioral and metabolic changes in intoxicated dams with previous exposure to ethanol during pregnancy and b) infantile consumption of milk when the dam is either under the effects of ethanol or sober. Pregnant rats received water, 1.0 or 2.0 g/kg ethanol, and were administered with water or ethanol during the postpartum period. Intoxication during nursing disrupted the capability of the dam to retrieve the pups and to adopt a crouching posture. These disruptions were attenuated when dams had exposure to ethanol during pregnancy. Ethanol experiences during gestation did not affect pharmacokinetic processes during nursing, whereas progressive postpartum ethanol experience resulted in metabolic tolerance. Pups suckling from intoxicated dams, with previous ethanol experiences, ingested more milk than did infants suckling from ethanol-intoxicated dams without such experience. Ethanol gestational experience results in subsequent resistance to the drug’s disruptions in maternal care. Consequently, better maternal care by an intoxicated dam with ethanol experience during gestation facilitates access of pups to milk which could be contaminated with ethanol. PMID:18602418

  6. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol

    PubMed Central

    Morais-Silva, G.; Fernandes-Santos, J.; Moreira-Silva, D.; Marin, M.T.

    2015-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30–35 g, 8-10 per group) were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a “three-bottle choice” paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors. PMID:26628398

  7. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol.

    PubMed

    Morais-Silva, G; Fernandes-Santos, J; Moreira-Silva, D; Marin, M T

    2016-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30-35 g, 8-10 per group) were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a "three-bottle choice" paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors.

  8. Circadian activity rhythms and voluntary ethanol intake in male and female ethanol-preferring rats: effects of long-term ethanol access.

    PubMed

    Rosenwasser, Alan M; McCulley, Walter D; Fecteau, Matthew

    2014-11-01

    Chronic alcohol (ethanol) intake alters fundamental properties of the circadian clock. While previous studies have reported significant alterations in free-running circadian period during chronic ethanol access, these effects are typically subtle and appear to require high levels of intake. In the present study we examined the effects of long-term voluntary ethanol intake on ethanol consumption and free-running circadian period in male and female, selectively bred ethanol-preferring P and HAD2 rats. In light of previous reports that intermittent access can result in escalated ethanol intake, an initial 2-week water-only baseline was followed by either continuous or intermittent ethanol access (i.e., alternating 15-day epochs of ethanol access and ethanol deprivation) in separate groups of rats. Thus, animals were exposed to either 135 days of continuous ethanol access or to five 15-day access periods alternating with four 15-day periods of ethanol deprivation. Animals were maintained individually in running-wheel cages under continuous darkness throughout the experiment to allow monitoring of free-running activity and drinking rhythms, and 10% (v/v) ethanol and plain water were available continuously via separate drinking tubes during ethanol access. While there were no initial sex differences in ethanol drinking, ethanol preference increased progressively in male P and HAD2 rats under both continuous and intermittent-access conditions, and eventually exceeded that seen in females. Free-running period shortened during the initial ethanol-access epoch in all groups, but the persistence of this effect showed complex dependence on sex, breeding line, and ethanol-access schedule. Finally, while females of both breeding lines displayed higher levels of locomotor activity than males, there was little evidence for modulation of activity level by ethanol access. These results are consistent with previous findings that chronic ethanol intake alters free-running circadian

  9. Ethanol-diesel fuel blends -- a review.

    PubMed

    Hansen, Alan C; Zhang, Qin; Lyne, Peter W L

    2005-02-01

    Ethanol is an attractive alternative fuel because it is a renewable bio-based resource and it is oxygenated, thereby providing the potential to reduce particulate emissions in compression-ignition engines. In this review the properties and specifications of ethanol blended with diesel fuel are discussed. Special emphasis is placed on the factors critical to the potential commercial use of these blends. These factors include blend properties such as stability, viscosity and lubricity, safety and materials compatibility. The effect of the fuel on engine performance, durability and emissions is also considered. The formulation of additives to correct certain key properties and maintain blend stability is suggested as a critical factor in ensuring fuel compatibility with engines. However, maintaining vehicle safety with these blends may entail fuel tank modifications. Further work is required in specifying acceptable fuel characteristics, confirming the long-term effects on engine durability, and ensuring safety in handling and storing ethanol-diesel blends.

  10. Pervaporation of ethanol from lignocellulosic fermentation broth.

    PubMed

    Gaykawad, Sushil S; Zha, Ying; Punt, Peter J; van Groenestijn, Johan W; van der Wielen, Luuk A M; Straathof, Adrie J J

    2013-02-01

    Pervaporation can be applied in ethanol production from lignocellulosic biomass. Hydrophobic pervaporation, using a commercial PDMS membrane, was employed to concentrate the ethanol produced by fermentation of lignocellulosic hydrolysate. To our knowledge, this is the first report describing this. Pervaporation carried out with three different lignocellulosic fermentation broths reduced the membrane performance by 17-20% as compared to a base case containing only 3 wt.% ethanol in water. The membrane fouling caused by these fermentation broths was irreversible. Solutions containing model lignocellulosic components were tested during pervaporation at the same conditions. A total flux decrease of 12-15%, as compared to the base case, was observed for each component except for furfural. Catechol was found to be most fouling component whereas furfural permeated through the membrane and increased the total flux. The membrane selectivity increased in the presence of fermentation broth but remained unchanged for all selected components.

  11. Permeability of cork for water and ethanol.

    PubMed

    Fonseca, Ana Luisa; Brazinha, Carla; Pereira, Helena; Crespo, Joao G; Teodoro, Orlando M N D

    2013-10-09

    Transport properties of natural (noncompressed) cork were evaluated for water and ethanol in both vapor and liquid phases. The permeability for these permeants has been measured, as well as the sorption and diffusion coefficients. This paper focuses on the differences between the transport of gases' relevant vapors and their liquids (water and ethanol) through cork. A transport mechanism of vapors and liquids is proposed. Experimental evidence shows that both vapors and liquids permeate not only through the small channels across the cells (plasmodesmata), as in the permeation of gases, but also through the walls of cork cells by sorption and diffusion as in dense membranes. The present study also shows that cork permeability for gases was irreversibly and drastically decreased after cork samples were exposed to ethanol or water in liquid phase.

  12. Biological production of ethanol from coal

    SciTech Connect

    Not Available

    1990-01-01

    The fermentation pH has been observed to be the key parameter affecting the ratio of ethanol to acetate produced by Clostridium ljungdahlii. The effects of controlled pH on cell growth and product formation by C. ljungdahlii were measured. It was found that cell concentration and acetate concentration increased with pH, while the ethanol concentration was highest at the lower pH. The molar product ratio of ethanol to acetate was 0.74 at pH 4.0, 0.39 at pH 4.5 and 0.12 at pH 5.0. Future experiments will concentrate on studying other important parameters such as agitation rate and nutrients concentrations with controlled pH as a preclude to continuous reactor studies.

  13. Physiologically Based Pharmacokinetic (PBPK) Models for Ethanol

    PubMed Central

    Plawecki, Martin H.; Han, Jae-Joon; Doerschuk, Peter C.; Ramchandani, Vijay A.; O'Connor, Sean J.

    2012-01-01

    Physiologically based pharmacokinetic models have been used to describe the distribution and elimination of ethanol after intravenous administration. These models have been used to estimate the ethanol infusion profile that is sufficient for achieving a prescribed breath ethanol concentration time course in individuals, providing a useful platform for several pharmacokinetic and pharmacodynamic investigations. Mathematical foundations of these models are examined, including the derivation of an explicit set of governing equations in the form of a system of nonlinear ordinary differential equations. These equations can then be used to formulate and refine parameter identification and control strategies. Finally, a framework in which models related to this model can be constructed and analyzed is described. PMID:19126448

  14. Prospects for Irradiation in Cellulosic Ethanol Production

    PubMed Central

    Saini, Anita; Aggarwal, Neeraj K.; Sharma, Anuja; Yadav, Anita

    2015-01-01

    Second generation bioethanol production technology relies on lignocellulosic biomass composed of hemicelluloses, celluloses, and lignin components. Cellulose and hemicellulose are sources of fermentable sugars. But the structural characteristics of lignocelluloses pose hindrance to the conversion of these sugar polysaccharides into ethanol. The process of ethanol production, therefore, involves an expensive and energy intensive step of pretreatment, which reduces the recalcitrance of lignocellulose and makes feedstock more susceptible to saccharification. Various physical, chemical, biological, or combined methods are employed to pretreat lignocelluloses. Irradiation is one of the common and promising physical methods of pretreatment, which involves ultrasonic waves, microwaves, γ-rays, and electron beam. Irradiation is also known to enhance the effect of saccharification. This review explains the role of different radiations in the production of cellulosic ethanol. PMID:26839707

  15. Sexual deprivation increases ethanol intake in Drosophila.

    PubMed

    Shohat-Ophir, G; Kaun, K R; Azanchi, R; Mohammed, H; Heberlein, U

    2012-03-16

    The brain's reward systems reinforce behaviors required for species survival, including sex, food consumption, and social interaction. Drugs of abuse co-opt these neural pathways, which can lead to addiction. Here, we used Drosophila melanogaster to investigate the relationship between natural and drug rewards. In males, mating increased, whereas sexual deprivation reduced, neuropeptide F (NPF) levels. Activation or inhibition of the NPF system in turn reduced or enhanced ethanol preference. These results thus link sexual experience, NPF system activity, and ethanol consumption. Artificial activation of NPF neurons was in itself rewarding and precluded the ability of ethanol to act as a reward. We propose that activity of the NPF-NPF receptor axis represents the state of the fly reward system and modifies behavior accordingly.

  16. Corn to ethanol plant feasibility study

    SciTech Connect

    Not Available

    1981-02-01

    The purpose of this study is to assess the technical and economic feasibility of a corn to fuel grade ethanol plant in Colorado. The results of this feasibility study indicate that the Grand American project is commercially viable both from an economic and technical standpoint. The results of the economic and risk analysis show a 32.7 percent rate of return based on present state and federal fuel tax exemption legislation. The plant design is based on Raphael Katzen technology which has been used for several years in existing ethanol facilities. Pace does not foresee any technical problems with the facility. Markets for the ethanol appear to be the least secure aspect of the project at this point, although demand is expected to sufficiently increase to provide ample markets. The byproduct market for the dried distillers grains (DDGS) appears to be supply limited. Raw materials for plant operation, including corn, power, water, and coal are readily available.

  17. Renal arterial embolization with absolute ethanol.

    PubMed Central

    Park, J. H.; Kim, W. S.; Han, M. C.; Lee, C. W.

    1987-01-01

    Twenty separate infarction procedures with absolute ethanol were performed on eighteen renal tumors in seventeen patients at Department of Radiology, Seoul National University Hospital since 1982. Fifteen were hypernephroma cases and two were angiomyolipoma cases. The indications for renal infarction were the preoperative interruption of renal arterial flow in eight cases of hypernephroma, and primary therapy or palliation of symptoms in seven cases of hypernephroma and two cases of angiomyolipoma. Average 15ml of absolute ethanol was injected for renal arterial embolization at a rate of 1-2 ml/sec via balloon occlusion catheter or superselective administration technique. Though the long-term beneficial effect on survival was not confirmed, transcatheter embolization with absolute ethanol was suggested to be used as indispensible treatment in preoperative and inoperable or symptomatic cases of renal tumor. PMID:3269241

  18. Ethanol from biomass: A status report

    SciTech Connect

    Walker, R.

    1996-12-31

    Programmatic and technical activities of SWAN Biomass, a company formed by Amoco Corporation and Stone & Webster, to convert non-grain biomass material to ethanol, are highlighted in this presentation. The potential ethanol markets identified are: (1) fuel oxygenate and octane additive, and (2) waste reduction in the agricultural and forestry industries and in municipal waste streams. Differences in the SWAN process from that used in corn-based ethanol facilities include more intense pretreatment of lignocellulosic biomass, different enzymes, hydrolysis and fermentation of sugar polymers is performed in the same vessel, and a typical solid residue of lignin. The major market and technical risks have been assessed as being manageable. 8 figs., 8 tabs.

  19. New evidence of ethanol's anxiolytic properties in the infant rat

    PubMed Central

    Miranda-Morales, Roberto Sebastián; Nizhnikov, Michael E.; Waters, Dustin H.; Spear, Norman E.

    2014-01-01

    Ethanol induces appetitive, aversive, and anxiolytic effects that are involved in the development of ethanol use and dependence. Because early ethanol exposure produces later increased responsiveness to ethanol, considerable effort has been devoted to analysis of ethanol's appetitive and aversive properties during early ontogeny. Yet, there is a relative scarcity of research related to the anxiolytic effects of ethanol during early infancy, perhaps explained by a lack of age-appropriate tests. The main aim of this study was to validate a model for the assessment of ethanol's anxiolytic effects in the infant rat (postnatal days 13– 16). The potentially anxiolytic effects of ethanol tested included: i) amelioration of conditioned place aversion, ii) ethanol intake in the presence of an aversive conditioned stimulus, iii) the inhibitory behavioral effect in an anxiogenic environment, and iv) innate aversion to a brightly illuminated area in a modified light/dark paradigm. Ethanol doses employed across experiments were 0.0, 0.5, and 2.0 g/kg. Results indicated that a low ethanol dose (0.5 g/kg) was effective in attenuating expression of a conditioned aversion. Ethanol intake, however, was unaffected by simultaneous exposure to an aversive stimulus. An anxiogenic environment diminished ethanol-induced locomotor stimulation. Finally, animals given 0.5 g/kg ethanol and evaluated in a light/dark box showed increased time spent in the illuminated area and increased latency to escape from the brightly lit compartment than rats treated with a higher dose of ethanol or vehicle. These new results suggest that ethanol doses as low as 0.5 g/kg are effective in ameliorating an aversive and/or anxiogenic state in preweanling rats. These behavioral preparations can be used to assess ethanol's anxiolytic properties during early development. PMID:24776303

  20. A DNA element in the slo gene modulates ethanol tolerance.

    PubMed

    Krishnan, Harish R; Li, Xiaolei; Ghezzi, Alfredo; Atkinson, Nigel S

    2016-03-01

    In Drosophila, the slo gene encodes BK-type Ca(2+)-activated K(+) channels and is involved in producing rapid functional tolerance to sedation with ethanol. Drosophila are ideal for the study of functional ethanol tolerance because the adult does not acquire metabolic ethanol tolerance (Scholz, Ramond, Singh, & Heberlein, 2000). It has been shown that mutations in slo block the capacity to acquire tolerance, that sedation with ethanol vapor induces slo gene expression in the nervous system, and that transgenic induction of slo can phenocopy tolerance (Cowmeadow, Krishnan, & Atkinson, 2005; Cowmeadow et al., 2006). Here we use ethanol-induced histone acetylation to map a DNA regulatory element in the slo transcriptional control region and functionally test the element for a role in producing ethanol tolerance. Histone acetylation is commonly associated with activating transcription factors. We used the chromatin immunoprecipitation assay to map histone acetylation changes following ethanol sedation to identify an ethanol-responsive DNA element. Ethanol sedation induced an increase in histone acetylation over a 60 n DNA element called 6b, which is situated between the two ethanol-responsive neural promoters of the slo gene. Removal of the 6b element from the endogenous slo gene affected the production of functional ethanol tolerance as assayed in an ethanol-vapor recovery from sedation assay. Removal of element 6b extended the period of functional ethanol tolerance from ∼10 days to more than 21 days after a single ethanol-vapor sedation. This study demonstrates that mapping the position of ethanol-induced histone acetylation is an effective way to identify DNA regulatory elements that help to mediate the response of a gene to ethanol. Using this approach, we identified a DNA element, which is conserved among Drosophila species, and which is important for producing a behaviorally relevant ethanol response.

  1. Binge ethanol drinking during adolescence modifies cocaine responses in mice.

    PubMed

    Esteve-Arenys, Anna; Gracia-Rubio, Irene; Cantacorps, Lídia; Pozo, Oscar J; Marcos, Josep; Rodríguez-Árias, Marta; Miñarro, José; Valverde, Olga

    2017-01-01

    Binge ethanol drinking is an emerging pattern of excessive consumption among adolescents and young adults. Repeated ethanol intoxication has negative consequences during critical periods of brain development. Therefore, binge ethanol intake represents a vulnerability factor that promotes subsequent manifestations of neuropsychiatric disorders. In this study, we investigated the effects of oral binge ethanol intake during adolescence on the subsequent effects of cocaine in C57BL/6 mice. Firstly, we evaluated the oral ethanol intake of two binge ethanol procedures with different ethanol concentrations (20% v/v versus 30%, v/v). The highest ethanol intake was found in mice exposed to the lower ethanol concentration (20% v/v). In a second experiment, mice exposed to binge ethanol procedure were evaluated to study the effects of cocaine on locomotor activity, behavioural sensitization, and the reinforcing effects of cocaine in the self-administration paradigm. Mice exposed to ethanol binging showed discrete detrimental effects in responses to cocaine in the different experiments evaluated. Our findings revealed that the pattern of binge ethanol consumption in adolescent mice here evaluated produced a weak facilitation of cocaine responses. The present study highlights the importance of interventions to limit the deleterious effects of binge ethanol drinking during adolescence.

  2. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae.

    PubMed

    Shi, Dong-jian; Wang, Chang-lu; Wang, Kui-ming

    2009-01-01

    Genome shuffling is a powerful strategy for rapid engineering of microbial strains for desirable industrial phenotypes. Here we improved the thermotolerance and ethanol tolerance of an industrial yeast strain SM-3 by genome shuffling while simultaneously enhancing the ethanol productivity. The starting population was generated by protoplast ultraviolet irradiation and then subjected for the recursive protoplast fusion. The positive colonies from the library, created by fusing the inactivated protoplasts were screened for growth at 35, 40, 45, 50 and 55 degrees C on YPD-agar plates containing different concentrations of ethanol. Characterization of all mutants and wild-type strain in the shake-flask indicated the compatibility of three phenotypes of thermotolerance, ethanol tolerance and ethanol yields enhancement. After three rounds of genome shuffling, the best performing strain, F34, which could grow on plate cultures up to 55 degrees C, was obtained. It was found capable of completely utilizing 20% (w/v) glucose at 45-48 degrees C, producing 9.95% (w/v) ethanol, and tolerating 25% (v/v) ethanol stress.

  3. Moderate Ethanol Ingestion and Cardiovascular Protection

    PubMed Central

    Krenz, Maike; Korthuis, Ronald J.

    2011-01-01

    While ethanol intake at high levels (3-4 or more drinks), either in acute (occasional binge drinking) or chronic (daily) settings, increases the risk for myocardial infarction and ischemic stroke, an inverse relationship between regular consumption of alcoholic beverages at light to moderate levels (1-2 drinks per day) and cardiovascular risk has been consistently noted in a large number of epidemiologic studies. Although initially attributed to polyphenolic antioxidants in red wine, subsequent work has established that the ethanol component contributes to the beneficial effects associated with moderate intake of alcoholic beverages regardless of type (red versus white wine, beer, spirits). Concerns have been raised with regard to interpretation of epidemiologic evidence for this association including heterogeneity of the reference groups examined in many studies, different lifestyles of moderate drinkers versus abstainers, and favorable risk profiles in moderate drinkers. However, better controlled epidemiologic studies and especially work conducted in animal models and cell culture systems have substantiated this association and clearly established a cause and effect relationship between alcohol consumption and reductions in tissue injury induced by ischemia/reperfusion (I/R), respectively. The aims of this review are to summarize the epidemiologic evidence supporting the effectiveness of ethanol ingestion in reducing the likelihood of adverse cardiovascular events such as myocardial infarction and ischemic stroke, even in patients with co-existing risk factors, to discuss the ideal quantities, drinking patterns, and types of alcoholic beverages that confer protective effects in the cardiovascular system, and to review the findings of recent experimental studies directed at uncovering the mechanisms that underlie the cardiovascular protective effects of antecedent ethanol ingestion. Mechanistic interrogation of the signaling pathways invoked by antecedent ethanol

  4. EUS-Guided Ethanol Ablation of Insulinomas

    PubMed Central

    Qin, Shan-yu; Lu, Xiu-ping; Jiang, Hai-xing

    2014-01-01

    Abstract Surgical resection is a standard treatment for insulinomas; however, it is associated with a high risk of complications and limited to specific suitable candidates. In recent years, endoscopic ultrasound (EUS)-guided ethanol ablation of insulinomas has emerged as a new therapeutic option, especially for elderly patients and candidates unfit for surgery. We aimed to evaluate the feasibility and safety of this technique for insulinomas. Four patients diagnosed with insulinomas based on EUS–fine-needle aspiration and immunohistochemistry results underwent EUS-guided 95% ethanol ablation. A comprehensive literature review was performed to understand the current status of the feasibility, safety, and effects of EUS-guided ethanol ablation of insulinomas. EUS-guided ethanol ablation of insulinomas was successfully completed in all the 4 patients. There were no perioperative or postoperative complications. The patients were discharged at 3 days after the procedure. No recurrence of hypoglycemia or tumors was noted during follow-up (range, 3–6 months). Literature review showed 8 patients with insulinomas who underwent EUS-guided ethanol ablation. All the procedures were successful, with no need for further surgical treatment. Among these reviewed cases, 6 patients had no post-procedural complications, while other 2 patients showed a mild increase in the serum levels of lipase and/or pancreatic enzymes within 48 h post-procedure; furthermore, 1 of these 2 patients presented at a later date with medically controllable hematoma and ulceration. During follow-up, 6 patients remained asymptomatic and normoglycemic, while the 2 patients who presented post-procedural complications developed occasional mild confusion. EUS-guided ethanol ablation of insulinomas is an effective and safe modality, with an acceptable level of post-procedural complications. However, the long-term effects of this new therapeutic option need to be validated in a large randomized controlled

  5. Acute Ethanol Causes Hepatic Mitochondrial Depolarization in Mice: Role of Ethanol Metabolism

    PubMed Central

    Zhong, Zhi; Ramshesh, Venkat K.; Rehman, Hasibur; Liu, Qinlong; Theruvath, Tom P.; Krishnasamy, Yasodha; Lemasters, John J.

    2014-01-01

    Background/Aims An increase of ethanol metabolism and hepatic mitochondrial respiration occurs in vivo after a single binge of alcohol. Here, our aim was to determine how ethanol intake affects hepatic mitochondrial polarization status in vivo in relation to ethanol metabolism and steatosis. Methods Hepatic mitochondrial polarization, permeability transition (MPT), and reduce pyridine nucleotides, and steatosis in mice were monitored by intravital confocal/multiphoton microscopy of the fluorescence of rhodamine 123 (Rh123), calcein, NAD(P)H, and BODIPY493/503, respectively, after gavage with ethanol (1–6 g/kg). Results Mitochondria depolarized in an all-or-nothing fashion in individual hepatocytes as early as 1 h after alcohol. Depolarization was dose- and time-dependent, peaked after 6 to 12 h and maximally affected 94% of hepatocytes. This mitochondrial depolarization was not due to onset of the MPT. After 24 h, mitochondria of most hepatocytes recovered normal polarization and were indistinguishable from untreated after 7 days. Cell death monitored by propidium iodide staining, histology and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was low throughout. After alcohol, mitochondrial NAD(P)H autofluorescence increased and decreased, respectively, in hepatocytes with polarized and depolarized mitochondria. Ethanol also caused steatosis mainly in hepatocytes with depolarized mitochondria. Depolarization was linked to ethanol metabolism, since deficiency of alcohol dehydrogenase and cytochrome-P450 2E1 (CYP2E1), the major ethanol-metabolizing enzymes, decreased mitochondrial depolarization by ∼70% and ∼20%, respectively. Activation of aldehyde dehydrogenase decreased depolarization, whereas inhibition of aldehyde dehydrogenase enhanced depolarization. Activation of aldehyde dehydrogenase also markedly decreased steatosis. Conclusions Acute ethanol causes reversible hepatic mitochondrial depolarization in vivo that may contribute to

  6. DARPP-32 and Akt regulation in ethanol-preferring AA and ethanol-avoiding ANA rats.

    PubMed

    Nuutinen, Saara; Kiianmaa, Kalervo; Panula, Pertti

    2011-09-26

    Ethanol and other addictive drugs affect many intracellular phosphorylation and dephosphorylation cascades. These cascades are thought to be highly important in the regulation of neuronal activity. The present experiments characterized the regulation of three key signaling molecules, DARPP-32 (dopamine and cAMP regulated phosphoprotein, 32kDa), Akt kinase and ERK1/2 (extracellular signal-regulated kinase 1 and 2) in ethanol-preferring AA (Alko, alcohol) and ethanol-avoiding ANA (Alko, non-alcohol) rat lines. Radioactive in situ hybridization was used in drug naïve animals and Western blotting after acute ethanol administration in striatum, hippocampus and prefrontal cortex. The mRNA levels of DARPP-32 in striatal areas were higher in ANA rats than in AA rats. There was no difference in the striatal enriched phosphatase (STEP61), the downstream target of DARPP-32 expression between the rat lines. Ethanol (1.5g/kg) increased phosphorylation of DARPP-32 at threonine 34 in both AA and in ANA rats indicating that acute ethanol activates DARPP-32 similarly in these rat lines. The expression of Akt kinase was higher in the CA1 of hippocampus in ANA than in AA rats and acute ethanol activated Akt in hippocampus in ANA but not in AA rats. No significant alterations in the regulation of ERK1/2 were found in either rat line. Our findings suggest that DARPP-32 and Akt are regulated by ethanol and differences in the regulation of these molecules might contribute to the dramatically different ethanol drinking patterns seen in AA and ANA rats.

  7. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    NASA Astrophysics Data System (ADS)

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic “dead zones,” and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at

  8. Method and system for ethanol production

    DOEpatents

    Feder, H.M.; Chen, M.J.

    1981-09-24

    A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. Selected transition metal carbonyls include those of iron, rhodium, ruthenium, manganese in combination with iron and possibly osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 2,4-diazabicyclooctane, dimethylneopentylamine, N-methylpiperidine and derivatives of N-methylpiperidine.

  9. Method and system for ethanol production

    DOEpatents

    Feder, Harold M.; Chen, Michael J.

    1981-01-01

    A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. The only other significant by product is methane. Selected transition metal carbonyls include those of iron, ruthenium and possibly manganese and osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 24-diazabicyclooctane, dimethyneopentylamine and 2-pryidinol.

  10. Method and system for ethanol production

    DOEpatents

    Feder, H.M.; Chen, M.J.

    1980-05-21

    A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. The only other significant by-product is methane. Selected transition metal carbonyls include those of iron, ruthenium and possibly manganese and osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 24-diazabicyclooctane, dimethyneopentylamine and 2-pryidinol.

  11. Method and system for ethanol production

    DOEpatents

    Feder, Harold M.; Chen, Michael J.

    1983-01-01

    A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. Selected transition metal carbonyls include those of iron, rhodium ruthenium, manganese in combination with iron and possibly osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 2,4-diazabicyclooctane, dimethylneopentylamine, N-methylpiperidine and derivatives of N-methylpiperidine.

  12. Saw palmetto ethanol extract inhibits adipocyte differentiation.

    PubMed

    Villaverde, Nicole; Galvis, Adriana; Marcano, Adriana; Priestap, Horacio A; Bennett, Bradley C; Barbieri, M Alejandro

    2013-07-01

    The fruits of saw palmetto have been used for the treatment of a variety of urinary and reproductive system problems. In this study we investigated whether the fruit extracts affect in vitro adipogenesis. Saw palmetto ethanol extract inhibited the lipid droplet accumulation by induction media in a dose-dependent manner, and it also attenuated the protein expressions of C-EBPα and PPARγ. Phosphorylation of Erk1/2 and Akt1 were also decreased by saw palmetto ethanol extract. This report suggests that saw palmetto extracts selectively affect the adipocyte differentiation through the modulation of several key factors that play a critical role during adipogenesis.

  13. Structure and dynamics of liquid ethanol

    SciTech Connect

    Saiz, L.; Padro, J.A.; Guardia, E.

    1997-01-02

    Molecular dynamics simulations of liquid ethanol at four thermodynamic states ranging from T = 173 K to T = 348 K were carried out using the transferable OPLS potential model of W.L. Jorgensen. Both static and dynamic properties are analyzed. The resulting properties show an overall agreement with available experimental data. Special attention is paid to the hydrogen bonds and to their influence on the molecular behavior. Results for liquid ethanol are compared with those for methanol in earlier computer simulation studies. 30 refs., 13 figs., 5 tabs.

  14. Multiple exposures to ethanol facilitate intravenous self-administration of ethanol by rats.

    PubMed

    Numan, R

    1981-07-01

    In Experiment 1, male hooded rats (N=11) were implanted with jugular cannulas, and housed in sound attenuated operant chambers 24hr/day. The rats were exposed to periodic cycles of forced ethanol infusions (30% v/v, 9-16 g/kg/day over 4-6 days for each cycle). Following each cycle, forced infusions were discontinued, but the rats were allowed access to lever for self-administration of ethanol on a fixed ration 1 schedule (FR1). Each lever press infused 0.2 ml of ethanol (20% v/v). The rats were maintained on self-administration for at least 24 hr. If a rat did not develop self-administration behavior (SAB) within 24 hr, the next forced cycle fo ethanol exposure was initiated. Eight of the 11 rats developed SAB after a mean of 5.25 cycles of exposure to ethanol, and were then tested for a mean of 15 days on self-administration under FR1, FR2, and FR3 schedules of reinforcement. All rats were tested on FR1 and days of self-administered a mean of 10.43 g ethanol/kg/day over a mean of 10.75 days. Four rats were subsequently tested on FR2 and FR3 and increased lever presses in order to maintain daily ethanol intake comparable to FR1. Following self-administration testing, the rats were placed on withdrawal and exhibited mild to severe withdrawal symptoms, suggesting that SAB maintained physical dependence. In Experiment 2, rats (N=6/group) were allowed to self-infuse either saline or ethanol (20% v/v). These rats had no prior exposure to either saline or ethanol, and forced infusion were never administered. The rats remained in their operant chambers for 21 days under FR1 contingencies. Each lever press led to a 0.2 ml infusion. None of the rats developed SAB, but the saline controls made more lever presses than the ethanol rats (p less than 0.01). These results suggest that the ethanol parameters yielding SAB in Experiment 1 are aversive to ethanol naive rats.

  15. Life-Stage PBPK Models for Multiple Routes of Ethanol Exposure in the Rat

    EPA Science Inventory

    Ethanol is commonly blended with gasoline (10% ethanol) in the US, and higher ethanol concentrations are being considered. While the pharmacokinetics and toxicity of orally-ingested ethanol are widely reported, comparable work is limited for inhalation exposure (IE), particularly...

  16. Life-Stage PBPK Models for Multiple Routes of Ethanol Exposure in the Rat

    EPA Science Inventory

    Ethanol is commonly blended with gasoline (10% ethanol) in the US, and higher ethanol concentrations are being considered. While the pharmacokinetics and toxicity of orally-ingested ethanol are widely reported, comparable work is limited for inhalation exposure (IE), particularly...

  17. State-level workshops on ethanol for transportaton

    SciTech Connect

    Graf, Angela

    2004-01-01

    The Ethanol Workshop Series (EWS) was intended to provide a forum for interest groups to gather and discuss what needs to be accomplished to facilitate ethanol production in-state using local biomass resources.

  18. Fuel ethanol production: process design trends and integration opportunities.

    PubMed

    Cardona, Carlos A; Sánchez, Oscar J

    2007-09-01

    Current fuel ethanol research and development deals with process engineering trends for improving biotechnological production of ethanol. In this work, the key role that process design plays during the development of cost-effective technologies is recognized through the analysis of major trends in process synthesis, modeling, simulation and optimization related to ethanol production. Main directions in techno-economical evaluation of fuel ethanol processes are described as well as some prospecting configurations. The most promising alternatives for compensating ethanol production costs by the generation of valuable co-products are analyzed. Opportunities for integration of fuel ethanol production processes and their implications are underlined. Main ways of process intensification through reaction-reaction, reaction-separation and separation-separation processes are analyzed in the case of bioethanol production. Some examples of energy integration during ethanol production are also highlighted. Finally, some concluding considerations on current and future research tendencies in fuel ethanol production regarding process design and integration are presented.

  19. The potential environmental impact of waste from cellulosic ethanol production.

    PubMed

    Menetrez, Marc Y

    2010-02-01

    The increasing production of ethanol has been established as an important contributor to future energy independence. Although ethanol demand is increasing, a growing economic trend in decreased profitability and resource conflicts have called into question the future of grain-based ethanol production. Growing emphasis is being placed on utilizing cellulosic feedstocks to produce ethanol, and the need for renewable resources has made the development of cellulosic ethanol a national priority. Cellulosic ethanol production plants are being built in many areas of the United States to evaluate various feedstocks and processes. The waste streams from many varying processes that are being developed contain a variety of components. Differences in ethanol generation processes and feedstocks are producing waste streams unique to biofuel production, which could be potentially harmful to the environment if adequate care is not taken to manage those risks. Waste stream management and utilization of the cellulosic ethanol process are equally important components of the development of this industry.

  20. Norepinephrine-induced diuresis in chronically ethanol-treated rats

    SciTech Connect

    Pohorecky, L.A. )

    1989-01-01

    Previous research from this laboratory indicated that noradrenergic mechanisms might mediate ethanol diuresis. Experiments described here examined changes in sensitivity of noradrenergic mechanisms in animals chronically treated with ethanol. Norepinephrine hydrochloride (0-12 ug intracerebroventricularly) produced dose-dependent diuresis in control and ethanol treated rats on the first day of treatment. Tolerance to ethanol diuresis was present after 10 day of ethanol treatment. Lack of responsiveness to norepinephrine-induced diuresis was evident only on the 20th day of treatment in both the ethanol and dextrin-maltose groups of rats. These results indicate a temporal dissociation between the tolerance to ethanol-induced and norepinephrine-induced diuresis and suggest that norepinephrine may not play a primary role in the development of tolerance to the diuretic action of ethanol.

  1. The Potential Environmental Impact of Waste from Cellulosic Ethanol Production

    EPA Science Inventory

    The increasing production of ethanol has been established as an important contributor to future energy independence. A trend in decreasing profitability and resource conflicts has given grain based ethanol production a limited and difficult future. Growing emphasis is being place...

  2. Gestational naltrexone ameliorates fetal ethanol exposures enhancing effect on the postnatal behavioral and neural response to ethanol.

    PubMed

    Youngentob, Steven L; Kent, Paul F; Youngentob, Lisa M

    2012-10-01

    The association between gestational exposure to ethanol and adolescent ethanol abuse is well established. Recent animal studies support the role of fetal ethanol experience-induced chemosensory plasticity as contributing to this observation. Previously, we established that fetal ethanol exposure, delivered through a dam's diet throughout gestation, tuned the neural response of the peripheral olfactory system of early postnatal rats to the odor of ethanol. This occurred in conjunction with a loss of responsiveness to other odorants. The instinctive behavioral response to the odor of ethanol was also enhanced. Importantly, there was a significant contributory link between the altered response to the odor of ethanol and increased ethanol avidity when assessed in the same animals. Here, we tested whether the neural and behavioral olfactory plasticity, and their relationship to enhanced ethanol intake, is a result of the mere exposure to ethanol or whether it requires the animal to associate ethanol's reinforcing properties with its odor attributes. In this later respect, the opioid system is important in the mediation (or modulation) of the reinforcing aspects of ethanol. To block endogenous opiates during prenatal life, pregnant rats received daily intraperitoneal administration of the opiate antagonist naltrexone from gestational day 6-21 jointly with ethanol delivered via diet. Relative to control progeny, we found that gestational exposure to naltrexone ameliorated the enhanced postnatal behavioral response to the odor of ethanol and postnatal drug avidity. Our findings support the proposition that in utero ethanol-induced olfactory plasticity (and its relationship to postnatal intake) requires, at least in part, the associative pairing between ethanol's odor quality and its reinforcing aspects. We also found suggestive evidence that fetal naltrexone ameliorated the untoward effects of gestational ethanol exposure on the neural response to non

  3. Chronic Ethanol Consumption Differentially Alters Gray and White Matter Ethanol 1H Methyl Magnetic Resonance Intensity in the Primate Brain

    PubMed Central

    Kroenke, Christopher D.; Flory, Graham S.; Park, Byung; Shaw, Jessica; Rau, Andrew R.; Grant, Kathleen A.

    2013-01-01

    Background In vivo magnetic resonance spectroscopy (MRS) has previously been used to directly monitor brain ethanol. It has been proposed that the ethanol methyl 1H resonance intensity is larger in ethanol-tolerant individuals than in sensitive individuals. To characterize the relationship between long-term ethanol exposure and the brain ethanol MRS intensity, we present data from a longitudinal experiment conducted using nonhuman primate subjects. Methods In vivo MRS was used to measure the gray matter (GM) and white matter (WM) ethanol methyl 1H MRS intensity in 18 adult male rhesus macaques at four time points throughout the course of a chronic drinking experiment. Time points were prior to ethanol drinking, following a 3-month ethanol induction procedure, and following six, and twelve subsequent months of 22-hours/day of “open access” to ethanol (4% w/v) and water. Results The ethanol methyl 1H MRS intensity, which we observed to be independent of age over the range examined, increased with chronic ethanol exposure in GM and WM. In GM, MRS intensity increased from naive-level following the ethanol induction period (90 g/kg cumulative ethanol intake). In WM, MRS intensity was not significantly different from the ethanol-naïve state until after 6 months of 22-hours free access (110–850 g/kg cumulative intake range). The WM MRS intensity in the ethanol-naive state was positively correlated with future drinking, and the increase in WM MRS intensity was negatively correlated with the amount of ethanol consumed throughout the experiment. Conclusions Chronic exposure to ethanol is associated with brain changes that result in differential increases in ethanol MRS intensity in GM and WM. The ethanol-naïve WM MRS intensity pattern is consistent with its previously proposed relationship to innate tolerance to the intoxicating effects of ethanol. Ethanol-dependent MRS intensity changes in GM required less ethanol exposure than was necessary to produce changes in WM

  4. Granular starch hydrolysis for fuel ethanol production

    NASA Astrophysics Data System (ADS)

    Wang, Ping

    Granular starch hydrolyzing enzymes (GSHE) convert starch into fermentable sugars at low temperatures (≤48°C). Use of GSHE in dry grind process can eliminate high temperature requirements during cooking and liquefaction (≥90°C). In this study, GSHE was compared with two combinations of commercial alpha-amylase and glucoamylase (DG1 and DG2, respectively). All three enzyme treatments resulted in comparable ethanol concentrations (between 14.1 to 14.2% v/v at 72 hr), ethanol conversion efficiencies and ethanol and DDGS yields. Sugar profiles for the GSHE treatment were different from DG1 and DG2 treatments, especially for glucose. During simultaneous saccharification and fermentation (SSF), the highest glucose concentration for the GSHE treatment was 7% (w/v); for DG1 and DG2 treatments, maximum glucose concentration was 19% (w/v). GSHE was used in one of the fractionation technologies (enzymatic dry grind) to improve recovery of germ and pericarp fiber prior to fermentation. The enzymatic dry grind process with GSHE was compared with the conventional dry grind process using GSHE with the same process parameters of dry solids content, pH, temperature, time, enzyme and yeast usages. Ethanol concentration (at 72 hr) of the enzymatic process was 15.5% (v/v), which was 9.2% higher than the conventional process (14.2% v/v). Distillers dried grains with solubles (DDGS) generated from the enzymatic process (9.8% db) was 66% less than conventional process (28.3% db). Three additional coproducts, germ 8.0% (db), pericarp fiber 7.7% (db) and endosperm fiber 5.2% (db) were produced. Costs and amounts of GSHE used is an important factor affecting dry grind process economics. Proteases can weaken protein matrix to aid starch release and may reduce GSHE doses. Proteases also can hydrolyze protein into free amino nitrogen (FAN), which can be used as a yeast nutrient during fermentation. Two types of proteases, exoprotease and endoprotease, were studied; protease and urea

  5. Determination of Ethanol in Gasoline by FT-IR Spectroscopy

    ERIC Educational Resources Information Center

    Conklin, Alfred, Jr.; Goldcamp, Michael J.; Barrett, Jacob

    2014-01-01

    Ethanol is the primary oxygenate in gasoline in the United States. Gasoline containing various percentages of ethanol is readily available in the market place. A laboratory experiment has been developed in which the percentage of ethanol in hexanes can easily be determined using the O-H and alkane C-H absorptions in an infrared spectrum. Standard…

  6. Endogenous ethanol affects biopolyester molecular weight in recombinant Escherichia coli.

    PubMed

    Hiroe, Ayaka; Hyakutake, Manami; Thomson, Nicholas M; Sivaniah, Easan; Tsuge, Takeharu

    2013-11-15

    In biopolyester synthesis, polyhydroxyalkanoate (PHA) synthase (PhaC) catalyzes the polymerization of PHA in bacterial cells, followed by a chain transfer (CT) reaction in which the PHA polymer chain is transferred from PhaC to a CT agent. Accordingly, the frequency of CT reaction determines PHA molecular weight. Previous studies have shown that exogenous alcohols are effective CT agents. This study aimed to clarify the effect of endogenous ethanol as a CT agent for poly[(R)-3-hydroxybutyrate] [P(3HB)] synthesis in recombinant Escherichia coli, by comparing with that of exogenous ethanol. Ethanol supplementation to the culture medium reduced P(3HB) molecular weights by up to 56% due to ethanol-induced CT reaction. NMR analysis of P(3HB) polymers purified from the culture supplemented with (13)C-labeled ethanol showed the formation of a covalent bond between ethanol and P(3HB) chain at the carboxyl end. Cultivation without ethanol supplementation resulted in the reduction of P(3HB) molecular weight with increasing host-produced ethanol depending on culture aeration. On the other hand, production in recombinant BW25113(ΔadhE), an alcohol dehydrogenase deletion strain, resulted in a 77% increase in molecular weight. Analysis of five E. coli strains revealed that the estimated number of CT reactions was correlated with ethanol production. These results demonstrate that host-produced ethanol acts as an equally effective CT agent as exogenous ethanol, and the control of ethanol production is important to regulate the PHA molecular weight.

  7. Determination of Ethanol in Gasoline by FT-IR Spectroscopy

    ERIC Educational Resources Information Center

    Conklin, Alfred, Jr.; Goldcamp, Michael J.; Barrett, Jacob

    2014-01-01

    Ethanol is the primary oxygenate in gasoline in the United States. Gasoline containing various percentages of ethanol is readily available in the market place. A laboratory experiment has been developed in which the percentage of ethanol in hexanes can easily be determined using the O-H and alkane C-H absorptions in an infrared spectrum. Standard…

  8. Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus

    PubMed Central

    Zhang, Dali; Xiong, Wei; Jackson, Michael F.

    2016-01-01

    Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5′-nucleotidase activity. Wild-type (CD73+/+) and ecto-5′-nucleotidase-deficient (CD73−/−) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73+/+ mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73+/+ mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg2+ conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5′-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73−/− mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5′-nucleotidase activity. PMID:27189965

  9. Molecular mechanisms of ethanol tolerance in Saccharomyces cerevisiae

    USDA-ARS?s Scientific Manuscript database

    The yeast Saccharomyces cerevisiae is a superb ethanol producer, yet sensitive to ethanol at higher concentrations especially under high gravity or very high gravity fermentation conditions. Although significant efforts have been made to study ethanol-stress response in past decades, molecular mecha...

  10. Enhancing ethanol production from cellulosic sugars using Scheffersomyces (Pichia) stipitis

    USDA-ARS?s Scientific Manuscript database

    Studies were performed on the effect of CaCO3 and CaCl2 supplementation to fermentation medium for ethanol production from xylose, glucose, or their mixtures using Scheffersomyces (Pichia) stipitis. Both of these chemicals were found to improve maximum ethanol concentration and ethanol productivity....

  11. Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus.

    PubMed

    Zhang, Dali; Xiong, Wei; Jackson, Michael F; Parkinson, Fiona E

    2016-07-01

    Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5'-nucleotidase activity. Wild-type (CD73(+/+)) and ecto-5'-nucleotidase-deficient (CD73(-/-)) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73(+/+) mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73(+/+) mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg(2+) conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5'-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73(-/-) mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5'-nucleotidase activity. Copyright © 2016 The Author(s).

  12. Ethanol reinforced behavior assessed with a concurrent schedule.

    PubMed

    Roehrs, T A; Samson, H H

    1981-10-01

    Oral ethanol (5% v/v) reinforced responding was studied in three rats using a concurrent fixed ratio (FR) schedule with water available at a second lever. First, concurrent (FR8 FR8) responding on both levers for water presentation was established. Then a concurrent (FR8 FR8) water-ethanol presentation schedule was introduced and a food ration was placed in the chamber at the beginning of the session. Within 12 sessions, ethanol responding developed and within-session feeding was discontinued. When stable concurrent water-ethanol performance was achieved, average ethanol responding was 11 times greater than water responding, even when ethanol availability switched from one level to the other. During the one hour session, in some cases, sufficient ethanol was ingested to produce blood ethanol levels between 30 and 50 mg/100 ml. As the ethanol FR requirement was increased for four sessions each to FR10, 12, 14, 16, 18, 20, 40 and 50, rats continued to respond for ethanol, and in some rats, ethanol preference was maintained even when the ethanol FR was 50 while the water FR remained at 8.

  13. Modeling tools to Account for Ethanol Impacts on BTEX Plumes

    EPA Science Inventory

    Widespread usage of ethanol in gasoline leads to impacts at leak sites which differ from those of non-ethanol gasolines. The presentation reviews current research results on the distribution of gasoline and ethanol, biodegradation, phase separation and cosolvancy. Model results f...

  14. The structure of graphene oxide membranes in liquid water, ethanol and water-ethanol mixtures.

    PubMed

    Talyzin, Alexandr V; Hausmaninger, Tomas; You, Shujie; Szabó, Tamás

    2014-01-07

    The structure of graphene oxide (GO) membranes was studied in situ in liquid solvents using synchrotron radiation X-ray diffraction in a broad temperature interval. GO membranes are hydrated by water similarly to precursor graphite oxide powders but intercalation of alcohols is strongly hindered, which explains why the GO membranes are permeated by water and not by ethanol. Insertion of ethanol into the membrane structure is limited to only one monolayer in the whole studied temperature range, in contrast to precursor graphite oxide powders, which are intercalated with up to two ethanol monolayers (Brodie) and four ethanol monolayers (Hummers). As a result, GO membranes demonstrate the absence of "negative thermal expansion" and phase transitions connected to insertion/de-insertion of alcohols upon temperature variations reported earlier for graphite oxide powders. Therefore, GO membranes are a distinct type of material with unique solvation properties compared to parent graphite oxides even if they are composed of the same graphene oxide flakes.

  15. Delayed ethanol elimination and enhanced susceptibility to ethanol-induced hepatosteatosis after liver resection

    PubMed Central

    Liu, Xu; Hakucho, Ayako; Liu, Jinyao; Fujimiya, Tatsuya

    2014-01-01

    AIM: To investigate ethanol-induced hepatic steatosis after liver resection and the mechanisms behind it. METHODS: First, the preliminary examination was performed on 6 sham-operated (Sham) and 30 partial hepatectomy (PH) male Wistar rats (8-wk-old) to evaluate the recovery of the liver weight and liver function after liver resection. PH rats were sacrificed at the indicated time points (4, 8, and 12 h; 1, 3, and 7 d) after PH. Second, the time point for the beginning of the chronic ethanol exposure (1 wk after sham- or PH-operation) was determined based on the results of the preliminary examination. Finally, pair-feeding was performed with a controlled diet or with a 5-g/dL ethanol liquid diet for 28 d in another 35 age-matched male Wistar rats with a one-week recovery after undergoing a sham- (n = 15) or PH-operation (n = 20) to evaluate the ethanol-induced liver injury after liver resection. Hepatic steatosis, liver function, fatty acid synthase (Fas) gene expression level, the expression of lipid metabolism-associated enzyme regulator genes [sterol regulatory element binding protein (Srebp)-1 and peroxisome proliferator-activated receptor (Ppar)-α], the mediators that alter lipid metabolism [plasminogen activator (Pai)-1 gene expression level and tumor necrosis factor (Tnf)-α production], and hepatic class-1 alcohol dehydrogenase (Adh1)-associated ethanol elimination were investigated in the 4 groups based on histological, immunohistochemical, biochemical, Western blotting, reverse transcriptase chain reaction, and blood ethanol concentration analyses. The relevant gene expression levels, liver weight, and liver function were assessed before and 1 wk after surgery to determine the subject’s recovery from the liver resection using the rats that had been subjected to the preliminary examination. RESULTS: In the PH rats, ethanol induced marked hepatic steatosis with impaired liver functioning, as evidenced by the accumulation of fatty droplets within the

  16. Delayed ethanol elimination and enhanced susceptibility to ethanol-induced hepatosteatosis after liver resection.

    PubMed

    Liu, Xu; Hakucho, Ayako; Liu, Jinyao; Fujimiya, Tatsuya

    2014-12-28

    To investigate ethanol-induced hepatic steatosis after liver resection and the mechanisms behind it. First, the preliminary examination was performed on 6 sham-operated (Sham) and 30 partial hepatectomy (PH) male Wistar rats (8-wk-old) to evaluate the recovery of the liver weight and liver function after liver resection. PH rats were sacrificed at the indicated time points (4, 8, and 12 h; 1, 3, and 7 d) after PH. Second, the time point for the beginning of the chronic ethanol exposure (1 wk after sham- or PH-operation) was determined based on the results of the preliminary examination. Finally, pair-feeding was performed with a controlled diet or with a 5-g/dL ethanol liquid diet for 28 d in another 35 age-matched male Wistar rats with a one-week recovery after undergoing a sham- (n = 15) or PH-operation (n = 20) to evaluate the ethanol-induced liver injury after liver resection. Hepatic steatosis, liver function, fatty acid synthase (Fas) gene expression level, the expression of lipid metabolism-associated enzyme regulator genes [sterol regulatory element binding protein (Srebp)-1 and peroxisome proliferator-activated receptor (Ppar)-α], the mediators that alter lipid metabolism [plasminogen activator (Pai)-1 gene expression level and tumor necrosis factor (Tnf)-α production], and hepatic class-1 alcohol dehydrogenase (Adh1)-associated ethanol elimination were investigated in the 4 groups based on histological, immunohistochemical, biochemical, Western blotting, reverse transcriptase chain reaction, and blood ethanol concentration analyses. The relevant gene expression levels, liver weight, and liver function were assessed before and 1 wk after surgery to determine the subject's recovery from the liver resection using the rats that had been subjected to the preliminary examination. In the PH rats, ethanol induced marked hepatic steatosis with impaired liver functioning, as evidenced by the accumulation of fatty droplets within the hepatocytes, the higher

  17. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, L.O.; Barbosa-Alleyne, M.D.F.

    1999-06-29

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase. 2 figs.

  18. Energy crops for ethanol: a processing perspective

    USDA-ARS?s Scientific Manuscript database

    Global production of bioethanol for fuel is over 13 billions gal per year. Continued expansion of ethanol production will necessitate developing lignocellulose as an alternative to today’s use of starch and sugar producing crops. Dedicated energy crops are one such option. In the U.S., it has bee...

  19. Genes Encoding Enzymes Involved in Ethanol Metabolism

    PubMed Central

    Hurley, Thomas D.; Edenberg, Howard J.

    2012-01-01

    The effects of beverage alcohol (ethanol) on the body are determined largely by the rate at which it and its main breakdown product, acetaldehyde, are metabolized after consumption. The main metabolic pathway for ethanol involves the enzymes alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Seven different ADHs and three different ALDHs that metabolize ethanol have been identified. The genes encoding these enzymes exist in different variants (i.e., alleles), many of which differ by a single DNA building block (i.e., single nucleotide polymorphisms [SNPs]). Some of these SNPs result in enzymes with altered kinetic properties. For example, certain ADH1B and ADH1C variants that are commonly found in East Asian populations lead to more rapid ethanol breakdown and acetaldehyde accumulation in the body. Because acetaldehyde has harmful effects on the body, people carrying these alleles are less likely to drink and have a lower risk of alcohol dependence. Likewise, an ALDH2 variant with reduced activity results in acetaldehyde buildup and also has a protective effect against alcoholism. In addition to affecting drinking behaviors and risk for alcoholism, ADH and ALDH alleles impact the risk for esophageal cancer. PMID:23134050

  20. Yeast metabolic engineering for hemicellulosic ethanol production

    Treesearch

    Jennifer Van Vleet; Thomas W. Jeffries

    2009-01-01

    Efficient fermentation of hemicellulosic sugars is critical for the bioconversion of lignocellulosics to ethanol. Efficient sugar uptake through the heterologous expression of yeast and fungal xylose/glucose transporters can improve fermentation if other metabolic steps are not rate limiting. Rectification of cofactor imbalances through heterologous expression of...

  1. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, L.O.; Barbosa-Alleyne, M.D.F.

    1996-01-09

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase. 2 figs.

  2. Energy crops for ethanol: a processing perspective

    USDA-ARS?s Scientific Manuscript database

    Global production of bioethanol for fuel is over 13 billions gal per year. Continued expansion of ethanol production will necessitate developing lignocellulose as an alternative to today’s use of starch and sugar producing crops. Dedicated energy crops are one such option. In the U.S., it has bee...

  3. Enteric bacterial catalysts for fuel ethanol production

    SciTech Connect

    Ingram, L.O.; Aldrich, H.C.; Borges, A.C.C.

    1999-10-01

    The technology is available to produce fuel ethanol from renewable lignocellulosic biomass. The current challenge is to assemble the various process options into a commercial venture and begin the task of incremental improvement. Current process designs for lignocellulose are far more complex than grain to ethanol processes. This complexity results in part from the complexity of the substrate and the biological limitations of the catalyst. Their work at the University of Florida has focused primarily on the genetic engineering of Enteric bacteria using genes encoding Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase. These two genes have been assembled into a portable ethanol production cassette, the PET operon, and integrated into the chromosome of Escherichia coli B for use with hemicellulose-derived syrups. The resulting strain, KO11, produces ethanol efficiently from all hexose and pentose sugars present in the polymers of hemicellulose. By using the same approach, the authors integrated the PET operon into the chromosome of Klebsiella oxytoca to produce strain P2 for use in the simultaneous saccharification and fermentation (SSF) process for cellulose. Strain P2 has the native ability to ferment cellobiose and cellotriose, eliminating the need for one class of cellulase enzymes.

  4. Metabolic engineering of bacteria for ethanol production

    SciTech Connect

    Ingram, L.O.; Gomez, P.F.; Lai, X.; Moniruzzaman, M.; Wood, B.E.; Yomano, L.P.; York, S.W.

    1998-04-20

    Technologies are available which will allow the conversion of lignocellulose into fuel ethanol using genetically engineered bacteria. Assembling these into a cost-effective process remains a challenge. The authors` work has focused primarily on the genetic engineering of enteric bacteria using a portable ethanol production pathway. Genes encoding Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase have been integrated into the chromosome of Escherichia coli B to produce strain KO11 for the fermentation of hemicellulose-derived syrups. This organism can efficiently ferment all hexose and pentose sugars present in the polymers of hemicellulose. Klebsiella oxytoca M5A1 has been genetically engineered in a similar manner to produce strain P2 for ethanol production from cellulose. This organism has the native ability to ferment cellobiose and cellotriose, eliminating the need for one class of cellulase enzymes. The optimal pH for cellulose fermentation with this organism is near that of fungal cellulases. The general approach for the genetic engineering of new biocatalysts has been most successful with enteric bacteria thus far. However, this approach may also prove useful with gram-positive bacteria which have other important traits for lignocellulose conversion. Many opportunities remain for further improvements in the biomass to ethanol processes.

  5. New neuronal networks involved in ethanol reinforcement.

    PubMed

    Kiianmaa, Kalervo; Hyytiä, Petri; Samson, Herman H; Engel, Jörgen A; Svensson, Lennart; Söderpalm, Bo; Larsson, Anna; Colombo, Giancarlo; Vacca, Giovanni; Finn, Deborah A; Bachtell, Ryan K; Ryabinin, Andrey E

    2003-02-01

    This article represents the proceedings of a symposium at the 2002 ISBRA/RSA meeting in San Francisco. The organizers were Kalervo Kiianmaa and Andrey E. Ryabinin. The chairs were Kalervo Kiianmaa and Jörgen A. Engel. The presentations were (1) The role of opioidergic and dopaminergic networks in ethanol-seeking behavior, by Kalervo Kiianmaa and Petri Hyytiä; (2) Interaction between the dopamine systems in the prefrontal cortex and nucleus accumbens during ethanol self-administration, by Herman H. Samson; (3) Neurochemical and behavioral studies on ethanol and nicotine interactions, by Jörgen A. Engel, Lennart Svensson, Bo Söderpalm, and Anna Larsson; (4) Involvement of the GABA receptor in alcohol reinforcement in sP rats, by Giancarlo Colombo and Giovanni Vacca; (5) Neuroactive steroids and ethanol reinforcement, by Deborah A. Finn, and (6) Potential contribution of the urocortin system to regulation of alcohol self-administration, by Andrey E. Ryabinin and Ryan K. Bachtell.(B)

  6. Small-scale ethanol-production demonstration

    SciTech Connect

    Adcock, L.E. II; Eley, M.H.; Schroer, B.J.

    1981-09-01

    The Johnson Environmental and Energy Center with assistance from the Madison County Farm Bureau Association received a grant from the US Department of Energy to design, fabricate, and evaluate a small scale continuous ethanol plant. The scope of the study was to satisfy four specific objectives. The first objective was to design a small scale continuous distillation unit capable of producing 10 to 15 gallons per hour of 170 to 190 proof ethanol. A second objective was to economically fabricate the distillation unit. A third objective was to thoroughly evaluate the unit with emphasis on production potential, operation considerations, and energy balance. The fourth objective was to work with the Farm Bureau in identifying an organization that would place the unit in a production environment. The results of the study indicate that the distillation unit is capable of producing an average of 9 to 14 gallons per hour (based on alcohol percent in beer) of 174 proof ethanol. The energy ratio for distillation is a positive 3:1. Once the unit has reached steady state very little operator attention is required with the exception of periodically refluxing. Material cost of the plate column is approximately $5000. The unit could be built by an individual provided he is trained in welding and has the necessary shop equipment. The report also contains 7 appendices entitled: Principles of ethanol production; pump manufacturer specifications; boiler manufacturer specifications, water treatment manufacturer specifications; tank specifications; test results; and boiler efficiency data sheets. 39 figures, 112 tables.

  7. Ethanol precipitation for purification of recombinant antibodies.

    PubMed

    Tscheliessnig, Anne; Satzer, Peter; Hammerschmidt, Nikolaus; Schulz, Henk; Helk, Bernhard; Jungbauer, Alois

    2014-10-20

    Currently, the golden standard for the purification of recombinant humanized antibodies (rhAbs) from CHO cell culture is protein A chromatography. However, due to increasing rhAbs titers alternative methods have come into focus. A new strategy for purification of recombinant human antibodies from CHO cell culture supernatant based on cold ethanol precipitation (CEP) and CaCl2 precipitation has been developed. This method is based on the cold ethanol precipitation, the process used for purification of antibodies and other components from blood plasma. We proof the applicability of the developed process for four different antibodies resulting in similar yield and purity as a protein A chromatography based process. This process can be further improved using an anion-exchange chromatography in flowthrough mode e.g. a monolith as last step so that residual host cell protein is reduced to a minimum. Beside the ethanol based process, our data also suggest that ethanol could be replaced with methanol or isopropanol. The process is suited for continuous operation.

  8. Winter barley ethanol - a new advanced biofuel

    USDA-ARS?s Scientific Manuscript database

    The Energy Independence and Security Act (EISA) of 2007 set an ambitious goal for the United States to annually produce and use 36 billion gallons of renewable fuels by 2022. Of this quantity, only 15 billion gallons may come from conventional sources, such as corn ethanol, and the remainder must b...

  9. Characterization of Corn Grains for Ethanol Production

    USDA-ARS?s Scientific Manuscript database

    Objectives of this study were to understand how the composition of corn kernels and starch structure affect enzyme hydrolysis of starch in dry-grind corn and ethanol yield from yeast fermentation. Four selected corn inbred lines were used in this study. Starch in uncooked dry-grind corn samples sh...

  10. Ethanol and blood pressure in rats

    SciTech Connect

    Hatton, D.C.; Edgar, S.; McCarron, D.A. )

    1989-02-09

    Epidemiologists have identified alcohol as a risk factor in hypertension. Attempts to increase blood pressure in rats with chronic alcohol ingestion have met with mixed results. Some investigators have reported increases in blood pressure while others have reported decreases. Most investigators have given alcohol in the drinking water which produced differences in food intake across groups. To control for food intake, Wister rats were simultaneously pair fed a liquid diet with either ethanol as 35% of calories or a control diet using ARF/Israel pair-feeding devices. At 5 weeks of age, animals on ethanol diets had lower systolic blood pressure than control animals (145 (n-19) vs. 121 (n-19) mmHg). There was no difference in weight between ethanol and control animals. The same pattern of results was apparent at 7 weeks (143 (n-13) vs. 119 (n-13) mmHg) and 9 weeks (147 (n-7) vs. 124 (n-7)). The data indicate that ethanol produces hypotension in rats when food intake is controlled.

  11. Ethanol production in gram-positive microbes

    DOEpatents

    Ingram, Lonnie O'Neal; Barbosa-Alleyne, Maria D. F.

    1999-01-01

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  12. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, Lonnie O'Neal; Barbosa-Alleyne, Maria D. F.

    1996-01-01

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  13. Ethanol preexposure increases ethanol self-administration in C57BL/6J and DBA/2J mice.

    PubMed

    Camarini, Rosana; Hodge, Clyde W

    2004-12-01

    Genetic variables are thought to interact with environmental factors, such as alcohol exposure history, to produce individual differences in alcohol abuse and alcoholism. The objective of this study was to test the potential interaction between genetic predisposition to consume alcohol and alcohol pretreatment on subsequent self-administration. To accomplish this goal, four groups of mice from the ethanol-avoiding DBA/2J (D2) and ethanol-preferring C57BL/6J (B6) inbred strains were exposed to saline, acute ethanol (2 g/kg), or chronic intermittent ethanol (1 or 2 g/kg) intraperitoneal (i.p.) injections. Locomotor activity was monitored after each injection. After preexposure, animals were given a two-bottle choice test with various concentrations of ethanol/sucrose vs. sucrose or ethanol vs. water for 4 days at each concentration. Then, all animals were challenged with a 2.0 g/kg ethanol i.p. injection and locomotor activity was assessed. Acute and chronic ethanol pretreatment increased locomotor activity in response to a challenge dose of ethanol (2 g/kg) in D2 mice but had no effect on B6 mice. Prior exposure to ethanol altered the amount of ethanol consumed in a mouse strain-dependent manner. D2 mice showed a positive relationship between ethanol intake and dose or duration of ethanol preexposure. B6 mice preexposed to ethanol consumed more ethanol than naive animals, independent of dose or duration of exposure. During the last phase of self-administration testing, D2 mice exposed to chronic ethanol (2 g/kg) consumed as much ethanol as B6 from the same pretreatment condition. After a history of ethanol self-administration, saline control mice from the D2 strain showed equal locomotor activation as compared to D2 mice that were pretreated with ethanol injections. B6 mice showed no change in locomotor activity after ethanol self-administration or injection. These results demonstrate that genetic predisposition to avoid alcohol (D2 mice) can be modified by a

  14. Size Distribution and Velocity of Ethanol Drops in a Rocket Combustor Burning Ethanol and Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1961-01-01

    Single jets of ethanol were studied photomicrographically inside a rocket chamber as they broke up into sprays of drops which underwent simultaneous acceleration and vaporization with chemical reaction occurring in the surrounding combustion gas stream. In each rocket test-firing, liquid oxygen was used as the oxidant. Both drop velocity and drop size distribution data were obtained from photomicrographs of the ethanol drops taken with an ultra-high speed tracking camera developed at NASA, Lewis Research Center.

  15. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol

    DOEpatents

    Brown, Steven; Guss, Adam; Yang, Shihui; Karpinets, Tatiana; Lynd, Lee; Shao, Xiongjun

    2014-01-14

    The present invention provides isolated nucleic acid molecules which encode a mutant acetaldehyde-CoA/alcohol dehydrogenase or mutant alcohol dehydrogenase and confer enhanced tolerance to ethanol. The invention also provides related expression vectors, genetically engineered microorganisms having enhanced tolerance to ethanol, as well as methods of making and using such genetically modified microorganisms for production of biofuels based on fermentation of biomass materials.

  16. Isothermal vapor-liquid equilibria for methanol + ethanol + water, methanol + water, and ethanol + water

    SciTech Connect

    Kurihara, Kiyofumi; Takeda, Kouichi; Kojima, Kazuo; Minoura, Tsuyoshi

    1995-05-01

    Isothermal vapor-liquid equilibria were measured for the ternary system methanol + ethanol + water and its constituent binary systems of methanol + water and ethanol + water at 323.15, 328.15, and 333.15 K. The apparatus that was used made it possible to control the measured temperature and total pressure by computer. The experimental binary data were correlated by the NRTL equation. The ternary system was predicted using the binary NRTL parameters with good accuracy.

  17. Rising taurine and ethanol concentrations in nucleus accumbens interact to produce dopamine release after ethanol administration.

    PubMed

    Ericson, Mia; Chau, PeiPei; Clarke, Rhona B; Adermark, Louise; Söderpalm, Bo

    2011-07-01

    We have previously demonstrated that glycine receptors in the nucleus accumbens (nAc) are involved in modulating both basal and ethanol-induced dopamine output in the same brain region. Ethanol is known to induce a release of both taurine and dopamine in the nAc, but the relationship between these two neuromodulators has not been investigated thoroughly. In vivo microdialysis was used to measure the effects of systemic ethanol diluted in isotonic (0.9% NaCl) or hypertonic (3.6% NaCl) saline on accumbal taurine and dopamine levels. We found that ethanol given in a hypertonic solution, contrary to an isotonic solution, failed to increase concentrations both of taurine and dopamine in the nAc. However, a modest, non-dopamine elevating concentration of taurine in the nAc disclosed a dopamine-elevating effect of systemic ethanol also when given in a hypertonic solution. In a second experiment, we investigated the effects of ethanol on taurine and dopamine in normal rats and rats with decreased levels of endogenous taurine. Lowering the level of taurine, approximately 40% by adding 5% β-alanine in the drinking water, did not influence taurine or dopamine output over time. We conclude that the elevations of taurine and dopamine in the nAc are closely related, and that in order for ethanol to induce dopamine release, a simultaneous increase of extracellular taurine levels in the nAc is required. These data also provide support for the notion that the nAc is the primary target for ethanol in its dopamine-activating effect after systemic administration.

  18. Effects of ethanol exposure in a familiar or isolated context during infancy on ethanol intake during adolescence.

    PubMed

    Miranda-Morales, Roberto Sebastián; Haymal, Beatriz; Pautassi, Ricardo M

    2016-12-01

    Early exposure to ethanol affects ethanol intake later in life. This early experience encompasses exposure to social stimuli and the pharmacological and orosensory properties of ethanol. The specific contribution of each type of stimulus to subsequent ethanol intake remains unknown. We assessed the intake of various concentrations of ethanol in a familiar or isolated context during infancy and the lingering effects of this experience on ethanol intake during adolescence. On postnatal day 3 (PD3), PD7, and PD11, rats were given 5% ethanol or water in a nursing or isolated context (Experiments 1 and 2). Intake tests (ethanol vs. water) were conducted during adolescence. Experiment 2 matched the amount of fluid ingested during infancy in both contexts and subsequently tested ethanol consumption during adolescence. The results revealed a facilitative effect of the nursing context on fluid intake during the tests in infancy. Pups stimulated with ethanol but not water in the isolated context exhibited an increase in ethanol consumption during adolescence. This effect disappeared when the isolated infants were matched to receive the same amount of ethanol ingested by their nursed counterparts. In Experiment 3, isolated infant rats were exposed to different ethanol concentrations (.0%, 2.5%, 5.0%, and 10.0%), and drug consumption was tested during adolescence. This exposure increased adolescent ethanol intake, regardless of the alcohol concentration (Experiment 3). The common denominators that resulted in enhanced ethanol intake during adolescence were preexposure to ethanol via active consumption of the drug that induced a low-to-moderate level of intoxication in an isolated context.

  19. Saccharification and ethanol fermentation of apple pomace

    SciTech Connect

    Miller, J.E.; Weathers, P.J.; McConville, F.X.; Goldberg, M.

    1982-01-01

    Apple pomace (the pulp residue from pressing apple juice) is an abundant waste product and presents an expensive disposal problem. A typical (50,000 gal. juice/day) apple juice company in central Massachusetts produces 100 tons of pomace per day. Some of it is used as pig feed, but it is poor quality feed because of its low protein content. Most of the pomace is hauled away (at a cost of $4/ton) and landfilled (at a cost of $10/ton). If 5% (w/w) conversion of pomace to ethanol could be achieved, the need for this company to purchase No. 6 fuel oil (1000 gal/day) for cooking during processing would be eliminated. Our approach was to saccharify the pomace enzymatically, and then to carry out a yeast fermentation on the hydrolysate. We chose to use enzymatic hydrolysis instead of dilute acid hydrolysis in order to minimize pH control problems both in the fermentation phase and in the residue. The only chemical studies have concerned small subfractions of apple material: for example, cell walls have been analyzed but they constitute only 1 to 2% of the fresh weight of the apple (about 15 to 30% of the pomace fraction). Therefore, our major problems were: (1) to optimize hydrolysis by enzyme mixtures, using weight loss and ultimate ethanol production as optimization criteria; (2) to optimize ethanol production from the hydrolysate by judicious choice of yeast strains and fermentation conditions; and (3) achieve these optimizations consistent with minimum processing cost and energy input. We have obtained up to 5.1% (w/w) of ethanol without saccharification. We show here that hydrolysis with high levels of enzyme can enhance ethanol yield by up to 27%, to a maximum level of 6% (w/w); however, enzyme treament may be cost-effective only a low levels, for improvement of residue compaction. 3 figures, 4 tables.

  20. Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation.

    PubMed

    Sun, Zhao-Yong; Tang, Yue-Qin; Iwanaga, Tomohiro; Sho, Tomohiro; Kida, Kenji

    2011-12-01

    An efficient process for the production of fuel ethanol from bamboo that consisted of hydrolysis with concentrated sulfuric acid, removal of color compounds, separation of acid and sugar, hydrolysis of oligosaccharides and subsequent continuous ethanol fermentation was developed. The highest sugar recovery efficiency was 81.6% when concentrated sulfuric acid hydrolysis was carried out under the optimum conditions. Continuous separation of acid from the saccharified liquid after removal of color compounds with activated carbon was conducted using an improved simulated moving bed (ISMB) system, and 98.4% of sugar and 90.5% of acid were recovered. After oligosaccharide hydrolysis and pH adjustment, the unsterilized saccharified liquid was subjected to continuous ethanol fermentation using Saccharomycescerevisiae strain KF-7. The ethanol concentration, the fermentation yield based on glucose and the ethanol productivity were approximately 27.2 g/l, 92.0% and 8.2 g/l/h, respectively. These results suggest that the process is effective for production of fuel ethanol from bamboo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Problem solving following neonatal exposure to cocaine, ethanol, or cocaine/ethanol in combination in rats.

    PubMed

    Barron, S; Hansen-Trench, L; Kaiser, D H; Segar, T M

    1996-01-01

    This study examined the effects of neonatal drug exposure on performance in a digging maze. Subjects were Sprague-Dawley rats, artificially reared (AR) and fed through a gastrostomy tube from postnatal days (PND) 4-10. The AR groups included a cocaine group (20 mg/kg/day cocaine hydrochloride), an ethanol group (4 g/kg/day ethanol), a cocaine/ethanol group (20 mg/kg/day cocaine and 4 g/kg/day ethanol), and an AR control group. A suckled control raised by its dam was also included. At approximately PND 55, subjects were tested in a digging maze paradigm. The digging maze required subjects to use a species typical behavior (digging) to solve a novel problem (gaining access to water). While neonatal treatment had no effect on acquisition of a simple runway task for water reward, neonatal exposure to cocaine and ethanol in combination resulted in impaired performance on the digging maze task. None of the other neonatal treatment groups showed impairments on this task. These findings suggest that exposure to these doses of cocaine and ethanol during neonatal development may have more serious effects on problem solving tasks in rats than exposure to either drug alone.

  2. Thermodynamic analysis of fuels in gas phase: ethanol, gasoline and ethanol - gasoline predicted by DFT method.

    PubMed

    Neto, A F G; Lopes, F S; Carvalho, E V; Huda, M N; Neto, A M J C; Machado, N T

    2015-10-01

    This paper presents a theoretical study using density functional theory to calculate thermodynamics properties of major molecules compounds at gas phase of fuels like gasoline, ethanol, and gasoline-ethanol mixture in thermal equilibrium on temperature range up to 1500 K. We simulated a composition of gasoline mixture with ethanol for a thorough study of thermal energy, enthalpy, Gibbs free energy, entropy, heat capacity at constant pressure with respect to temperature in order to study the influence caused by ethanol as an additive to gasoline. We used semi-empirical computational methods as well in order to know the efficiency of other methods to simulate fuels through this methodology. In addition, the ethanol influence through the changes in percentage fractions of chemical energy released in combustion reaction and the variations on thermal properties for autoignition temperatures of fuels was analyzed. We verified how ethanol reduces the chemical energy released by gasoline combustion and how at low temperatures the gas phase fuels in thermal equilibrium have similar thermodynamic behavior. Theoretical results were compared with experimental data, when available, and showed agreement. Graphical Abstract Thermodynamic analysis of fuels in gas phase.

  3. The effect of gestational ethanol exposure on voluntary ethanol intake in early postnatal and adult rats.

    PubMed

    Youngentob, Steven L; Molina, Juan C; Spear, Norman E; Youngentob, Lisa M

    2007-12-01

    Clinical and epidemiological studies provide strong data for a relationship between prenatal ethanol exposure and the risk for abuse in adolescent and young adult humans. However, drug-acceptance results in response to fetal exposure have differed by study, age at evaluation, and experimental animal. In the present study, the authors tested whether voluntary ethanol intake was enhanced in both the infantile and adult rat (15 and 90 days of age, respectively), as a consequence of chronic fetal drug experience. Experimental rats were exposed in utero by administering ethanol to a pregnant dam in a liquid diet during gestational Days 6-20. Compared with those for isocaloric pair-fed and ad lib chow control animals, the results for experimental animals demonstrated that fetal exposure significantly increased infantile affinity for ethanol ingestion without affecting intake patterns of an alternative fluid (water). Heightened affinity for ethanol was absent in adulthood. Moreover, the results argue against malnutrition as a principal factor underlying the infantile phenomenon. These data add to a growing literature indicative of heightened early postnatal acceptance patterns resulting from maternal use or abuse of ethanol during pregnancy.

  4. Evaporation of ethanol and ethanol-water mixtures studied by time-resolved infrared spectroscopy.

    PubMed

    Innocenzi, Plinio; Malfatti, Luca; Costacurta, Stefano; Kidchob, Tongjit; Piccinini, Massimo; Marcelli, Augusto

    2008-07-24

    The knowledge of the physics and the chemistry behind the evaporation of solvents is very important for the development of several technologies, especially in the fabrication of thin films from liquid phase and the organization of nanostructures by evaporation-induced self-assembly. Ethanol, in particular, is one of the most common solvents in sol-gel and evaporation-induced self-assembly processing of thin films, and a detailed understanding of its role during these processes is of fundamental importance. Rapid scan time-resolved infrared spectroscopy has been applied to study in situ the evaporation of ethanol and ethanol-water droplets on a ZnSe substrate. Whereas the evaporation rate of ethanol remains constant during the process, water is adsorbed by the ethanol droplet from the external environment and evaporates in three stages that are characterized by different evaporation rates. The adsorption and evaporation process of water in an ethanol droplet has been observed to follow a complex behavior: due to this reason, it has been analyzed by two-dimensional infrared correlation. Three different components in the water bending band have been resolved.

  5. Characteristics of ethanol-induced behavioral sensitization in rats: Molecular mediators and cross-sensitization between ethanol and cocaine.

    PubMed

    Xu, Shijie; Kang, Ung Gu

    2017-09-01

    Repeated exposure to drugs of abuse can induce a progressive increase in locomotor activity, known as behavioral sensitization. However, little is known about behavioral sensitization to ethanol. We examined whether ethanol could induce behavioral sensitization and investigated several molecular changes accompanying sensitization. We also assessed whether "cross-sensitization" occurred between ethanol and cocaine, another abused drug. Ethanol-induced sensitization was examined in rats after ethanol treatment (0.5 or 2g/kg) for 15days. The biochemical effects of low- or high-dose ethanol were examined in terms of N-methyl-d-aspartate (NMDA) receptor subunit phosphorylation or expression. Neuronal activity after ethanol treatment was assessed by measuring the level of early growth response (Egr-1) expression. Ethanol-induced behavioral sensitization was observed at the low dose (0.5g/kg) but not the high dose (2g/kg). Although acute treatment with the sensitizing dose of ethanol robustly increased Egr-1 protein and mRNA levels, the expression and phosphorylation of NMDA receptor subunits were not affected. The biochemical responses to ethanol seemed to be enhanced in ethanol-sensitized animals. Cross-sensitization between ethanol and cocaine was observed, which supports the hypothesis that there are commonalities among substances in the pathophysiology of substance dependence. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Ethanol-induced leakage in Saccharomyces cerevisiae: kinetics and relationship to yeast ethanol tolerance and alcohol fermentation productivity

    SciTech Connect

    Salgueiro, S.P.; Sa-Correia, I.; Novais, J.M.

    1988-04-01

    Ethanol stimulated the leakage of amino acids and 260-nm-light-absorbing compounds from cells of Saccharomyces cerevisiae. The efflux followed first-order kinetics over an initial period. In the presence of lethal concentrations of ethanol, the efflux rates at 30 and 36/sup 0/C were an exponential function of ethanol concentration. At 36/sup 0/C, as compared with the corresponding values at 30/sup 0/C, the efflux rates were higher and the minimal concentration of ethanol was lower. The exponential constants for the enhancement of the rate of leakage had similar values at 30 or 36/sup 0/C and were of the same order of magnitude as the corresponding exponential constants for ethanol-induced death. Under isothermic conditions (30/sup 0/C) and up to 22% (vol/vol) ethanol, the resistance to ethanol-induced leakage of 260-nm-light-absorbing compounds was found to be closely related with the ethanol tolerance of three strains of yeasts, Kluyveromyces marxianus, Saccharomyces cerevisiae, and Saccharomyces bayanus. The resistance to ethanol-induced leakage indicates the possible adoption of the present method for the rapid screening of ethanol-tolerant strains. The addition to a fermentation medium of the intracellular material obtained by ethanol permeabilization of yeast cells led to improvements in alcohol fermentation by S. cerevisiae and S. bayanus. The action of the intracellular material, by improving yeast ethanol tolerance, and the advantages of partially recycling the fermented medium after distillation were discussed.

  7. Transcriptome profiling of Zymomonas mobilis under ethanol stress

    PubMed Central

    2012-01-01

    Background High tolerance to ethanol is a desirable characteristics for ethanologenic strains used in industrial ethanol fermentation. A deeper understanding of the molecular mechanisms underlying ethanologenic strains tolerance of ethanol stress may guide the design of rational strategies to increase process performance in industrial alcoholic production. Many extensive studies have been performed in Saccharomyces cerevisiae and Escherichia coli. However, the physiological basis and genetic mechanisms involved in ethanol tolerance for Zymomonas mobilis are poorly understood on genomic level. To identify the genes required for tolerance to ethanol, microarray technology was used to investigate the transcriptome profiling of the ethanologenic Z. mobilis in response to ethanol stress. Results We successfully identified 127 genes which were differentially expressed in response to ethanol. Ethanol up- or down-regulated genes related to cell wall/membrane biogenesis, metabolism, and transcription. These genes were classified as being involved in a wide range of cellular processes including carbohydrate metabolism, cell wall/membrane biogenesis, respiratory chain, terpenoid biosynthesis, DNA replication, DNA recombination, DNA repair, transport, transcriptional regulation, some universal stress response, etc. Conclusion In this study, genome-wide transcriptional responses to ethanol were investigated for the first time in Z. mobilis using microarray analysis.Our results revealed that ethanol had effects on multiple aspects of cellular metabolism at the transcriptional level and that membrane might play important roles in response to ethanol. Although the molecular mechanism involved in tolerance and adaptation of ethanologenic strains to ethanol is still unclear, this research has provided insights into molecular response to ethanol in Z. mobilis. These data will also be helpful to construct more ethanol resistant strains for cellulosic ethanol production in the future

  8. Ethanol Cellular Defense Induce Unfolded Protein Response in Yeast

    PubMed Central

    Pérez-Torrado, Roberto

    2016-01-01

    Ethanol is a valuable industrial product and a common metabolite used by many cell types. However, this molecule produces high levels of cytotoxicity affecting cellular performance at several levels. In the presence of ethanol, cells must adjust some of their components, such as the membrane lipids to maintain homeostasis. In the case of microorganism as Saccharomyces cerevisiae, ethanol is one of the principal products of their metabolism and is the main stress factor during fermentation. Although, many efforts have been made, mechanisms of ethanol tolerance are not fully understood and very little evidence is available to date for specific signaling by ethanol in the cell. This work studied two S. cerevisiae strains, CECT10094, and Temohaya-MI26, isolated from flor wine and agave fermentation (a traditional fermentation from Mexico) respectively, which differ in ethanol tolerance, in order to understand the molecular mechanisms underlying the ethanol stress response and the reasons for different ethanol tolerance. The transcriptome was analyzed after ethanol stress and, among others, an increased activation of genes related with the unfolded protein response (UPR) and its transcription factor, Hac1p, was observed in the tolerant strain CECT10094. We observed that this strain also resist more UPR agents than Temohaya-MI26 and the UPR-ethanol stress correlation was corroborated observing growth of 15 more strains and discarding UPR correlation with other stresses as thermal or oxidative stress. Furthermore, higher activation of UPR pathway in the tolerant strain CECT10094 was observed using a UPR mCherry reporter. Finally, we observed UPR activation in response to ethanol stress in other S. cerevisiae ethanol tolerant strains as the wine strains T73 and EC1118. This work demonstrates that the UPR pathway is activated under ethanol stress occurring in a standard fermentation and links this response to an enhanced ethanol tolerance. Thus, our data suggest that there

  9. Denatured ethanol release into gasoline residuals, Part 1: source behaviour.

    PubMed

    Freitas, Juliana G; Barker, James F

    2013-05-01

    With the increasing use of ethanol in fuels, it is important to evaluate its fate when released into the environment. While ethanol is less toxic than other organic compounds present in fuels, one of the concerns is the impact ethanol might have on the fate of gasoline hydrocarbons in groundwater. One possible concern is the spill of denatured ethanol (E95: ethanol containing 5% denaturants, usually hydrocarbons) in sites with pre-existing gasoline contamination. In that scenario, ethanol is expected to increase the mobility of the NAPL phase by acting as a cosolvent and decreasing interfacial tension. To evaluate the E95 behaviour and its impacts on pre-existing gasoline, a field test was performed at the CFB-Borden aquifer. Initially gasoline contamination was created releasing 200 L of E10 (gasoline with 10% ethanol) into the unsaturated zone. One year later, 184 L of E95 was released on top of the gasoline contamination. The site was monitored using soil cores, multilevel wells and one glass access tube. At the end of the test, the source zone was excavated and the compounds remaining were quantified. E95 ethanol accumulated and remained within the capillary fringe and unsaturated zone for more than 200 days, despite ~1m oscillations in the water table. The gasoline mobility increased and it was redistributed in the source zone. Gasoline NAPL saturations in the soil increased two fold in the source zone. However, water table oscillations caused a separation between the NAPL and ethanol: NAPL was smeared and remained in deeper positions while ethanol moved upwards following the water table rise. Similarly, the E95 denaturants that initially were within the ethanol-rich phase became separated from ethanol after the water table oscillation, remaining below the ethanol rich zone. The separation between ethanol and hydrocarbons in the source after water table oscillation indicates that ethanol's impact on hydrocarbon residuals is likely limited to early times

  10. Transcriptome profiling of Zymomonas mobilis under ethanol stress.

    PubMed

    He, Ming-Xiong; Wu, Bo; Shui, Zong-Xia; Hu, Qi-Chun; Wang, Wen-Guo; Tan, Fu-Rong; Tang, Xiao-Yu; Zhu, Qi-Li; Pan, Ke; Li, Qing; Su, Xiao-Hong

    2012-10-11

    High tolerance to ethanol is a desirable characteristics for ethanologenic strains used in industrial ethanol fermentation. A deeper understanding of the molecular mechanisms underlying ethanologenic strains tolerance of ethanol stress may guide the design of rational strategies to increase process performance in industrial alcoholic production. Many extensive studies have been performed in Saccharomyces cerevisiae and Escherichia coli. However, the physiological basis and genetic mechanisms involved in ethanol tolerance for Zymomonas mobilis are poorly understood on genomic level. To identify the genes required for tolerance to ethanol, microarray technology was used to investigate the transcriptome profiling of the ethanologenic Z. mobilis in response to ethanol stress. We successfully identified 127 genes which were differentially expressed in response to ethanol. Ethanol up- or down-regulated genes related to cell wall/membrane biogenesis, metabolism, and transcription. These genes were classified as being involved in a wide range of cellular processes including carbohydrate metabolism, cell wall/membrane biogenesis, respiratory chain, terpenoid biosynthesis, DNA replication, DNA recombination, DNA repair, transport, transcriptional regulation, some universal stress response, etc. In this study, genome-wide transcriptional responses to ethanol were investigated for the first time in Z. mobilis using microarray analysis.Our results revealed that ethanol had effects on multiple aspects of cellular metabolism at the transcriptional level and that membrane might play important roles in response to ethanol. Although the molecular mechanism involved in tolerance and adaptation of ethanologenic strains to ethanol is still unclear, this research has provided insights into molecular response to ethanol in Z. mobilis. These data will also be helpful to construct more ethanol resistant strains for cellulosic ethanol production in the future.

  11. What Do We Know About Ethanol and Alkylates as Pollutants?

    SciTech Connect

    Rich, D W; Marchetti, A A; Buscheck, T; Layton, D W

    2001-05-11

    Gov. Davis issued Executive Order D-5-99 in March 1999 calling for removal of methyl tertiary butyl ether (MTBE) from gasoline no later than December 31, 2002. The Executive Order required the California Air Board, State Water Resources Control Board (SWRCB) and Office of Environmental Health Hazard Assessment (OEHHA) to prepare an analysis of potential impacts and health risks that may be associated with the use of ethanol as a fuel oxygenate. The SWRCB contracted with the Lawrence Livermore National Laboratory (LLNL) to lead a team of researchers, including scientists from Clarkson University, University of Iowa, and University of California, Davis, in evaluating the potential ground and surface water impacts that may occur if ethanol is used to replace MTBE. These findings are reported in the document entitled Health and Environmental Assessment of the Use of Ethanol as a Fuel Oxygenate. This document has been peer reviewed and presented to the California Environmental Policy Council and may be viewed at: http://www-erd.llnl.gov/ethanol/. Ethanol used for fuels is made primarily from grains, but any feed stock containing sugar, starch, or cellulose can be fermented to ethanol. Ethanol contains 34.7% oxygen by weight. It is less dense than water, but infinitely soluble in water. Ethanol vapors are denser than air. One and a half gallons of ethanol have the same energy as one gallon of gasoline. Pure fuel ethanol, and gasoline with ethanol, conducts electricity, while gasoline without ethanol is an insulator. Corrosion and compatibility of materials is an issue with the storage of pure ethanol and gasoline with high percentages of ethanol, but these issues are less important if gasoline with less than 10% ethanol is used.

  12. Acute ethanol suppresses glutamatergic neurotransmission through endocannabinoids in hippocampal neurons.

    PubMed

    Basavarajappa, Balapal S; Ninan, Ipe; Arancio, Ottavio

    2008-11-01

    Ethanol exposure during fetal development is a leading cause of long-term cognitive impairments. Studies suggest that ethanol exposure have deleterious effects on the hippocampus, a brain region that is important for learning and memory. Ethanol exerts its effects, in part, via alterations in glutamatergic neurotransmission, which is critical for the maturation of neuronal circuits during development. The current literature strongly supports the growing evidence that ethanol inhibits glutamate release in the neonatal CA1 hippocampal region. However, the exact molecular mechanism responsible for this effect is not well understood. In this study, we show that ethanol enhances endocannabinoid (EC) levels in cultured hippocampal neurons, possibly through calcium pathways. Acute ethanol depresses miniature post-synaptic current (mEPSC) frequencies without affecting their amplitude. This suggests that ethanol inhibits glutamate release. The CB1 receptors (CB1Rs) present on pre-synaptic neurons are not altered by acute ethanol. The CB1R antagonist SR 141716A reverses ethanol-induced depression of mEPSC frequency. Drugs that are known to enhance the in vivo function of ECs occlude ethanol effects on mEPSC frequency. Chelation of post-synaptic calcium by EGTA antagonizes ethanol-induced depression of mEPSC frequency. The activation of CB1R with the selective agonist WIN55,212-2 also suppresses the mEPSC frequency. This WIN55,212-2 effect is similar to the ethanol effects and is reversed by SR141716A. In addition, tetani-induced excitatory post-synaptic currents (EPSCs) are depressed by acute ethanol. SR141716A significantly reverses ethanol effects on evoked EPSC amplitude in a dual recording preparation. These observations, taken together, suggest the participation of ECs as retrograde messengers in the ethanol-induced depression of synaptic activities.

  13. Recent Advances in Catalytic Conversion of Ethanol to Chemicals

    SciTech Connect

    Sun, Junming; Wang, Yong

    2014-04-30

    With increased availability and decreased cost, ethanol is potentially a promising platform molecule for the production of a variety of value-added chemicals. In this review, we provide a detailed summary of recent advances in catalytic conversion of ethanol to a wide range of chemicals and fuels. We particularly focus on catalyst advances and fundamental understanding of reaction mechanisms involved in ethanol steam reforming (ESR) to produce hydrogen, ethanol conversion to hydrocarbons ranging from light olefins to longer chain alkenes/alkanes and aromatics, and ethanol conversion to other oxygenates including 1-butanol, acetaldehyde, acetone, diethyl ether, and ethyl acetate.

  14. Stabilization of Homeostasis in Rats during Cold Exposure with Ethanol.

    PubMed

    Kolosova, O N; Kershengolts, B M

    2016-01-01

    The role of ethanol metabolism system in adaptation of laboratory animals to cold temperatures was shown. Cold stress (1-2°C) modeled in male Wistar rats over 7 weeks significantly modulated endogenous ethanol metabolism and led to reorganization of many physiological systems, which resulted in activation of metabolic processes. Under these conditions, endogenous ethanol was utilized as the most easily and fast metabolized energy substrate, due to which its blood concentration decreased and was replenished at the expense of exogenous ethanol. Normalization of blood ethanol concentration led to better adaptation to cold.

  15. NREL Proves Cellulosic Ethanol Can Be Cost Competitive (Fact Sheet)

    SciTech Connect

    Not Available

    2013-11-01

    Ethanol from non-food sources - known as "cellulosic ethanol" - is a near-perfect transportation fuel: it is clean, domestic, abundant, and renewable, and it can potentially replace 30% of the petroleum consumed in the United States, but its relatively high cost has limited its market. That changed in 2012, when the National Renewable Energy Laboratory (NREL) demonstrated the technical advances needed to produce cellulosic ethanol at a minimum ethanol selling price of $2.15/gallon (in 2007 dollars). Through a multi-year research project involving private industry, NREL has proven that cellulosic ethanol can be cost competitive with other transportation fuels.

  16. Low energy process of producing gasoline-ethanol mixtures

    SciTech Connect

    Kyle, B.G.

    1981-10-27

    Gasoline-ethanol mixtures useable as motor fuel are produced by a relatively low energy process comprising interrelated distillation and extraction steps. In the first step, aqueous ethanol, such as an ethanol fermentation beer, is subjected to fractional distillation to produce a distillate of at least 75 weight percent ethanol, which is then subjected to extraction with gasoline under conditions producing an extract containing the desired amount of ethanol, such as 8 to 14% by weight. The aqueous phase raffinate from the extraction is returned to the fractionation column for redistillation.

  17. Participation of thiamin in hepatic microsomal ethanol oxidizing system.

    PubMed

    Takabe, M; Itokawa, Y

    1982-01-01

    In order to assess the role of thiamin on ethanol metabolism, changes in the activity of hepatic microsomal ethanol oxidizing system (MEOS) were measured in rats fed thiamin deficient diet for 4-6 weeks. In thiamin deficient rats, the activity of hepatic MEOS was significantly decreased as compared with control rats. In vitro addition of thiamin or thiamin pyrophosphate (TPP) caused the restoration of the decreased MEOS activity, and this effect was dependent on the concentration of thiamin in rat liver microsomal fraction. Thus, thiamin partly involves in the oxidation of ethanol, and chronic thiamin deficiency predisposes to impair the ethanol oxidation, and consequently to increase the toxicity due to ethanol.

  18. How do yeast cells become tolerant to high ethanol concentrations?

    PubMed

    Snoek, Tim; Verstrepen, Kevin J; Voordeckers, Karin

    2016-08-01

    The brewer's yeast Saccharomyces cerevisiae displays a much higher ethanol tolerance compared to most other organisms, and it is therefore commonly used for the industrial production of bioethanol and alcoholic beverages. However, the genetic determinants underlying this yeast's exceptional ethanol tolerance have proven difficult to elucidate. In this perspective, we discuss how different types of experiments have contributed to our understanding of the toxic effects of ethanol and the mechanisms and complex genetics underlying ethanol tolerance. In a second part, we summarize the different routes and challenges involved in obtaining superior industrial yeasts with improved ethanol tolerance.

  19. Ethanol production from xylose by enzymic isomerization and yeast fermentation

    SciTech Connect

    Chiang, L.C.; Hsiao, H.Y.; Ueng, P.P.; Chen, L.F.; Tsao, G.T.

    1981-01-01

    Repetitive enzymic isomerization of xylose followed by yeast fermentation of xylulose, and simultaneous enzymic isomerization and yeast fermentation were proven to be methods capable of converting xylose to ethanol. The fermentation product, ethanol, xylitol, or glycerol, has little inhibitory or deactivation effect on the activity of isomerase. In a comparison of the ability of yeasts to ferment xylulose to ethanol, Schizosaccharomyces pombe was found to be superior to industrial bakers' yeast. Under optimal conditions (pH 6, temperature 30/sup 0/C), a final ethanol concentration of 6.3 wt.% was obtained from simulated hemicellulose hydrolysate using a simultaneous fermentation process. The ethanol yield was over 80% of the theoretical value.

  20. Ultrastructural changes of Saccharomyces cerevisiae in response to ethanol stress.

    PubMed

    Ma, Manli; Han, Pei; Zhang, Ruimin; Li, Hao

    2013-09-01

    In the fermentative process using Saccharomyces cerevisiae to produce bioethanol, the performance of cells is often compromised by the accumulation of ethanol. However, the mechanism of how S. cerevisiae responds against ethanol stress remains elusive. In the current study, S. cerevisiae cells were cultured in YPD (yeast extract - peptone - dextrose) medium containing various concentrations of ethanol (0%, 2.5%, 5%, 7.5%, 10%, and 15% (v/v)). Compared with the control group without ethanol, the mean cell volume of S. cerevisiae decreased significantly in the presence of 7.5% and 10% ethanol after incubation for 16 h (P < 0.05), and in the presence of 15% ethanol at all 3 sampling time points (1, 8, and 16 h) (P < 0.05). The exposure of S. cerevisiae cells to ethanol also led to an increase in malonyldialdehyde content (P < 0.05) and a decrease in sulfhydryl group content (P < 0.05). Moreover, the observations through transmission electron microscopy enabled us to relate ultrastructural changes elicited by ethanol with the cellular stress physiology. Under ethanol stress, the integrity of the cell membrane was compromised. The swelling or distortion of mitochondria together with the occurrence of a single and large vacuole was correlated with the addition of ethanol. These results suggested that the cell membrane is one of the targets of ethanol, and the degeneration of mitochondria promoted the accumulation of intracellular reactive oxygen species.

  1. Contribution of the stomach to ethanol oxidation in the rat

    SciTech Connect

    Caballeria, J.; Baraona, E.; Lieber, C.S.

    1987-08-24

    To estimate the amount of ethanol that can be oxidized in the stomach, steady-state conditions were created in a group of fed rats by giving a loading dose of ethanol (2 g/kg body wt I.V.) followed by continuous infusion either intravenously or intragastrically. The rate of ethanol oxidation was calculated from the rate of infusion required to maintain steady blood levels of approximately 30 mM for at least 3 hours. Gastrointestinal ethanol concentrations and total contents also remained steady. The rate of ethanol oxidation was 19.3% faster during intragastric than during intravenous infusion (p<0.01). When measured at the prevailing luminal ethanol concentration (145 mM) and expressed per body weight, the gastric ADH activity represented 14% of the hepatic activity at 30 mM ethanol, suggesting that gastric ADH activity could account for most of the increased rate of oxidation when ethanol is given intragastrically. Thus, gastric ethanol oxidation by a high Km ADH in the rat represents a significant fraction of the total rate of ethanol oxidation and it is therefore one of the factors which determines the bioavailability of orally administered ethanol. 22 references, 1 figure, 2 tables.

  2. Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae.

    PubMed

    Ohta, Erika; Nakayama, Yasumune; Mukai, Yukio; Bamba, Takeshi; Fukusaki, Eiichiro

    2016-04-01

    The budding yeast Saccharomyces cerevisiae is widely used for brewing and ethanol production. The ethanol sensitivity of yeast cells is still a serious problem during ethanol fermentation, and a variety of genetic approaches (e.g., random mutant screening under selective pressure of ethanol) have been developed to improve ethanol tolerance. In this study, we developed a strategy for improving ethanol tolerance of yeast cells based on metabolomics as a high-resolution quantitative phenotypic analysis. We performed gas chromatography-mass spectrometry analysis to identify and quantify 36 compounds on 14 mutant strains including knockout strains for transcription factor and metabolic enzyme genes. A strong relation between metabolome of these mutants and their ethanol tolerance was observed. Data mining of the metabolomic analysis showed that several compounds (such as trehalose, valine, inositol and proline) contributed highly to ethanol tolerance. Our approach successfully detected well-known ethanol stress related metabolites such as trehalose and proline thus, to further prove our strategy, we focused on valine and inositol as the most promising target metabolites in our study. Our results show that simultaneous deletion of LEU4 and LEU9 (leading to accumulation of valine) or INM1 and INM2 (leading to reduction of inositol) significantly enhanced ethanol tolerance. This study shows the potential of the metabolomic approach to identify target genes for strain improvement of S. cerevisiae with higher ethanol tolerance. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Operant self-administration of ethanol in infant rats.

    PubMed

    Pautassi, Ricardo Marcos; Miranda-Morales, Roberto Sebastián; Nizhnikov, Michael

    2015-09-01

    The review focuses on operant self-administration of ethanol in immature, infant rats. Several methods for the analysis of ethanol intake in infants are available, yet only oral self-administration models the typical pattern of ethanol consumption found in humans. The study of ethanol intake in infants is important for our understanding of how early alcohol experiences facilitate subsequent engagement with alcohol. It seems that sensitivity to ethanol-induced operant reinforcement is found very early in life, a few hours after birth, and throughout the first three weeks of life. Most of the studies reviewed complied with most, albeit not all, of the criteria for operant behavior (e.g., greater responding than yoked controls and persistence of this difference after withholding the reinforcer). Operant self-administration of ethanol in infant rats seems to be, at least partially, mediated by endogenous opioid transmission and can be enhanced by prior exposure to ethanol. Furthermore, acquisition of ethanol-mediated operant learning seems to facilitate drug self-administration during adolescence. Relative to older subjects, infants exhibit lower sensitivity to ethanol's sedative, hypnotic and motor impairing effects. On the other hand, they exhibit increased sensitivity to the motor stimulant and rewarding effects of ethanol. We suggest that this pattern of response to ethanol may favor the rapid acquisition of operant self-administration in infant rats.

  4. Ethanol-Induced Leakage in Saccharomyces cerevisiae: Kinetics and Relationship to Yeast Ethanol Tolerance and Alcohol Fermentation Productivity.

    PubMed

    Salgueiro, S P; Sá-Correia, I; Novais, J M

    1988-04-01

    Ethanol stimulated the leakage of amino acids and 260-nm-light-absorbing compounds from cells of Saccharomyces cerevisiae. The efflux followed first-order kinetics over an initial period. In the presence of lethal concentrations of ethanol, the efflux rates at 30 and 36 degrees C were an exponential function of ethanol concentration: k(e) = k(e)e, where k(e) and k(e) are the efflux rate constants, respectively, in the presence of a concentration X of ethanol or the minimal concentration of ethanol, X(m), above which the equation was applicable, coincident with the minimal lethal concentration of ethanol. E is the enhancement constant. At 36 degrees C, as compared with the corresponding values at 30 degrees C, the efflux rates were higher and the minimal concentration of ethanol (X(m)) was lower. The exponential constants for the enhancement of the rate of leakage (E) had similar values at 30 or 36 degrees C and were of the same order of magnitude as the corresponding exponential constants for ethanol-induced death. Under isothermic conditions (30 degrees C) and up to 22% (vol/vol) ethanol, the resistance to ethanol-induced leakage of 260-nm-light-absorbing compounds was found to be closely related with the ethanol tolerance of three strains of yeasts, Kluyveromyces marxianus, Saccharomyces cerevisiae, and Saccharomyces bayanus. The resistance to ethanol-induced leakage indicates the possible adoption of the present method for the rapid screening of ethanol-tolerant strains. The addition to a fermentation medium of the intracellular material obtained by ethanol permeabilization of yeast cells led to improvements in alcohol fermentation by S. cerevisiae and S. bayanus. The action of the intracellular material, by improving yeast ethanol tolerance, and the advantages of partially recycling the fermented medium after distillation were discussed.

  5. Ethanol-Induced Leakage in Saccharomyces cerevisiae: Kinetics and Relationship to Yeast Ethanol Tolerance and Alcohol Fermentation Productivity

    PubMed Central

    Salgueiro, Sancha P.; Sá-Correia, Isabel; Novais, Júlio M.

    1988-01-01

    Ethanol stimulated the leakage of amino acids and 260-nm-light-absorbing compounds from cells of Saccharomyces cerevisiae. The efflux followed first-order kinetics over an initial period. In the presence of lethal concentrations of ethanol, the efflux rates at 30 and 36°C were an exponential function of ethanol concentration: keX = keXmeE (X-Xm), where keX and keXm are the efflux rate constants, respectively, in the presence of a concentration X of ethanol or the minimal concentration of ethanol, Xm, above which the equation was applicable, coincident with the minimal lethal concentration of ethanol. E is the enhancement constant. At 36°C, as compared with the corresponding values at 30°C, the efflux rates were higher and the minimal concentration of ethanol (Xm) was lower. The exponential constants for the enhancement of the rate of leakage (E) had similar values at 30 or 36°C and were of the same order of magnitude as the corresponding exponential constants for ethanol-induced death. Under isothermic conditions (30°C) and up to 22% (vol/vol) ethanol, the resistance to ethanol-induced leakage of 260-nm-light-absorbing compounds was found to be closely related with the ethanol tolerance of three strains of yeasts, Kluyveromyces marxianus, Saccharomyces cerevisiae, and Saccharomyces bayanus. The resistance to ethanol-induced leakage indicates the possible adoption of the present method for the rapid screening of ethanol-tolerant strains. The addition to a fermentation medium of the intracellular material obtained by ethanol permeabilization of yeast cells led to improvements in alcohol fermentation by S. cerevisiae and S. bayanus. The action of the intracellular material, by improving yeast ethanol tolerance, and the advantages of partially recycling the fermented medium after distillation were discussed. PMID:16347612

  6. Gestational naltrexone ameliorates fetal ethanol exposures enhancing effect on the postnatal behavioral and neural response to ethanol

    PubMed Central

    Youngentob, Steven L; Kent, Paul F; Youngentob, Lisa M

    2012-01-01

    The association between gestational exposure to ethanol and adolescent ethanol abuse is well established. Recent animal studies support the role of fetal ethanol experience-induced chemosensory plasticity as contributing to this observation. Previously, we established that fetal ethanol exposure, delivered through a dam’s diet throughout gestation, tuned the neural response of the peripheral olfactory system of early postnatal rats to the odor of ethanol. This occurred in conjunction with a loss of responsiveness to other odorants. The instinctive behavioral response to the odor of ethanol was also enhanced. Importantly, there was a significant contributory link between the altered response to the odor of ethanol and increased ethanol avidity when assessed in the same animals. Here, we tested whether the neural and behavioral olfactory plasticity, and their relationship to enhanced ethanol intake, is a result of the mere exposure to ethanol or whether it requires the animal to associate ethanol’s reinforcing properties with its odor attributes. In this later respect, the opioid system is important in the mediation (or modulation) of the reinforcing aspects of ethanol. To block endogenous opiates during prenatal life, pregnant rats received daily intraperitoneal administration of the opiate antagonist naltrexone from gestational day 6–21 jointly with ethanol delivered via diet. Relative to control progeny, we found that gestational exposure to naltrexone ameliorated the enhanced postnatal behavioral response to the odor of ethanol and postnatal drug avidity. Our findings support the proposition that in utero ethanol-induced olfactory plasticity (and its relationship to postnatal intake) requires, at least in part, the associative pairing between ethanol’s odor quality and its reinforcing aspects. We also found suggestive evidence that fetal naltrexone ameliorated the untoward effects of gestational ethanol exposure on the neural response to non

  7. Acetaldehyde involvement in ethanol's postabsortive effects during early ontogeny.

    PubMed

    March, Samanta M; Abate, P; Molina, Juan C

    2013-01-01

    Clinical and biomedical studies sustains the notion that early ontogeny is a vulnerable window to the impact of alcohol. Experiences with the drug during these stages increase latter disposition to prefer, use or abuse ethanol. This period of enhanced sensitivity to ethanol is accompanied by a high rate of activity in the central catalase system, which metabolizes ethanol in the brain. Acetaldehyde (ACD), the first oxidation product of ethanol, has been found to share many neurobehavioral effects with the drug. Cumulative evidence supports this notion in models employing adults. Nevertheless very few studies have been conducted to analyze the role of ACD in ethanol postabsorptive effects, in newborns or infant rats. In this work we review recent experimental literature that syndicates ACD as a mediator agent of reinforcing aspects of ethanol, during early ontogenetic stages. We also show a meta-analytical correlational approach that proposes how differences in the activity of brain catalase across ontogeny, could be modulating patterns of ethanol consumption.

  8. The phytotoxic effect of exogenous ethanol on Euphorbia heterophylla L.

    PubMed

    Kern, Kátia Aparecida; Pergo, Erica Marusa; Kagami, Fernanda Lima; Arraes, Luis Saraiva; Sert, Maria Aparecida; Ishii-Iwamoto, Emy Luiza

    2009-01-01

    This study investigated the effects of exogenously applied ethanol on Euphorbia heterophylla L., a troublesome weed in field and plantation crops. Ethanol at concentrations ranging from 0.25 to 1.5% caused a dose-dependent inhibition of germination and growth of E. heterophylla. Measurements of respiratory activity and alcohol dehydrogenase (E.C. 1.1.1.1) activity during seed imbibition and initial seedling growth revealed that ethanol induces a prolongation of hypoxic conditions in the growing tissues. In isolated mitochondria, ethanol inhibited the respiration coupled to ADP phosphorylation, an action that probably contributed to modifications observed in the respiratory activity of embryos. A comparison of the effects of methanol, ethanol, propanol and acetaldehyde on germination and growth of E. heterophylla indicates that alcohol dehydrogenase activity is required for the observed effects, with the conversion of ethanol to acetaldehyde playing a role in the ethanol-induced injuries.

  9. Intracerebellar behavioral interactions between nicotine, cotinine and ethanol in mice

    SciTech Connect

    Dar, M.S.; Li, C. )

    1992-02-26

    Using ethanol-induced motor incoordination as the test response as evaluated by rotorod, possible behavioral interactions between ethanol and (-)-nicotine in the cerebellum, one of the key motor area, were investigated. (-)-Nicotine, 5, 1.25, 0.625 ng/100nL intracerebellarly significantly attenuated motor incoordination due to ethanol in a dose-dependent manner. Similarly, (-)-cotinine, a major metabolite of nicotine, 5, 2.5, and 1.25 ng/100nL, significantly but less marked compared to (-)-nicotine attenuated ethanol-induced motor incoordination. The highest, 5 ng/100nL, dose of (-)-nicotine or (-)-cotinine followed by saline instead of ethanol did not alter normal motor coordination. The attenuation of ethanol-induced motor incoordination by (-)-nicotine and (-)- cotinine was blocked by intracerebellar hexamethonium 1 ug/100nL, a purported nicotinic cholinergic antagonist. The data obtained strongly suggest participation of cerebellar nicotinic cholinergic receptor in the ethanol-induced motor incoordination.

  10. Carnitine prolongs the half-life of ethanol in broilers.

    PubMed

    Smith, M O; Cha, Y S; Sachan, D S

    1994-09-01

    The object was to determine if carnitine attenuated ethanol metabolism in broilers similar to that reported in the rats. Two groups (n = 5) of 5-week-old broilers were given for 10 days the feed with or without 0.5% L-carnitine supplement. A single oral dose of ethanol on day 8 was followed by serial blood samples which were analysed for ethanol. Another dose of ethanol was given on day 10 and 2 hr later, plasma and liver were collected and analysed for ethanol, total lipid, triglycerides and carnitine. The carnitine supplemented diet prolonged the half-life of ethanol due to attenuation of ethanol metabolism which is similar to that reported earlier in rodents. The increases in plasma and hepatic acylcarnitines indicate that supplementary carnitine lessens the load of free acyl groups in the liver by eventual oxidation or excretion.

  11. On the sensitivity of intact cells to perturbation by ethanol

    SciTech Connect

    Hitzemann, R.; Whitaker-Azmitia, P. ); Dains, K.; Lin, J. )

    1989-01-01

    A comparison was made of ethanol's effects on the order of plasma membranes in intact cells and some isolated membrane preparations. Order was assessed by steady-state fluorescence polarization techniques using the non-permeant probe, TMA-DPH. The data show that two cultured cells, rat neonatal astroglial and N2A neuroblastoma, were sensitive to significant ethanol-induced disordering within the anesthetically relevant range. Human erythrocytes, cultured fibroblasts and homogenized astroglial cells required higher ethanol concentrations to produce a similar effect. Intact erythrocytes were approximately twice as sensitive as erythrocyte ghost membranes to ethanol induced perturbation. The neonatal glial and N2A cells were approximately five times more sensitive than synaptic membranes to ethanol effects. DMPC and DMPC + cholesterol liposomes and myelin membranes were insensitive to ethanol's effects. The incorporation of 10 mole % ganglioside GM{sub 1} sensitized the liposomes to ethanol-induced perturbation.

  12. Vacuum stripping of ethanol during high solids fermentation of corn.

    PubMed

    Shihadeh, Jameel K; Huang, Haibo; Rausch, Kent D; Tumbleson, Mike E; Singh, Vijay

    2014-05-01

    In corn-ethanol industry, yeast stress inducing glucose concentrations produced during liquefaction and subsequent high ethanol concentrations produced during fermentation restrict slurry solids to 32 % w/w. These limits were circumvented by combining two novel technologies: (1) granular starch hydrolyzing enzyme (GSHE) to break down starch simultaneously with fermentation and (2) vacuum stripping to remove ethanol. A vacuum stripping system was constructed and applied to fermentations at 30, 40, and 45 % solids. As solids increased from 30 to 40 %, ethanol yield decreased from 0.35 to 0.29 L/kg. Ethanol yield from 45 % solids was only 0.18 L/kg. An improvement was conducted by increasing enzyme dose from 0.25 to 0.75 g/g corn and reducing yeast inoculum by half. After improvement, ethanol yield from 40 % solids vacuum treatment increased to 0.36 L/kg, comparable to ethanol yield from 30 % solids (control).

  13. [Carbon balance analysis of corn fuel ethanol life cycle].

    PubMed

    Zhang, Zhi-shan; Yuan, Xi-gang

    2006-04-01

    The quantity of greenhouse gas emissions (net carbon emissions) of corn-based fuel ethanol, which is known as an alternative for fossil fuel is an important criteria for evaluating its sustainability. The methodology of carbon balance analysis for fuel ethanol from corn was developed based on principles of life cycle analysis. For the production state of fuel ethanol from summer corn in China, carbon budgets in overall life cycle of the ethanol were evaluated and its main influence factors were identified. It presents that corn-based fuel ethanol has no obvious reduction of carbon emissions than gasoline, and potential improvement in carbon emission of the life cycle of corn ethanol could be achieved by reducing the nitrogen fertilizer and irrigation electricity used in the corn farming and energy consumption in the ethanol conversion process.

  14. Chronic intermittent ethanol exposure in adolescent and adult male rats: Effects on tolerance, social behavior and ethanol intake

    PubMed Central

    Broadwater, Margaret; Varlinskaya, Elena I.; Spear, Linda P.

    2010-01-01

    Background Given the prevalence of alcohol use in adolescence, it is important to understand the consequences of chronic ethanol exposure during this critical period in development. The purpose of the present study was to assess possible age-related differences in susceptibility to tolerance development to ethanol-induced sedation and withdrawal-related anxiety, as well as voluntary ethanol intake after chronic exposure to relatively high doses of ethanol during adolescence or adulthood. Methods Adolescent and adult male Sprague-Dawley rats were assigned to one of five 10 day exposure conditions: chronic ethanol (4 g/kg every 48 hours), chronic saline (equivalent volume every 24 hours), chronic saline/acutely challenged with ethanol (4 g/kg on day 10), non-manipulated/acutely challenged with ethanol (4 g/kg on day 10) or non-manipulated. For assessment of tolerance development, loss of righting reflex was tested on the first and last ethanol exposure days in the chronic ethanol group, with both saline and non-manipulated animals likewise challenged on the last exposure day. Withdrawal-induced anxiety was indexed in a social interaction test 24 hrs after the last ethanol exposure, with ethanol-naïve chronic saline and non-manipulated animals serving as controls. Voluntary intake was assessed 48 hours after the chronic exposure period in chronic ethanol, chronic saline and non-manipulated animals using an 8 day 2 bottle choice, limited access ethanol intake procedure. Results Adolescents were less sensitive to the sedative effects of ethanol than adults. Adults, but not adolescents, developed chronic tolerance to the sedative effects of ethanol, tolerance that appeared to be metabolic in nature. Social deficits were observed after chronic ethanol in both adolescents and adults. Adolescents drank significantly more ethanol than adults on a g/kg basis, with intake uninfluenced by prior ethanol exposure at both ages. Conclusion Adolescents and adults may differ in

  15. Cannabidiol reduces ethanol consumption, motivation and relapse in mice.

    PubMed

    Viudez-Martínez, Adrián; García-Gutiérrez, María S; Navarrón, Carmen María; Morales-Calero, María Isabel; Navarrete, Francisco; Torres-Suárez, Ana Isabel; Manzanares, Jorge

    2017-02-13

    This study evaluated the effects of cannabidiol (CBD) on ethanol reinforcement, motivation and relapse in C57BL/6 J mice. The effects of CBD (60 mg/kg, i.p.) on blood ethanol concentration, hypothermia and handling-induced convulsions associated to acute ethanol administration were evaluated. The two-bottle choice paradigm was performed to assess the effects of CBD (30, 60 and 120 mg/kg/day, i.p.) on ethanol intake and preference. In addition, an oral ethanol self-administration experiment was carried out to evaluate the effects of CBD [a single s.c. administration of a microparticle formulation providing CBD continuous controlled release (30 mg/kg/day)] on the reinforcement and motivation for ethanol. The effects of CBD (60 and 120 mg/kg/day, i.p.) on ethanol-induced relapse were also evaluated. Gene expression analyses of tyrosine hydroxylase in ventral tegmental area and μ-opioid (Oprm1), cannabinoid (CB1 r and CB2 r) and GPR55 receptors in nucleus accumbens (NAcc) were carried out by real-time polymerase chain reaction. Cannabidiol reduced the ethanol-induced hypothermia and handling-induced convulsion but failed to modify blood ethanol concentration. CBD reduced ethanol consumption and preference in the two-bottle choice, significantly decreased ethanol intake and the number of effective responses in the oral ethanol self-administration, and reduced ethanol-induced relapse. Furthermore, the administration of CBD significantly reduced relative gene expression of tyrosine hydroxylase in the ventral tegmental area, Oprm1, CB1 r and GPR55 in the NAcc and significantly increased CB2 r in the NAcc. Taken together, these results reveal that the administration of CBD reduced the reinforcing properties, motivation and relapse for ethanol. These findings strongly suggest that CBD may result useful for the treatment of alcohol use disorders.

  16. Ethyl glucuronide, ethyl sulfate, and ethanol in urine after intensive exposure to high ethanol content mouthwash.

    PubMed

    Reisfield, Gary M; Goldberger, Bruce A; Pesce, Amadeo J; Crews, Bridgit O; Wilson, George R; Teitelbaum, Scott A; Bertholf, Roger L

    2011-06-01

    To determine the degree of ethanol absorption and the resultant formation and urinary excretion of its conjugated metabolites following intensive use of high ethanol content mouthwash, 10 subjects gargled with Listerine(®) antiseptic 4 times daily for 3¼ days. First morning void urine specimens were collected on each of the four study days and post-gargle specimens were collected at 2, 4, and 6 h after the final gargle of the study. Urine ethanol, ethyl glucuronide (EtG), ethyl sulfate (EtS), and creatinine were measured. Ethanol was below the positive threshold of 20 mg/dL in all of the urine specimens. EtG was undetectable in all pre-study urine specimens, but two pre-study specimens had detectable EtS (6 and 82 ng/mL; 16 and 83 μg/g creatinine). Only one specimen contained detectable EtG (173 ng/mL; 117 μg/g creatinine). EtS was detected in the urine of seven study subjects, but was not detected in the single specimen that had detectable EtG. The maximum EtS concentrations were 104 ng/mL and 112 μg/g creatinine (in different subjects). Three subjects produced a total of eight (non-baseline) urinary EtS concentrations above 50 ng/mL or 50 μg/g creatinine and three EtS concentrations exceeding 100 ng/mL or 100 μg/g creatinine. In patients being monitored for ethanol use by urinary EtG and EtS concentrations, currently accepted EtG and EtS cutoffs of 500 ng/mL are adequate to distinguish between ethanol consumption and four times daily use of high ethanol content mouthwash.

  17. Internal energy selection in vacuum ultraviolet photoionization of ethanol and ethanol dimers.

    PubMed

    Bodi, Andras

    2013-10-14

    Internal energy selected ethanol monomer and ethanol dimer ions were prepared by threshold photoionization of a supersonic molecular beam seeded with ethanol. The dissociative photoionization processes of the monomer, the lowest-energy CH3-loss channel of the dimer, and the fragmentation of larger clusters were found to be disjunct from the ionization onset to about 12 eV, which made it possible to determine the 0 K appearance energy of C-C bond breaking in the H-donor unit of the ethanol dimer cation as 9.719 ± 0.004 eV. This reaction energy is used together with ab initio calculations in a thermochemical cycle to determine the binding energy change from the neutral ethanol dimer to a protonated ethanol-formaldehyde adduct. The cycle also shows general agreement between experiment, theory, and previously published enthalpies of formation. The role of the initial ionization site, or rather the initial photoion state, is also discussed based on the dimer breakdown diagram and excited state calculations. There is no evidence for isolated state behavior, and the ethanol dimer dissociative photoionization processes appear to be governed by statistical theory and the ground electronic state of the ion. In the monomer breakdown diagram, the smoothly changing branching ratio between H and CH3 loss is at odds with rate theory predictions, and shows that none of the currently employed few-parameter rate models, appropriate for experimental rate curve fitting, yields a correct description for this process in the experimental energy range.

  18. An enzyme-amplified microtiter plate assay for ethanol: Its application to the detection of peanut ethanol and alcohol dehydrogenase

    SciTech Connect

    Chung, S.Y.; Vercellotti, J.R.; Sanders, T.H.

    1995-12-01

    A calorimetric microliter plate assay for ethanol amplified by aldehyde dehydrogenase (ALDH) was developed. In the assay ethanol from a sample took part in a chain-reaction catalyzed by alcohol dehydrogenase (ADH) and amplified by ALDH in the presence of NAD{sup +}, diaphorase, and p-ibdonitrotetrazolium-violet (INT-violet)(a precursor of red product). The resultant reaction gave a red color, the intensity of which was proportional to the amount of ethanol present. Using the technique, the content of activity from peanuts of differing maturity and curing stages were determined respectively. Data showed that immature peanuts had a higher level of ethanol and a lower ADH activity than mature peanuts, and that the level of ethanol and ADH activity decreased with the curing time. This indicates that peanut maturity and curing have an effect on ethanol. Also, this implies that other peanut volatiles could be affected in the same way as ethanol, a major volatile in peanuts.

  19. Gabapentin for the treatment of ethanol withdrawal.

    PubMed

    Voris, John; Smith, Nancy L; Rao, Subba M; Thorne, Diana L; Flowers, Queen J

    2003-06-01

    Benzodiazepines (BZDs) are the drug of choice for the suppression of alcohol withdrawal symptoms. Gabapentin, a drug approved for use as adjunctive therapy in the treatment of partial seizures, has none of the BZD-type difficulties (drug interactions, abuse potential). We retrospectively report on the use of gabapentin for ethanol withdrawal in 49 patients. Thirty-one patients were treated in the outpatient program and 18 in the general inpatient psychiatric unit. Positive outcomes as evidenced by completion of gabapentin therapy were achieved in 25 out of 31 outpatients and 17 out of 18 inpatients. Statistical significance was reached regarding the positive relationship between prior ethanol use and inpatient "as needed" benzodiazepine use. Both sets of data suggest that gabapentin works well for the mild to moderate alcohol withdrawal patient.

  20. Battle rages over imports of fuel ethanol

    SciTech Connect

    Anderson, E.V.

    1985-04-22

    The International Trade Commission agreed that there is a reasonable indication that large imports of duty-free fuel ethanol from Brazil threaten material injury to the US fuel ethanol industry. In addition to anti-dumping and countervailing duty suits against Brazil, both the Caribbean Basin Initiative and tariff loopholes figure prominently in the current struggle to cut off large-volume imports. The result has been to bring trade policy and diplomacy into the picture. Supporters of the imports contend that domestic producers will not be able to meet anticipated demand if the market takes off as expected, but the domestic industry has been growing along with the market. The author reviews the arguments and legal claims made on both sides of the debate, which include government farm policies. 6 figures.

  1. Microtubular conductometric biosensor for ethanol detection.

    PubMed

    Ajay, A K; Srivastava, Divesh N

    2007-09-30

    A conductometric sensor using microtubules of polyaniline as transducer cum immobilization matrix is reported, capable of detecting ethanol in liquid phase. Enzyme ADH (alcohol dehydrogenase) and its coenzyme NAD+ have been used to improve the selectivity of the sensor. The sensor concept is based on the protonation of the polyaniline by the hydrogen ion produced in the enzyme-catalyzed reaction, leading to changes in the electrical conductance of the polyaniline. The sensor works well on the physiological pH, can detect ethanol as low as 0.02% (v/v) (0.092 M) and has a linear trend at par healthcare guidelines. The sensor responses were measured in various permutation and combination of enzyme and coenzyme concentrations and site of immobilization. The sensor shows minor interference with other functional groups and alcohols. The possible causes for such interference have been discussed.

  2. Economic impacts of ethanol fuels from crops

    SciTech Connect

    Hertzmark, D.; Ray, D.; Richardson, J.

    1981-08-01

    This paper presents selected results of simulations of agricultural production of ethanol feedstocks from grains and sugar crops. Production levels of up to 5 billion gallons per year were simulated using various combinations of corn, high energy sorghum, sweet sorghum, and sugar beets. Major results include (1) at up to 2 billion gallons per year of ethanol, impacts on the agricultural sector are mild; (2) beyond 2 billion gallons per year, diversification away from corn appears to be necessary to avoid major feed price inflation; (3) farm income unambiguously rises in response to higher crop prices; and (4) exports of food grains are affected differently by alternative feedstocks, and high-energy sorghum shows a good potential for competing with food grains.

  3. The influence of ethanol on hepatic transmethylation.

    PubMed

    Barak, A J; Beckenhauer, H C

    1988-01-01

    One of the most important biochemical pathways in the organism is the biosynthesis of methionine from the methylation of homocysteine. Two different reactions are responsible for this methylation, one utilizing N5-methyltetra-hydrofolate as a methylating agent and the other using betaine as the methyl donor. This paper reviews some recent findings in this laboratory, which demonstrate that ethanol-feeding to rats impairs the folate-induced reaction. Our findings also show that this impairment is compensated for through the adaptive increase in the enzyme using betaine in the biosynthesis of methionine. Further studies indicate that the mechanism of action in the impairment may occur through the formation of individual adducts between the folate-induced enzyme (methionine synthetase), its essential cofactors and acetaldehyde, a metabolic product of ethanol. These findings suggest a basis for why rats are more resistant to alcoholic liver injury than humans and may offer a means of protecting against alcoholic liver injury in man.

  4. Ethanol extraction of phytosterols from corn fiber

    SciTech Connect

    Abbas, Charles; Beery, Kyle E.; Binder, Thomas P.; Rammelsberg, Anne M.

    2010-11-16

    The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.

  5. Ethanolic fermentation of pentoses in lignocellulose hydrolysates

    SciTech Connect

    Hahn-Haegerdal, B.; Linden, T.; Senac, T.; Skoog, K.

    1991-12-31

    In the fermentation of lignocellulose hydrolysates to ethanol, two major problems are encountered: the fermentation of the pentose sugar xylose, and the presence of microbial inhibitors. Xylose can be directly fermented with yeasts; such as Pachysolen tannophilus, Candida shehatae, and Pichia stipis, or by isomerization of xylose to xylulose with the enzyme glucose (xylose) isomerase, and subsequent fermentation with bakers yeast, Saccharomyces cerevisiae. The direct fermentation requires low, carefully controlled oxygenation, as well as the removal of inhibitors. Also, the xylose-fermenting yeasts have a limited ethanol tolerance. The combined isomerization and fermentation with XI and S. cerevisiae gives yields and productivities comparable to those obtained in hexose fermentations without oxygenation and removal of inhibitors. However, the enzyme is not very stable in a lignocellulose hydrolysate, and S. cerevisiae has a poorly developed pentose phosphate shunt. Different strategies involving strain adaptation, and protein and genetic engineering adopted to overcome these different obstacles, are discussed.

  6. Yeast metabolic engineering for hemicellulosic ethanol production.

    PubMed

    Van Vleet, J H; Jeffries, T W

    2009-06-01

    Efficient fermentation of hemicellulosic sugars is critical for the bioconversion of lignocellulosics to ethanol. Efficient sugar uptake through the heterologous expression of yeast and fungal xylose/glucose transporters can improve fermentation if other metabolic steps are not rate limiting. Rectification of cofactor imbalances through heterologous expression of fungal xylose isomerase or modification of cofactor requirements in the yeast oxidoreductase pathway can reduce xylitol production while increasing ethanol yields, but these changes often occur at the expense of xylose utilization rates. Genetic engineering and evolutionary adaptation to increase glycolytic flux coupled with transcriptomic and proteomic studies have identified targets for further modification, as have genomic and metabolic engineering studies in native xylose fermenting yeasts.

  7. Variable effects of chronic intermittent ethanol exposure on ethanol drinking in a genetically diverse mouse cohort.

    PubMed

    Lopez, Marcelo F; Miles, Michael F; Williams, Robert W; Becker, Howard C

    2017-02-01

    The BXD family of mice were generated by crossing and inbreeding ethanol-preferring C57BL/6J and ethanol-avoiding DBA/2J strains that differ greatly in genome sequence and other behaviors. This study evaluated variations in the level of voluntary ethanol intake in a cohort of 42 BXD strains and both progenitor strains using a model of alcohol dependence and relapse drinking. A total of 119 BXDs (85 males, 34 females) (n ∼ 4 per genotype; 1/genotype/sex/group) were evaluated along with males from both progenitor strains (n = 14-15/genotype). Mice were evaluated for intake using limited access (2 h/day) 2-bottle (15% v/v ethanol vs. water) model for 6 weeks (baseline intake). Each animal received 4 weekly cycles of chronic intermittent ethanol (CIE) vapor exposure (CIE group) or air control exposure (CTL group) (16 h/day × 4 days) interleaved by 5-day drinking test cycles. Blood ethanol concentrations (BEC) ranged from 150 to 300 mg/dl across genotypes. Baseline intake varied greatly among cases-from ∼0.8 to ∼2.9 g/kg. As expected, CIE exposure induced a significant increase in ethanol drinking in C57BL/6J relative to baseline as well as air controls that remained relatively stable over the four test cycles. In contrast, DBA/2J cases did not show a significant increase in consumption. Heritability of variation in baseline consumption, calculated from C57BL/6J and DBA/2J strains is about 54% but this increases following treatment to 60-80%. As expected from the marked difference between progenitors, ethanol intake and level of escalation varied greatly among BXDs after exposure (∼-1.3 to 2.6 g/kg). Interestingly, the magnitude and direction of changes in ethanol intake did not relate to BEC values of the preceding CIE exposure cycle. Overall, these data indicate significant variation in consumption and even escalation, much of it under genetic control, following repeated CIE treatment.

  8. Increased Extracellular Glutamate In the Nucleus Accumbens Promotes Excessive Ethanol Drinking in Ethanol Dependent Mice

    PubMed Central

    Griffin III, William C; Haun, Harold L; Hazelbaker, Callan L; Ramachandra, Vorani S; Becker, Howard C

    2014-01-01

    Using a well-established model of ethanol dependence and relapse, this study examined adaptations in glutamatergic transmission in the nucleus accumbens (NAc) and their role in regulating voluntary ethanol drinking. Mice were first trained to drink ethanol in a free-choice, limited access (2 h/day) paradigm. One group (EtOH mice) received repeated weekly cycles of chronic intermittent ethanol (CIE) exposure with intervening weeks of test drinking sessions, whereas the remaining mice (CTL mice) were similarly treated but did not receive CIE treatment. Over repeated cycles of CIE exposure, EtOH mice exhibited significant escalation in drinking (up to ∼3.5 g/kg), whereas drinking remained relatively stable at baseline levels (2–2.5 g/kg) in CTL mice. Using in vivo microdialysis procedures, extracellular glutamate (GLUEX) levels in the NAc were increased approximately twofold in EtOH mice compared with CTL mice, and this difference was observed 7 days after final CIE exposure, indicating that this hyperglutamatergic state persisted beyond acute withdrawal. This finding prompted additional studies examining the effects of pharmacologically manipulating GLUEX in the NAc on ethanol drinking in the CIE model. The non-selective glutamate reuptake antagonist, threo-β-benzyloxyaspartate (TBOA), was bilaterally microinjected into the NAc and found to dose-dependently increase drinking in nondependent (CTL) mice to levels attained by dependent (EtOH) mice. TBOA also further increased drinking in EtOH mice. In contrast, reducing glutamatergic transmission in the NAc via bilateral injections of the metabotropic glutamate receptor-2/3 agonist LY379268 reduced drinking in dependent (EtOH) mice to nondependent (CTL) levels, whereas having a more modest effect in decreasing ethanol consumption in CTL mice. Taken together, these data support an important role of glutamatergic transmission in the NAc in regulating ethanol drinking. Additionally, these results indicate that

  9. Effect of temperature on ethanol tolerance of a thermophilic anaerobic ethanol producer Thermoanaerobacter A10: modeling and simulation.

    PubMed

    Georgieva, Tania I; Skiadas, Ioannis V; Ahring, Birgitte K

    2007-12-15

    The low ethanol tolerance of thermophilic anaerobic bacteria (<2%, v/v) is a major obstacle for their industrial exploitation for ethanol production. The ethanol tolerance of the thermophilic anaerobic ethanol-producing strain Thermoanaerobacter A10 was studied during batch tests of xylose fermentation at a temperature range of 50-70 degrees C with exogenously added ethanol up to approximately 6.4% (v/v). At the optimum growth temperature of 70 degrees C, the strain was able to tolerate 4.7% (v/v) ethanol, and growth was completely inhibited at 5.6% (v/v). A higher ethanol tolerance was found at lower temperatures. At 60 degrees C, the strain was able to tolerate at least 5.1% (v/v) ethanol. A generalized form of Monod kinetic equation proposed by Levenspiel was used to describe the ethanol (product) inhibition. The model predicted quite well the experimental data for the temperature interval 50-70 degrees C, and the maximum specific growth rate and the toxic power (n), which describes the order of ethanol inhibition at each temperature, were estimated. The toxic power (n) was 1.33 at 70 degrees C, and corresponding critical inhibitory product concentration (P(crit)) above which no microbial growth occurs was determined to be 5.4% (v/v). An analysis of toxic power (n) and P(crit) showed that the optimum temperature for combined microbial growth and ethanol tolerance was 60 degrees C. At this temperature, the toxic power (n), and P(crit) were 0.50, and 6.5% (v/v) ethanol, respectively. From a practical point of view, the model may be applied to compare the ethanol inhibition (ethanol tolerance) on microbial growth of different thermophilic anaerobic bacterial strains.

  10. Biofuel Food Disasters and Cellulosic Ethanol Problems

    ERIC Educational Resources Information Center

    Pimentel, David

    2009-01-01

    As shortages of fossil energy, especially oil and natural gas, become evident, the United States has moved to convert corn grain into ethanol with the goal to make the nation oil independent. Using more than 20% of all U.S. corn on 15 million acres in 2007 was providing the nation with less than 1% of U.S. oil consumption. Because the corn ethanol…

  11. Innovative production technology ethanol from sweet sorghum

    NASA Astrophysics Data System (ADS)

    Kashapov, N. F.; Nafikov, M. M.; Gazetdinov, M. X.; Nafikova, M. M.; Nigmatzyanov, A. R.

    2016-06-01

    The paper considers the technological aspects of production of ethanol from nontraditional for Russian Federation crops - sweet sorghum. Presents the technological scheme of alcohol production and fuel pellets from sweet sorghum. Special attention is paid to assessing the efficiency of alcohol production from sweet sorghum. The described advantage of sugar content in stem juice of sweet sorghum compared with other raw materials. Allegedly, the use of the technology for producing alcohol from sweet sorghum allows to save resources.

  12. Intermediate Ethanol Blends Catalyst Durability Program

    SciTech Connect

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  13. Catalytic Combustion of Ethanol and Butanol

    DTIC Science & Technology

    2009-09-01

    completely for thermoelectric applications, or operate as a fuel reformer to produce hydrogen gas for fuel cells. 15. SUBJECT TERMS Alcohol, butanol...Hydrogen selectivity data for ethanol combustion is depicted in figure 10 as a function of equivalence ratio. Data for hydrogen gas , water vapor...further, more carbon monoxide, methane , and even ethene are produced as the carbon selectivity of carbon dioxide decreases. The appearance of

  14. Ethanol effects on rat brain phosphoinositide metabolism

    SciTech Connect

    Huang, H.M.

    1987-01-01

    An increase in acidic phospholipids in brain plasma and synaptic plasma membranes upon chronic ethanol administration was observed. Chronic ethanol administration resulted in an increase in {sup 32}P{sub i} incorporation into the acidic phospholipids in synaptosomes. Postdecapitative ischemic treatment resulted rapid degradation of poly-PI in rat brain. However, there was a rapid appearance of IP{sub 2} in ethanol group which indicated a more rapid turnover of IP{sub 3} in the ethanol-treated rats. Carbachol stimulated accumulation of labeled inositol phosphates in brain slices and synaptosomes. Carbachol-stimulated release of IP and IP{sub 2} was calcium dependent and was inhibited by EGTA and atropine. Adenosine triphosphates and 1 mM further enhanced carbachol-induced formation of IP and IP{sub 2}, but showed an increase and a decrease in IP{sub 3} at 1 mM and 0.01 mM, respectively. Guanosine triphosphate at 0.1 mM did not change in labeled IP, but there was a significant increase in labeled IP{sub 2} and decrease in IP{sub 3}. Mn and CMP greatly enhanced incorporation of ({sup 3}H)-inositol into PI, but not into poly-PI labeling in brain synaptosomes. Incubation of brain synaptosomes resulted in a Ca{sup 2+}, time-dependent release of labeled IP. However, the pool of PI labeled through this pathway is not susceptible to carbachol stimulation. When saponin permeabilized synaptosomal preparations were incubated with ({sup 3}H)-inositol-PI or ({sup 14}C)-arachidonoyl-PI, ATP enhanced the formation of labeled IP and DG.

  15. Biofuel Food Disasters and Cellulosic Ethanol Problems

    ERIC Educational Resources Information Center

    Pimentel, David

    2009-01-01

    As shortages of fossil energy, especially oil and natural gas, become evident, the United States has moved to convert corn grain into ethanol with the goal to make the nation oil independent. Using more than 20% of all U.S. corn on 15 million acres in 2007 was providing the nation with less than 1% of U.S. oil consumption. Because the corn ethanol…

  16. Central orexin (hypocretin) 2 receptor antagonism reduces ethanol self-administration, but not cue-conditioned ethanol-seeking, in ethanol-preferring rats.

    PubMed

    Brown, Robyn Mary; Khoo, Shaun Yon-Seng; Lawrence, Andrew John

    2013-10-01

    Orexins are hypothalamic neuropeptides which bind to two G-protein-coupled receptors, orexin-1 (OX(1)R) and orexin-2 (OX(2)R) receptor. While a role for OX(1)R has been established in both ethanol reinforcement and ethanol-seeking behaviour, the role of OX(2)R in these behaviours is relatively less-studied. The aim of this study was to determine the role of central OX(2)R in ethanol-taking and ethanol-seeking behaviour. Indiana ethanol-preferring rats were trained to self-administer ethanol (10% w/v) or sucrose (0.7–1% w/v) in the presence of reward-associated cues before being implanted with indwelling guide cannulae. The selective OX(2)R antagonist TCS-OX2-29 was administered i.c.v. to assess its effect on operant self-administration and cue-induced reinstatement following extinction. Following i.c.v. injection TCS-OX2-29 reduced self-administration of ethanol, but not sucrose. Despite reducing ethanol self-administration, TCS-OX2-29 had no impact on cue-induced reinstatement of ethanol seeking. To determine where in the brain OX(2)R were acting to modulate ethanol self-administration, TCS-OX2-29 was microinjected into either the shell or core of the nucleus accumbens (NAc). Intra-NAc core, but not shell, infusions of TCS-OX2-29 decreased responding for ethanol. Importantly, the doses of TCS-OX2-029 used were non-sedating. Collectively, these findings implicate OX(2)R in the NAc in mediating the reinforcing effects of ethanol. This effect appears to be drug-specific as antagonism of central OX(2)R had no impact on sucrose self-administration. Thus, OX(2)R in addition to OX(1)R may represent a potential therapeutic target for the treatment of ethanol-use disorders. However, unlike OX(1)R, no impact of OX(2)R antagonism was observed on cue-induced reinstatement, suggesting a more prominent role for OX(2)R in ethanol self-administration compared to cue-conditioned ethanol-seeking.

  17. Mice lacking adenylyl cyclase type 5 (AC5) show increased ethanol consumption and reduced ethanol sensitivity.

    PubMed

    Kim, Kyoung-Shim; Kim, Hannah; Baek, In-Sun; Lee, Ko-Woon; Han, Pyung-Lim

    2011-05-01

    The adenylyl cyclase (AC)/cAMP system is believed to be a key component in regulating alcohol-drinking behavior. It was reported that adenylyl cyclase-5 (AC5) is expressed widely in the brain, with a preferential concentration in the dorsal striatum and nucleus accumbens, brain regions which are important for addiction and emotion. AC5 has been shown to be an essential mediator of morphine addiction and dopamine receptor function; however, it remains unknown whether or not AC5 plays a role in ethanol preference and sensitivity in animals. This work was carried out to determine the role of AC5 in alcohol consumption and the hypnotic response to alcohol using AC5 knockout (KO) mice. In the test for ethanol preference employing a two-bottle free-choice paradigm, AC5 KO mice showed increased ethanol consumption and preference compared with the wild-type mice. Ethanol-induced hypothermia was weakly reduced in AC5 KO mice. AC5 KO mice exhibited sedation/behavioral sleep to high-dose ethanol, but their responses were greatly suppressed compared with the wild-type mice. These results suggest that AC5 is an important signaling molecule regulating alcohol sensitivity and preference in animals. These data provide critical information for AC5 activation as a candidate target for the treatment of alcoholism.

  18. Oxygenates du`jour...MTBE? Ethanol? ETBE?

    SciTech Connect

    Wolfe, R.

    1995-12-31

    There are many different liquids that contain oxygen which could be blended into gasoline. The ones that have been tried and make the most sense are in the alcohol (R-OH) and ether (R-O-R) chemical family. The alcohols considered are: methanol (MeOH), ethanol (EtOH), tertiary butyl alcohol (TBA). The ethers are: methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary amyl ethyl ether (TAEE), di-isopropyl ether (DIPE). Of the eight oxygenates listed above, the author describes the five that are still waiting for widespread marketing acceptance (methanol, TBA, TAME, TAEE, and DIPE). He then discusses the two most widely used oxygenates in the US, MTBE and ethanol, along with the up-and-coming ethanol ether, ETBE. Selected physical properties for all of these oxygenates can be found in Table 2 at the end of this paper. A figure shows a simplified alcohol/ether production flow chart for the oxygenates listed above and how they are interrelated.

  19. Xylose fermentation to ethanol. A review

    SciTech Connect

    McMillan, J D

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  20. Production of bio ethanol from waste potatoes

    NASA Astrophysics Data System (ADS)

    Jaber Noufal, Mohamad; Li, Baizhan; Maalla, Zena Ali

    2017-03-01

    In this research, production of ethanol from waste potatoes fermentation was studied using Saccharomyces cerevisiae. Potato Flour prepared from potato tubers after cooking and drying at 85°C. A homogenous slurry of potato flour prepared in water at solid-liquid ratio 1:10. Liquefaction of potato starch slurry was done with α-amylase at 80°C for 40 min followed by saccharification process which was done with glucoamylase at 65°C for two hr. Fermentation of hydrolysate with Saccharomyces cerevisiae at 35°C for two days resulted in the production of 33 g/l ethanol. The following parameters have been analysed: temperature, time of fermentation and pH. It found that Saccharification process is affected by enzyme Amylase 300 concentration and concentration of 1000μl/100ml gives the efficient effect of the process. The best temperature for fermentation process was found to be about 35°C. Also, it noticed that ethanol production increased as a time of fermentation increased but after 48 hr further growth in fermentation time did not have an appreciable effect. Finally, the optimal value of pH for fermentation process was about 5 to 6.

  1. Carbon Nanotubes Blended Hydroxyapatite Ethanol Sensor

    NASA Astrophysics Data System (ADS)

    Anjum, S. R.; Khairnar, R. S.

    2016-12-01

    Nano crystals of Hydroxyapatite (HAp) were synthesized by a wet chemical precipitation method. The nano composite materials were developed by doping various weight concentrations of carbon nanotubes in HAp, followed by characterization using scanning electron microscopy, and X-ray diffraction. Thick films of these materials were prepared by using screen printing technique. The ethanol sensing properties of these nano crystals and nano composite films were investigated by two probe electrical method. The gas sensing features such as operating temperature, response and recovery time, maximum gas detection limit, etc. were studied, since these parameters are of prime importance for sensor. The results revealed that at room temperature, the composite materials exhibited improved sensing performance towards 100 ppm ethanol with fast response times. It also showed shorter recovery time with higher vapor uptake capacity. The ethanol adsorption processes on doped and undoped substrates can be explained by surface chemical reactions as well as providing the possible adsorption models. The novelty of this work lies in developing reusable sensor substrates for room temperature sensing.

  2. Reduction of Nickel Oxide with Ethanol

    NASA Astrophysics Data System (ADS)

    Coskun, F.; Cetinkaya, S.; Eroglu, S.

    2017-02-01

    This work aims to investigate the reduction behavior of NiO powder by ethanol vapor at 600-1100 K for the reaction times up to 60 min. The products were characterized by mass measurement, x-ray diffraction, and scanning electron microscopy techniques. The reaction of NiO with ethanol essentially consisted of oxide reduction followed by C deposition. At 600 K, significant oxide reduction was attained. Full oxide reduction was observed at 650-1100 K within 10-15 min. At this temperature range, the reduction reaction was controlled by external mass transfer of gaseous species. At the lower temperature range 600-650 K, the reduction rate was sensitive to the temperature change and influenced by the total gas flow rate to a lesser degree. The temperature dependence of C uptake was explained by Boudouard reaction. The results of this study demonstrate that NiO can be completely reduced to Ni by ethanol as predicted by the thermodynamic analysis.

  3. Technological options for biological fuel ethanol.

    PubMed

    Vertès, Alain A; Inui, Masayuki; Yukawa, Hideaki

    2008-01-01

    The current paradigm to produce biotechnological ethanol is to use the yeast Saccharomyces cerevisiae to ferment sugars derived from starch or sugar crops such as maize, sugar cane or sugar beet. Despite its current success, the global impact of this manufacturing model is restricted on the one hand by limits on the availability of these primary raw materials, and on the other hand by the maturity of baker's yeast fermentation technologies. Revisiting the technical, economic, and value chain aspects of the biotechnological ethanol industry points to the need for radical innovation to complement the current manufacturing model. Implementation of lignocellulosic materials is clearly a key enabler to the billion-ton biofuel vision. However, realization of the full market potential of biofuels will be facilitated by the availability of an array of innovative technological options, as the flexibility generated by these alternative processes will not only enable the exploitation of heretofore untapped local market opportunities, but also it will confer to large biorefinery structures numerous opportunities for increased process integration as well as optimum reactivity to logistic and manufacturing challenges. In turn, all these factors will interplay in synergy to contribute in shifting the economic balance in favor of the global implementation of biotechnological ethanol.

  4. Ethanol Production for Automotive Fuel Usage

    SciTech Connect

    Lindemuth, T.E.; Stenzel, R.A.; Yim, Y.J.; Yu, J.

    1980-01-31

    The conceptual design of the 20 million gallon per year anhydrous ethanol facility a t Raft River has been completed. The corresponding geothermal gathering, extraction and reinjection systems to supply the process heating requirement were also completed. The ethanol facility operating on sugar beets, potatoes and wheat will share common fermentation and product recovery equipment. The geothermal fluid requirement will be approximately 6,000 gpm. It is anticipated that this flow will be supplied by 9 supply wells spaced at no closer than 1/4 mile in order to prevent mutual interferences. The geothermal fluid will be flashed in three stages to supply process steam at 250 F, 225 F and 205 F for various process needs. Steam condensate plus liquid remaining after the third flash will all be reinjected through 9 reinjection wells. The capital cost estimated for this ethanol plant employing all three feedstocks is $64 million. If only a single feedstock were used (for the same 20 mm gal/yr plant) the capital costs are estimated at $51.6 million, $43.1 million and $40. 5 million for sugar beets, potatoes and wheat respectively. The estimated capital cost for the geothermal system is $18 million.

  5. Betaine, ethanol, and the liver: a review.

    PubMed

    Barak, A J; Beckenhauer, H C; Tuma, D J

    1996-01-01

    Two of the most important biochemical hepatic pathways in the liver are those that synthesize methionine and S-adenosylmethionine (SAM) through the methylation of homocysteine. This article reviews some recent findings in this laboratory, which demonstrate that ethanol feeding to rats impairs one of these pathways involving the enzyme methionine synthetase (MS), but by way of compensation increases the activity of the enzyme betaine:homocysteine methyl transferase (BHMT), which catalyzes the second pathway in methionine and SAM biosynthesis. It has been shown that despite the inhibition of MS, the enhanced BHMT pathway utilizes hepatic betaine pools to maintain levels of SAM. Subsequent to the above findings, it has been shown that minimal supplemental dietary betaine at the 0.5% level generates SAM twofold in control animals and fivefold in ethanol-fed rats. Concomitant with the betaine-generated SAM, ethanol-induced hepatic fatty infiltration was ameliorated. In view of the fact that SAM has already been used successfully in the treatment of human maladies, including liver dysfunction, betaine, shown to protect against the early stages of alcoholic liver injury as well as being a SAM generator, may become a promising therapeutic agent and a possible alternative to expensive SAM in the treatment of liver disease and other human maladies.

  6. Thermophilic biotrickling filtration of ethanol vapors.

    PubMed

    Cox, H H; Sexton, T; Shareefdeen, Z M; Deshusses, M A

    2001-06-15

    The treatment of ethanol vapors in biotrickling filters for air pollution control was investigated. Two reactors were operated in parallel, one at ambient temperature (22 degrees C) and one at high temperature (53 degrees C). After a short adaptation phase, the removal of ethanol was similar in both reactors. At a bed contact time of 57 s, the elimination capacity exceeded 220 g m(-3) h(-1) at both temperatures. The experiments performed revealed that the process was most likely limited by biodegradation in the biofilm. The high-temperature biotrickling filter exhibited a higher degree of ethanol mineralization to CO2 (60 vs 46% at ambient temperature); hence, a lower rate of biomass accumulation was observed. Plating and cultivation of biofilm samples revealed that the high-temperature biotrickling filter hosted a process culture composed of both mesophilic and thermotolerant or thermophilic microorganisms, whereas the ambient-temperature reactor lacked microorganisms capable of growing at high temperature. Consequently, the performance of the control biotrickling filter was significantly affected by a short incursion at 53 degrees C. The upper temperature limit for treatment was 62 degrees C. Overall, the results of this study open new possibilities for biotrickling filtration of hot gases.

  7. Effects of ethanol on red blood cell rheological behavior.

    PubMed

    Rabai, M; Detterich, J A; Wenby, R B; Toth, K; Meiselman, H J

    2014-01-01

    Consumption of red wine is associated with a decreased risk of several cardiovascular diseases (e.g., coronary artery disease, stroke), but unfortunately literature reports regarding ethanol's effects on hemorheological parameters are not concordant. In the present study, red blood cell (RBC) deformability was tested via laser ektacytometry (LORCA, 0.3-30 Pa) using two approaches: 1) addition of ethanol to whole blood at 0.25%-2% followed by incubation and testing in ethanol-free LORCA medium; 2) addition of ethanol to the LORCA medium at 0.25%-6% then testing untreated native RBC in these media. The effects of ethanol on deformability for oxidatively stressed RBC were investigated as were changes of RBC aggregation (Myrenne Aggregometer) for cells in autologous plasma or 3% 70 kDa dextran. Significant dose-related increases of RBC deformability were observed at 0.25% (p < 0.05) and higher concentrations only if ethanol was in the LORCA medium; no changes occurred for cells previously incubated with ethanol then tested in ethanol-free medium. The impaired deformability of cells pre-exposed to oxidative stress was improved only if ethanol was in the LORCA medium. RBC aggregation decreased with concentration at 0.25% and higher for cells in both autologous plasma and dextran 70. Our results indicate that ethanol reversibly improves erythrocyte deformability and irreversibly decreases erythrocyte aggregation; the relevance of these results to the health benefits of moderate wine consumption require further investigation.

  8. Ethanol Disrupts Vascular Endothelial Barrier: Implication in Cancer Metastasis

    PubMed Central

    Xu, Mei; Chen, Gang; Fu, Wei; Liao, Mingjun; Frank, Jacqueline A.; Bower, Kimberly A.; Fang, Shengyun; Zhang, Zhuo; Shi, Xianglin; Luo, Jia

    2012-01-01

    Both epidemiological and experimental studies indicate that ethanol exposure enhances tumor progression. Ethanol exposure promotes cancer cell invasion and is implicated in tumor metastasis. Metastasis consists of multiple processes involving intravasation and extravasation of cancer cells across the blood vessel walls. The integrity of the vascular endothelial barrier that lines the inner surface of blood vessels plays a critical role in cancer cell intravasation/extravasation. We examined the effects of ethanol on the endothelial integrity in vitro. Ethanol at physiologically relevant concentrations did not alter cell viability but disrupted the endothelial monolayer integrity, which was evident by a decrease in the electric resistance and the appearance of intercellular gaps in the endothelial monolayer. The effect of ethanol was reversible once ethanol was removed. The disruption of the endothelial monolayer integrity was associated with an increased invasion of cancer cells through the endothelial monolayer. Ethanol induced the formation of stress fibers; stabilization of actin filaments by jasplakinolide prevented ethanol-induced disruption of endothelial integrity and cancer cell invasion. VE-cadherin is a critical component of the adherens junctions, which regulates vascular endothelial integrity. Ethanol induced the endocytosis of VE-cadherin and the effect was blocked by jasplakinolide. Our results indicate that ethanol may facilitate cancer metastasis by disrupting the vascular endothelial barrier. PMID:22331491

  9. Lessons from genome skimming of arthropod-preserving ethanol.

    PubMed

    Linard, B; Arribas, P; Andújar, C; Crampton-Platt, A; Vogler, A P

    2016-11-01

    Field-collected specimens of invertebrates are regularly killed and preserved in ethanol, prior to DNA extraction from the specimens, while the ethanol fraction is usually discarded. However, DNA may be released from the specimens into the ethanol, which can potentially be exploited to study species diversity in the sample without the need for DNA extraction from tissue. We used shallow shotgun sequencing of the total DNA to characterize the preservative ethanol from two pools of insects (from a freshwater habitat and terrestrial habitat) to evaluate the efficiency of DNA transfer from the specimens to the ethanol. In parallel, the specimens themselves were subjected to bulk DNA extraction and shotgun sequencing, followed by assembly of mitochondrial genomes for 39 of 40 species in the two pools. Shotgun sequencing from the ethanol fraction and read-matching to the mitogenomes detected ~40% of the arthropod species in the ethanol, confirming the transfer of DNA whose quantity was correlated to the biomass of specimens. The comparison of diversity profiles of microbiota in specimen and ethanol samples showed that 'closed association' (internal tissue) bacterial species tend to be more abundant in DNA extracted from the specimens, while 'open association' symbionts were enriched in the preservative fluid. The vomiting reflex of many insects also ensures that gut content is released into the ethanol, which provides easy access to DNA from prey items. Shotgun sequencing of DNA from preservative ethanol provides novel opportunities for characterizing the functional or ecological components of an ecosystem and their trophic interactions.

  10. Metabolic Adaption of Ethanol-Tolerant Clostridium thermocellum

    PubMed Central

    Zhu, Xinshu; Cui, Jiatao; Feng, Yingang; Fa, Yun; Zhang, Jingtao; Cui, Qiu

    2013-01-01

    Clostridium thermocellum is a major candidate for bioethanol production via consolidated bioprocessing. However, the low ethanol tolerance of the organism dramatically impedes its usage in industry. To explore the mechanism of ethanol tolerance in this microorganism, systematic metabolomics was adopted to analyse the metabolic phenotypes of a C. thermocellum wild-type (WT) strain and an ethanol-tolerant strain cultivated without (ET0) or with (ET3) 3% (v/v) exogenous ethanol. Metabolomics analysis elucidated that the levels of numerous metabolites in different pathways were changed for the metabolic adaption of ethanol-tolerant C. thermocellum. The most interesting phenomenon was that cellodextrin was significantly more accumulated in the ethanol-tolerant strain compared with the WT strain, although cellobiose was completely consumed in both the ethanol-tolerant and wild-type strains. These results suggest that the cellodextrin synthesis was active, which might be a potential mechanism for stress resistance. Moreover, the overflow of many intermediate metabolites, which indicates the metabolic imbalance, in the ET0 cultivation was more significant than in the WT and ET3 cultivations. This indicates that the metabolic balance of the ethanol-tolerant strain was adapted better to the condition of ethanol stress. This study provides additional insight into the mechanism of ethanol tolerance and is valuable for further metabolic engineering aimed at higher bioethanol production. PMID:23936233

  11. Ethanol itself is a holoprosencephaly-inducing teratogen.

    PubMed

    Hong, Mingi; Krauss, Robert S

    2017-01-01

    Ethanol is a teratogen, inducing a variety of structural defects in developing humans and animals that are exposed in utero. Mechanisms of ethanol teratogenicity in specific defects are not well understood. Oxidative metabolism of ethanol by alcohol dehydrogenase or cytochrome P450 2E1 has been implicated in some of ethanol's teratogenic effects, either via production of acetaldehyde or competitive inhibition of retinoic acid synthesis. Generalized oxidative stress in response to ethanol may also play a role in its teratogenicity. Among the developmental defects that ethanol has been implicated in is holoprosencephaly, a failure to define the midline of the forebrain and midface that is associated with a deficiency in Sonic hedgehog pathway function. Etiologically, holoprosencephaly is thought to arise from a complex combination of genetic and environmental factors. We have developed a gene-environment interaction model of holoprosencephaly in mice, in which mutation of the Sonic hedgehog coreceptor, Cdon, synergizes with transient in utero exposure to ethanol. This system was used to address whether oxidative metabolism is required for ethanol's teratogenic activity in holoprosencephaly. We report here that t-butyl alcohol, which is neither a substrate nor an inhibitor of alcohol dehydrogenases or Cyp2E1, is a potent inducer of holoprosencephaly in Cdon mutant mice. Additionally, antioxidant treatment did not prevent ethanol- or t-butyl alcohol-induced HPE in these mice. These findings are consistent with the conclusion that ethanol itself, rather than a consequence of its metabolism, is a holoprosencephaly-inducing teratogen.

  12. Intrinsic Properties of Larval Zebrafish Neurons in Ethanol

    PubMed Central

    Ikeda, Hiromi; Delargy, Alison H.; Yokogawa, Tohei; Urban, Jason M.; Burgess, Harold A.; Ono, Fumihito

    2013-01-01

    The behavioral effects of ethanol have been studied in multiple animal models including zebrafish. Locomotion of zebrafish larvae is resistant to high concentrations of ethanol in bath solution. This resistance has been attributed to a lower systemic concentration of ethanol in zebrafish when compared with bath solution, although the mechanism to maintain such a steep gradient is unclear. Here we examined whether the intrinsic properties of neurons play roles in this resistance. In order to minimize the contribution of metabolism and diffusional barriers, larvae were hemisected and the anterior half immersed in a range of ethanol concentrations thereby ensuring the free access of bath ethanol to the brain. The response to vibrational stimuli of three types of reticulospinal neurons: Mauthner neurons, vestibulospinal neurons, and MiD3 neurons were examined using an intracellular calcium indicator. The intracellular [Ca2+] response in MiD3 neurons decreased in 100 mM ethanol, while Mauthner neurons and vestibulospinal neurons required >300 mM ethanol to elicit similar effects. The ethanol effect in Mauthner neurons was reversible following removal of ethanol. Interestingly, activities of MiD3 neurons displayed spontaneous recovery in 300 mM ethanol, suggestive of acute tolerance. Finally, we examined with mechanical vibration the startle response of free-swimming larvae in 300 mM ethanol. Ethanol treatment abolished long latency startle responses, suggesting a functional change in neural processing. These data support the hypothesis that individual neurons in larval zebrafish brains have distinct patterns of response to ethanol dictated by specific molecular targets. PMID:23658822

  13. Temporal Profiles Dissociate Regional Extracellular Ethanol versus Dopamine Concentrations

    PubMed Central

    2015-01-01

    In vivo monitoring of dopamine via microdialysis has demonstrated that acute, systemic ethanol increases extracellular dopamine in regions innervated by dopaminergic neurons originating in the ventral tegmental area and substantia nigra. Simultaneous measurement of dialysate dopamine and ethanol allows comparison of the time courses of their extracellular concentrations. Early studies demonstrated dissociations between the time courses of brain ethanol concentrations and dopaminergic responses in the nucleus accumbens (NAc) elicited by acute ethanol administration. Both brain ethanol and extracellular dopamine levels peak during the first 5 min following systemic ethanol administration, but the dopamine response returns to baseline while brain ethanol concentrations remain elevated. Post hoc analyses examined ratios of the dopamine response (represented as a percent above baseline) to tissue concentrations of ethanol at different time points within the first 25–30 min in the prefrontal cortex, NAc core and shell, and dorsomedial striatum following a single intravenous infusion of ethanol (1 g/kg). The temporal patterns of these “response ratios” differed across brain regions, possibly due to regional differences in the mechanisms underlying the decline of the dopamine signal associated with acute intravenous ethanol administration and/or to the differential effects of acute ethanol on the properties of subpopulations of midbrain dopamine neurons. This Review draws on neurochemical, physiological, and molecular studies to summarize the effects of acute ethanol administration on dopamine activity in the prefrontal cortex and striatal regions, to explore the potential reasons for the regional differences observed in the decline of ethanol-induced dopamine signals, and to suggest directions for future research. PMID:25537116

  14. Interaction between marihuana and ethanol: effects on psychomotor performance.

    PubMed

    Perez-Reyes, M; Hicks, R E; Bumberry, J; Jeffcoat, A R; Cook, C E

    1988-04-01

    This is a report of the results of a placebo-controlled study in which the effects of the interaction between ethanol and marihuana on drug plasma concentrations, subjective ratings of intoxication, heart rate acceleration, and psychomotor performance were investigated. Six healthy, male, paid volunteers, moderate users of ethanol and marihuana, participated in the study. Ethanol (0.42 g/kg, 0.85 g/kg, or placebo) was administered over a 30-min interval. Fifteen minutes later the subjects smoked, in their customary manner, NIDA cigarettes containing 2.4% or 0.0004% (placebo) delta-9-tetrahydrocannabinol (THC). Each subject was tested in a single-blind, latin-square crossover design with the following six conditions: placebo ethanol/placebo marihuana; low dose ethanol/placebo marihuana; high dose ethanol/placebo marihuana; placebo ethanol/marihuana; low dose ethanol/marihuana; and high dose ethanol/marihuana. The variables measured in the study were: (a) subjective rating of ethanol and/or marihuana intoxication; (b) heart rate; (c) accuracy and latency of response in the Simulator Evaluation of Drug Impairment (SEDI) task; (d) blood ethanol concentration by gas chromatography; and (e) plasma concentration of THC by radioimmunoassay. The results indicate that the decrements due to ethanol in performance of skills necessary to drive an automobile were significantly enhanced by marihuana in an additive and perhaps synergistic manner. The administration of ethanol prior to marihuana smoking did not produce significant effects on the subjective rating of "high," heart rate acceleration, or THC plasma concentration.

  15. Taurine and ethanol interactions: behavioral effects in mice

    PubMed Central

    Ginsburg, Brett C.; Lamb, Richard J.

    2011-01-01

    Taurine is an abundant amino acid in the brain that shares pharmacological effects and similar potency with ethanol. Recently, taurine-containing beverages have been reported to enhance the euphoric effects of ethanol, though the extent of this effect and the role of taurine remain speculative. The present study was designed to explore interactions between taurine and ethanol on several behaviors including locomotion, ataxia, and loss of righting. Two strains of mice, C57BL/6J and DBA/2J mice, were used to examine potential strain differences. In the first experiment, effects of various doses of taurine (0.3–3.0 g/kg), ethanol (1.0–4.2 g/kg), or taurine in combination with ethanol were assessed in a within-subjects design. Although taurine did not appear to alter effects of ethanol on any measure in either strain, the development of tolerance to locomotor effects and sensitization to ataxic effects of ethanol in DBA/2J mice complicated interpretation of these results. In a second experiment, drug-naïve mice were assigned to one of four treatment groups: saline + saline, saline + ethanol (1.78 g/kg), taurine (1.78 g/kg) + saline, or ethanol + taurine. In this experiment, taurine pretreatment significantly attenuated the locomotor-stimulating effect of ethanol in both strains (but to a greater extent in C57BL/6J mice) and appeared to reduce the ataxic effects of ethanol in C57BL/6J mice. In conclusion, the interaction between taurine and ethanol is subtle. Further, results are inconsistent with the notion that taurine plays a major role in the locomotor, ataxic, or loss of righting effects of ethanol. PMID:17961547

  16. Protease increases fermentation rate and ethanol yield in dry-grind ethanol production.

    PubMed

    Johnston, David B; McAloon, Andrew J

    2014-02-01

    The effects of acid protease and urea addition during the fermentation step were evaluated. The fermentations were also tested with and without the addition of urea to determine if protease altered the nitrogen requirements of the yeast. Results show that the addition of the protease had a statistically significant effect on the fermentation rate and yield. Fermentation rates and yields were improved with the addition of the protease over the corresponding controls without protease. Protease addition either with or with added urea resulted in a higher final ethanol yield than without the protease addition. Urea addition levels >1200 ppm of supplemental nitrogen inhibited ethanol production. The economic effects of the protease addition were evaluated by using process engineering and economic models developed at the Eastern Regional Research Center. The decrease in overall processing costs from protease addition was as high as $0.01/L (4 ¢/gal) of denatured ethanol produced.

  17. Prenatal ethanol exposure alters ethanol-induced Fos immunoreactivity and dopaminergic activity in the mesocorticolimbic pathway of the adolescent brain.

    PubMed

    Fabio, M C; Vivas, L M; Pautassi, R M

    2015-08-20

    Prenatal ethanol exposure (PEE) promotes alcohol intake during adolescence, as shown in clinical and pre-clinical animal models. The mechanisms underlying this effect of prenatal ethanol exposure on postnatal ethanol intake remain, however, mostly unknown. Few studies assessed the effects of moderate doses of prenatal ethanol on spontaneous and ethanol-induced brain activity on adolescence. This study measured, in adolescent (female) Wistar rats prenatally exposed to ethanol (0.0 or 2.0g/kg/day, gestational days 17-20) or non-manipulated (NM group) throughout pregnancy, baseline and ethanol-induced cathecolaminergic activity (i.e., colocalization of c-Fos and tyrosine hydroxylase) in ventral tegmental area (VTA), and baseline and ethanol-induced Fos immunoreactivity (ir) in nucleus accumbens shell and core (AcbSh and AcbC, respectively) and prelimbic (PrL) and infralimbic (IL) prefrontal cortex. The rats were challenged with ethanol (dose: 0.0, 1.25, 2.5 or 3.25g/kg, i.p.) at postnatal day 37. Rats exposed to vehicle prenatally (VE group) exhibited reduced baseline dopaminergic tone in VTA; an effect that was inhibited by prenatal ethanol exposure (PEE group). Dopaminergic activity in VTA after the postnatal ethanol challenge was greater in PEE than in VE or NM animals. Ethanol-induced Fos-ir at AcbSh was found after 1.25g/kg and 2.5g/kg ethanol, in VE and PEE rats, respectively. PEE did not alter ethanol-induced Fos-ir at IL but reduced ethanol-induced Fos-ir at PrL. These results suggest that prenatal ethanol exposure heightens dopaminergic activity in the VTA and alters the response of the mesocorticolimbic pathway to postnatal ethanol exposure. These effects may underlie the enhanced vulnerability to develop alcohol-use disorders of adolescents with a history of in utero ethanol exposure. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Ethanol as a Prodrug: Brain Metabolism of Ethanol Mediates its Reinforcing effects

    PubMed Central

    Karahanian, Eduardo; Quintanilla, María Elena; Tampier, Lutske; Rivera-Meza, Mario; Bustamante, Diego; Gonzalez-Lira, Víctor; Morales, Paola; Herrera-Marschitz, Mario; Israel, Yedy

    2011-01-01

    Backround While the molecular entity responsible for the rewarding effects of virtually all drugs of abuse is known; that for ethanol remains uncertain. Some lines of evidence suggest that the rewarding effects of alcohol are mediated not by ethanol per se but by acetaldehyde generated by catalase in the brain. However, the lack of specific inhibitors of catalase has not allowed strong conclusions to be drawn about its role on the rewarding properties of ethanol. The present studies determined the effect on voluntary alcohol consumption of two gene vectors; one designed to inhibit catalase synthesis and one designed to synthesize alcohol dehydrogenase, to respectively inhibit or increase brain acetaldehyde synthesis. Methods The lentiviral vectors, which incorporate the genes they carry into the cell genome, were: (i) one encoding a shRNA anticatalase synthesis and (ii) one encoding alcohol dehydrogenase (rADH1). These were stereotaxically microinjected into the brain ventral tegmental area (VTA) of Wistar-derived rats bred for generations for their high alcohol preference (UChB), which were allowed access to an ethanol solution and water. Results Microinjection into the VTA of the lentiviral vector encoding the anticatalase shRNA virtually abolished (-94% p<0.001) the voluntary consumption of alcohol by the rats. Conversely, injection into the VTA of the lentiviral vector coding for alcohol dehydrogenase greatly stimulated (2-3 fold p<0.001) their voluntary ethanol consumption. Conclusions The study strongly suggests that to generate reward and reinforcement, ethanol must be metabolized into acetaldehyde in the brain. Data suggest novel targets for interventions aimed at reducing chronic alcohol intake. PMID:21332529

  19. Trehalose promotes the survival of Saccharomyces cerevisiae during lethal ethanol stress, but does not influence growth under sublethal ethanol stress.

    PubMed

    Bandara, Ajith; Fraser, Sarah; Chambers, Paul J; Stanley, Grant A

    2009-12-01

    Trehalose is known to protect cells from various environmental assaults; however, its role in the ethanol tolerance of Saccharomyces cerevisiae remains controversial. Many previous studies report correlations between trehalose levels and ethanol tolerance across a variety of strains, yet variations in genetic background make it difficult to separate the impact of trehalose from other stress response factors. In the current study, investigations were conducted on the ethanol tolerance of S. cerevisiae BY4742 and BY4742 deletion strains, tsl1Delta and nth1Delta, across a range of ethanol concentrations. It was found that trehalose does play a role in ethanol tolerance at lethal ethanol concentrations, but not at sublethal ethanol concentrations; differences of 20-40% in the intracellular trehalose concentration did not provide any growth advantage for cells incubated in the presence of sublethal ethanol concentrations. It was speculated that the ethanol concentration-dependent nature of the trehalose effect supports a mechanism for trehalose in protecting cellular proteins from the damaging effects of ethanol.

  20. Efficient production of ethanol from waste paper and the biochemical methane potential of stillage eluted from ethanol fermentation.

    PubMed

    Nishimura, Hiroto; Tan, Li; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji; Morimura, Shigeru

    2016-02-01

    Waste paper can serve as a feedstock for ethanol production due to being rich in cellulose and not requiring energy-intensive thermophysical pretreatment. In this study, an efficient process was developed to convert waste paper to ethanol. To accelerate enzymatic saccharification, pH of waste paper slurry was adjusted to 4.5-5.0 with H2SO4. Presaccharification and simultaneous saccharification and fermentation (PSSF) with enzyme loading of 40 FPU/g waste paper achieved an ethanol yield of 91.8% and productivity of 0.53g/(Lh) with an ethanol concentration of 32g/L. Fed-batch PSSF was used to decrease enzyme loading to 13 FPU/g waste paper by feeding two separate batches of waste paper slurry. Feeding with 20% w/w waste paper slurry increased ethanol concentration to 41.8g/L while ethanol yield decreased to 83.8%. To improve the ethanol yield, presaccharification was done prior to feeding and resulted in a higher ethanol concentration of 45.3g/L, a yield of 90.8%, and productivity of 0.54g/(Lh). Ethanol fermentation recovered 33.2% of the energy in waste paper as ethanol. The biochemical methane potential of the stillage eluted from ethanol fermentation was 270.5mL/g VTS and 73.0% of the energy in the stillage was recovered as methane. Integrating ethanol fermentation with methane fermentation, recovered a total of 80.4% of the energy in waste paper as ethanol and methane.

  1. The influence of selection for ethanol withdrawal severity on traits associated with ethanol self-administration and reinforcement.

    PubMed

    Ford, Matthew M; Fretwell, Andrea M; Anacker, Allison M J; Crabbe, John C; Mark, Gregory P; Finn, Deborah A

    2011-02-01

    Several meta-analyses indicate that there is an inverse genetic correlation between ethanol preference drinking and ethanol withdrawal severity, but limited work has characterized ethanol consumption in 1 genetic animal model, the Withdrawal Seizure-Prone (WSP) and-Resistant (WSR) mouse lines selected for severe or mild ethanol withdrawal, respectively. We determined whether line differences existed in: (i) operant self-administration of ethanol during sucrose fading and under different schedules of reinforcement, followed by extinction and reinstatement of responding with conditioned cues and (ii) home cage drinking of sweetened ethanol and the development of an alcohol deprivation effect (ADE). Withdrawal Seizure-Prone-1 mice consumed more ethanol than WSR-1 mice under a fixed ratio (FR)-4 schedule as ethanol was faded into the sucrose solution, but this line difference dissipated as the sucrose was faded out to yield an unadulterated 10% v/v ethanol solution. In contrast, WSR-1 mice consumed more ethanol than WSP-1 mice when a schedule was imposed that procedurally separated appetitive and consummatory behaviors. After both lines achieved the extinction criterion, reinstatement was serially evaluated following oral ethanol priming, light cue presentation, and a combination of the 2 cues. The light cue produced maximal reinstatement of responding in WSP-1 mice, whereas the combined cue was required to produce maximal reinstatement of responding in WSR-1 mice. There was no line difference in the home cage consumption of a sweetened ethanol solution over a period of 1 month. Following a 2-week period of abstinence, neither line developed an ADE. Although some line differences in ethanol self-administration and reinstatement were identified between WSP-1 and WSR-1 mice, the absence of consistent divergence suggests that the genes underlying these behaviors do not reliably overlap with those that govern withdrawal severity. Copyright © 2010 by the Research Society

  2. Differential neural representation of oral ethanol by central taste-sensitive neurons in ethanol-preferring and genetically heterogeneous rats

    PubMed Central

    Wilson, David M.; Brasser, Susan M.

    2011-01-01

    In randomly bred rats, orally applied ethanol stimulates neural substrates for appetitive sweet taste. To study associations between ethanol's oral sensory characteristics and genetically mediated ethanol preference, we made electrophysiological recordings of oral responses (spike density) by taste-sensitive nucleus tractus solitarii neurons in anesthetized selectively bred ethanol-preferring (P) rats and their genetically heterogeneous Wistar (W) control strain. Stimuli (25 total) included ethanol [3%, 5%, 10%, 15%, 25%, and 40% (vol/vol)], a sucrose series (0.01, 0.03, 0.1, 0.3, 0.5, and 1 M), and other sweet, salt, acidic, and bitter stimuli; 50 P and 39 W neurons were sampled. k-means clustering applied to the sucrose response series identified cells showing high (S1) or relatively low (S0) sensitivity to sucrose. A three-way factorial analysis revealed that activity to ethanol was influenced by a neuron's sensitivity to sucrose, ethanol concentration, and rat line (P = 0.01). Ethanol produced concentration-dependent responses in S1 neurons that were larger than those in S0 cells. Although responses to ethanol by S1 cells did not differ between lines, neuronal firing rates to ethanol in S0 cells increased across concentration only in P rats. Correlation and multivariate analyses revealed that ethanol evoked responses in W neurons that were strongly and selectively associated with activity to sweet stimuli, whereas responses to ethanol by P neurons were not easily associated with activity to representative sweet, sodium salt, acidic, or bitter stimuli. These findings show differential central neural representation of oral ethanol between genetically heterogeneous rats and P rats genetically selected to prefer alcohol. PMID:21918002

  3. Influence of ethanol on aspirin release from hypromellose matrices.

    PubMed

    Roberts, Matthew; Cespi, Marco; Ford, James L; Dyas, A Mark; Downing, James; Martini, Luigi G; Crowley, Patrick J

    2007-03-06

    Release profiles of aspirin from hypromellose matrices in hydro-ethanolic media were studied. Percent aspirin released increased with increasing levels of ethanol in the dissolution media, correlating with the drug's solubility, however, dose dumping of aspirin did not occur. An initial rapid release was observed in media comprising 40% ethanol. Release in these conditions was considered to be both erosion and diffusion-mediated, in contrast to the release in 0, 10, 20 and 30% ethanol media, where erosion-controlled release dominated. Image analysis of matrix swelling indicated a slower initial interaction between ethanol and hypromellose accounting for the initial rapid release. Cloud point studies suggested that ethanol retarded hydration of the polymer.

  4. Neurobehavioral and neurochemical effects of prenatal ethanol administration in rats

    SciTech Connect

    Pradhan, S.; Briggs, F. )

    1992-01-01

    Effects of prenatal ethanol exposure in rats on the behavior and on the levels of multiple neurotransmitters in the brain have been investigated. Timed pregnant Sprague-Dawley rats were divided into three groups: ethanol-exposed, pair-fed control and nutritional control. Ethanol was administered through Leiber-DeCarli liquid diet containing 6% ethanol (v/v) throughout the gestation period in ethanol-exposed rats. Male offspring were tested for alternations in neurobehavioral and neurochemical parameters. Animals exposed to ethanol in utero exhibited lower birth weights, delayed motor development, delayed learning and no catch-up growth, as well as significant alterations in levels of dopamine, norepinephrine, serotonin and GABA in discrete brain areas.

  5. Pathway engineering to improve ethanol production by thermophilic bacteria

    SciTech Connect

    Lynd, L.R.

    1998-12-31

    Continuation of a research project jointly funded by the NSF and DOE is proposed. The primary project goal is to develop and characterize strains of C. thermocellum and C. thermosaccharolyticum having ethanol selectivity similar to more convenient ethanol-producing organisms. An additional goal is to document the maximum concentration of ethanol that can be produced by thermophiles. These goals build on results from the previous project, including development of most of the genetic tools required for pathway engineering in the target organisms. As well, we demonstrated that the tolerance of C. thermosaccharolyticum to added ethanol is sufficiently high to allow practical utilization should similar tolerance to produced ethanol be demonstrated, and that inhibition by neutralizing agents may explain the limited concentrations of ethanol produced in studies to date. Task 1 involves optimization of electrotransformation, using either modified conditions or alternative plasmids to improve upon the low but reproducible transformation, frequencies we have obtained thus far.

  6. Ethanol inhibits human bone cell proliferation and function in vitro

    SciTech Connect

    Friday, K.E.; Howard, G.A. )

    1991-06-01

    The direct effects of ethanol on human bone cell proliferation and function were studied in vitro. Normal human osteoblasts from trabecular bone chips were prepared by collagenase digestion. Exposure of these osteoblasts to ethanol in concentrations of 0.05% to 1% for 22 hours induced a dose-dependent reduction in bone cell DNA synthesis as assessed by incorporation of 3H-thymidine. After 72 hours of ethanol exposure in concentrations of 0.01% to 1%, protein synthesis as measured by 3H-proline incorporation into trichbroacetic acid (TCA)-precipitable material was reduced in a dose-dependent manner. Human bone cell protein concentrations and alkaline phosphatase total activity were significantly reduced after exposure to 1% ethanol for 72 hours, but not with lower concentrations of ethanol. This reduction in osteoblast proliferation and activity may partially explain the development of osteopenia in humans consuming excessive amounts of ethanol.

  7. Plant tissue-based chemiluminescence biosensor for ethanol.

    PubMed

    Huang, Yuming; Wu, Fangqiong

    2006-07-01

    A plant tissue-based chemiluminescence biosensor for ethanol based on using mushroom (Agaricus bisporus) tissue as the recognition element is proposed in this paper. The principle for ethanol sensing relies on the luminol-potassium hexacyanoferrate(III)-hydrogen peroxide transducer reaction, in which hydrogen peroxide is produced from the ethanol enzymatic catalytic oxidation by oxygen under the catalysis of alcohol oxidase in the tissue column. Under optimum conditions, the method allowed the measurement of ethanol in the range of 0.001 - 2 mmol/l with a detection limit (3 sigma) of 0.2 micromol/l. The relative standard deviation (RSD) was 4.14% (n = 11) for 0.05 mmol/l ethanol. The proposed method has been applied to the determination of ethanol in biological fluids and beverages with satisfactory results.

  8. Development of Applied Membrane Technology for Processing Ethanol from Biomass

    SciTech Connect

    Nemser, Stuart

    2013-06-30

    The technical objectives of this program were to demonstrate, with Compact Membrane Systems, Inc. (CMS) membrane technology, a water-ethanol system that would have significantly improved water transmission rate and would be economically attractive for a low cost azeotrope-breaking process. The overall objective was to indicate that a CMS membrane in line with existing distillation equipment can dramatically reduce the overall cost of dewatering ethanol for fuel-grade ethanol (FGE). The objectives of this program fell into three areas. The first objective was to demonstrate the feasibility that the CMS membranes have a unique capability for rapid transport of water or water vapor and significant water vapor-ethanol separation. The second objective was that the purity of ethanol and the inherent process is consistent with the needs and uses in the fuel grade ethanol industry. Thirdly, that this can be done in a manner that is significantly superior to existing processes.

  9. Energy Landscape of Water and Ethanol on Silica Surfaces

    DOE PAGES

    Wu, Di; Guo, Xiaofeng; Sun, Hui; ...

    2015-06-26

    Fundamental understanding of small molecule–silica surface interactions at their interfaces is essential for the scientific, technological, and medical communities. We report direct enthalpy of adsorption (Δhads) measurements for ethanol and water vapor on porous silica glass (CPG-10), in both hydroxylated and dehydroxylated (hydrophobic) forms. Results suggest a spectrum of energetics as a function of coverage, stepwise for ethanol but continuous for water. The zero-coverage enthalpy of adsorption for hydroxylated silica shows the most exothermic enthalpies for both water (-72.7 ± 3.1 kJ/mol water) and ethanol (-78.0 ± 1.9 kJ/mol ethanol). The water adsorption enthalpy becomes less exothermic gradually until reachingmore » its only plateau (-20.7 ± 2.2 kJ/mol water) reflecting water clustering on a largely hydrophobic surface, while the enthalpy of ethanol adsorption profile presents two well separated plateaus, corresponding to strong chemisorption of ethanol on adsorbate-free silica surface (-66.4 ± 4.8 kJ/mol ethanol), and weak physisorption of ethanol on ethanol covered silica (-4.0 ± 1.6 kJ/mol ethanol). On the other hand, dehydroxylation leads to missing water–silica interactions, whereas the number of ethanol binding sites is not impacted. The isotherms and partial molar properties of adsorption suggest that water may only bind strongly onto the silanols (which are a minor species on silica glass), whereas ethanol can interact strongly with both silanols and the hydrophobic areas of the silica surface.« less

  10. Gender differences in ethanol-induced behavioral sensitivity in zebrafish.

    PubMed

    Dlugos, Cynthia A; Brown, Shereene J; Rabin, Richard A

    2011-02-01

    Gender-related differential sensitivity to ethanol has long been recognized. Our previous studies have demonstrated that the zebrafish, an animal model used currently to study genetics and development related to a variety of human diseases, is also sensitive to pharmacologically relevant concentrations of ethanol. Sensitivity to ethanol in the zebrafish can be easily gauged with a simple nonintrusive behavioral test that measures ethanol-related alterations in schooling by determining the distance between each fish and its nearest neighbor. The purpose of this study was to determine the influence of gender on the strain-specific ethanol sensitivity that we had observed previously. One hundred and sixty zebrafish of the wild-type (WT) and the long fin striped (LFS) strains were equally divided by gender for use in this study. For acute ethanol treatment, the fish were separated by gender and strain and exposed to 0.0, 0.125, 0.25 0.50, or 1.0% (vol/vol) ethanol. In the chronic study, eight fish of each strain and gender were exposed to 0.5% (vol/vol) ethanol for a period of 10 weeks and the swimming behavior tested before treatment and after each week of treatment. Results showed that female WT zebrafish displayed enhanced sensitivity to the effects of chronic ethanol exposure of increased nearest neighbor distances, whereas male and female LFS fish were not significantly affected by chronic ethanol exposure. Results of the acute ethanol study showed a dose-dependent effect in both strains and a gender effect that needs to be further investigated before enhanced female sensitivity to acute ethanol can be verified.

  11. Molecular vibrational dynamics in ethanol studied by femtosecond CARS

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Zhang, Sheng; Zhang, Zhibin; Dong, Zhiwei; Chen, Deying; Zhang, Zhonghua; Xia, Yuanqin

    2015-01-01

    Femtosecond time-resolved coherent anti-Stokes Raman spectroscopy (CARS) is utilized to study the ultrafast vibrational dynamics in ethanol at room temperature. The beat wavenumbers between Raman modes of Csbnd H stretch modes (from 2800 cm-1 to 3000 cm-1) in ethanol are excited and detected by varying wavelengths of the laser pulses and detection window. The coherence relaxation times of the Csbnd H stretch mode in ethanol are measured.

  12. Energy Landscape of Water and Ethanol on Silica Surfaces

    SciTech Connect

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-06-26

    Fundamental understanding of small molecule–silica surface interactions at their interfaces is essential for the scientific, technological, and medical communities. We report direct enthalpy of adsorption (Δhads) measurements for ethanol and water vapor on porous silica glass (CPG-10), in both hydroxylated and dehydroxylated (hydrophobic) forms. Results suggest a spectrum of energetics as a function of coverage, stepwise for ethanol but continuous for water. The zero-coverage enthalpy of adsorption for hydroxylated silica shows the most exothermic enthalpies for both water (-72.7 ± 3.1 kJ/mol water) and ethanol (-78.0 ± 1.9 kJ/mol ethanol). The water adsorption enthalpy becomes less exothermic gradually until reaching its only plateau (-20.7 ± 2.2 kJ/mol water) reflecting water clustering on a largely hydrophobic surface, while the enthalpy of ethanol adsorption profile presents two well separated plateaus, corresponding to strong chemisorption of ethanol on adsorbate-free silica surface (-66.4 ± 4.8 kJ/mol ethanol), and weak physisorption of ethanol on ethanol covered silica (-4.0 ± 1.6 kJ/mol ethanol). On the other hand, dehydroxylation leads to missing water–silica interactions, whereas the number of ethanol binding sites is not impacted. The isotherms and partial molar properties of adsorption suggest that water may only bind strongly onto the silanols (which are a minor species on silica glass), whereas ethanol can interact strongly with both silanols and the hydrophobic areas of the silica surface.

  13. Developmental age strengthens barriers to ethanol accumulation in zebrafish.

    PubMed

    Lovely, C Ben; Nobles, Regina D; Eberhart, Johann K

    2014-09-01

    Fetal Alcohol Spectrum Disorders (FASD) describes a wide range of phenotypic defects affecting facial and neurological development associated with ethanol teratogenicity. It affects approximately 1 in 100 children born in the United States each year. Genetic predisposition along with timing and dosage of ethanol exposure are critical in understanding the prevalence and variability of FASD. The zebrafish attributes of external fertilization, genetic tractability, and high fecundity make it a powerful tool for FASD studies. However, a lack of consensus of ethanol treatment paradigms has limited the interpretation of these various studies. Here we address this concern by examining ethanol tissue concentrations across timing and genetic background. We utilize headspace gas chromatography to determine ethanol concentration in the AB, fli1:EGFP, and Tu backgrounds. In addition, we treated these embryos with ethanol over two different developmental time windows, 6-24 h post fertilization (hpf) and 24-48 hpf. Our analysis demonstrates that embryos rapidly equilibrate to a sub-media level of ethanol. Embryos then maintain this level of ethanol for the duration of exposure. The ethanol tissue concentration level is independent of genetic background, but is timing-dependent. Embryos exposed from 6 to 24 hpf were 2.7-4.2-fold lower than media levels, while embryos were 5.7-6.2-fold lower at 48 hpf. This suggests that embryos strengthen one or more barriers to ethanol as they develop. In addition, both the embryo and, to a lesser extent, the chorion, surrounding the embryo are barriers to ethanol. Overall, this work will help tighten ethanol treatment regimens and strengthen zebrafish as a model of FASD.

  14. Solid-state fermentation of sweet sorghum to ethanol

    SciTech Connect

    Kargi, F.; Curme, J.A.; Sheehan, J.J.

    1985-01-01

    Solid-state fermentation of chopped sweet sorghum particles to ethanol was studied in static flasks using an ethanol tolerant yeast strain. The influence of various process parameters, such as temperature, yeast cell concentration, and moisture content, on the rate and extent of ethanol fermentation was investigated. Optimal values of these parameters were found to be 35 degrees C, 7 x 10/sup 8/ cells/g raw sorghum, and 70% moisture level, respectively. 25 references.

  15. Anomalous volume change of gramicidin A in ethanol solutions

    NASA Technical Reports Server (NTRS)

    Derechin, M.; Hayashi, D. M.; Jordan, B. E.

    1975-01-01

    Results of studies aimed at clarifying the failure of gramicidin A (GA) to sediment in early experiments are analyzed. In the present work, no sedimentation was observed in pure pentanol or ethanol, while normal sedimentation was observed in ethanol-water mixtures. It is concluded that GA exists in two conformations that differ in volume. Since the apparent specific volume in absolute ethanol sinks to its lowest values on increasing concentration, the GA molecule probably unfolds completely in conditions favorable for dimerization.

  16. [Exchange reactions in brain tissue under chronic ethanol intoxication].

    PubMed

    Gil'miiarova, F N; Radomskaia, V M; Vinogradova, L N

    1982-01-01

    The paper deals with characterization of systems utilizing ethanol and reactions conjugated with its exchange in the brain tissue under chronic alcohol intoxication. The following is established: the absence of the alcoholdehydrogenase pathway of ethanol oxidation in rabbits, unbalanced splitting of carbohydrates under two-months ethanol load, disturbance of oxidative processes in the tricarboxylic acids cycle, a decrease in the pool of oxidized nicotin amide coenzymes.

  17. Pervaporation of ethanol and acetone above normal boiling temperatures

    SciTech Connect

    Windmoeller, D.; Galembeck, F. )

    1992-08-01

    Pervaporation experiments were performed at higher than normal feed liquid boiling temperatures by applying pressure to the feed compartment. Ethanol, acetone, and aqueous ethanol solutions were pervaporated through silicone rubber dense membranes. Large increases were observed in the permeate flow as the temperature rose above the liquid boiling temperature. Separation factors in aqueous ethanol pervaporation are not affected by these increases in permeate output, and they are in the same range as those obtained in conventional pervaporation.

  18. Developmental age strengthens barriers to ethanol accumulation in zebrafish

    PubMed Central

    Lovely, C. Ben; Nobles, Regina D.; Eberhart, Johann K.

    2014-01-01

    Fetal Alcohol Spectrum Disorders (FASD) describes a wide range of phenotypic defects affecting facial and neurological development associated with ethanol teratogenicity. It affects approximately 1 in 100 children born in the United States each year. Genetic predisposition along with timing and dosage of ethanol exposure are critical in understanding the prevalence and variability of FASD. The zebrafish attributes of external fertilization, genetic tractability, and high fecundity make it a powerful tool for FASD studies. However, a lack of consensus of ethanol treatment paradigms has limited the interpretation of these various studies. Here we address this concern by examining ethanol tissue concentrations across timing and genetic background. We utilize headspace gas chromatography to determine ethanol concentration in the AB, fli1:EGFP, and Tu backgrounds. In addition, we treated these embryos with ethanol over two different developmental time windows, 6–24 hours post fertilization (hpf) and 24–48 hpf. Our analysis demonstrates that embryos rapidly equilibrate to a sub-media level of ethanol. Embryos then maintain this level of ethanol for the duration of exposure. The ethanol tissue concentration level is independent of genetic background, but is timing-dependent. Embryos exposed from 6–24 hpf were 2.7–4.2-fold lower than media levels, while embryos were 5.7–6.2-fold lower at 48 hpf. This suggests that embryos strengthen one or more barriers to ethanol as they develop. In addition, both the embryo and, to a lesser extent, the chorion, surrounding the embryo are barriers to ethanol. Overall, this work will help tighten ethanol treatment regimens and strengthen zebrafish as a model of FASD. PMID:25012627

  19. Lipid-enhanced ethanol production from xylose by Pachysolen tannophilus

    SciTech Connect

    Dekker, R.F.H.

    1986-04-01

    A number of different yeasts are now recognized as being capable of fermenting the pentose sugar, D-xylose, into ethanol. The most prominent among these are Pachysolen tannophilus and several Candida species. D-Xylose is found principally in lignocellulosic materials where it occurs as the main constitutent of the hemicellulosic xylans (1,4-..beta..-D-heteroxylans). With the exception of Candida XF-217, the conversion yields of xylose into ethanol for most yeasts were generally low (less than 70% of theoretical when grown on at least 50 g/l xylose). The low ethanol yields are attributable to a number of factors: 1) fermentation was not performed under conditions that maximize ethanol formation; 2) ethanol was not the major fermentation end-product, (e.g., acetic acid xylitol, and arabinitol are also known products, 3) ethanol toxicity; 4) ethanol is assimilated when the substrate becomes limiting; 4.8 and 5) osmotic sensitivity to high substrate levels, i.e. substrate inhibition. Attempts to increase ethanol yields of yeasts by adding exogenous lipids (e.g., oleic and linoleic acids, or ergosterol or its ester, lipid mixtures, or protein-lipid mixtures) to nutrient medium have succeeded in improving ethanol yields and also in reducing fermentation times. These lipids, when added to the nutrient medium, were incorporated into the yeast's cellular membrane. The protective action of these lipids was to alleviate the inhibitory effect of ethanol which then allowed the cells to tolerate higher ethanol levels. This communication reports on improved ethanol yields arising from the fermentation of xylose by a Pachysolen tannophilus strain when grown semi-aerobically in the presence of exogenous-added lipids. 17 references.

  20. Observational constraints on the global atmospheric budget of ethanol

    NASA Astrophysics Data System (ADS)

    Naik, V.; Fiore, A. M.; Horowitz, L. W.; Singh, H. B.; Wiedinmyer, C.; Guenther, A.; de Gouw, J. A.; Millet, D. B.; Goldan, P. D.; Kuster, W. C.; Goldstein, A.

    2010-01-01

    Energy security and climate change concerns have led to the promotion of biomass-derived ethanol, an oxygenated volatile organic compound (OVOC), as a substitute for fossil fuels. Although ethanol is ubiquitous in the troposphere, our knowledge of its current atmospheric budget and distribution is limited. Here, for the first time we use a global chemical transport model in conjunction with atmospheric observations to place constraints on the ethanol budget, noting that additional measurements of ethanol (and its precursors) are still needed to enhance confidence in our estimated budget. Global sources of ethanol in the model include 5.0 Tg yr-1 from industrial sources and biofuels, 9.2 Tg yr-1 from terrestrial plants, ~0.5 Tg yr-1 from biomass burning, and 0.05 Tg yr-1 from atmospheric reactions of the ethyl peroxide radical (C2H5O2) with itself and with the methyl peroxide radical (CH3O2). The resulting atmospheric lifetime of ethanol in the model is 2.8 days. Gas-phase oxidation by hydroxyl radical (OH) is the primary global sink of ethanol in the model (65%), followed by dry deposition to land (25%), and wet deposition (10%). Over continental areas, ethanol concentrations predominantly reflect direct anthropogenic and biogenic emission sources. Uncertainty in the biogenic ethanol emissions estimated at a factor of three may contribute to the 50% model underestimate of observations in the North American boundary layer. Furthermore, current levels of ethanol measured in remote atmospheres are an order of magnitude larger than those explained by surface sources or by in-situ atmospheric production from observed precursor hydrocarbons in the model, suggesting a major gap in understanding. Stronger constraints on the budget and distribution of ethanol and other VOCs are a critical step towards assessing the impacts of increasing use of ethanol as a fuel.

  1. Observational constraints on the global atmospheric budget of ethanol

    NASA Astrophysics Data System (ADS)

    Naik, V.; Fiore, A. M.; Horowitz, L. W.; Singh, H. B.; Wiedinmyer, C.; Guenther, A.; de Gouw, J. A.; Millet, D. B.; Goldan, P. D.; Kuster, W. C.; Goldstein, A.

    2010-06-01

    Energy security and climate change concerns have led to the promotion of biomass-derived ethanol, an oxygenated volatile organic compound (OVOC), as a substitute for fossil fuels. Although ethanol is ubiquitous in the troposphere, our knowledge of its current atmospheric budget and distribution is limited. Here, for the first time we use a global chemical transport model in conjunction with atmospheric observations to place constraints on the ethanol budget, noting that additional measurements of ethanol (and its precursors) are still needed to enhance confidence in our estimated budget. Global sources of ethanol in the model include 5.0 Tg yr-1 from industrial sources and biofuels, 9.2 Tg yr-1 from terrestrial plants, ~0.5 Tg yr-1 from biomass burning, and 0.05 Tg yr-1 from atmospheric reactions of the ethyl peroxy radical (C2H5O2) with itself and with the methyl peroxy radical (CH3O2). The resulting atmospheric lifetime of ethanol in the model is 2.8 days. Gas-phase oxidation by the hydroxyl radical (OH) is the primary global sink of ethanol in the model (65%), followed by dry deposition (25%), and wet deposition (10%). Over continental areas, ethanol concentrations predominantly reflect direct anthropogenic and biogenic emission sources. Uncertainty in the biogenic ethanol emissions, estimated at a factor of three, may contribute to the 50% model underestimate of observations in the North American boundary layer. Current levels of ethanol measured in remote regions are an order of magnitude larger than those in the model, suggesting a major gap in understanding. Stronger constraints on the budget and distribution of ethanol and OVOCs are a critical step towards assessing the impacts of increasing the use of ethanol as a fuel.

  2. Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends

    SciTech Connect

    2016-03-02

    This document provides information on ethanol fuel properties, standards, codes, best practices, and equipment information for those who blend, distribute, store, sell, or use E15 (gasoline blended with 10.5 percent - 15 percent ethanol), E85 (marketing term for ethanol-gasoline blends containing 51 percent - 83 percent ethanol, depending on geography and season), and other ethanol blends.

  3. Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends

    SciTech Connect

    2016-03-01

    This document provides information on ethanol fuel properties, standards, codes, best practices, and equipment information for those who blend, distribute, store, sell, or use E15 (gasoline blended with 10.5 percent - 15 percent ethanol), E85 (marketing term for ethanol-gasoline blends containing 51 percent - 83 percent ethanol, depending on geography and season), and other ethanol blends.

  4. Assessing the environmental sustainability of ethanol from integrated biorefineries.

    PubMed

    Falano, Temitope; Jeswani, Harish K; Azapagic, Adisa

    2014-06-01

    This paper considers the life cycle environmental sustainability of ethanol produced in integrated biorefineries together with chemicals and energy. Four types of second-generation feedstocks are considered: wheat straw, forest residue, poplar, and miscanthus. Seven out of 11 environmental impacts from ethanol are negative, including greenhouse gas (GHG) emissions, when the system is credited for the co-products, indicating environmental savings. Ethanol from poplar is the best and straw the worst option for most impacts. Land use change from forest to miscanthus increases the GHG emissions several-fold. For poplar, the effect is opposite: converting grassland to forest reduces the emissions by three-fold. Compared to fossil and first-generation ethanol, ethanol from integrated biorefineries is more sustainable for most impacts, with the exception of wheat straw. Pure ethanol saves up to 87% of GHG emissions compared to petrol per MJ of fuel. However, for the current 5% ethanol-petrol blends, the savings are much smaller (<3%). Therefore, unless much higher blends become widespread, the contribution of ethanol from integrated biorefineries to the reduction of GHG emissions will be insignificant. Yet, higher ethanol blends would lead to an increase in some impacts, notably terrestrial and freshwater toxicity as well as eutrophication for some feedstocks.

  5. Adaptation to High Ethanol Reveals Complex Evolutionary Pathways

    PubMed Central

    Das, Anupam; Espinosa-Cantú, Adriana; De Maeyer, Dries; Arslan, Ahmed; Van Pee, Michiel; van der Zande, Elisa; Meert, Wim; Yang, Yudi; Zhu, Bo; Marchal, Kathleen; DeLuna, Alexander; Van Noort, Vera; Jelier, Rob; Verstrepen, Kevin J.

    2015-01-01

    Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts. PMID:26545090

  6. Fuel ethanol and agriculture: an economic assessment. Agricultural economic report

    SciTech Connect

    Grinnell, G.; Gavett, E.

    1986-08-01

    Increased fuel ethanol production through 1995 would raise net farm income, benefiting mainly corn and livestock producers. Production of additional byproduct feeds would depress the price of soybeans. Large ethanol subsidies, which are required to sustain the industry, would offset any savings in agricultural commodity programs. Increased ethanol production would also raise consumer expenditures for food. Any benefits of higher income to farmers would be more than offset by increased Government costs and consumer food expenditures. Direct cash payments to farmers would be more economical than attempting to boost farm income through ethanol subsidies.

  7. Transcriptional changes associated with ethanol tolerance in Saccharomyces cerevisiae.

    PubMed

    Stanley, Dragana; Chambers, Paul J; Stanley, Grant A; Borneman, Anthony; Fraser, Sarah

    2010-09-01

    Saccharomyces spp. are widely used for ethanol production; however, fermentation productivity is negatively affected by the impact of ethanol accumulation on yeast metabolic rate and viability. This study used microarray and statistical two-way ANOVA analysis to compare and evaluate gene expression profiles of two previously generated ethanol-tolerant mutants, CM1 and SM1, with their parent, Saccharomyces cerevisiae W303-1A, in the presence and absence of ethanol stress. Although sharing the same parentage, the mutants were created differently: SM1 by adaptive evolution involving long-term exposure to ethanol stress and CM1 using chemical mutagenesis followed by adaptive evolution-based screening. Compared to the parent, differences in the expression levels of genes associated with a number of gene ontology categories in the mutants suggest that their improved ethanol stress response is a consequence of increased mitochondrial and NADH oxidation activities, stimulating glycolysis and other energy-yielding pathways. This leads to increased activity of energy-demanding processes associated with the production of proteins and plasma membrane components, which are necessary for acclimation to ethanol stress. It is suggested that a key function of the ethanol stress response is restoration of the NAD(+)/NADH redox balance, which increases glyceraldehyde-3-phosphate dehydrogenase activity, and higher glycolytic flux in the ethanol-stressed cell. Both mutants achieved this by a constitutive increase in carbon flux in the glycerol pathway as a means of increasing NADH oxidation.

  8. Maternal ethanol ingestion: effect on maternal and neonatal glucose balance

    SciTech Connect

    Witek-Janusek, L.

    1986-08-01

    Liver glycogen availability in the newborn is of major importance for the maintenance of postnatal blood glucose levels. This study examined the effect of maternal ethanol ingestion on maternal and neonatal glucose balance in the rate. Female rats were placed on 1) the Lieber-DeCarli liquid ethanol diet, 2) an isocaloric liquid pair-diet, or 3) an ad libitum rat chow diet at 3 wk before mating and throughout gestation. Blood and livers were obtained from dams and rat pups on gestational days 21 and 22. The pups were studied up to 6 h in the fasted state and up to 24 h in the fed state. Maternal ethanol ingestion significantly decreased litter size, birth weight, and growth. A significantly higher mortality during the early postnatal period was seen in the prenatal ethanol exposed pups. Ethanol significantly decreased fed maternal liver glycogen stores but not maternal plasma glucose levels. The newborn rats from ethanol ingesting dams also had significantly decreased liver glycogen stores. Despite mobilizing their available glycogen, these prenatal ethanol exposed pups became hypoglycemic by 6 h postnatal. This was more marked in the fasted pups. Ethanol did not affect maternal nor neonatal plasma insulin levels. Thus maternal ethanol ingestion reduces maternal and neonatal liver glycogen stores and leads to postnatal hypoglycemia in the newborn rat.

  9. An Ethanol Vapor Chamber System for Small Animals

    PubMed Central

    Wang, Jie; Jiang, Lihong; Du, Hongying; Mason, Graeme F.

    2012-01-01

    Ethanol vapor chambers have been utilized widely in alcohol research since their introduction in 1971, and implementations of these systems are now available commercially. Here, we present a modification of the chamber that can be built at lower cost and greater simplicity of operation. The six-chamber system for rats has multiple air pumps. Ethanol vapor levels are adjusted with the air flow rate, ethanol drip rate, and dilution with room air, without a heater or fans. Ethanol vapor concentrations are measured with a breathalyzer, using room air to dilute the vapor chamber output into the range of the breathalyzer. Multiple pumps provide backup to ensure animal survival in the case of failure of the primary air pump. Tests in animals demonstrated comfortable and stable elevation of blood ethanol, with tight control of the ethanol vapor concentrations and the ability to select from a broad range of levels. The ethanol vapor measurement was rapid and efficient. The parts cost was a few thousand U.S. dollars. This vapor chamber system features low cost, ease of use, and convenient and inexpensive measurement of ethanol vapor concentrations. The lack of a heater and electrical components that could come into contact with ethanol in our case facilitated institutional approval. PMID:22575431

  10. Standardized treatment of severe methanol poisoning with ethanol and hemodialysis

    SciTech Connect

    Ekins, B.R.; Rollins, D.E.; Duffy, D.P.; Gregory, M.C.

    1985-03-01

    Seven patients with methanol poisoning were treated with ethanol, hemodialysis and supportive measures. The interval between ingestion and initiation of ethanol therapy varied from 3 to 67 hours and from ingestion to dialysis from 9 to 93 hours. All patients survived, but one had permanent visual impairment. A 10% ethanol solution administered intravenously is a safe and effective antidote for severe methanol poisoning. Ethanol therapy is recommended when plasma methanol concentrations are higher than 20 mg per dl, when ingested doses are greater than 30 ml and when there is evidence of acidosis or visual abnormalities in cases of suspected methanol poisoning. 13 references, 1 figure, 2 table.

  11. Importance of stability study of continuous systems for ethanol production.

    PubMed

    Paz Astudillo, Isabel Cristina; Cardona Alzate, Carlos Ariel

    2011-01-10

    Fuel ethanol industry presents different problems during bioreactors operation. One of them is the unexpected variation in the output ethanol concentration from the bioreactor or a drastic fall in the productivity. In this paper, a compilation of concepts and relevant results of several experimental and theoretical studies about dynamic behavior of fermentation systems for bioethanol production with Saccharomyces cerevisiae and Zymomonas mobilis is done with the purpose of understanding the stability phenomena that could affect the productivity of industries producing fuel ethanol. It is shown that the design of high scale biochemical processes for fuel ethanol production must be done based on stability studies. © 2010 Elsevier B.V. All rights reserved.

  12. Ethanol-induced structural transitions of DNA on mica.

    PubMed Central

    Fang, Y; Spisz, T S; Hoh, J H

    1999-01-01

    The effect of ethanol on the structure of DNA confined to mica in the presence of Mg2+was examined by varying the ethanol concentration and imaging the DNA by atomic force microscopy. Contour length measurements of the DNA show a transition from all-B-form at 0% ethanol to all-A-form at >25% ethanol. At intermediate ethanol concentrations, contour lengths suggest that individual molecules of air-dried DNA are trapped with mixed compositions of A-form and B-form. The relative composition depends on the ethanol concentration. Fitting the length distributions at intermediate ethanol concentrations to a simple binomial model results in an upper bound estimate for the A-form and B-form domains of approximately 54 bp in the individual molecules. In addition to length changes, the apparent persistence length of DNA decreases with increasing ethanol concentration. At high concentrations of ethanol (>20%), DNA formed several higher order structures, including flower shaped condensates and toroids. PMID:10101205

  13. Preliminary evaluation of alternative ethanol/water separation processes

    SciTech Connect

    Eakin, D.E.; Donovan, J.M.; Cysewski, G.R.; Petty, S.E.; Maxham, J.V.

    1981-05-01

    Preliminary evaluation indicates that separation of ethanol and water can be accomplished with less energy than is now needed in conventional distillation processes. The state of development for these methods varies from laboratory investigation to commercially available processes. The processes investigated were categorized by type of separation depending on their ability to achieve varying degrees of ethanol/water separation. The following methods were investigated: ethanol extraction with CO/sub 2/ (the A.D. Little process); solvent extraction of ethanol; vacuum distillation; vapor recompression distillation; dehydration with fermentable grains; low temperature blending with gasoline; molecular sieve adsorption; and reverse osmosis.

  14. Ethanol enhances taurine-activated glycine receptor function

    PubMed Central

    Welsh, Brian T.; Kirson, Dean; Allen, Hunter M.; Mihic, S. John

    2010-01-01

    Background Emerging evidence suggests that taurine acts as a partial agonist at glycine receptors (GlyR) in vitro and in vivo. Ethanol acts as an allosteric modulator at the GlyR producing a leftward shift of the glycine concentration-response curve, with no enhancing effects observed at saturating glycine concentrations. However, to date no electrophysiological studies have been performed on ethanol modulation of taurine-activated GlyR. Methods Wildtype α1 GlyR, or those bearing a serine-267 to isoleucine replacement (S267I), were homomerically expressed in Xenopus oocytes and voltage-clamped at 70 mV. Ethanol was co-applied with varying concentrations of glycine or taurine and the enhancing effects of ethanol compared. Results Ethanol potentiated glycine- and taurine-activated GlyR responses in a concentration-dependent manner. It shifted taurine and glycine concentration-response curves to the left, having no effects at saturating agonist concentrations. Chelation of zinc by tricine decreased ethanol enhancement of taurine-gated GlyR function. The S267I mutation prevented ethanol enhancement of taurine-mediated responses as previously also reported for glycine. Conclusion Ethanol modulates taurine activation of GlyR function by a mechanism similar to that of the full agonist glycine. The lack of effect of ethanol at saturating taurine concentrations provides mechanistic information on alcohol actions at the GlyR. PMID:20586750

  15. Pleiotrophin differentially regulates the rewarding and sedative effects of ethanol.

    PubMed

    Vicente-Rodríguez, Marta; Pérez-García, Carmen; Ferrer-Alcón, Marcel; Uribarri, María; Sánchez-Alonso, María G; Ramos, María P; Herradón, Gonzalo

    2014-12-01

    Pleiotrophin (PTN) is a cytokine with important roles in dopaminergic neurons. We found that an acute ethanol (2.0 g/kg, i.p.) administration causes a significant up-regulation of PTN mRNA and protein levels in the mouse prefrontal cortex, suggesting that endogenous PTN could modulate behavioural responses to ethanol. To test this hypothesis, we studied the behavioural effects of ethanol in PTN knockout (PTN(-/-) ) mice and in mice with cortex- and hippocampus-specific transgenic PTN over-expression (PTN-Tg). Ethanol (1.0 and 2.0 g/kg) induced an enhanced conditioned place preference in PTN(-/-) compared to wild type mice, suggesting that PTN prevents ethanol rewarding effects. Accordingly, the conditioning effects of ethanol were completely abolished in PTN-Tg mice. The ataxic effects induced by ethanol (2.0 g/kg) were not affected by the genotype. However, the sedative effects of ethanol (3.6 g/kg) tested in a loss of righting reflex paradigm were significantly reduced in PTN-Tg mice, suggesting that up-regulation of PTN levels prevents the sedative effects of ethanol. These results indicate that PTN may be a novel genetic factor of importance in alcohol use disorders, and that potentiation of the PTN signalling pathway may be a promising therapeutic strategy in the treatment of these disorders. © 2014 International Society for Neurochemistry.

  16. Inhibition of alcoholic fermentation by substrate and ethanol. [Candida pseudotropicalis

    SciTech Connect

    Maulin, H.B.; Galzy, P.

    1980-11-01

    The effect of ethanol and sugars on rates of fermentation was studied. A strain of Candida pseudotropicalis was used. The specific rate of fermentation was determined by using the Warburg manometer. The effect of ethanol was formulated as an exponential function of ethanol concentration, but the empirical constant was different when glucose or lactose was used as a substrate. The effects of both ethanol and substrate were formulated. It was demonstrated that when lactose and glucose were present in the medium with a small amount of alcohol, a synergistic effect on the rate of fermentation appeared. This phenomenon considerably limits the rate of fermentation.

  17. Ethanol sorption and partial molar volume in cellulose acetate films

    SciTech Connect

    Bolton, B.A.; Kint, S.; Bailey, G.F.; Scherer, J.R.

    1986-03-13

    The absorption characteristics of cellulose acetate (CA398) and cellulose triacetate membranes for ethanol vapor were determined by integrated optical techniques. Changes in the refractive index and film thicknesses are used to calculate the ethanol concentration within the membrane, to calculate the partial molar volume of sorbed ethanol as a function of ethanol concentration, and to estimate the average void volume of the dry film. The refractive index is shown to be very sensitive to the available void space within the membrane. The average total void space for the films considered here was less than 1% of the dry polymer volume. 22 references, 6 figures, 1 table.

  18. Conditioned effects of ethanol on the immune system.

    PubMed

    Gano, Anny; Pautassi, Ricardo Marcos; Doremus-Fitzwater, Tamara L; Deak, Terrence

    2017-04-01

    Several studies indicate that the immune system can be subjected to classical conditioning. Acute ethanol intoxication significantly modulates several pro-inflammatory cytokines (e.g. interleukins-1 and 6 [IL-1β and IL-6, respectively] and tumor necrosis factor alpha [TNFα])) in several brain areas, including amygdala (AMG), paraventricular nucleus (PVN), and hippocampus (HPC). It is unknown, however, whether cues associated with ethanol can elicit conditioned alterations in cytokine expression. The present study analyzed, in male Sprague-Dawley rats, whether ethanol-induced changes in the central cytokine response may be amenable to conditioning. In Experiments 1 and 2, the rats were given one or two pairings between a distinctive odor (conditional stimulus, CS) and the post-absorptive effects of a high (3.0 or 4.0 g/kg, Experiments 1 and 2, respectively) ethanol dose. Neither of these experiments revealed conditioning of IL-6, IL-1β, or TNFα, as measured via mRNA levels. Yet, re-exposure to the lemon-odor CS in Experiment 1 significantly increased C-Fos levels in the PVN. In Experiment 3, the rats were given four pairings between an odor CS and a moderate ethanol dose (2.0 g/kg), delivered intraperitoneally (i.p.) or intragastrically (i.g.). Re-exposure to the odor CS significantly increased IL-6 levels in HPC and AMG, an effect only evident in paired rats administered ethanol i.p. Overall, this study suggests that ethanol exposure can regulate the levels of IL-6 at HPC and AMG via classical conditioning mechanisms. These ethanol-induced, conditioned alterations in cytokine levels may ultimately affect the intake and motivational effects of ethanol. Impact statement This study examines, across three experiments, whether odor cues associated with ethanol exposure can condition changes in cytokine expression. The analysis of ethanol-induced conditioning of immune responses is a novel niche that can help understand the transition from social drinking to

  19. Modulation of alcohol dehydrogenase and ethanol metabolism by sex hormones in the spontaneously hypertensive rat. Effect of chronic ethanol administration

    PubMed Central

    Rachamin, Gloria; Macdonald, J. Alain; Wahid, Samina; Clapp, Jeremy J.; Khanna, Jatinder M.; Israel, Yedy

    1980-01-01

    In young (4-week-old) male and female spontaneously hypertensive (SH) rats, ethanol metabolic rate in vivo and hepatic alcohol dehydrogenase activity in vitro are high and not different in the two sexes. In males, ethanol metabolic rate falls markedly between 4 and 10 weeks of age, which coincides with the time of development of sexual maturity in the rat. Alcohol dehydrogenase activity is also markedly diminished in the male SH rat and correlates well with the changes in ethanol metabolism. There is virtually no influence of age on ethanol metabolic rate and alcohol dehydrogenase activity in the female SH rat. Castration of male SH rats prevents the marked decrease in ethanol metabolic rate and alcohol dehydrogenase activity, whereas ovariectomy has no effect on these parameters in female SH rats. Chronic administration of testosterone to castrated male SH rats and to female SH rats decreases ethanol metabolic rate and alcohol dehydrogenase activity to values similar to those found in mature males. Chronic administration of oestradiol-17β to male SH rats results in marked stimulation of ethanol metabolic rate and alcohol dehydrogenase activity to values similar to those found in female SH rats. Chronic administration of ethanol to male SH rats from 4 to 11 weeks of age prevents the marked age-dependent decreases in ethanol metabolic rate and alcohol dehydrogenase activity, but has virtually no effect in castrated rats. In the intoxicated chronically ethanol-fed male SH rats, serum testosterone concentrations are significantly depressed. In vitro, testosterone has no effect on hepatic alcohol dehydrogenase activity of young male and female SH rats. In conclusion, in the male SH rat, ethanol metabolic rate appears to be limited by alcohol dehydrogenase activity and is modulated by testosterone. Testosterone has an inhibitory effect and oestradiol has a testosterone-dependent stimulatory effect on alcohol dehydrogenase activity and ethanol metabolic rate in these

  20. Comparative Polygenic Analysis of Maximal Ethanol Accumulation Capacity and Tolerance to High Ethanol Levels of Cell Proliferation in Yeast

    PubMed Central

    Pais, Thiago M.; Foulquié-Moreno, María R.; Hubmann, Georg; Duitama, Jorge; Swinnen, Steve; Goovaerts, Annelies; Yang, Yudi; Dumortier, Françoise; Thevelein, Johan M.

    2013-01-01

    The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v) by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of maximal ethanol accumulation capacity and ethanol tolerance of cell proliferation in 68 yeast strains showed a poor correlation, but higher ethanol tolerance of cell proliferation clearly increased the likelihood of superior maximal ethanol accumulation capacity. We have applied pooled-segregant whole-genome sequence analysis to identify the polygenic basis of these two complex traits using segregants from a cross of a haploid derivative of the sake strain CBS1585 and the lab strain BY. From a total of 301 segregants, 22 superior segregants accumulating ≥17% ethanol in small-scale fermentations and 32 superior segregants growing in the presence of 18% ethanol, were separately pooled and sequenced. Plotting SNP variant frequency against chromosomal position revealed eleven and eight Quantitative Trait Loci (QTLs) for the two traits, respectively, and showed that the genetic basis of the two traits is partially different. Fine-mapping and Reciprocal Hemizygosity Analysis identified ADE1, URA3, and KIN3, encoding a protein kinase involved in DNA damage repair, as specific causative genes for maximal ethanol accumulation capacity. These genes, as well as the previously identified MKT1 gene, were not linked in this genetic background to tolerance of cell proliferation to high ethanol levels. The superior KIN3 allele contained two SNPs, which are absent in all yeast strains sequenced up to now. This work provides the first insight in the genetic basis of maximal ethanol accumulation capacity in yeast and reveals for the first time the importance of DNA damage repair in yeast ethanol tolerance. PMID:23754966