Science.gov

Sample records for 938nm cladding pumped

  1. High Power 938nm Cladding Pumped Fiber Laser

    SciTech Connect

    Dawson, J; Beach, R; Brobshoff, A; Liao, Z; Payne, S; Pennington, D; Taylor, L; Hackenberg, W; Bonaccini, D

    2002-12-26

    We have developed a Nd:doped cladding pumped fiber amplifier, which operates at 938nm with greater than 2W of output power. The core co-dopants were specifically chosen to enhance emission at 938nm. The fiber was liquid nitrogen cooled in order to achieve four-level laser operation on a laser transition that is normally three level at room temperature, thus permitting efficient cladding pumping of the amplifier. Wavelength selective attenuation was induced by bending the fiber around a mandrel, which permitted near complete suppression of amplified spontaneous emission at 1088nm. We are presently seeking to scale the output of this laser to 10W. We will discuss the fiber and laser design issues involved in scaling the laser to the 10W power level and present our most recent results.

  2. Cladding For Transversely-Pumped Laser Rod

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.; Fan, Tso Yee

    1989-01-01

    Combination of suitable dimensioning and cladding of neodymium:yttrium aluminum garnet of similar solid-state laser provides for more efficient utilization of transversely-incident pump light from diode lasers. New design overcomes some of limitations of longitudinal- and older transverse-pumping concepts and promotes operation at higher output powers in TEM00 mode.

  3. Effective absorption in cladding-pumped fibers

    NASA Astrophysics Data System (ADS)

    Zervas, Michalis N.; Marshall, Andy; Kim, Jaesun

    2011-02-01

    We investigate experimentally and theoretically the wavelength dependence of the pump absorption along Yb3+-doped fibers, for cladding-pumped single as well as coupled multimode (GTWaveTM) fibers. We show that significant spectral absorption distortions occur along the length with the 976nm absorption peak affected the most. We have developed a novel theoretical approach, based on coupled mode theory, to explain the observed effects. We have also investigated the mode mixing requirements in order to improve the absorption spectral distribution along the increase the overall absorption efficiency and discuss the implications on fiber laser performance.

  4. Cladding-pumped erbium-doped multicore fiber amplifier.

    PubMed

    Abedin, K S; Taunay, T F; Fishteyn, M; DiGiovanni, D J; Supradeepa, V R; Fini, J M; Yan, M F; Zhu, B; Monberg, E M; Dimarcello, F V

    2012-08-27

    A cladding pumped multicore erbium-doped fiber amplifier for simultaneous amplification of 6 channels is demonstrated. Peak gain over 32 dB has been obtained at a wavelength of 1560 nm and the bandwidth measured at 20-dB gain was about 35 nm. Numerical modeling of cladding pumped multicore erbium-doped amplifier was also performed to study the properties of the amplifier. The results of experiment and simulation are found to be in good agreement.

  5. Compact cladding-pumped planar waveguide amplifier and fabrication method

    DOEpatents

    Bayramian, Andy J.; Beach, Raymond J.; Honea, Eric; Murray, James E.; Payne, Stephen A.

    2003-10-28

    A low-cost, high performance cladding-pumped planar waveguide amplifier and fabrication method, for deployment in metro and access networks. The waveguide amplifier has a compact monolithic slab architecture preferably formed by first sandwich bonding an erbium-doped core glass slab between two cladding glass slabs to form a multi-layer planar construction, and then slicing the construction into multiple unit constructions. Using lithographic techniques, a silver stripe is deposited and formed at a top or bottom surface of each unit construction and over a cross section of the bonds. By heating the unit construction in an oven and applying an electric field, the silver stripe is then ion diffused to increase the refractive indices of the core and cladding regions, with the diffusion region of the core forming a single mode waveguide, and the silver diffusion cladding region forming a second larger waveguide amenable to cladding pumping with broad area diodes.

  6. Cladding for transverse-pumped solid-state laser

    NASA Technical Reports Server (NTRS)

    Byer, Robert L. (Inventor); Fan, Tso Y. (Inventor)

    1989-01-01

    In a transverse pumped, solid state laser, a nonabsorptive cladding surrounds a gain medium. A single tranverse mode, namely the Transverse Electromagnetic (TEM) sub 00 mode, is provided. The TEM sub 00 model has a cross sectional diameter greater than a transverse dimension of the gain medium but less than a transverse dimension of the cladding. The required size of the gain medium is minimized while a threshold for laser output is lowered.

  7. Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding.

    PubMed

    Dong, Liang; McKay, Hugh A; Fu, Libin; Ohta, Michiharu; Marcinkevicius, Andrius; Suzuki, Shigeru; Fermann, Martin E

    2009-05-25

    All glass leakage channel fibers have been demonstrated to be a potential practical solution for power scaling in fiber lasers beyond the nonlinear limits in conventional large mode area fibers. The all glass nature with absence of any air holes is especially useful for allowing the fibers to be used and fabricated much like conventional fibers. Previously, double clad active all glass leakage channel fibers used low index polymer as a pump guide with the drawbacks of being less reliable at high pump powers and not being able to change fiber outer diameter independent of pump guide dimension. In this work, we demonstrate, for the first time, ytterbium-doped double clad all glass leakage channel fibers with highly fluorine-doped silica as pump cladding. The new all glass leakage channel fibers have no polymer in the pump path and have independent control of fiber outer diameters and pump cladding dimension, and, therefore, enable designs with smaller pump guide for high pump absorption and, at the same time, with large fiber diameters to minimize micro and macro bending effects, a much desired features for large core fibers where intermodal coupling can be an issue due to a much increased mode density. An ytterbium-doped double clad PM fiber with core diameter of 80 microm is also reported, which can be coiled in 76 cm diameter coils.

  8. Experimental demonstration of novel end-pumping method for double-clad fiber devices.

    PubMed

    Peterka, Pavel; Kasík, Ivan; Mat Jec, Vlastimil; Kube Ek, Václav; Dvo A Ek, Pavel

    2006-11-15

    We present experimental demonstration of an end-pumping scheme based on splicing the multimode pump and single-mode signal fibers directly to a double-clad fiber with a tailored cross section. The method is used to pump a double-clad, erbium- and ytterbium-doped, fiber ring laser. The efficiency of the end-pumping method is tested by determining the slope efficiencies of the fiber ring laser and the fiber laser in a Fabry-Perot configuration. Comparable slope efficiencies are found when both laser configurations have similar output coupler ratios. The developed pumping scheme and double-clad fiber can find applications in cost-effective power fiber amplifiers and lasers. PMID:17072383

  9. High-performace cladding-pumped erbium-doped fibre laser and amplifier

    SciTech Connect

    Kotov, L V; Likhachev, M E; Bubnov, M M; Medvedkov, O I; Lipatov, D S; Vechkanov, N N; Guryanov, Aleksei N

    2012-05-31

    We report cladding-pumped erbium-doped fibre laser and amplifier configurations. Through fibre design optimisation, we have achieved a record-high laser slope efficiency, 40 % with respect to absorbed pump power ({lambda} = 976 nm), and an output power of 7.5 W. The erbium-doped fibre amplifier efficiency reaches 32 %.

  10. High power operation of cladding pumped holmium-doped silica fibre lasers.

    PubMed

    Hemming, Alexander; Bennetts, Shayne; Simakov, Nikita; Davidson, Alan; Haub, John; Carter, Adrian

    2013-02-25

    We report the highest power operation of a resonantly cladding-pumped, holmium-doped silica fibre laser. The cladding pumped all-glass fibre utilises a fluorine doped glass layer to provide low loss cladding guidance of the 1.95 µm pump radiation. The operation of both single mode and large-mode area fibre lasers was demonstrated, with up to 140 W of output power achieved. A slope efficiency of 59% versus launched pump power was demonstrated. The free running emission was measured to be 2.12-2.15 µm demonstrating the potential of this architecture to address the long wavelength operation of silica based fibre lasers with high efficiency.

  11. High power resonant pumping of Tm-doped fiber amplifiers in core- and cladding-pumped configurations.

    PubMed

    Creeden, Daniel; Johnson, Benjamin R; Rines, Glen A; Setzler, Scott D

    2014-11-17

    We have demonstrated ultra-high efficiency amplification in Tm-doped fiber with both core- and cladding-pumped configurations using a resonant tandem-pumping approach. These Tm-doped fiber amplifiers are pumped in-band with a 1908 nm Tm-doped fiber laser and operate at 1993 nm with >90% slope efficiency. In a core-pumped configuration, we have achieved 92.1% slope efficiency and 88.4% optical efficiency at 41 W output power. In a cladding-pumped configuration, we have achieved 123.1 W of output power with 90.4% optical efficiency and a 91.6% slope efficiency. We believe these are the highest optical efficiencies achieved in a Tm-doped fiber amplifier operating in the 2-micron spectral region. PMID:25402145

  12. High power resonant pumping of Tm-doped fiber amplifiers in core- and cladding-pumped configurations.

    PubMed

    Creeden, Daniel; Johnson, Benjamin R; Rines, Glen A; Setzler, Scott D

    2014-11-17

    We have demonstrated ultra-high efficiency amplification in Tm-doped fiber with both core- and cladding-pumped configurations using a resonant tandem-pumping approach. These Tm-doped fiber amplifiers are pumped in-band with a 1908 nm Tm-doped fiber laser and operate at 1993 nm with >90% slope efficiency. In a core-pumped configuration, we have achieved 92.1% slope efficiency and 88.4% optical efficiency at 41 W output power. In a cladding-pumped configuration, we have achieved 123.1 W of output power with 90.4% optical efficiency and a 91.6% slope efficiency. We believe these are the highest optical efficiencies achieved in a Tm-doped fiber amplifier operating in the 2-micron spectral region.

  13. Theoretical treatment of modal instability in high-power cladding-pumped Raman amplifiers

    NASA Astrophysics Data System (ADS)

    Naderi, Shadi; Dajani, Iyad; Grosek, Jacob; Madden, Timothy

    2015-03-01

    Cladding-pumped Raman fiber amplifiers (RFA) have been proposed as gain media to achieve power scaling. It is well-known that the onset of the modal instability (MI) phenomenon is a limiting factor for achieving higher output powers in Yb-doped fiber amplifiers with good beam quality. In this paper, we present an analytical approach to the investigation of the MI phenomenon in high-power, cladding-pumped RFAs. By utilizing the conservation of the number of photons and the conservation of energy in the absence of loss, the nonlinear equations for the propagation of the pump power and the total signal power can be decoupled from one another. Decoupling lead to exact solutions for the pump power and transverse modes signal powers. Further we investigate various MI suppression techniques including increasing the seed power and gain-tailored design.

  14. Brightness enhancement in a high-peak-power cladding-pumped Raman fiber amplifier.

    PubMed

    Sridharan, Arun Kumar; Heebner, John E; Messerly, Michael J; Dawson, Jay W; Beach, Raymond J; Barty, C P J

    2009-07-15

    We demonstrate a cladding-pumped Raman fiber amplifier (CPRFA) whose brightness-enhancement factor depends on the cladding-to-core diameter ratio. The pump and the signal are coupled independently into different input arms of a pump-signal combiner, and the output is spliced to the Raman amplifier fiber. The CPRFA generates 20 microJ, 7 ns pulses at 1100 nm at a 2.2 kHz repetition rate with 300 microJ (25.1 kW peak power) of input pump energy. The amplified signal's peak power is 2.77 kW, and the brightness-enhancement factor is 192--the highest peak power and brightness enhancement achieved in a CPRFA at any wavelength, to our knowledge.

  15. Brightness enhancement in a high-peak-power cladding-pumped Raman fiber amplifier.

    PubMed

    Sridharan, Arun Kumar; Heebner, John E; Messerly, Michael J; Dawson, Jay W; Beach, Raymond J; Barty, C P J

    2009-07-15

    We demonstrate a cladding-pumped Raman fiber amplifier (CPRFA) whose brightness-enhancement factor depends on the cladding-to-core diameter ratio. The pump and the signal are coupled independently into different input arms of a pump-signal combiner, and the output is spliced to the Raman amplifier fiber. The CPRFA generates 20 microJ, 7 ns pulses at 1100 nm at a 2.2 kHz repetition rate with 300 microJ (25.1 kW peak power) of input pump energy. The amplified signal's peak power is 2.77 kW, and the brightness-enhancement factor is 192--the highest peak power and brightness enhancement achieved in a CPRFA at any wavelength, to our knowledge. PMID:19823559

  16. Highly efficient cladding-pumped fibre laser based on an ytterbium-doped optical fibre and a fibre Bragg grating

    SciTech Connect

    Kurkov, Andrei S; Karpov, V I; Medvedkov, O I; Dianov, Evgenii M; Vasil'ev, Sergei A; Paramonov, Vladimir M; Protopopov, V N; Laptev, A Yu; Gur'yanov, A N; Umnikov, A A; Vechkanov, N I; Artyushenko, V G; Frahm, J

    1999-06-30

    Ytterbium-ion-doped double-clad optical fibres were developed. The differential quantum efficiency of a diode-pumped fibre laser, fabricated on the basis of such optical fibres with a fibre Bragg grating, was 90%. (lasers)

  17. Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers.

    PubMed

    Koška, Pavel; Peterka, Pavel; Aubrecht, Jan; Podrazký, Ondřej; Todorov, Filip; Becker, Martin; Baravets, Yauhen; Honzátko, Pavel; Kašík, Ivan

    2016-01-11

    Results of the first experimental demonstration of the recently proposed technique for improvement of the pump absorption in double-clad fibers by their simultaneous coiling and twisting are reported. The peak absorption (14 dB) of 3-m long hexagonal thulium-doped fiber was increased by 8 dB by its simultaneous coiling and twisting. Explanation of the effect is given by numerical modelling of the pump absorption in hexagonal and panda-type double-clad fibers. Improvement of fiber laser performance was also proved. The slope efficiency increased from 19.6% of the straight fiber to 23.9% of the coiled only fiber and 29.4% of the simultaneously coiled and twisted fiber. PMID:26832241

  18. Tapered cladding diameter profile design for high-power tandem-pumped fiber lasers

    NASA Astrophysics Data System (ADS)

    Huang, Zhihua; Tang, Xuan; Lin, Honghuan; Wang, Jianjun

    2016-05-01

    The thermal effect has become the biggest limiting factor regarding the further power scaling of single mode fiber lasers, and it can lead to coating failure and transverse mode instability. A tapered cladding diameter profile design is proposed for the tandem-pumped fiber laser in this work, as it can smooth the temperature profile and reduce the maximum temperature rise within the fiber tremendously. The improvement in performance of the fiber design is verified by analytical and numerical results.

  19. Cladding-pumped ytterbium-doped fiber laser with radially polarized output.

    PubMed

    Lin, Di; Daniel, J M O; Gecevičius, M; Beresna, M; Kazansky, P G; Clarkson, W A

    2014-09-15

    A simple technique for directly generating a radially polarized output beam from a cladding-pumped ytterbium-doped fiber laser is reported. Our approach is based on the use of a nanograting spatially variant waveplate as an intracavity polarization-controlling element. The laser yielded ~32 W of output power (limited by available pump power) with a radially polarized TM (01)-mode output beam at 1040 nm with a corresponding slope efficiency of 66% and a polarization purity of 95%. The beam-propagation factor (M(2)) was measured to be ~1.9-2.1. PMID:26466271

  20. High brightness, quantum-defect-limited conversion efficiency in cladding-pumped Raman fiber amplifiers and oscillators.

    PubMed

    Heebner, John E; Sridharan, Arun K; Dawson, Jay W; Messerly, Michael J; Pax, Paul H; Shverdin, Miro Y; Beach, Raymond J; Barty, Chris P J

    2010-07-01

    We present a detailed theoretical investigation of cladding-pumped Raman fiber amplification in an unexplored parameter space of high conversion efficiency (> 60%) and high brightness enhancement (> 1000). Fibers with large clad-to-core diameter ratios can provide a promising means for Raman-based brightness enhancement of diode pump sources. Unfortunately, the diameter ratio cannot be extended indefinitely since the intensity generated in the core can greatly exceed that in the cladding long before the pump is fully depleted. If left uncontrolled, this leads to the generation of parasitic second-order Stokes wavelengths in the core, limiting the conversion efficiency and as we will show, clamping the achievable brightness enhancement. Using a coupled-wave formalism, we present the upper limit on brightness enhancement as a function of diameter ratio for conventionally guided fibers. We further present strategies for overcoming this limit based upon depressed well core designs. We consider two configurations: 1) pulsed cladding-pumped Raman fiber amplifier (CPRFA) and 2) cw cladding-pumped Raman fiber laser (CPRFL).

  1. High brightness, quantum-defect-limited conversion efficiency in cladding-pumped Raman fiber amplifiers and oscillators.

    PubMed

    Heebner, John E; Sridharan, Arun K; Dawson, Jay W; Messerly, Michael J; Pax, Paul H; Shverdin, Miro Y; Beach, Raymond J; Barty, Chris P J

    2010-07-01

    We present a detailed theoretical investigation of cladding-pumped Raman fiber amplification in an unexplored parameter space of high conversion efficiency (> 60%) and high brightness enhancement (> 1000). Fibers with large clad-to-core diameter ratios can provide a promising means for Raman-based brightness enhancement of diode pump sources. Unfortunately, the diameter ratio cannot be extended indefinitely since the intensity generated in the core can greatly exceed that in the cladding long before the pump is fully depleted. If left uncontrolled, this leads to the generation of parasitic second-order Stokes wavelengths in the core, limiting the conversion efficiency and as we will show, clamping the achievable brightness enhancement. Using a coupled-wave formalism, we present the upper limit on brightness enhancement as a function of diameter ratio for conventionally guided fibers. We further present strategies for overcoming this limit based upon depressed well core designs. We consider two configurations: 1) pulsed cladding-pumped Raman fiber amplifier (CPRFA) and 2) cw cladding-pumped Raman fiber laser (CPRFL). PMID:20639956

  2. Pump absorption and temperature distribution in erbium-doped double-clad fluoride-glass fibers.

    PubMed

    Gorjan, Martin; Marincek, Marko; Copic, Martin

    2009-10-26

    We investigate diode pump absorption and temperature distribution in three erbium-doped double-clad fluoride fibers. Absorption is measured via fluorescence intensity and temperature distribution is measured with thermal imaging. Ray-tracing calculations of absorption and heat-equation modeling of temperature distribution are also conducted. We found excellent agreement between measurements and calculations for all fibers. Results indicate that erbium-doped fluoride fiber lasers have already reached maximum output powers allowed under natural convection cooling, with fiber end being the most critical. We propose cooling and fiber design optimizations that may allow an order-of-magnitude further power-scaling.

  3. LD-pumped double-clad fiber single-frequency power amplifier

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Feng; Yang, Su-Hui; Zhao, Chang-Ming

    2005-12-01

    Single frequency, single mode laser output from a monolithic resonator was amplified by a double-clad D-shape fiber of 4.4 meters long. When the signal laser is 200mw, up to 6.65 W single frequency laser output was obtained, slope efficiency is 30.6%. The amplifier is Yb 3+ doped glass fiber pumped by a laser diode array at 976nm with signal at 1064nm. Single frequency amplification has been proved by a Fabri-Parrot interferometer. It is shown from the experiments that the signal input has not been saturated. By increasing the input signal, amplification can be increased further under the same pumping power. Experimental results meet well with theoretical calculation.

  4. Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser.

    PubMed

    Wang, P; Cooper, L J; Sahu, J K; Clarkson, W A

    2006-01-15

    A novel approach to achieving robust single-spatial-mode operation of cladding-pumped fiber lasers with multimode cores is reported. The approach is based on the use of a fiber geometry in which the core has a helical trajectory within the inner cladding to suppress laser oscillation on higher-order modes. In a preliminary proof-of-principle study, efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser with a 30 microm diameter core and a numerical aperture of 0.087 has been demonstrated. The laser yielded 60.4 W of output at 1043 nm in a beam with M2 < 1.4 for 92.6 W launched pump power from a diode stack at 976 nm. The slope efficiency at pump powers well above threshold was approximately 84%, which compares favorably with the slope efficiencies achievable with conventional straight-core Yb-doped double-clad fiber lasers.

  5. Apparatus and method for enabling quantum-defect-limited conversion efficiency in cladding-pumped Raman fiber lasers

    DOEpatents

    Heebner, John E.; Sridharan, Arun K.; Dawson, Jay Walter; Messerly, Michael J.; Pax, Paul H.

    2016-09-20

    Cladding-pumped Raman fiber lasers and amplifiers provide high-efficiency conversion efficiency at high brightness enhancement. Differential loss is applied to both single-pass configurations appropriate for pulsed amplification and laser oscillator configurations applied to high average power cw source generation.

  6. Laser-diode pumped glass-clad Ti:sapphire crystal fiber laser.

    PubMed

    Wang, Shih-Chang; Hsu, Chun-Yang; Yang, Tzu-Te; Jheng, Dong-Yo; Yang, Teng-I; Ho, Tuan-Shu; Huang, Sheng-Lung

    2016-07-15

    Efficient glass-clad crystal fiber (CF) lasers were demonstrated using a Ti:sapphire crystalline core as the gain medium. With a core diameter of 18 μm, the laser diode (LD) pump source can be effectively coupled and guided throughout the crystal fiber for a low threshold and high slope efficiency laser operation. The advantage of high heat dissipation efficiency of the fiber structure can be derived from the low core temperature rising measurement (i.e., 17 K/W) with passive cooling. At an output transmittance of 23%, the lowest absorbed threshold of 118.2 mW and highest slope efficiency of 29.6% were achieved, with linear laser polarization.

  7. Laser-diode pumped glass-clad Ti:sapphire crystal fiber laser.

    PubMed

    Wang, Shih-Chang; Hsu, Chun-Yang; Yang, Tzu-Te; Jheng, Dong-Yo; Yang, Teng-I; Ho, Tuan-Shu; Huang, Sheng-Lung

    2016-07-15

    Efficient glass-clad crystal fiber (CF) lasers were demonstrated using a Ti:sapphire crystalline core as the gain medium. With a core diameter of 18 μm, the laser diode (LD) pump source can be effectively coupled and guided throughout the crystal fiber for a low threshold and high slope efficiency laser operation. The advantage of high heat dissipation efficiency of the fiber structure can be derived from the low core temperature rising measurement (i.e., 17 K/W) with passive cooling. At an output transmittance of 23%, the lowest absorbed threshold of 118.2 mW and highest slope efficiency of 29.6% were achieved, with linear laser polarization. PMID:27420499

  8. Design of a device for pumping a double-clad fiber laser with a laser-diode bar.

    PubMed

    Zenteno, L A

    1994-11-01

    Pumping rare-earth-doped double-clad fiber lasers with GaAlAs laser-diode bars typically requires one to transform a 1-cm-long one-dimensional linear array of tens of multimode laser-diode sources into atwo-dimensional oblong cross section that approximately matches the fiber's first cladding shape. I describe the design of a device, henceforth called a high-brightness geometric transformer, that uses a cylindrical microlens to image the laser-diode bar near field onto a linear array of soft-glass, thin-clad, rectangular fibers. In turn, the fibers output ends are arranged to form a stack that matches the required first cladding shape. For a typical laser-diode bar with a brightness of 25 mW·µm(-2)·sr(-1), the geometric transformer output brightness is 0.6 mW·µm(-2)·sr(-1), i.e., there is a 40× intermediate loss of brightness. If the output of the geometric transformer is used to pump a Nd-doped double-clad fiber laser, anoverall brightness gain of 340× can be achieved.

  9. Evaluation of tantalum-alloy-clad uranium mononitride fuel specimens from 7500-hour, 1040 C pumped-lithium-loop test

    NASA Technical Reports Server (NTRS)

    Watson, G. K.

    1974-01-01

    Simulated nuclear fuel element specimens, consisting of uranium mononitride (UN) fuel cylinders clad with tungsten-lined T-111, were exposed for up to 7500 hr at 1040 C (1900 F) in a pumped-lithium loop. The lithium flow velocity was 1.5 m/sec (5 ft/sec) in the specimen test section. No evidence of any compatibility problems between the specimens and the flowing lithium was found based on appearance, weight change, chemistry, and metallography. Direct exposure of the UN to the lithium through a simulated cladding crack resulted in some erosion of the UN in the area of the defect. The T-111 cladding was ductile after lithium exposure, but it was sensitive to hydrogen embrittlement during post-test handling.

  10. Double-clad 10-W Yb3+-doped fiber master oscillator power fiber amplifier for He3+ optical pumping.

    PubMed

    Bordais, Sylvain; Grot, Sébastien; Jaouën, Yves; Besnard, Pascal; Le Flohic, Marc

    2004-04-01

    We describe an all-fiber ytterbium-doped laser followed by a double-stage ytterbium-doped double-clad fiber amplifier of 10-W output power for helium pumping. Different cavity designs are investigated with the goal of achieving high-power multimode emission at 1083 nm, wavelength tunability over the helium absorption bands, and linewidth envelope control over the range 1-3 GHz. We point out the domains with unstable output power and discuss their origin.

  11. Double-clad 10-W Yb3+-doped fiber master oscillator power fiber amplifier for He3+ optical pumping.

    PubMed

    Bordais, Sylvain; Grot, Sébastien; Jaouën, Yves; Besnard, Pascal; Le Flohic, Marc

    2004-04-01

    We describe an all-fiber ytterbium-doped laser followed by a double-stage ytterbium-doped double-clad fiber amplifier of 10-W output power for helium pumping. Different cavity designs are investigated with the goal of achieving high-power multimode emission at 1083 nm, wavelength tunability over the helium absorption bands, and linewidth envelope control over the range 1-3 GHz. We point out the domains with unstable output power and discuss their origin. PMID:15074428

  12. A high-energy cladding-pumped 80 nanosecond Q-switched fiber laser using a tapered fiber saturable absorber

    NASA Astrophysics Data System (ADS)

    Moore, Sean W.; Soh, Daniel B. S.; Bisson, Scott E.; Patterson, Brian D.; Hsu, Wen L.

    2013-02-01

    We report a passively Q-switched all-fiber laser using a large mode area (LMA) Yb3+-doped fiber cladding-pumped at 915 nm and an unpumped single-mode Yb3+-doped fiber as the saturable absorber (SA). The saturable absorber and gain fibers were first coupled with a free-space telescope to better study the composite system, and then fusion spliced with fiber tapers to match the mode field diameters. ASE generated in the LMA gain fiber preferentially bleaches the SA fiber before depleting the gain, thereby causing the SA fiber to act as a passive saturable absorber. Using this scheme we first demonstrate a Q-switched oscillator with 40 μJ 79 ns pulses at 1026 nm using a free-space taper, and show that pulses can be generated from 1020 nm to 1040 nm. We scale the pulse energy to 0.40 mJ using an Yb3+-doped cladding pumped fiber amplifier. Experimental studies in which the saturable absorber length, pump times, and wavelengths are independently varied reveal the impact of these parameters on laser performance. Finally, we demonstrate 60 μJ 81 ns pulses at 1030 nm in an all fiber architecture using tapered mode field adaptors to match the mode filed diameters of the gain and SA fibers.

  13. Integrated cladding-pumped multicore few-mode erbium-doped fibre amplifier for space-division-multiplexed communications

    NASA Astrophysics Data System (ADS)

    Chen, H.; Jin, C.; Huang, B.; Fontaine, N. K.; Ryf, R.; Shang, K.; Grégoire, N.; Morency, S.; Essiambre, R.-J.; Li, G.; Messaddeq, Y.; Larochelle, S.

    2016-08-01

    Space-division multiplexing (SDM), whereby multiple spatial channels in multimode and multicore optical fibres are used to increase the total transmission capacity per fibre, is being investigated to avert a data capacity crunch and reduce the cost per transmitted bit. With the number of channels employed in SDM transmission experiments continuing to rise, there is a requirement for integrated SDM components that are scalable. Here, we demonstrate a cladding-pumped SDM erbium-doped fibre amplifier (EDFA) that consists of six uncoupled multimode erbium-doped cores. Each core supports three spatial modes, which enables the EDFA to amplify a total of 18 spatial channels (six cores × three modes) simultaneously with a single pump diode and a complexity similar to a single-mode EDFA. The amplifier delivers >20 dBm total output power per core and <7 dB noise figure over the C-band. This cladding-pumped EDFA enables combined space-division and wavelength-division multiplexed transmission over multiple multimode fibre spans.

  14. Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped Raman fiber amplifiers.

    PubMed

    Naderi, Shadi; Dajani, Iyad; Grosek, Jacob; Madden, Timothy

    2016-07-25

    Raman fiber lasers have been proposed as potential candidates for scaling beyond the power limitations imposed on near diffraction-limited rare-earth doped fiber lasers. One limitation is the modal instability (MI) and we explore the physics of this phenomenon in Raman fiber amplifiers (RFAs). By utilizing the conservation of number of photons and conservation of energy in the absence of loss, the 3 × 3 governing system of nonlinear equations describing the pump and the signal modal content are decoupled and solved analytically for cladding-pumped RFAs. By comparing the extracted signal at MI threshold for the same step index-fiber, it is found that the MI threshold is independent of the length of the amplifier or whether the amplifier is co-pumped or counter-pumped; dictated by the integrated heat load along the length of fiber. We extend our treatment to gain-tailored RFAs and show that this approach is of limited utility in suppressing MI. Finally, we formulate the physics of MI in core-pumped RFAs where both pump and signal interferences participate in writing the time-dependent index of refraction grating.

  15. Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped Raman fiber amplifiers.

    PubMed

    Naderi, Shadi; Dajani, Iyad; Grosek, Jacob; Madden, Timothy

    2016-07-25

    Raman fiber lasers have been proposed as potential candidates for scaling beyond the power limitations imposed on near diffraction-limited rare-earth doped fiber lasers. One limitation is the modal instability (MI) and we explore the physics of this phenomenon in Raman fiber amplifiers (RFAs). By utilizing the conservation of number of photons and conservation of energy in the absence of loss, the 3 × 3 governing system of nonlinear equations describing the pump and the signal modal content are decoupled and solved analytically for cladding-pumped RFAs. By comparing the extracted signal at MI threshold for the same step index-fiber, it is found that the MI threshold is independent of the length of the amplifier or whether the amplifier is co-pumped or counter-pumped; dictated by the integrated heat load along the length of fiber. We extend our treatment to gain-tailored RFAs and show that this approach is of limited utility in suppressing MI. Finally, we formulate the physics of MI in core-pumped RFAs where both pump and signal interferences participate in writing the time-dependent index of refraction grating. PMID:27464110

  16. 75 W 40% efficiency single-mode all-fiber erbium-doped laser cladding pumped at 976 nm.

    PubMed

    Kotov, L V; Likhachev, M E; Bubnov, M M; Medvedkov, O I; Yashkov, M V; Guryanov, A N; Lhermite, J; Février, S; Cormier, E

    2013-07-01

    Optimization of Yb-free Er-doped fiber for lasers and amplifiers cladding pumped at 976 nm was performed in this Letter. The single-mode fiber design includes an increased core diameter of 34 μm and properly chosen erbium and co-dopant concentrations. We demonstrate an all-fiber high power laser and power amplifier based on this fiber with the record slope efficiency of 40%. To the best of our knowledge, the achieved output power of 75 W is the highest power reported for such lasers.

  17. Diode-Pumped Organo-Lead Halide Perovskite Lasing in a Metal-Clad Distributed Feedback Resonator.

    PubMed

    Jia, Yufei; Kerner, Ross A; Grede, Alex J; Brigeman, Alyssa N; Rand, Barry P; Giebink, Noel C

    2016-07-13

    Organic-inorganic lead halide perovskite semiconductors have recently reignited the prospect of a tunable, solution-processed diode laser, which has the potential to impact a wide range of optoelectronic applications. Here, we demonstrate a metal-clad, second-order distributed feedback methylammonium lead iodide perovskite laser that marks a significant step toward this goal. Optically pumping this device with an InGaN diode laser at low temperature, we achieve lasing above a threshold pump intensity of 5 kW/cm(2) for durations up to ∼25 ns at repetition rates exceeding 2 MHz. We show that the lasing duration is not limited by thermal runaway and propose instead that lasing ceases under continuous pumping due to a photoinduced structural change in the perovskite that reduces the gain on a submicrosecond time scale. Our results indicate that the architecture demonstrated here could provide the foundation for electrically pumped lasing with a threshold current density Jth < 5 kA/cm(2) under sub-20 ns pulsed drive. PMID:27331618

  18. Diode-Pumped Organo-Lead Halide Perovskite Lasing in a Metal-Clad Distributed Feedback Resonator.

    PubMed

    Jia, Yufei; Kerner, Ross A; Grede, Alex J; Brigeman, Alyssa N; Rand, Barry P; Giebink, Noel C

    2016-07-13

    Organic-inorganic lead halide perovskite semiconductors have recently reignited the prospect of a tunable, solution-processed diode laser, which has the potential to impact a wide range of optoelectronic applications. Here, we demonstrate a metal-clad, second-order distributed feedback methylammonium lead iodide perovskite laser that marks a significant step toward this goal. Optically pumping this device with an InGaN diode laser at low temperature, we achieve lasing above a threshold pump intensity of 5 kW/cm(2) for durations up to ∼25 ns at repetition rates exceeding 2 MHz. We show that the lasing duration is not limited by thermal runaway and propose instead that lasing ceases under continuous pumping due to a photoinduced structural change in the perovskite that reduces the gain on a submicrosecond time scale. Our results indicate that the architecture demonstrated here could provide the foundation for electrically pumped lasing with a threshold current density Jth < 5 kA/cm(2) under sub-20 ns pulsed drive.

  19. High-power narrow-linewidth tunable Er3+/Yb3+ co-doped cladding-pumped fiber ring laser

    NASA Astrophysics Data System (ADS)

    Zhang, Shumin; Lu, Fuyun; Wang, Jian; Xie, Chunxia

    2005-01-01

    A tunable Er3+/Yb3+ co-doped cladding-pumped all fiber ring laser is presented. Under the maximum pump power of 3594.5mW, the absorbed pump power of the fiber is measured to be 2737.37mW, the maximum output power of the fiber laser is 438mW, and the slope efficiency is greater than 15.9%. By using a fiber Bragg grating (FBG) as a wavelength filter, the linewidth of output laser is as narrow as 0.04nm by 3 dB, and by compressing or stretching the FBG, tuning range of 4.0nm is realized, the side mode suppression ratio is about 42dB. We also study the relationship between the output power and the splitting ratio of the output coupler, and it is found that there is an optimum splitting ratio of the output coupler at which the highest output power can achieve 647mW.

  20. Investigation of temperature influence on output performances of high-power cladding-pumped Er,Yb co-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, Wenting; Sha, Jianjian; Wang, Yong; Shen, Deyuan

    2013-03-01

    Effect of the fiber's temperature on lasing performance is investigated in high-power, cladding-pumped Er, Yb co-doped fiber laser system. A three-layer symmetric cylindrical model is applied to describe the temperature distribution of the fiber under natural air convection. Radial temperature distribution of the fiber is calculated with consideration of the quantum defect heat, the heat from the absorption of spontaneous emission, and the convection and radiation at the heat transfer boundaries. The steady-state theoretical model based on rate equations takes into account of the energy transfers between Er3+-ions and Yb3+-ions and a fraction of nonparticipatory Yb3+-ions. Shooting method and Newton iteration method are used to solve the boundary-value problems under different environmental temperatures, pump powers and reflectivities at the fiber ends. Numerical simulations are consistent with experimental results and show that increasing the fiber's temperature is an effective strategy to suppress the 1 μm parasitic lasing and improve the lasing performance at 1.5 μm, a similar phenomenon is found with enhancing doping concentrations of the two ions and decreasing the reflectivities at the fiber ends. Our numerical results present a theoretical guideline for further improving the laser performance in terms of output power of ~1.5 μm in high-power Er,Yb-doped fiber laser systems.

  1. An all-fiber high-energy cladding-pumped 93 nanosecond Q-switched fiber laser using an Y 3+-doped fiber saturable absorber

    NASA Astrophysics Data System (ADS)

    Moore, Sean W.; Patterson, Brian D.; Soh, Daniel B.; Bisson, Scott E.

    2014-03-01

    We report an all-fiber passively Q-switched laser using a large mode area (LMA) Yb3+ -doped fiber claddingpumped at 915 nm and an unpumped single-mode (SM) Yb3+-doped fiber as the saturable absorber (SA). The saturable absorber SM fiber and LMA gain fiber were coupled with a fiber taper designed to match the fundamental spatial mode of the LMA fiber and the expanded LP01 mode of the single mode fiber. The amplified spontaneous (ASE) intensity propagating in the single mode SA saturates the absorption before the onset of gain depletion in the pumped fiber, switching the fiber cavity to a high Q-state and producing a pulse. Using this scheme we demonstrate a Q-switched all-fiber oscillator with 32 μJ 93 ns pulses at 1030 nm. The associated peak power is nearly two orders of magnitude larger than that reported in previous experimental studies using a single Yb+3 saturable absorber fiber. The pulse energy was amplified to 0.230 mJ using an Yb3+-doped cladding pumped fiber amplifier fusion spliced to the fiber oscillator, increasing the energy by eight fold while preserving the all-fiber architecture.

  2. Seven-core erbium-doped double-clad fiber amplifier pumped simultaneously by side-coupled multimode fiber.

    PubMed

    Abedin, Kazi S; Fini, John M; Thierry, Taunay F; Zhu, Benyuan; Yan, Man F; Bansal, Lalit; Dimarcello, Frank V; Monberg, Eric M; DiGiovanni, David J

    2014-02-15

    We demonstrate a seven-core erbium-doped fiber amplifier in which all the cores were pumped simultaneously by a side-coupled tapered multimode fiber. The amplifier has multicore (MC) MC inputs and MC outputs, which can be readily spliced to MC transmission fiber for amplifying space division multiplexed signals. Gain over 25 dB was obtained in each of the cores over a 40-nm bandwidth covering the C-band. PMID:24562260

  3. Analysis of gain distribution in cladding-pumped thulium-doped fiber laser and optical feedback inhibition problem in fiber-bulk laser system

    NASA Astrophysics Data System (ADS)

    Ji, En-Cai; Liu, Qiang; Hu, Zhen-Yue; Gong, Ma-Li

    2015-10-01

    The steady-state gain distribution in cladding pumped thulium-doped fiber laser (TDFL) is analytically and numerically solved based on the rate equations including loss coefficients and cross relaxation effect. With the gain curve, a problem, which is named optical feedback inhibition (OFI) and always occurs in tandem TDFL-Ho:YAG laser system, is analyzed quantitatively. The actual characteristics of output spectra and power basically prove the conclusion of theoretical analysis. Then a simple mirror-deflected L-shaped cavity is employed to restrain the external feedback and simplify the structure of fiber-bulk Ho:YAG laser. Finally, 25 W of 2097-nm laser power and 51.2% of optical-to-optical conversion efficiency are obtained, and the beam quality factor is less than 1.43 obtained by knife-edge method. Project supported by the National Natural Science Foundation of China (Grant No. 61275146), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120002110066), and the Special Program of the Co-construction with Beijing Municipal Government of China (Grant No. 20121000302).

  4. Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser

    NASA Astrophysics Data System (ADS)

    Aravazhi, Shanmugam; Geskus, Dimitri; van Dalfsen, Koop; Vázquez-Córdova, Sergio A.; Grivas, Christos; Griebner, Uwe; García-Blanco, Sonia M.; Pollnau, Markus

    2013-05-01

    Single-crystalline KY1- x-y-z GdxLuyYbz(WO4)2 layers are grown onto undoped KY(WO4)2 substrates by liquid-phase epitaxy. The purpose of co-doping the KY(WO4)2 layer with suitable fractions of Gd3+ and Lu3+ is to achieve lattice-matched layers that allow us to engineer a high refractive-index contrast between waveguiding layer and substrate for obtaining tight optical mode confinement and simultaneously accommodate a large range of Yb3+ doping concentrations by replacing Lu3+ ions of similar ionic radius for a variety of optical amplifier or laser applications. Crack-free layers, up to a maximum lattice mismatch of ~0.08 %, are grown with systematic variations of Y3+, Gd3+, Lu3+, and Yb3+ concentrations, their refractive indices are measured at several wavelengths, and Sellmeier dispersion curves are derived. The influence of co-doping on the spectroscopy of Yb3+ is investigated. As evidenced by the experimental results, the lattice constants, refractive indices, and transition cross-sections of Yb3+ in these co-doped layers can be approximated with good accuracy by weighted averages of data from the pure compounds. The obtained information is exploited to fabricate a twofold refractive-index-engineered sample consisting of a highly Yb3+-doped tapered channel waveguide embedded in a passive planar waveguide, and a cladding-side-pumped channel waveguide laser is demonstrated.

  5. Diode-laser pumping into the emitting level for efficient lasing of depressed cladding waveguides realized in Nd:YVO4 by the direct femtosecond-laser writing technique.

    PubMed

    Pavel, Nicolaie; Salamu, Gabriela; Jipa, Florin; Zamfirescu, Marian

    2014-09-22

    Depressed cladding waveguides have been realized in Nd:YVO(4) employing direct writing technique with a femtosecond-laser beam. It was shown that the output performances of such laser devices are improved by the reduction of the quantum defect between the pump wavelength and the laser wavelength. Thus, under the classical pump at 808 nm (i.e. into the (4)F(5/2) level), a 100-μm diameter circular waveguide inscribed in a 0.7-at.% Nd:YVO(4) outputted 1.06-μm laser pulses with 3.0-mJ energy, at 0.30 optical efficiency and slope efficiency of 0.32. The pump at 880 nm (i.e.directly into the (4)F(3/2) emitting level) increased the pulse energy at 3.8 mJ and improved both optical efficiency and slope efficiency at 0.36 and 0.39, respectively. The same waveguide yielded continuous-wave 1.5-W output power at 1.06 μm under the pump at 880 nm. Laser emission at 1.34 μm was also improved using the pump into the (4)F(3/2) emitting level of Nd:YVO(4). PMID:25321776

  6. Clad metal joint closure

    SciTech Connect

    Siebert, O.W.

    1985-04-09

    A plasma arc spray overlay of cladding metals is used over joints between clad metal pieces to provide a continuous cladding metal surface. The technique permits applying an overlay of a high melting point cladding metal to a cladding metal surface without excessive heating of the backing metal.

  7. PUMPS

    DOEpatents

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  8. Two-octave spanning single pump parametric amplification at 1550 nm in a host lead-silicate binary multi-clad microstructure fiber: Influence of multi-order dispersion engineering

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sudip K.; Khan, Saba N.; Chaudhuri, Partha Roy

    2014-12-01

    An ultra-wide 1646 nm (1084-2730 nm), continuous-wave single pump parametric amplification spanning from near-infrared to short-wave infrared band (NIR-SWIR) in a host lead-silicate based binary multi-clad microstructure fiber (BMMF) is analyzed and reported. This ultra-broad band (widest reported to date) parametric amplification with gain more than 10 dB is theoretically achieved by a combination of low input pump power source ~7 W and a short-length of ~70 cm of nonlinear-BMMF through accurately engineered multi-order dispersion coefficients. A highly efficient theoretical formulation based on four-wave-mixing (FWM) is worked out to determine fiber's chromatic dispersion (D) profile which is used to optimise the gain-bandwidth and ripple of the parametric gain profile. It is seen that by appropriately controlling the higher-order dispersion coefficient (up-to sixth order), a great enhancement in the gain-bandwidth (2-3 times) can be achieved when operated very close to zero-dispersion wavelength (ZDW) in the anomalous dispersion regime. Moreover, the proposed theoretical model can predict the maximum realizable spectral width and the required pump-detuning (w.r.t ZDW) of any advanced complex microstructured fiber. Our thorough investigation of the wide variety of broadband gain spectra obtained as an integral part of this research work opens up the way for realizing amplification in the region (SWIR) located far from the pump (NIR) where good amplifiers currently do not exist.

  9. Design and performance analysis of a tunable and self-pulsation diode pumped double-clad D-shaped Yb3+-doped silica fiber laser

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ashraf F.; El-Tahlawy, Mohamed K.

    2010-08-01

    Ytterbium doped silica fibers exhibits very broad absorption and emission band, from ~800 nm to ~1064 nm for absorption and ~970 nm to ~1200 nm for emission according to the cavity length. A wide range of applications for tunable ytterbium fiber laser like development of single-frequency sources for spectroscopic applications, pumping source of Pr: ZBLAN amplifier and Tm: ZBLAN up conversion laser, material processing and military applications. In this paper, a 976 nm high power fiber coupled diode laser of up to 5 W end pumped ytterbium doped multimode D-shaped fiber laser using Fabry-Perot cavity with different regime of operation with the output coupler reflectivities of 80%, 60%, and Fresnel reflection of 4%. The output laser wavelength ranges from 1041 nm to 1094 nm for a cavity length from 1 m to 10 m, respectively. The optical to optical slope efficiency of 45% at 1 m and increased to be 60% at 4 m cavity length were measured. The maximum slope efficiency of 82.12% at cavity length of 2m were investigated with Fresnel reflection output coupler, and the measured lowest threshold pump power for this configuration was 130 mW. Also, the self-pulsation phenomena were observed just at higher pumping power of more than 4W and its threshold pumping power were (4.3W, 4.5W and 4.7W) with output coupler reflectivities of (80%, 60%, and Fresnel reflection of 4%), respectively at 10 m fiber length.

  10. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser.

    PubMed

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-01-01

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm. PMID:27416893

  11. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser

    PubMed Central

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-01-01

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900–2000 nm. PMID:27416893

  12. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser

    NASA Astrophysics Data System (ADS)

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-07-01

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900–2000 nm.

  13. An LD-pumped Raman fiber laser operating below 1 μm

    NASA Astrophysics Data System (ADS)

    Kablukov, S. I.; Dontsova, E. I.; Zlobina, E. A.; Nemov, I. N.; Vlasov, A. A.; Babin, S. A.

    2013-08-01

    A CW Raman fiber laser (RFL) operating below 1 μm with direct pumping by a high-power multimode laser diode at 938 nm has been demonstrated for the first time. The laser cavity is formed by a normally cleaved fiber end and a highly reflective fiber Bragg grating (FBG) inscribed at the opposite end of a 4.5 km long multimode graded-index fiber. Low-index transverse modes are generated at the first Stokes wavelength of ˜980 nm with an output power of ˜3 W, while the second Stokes wave at 1025 nm also starts to be generated, thus limiting the 980 nm output.

  14. Tapered inner-cladding fiber design for uniform heat deposition in Ytterbium-doped fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Huang, Zhihua; Zhang, Yongliang; Deng, Ying; Lin, Honghuan; Li, Qi; Zhao, Lei; Wang, Jianjun

    2015-04-01

    A method for designing double-clad fiber with tapered inner cladding and uniform core is proposed for linear pump power profile, i.e. uniform heat deposition, in the ytterbium-doped fiber amplifier. The analytical formula for the inner-cladding diameter profile along the fiber is given. The inner-cladding diameter near the pump injection port is determined purely by the diameter of the doped region, the number density of the doped ions, the absorption cross section at the pump wavelength and the length of the fiber. The simplified linearly varying inner-cladding diameter is proven to have a smoother heat deposition profile with lower maximum thermal load in both the co-pumping scheme and the counter-pumping scheme.

  15. Double clad tapered fiber for high power applications.

    PubMed

    Filippov, V; Chamorovskii, Yu; Kerttula, J; Golant, K; Pessa, M; Okhotnikov, O G

    2008-02-01

    We report a novel type of active fiber - tapered double clad fiber suitable for pumping by low brightness sources with large beam parameter product of 50/300 mm x mrad. Ytterbium double clad all-silica fiber (core/1(st) clad/2(nd) clad diameters 27/834/890 mum, NA(core)=0.11, NA(clad)=0.21), tapered down by a factor 4.8 for a length of 10.5 m was drawn from a preform fabricated by plasma chemical technologies. At a moderate Yb-ion concentration and 1:31 core/cladding ratio, the tapered double clad fiber demonstrates 0.9 dB/m pump absorption at 976 nm and excellent lasing slope efficiency. An ytterbium fiber laser with 84 W of output power and 92% slope efficiency, a 74 W superfluorescent source with 85% slope efficiency and amplifiers operating both in CW and pulsed regimes have been realized. All devices demonstrated robust single mode operation with a beam quality factor of M(2)=1.07. PMID:18542272

  16. Dependence of Surface Contrast on Emission Angle in Cassini ISS 938-nm Images of Titan

    NASA Technical Reports Server (NTRS)

    Fussner, S.; McEwen, A.; Perry, J.; Turtle, E.; Dawson, D.; Porco, C.; West, R.

    2005-01-01

    Titan, the largest of Saturn s moons, is one of the most difficult solid surfaces in the Solar System to study. It is shrouded in a thick atmosphere with fine haze particles extending up to 500 km. [1] The atmosphere itself is rich in methane, which allows clear viewing of the surface only through narrow "windows" in the methane spectrum. Even in these methane windows, the haze absorbs and scatters light, blurring surface features and reducing the contrast of images. The haze optical depth is high at visible wavelengths, and decreases at longer (infrared) wavelengths. [2

  17. Study on the characteristics of an Er/Yb co-doped double cladding fiber laser

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Li, Qiushi; Yan, Mingliang

    2009-07-01

    An Er/Yb co-doped double cladding fiber laser pumped at 980 nm was optimized. The double-cladding fiber laser with whole fiber was obtained by end-pumping and utilizing fiber bragg grating as a resonator. The output power of laser was analyzed along the changes of output grating reflectance (L=10m) as well as the fiber length (R2=4%). Consequently, a fiber with 4 m Er / Yb co-doped double cladding was employed as gain medium while a fiber of which the reflectance was approximately 15% was used as output resonator mirror. Thereafter the technical indexes of EYDF(Er / Yb Double cladding Fiber) were measured. The absorption maximum of fiber core Er3+ was higher than 30dB/m and material gain maximum was observed at 1535nm. Moreover, the diameters of fiber core and inner cladding of double-cladding fiber grating were 6μm and 125μm respectively however the diameters of fiber core and inner cladding of Er/Yb co-doped double cladding fiber were 7μm and 130μm separately.According to the experimental data, a fiber laser with 4 m Er / Yb co-doped double cladding and launched maximum pump power of 3.4 W was set up. Proposed laser shows the maximum output power of 1.25 W and slope efficiency of 40%.

  18. Initial Cladding Condition

    SciTech Connect

    E. Siegmann

    2000-08-22

    The purpose of this analysis is to describe the condition of commercial Zircaloy clad fuel as it is received at the Yucca Mountain Project (YMP) site. Most commercial nuclear fuel is encased in Zircaloy cladding. This analysis is developed to describe cladding degradation from the expected failure modes. This includes reactor operation impacts including incipient failures, potential degradation after reactor operation during spent fuel storage in pool and dry storage and impacts due to transportation. Degradation modes include cladding creep, and delayed hydride cracking during dry storage and transportation. Mechanical stresses from fuel handling and transportation vibrations are also included. This Analysis and Model Report (AMR) does not address any potential damage to assemblies that might occur at the YMP surface facilities. Ranges and uncertainties have been defined. This analysis will be the initial boundary condition for the analysis of cladding degradation inside the repository. In accordance with AP-2.13Q, ''Technical Product Development Planning'', a work plan (CRWMS M&O 2000c) was developed, issued, and utilized in the preparation of this document. There are constraints, caveats and limitations to this analysis. This cladding degradation analysis is based on commercial Pressurized Water Reactor (PWR) fuel with Zircaloy cladding but is applicable to Boiling Water Reactor (BWR) fuel. Reactor operating experience for both PWRs and BWRs is used to establish fuel reliability from reactor operation. It is limited to fuel exposed to normal operation and anticipated operational occurrences (i.e. events which are anticipated to occur within a reactor lifetime), and not to fuel that has been exposed to severe accidents. Fuel burnup projections have been limited to the current commercial reactor licensing environment with restrictions on fuel enrichment, oxide coating thickness and rod plenum pressures. The information provided in this analysis will be used in

  19. Chalcogenide optical microwires cladded with fluorine-based CYTOP.

    PubMed

    Li, Lizhu; Abdukerim, Nurmemet; Rochette, Martin

    2016-08-22

    We demonstrate optical transmission results of highly nonlinear As2Se3 optical microwires cladded with fluorine-based CYTOP, and compare them with microwires cladded with typical hydrogen-based polymers. In the linear optics regime, the CYTOP-cladded microwire transmits light in the spectral range from 1.3 µm up to >2.5 µm without trace of absorption peaks such as those observed using hydrogen-based polymer claddings. The microwire is also pumped in the nonlinear optics regime, showing multiple-orders of four-wave mixing and supercontinuum generation spanning from 1.0 µm to >4.3 µm. We conclude that with such a broadband transparency and high nonlinearity, the As2Se3-CYTOP microwire is an appealing solution for nonlinear optical processing in the mid-infrared. PMID:27557174

  20. EPRI fuel cladding integrity program

    SciTech Connect

    Yang, R.

    1997-01-01

    The objectives of the EPRI fuel program is to supplement the fuel vendor research to assure that utility economic and operational interests are met. To accomplish such objectives, EPRI has conducted research and development efforts to (1) reduce fuel failure rates and mitigate the impact of fuel failures on plant operation, (2) provide technology to extend burnup and reduce fuel cycle cost. The scope of R&D includes fuel and cladding. In this paper, only R&D related to cladding integrity will be covered. Specific areas aimed at improving fuel cladding integrity include: (1) Fuel Reliability Data Base; (2) Operational Guidance for Defective Fuel; (3) Impact of Water Chemistry on Cladding Integrity; (4) Cladding Corrosion Data and Model; (5) Cladding Mechanical Properties; and (6) Transient Fuel Cladding Response.

  1. Fuel pin cladding

    DOEpatents

    Vaidyanathan, S.; Adamson, M.G.

    1986-01-28

    Disclosed is an improved fuel pin cladding, particularly adapted for use in breeder reactors, consisting of composite tubing with austenitic steel on the outer portion of the thickness of the tube wall and with nickel and/or ferritic material on the inner portion of the thickness of the tube wall. The nickel forms a sacrificial barrier as it reacts with certain fission products thereby reducing fission product activity at the austenitic steel interface. The ferritic material forms a preventive barrier for the austenitic steel as it is immune to liquid metal embrittlement. The improved cladding permits the use of high density fuel which in turn leads to a better breeding ratio in breeder reactors, and will increase the threshold at which failure occurs during temperature transients. 2 figs.

  2. Fuel pin cladding

    DOEpatents

    Vaidyanathan, S.; Adamson, M.G.

    1983-12-16

    An improved fuel pin cladding, particularly adapted for use in breeder reactors, is described which consist of composite tubing with austenitic steel on the outer portion of the thickness of the tube wall and with nickel an/or ferritic material on the inner portion of the thickness of the tube wall. The nickel forms a sacrificial barrier as it reacts with certain fission products thereby reducing fission product activity at the austenitic steel interface. The ferritic material forms a preventive barrier for the austenitic steel as it is immune to liquid metal embrittlement. The improved cladding permits the use of high density fuel which in turn leads to a better breeding ratio in breeder reactors, and will increase the threshold at which failure occurs during temperature transients.

  3. Fuel pin cladding

    DOEpatents

    Vaidyanathan, Swaminathan; Adamson, Martyn G.

    1986-01-01

    An improved fuel pin cladding, particularly adapted for use in breeder reactors, consisting of composite tubing with austenitic steel on the outer portion of the thickness of the tube wall and with nickel and/or ferritic material on the inner portion of the thickness of the tube wall. The nickel forms a sacrificial barrier as it reacts with certain fission products thereby reducing fission product activity at the austenitic steel interface. The ferritic material forms a preventive barrier for the austenitic steel as it is immune to liquid metal embrittlement. The improved cladding permits the use of high density fuel which in turn leads to a better breeding ratio in breeder reactors, and will increase the threshold at which failure occurs during temperature transients.

  4. Design of intrinsically single-mode double clad crystalline fiber waveguides for high power lasers

    NASA Astrophysics Data System (ADS)

    Li, Da; Hong, Pengda; Meissner, Stephanie K.; Meissner, Helmuth E.

    2016-03-01

    Recently, double-clad crystalline fiber waveguides (CFWs), consisting of single crystalline or ceramic RE3+:YAG cores of square cross section and inner claddings of either undoped or laser-inactive-ion-doped YAG and outer claddings of sapphire, have been successfully demonstrated. These waveguides, manufactured by an Adhesive-Free Bonding (AFB®) technique, can be precisely engineered and fabricated with predictable beam propagation behavior. In this work, with high power laser designs in mind, minimum thicknesses for inner cladding are derived for different core cross sections and refractive index differences between the core and inner cladding and sapphire as outer cladding material for common laser core dopants such as Nd3+, Yb3+, Er3+, Tm3+ and Ho3+. All designs are intended to use high NA high power laser diode pumping to obtain high power intrinsically single transverse mode laser output. The obtained data are applicable to any crystalline fiber waveguide design, regardless of fabrication technique. As an example, a CFW with 40 μm × 40 μm 4% Tm:YAG core, 5% Yb:YAG inner cladding, and sapphire outer cladding was calculated to be intrinsically single transverse mode, with the minimum inner cladding width of 21.7 μm determined by the effective index technique [1].

  5. Aerogel-clad optical fiber

    DOEpatents

    Sprehn, Gregory A.; Hrubesh, Lawrence W.; Poco, John F.; Sandler, Pamela H.

    1997-01-01

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency.

  6. Aerogel-clad optical fiber

    DOEpatents

    Sprehn, G.A.; Hrubesh, L.W.; Poco, J.F.; Sandler, P.H.

    1997-11-04

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency. 4 figs.

  7. Gain property analysis of a quantum dot doped inner cladding fiber

    NASA Astrophysics Data System (ADS)

    Dai, Yuan; Pang, Fufei; Wang, Tingyun

    2011-12-01

    A quantum dot (QD) doped fiber amplifier (QDFA) was theoretically modeled by using a two-level system. Combining with the finite difference-beam propagation method (FD-BPM), the proposed numerical method can calculate the signal gain efficiently. In this fiber amplifier, the PbS QD was as an active inner cladding. With the unique cladding structure of the doubly clad optical fiber, we can get good transmission stability, pump utilization and big mode field of the signal light. After a proper structure design of the PbS QD inner-cladding doped fiber, the 160nm bandwidth of the gain spectra can be achieved, which covers the S-C-L band of the optical communication band. And the noise figure of the amplifier presents a very flat characteristic. The optimization of the inner cladding doped model is also presented in the paper.

  8. Multi-watt 589nm fiber laser source

    SciTech Connect

    DAWSON, J W; DROBSHOFF, A D; BEACH, R J; MESSERLY, M J; PAYNE, S A; BROWN, A; PENNINGTON, D M; BAMFORD, D J; SHARPE, S J; COOK, D J

    2006-01-19

    We have demonstrated 3.5W of 589nm light from a fiber laser using periodically poled stoichiometric Lithium Tantalate (PPSLT) as the frequency conversion crystal. The system employs 938nm and 1583nm fiber lasers, which were sum-frequency mixed in PPSLT to generate 589nm light. The 938nm fiber laser consists of a single frequency diode laser master oscillator (200mW), which was amplified in two stages to >15W using cladding pumped Nd{sup 3+} fiber amplifiers. The fiber amplifiers operate at 938nm and minimize amplified spontaneous emission at 1088nm by employing a specialty fiber design, which maximizes the core size relative to the cladding diameter. This design allows the 3-level laser system to operate at high inversion, thus making it competitive with the competing 1088nm 4-level laser transition. At 15W, the 938nm laser has an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >15:1). The 1583nm fiber laser consists of a Koheras 1583nm fiber DFB laser that is pre-amplified to 100mW, phase modulated and then amplified to 14W in a commercial IPG fiber amplifier. As a part of our research efforts we are also investigating pulsed laser formats and power scaling of the 589nm system. We will discuss the fiber laser design and operation as well as our results in power scaling at 589nm.

  9. 469nm Fiber Laser Source

    SciTech Connect

    Drobshoff, A; Dawson, J W; Pennington, D M; Payne, S A; Beach, R

    2005-01-20

    We have demonstrated 466mW of 469nm light from a frequency doubled continuous wave fiber laser. The system consisted of a 938nm single frequency laser diode master oscillator, which was amplified in two stages to 5 Watts using cladding pumped Nd{sup 3+} fiber amplifiers and then frequency doubled in a single pass through periodically poled KTP. The 3cm long PPKTP crystal was made by Raicol Crystals Ltd. with a period of 5.9 {micro}m and had a phase match temperature of 47 degrees Centigrade. The beam was focused to a 1/e{sup 2} diameter in the crystal of 29 {micro}m. Overall conversion efficiency was 11% and the results agreed well with standard models. Our 938nm fiber amplifier design minimizes amplified spontaneous emission at 1088nm by employing an optimized core to cladding size ratio. This design allows the 3-level transition to operate at high inversion, thus making it competitive with the 1088nm 4-level transition. We have also carefully chosen the fiber coil diameter to help suppress propagation of wavelengths longer than 938 nm. At 2 Watts, the 938nm laser had an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >10:1).

  10. Rheological evaluation of pretreated cladding removal waste

    SciTech Connect

    McCarthy, D.; Chan, M.K.C.; Lokken, R.O.

    1986-01-01

    Cladding removal waste (CRW) contains concentrations of transuranic (TRU) elements in the 80 to 350 nCi/g range. This waste will require pretreatment before it can be disposed of as glass or grout at Hanford. The CRW will be pretreated with a rare earth strike and solids removal by centrifugation to segregate the TRU fraction from the non-TRU fraction of the waste. The centrifuge centrate will be neutralized with sodium hydroxide. This neutralized cladding removal waste (NCRW) is expected to be suitable for grouting. The TRU solids removed by centrifugation will be vitrified. The goal of the Rheological Evaluation of Pretreated Cladding Removal Waste Program was to evaluate those rheological and transport properties critical to assuring successful handling of the NCRW and TRU solids streams and to demonstrate transfers in a semi-prototypic pumping environment. This goal was achieved by a combination of laboratory and pilot-scale evaluations. The results obtained during these evaluations were correlated with classical rheological models and scaled-up to predict the performance that is likely to occur in the full-scale system. The Program used simulated NCRW and TRU solid slurries. Rockwell Hanford Operations (Rockwell) provided 150 gallons of simulated CRW and 5 gallons of simulated TRU solid slurry. The simulated CRW was neutralized by Pacific Northwest Laboratory (PNL). The physical and rheological properties of the NCRW and TRU solid slurries were evaluated in the laboratory. The properties displayed by NCRW allowed it to be classified as a pseudoplastic or yield-pseudoplastic non-Newtonian fluid. The TRU solids slurry contained very few solids. This slurry exhibited the properties associated with a pseudoplastic non-Newtonian fluid.

  11. Transverse pumped laser amplifier architecture

    SciTech Connect

    Bayramian, Andrew James; Manes, Kenneth R.; Deri, Robert; Erlandson, Alvin; Caird, John; Spaeth, Mary L.

    2015-05-19

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  12. Transverse pumped laser amplifier architecture

    DOEpatents

    Bayramian, Andrew James; Manes, Kenneth; Deri, Robert; Erlandson, Al; Caird, John; Spaeth, Mary

    2013-07-09

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  13. Radiographic Inspection of Fueled Clads

    SciTech Connect

    Timothy J. Roney; Karen M. Wendt

    2005-04-01

    Five general purpose heat source (GPHS) fueled clads were radiographically inspected at the Idaho National Laboratory (INL). The girth weld region of each clad had previously passed visual examination, ring gauge test, and leak test but showed “positive” indications on the ultrasonic (UT) test. Positive ultrasonic indications are allowable under certain weld conditions; radiographic inspection provides a secondary nonintrusive means of clad inspection and may confirm allowable anomalies from the UT inspection. All the positive UT indications were found to exhibit allowable weld shield fusion or mismatch conditions. No indication of void defects was found. One additional clad (FCO371) was deemed unacceptable for radiographic inspection due to an unknown black substance that obscured the angular origin on the weld so that the angular offset to the UT indication could not be found.

  14. Detail of wall in highlift pumping station with Armstrong "Corkoustic" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of wall in high-lift pumping station with Armstrong "Corkoustic" cladding and glazed brick. - Robert B. Morse Water Filtration Plant, 10700 and 10701 Columbia Pike, Silver Spring, Montgomery County, MD

  15. Clad Degradation - FEPs Screening Arguments

    SciTech Connect

    E. Siegmann

    2004-03-17

    The purpose of this report is to document the screening of the cladding degradation features, events, and processes (FEPs) for commercial spent nuclear fuel (CSNF). This report also addresses the effect of some FEPs on both the cladding and the CSNF, DSNF, and HLW waste forms where it was considered appropriate to address the effects on both materials together. This report summarizes the work of others to screen clad degradation FEPs in a manner consistent with, and used in, the Total System Performance Assessment-License Application (TSPA-LA). This document was prepared according to ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA'' (BSC 2004a [DIRS 167796]).

  16. Laser diode pumped high efficiency Yb:YAG crystalline fiber waveguide lasers

    NASA Astrophysics Data System (ADS)

    Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    Single-clad and double-clad Yb:YAG crystalline fiber waveguides (CFWs) have been prepared with Adhesive-Free Bonding (AFB®) technology. By using a fiber coupled laser diode as pump source, a single-mode laser with near diffraction limited beam quality M2=1.02 has been demonstrated in a double-clad CFW. The laser output power and efficiency are 13.2 W and 34%, respectively. In a single-clad CFW, core pumping was used. The laser output has top-hat beam profile. An output power of 28 W and a slope efficiency of 78% have been achieved respectively.

  17. ZIRCONIUM-CLADDING OF THORIUM

    DOEpatents

    Beaver, R.J.

    1961-11-21

    A method of cladding thorium with zirconium is described. The quality of the bond achieved between thorium and zirconium by hot-rolling is improved by inserting and melting a thorium-zirconium alloy foil between the two materials prior to rolling. (AEC)

  18. Reactor vessel cladding separate effects studies

    SciTech Connect

    Corwin, W.R.

    1985-01-01

    The existence of a layer of tough weld overlay cladding on the interior of a light-water reactor pressure vessel could mitigate damage caused during certain overcooling transients. The potential benefit of the cladding is that it could keep a short surface flaw, which would otherwise become long, from growing either by impeding crack initiation or by arresting a running crack. Two aspects critical to cladding behavior will be reported: irradiation effects on cladding toughness and the response of mechanically loaded, flawed structures in the presence of cladding. 15 refs., 24 figs., 6 tabs.

  19. Simulated transient behavior of HT9 cladding

    SciTech Connect

    Cannon, N.S.; Huang, F.H.; Hamilton, M.L.

    1988-09-01

    Simulated transient tests were performed on sections of HT9 fast- reactor fuel pin cladding irradiated to a fast fluence of nearly 16 /times/ 10/sup 22/ n/cm/sup 2/ at temperatures ranging from 370 to 620/degree/C. After removing fuel, these specimens were internally pressurized and heated at one of several constant rates (0.56, 5.6, or 110/degree/C/s) until specimen failure occurred. A slight reduction of strength was observed in irradiated cladding, particularly at 110/degree/C/s, when compared with transient results from unirradiated HT9 control specimens; however, this strength reduction did not correlate with either fluence or irradiation temperature. A small reduction of ductility was also observed for irradiated cladding failing at temperatures above 800/degree/C at the lower heating rates (0.56 or 5.6/degree/C/s); irradiated cladding was generally more ductile at 110/degree/C/s than unirradiated HT9 cladding. The HT9 cladding results were compared with similar transient data obtained previously from 20% Cold-Worked Type 316 Stainless Steel (316 SS) cladding. In the unirradiated state, this austenitic cladding is stronger and less ductile than HT9 cladding. However, the 316 SS cladding undergoes a significant loss of strength and ductility during irradiation when in contact with oxide fuel, by a mechanism labeled the fuel adjacency effect (FAE). The FAE is believed to be liquid metal embrittlement from fission products. The HT9 fuel pin cladding remained as strong or stronger than the 316 SS cladding when irradiated in contact with fuel, showing no evidence of the FAE up to the high fluences reported here. The ductility of the irradiated HT9 fuel pin cladding remained significantly greater than that of irradiated 316 SS cladding. 14 refs., 11 figs., 1 tab.

  20. CLAD DEGRADATION - FEPS SCREENING ARGUMENTS

    SciTech Connect

    R. Schreiner

    2004-10-21

    The purpose of this report is to evaluate and document the screening of the clad degradation features, events, and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment-License Application (TSPA-LA). This report also addresses the effect of certain FEPs on both the cladding and the commercial spent nuclear fuel (CSNF), DOE-owned spent nuclear fuel (DSNF), and defense high-level waste (DHLW) waste forms, as appropriate to address the effects on multiple materials and both components (FEPs 2.1.09.09.0A, 2.1.09.11.0A, 2.1.11.05.0A, 2.1.12.02.0A, and 2.1.12.03.0A). These FEPs are expected to affect the repository performance during the postclosure regulatory period of 10,000 years after permanent closure. Table 1-1 provides the list of cladding FEPs, including their screening decisions (include or exclude). The primary purpose of this report is to identify and document the analysis, screening decision, and TSPA-LA disposition (for included FEPs) or screening argument (for excluded FEPs) for these FEPs related to clad degradation. In some cases, where a FEP covers multiple technical areas and is shared with other FEP reports, this report may provide only a partial technical basis for the screening of the FEP. The full technical basis for shared FEPs is addressed collectively by the sharing FEP reports. The screening decisions and associated TSPA-LA dispositions or screening arguments from all of the FEP reports are cataloged in a project-specific FEPs database.

  1. Research of detecting technique of low light in optic fiber's cladding

    NASA Astrophysics Data System (ADS)

    Mu, Wei; Xu, Cheng-lin; Si, Xu; Ma, Yun-liang; Lin, Ya-jun; Xiao, Chun

    2015-10-01

    Technique of residual cladding pump light detection in active fiber is researched, which is used in assembling the fiber laser system. With this technology, a fiber probe is used to detect the pump light leaking from the cladding with fiber's coating on or stripped. It's found that there is a linear relationship between leaking light power and pump light power, and the proportional coefficient is measured. Therefore, there's no need to cut and fuse the active fiber many times to get the best length of active fiber, and it can save the measuring period and experiment expense a lot. Two types of fiber probes are used, tapered fiber probes and bevel fiber probes. The testing results of low light using these two fiber probes are given and the detecting method is verified.

  2. Process development for cladding APT tungsten targets

    SciTech Connect

    Horner, M H; Barber, R; Dalder, E

    2000-11-27

    This report describes development of processes for cladding APT Target tungsten components with a thin layer (0.127-mm) of Alloy 718, Alloy 600 or 316L stainless steel alloy. The application requires that the cladding be thermally bonded to the tungsten in order to transfer heat generated in the tungsten volume to a surrounding coolant. High temperature diffusion bonding using the hot isostatic processing (HIP) technique was selected as the method for creating a metallurgical bond between pure tungsten tubes and rods and the cladding materials. Bonding studies using a uniaxially loaded vacuum hot press were conducted in preliminary experiments to determine acceptable time-temperature conditions for diffusion bonding. The results were successfully applied in cladding tungsten rods and tubes with these alloys. Temperatures 800-810 C were suitable for cladding tungsten with Alloy 600 and 316L stainless steel alloy, whereas tungsten was clad with Alloy 718 at 1020 C.

  3. Termination of plastic-clad fiber. [Plastic-clad silica

    SciTech Connect

    Nance, W.R.

    1982-03-01

    Optical waveguides are ideal in a nuclear weapon environment because of their resistance to electromagnetic interference. Of the fibers on today's market, plastic-clad silica (PCS) is the most radiation resistant and therfore the best choice. Because terminating PCS is complex, this paper attemps to address the major problems associated with these terminations including selecting the proper connector and optimizing the terminating procedures. The sources of losses in the connectors are summarized and typical loss values are given for four connectors which were tested.

  4. Advanced Fuels Campaign Cladding & Coatings Meeting Summary

    SciTech Connect

    Not Listed

    2013-03-01

    The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) organized a Cladding and Coatings operational meeting February 12-13, 2013, at Oak Ridge National Laboratory (ORNL). Representatives from the U.S. Department of Energy (DOE), national laboratories, industry, and universities attended the two-day meeting. The purpose of the meeting was to discuss advanced cladding and cladding coating research and development (R&D); review experimental testing capabilities for assessing accident tolerant fuels; and review industry/university plans and experience in light water reactor (LWR) cladding and coating R&D.

  5. Protective claddings for high strength chromium alloys

    NASA Technical Reports Server (NTRS)

    Collins, J. F.

    1971-01-01

    The application of a Cr-Y-Hf-Th alloy as a protective cladding for a high strength chromium alloy was investigated for its effectiveness in inhibiting nitrogen embrittlement of a core alloy. Cladding was accomplished by a combination of hot gas pressure bonding and roll cladding techniques. Based on bend DBTT, the cladding alloy was effective in inhibiting nitrogen embrittlement of the chromium core alloy for up to 720 ks (200hours) in air at 1422 K (2100 F). A significant increase in the bend DBTT occurred with longer time exposures at 1422 K or short time exposures at 1589 K (2400 F).

  6. Cladding Alloys for Fluoride Salt Compatibility

    SciTech Connect

    Muralidharan, Govindarajan; Wilson, Dane F; Walker, Larry R; Santella, Michael L; Holcomb, David Eugene

    2011-06-01

    This report provides an overview of several candidate technologies for cladding nickel-based corrosion protection layers onto high-temperature structural alloys. The report also provides a brief overview of the welding and weld performance issues associated with joining nickel-clad nickel-based alloys. From the available techniques, two cladding technologies were selected for initial evaluation. The first technique is a line-of-sight method that would be useful for cladding large structures such as vessel interiors or large piping. The line-of-sight method is a laser-based surface cladding technique in which a high-purity nickel powder mixed into a polymer binder is first sprayed onto the surface, baked, and then rapidly melted using a high-power laser. The second technique is a vapor phase technique based on the nickel-carbonyl process that is suitable for cladding inaccessible surfaces such as the interior surfaces of heat exchangers. An initial evaluation for performed on the quality of nickel claddings processed using the two selected cladding techniques.

  7. Nuclear fuel elements having a composite cladding

    DOEpatents

    Gordon, Gerald M.; Cowan, II, Robert L.; Davies, John H.

    1983-09-20

    An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.

  8. Near-infrared lasers and self-frequency-doubling in Nd:YCOB cladding waveguides.

    PubMed

    Ren, Yingying; Chen, Feng; Vázquez de Aldana, Javier R

    2013-05-01

    A design of cladding waveguides in Nd:YCOB nonlinear crystals is demonstrated in this work. Compact Fabry-Perot oscillation cavities are employed for waveguide laser generation at 1062 nm and self-frequency-doubling at 531 nm, under optical pump at 810 nm. The waveguide laser shows slope efficiency as high as 55% at 1062 nm. The SFD green waveguide laser emits at 531 nm with a maximum power of 100 μW.

  9. Testing of uranium nitride fuel in T-111 cladding at 1200 K cladding temperature

    NASA Technical Reports Server (NTRS)

    Rohal, R. G.; Tambling, T. N.; Smith, R. L.

    1973-01-01

    Two groups of six fuel pins each were assembled, encapsulated, and irradiated in the Plum Brook Reactor. The fuel pins employed uranium mononitride (UN) in a tantalum alloy clad. The first group of fuel pins was irradiated for 1500 hours to a maximum burnup of 0.7-atom-percent uranium. The second group of fuel pins was irradiated for about 3000 hours to a maximum burnup of 1.0-atom-percent uranium. The average clad surface temperature during irradiation of both groups of fuel pins was approximately 1200 K. The postirradiation examination revealed the following: no clad failures or fuel swelling occurred; less than 1 percent of the fission gases escaped from the fuel; and the clad of the first group of fuel pins experienced clad embrittlement whereas the second group, which had modified assembly and fabrication procedures to minimize contamination, had a ductile clad after irradiation.

  10. 600 W power scalable single transverse mode tapered double-clad fiber laser.

    PubMed

    Filippov, V; Chamorovskii, Y; Kerttula, J; Kholodkov, A; Okhotnikov, O G

    2009-02-01

    Pump propagation and absorption in active tapered double-clad fiber has been analyzed based on a ray optics approach. Optimization of the longitudinal shape, absorption and angular distribution of the pump beam allowed for power scaling of a ytterbium fiber laser up to 600 W with high beam quality (M2

  11. Reduction of Liquid Clad Formation Due to Solid State Diffusion in Clad Brazing Sheet

    NASA Astrophysics Data System (ADS)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-09-01

    Warm forming operations have shown promise in expanding automotive heat exchanger designs by increasing forming limits of clad brazing sheet. The impact of isothermal holds below the clad melting temperature on subsequent brazeability has not previously been studied in detail. The effect of these holds on brazeability, as measured by the clad thickness loss due to solid state diffusion of Si out of the clad layer prior to clad melting, was assessed through parallel DSC and optical microscopy measurements, as well as through the use of a previously developed model. EPMA measurements were also performed to support the other measures. Overall, the same trends were predicted by DSC, microscopy, and the theoretical model; however, the DSC predictions were unable to accurately predict remaining clad thickness prior to melting, even after correcting the data for clad-core interactions. Microscopy measurements showed very good agreement with the model predictions, although there were slight discrepancies at short hold times due to the inability of the model to account for clad loss during heating to the brazing temperature. Further microscopy measurements showed that when the heating rate is set below a critical value, there is a reduction in the clad thickness from the as-received condition.

  12. GSGG edge cladding development: Final technical report

    SciTech Connect

    Izumitani, T.; Meissner, H.E.; Toratani, H.

    1986-11-15

    The objectives of this project have been: (1) Investigate the possibility of chemical etching of GSGG crystal slabs to obtain increased strength. (2) Design and construct a simplified mold assembly for casting cladding glass to the edges of crystal slabs of different dimensions. (3) Conduct casting experiments to evaluate the redesigned mold assembly and to determine stresses as function of thermal expansion coefficient of cladding glass. (4) Clad larger sizes of GGG slabs as they become available. These tasks have been achieved. Chemical etching of GSGG slabs does not appear possible with any other acid than H/sub 3/PO/sub 4/ at temperatures above 300/sup 0/C. A mold assembly has been constructed which allowed casting cladding glass around the edges of the largest GGG slabs available (10 x 20 x 160 mm) without causing breakage through the annealing step.

  13. PUMP CONSTRUCTION

    DOEpatents

    Strickland, G.; Horn, F.L.; White, H.T.

    1960-09-27

    A pump which utilizes the fluid being pumped through it as its lubricating fluid is described. This is achieved by means of an improved bearing construction in a pump of the enclosed or canned rotor type. At the outlet end of the pump, adjacent to an impeller mechanism, there is a bypass which conveys some of the pumped fluid to a chamber at the inlet end of the pump. After this chamber becomes full, the pumped fluid passes through fixed orifices in the top of the chamber and exerts a thrust on the inlet end of the pump rotor. Lubrication of the rotor shaft is accomplished by passing the pumped fluid through a bypass at the outlet end of the rotor shaft. This bypass conveys Pumped fluid to a cooling means and then to grooves on the surface of the rotor shait, thus lubricating the shaft.

  14. Double-clad nuclear fuel safety rod

    DOEpatents

    McCarthy, William H.; Atcheson, Donald B.; Vaidyanathan, Swaminathan

    1984-01-01

    A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

  15. The processing and evaluation of clad metals

    NASA Astrophysics Data System (ADS)

    Forster, James A.; Jha, Sunil; Amatruda, Andrew

    1993-06-01

    Clad metals are a specific form of composites in which the materials are arranged in a layered structure. Cold-roll bonding techniques are employed to produce more than 20,000 tonnes of clad metal laminates each year in the United States. This article is an introductory description of the processing steps in cold-roll bonding, the nature of the bond created in this process, and the methods used to evaluate the bond's strength.

  16. Optimizing the pumping configuration for the power scaling of in-band pumped erbium doped fiber amplifiers.

    PubMed

    Lim, Ee-Leong; Alam, Shaif-ul; Richardson, David J

    2012-06-18

    A highly efficient (~80%), high power (18.45 W) in-band, core pumped erbium/ytterbium co-doped fiber laser is demonstrated. To the best of our knowledge, this is the highest reported efficiency from an in-band pumped 1.5 µm fiber laser operating in the tens of watts regime. Using a fitted simulation model, we show that the significantly sub-quantum limit conversion efficiency of in-band pumped erbium doped fiber amplifiers observed experimentally can be explained by concentration quenching. We then numerically study and experimentally validate the optimum pumping configuration for power scaling of in-band, cladding pumped erbium doped fiber amplifiers. Our simulation results indicate that a ~77% power conversion efficiency with high output power should be possible through cladding pumping of current commercially available pure Erbium doped active fibers providing the loss experienced by the cladding guided 1535 nm pump due to the coating absorption can be reduced to an acceptable level by better coating material choice. The power conversion efficiency has the potential to exceed 90% if concentration quenching of erbium ions can be reduced via improvements in fiber design and fabrication.

  17. Magnetocaloric pump

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1973-01-01

    Very cold liquids and gases such as helium, neon, and nitrogen can be pumped by using magnetocaloric effect. Adiabatic magnetization and demagnetization are used to alternately heat and cool slug of pumped fluid contained in closed chamber.

  18. Casing pump

    SciTech Connect

    Bass, H.E.; Bass, R.E.

    1987-09-29

    A natural gas operated pump is described for use in the casing of an oil well, comprising: a tubular pump body having an open lower end for admitting well fluids to the interior of the pump body and an open upper end, wherein a downwardly facing seating surface is formed on the inner periphery of the pump body adjacent the upper end thereof; means for forming a seal between the pump body and the casing of the well; a rod extending longitudinally through the seating surface formed in the pump body and protruding from the upper end of the pump body; a valve member mounted on the rod below the seating surface and shaped to mate with the seating surface; and means for vertically positioning the rod in proportion to fluid pressure within the pump body.

  19. Metal clad active fibres for power scaling and thermal management at kW power levels.

    PubMed

    Daniel, Jae M O; Simakov, Nikita; Hemming, Alexander; Clarkson, W Andrew; Haub, John

    2016-08-01

    We present a new approach to high power fibre laser design, consisting of a polymer-free all-glass optical fibre waveguide directly overclad with a high thermal conductivity metal coating. This metal clad active fibre allows a significant reduction in thermal resistance between the active fibre and the laser heat-sink as well as a significant increase in the operating temperature range. In this paper we show the results of a detailed thermal analysis of both polymer and metal coated active fibres under thermal loads typical of kW fibre laser systems. Through several different experiments we present the first demonstration of a cladding pumped aluminium-coated fibre laser and the first demonstration of efficient operation of a cladding-pumped fibre laser at temperatures of greater than 400 °C. Finally, we highlight the versatility of this approach through operation of a passively (radiatively) cooled ytterbium fibre laser head at an output power of 405 W in a compact and ultralight package weighing less than 100 g. PMID:27505822

  20. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  1. Cladding-like waveguide structure in Nd:YAG crystal fabricated by multiple ion irradiation for enhanced waveguide lasing.

    PubMed

    Shang, Zhen; Tan, Yang; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2015-10-19

    We report on a cladding-like waveguide structure in Nd:YAG crystal fabricated by the multiple carbon ion beam irradiation. After the designed multiple irradiation process, the cladding-like waveguide with triple refractive-index layers were constructed in the region near the surface of the crystal. With such a structure, the waveguiding core was compressed and refractive index profile was modified, resulting in a higher light intensity than that of the single ion-beam-irradiated monolayer waveguide. The waveguide lasing at wavelength of 1064 nm was achieved with enhanced performance in the cladding-like structures with both planar and ridge configurations by the optical pump at 810 nm.

  2. Numerical analysis and experimental research of output performance for Yb3+-doped double-clad fiber lasers

    NASA Astrophysics Data System (ADS)

    Wang, Guozheng; Wang, Ji; Duanmu, Qingduo; Li, Ye; Gao, Yanjun; Jiang, Delong; Wu, Kui; Tian, Jingquan; Fu, Lichen

    2005-01-01

    In this paper, numerical analysis was investigated for the double-clad fiber lasers and experimental study on the Yb3+-doped double-clad fiber lasers was performed. The results shown that the output power increased monotonically with absorbed power, and in lossy cavity the output power is less than in the lossless cavity. The output power decreases for the lossy fiber with the reflectivity of output coupler. There was an optimum fiber length to reach a maximum output and the optimum length was mainly dependent on the loss coefficient. In experiment we obtained an output power of 21.6W, slope efficiency of 54% by using Yb3+-doped double-clad fiber and 40W LD pump source.

  3. Pump for spawning channels includes a turbine and motor. Turbine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pump for spawning channels includes a turbine and motor. Turbine is Berkeley H-17500, model 8C2PH, Serial No. 2889, B.M. No. 4886 - Berkeley Pump Co. The Motor is G.E. Induction Motor, model 5K4256XA3YI, serial no. GAJ728337, Tri-Clad. View looking northeast. - Prairie Creek Fish Hatchery, Hwy. 101, Orick, Humboldt County, CA

  4. Compact diode stack end pumped Nd:YAG amplifier using core doped ceramics.

    PubMed

    Denis, Thomas; Hahn, Sven; Mebben, Sandra; Wilhelm, Ralf; Kolleck, Christian; Neumann, Jörg; Kracht, Dietmar

    2010-02-10

    We report on a compact Nd:YAG amplifier emitting a maximum pulse energy of 14 mJ. By amplifying a passively Q-switched oscillator (M(2)<1.2) a good beam quality of M(2) approximately 1.7 was achieved. The amplifier is diode pumped by an 8 bar diode stack of 800 W power and a nonimaging optic. This optic homogenizes the pump light and transfers it into a 5 mm diameter core doped rod with a centrally neodymium doped region of 3 mm and a samarium doped YAG cladding. We show that this cladding reduces parasitic effects in the laser rod compared to an undoped YAG cladding. Finally, we compare the compact amplifier with an amplifier, which is mode selectively pumped by a fiber coupled pump diode.

  5. Potential effects of gallium on cladding materials

    SciTech Connect

    Wilson, D.F.; Beahm, E.C.; Besmann, T.M.; DeVan, J.H.; DiStefano, J.R.; Gat, U.; Greene, S.R.; Rittenhouse, P.L.; Worley, B.A.

    1997-10-01

    This paper identifies and examines issues concerning the incorporation of gallium in weapons derived plutonium in light water reactor (LWR) MOX fuels. Particular attention is given to the more likely effects of the gallium on the behavior of the cladding material. The chemistry of weapons grade (WG) MOX, including possible consequences of gallium within plutonium agglomerates, was assessed. Based on the calculated oxidation potentials of MOX fuel, the effect that gallium may have on reactions involving fission products and possible impact on cladding performance were postulated. Gallium transport mechanisms are discussed. With an understanding of oxidation potentials and assumptions of mechanisms for gallium transport, possible effects of gallium on corrosion of cladding were evaluated. Potential and unresolved issues and suggested research and development (R and D) required to provide missing information are presented.

  6. OSCILLATORY PUMP

    DOEpatents

    Underwood, N.

    1958-09-23

    This patent relates to a pump suitable fur pumping highly corrosive gases wherein no lubricant is needed in the pumping chamber thus eliminating possible contamination sources. The chamber contains a gas inlet and outlet in each side, with a paddle like piston suspended by a sylphon seal between these pcrts. An external arrangement causes the paddle to oscillate rapidly between the ports, alternately compressing and exhausting the gas trapped on each side of the paddle. Since the paddle does nnt touch the chamber sides at any point, no lubricant is required. This pump is useful for pumping large quantities of uranium hexafluorine.

  7. Spontaneous and stimulated Raman scattering in silica-cladded silicon photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Hsiao, Yi-Hua; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2015-04-01

    We report the observation of spontaneous and stimulated Raman scattering in a silica-cladded silicon photonic crystal (PhC) waveguide (WG) with modified holes. Spontaneous Raman scattering in the WG was enhanced when the Stokes wavelength was approached to the bandedge of a WG mode. A maximum enhancement up to ˜5 times was obtained in the present work. At a Stokes wavelength in the lower group velocity region, nonlinear increase of the Stokes power as the pump power, a clear indication of the onset of stimulated Raman scattering, was observed. Moreover, Raman amplification with an external signal beam was also demonstrated. On-off gain becomes small as the Stokes wavelength gets away from the bandedge of the WG mode. These are the first observations of Raman scattering effects in silica-cladded silicon PhC structures.

  8. A strain sensor based on cladding mode resonance of optical double-cladding fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Pang, Fufei; Guo, Hairun; Chen, Zhenyi; Wang, Tingyun

    2010-11-01

    A strain sensor based on cladding mode resonance of optical double-cladding fiber (DCF) was proposed and experimentally demonstrated. The sensor head was fabricated by splicing a section of DCF into a standard single mode fiber (SMF). Attributed to the thin thickness of the inner cladding, the core mode can be coupled with cladding modes which generatess a strong resonant spectrum at the phase-matching wavelength. When the DCF sensor is applied an axial strain, the refractive index of the DCF decreases due to the photoelastic effect. According to the coupled mode theory, the phase-matching wavelength will shift to a shorter wavelength. By detecting the resonant spectrum variation, the stain sensor can be realized. The strain sensitivity was achieved as -2.87 pm μɛ over 800μɛ measurement range with good repeatability. With the simple configuration and attractive performance, the specialty DCF strain sensor can be explored for wide sensing applications.

  9. Optical modulation of guided mode resonance in the waveguide grating structure incorporated with azo-doped-poly(methylmethacrylate) cladding layer.

    PubMed

    Lin, Jian Hung; Huang, Yu Chung; DiepLai, Ngoc; Kan, Hung-Chih; Hsu, Chia Chen

    2012-01-01

    Optical modulation of guided mode resonance (GMR) is demonstrated in a waveguide grating structure (WGS) which contains a disperse-red1 (DR1)-doped poly(methylmethacrylate) (PMMA) cladding layer. The resonance wavelength of a GMR mode can be tuned by pumping the cladding layer with a 442 nm wavelength laser beam, because of photoinduced refractive index change in the layer. The resonance wavelength shifts to shorter wavelength side, and the shift increases with pumping power, up to a maximum shift of 5 nm. A detector was used to monitor the intensity of the light that was reflected from the WGS at the wavelengths of the GMR peak positions, and the WGS was found to exhibit optical modulation with a shortest switching time of less than 0.3s.

  10. Pellet cladding mechanical interactions of ceramic claddings fuels under light water reactor conditions

    NASA Astrophysics Data System (ADS)

    Li, Bo-Shiuan

    Ceramic materials such as silicon carbide (SiC) are promising candidate materials for nuclear fuel cladding and are of interest as part of a potential accident tolerant fuel design due to its high temperature strength, dimensional stability under irradiation, corrosion resistance, and lower neutron absorption cross-section. It also offers drastically lower hydrogen generation in loss of coolant accidents such as that experienced at Fukushima. With the implementation of SiC material properties to the fuel performance code, FRAPCON, performances of the SiC-clad fuel are compared with the conventional Zircaloy-clad fuel. Due to negligible creep and high stiffness, SiC-clad fuel allows gap closure at higher burnup and insignificant cladding dimensional change. However, severe degradation of SiC thermal conductivity with neutron irradiation will lead to higher fuel temperature with larger fission gas release. High stiffness of SiC has a drawback of accumulating large interfacial pressure upon pellet-cladding mechanical interactions (PCMI). This large stress will eventually reach the flexural strength of SiC, causing failure of SiC cladding instantly in a brittle manner instead of the graceful failure of ductile metallic cladding. The large interfacial pressure causes phenomena that were previously of only marginal significance and thus ignored (such as creep of the fuel) to now have an important role in PCMI. Consideration of the fuel pellet creep and elastic deformation in PCMI models in FRAPCON provide for an improved understanding of the magnitude of accumulated interfacial pressure. Outward swelling of the pellet is retarded by the inward irradiation-induced creep, which then reduces the rate of interfacial pressure buildup. Effect of PCMI can also be reduced and by increasing gap width and cladding thickness. However, increasing gap width and cladding thickness also increases the overall thermal resistance which leads to higher fuel temperature and larger fission

  11. Advanced ceramic cladding for water reactor fuel

    SciTech Connect

    Feinroth, H.

    2000-07-01

    Under the US Department of Energy's Nuclear Energy Research Initiatives (NERI) program, continuous fiber ceramic composites (CFCCs) are being developed as cladding for water reactor fuel elements. The purpose is to substantially increase the passive safety of water reactors. A development effort was initiated in 1991 to fabricate CFCC-clad tubes using commercially available fibers and a sol-gel process developed by McDermott Technologies. Two small-diameter CFCC tubes were fabricated using pure alumina and alumina-zirconia fibers in an alumina matrix. Densities of {approximately}60% of theoretical were achieved. Higher densities are required to guarantee fission gas containment. This NERI work has just begun, and only preliminary results are presented herein. Should the work prove successful, further development is required to evaluate CFCC cladding and performance, including in-pile tests containing fuel and exploring a marriage of CFCC cladding materials with suitable advanced fuel and core designs. The possibility of much higher temperature core designs, possibly cooled with supercritical water, and achievement of plant efficiencies {ge}50% would be examined.

  12. Insulin pumps.

    PubMed

    Pickup, J

    2010-02-01

    Insulin pump therapy is now more than 30 years old, and is an established part of the routine care of selected people with type 1 diabetes. Nevertheless, there are still significant areas of concern, particularly how pumps compare with modern injection therapy, whether the increasingly sophisticated pump technologies like onboard calculators and facility for computer download offer any real benefit, and whether we have a consensus on the clinical indications. The following papers offer some insight into these and other current questions.

  13. A fused side-pumping optical fiber coupler based on twisting

    NASA Astrophysics Data System (ADS)

    Yi, Bokai; Chang, Xinzu; Zhou, Xuanfeng; Chen, Zilun; Zhao, Guomin

    2014-12-01

    Pumping coupler technology is one of the critical technologies for high power laser and amplifier. Side-pumping technology can couple pumping beam into inner cladding of the double-clad fiber through the side of the fiber. Compared to the end-pumping technology by tapered fused bundle (TFB), it has many superiorities. That the signal fiber was not disconnected guarantees high transmission efficiency, providing the possibility of transmitting a high power signal. Additionally, the pump light is coupled into the double-cladding fiber all along the coupler's body (~5-10 cm long), which reduces the thermal effects caused by leakage of pumping light, resulting in high pump power handling capabilities. For the realization of reliable, rugged and efficient high power fiber amplifiers and fiber laser systems, a novel kind of fused side-pumping coupler based on twisting is developed. The complete simulations were carried out for the process of side-pumping. From detailed information about simulations, we found that the pump efficiencies, one of the vital parameters of pumping coupler, have a significant influence with coupling length, the numerical aperture (NA) and taper ratio of pump fiber. However, the diversification of the parameters drops the high transmission efficiency barely. Optimized the parameters in the simulations, the pump and signal coupling efficiencies are 97.3% and 99.4%, respectively. Based on theoretical analysis, the side-pumping coupler was demonstrated at the pump and signal coupling efficiencies are 91.2% and 98.4%, respectively. This fiber coupler can be implemented in almost any fiber laser or amplifier architecture.

  14. Ferroelectric Pump

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    2000-01-01

    A ferroelectric pump has one or more variable volume pumping chambers internal to a housing. Each chamber has at least one wall comprising a dome shaped internally prestressed ferroelectric actuator having a curvature and a dome height that varies with an electric voltage applied between an inside and outside surface of the actuator. A pumped medium flows into and out of each pumping chamber in response to displacement of the ferroelectric actuator. The ferroelectric actuator is mounted within each wall and isolates each ferroelectric actuator from the pumped medium, supplies a path for voltage to be applied to each ferroelectric actuator, and provides for positive containment of each ferroelectric actuator while allowing displacement of the entirety of each ferroelectric actuator in response to the applied voltage.

  15. Axial Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  16. All-fiber designed narrow line-width 1.55μm double cladding fiber lasers

    NASA Astrophysics Data System (ADS)

    Su, Hongxin; Wu, Zhiyang; Xu, Lijing

    2014-11-01

    To develop 1.55μm high power lasers with compactness, narrow spectral line-width and high wavelength stability suitable for practical applications, EY-DCFLs built in all-fiber configuration are investigated. The experimental setups are composed of Er3+/Yb3+ co-doped double-clad gain fiber, multimode 976nm pump laser diode, double-clad fiber Bragg gratings (FBGs) and (1+1)x1 side pump couplers. FBGs with different reflectivity are applied as output reflectors, and forward-pump scheme and backward-pump scheme are performed respectively. As the efficiency and the spectral stability are considered simultaneously, EY-DCFL with low reflective FBG mirror and in backward-pump manner is more desirable. In the optimized all-fiber EY-DCFL, the maximum output power with an optical-optical efficiency of more than 17% is up to 1.5 W, and the wavelength is defined at 1550.8nm with a line-width about 0.03nm.

  17. Selection of energy optimized pump concepts for multi core and multi mode erbium doped fiber amplifiers.

    PubMed

    Krummrich, Peter M; Akhtari, Simon

    2014-12-01

    The selection of an appropriate pump concept has a major impact on amplifier cost and power consumption. The energy efficiency of different pump concepts is compared for multi core and multi mode active fibers. In preamplifier stages, pump power density requirements derived from full C-band low noise WDM operation result in superior energy efficiency of direct pumping of individual cores in a multi core fiber with single mode pump lasers compared to cladding pumping with uncooled multi mode lasers. Even better energy efficiency is achieved by direct pumping of the core in multi mode active fibers. Complexity of pump signal combiners for direct pumping of multi core fibers can be reduced by deploying integrated components.

  18. Investigation of semiconductor clad optical waveguides

    NASA Technical Reports Server (NTRS)

    Batchman, T. E.; Carson, R. F.

    1985-01-01

    A variety of techniques have been proposed for fabricating integrated optical devices using semiconductors, lithium niobate, and glasses as waveguides and substrates. The use of glass waveguides and their interaction with thin semiconductor cladding layers was studied. Though the interactions of these multilayer waveguide structures have been analyzed here using glass, they may be applicable to other types of materials as well. The primary reason for using glass is that it provides a simple, inexpensive way to construct waveguides and devices.

  19. PWR cores with silicon carbide cladding

    SciTech Connect

    Dobisesky, J. P.; Carpenter, D.; Pilat, E.; Kazimi, M. S.

    2012-07-01

    The feasibility of using silicon carbide rather than Zircaloy cladding, to reach higher power levels and higher discharge burnups in PWRs has been evaluated. A preliminary fuel design using fuel rods with the same dimensions as in the Westinghouse Robust Fuel Assembly but with fuel pellets having 10 vol% central void has been adopted to mitigate the higher fuel temperatures that occur due to the lower thermal conductivity of the silicon carbide and to the persistence of the open clad-pellet gap over most of the fuel life. With this modified fuel design, it is possible to achieve 18 month cycles that meet present-day operating constraints on peaking factor, boron concentration, reactivity coefficients and shutdown margin, while allowing batch average discharge burnups up to 80 MWD/kgU and peak rod burnups up to 100 MWD/kgU. Power uprates of 10% and possibly 20% also appear feasible. For non-uprated cores, the silicon carbide-clad fuel has a clear advantage that increases with increasing discharge burnup. Even for comparable discharge burnups, there is a savings in enriched uranium. Control rod configuration modifications may be required to meet the shutdown margin criterion for the 20% up-rate. Silicon carbide's ability to sustain higher burnups than Zircaloy also allows the design of a licensable two year cycle with only 96 fresh assemblies, avoiding the enriched uranium penalty incurred with use of larger batch sizes due to their excessive leakage. (authors)

  20. Submersible pump

    SciTech Connect

    Todd, D. B.

    1985-08-27

    A method and apparatus for using a submersible pump to lift reservoir fluids in a well while having the tubing/casing annulus isolated from the produced fluids. The apparatus allows the submersible pump to be positioned above the annular packoff device. The apparatus comprises an outer shield that encloses the pump and can be attached to the production tubing. The lower end of the shield attaches to a short tubing section that seals with the annular packoff device or a receptacle above the annular packoff device.

  1. Generation of stable high order harmonic noise-like pulses in a passively mode-locked double clad fiber ring laser

    NASA Astrophysics Data System (ADS)

    Hernandez-Garcia, J. C.; Pottiez, O.; Ibarra-Escamilla, B.; Estudillo-Ayala, J. M.; Rojas-Laguna, R.; Kuzin, E.; Muñoz-Lopez, A.; Filoteo-Razo, J. D.

    2015-03-01

    We study a passively mode-locked double-clad Erbium-Ytterbium fiber ring laser producing noise-like pulse through nonlinear polarization evolution and polarization selection. Single noise-like pulsing is only observed at moderate pump power. As pump power is increased, and through polarization controllers adjustments, harmonic mode-locking of growing order were successively appearing. For pump powers close to the damage threshold of the setup, we reach harmonic orders beyond 1200 and repetition frequencies in excess of a quarter of a GHz. Finally, these experimental results could be useful in the quest for higher pulse energies and higher repetition rates in passively mode-locked fiber lasers.

  2. Electrically heated ex-reactor pellet-cladding interaction (PCI) simulations utilizing irradiated Zircaloy cladding. [PWR

    SciTech Connect

    Barner, J.O.; Fitzsimmons, D.E.

    1985-02-01

    In a program sponsored by the Fuel Systems Research Branch of the US Nuclear Regulatory Commission, a series of six electrically heated fuel rod simulation tests were conducted at Pacific Northwest Laboratory. The primary objective of these tests was to determine the susceptibility of irradiated pressurized-water reactor (PWR) Zircaloy-4 cladding to failures caused by pellet-cladding mechanical interaction (PCMI). A secondary objective was to acquire kinetic data (e.g., ridge growth or relaxation rates) that might be helpful in the interpretation of in-reactor performance results and/or the modeling of PCMI. No cladding failures attributable to PCMI occurred during the six tests. This report describes the testing methods, testing apparatus, fuel rod diametral strain-measuring device, and test matrix. Test results are presented and discussed.

  3. Microstructure and Mechanical Properties of Laser Clad and Post-cladding Tempered AISI H13 Tool Steel

    NASA Astrophysics Data System (ADS)

    Telasang, Gururaj; Dutta Majumdar, Jyotsna; Wasekar, Nitin; Padmanabham, G.; Manna, Indranil

    2015-05-01

    This study reports a detailed investigation of the microstructure and mechanical properties (wear resistance and tensile strength) of hardened and tempered AISI H13 tool steel substrate following laser cladding with AISI H13 tool steel powder in as-clad and after post-cladding conventional bulk isothermal tempering [at 823 K (550 °C) for 2 hours] heat treatment. Laser cladding was carried out on AISI H13 tool steel substrate using a 6 kW continuous wave diode laser coupled with fiber delivering an energy density of 133 J/mm2 and equipped with a co-axial powder feeding nozzle capable of feeding powder at the rate of 13.3 × 10-3 g/mm2. Laser clad zone comprises martensite, retained austenite, and carbides, and measures an average hardness of 600 to 650 VHN. Subsequent isothermal tempering converted the microstructure into one with tempered martensite and uniform dispersion of carbides with a hardness of 550 to 650 VHN. Interestingly, laser cladding introduced residual compressive stress of 670 ± 15 MPa, which reduces to 580 ± 20 MPa following isothermal tempering. Micro-tensile testing with specimens machined from the clad zone across or transverse to cladding direction showed high strength but failure in brittle mode. On the other hand, similar testing with samples sectioned from the clad zone parallel or longitudinal to the direction of laser cladding prior to and after post-cladding tempering recorded lower strength but ductile failure with 4.7 and 8 pct elongation, respectively. Wear resistance of the laser surface clad and post-cladding tempered samples (evaluated by fretting wear testing) registered superior performance as compared to that of conventional hardened and tempered AISI H13 tool steel.

  4. ION PUMP

    DOEpatents

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  5. Electrokinetic pump

    DOEpatents

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  6. Anisotropic Properties of Stainless Steel—Clad Aluminum Sheet

    NASA Astrophysics Data System (ADS)

    Kim, Daeyong; Hwang, Bum Kyu; Lee, Young Seon; Kim, Ji Hoon; Kim, Min-Joong

    2010-06-01

    The production of a stainless steel—clad aluminum sheet by the cold rolling process is a more efficient and economical approach compared with the other types of processes utilized for the production of such sheets. Because both the stainless steel and aluminum sheets show the highly anisotropic behavior, it is necessary to investigate anisotropic properties of clad sheets for the design of process. In this paper, to investigate the anisotropic properties of stainless steel—clad aluminum sheet, two kinds of clad sheets were considered: STS439/AA3003 and STS439/AA1050/STS304 clad sheets. The uni-axial tension tests at 0, 45 and 90 degrees for the rolling direction were performed to obtained yield stresses and R values. The strain ratio at balanced biaxial tension state was measured from compression disk test. In order to describe the anisotropic behavior of the clad sheet, nonquadratic anisotropic yield function Yld2000-2d was utilized.

  7. Transversely polarized source cladding for an optical fiber

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)

    1994-01-01

    An optical fiber comprising a fiber core having a longitudinal symmetry axis is provided. An active cladding surrounds a portion of the fiber core and comprises light-producing sources which emit light in response to chemical or light excitation. The cladding sources are oriented transversely with respect to the longitudinal axis of the fiber core. This polarization results in a superior power efficiency compared to active cladding sources that are randomly polarized or longitudinally polarized parallel with the longitudinal symmetry axis.

  8. Clad fiber capacitor and method of making same

    DOEpatents

    Tuncer, Enis

    2013-11-26

    A clad capacitor and method of manufacture includes assembling a preform comprising a ductile, electrically conductive fiber; a ductile, electrically insulating cladding positioned on the fiber; a ductile, electrically conductive sleeve positioned over the cladding. One or more of the preforms are then bundled, heated and drawn along a longitudinal axis to decrease the diameter of the ductile components of the preform and fuse the preform into a unitized strand.

  9. Clad fiber capacitor and method of making same

    DOEpatents

    Tuncer, Enis

    2012-12-11

    A clad capacitor and method of manufacture includes assembling a preform comprising a ductile, electrically conductive fiber; a ductile, electrically insulating cladding positioned on the fiber; and a ductile, electrically conductive sleeve positioned over the cladding. One or more preforms are then bundled, heated and drawn along a longitudinal axis to decrease the diameter of the ductile components of the preform and fuse the preform into a unitized strand.

  10. Development and characterisations of WC–12Co microwave clad

    SciTech Connect

    Zafar, Sunny Sharma, Apurbba Kumar

    2014-10-15

    In the present work, WC–12Co based cermet clad was developed on AISI 304 stainless steel using microwave hybrid heating technique. The experimental trials were carried out in a 1.4 kW industrial multimode microwave applicator. The paper explains the major events occurring during microwave irradiation and formation of clad. The developed clads were subsequently characterised through field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy, X-ray diffraction, assessment of porosity and microhardness. The WC–12Co clads developed with an approximate thickness of 1 mm, illustrated excellent metallurgical bonding with substrate. The microstructure of the WC–12Co clad mainly consists of skeleton structured carbides embedded in tough metallic phase. The phase analysis of the developed clads indicate the presence of various stable and complex carbides like Co{sub 6}W{sub 6}C, Co{sub 3}W{sub 3}C and Fe{sub 6}W{sub 6}C. The uniform distribution of such carbides with skeleton-like morphology in the microstructure is indicative of high hardness of the clad. The developed clads were free from visible interfacial cracking and the clad porosity was found in the order of approximately 0.98%. The average microhardness of the WC–12Co microwave clads was observed to be 1135 ± 88 HV. - Highlights: • Microwave cladding of WC–12Co on AISI 304 stainless steel is carried out. • Skeleton-like structures of W–Co based carbides are embedded in metallic matrix. • Clad–substrate interface is free from un-melted and un-dissolved carbide particles. • Hardness of clad (1135 ± 88 HV) is 3.5 times that of the substrate (325 ± 49 HV)

  11. Microstructural Characterization of Cermet Cladding Developed Through Microwave Irradiation

    NASA Astrophysics Data System (ADS)

    Gupta, Dheeraj; Sharma, Apurbba Kumar

    2012-10-01

    In the present work, cladding of hardfacing WC10Co2Ni powder on austenitic stainless steel has been developed through a novel processing technique. The clads were developed using microwave hybrid heating. The clad of average thickness ~2 mm has been developed through the exposure of microwave radiation at frequency 2.45 GHz and power 900 W for the duration of 360 s. The developed clads were characterized using field emission scanning electron microscope, X-ray elemental analysis, X-ray diffraction, and measurement of Vicker's microhardness. The microstructure study of the clad showed good metallurgical bonding with substrate and revealed that clads are free from any visible interface cracking. Clads were formed with partial dilution of a thin layer of the substrate. The cermet microstructure mainly consists of relatively soft metallic matrix phase and uniformly distributed hard carbide phase with skeleton-like structure. The developed clads exhibit an average microhardness of 1064 ± 99 Hv. The porosity of developed clad has been significantly less at approximately 0.89%.

  12. An acoustic vibration sensor based on tapered triple cladding fiber

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Pang, Fufei; Zhao, Shiqi; Chen, Zhenyi; Wang, Tingyun

    2014-05-01

    An acoustic vibration sensor is investigated and demonstrated by using a tapered triple cladding fiber (TCF). It is fabricated by tapering a length of 2 cm TCF which is spliced between two single mode fibers (SMF). The TCF consists of core, inner cladding, middle cladding and outer cladding. After the tapering process, this structure becomes a tapered coaxial fiber coupler which presents a periodic filtering transmission spectrum. The surrounding vibration perturbation can be directly demodulated by intensity detection of the transmission power at a particular wavelength. The experimental result shows that the maximum frequency response of 700 kHz is achieved.

  13. Hollow core anti-resonant fibres with split cladding

    NASA Astrophysics Data System (ADS)

    Huang, Xiaosheng; Qi, Wenliang; Ho, Daryl; Luan, Feng; Yong, Ken-Tye; Yoo, Seongwoo

    2016-03-01

    A split cladding fibers (SCF) is proposed as an additional design to the anti-resonant type fiber. The introduced split cladding helps to reduce the fabrication distortion. We use numerical simulations to compare the Kagome fibers (KFs) and the proposed split cladding fibers (SCFs) over two normalized transmission bands. It reveals that SCFs are able to maintain the desired round shape of silica cladding walls, hence improving the confinement loss (CL) compared to the KF. Fabrication of the SCF is demonstrated by the stack-and-draw technique. The near filed mode patterns are measured to prove the feasibility of this fiber design.

  14. Electroslag Strip Cladding of Steam Generators With Alloy 690

    SciTech Connect

    Consonni, M.; Maggioni, F.; Brioschi, F.

    2006-07-01

    The present paper details the results of electroslag cladding and tube-to-tubesheet welding qualification tests conducted by Ansaldo-Camozzi ESC with Alloy 690 (Alloy 52 filler metal) on steel for nuclear power stations' steam generators shell, tubesheet and head; the possibility of submerged arc cladding on first layer was also considered. Test results, in terms of chemical analysis, mechanical properties and microstructure are reproducible and confidently applicable to production cladding and show that electroslag process can be used for Alloy 52 cladding with exceptionally stable and regular operation and high productivity. The application of submerged arc cladding process to the first layer leads to a higher base metal dilution, which should be avoided. Moreover, though the heat affected zone is deeper with electroslag cladding, in both cases no coarsened grain zone is found due to recrystallization effect of second cladding layer. Finally, the application of electroslag process to cladding of Alloy 52 with modified chemical composition, was proved to be highly beneficial as it strongly reduces hot cracking sensitivity, which is typical of submerged arc cladded Alloy 52, both during tube-to-tubesheet welding and first re-welding. (authors)

  15. Nuclear reactor fuel element with vanadium getter on cladding

    DOEpatents

    Johnson, Carl E.; Carroll, Kenneth G.

    1977-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of vanadium as an oxygen getter on the inner surface of the cladding. The vanadium reacts with oxygen released by the fissionable material during irradiation of the core to prevent the oxygen from reacting with and corroding the cladding. Also described is a method for coating the inner surface of small diameter tubes of cladding with a layer of vanadium.

  16. DECONTAMINATION OF ZIRCALOY SPENT FUEL CLADDING HULLS

    SciTech Connect

    Rudisill, T; John Mickalonis, J

    2006-09-27

    The reprocessing of commercial spent nuclear fuel (SNF) generates a Zircaloy cladding hull waste which requires disposal as a high level waste in the geologic repository. The hulls are primarily contaminated with fission products and actinides from the fuel. During fuel irradiation, these contaminants are deposited in a thin layer of zirconium oxide (ZrO{sub 2}) which forms on the cladding surface at the elevated temperatures present in a nuclear reactor. Therefore, if the hulls are treated to remove the ZrO{sub 2} layer, a majority of the contamination will be removed and the hulls could potentially meet acceptance criteria for disposal as a low level waste (LLW). Discard of the hulls as a LLW would result in significant savings due to the high costs associated with geologic disposal. To assess the feasibility of decontaminating spent fuel cladding hulls, two treatment processes developed for dissolving fuels containing zirconium (Zr) metal or alloys were evaluated. Small-scale dissolution experiments were performed using the ZIRFLEX process which employs a boiling ammonium fluoride (NH{sub 4}F)/ammonium nitrate (NH{sub 4}NO{sub 3}) solution to dissolve Zr or Zircaloy cladding and a hydrofluoric acid (HF) process developed for complete dissolution of Zr-containing fuels. The feasibility experiments were performed using Zircaloy-4 metal coupons which were electrochemically oxidized to produce a thin ZrO{sub 2} layer on the surface. Once the oxide layer was in place, the ease of removing the layer using methods based on the two processes was evaluated. The ZIRFLEX and HF dissolution processes were both successful in removing a 0.2 mm (thick) oxide layer from Zircaloy-4 coupons. Although the ZIRFLEX process was effective in removing the oxide layer, two potential shortcomings were identified. The formation of ammonium hexafluorozirconate ((NH{sub 4}){sub 2}ZrF{sub 6}) on the metal surface prior to dissolution in the bulk solution could hinder the decontamination

  17. Photonic lantern with cladding-removable fibers

    NASA Astrophysics Data System (ADS)

    Sun, Weimin; Yan, Qi; Bi, Yao; Yu, Haijiao; Liu, Xiaoqi; Xue, Jiuling; Tian, He; Liu, Yongjun

    2014-07-01

    Recently, spectral measurement becomes an important tool in astronomy to find exoplanets etc. The fibers are used to transfer light from the focal plate to spectrometers. To get high-resolution spectrum, the input slits of the spectrometers should be as narrow as possible. In opposite, the light spots from the fibers are circle, which diameters are clearly wider than the width of the spectrometer slits. To reduce the energy loss of the fiber-guide star light, many kinds of image slicers were designed and fabricated to transform light spot from circle to linear. Some different setup of fiber slicers are introduced by different research groups around the world. The photonic lanterns are candidates of fiber slicers. Photonic lantern includes three parts: inserted fibers, preform or tubing, taped part of the preform or tubing. Usually the optical fields concentrate in the former-core area, so the light spots are not uniform from the tapered end of the lantern. We designed, fabricated and tested a special kind of photonic lantern. The special fibers consist polymer cladding and doped high-index core. The polymer cladding could be easily removed using acetone bath, while the fiber core remains in good condition. We inserted the pure high-index cores into a pure silica tubing and tapered it. During the tapering process, the gaps between the inserted fibers disappeared. Finally we can get a uniform tapered multimode fiber end. The simulation results show that the longer the taper is, the lower the loss is. The shape of the taper should be controlled carefully. A large-zone moving-flame taper machine was fabricated to make the special photonic lantern. Three samples of photonic lanterns were fabricated and tested. The lanterns with cladding-removable fibers guide light uniform in the tapered ends that means these lanterns could collect more light from those ends.

  18. Zircaloy cladding degradation under repository conditions

    SciTech Connect

    Santanam, L.; Raghavan, S.; Chin, B.A.; Shaw, H.

    1990-12-01

    Creep, a potential degradation mechanism of Zircaloy cladding after repository disposal of spent nuclear fuel, has been investigated. The deformation and fracture map methodology has been used to predict maximum allowable initial storage temperatures to achieve a thousand year life without rupture as a function of spent-fuel history. Maximum allowable temperatures are 340{degree}C (613 K) for typically stressed rods (70--100 MPa) and 300{degree}C (573 K) for highly stressed rods (140--160 MPa). 10 refs., 2 figs.

  19. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  20. Electrokinetic pump

    DOEpatents

    Hencken, Kenneth R.; Sartor, George B.

    2004-08-03

    An electrokinetic pump in which the porous dielectric medium of conventional electrokinetic pumps is replaced by a patterned microstructure. The patterned microstructure is fabricated by lithographic patterning and etching of a substrate and is formed by features arranged so as to create an array of microchannels. The microchannels have dimensions on the order of the pore spacing in a conventional porous dielectric medium. Embedded unitary electrodes are vapor deposited on either end of the channel structure to provide the electric field necessary for electroosmotic flow.

  1. Electrically pumped edge-emitting photonic bandgap semiconductor laser

    DOEpatents

    Lin, Shawn-Yu; Zubrzycki, Walter J.

    2004-01-06

    A highly efficient, electrically pumped edge-emitting semiconductor laser based on a one- or two-dimensional photonic bandgap (PBG) structure is described. The laser optical cavity is formed using a pair of PBG mirrors operating in the photonic band gap regime. Transverse confinement is achieved by surrounding an active semiconductor layer of high refractive index with lower-index cladding layers. The cladding layers can be electrically insulating in the passive PBG mirror and waveguide regions with a small conducting aperture for efficient channeling of the injection pump current into the active region. The active layer can comprise a quantum well structure. The quantum well structure can be relaxed in the passive regions to provide efficient extraction of laser light from the active region.

  2. [Research on spectral characteristics of Yb3+ doped double-cladding large-mode-area micro-structured optical fiber].

    PubMed

    Liu, Zhuo-Qun; Zhou, Gui-Yao; Xia, Chang-Ming; Hou, Lan-Tian

    2011-09-01

    Yb3+ doped double-cladding large-mode-area micro-structured optical fibers (Micro-structured fibers, MSF) are the ideal medium for the super high-power optical fiber laser applications. In the present paper, the authors fabricated the Yb3+ doped silica-based glass using the method of non-chemical vapor deposition, and fabricated the Yb3+ doped double-cladding large-mode-area MSF by stack-drawing method using this glass as the core of MSF, according to the design requirements. Fluorescence spectrum of the MSF was obtained using Ti: sapphire femtosecond laser with the wavelength of 975 nm and LD laser with the wavelength of 980 nm as pumping source. The experimental results show that the optical fiber has strong fluorescence at the wavelength of 1 050 nm, and it can inhibit generation of cooperative luminescence effectively.

  3. Achieving Inclusion through CLAD: Collaborative Learning Assessment through Dialogue

    ERIC Educational Resources Information Center

    Fitch, E. Frank; Hulgin, Kathleen M.

    2008-01-01

    This study measures the effectiveness of Collaborative Learning Assessment through Dialogue (CLAD) on reading achievement in inclusive classrooms in the USA. The CLAD process involved students collaboratively completing multiple-choice quizzes, using dialogue and critical thinking to reach consensus and receiving immediate feedback on their…

  4. Metal clad aramid fibers for aerospace wire and cable

    NASA Technical Reports Server (NTRS)

    Tokarsky, Edward W.; Dunham, Michael G.; Hunt, James E.; Santoleri, E. David; Allen, David B.

    1995-01-01

    High strength light weight metal clad aramid fibers can provide significant weight savings when used to replace conventional metal wire in aerospace cable. An overview of metal clad aramid fiber materials and information on performance and use in braided electrical shielding and signal conductors is provided.

  5. Image processing applied to laser cladding process

    SciTech Connect

    Meriaudeau, F.; Truchetet, F.

    1996-12-31

    The laser cladding process, which consists of adding a melt powder to a substrate in order to improve or change the behavior of the material against corrosion, fatigue and so on, involves a lot of parameters. In order to perform good tracks some parameters need to be controlled during the process. The authors present here a low cost performance system using two CCD matrix cameras. One camera provides surface temperature measurements while the other gives information relative to the powder distribution or geometric characteristics of the tracks. The surface temperature (thanks to Beer Lambert`s law) enables one to detect variations in the mass feed rate. Using such a system the authors are able to detect fluctuation of 2 to 3g/min in the mass flow rate. The other camera gives them information related to the powder distribution, a simple algorithm applied to the data acquired from the CCD matrix camera allows them to see very weak fluctuations within both gaz flux (carriage or protection gaz). During the process, this camera is also used to perform geometric measurements. The height and the width of the track are obtained in real time and enable the operator to find information related to the process parameters such as the speed processing, the mass flow rate. The authors display the result provided by their system in order to enhance the efficiency of the laser cladding process. The conclusion is dedicated to a summary of the presented works and the expectations for the future.

  6. Material Selection for Accident Tolerant Fuel Cladding

    NASA Astrophysics Data System (ADS)

    Pint, B. A.; Terrani, K. A.; Yamamoto, Y.; Snead, L. L.

    2015-09-01

    Alternative cladding materials to Zr-based alloys are being investigated for accident tolerance, which can be defined as >100X improvement (compared to Zr-based alloys) in oxidation resistance to steam or steam-H2 environments at ≥1473 K (1200 °C) for short times. After reviewing a wide range of candidates, current steam oxidation testing is being conducted on Mo, MAX phases, and FeCrAl alloys. Recently reported low-mass losses for Mo in steam at 1073 K (800 °C) could not be reproduced. Both FeCrAl and MAX phase Ti2AlC form a protective alumina scale in steam. However, commercial Ti2AlC that was not single phase, formed a much thicker oxide at 1473 K (1200 °C) in steam and significant TiO2, and therefore, Ti2AlC may be challenging to form as a cladding or a coating. Alloy development for FeCrAl is seeking to maintain its steam oxidation resistance to 1748 K (1475 °C), while reducing its Cr content to minimize susceptibility to irradiation-assisted α' formation. The composition effects and critical limits to retaining protective scale formation at >1673 K (1400 °C) are still being evaluated.

  7. Material selection for accident tolerant fuel cladding

    DOE PAGESBeta

    Pint, B. A.; Terrani, K. A.; Yamamoto, Y.; Snead, L. L.

    2015-09-14

    Alternative cladding materials are being investigated for accident tolerance, which can be defined as >100X improvement (compared to current Zr-based alloys) in oxidation resistance in steam environments at ≥1200°C for short (≤4 h) times. After reviewing a wide range of candidates, current steam oxidation testing is being conducted on Mo, MAX phases and FeCrAl alloys. Recently reported low mass losses for Mo in steam at 800°C could not be reproduced. Both FeCrAl and MAX phase Ti2AlC form a protective alumina scale in steam. Therefore, commercial Ti2AlC that is not single phase, formed a much thicker oxide at 1200°C in steammore » and significant TiO2, and therefore may be challenging to use as a cladding or a coating. Alloy development for FeCrAl is seeking to maintain its steam oxidation resistance to 1475°C, while reducing its Cr content to minimize susceptibility to irradiation assisted Cr-rich α’ formation. The composition effects and critical limits to retaining protective scale formation at >1400°C are still being evaluated.« less

  8. Material selection for accident tolerant fuel cladding

    SciTech Connect

    Pint, B. A.; Terrani, K. A.; Yamamoto, Y.; Snead, L. L.

    2015-09-14

    Alternative cladding materials are being investigated for accident tolerance, which can be defined as >100X improvement (compared to current Zr-based alloys) in oxidation resistance in steam environments at ≥1200°C for short (≤4 h) times. After reviewing a wide range of candidates, current steam oxidation testing is being conducted on Mo, MAX phases and FeCrAl alloys. Recently reported low mass losses for Mo in steam at 800°C could not be reproduced. Both FeCrAl and MAX phase Ti2AlC form a protective alumina scale in steam. Therefore, commercial Ti2AlC that is not single phase, formed a much thicker oxide at 1200°C in steam and significant TiO2, and therefore may be challenging to use as a cladding or a coating. Alloy development for FeCrAl is seeking to maintain its steam oxidation resistance to 1475°C, while reducing its Cr content to minimize susceptibility to irradiation assisted Cr-rich α’ formation. The composition effects and critical limits to retaining protective scale formation at >1400°C are still being evaluated.

  9. Material Selection for Accident Tolerant Fuel Cladding

    SciTech Connect

    Pint, Bruce A.; Terrani, Kurt A.; Yamamoto, Yukinori; Snead, Lance Lewis

    2015-01-01

    Alternative cladding materials to Zr-based alloys are being investigated for accident tolerance, which can be defined as > 100X improvement (compared to Zr-based alloys) in oxidation resistance to steam or steam-H2 environments at ≥ 1200°C for short times. After reviewing a wide range of candidates, current steam oxidation testing is being conducted on Mo, MAX phases and FeCrAl alloys. Recently reported low mass losses for Mo in steam at 800°C could not be reproduced. Both FeCrAl and MAX phase Ti2AlC form a protective alumina scale in steam. However, commercial Ti2AlC that was not single phase, formed a much thicker oxide at 1200°C in steam and significant TiO2, and therefore Ti2AlC may be challenging to form as a cladding or a coating. Alloy development for FeCrAl is seeking to maintain its steam oxidation resistance to 1475°C, while reducing its Cr content to minimize susceptibility to irradiation-assisted α´ formation. The composition effects and critical limits to retaining protective scale formation at > 1400°C are still being evaluated.

  10. Laboratory and field evaluations of clad Christmas tree equipment

    SciTech Connect

    Sisak, W.J. ); Gordon, J.R. )

    1991-02-01

    In this paper a methodology is presented for evaluating the corrosion resistance of clad equipment in sour environments. This paper describes the laboratory and field test programs used to evaluate the suitability for sour service of gate valves clad with Alloy UNS NO6625 by weld overlay and by hot, isostatic pressing (HIP). The laboratory tests used to evaluate corrosion and cracking resistance of the clads are reviewed. Experience with actual field installations of both types of clad valves is presented, and the test/inspection methods used to evaluate the equipment during and after the service period are discussed. Finally, laboratory and field results are compared to highlight key findings related to the clad valve bodies and to the trim components.

  11. Pump jack

    SciTech Connect

    Stanton, G. E.

    1985-02-26

    A pump jack of the type comprising a rocker arm pivotably mounted intermediate its ends on a support member, said rocker arm being divided by said pivot mounting into a sucker-rod limb and a drive limb wherein the improvement comprises a pneumatic motor pivotably attached to the drive support member and further pivotably attached to the mounting base of the pump jack to provide the power to reciprocate the pump jack. The working fluid of said pneumatic motor being natural gas which is available from the well casing of the well without any interference with the flow of the oil in the oil tube of the well thereby making use of an energy source available at any oil well without having to provide gasoline to drive a rotating type gasoline engine or electricity to drive an electric motor usually of the rotating variety. Also the stroke of a pneumatic cylinder inherently smooths out and eliminates the shock loading at the extremes of motion at the piston mounted to the sucker rods of such pump jack at the bottom of the well.

  12. 10W ASE-free single-mode high-power double-cladding Er 3+-Yb 3+ amplifier

    NASA Astrophysics Data System (ADS)

    Morasse, Bertrand; Agger, Søren; Hovington, Carl; Chatigny, Stéphane; Gagnon, Éric; de Sandro, Jean-Philippe; Poulsen, Christian

    2007-02-01

    We designed a high output power double cladding erbium-ytterbium fibre amplifier that showed no amplified spontaneous emission (ASE) at 1.0 μm using a quasi singlemode fibre. The reduction of the amplified stimulated emission (ASE) at 1.0 μm was found to be the combination of fibre design and temperature effect in the core. A 10W output double cladding Er-Yb amplifier with a core/cladding fibre diameter of 10/125 μm was realized with a seed signal of 1.4 W at 1563 nm and with counter-propagating pump power of 35 W at 976 nm without any significant ASE generation at 1.0 μm. The fibre also exhibits singlemode behaviour with M2 <1.1 and a high slope efficiency of 30%. The fibre was designed to minimize ASE at 1.0 μm by heavily doping the fibre and using the appropriate ratio between Yb 3+ and Er 3+ ions. By incorporating into our model the core temperature increase coming from the quantum defect of the Er-Yb system, we can also predict a raise in the absorption cross-section of the ytterbium ions around 1060 nm yielding to an increase of the 1 μm ASE threshold from 14 W to 35 W pump power, which allowed us to reach a 10 W output power at 1563 nm instead of 5 W normally predicted by the theory. These results show potential power scaling of the output power or double cladding erbium ytterbium amplifier using quasi singlemode core erbium ytterbium fibre avoiding the need of large core dimension that degrades the beam quality.

  13. Cladding embrittlement during postulated loss-of-coolant accidents.

    SciTech Connect

    Billone, M.; Yan, Y.; Burtseva, T.; Daum, R.; Nuclear Engineering Division

    2008-07-31

    The effect of fuel burnup on the embrittlement of various cladding alloys was examined with laboratory tests conducted under conditions relevant to loss-of-coolant accidents (LOCAs). The cladding materials tested were Zircaloy-4, Zircaloy-2, ZIRLO, M5, and E110. Tests were performed with specimens sectioned from as-fabricated cladding, from prehydrided (surrogate for high-burnup) cladding, and from high-burnup fuel rods which had been irradiated in commercial reactors. The tests were designed to determine for each cladding material the ductile-to-brittle transition as a function of steam oxidation temperature, weight gain due to oxidation, hydrogen content, pre-transient cladding thickness, and pre-transient corrosion-layer thickness. For short, defueled cladding specimens oxidized at 1000-1200 C, ring compression tests were performed to determine post-quench ductility at {le} 135 C. The effect of breakaway oxidation on embrittlement was also examined for short specimens oxidized at 800-1000 C. Among other findings, embrittlement was found to be sensitive to fabrication processes--especially surface finish--but insensitive to alloy constituents for these dilute zirconium alloys used as cladding materials. It was also demonstrated that burnup effects on embrittlement are largely due to hydrogen that is absorbed in the cladding during normal operation. Some tests were also performed with longer, fueled-and-pressurized cladding segments subjected to LOCA-relevant heating and cooling rates. Recommendations are given for types of tests that would identify LOCA conditions under which embrittlement would occur.

  14. 18. Electrically driven pumps in Armory Street Pump House. Pumps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Electrically driven pumps in Armory Street Pump House. Pumps in background formerly drew water from the clear well. They went out of service when use of the beds was discontinued. Pumps in the foreground provide high pressure water to Hamden. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  15. Cladding material, tube including such cladding material and methods of forming the same

    DOEpatents

    Garnier, John E.; Griffith, George W.

    2016-03-01

    A multi-layered cladding material including a ceramic matrix composite and a metallic material, and a tube formed from the cladding material. The metallic material forms an inner liner of the tube and enables hermetic sealing of thereof. The metallic material at ends of the tube may be exposed and have an increased thickness enabling end cap welding. The metallic material may, optionally, be formed to infiltrate voids in the ceramic matrix composite, the ceramic matrix composite encapsulated by the metallic material. The ceramic matrix composite includes a fiber reinforcement and provides increased mechanical strength, stiffness, thermal shock resistance and high temperature load capacity to the metallic material of the inner liner. The tube may be used as a containment vessel for nuclear fuel used in a nuclear power plant or other reactor. Methods for forming the tube comprising the ceramic matrix composite and the metallic material are also disclosed.

  16. Weld overlay cladding with iron aluminides

    SciTech Connect

    Goodwin, G.M.

    1995-08-01

    The hot and cold cracking tendencies of some early iron aluminide alloy compositions have limited their use in applications where good weldability is required. Using hot crack testing techniques invented at ORNL, and experimental determinations of preheat and postweld heat treatment needed to avoid cold cracking, we have developed iron aluminide filler metal compositions which can be successfully used to weld overlay clad various substrate materials, including 9Cr-1Mo steel, 2-1/4Cr-1Mo steel, and 300-series austenitic stainless steels. Dilution must be carefully controlled to avoid crack-sensitive deposit compositions. The technique used to produce the current filler metal compositions is aspiration-casting, i.e. drawing the liquid from the melt into glass rods. Future development efforts will involve fabrication of composite wires of similar compositions to permit mechanized gas tungsten arc (GTA) and/or gas metal arc (GMA) welding.

  17. Femtosecond writing of depressed cladding waveguides in strongly cumulative regime

    NASA Astrophysics Data System (ADS)

    Bukharin, Mikhail A.; Khudyakov, Dmitriy V.; Vartapetov, Sergey K.

    2015-05-01

    We proposed a novel approach for direct femtosecond inscription of waveguides. It consisted in formation of cladding with reduced refractive index in fused silica. Depressed cladding was based on peripheral regions of individually written neighbored tracks, which should be inscribed in strongly cumulative regime. It was shown, that due to shot time interval between femtosecond laser pulses and relatively slow thermal diffusion, the exposed focal region surrounds by significantly wide cladding with reduced refracted index. Based on proposed approach we demonstrated depressed cladding waveguide inscription in fused silica using emission directly from commercially available femtosecond oscillator without correcting optical systems and second harmonic generation. It was shown, that the new approach provides formation of easily adjustable single mode waveguides with desired mode field diameter. Such depressed cladding waveguides exploit both advantages of fused silica material and depressed cladding geometry. We also verified our suggestion by experiment and inscribed depressed cladding waveguides with two different mode field diameters at similar femtosecond pulse characteristics. The obtained structures provided low propagation losses and good coupling with Gaussian mode. The waveguides supported propagation of both polarizations with nearly identical characteristics. Obtained experimental results were in good agreement with numerical simulation.

  18. Hollow core anti-resonant fiber with split cladding.

    PubMed

    Huang, Xiaosheng; Qi, Wenliang; Ho, Daryl; Yong, Ken-Tye; Luan, Feng; Yoo, Seongwoo

    2016-04-01

    An improved design for hollow core anti-resonant fibers (HAFs) is presented. A split cladding structure is introduced to reduce the fabrication distortion within design tolerance. We use numerical simulations to compare the Kagome fibers (KFs) and the proposed split cladding fibers (SCFs) over two normalized transmission bands. It reveals that SCFs are able to maintain the desired round shape of silica cladding walls, hence improving the confinement loss (CL) compared to the KF and is comparable to that of the nested antiresonant nodeless fiber (NANF) with the same core size. In addition, the SCF allows stacking multiple layers of cladding rings to control the CL. The influences of the number of cladding layers and the cladding gap width on the CL of the SCFs have been studied. SCF with three cladding rings is fabricated by the stack-and-draw technique. A measured attenuation spectrum matches well with the calculation prediction. The measured near field mode patterns also prove the feasibility of our fiber design.

  19. Reliability of hard plastic clad silica fibers

    NASA Astrophysics Data System (ADS)

    Skutnik, Bolesh J.; Spaniol, Stefan

    2006-04-01

    New formulations of cladding materials have become available in recent times for Hard Plastic Clad Silica (HPCS) fibers, Initial data showed gains in some properties, particularly dynamic strength, especially for high numerical aperture (NA) fibers. A systematic study has been undertaken to determine the full strength and fatigue behavior of these HPCS fibers and to make comparisons to earlier HPCS fibers. Preliminary results, now confirmed, has shown improved median dynamic strength and higher Weibull slope. Full results are presented below including fatigue behavior and optical properties. These fibers have many applications and benefits in the high power delivery and medical laser uses as highlighted below. High power diode laser systems with their laser diode bars and arrays not only require special fibers to couple directly to the diode emitters, but also require special fibers to couple from the laser to application sites. These latter power delivery fibers are much larger than the internal fibers but still must be flexible, and have not only good strength but also good fatigue behavior. This particularly important industrial systems using robotic arms to apply the high power laser energy at a treatment site. The optical properties of HPCS fibers are well suited for the needs of the delivery of high power from diode laser bars and arrays to an application site. Benefits of strong median dynamic strengths and tighter flaw distributions in such cases will be discussed. Many medical applications, especially endoscopic ones, can benefit from the use of highly flexible, high NA, cost effective, HPCS optical fibers. Benefits of high strength and good fatigue behavior for such fibers in endoscopic procedures, including laser surgery, are discussed briefly including implications for mechanical reliability in medical and industrial settings.

  20. Increasing corrosion resistance of carbon steels by surface laser cladding

    NASA Astrophysics Data System (ADS)

    Polsky, V. I.; Yakushin, V. L.; Dzhumaev, P. S.; Petrovsky, V. N.; Safonov, D. V.

    2016-04-01

    This paper presents results of investigation of the microstructure, elemental composition and corrosion resistance of the samples of low-alloy steel widely used in the engineering, after the application of laser cladding. The level of corrosion damage and the corrosion mechanism of cladded steel samples were established. The corrosion rate and installed discharge observed at the total destruction of cladding were obtained. The regularities of structure formation in the application of different powder compositions were obtained. The optimal powder composition that prevents corrosion of samples of low-carbon low-alloy steel was established.

  1. Innovations in laser cladding and direct metal deposition

    NASA Astrophysics Data System (ADS)

    Brückner, Frank; Nowotny, Steffen; Leyens, Christoph

    2012-03-01

    The present paper reviews recent progress in productivity, precision and quality of laser-based cladding and additive layer manufacturing. Recently, we have demonstrated the great benefits obtained from induction assisted laser cladding. This novel hybrid technology combines high deposition rates with excellent cladding properties. Laser-based direct metal deposition is a novel concept for the fabrication of components and repair as well as geometrical surface modifications. Newly developed nozzle design allows focused powder spots to generate wall thicknesses of about 30 μm. An in-depth understanding of the processes and the resulting materials properties is key for the development of technically viable and economically reasonable customized solutions.

  2. Oxidation performance of platinum-clad Mo-47Re alloy

    NASA Technical Reports Server (NTRS)

    Clark, Ronald K.; Wallace, Terryl A.

    1994-01-01

    The alloy Mo-47Re has favorable mechanical properties at temperatures above 1400 C, but it undergoes severe oxidation when used in air with no protective coating. To shield the alloy from oxidation, platinum cladding has been evaluated. The unprotected alloy undergoes catastrophic oxidation under static and dynamic oxidation conditions. The platinum cladding provides good protection from static and dynamic oxidation for moderate times at 1260 C. Samples tested for longer times under static oxidation conditions experienced severe oxidation. The data suggest that oxidation results from the transport of oxygen through the grain boundaries and through the pinhole defects of the platinum cladding.

  3. Efficient ytterbium-doped phosphosilicate double-clad leakage-channel-fiber laser at 1008-1020 nm

    NASA Astrophysics Data System (ADS)

    Gu, Guancheng; Liu, Zhengyong; Kong, Fanting; Tam, Hwayaw; Shori, Ramesh K.; Dong, Liang

    2016-03-01

    Thermal management is critical for kw-level power lasers, where mode instability driven by quantum defect heating is a major challenge. Tandem pumping using 1018nm fiber lasers are used to enable both high brightness and low quantum defect. It is, however, difficult to realize efficient 1018nm YDFL. The best demonstration to date is limited by the use of both conventional aluminosilicate host and smaller core diameters. In these cases, higher inversion is required due to the aluminosilicate host and higher pump brightness is required due to the smaller core, which results in high signal brightness for the same output power. These factors lead to large pump power to exit fiber, resulting in poor efficiency. Phosphosilicate host, on the other hand, requires much lower inversions to reach the gain threshold at 1018nm. The combination of phosphosilicate host and large-core leakage channel fibers (LCF) is a perfect candidate for efficient 1018nm fiber laser. We report a highly efficient Yb-doped phosphosilicate LCF laser with a quantum defect of 4.1% using a ~50μm-core diameter and ~420μm cladding diameter. The slope efficiency with respect to the launched pump power at 1018nm is 70%. The ASE suppression is <60dB. The large cladding of 420μm demonstrates a combination of high efficiency, ~4% quantum defect and high-power low-brightness diode pumping. We have also studied the limits of operating ytterbium fiber lasers at shorter wavelengths and found the efficiency to fall off at shorter wavelengths due to the much higher inversions required.

  4. Glass-clad semiconductor core optical fibers

    NASA Astrophysics Data System (ADS)

    Morris, Stephanie Lynn

    Glass-clad optical fibers comprising a crystalline semiconductor core have garnered considerable recent attention for their potential utility as novel waveguides for applications in nonlinear optics, sensing, power delivery, and biomedicine. As research into these fibers has progressed, it has become evident that excessive losses are limiting performance and so greater understanding of the underlying materials science, coupled with advances in fiber processing, is needed. More specifically, the semiconductor core fibers possess three performance-limiting characteristics that need to be addressed: (a) thermal expansion mismatches between crystalline core and glass cladding that lead to cracks, (b) the precipitation of oxide species in the core upon fiber cooling, which results from partial dissolution of the cladding glass by the core melt, and (c) polycrystallinity; all of which lead to scattering and increased transmission losses. This dissertation systematically studies each of these effects and develops both a fundamental scientific understanding of and practical engineering methods for reducing their impact. With respect to the thermal expansion mismatch and, in part, the dissolution of oxides, for the first time to our knowledge, oxide and non-oxide glass compositions are developed for a series of semiconductor cores based on two main design criteria: (1) matching the thermal expansion coefficient between semiconductor core and glass cladding to minimize cracking and (2) matching the viscosity-temperature dependences, such that the cladding glass draws into fiber at a temperature slightly above the melting point of the semiconductor in order to minimize dissolution and improve the fiber draw process. The x[Na 2O:Al2O3] + (100 - 2x)SiO2 glass compositional family was selected due to the ability to tailor the glass properties to match the aforementioned targets through slight variations in composition and adjusting the ratios of bridging and non-bridging oxygen

  5. Well pump

    DOEpatents

    Ames, Kenneth R.; Doesburg, James M.

    1987-01-01

    A well pump includes a piston and an inlet and/or outlet valve assembly of special structure. Each is formed of a body of organic polymer, preferably PTFE. Each includes a cavity in its upper portion and at least one passage leading from the cavity to the bottom of the block. A screen covers each cavity and a valve disk covers each screen. Flexible sealing flanges extend upwardly and downwardly from the periphery of the piston block. The outlet valve block has a sliding block and sealing fit with the piston rod.

  6. Well pump

    SciTech Connect

    Page, J.S.

    1983-03-08

    Well fluid pumping apparatus comprises: (A) body structure defining an upright plunger bore, (B) a plunger reciprocable in that bore, (C) the body structure also defining a chamber sidewardly offset from an axis defined by the plunger bore and communicating with the bore, and (D) valving carried by the body structure to pass intake fluid via the chamber into the plunger bore in response to stroking of the plunger in one direction in the bore, and to pass discharge fluid from the plunger bore into and from the chamber in response to stroking of the plunger in the opposite direction in the bore.

  7. Composite polymer-glass edge cladding for laser disks

    DOEpatents

    Powell, Howard T.; Riley, Michael O.; Wolfe, Charles R.; Lyon, Richard E.; Campbell, John H.; Jessop, Edward S.; Murray, James E.

    1989-01-01

    Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation.

  8. Composite polymer: Glass edge cladding for laser disks

    DOEpatents

    Powell, H.T.; Wolfe, C.A.; Campbell, J.H.; Murray, J.E.; Riley, M.O.; Lyon, R.E.; Jessop, E.S.

    1987-11-02

    Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation. 18 figs.

  9. High Temperature Steam Corrosion of Cladding for Nuclear Applications: Experimental

    SciTech Connect

    McHugh, Kevin M; Garnier, John E; Sergey Rashkeev; Michael V. Glazoff; George W. Griffith; Shannong M. Bragg-Sitton

    2013-01-01

    Stability of cladding materials under off-normal conditions is an important issue for the safe operation of light water nuclear reactors. Metals, ceramics, and metal/ceramic composites are being investigated as substitutes for traditional zirconium-based cladding. To support down-selection of these advanced materials and designs, a test apparatus was constructed to study the onset and evolution of cladding oxidation, and deformation behavior of cladding materials, under loss-of-coolant accident scenarios. Preliminary oxidation tests were conducted in dry oxygen and in saturated steam/air environments at 1000OC. Tube samples of Zr-702, Zr-702 reinforced with 1 ply of a ß-SiC CMC overbraid, and sintered a-SiC were tested. Samples were induction heated by coupling to a molybdenum susceptor inside the tubes. The deformation behavior of He-pressurized tubes of Zr-702 and SiC CMC-reinforced Zr-702, heated to rupture, was also examined.

  10. Jet slurry erosion performance of composite clad and its characterization

    NASA Astrophysics Data System (ADS)

    B, Lohit R.; Horakeri, Gururaj S.; Bhovi, Prabakhar M.

    2016-09-01

    In the present work, development of composite cladding consists of Cr23C6 (chromium carbide) as reinforcement particles 20 wt. % in Ni-based matrix 80 wt. % on austenitic stainless steel through exposure of microwave radiation has been carried out. The jet slurry erosion test was performed on microwave composite clad. The functional performance of composite clad has been evaluated for different parametric conditions like varying impingement velocity and impact angle. The increasing weight loss trend was observed with time for the first 30 min. after that the individual trend decreased; at high impingement velocity and maximum impact angle. SEM micrographs of eroded clad samples at various impact angle and impingement velocity were discussed. The maximum weight loss occurred at 90° angle and velocity of 60 m/s, and minimum at 30° angle and velocity of 20 m/s.

  11. View of building 11050, showing metal clad addition on east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of building 11050, showing metal clad addition on east elevation, looking southwest. - Naval Ordnance Test Station Inyokern, China Lake Pilot Plant, Machine Shop, C Street, China Lake, Kern County, CA

  12. Linearly polarized operation of a Yb3+-doped double-clad fiber laser

    NASA Astrophysics Data System (ADS)

    Feng, De-jun; Huang, Wen-yu; Zhang, Pei-pei; Zhou, Jun; Gu, Xi-jia

    2013-09-01

    In this work an all-fiber linearly-polarized Yb-doped double-clad fiber laser is proposed, in which the resonance cavity is composed of a pair of polarization maintaining fiber Bragg gratings (PM-FBGs). The polarization hole burning is enhanced by the selective polarization feedback by the PM-FBGs. A three-port polarization beam splitter with fiber pigtail was inserted into the laser cavity to select different polarization states. The laser features wavelength of 1069.72 nm and 1069.98 nm, output power of 125 mW, SNR of 45 dB, slope efficiency of 52%, as well as linewidth of 30.7 pm. The polarization characteristics of the laser are studied by measuring the laser power transmitted through a rotating Glan- Thomson polarizer. The degree of polarization of each lasing line is over 12 dB under different pump levels.

  13. Optical lattice-like cladding waveguides by direct laser writing: fabrication, luminescence, and lasing.

    PubMed

    Nie, Weijie; He, Ruiyun; Cheng, Chen; Rocha, Uéslen; Rodríguez Vázquez de Aldana, Javier; Jaque, Daniel; Chen, Feng

    2016-05-15

    We report on the fabrication of optical lattice-like waveguide structures in an Nd:YAP laser crystal by using direct femtosecond laser writing. With periodically arrayed laser-induced tracks, the waveguiding cores can be located in either the regions between the neighbored tracks or the central zone surrounded by a number of tracks as outer cladding. The polarization of the femtosecond laser pulses for the inscription has been found to play a critical role in the anisotropic guiding behaviors of the structures. The confocal photoluminescence investigations reveal different stress-induced modifications of the structures inscribed by different polarization of the femtosecond laser beam, which are considered to be responsible for the refractive index changes of the structures. Under optical pump at 808 nm, efficient waveguide lasing at ∼1  μm wavelength has been realized from the optical lattice-like structure, which exhibits potential applications as novel miniature light sources. PMID:27176954

  14. Dissipative soliton resonances in all-fiber Er-Yb double clad figure-8 laser.

    PubMed

    Krzempek, Karol

    2015-11-30

    First demonstration of exploiting Dissipative Soliton Resonance (DSR) effects for generating high energy square-shaped pulses in an all-fiber mode-locked Double Clad (DC) erbium-ytterbium (Er-Yb) figure-8 laser (F8L) is presented. The laser was capable of generating 170 ns pulses with an average power of 1.7 W at 800 kHz repetition rate, which corresponds to a record pulse energy of 2.13 μJ, achieved directly from the resonator, without Q-switching, cavity dumping or additional amplifiers. Unique circulator-based out-coupling of high energy pulses in the directional loop is proposed as a method of preventing damage to the all-fiber setup. Appropriate laser design allowed utilizing Peak Power Clamping (PPC) effect for linear pulse duration tuning via changing the pump power. PMID:26698697

  15. Methods for characterization of mechanical and electrical prosthetic vacuum pumps.

    PubMed

    Komolafe, Oluseeni; Wood, Sean; Caldwell, Ryan; Hansen, Andrew; Fatone, Stefania

    2013-01-01

    Despite increasingly widespread adoption of vacuum-assisted suspension systems in prosthetic clinical practices, there remain gaps in the body of scientific knowledge guiding clinicians' choices of existing products. In this study, we identified important pump-performance metrics and developed techniques to objectively characterize the evacuation performance of prosthetic vacuum pumps. The sensitivity of the proposed techniques was assessed by characterizing the evacuation performance of two electrical (Harmony e-Pulse [Ottobock; Duderstadt, Germany] and LimbLogic VS [Ohio Willow Wood; Mt. Sterling, Ohio]) and three mechanical (Harmony P2, Harmony HD, and Harmony P3 [Ottobock]) prosthetic pumps in bench-top testing. Five fixed volume chambers ranging from 33 cm(3) (2 in.(3)) to 197 cm(3) (12 in.(3)) were used to represent different air volume spaces between a prosthetic socket and a liner-clad residual limb. All measurements were obtained at a vacuum gauge pressure of 57.6 kPa (17 inHg). The proposed techniques demonstrated sensitivity to the different electrical and mechanical pumps and, to a lesser degree, to the different setting adjustments of each pump. The sensitivity was less pronounced for the mechanical pumps, and future improvements for testing of mechanical vacuum pumps were proposed. Overall, this study successfully offers techniques feasible as standards for assessing the evacuation performance of prosthetic vacuum pump devices.

  16. All-solid very large mode area ytterbium-doped silica microstructured fiber based on accurate control on cladding index.

    PubMed

    Wei, Huifeng; Chen, Kangkang; Yang, Yucheng; Li, Jinyan

    2016-04-18

    We have demonstrated a new approach for developing very large mode area silica-based microstructured Ytterbium (Yb)-doped fibers. The microstructured region acting as pump cladding around the core is composed by periodically arranged low-index Fluorine-doped silica inclusions with an extremely low filling ratio of 0.088. To the best of our knowledge, we achieved the most accurate controlling on cladding index by 1 × 10-5 via our passively doped cladding (PDC) method. Two fibers with 127μm and 50μm core diameter respectively were fabricated from the same final preform designed by this approach. It is verified that our 50μm core diameter fiber can maintain robust single mode behavior at 1064nm wavelength. The advantage of an all-solid structure along with a much simpler fabrication process makes our approach very suitable for realizing very large mode area fibers for high power fiber laser application. PMID:27137328

  17. Double-clad nuclear-fuel safety rod

    DOEpatents

    McCarthy, W.H.; Atcheson, D.B.

    1981-12-30

    A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

  18. Explosion Clad for Upstream Oil and Gas Equipment

    SciTech Connect

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-17

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO{sub 2} and/or H{sub 2}S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  19. Supercontinuum Generation in a Microstructured Fiber with an Irregular Cladding

    NASA Astrophysics Data System (ADS)

    Minkovich, V. P.; Sotsky, A. B.; Vaca Pereira G., M.; Dzen, I. S.; Sotskaya, L. I.

    2016-05-01

    A broad-band supercontinuum generation was obtained at excitation of a microstructured optical fiber with an irregular cladding by femtosecond laser pulses. To explain the experimental data, calculations of the mode characteristics of microstructured fibers were performed. It was shown that the creation of air channels with different radii in the fiber cladding makes it possible to involve both the fundamental and high fiber modes in the supercontinuum generation that helps to increase the width of the generation spectrum.

  20. Explosion Clad for Upstream Oil and Gas Equipment

    NASA Astrophysics Data System (ADS)

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-01

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO2 and/or H2S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  1. Properties of multilayer coatings produced by coaxial laser cladding

    NASA Astrophysics Data System (ADS)

    Petrovskiy, V. N.; Bykovskiy, D. P.; Dzhumaev, P. S.; Polskiy, V. I.; Prokopova, N. M.; Chirikov, S. N.

    2016-09-01

    This article contains results of the study of multilayer coatings produced by laser cladding on the substrate steel 34HMA using iron based powder PR-10R6M5 as the filler material. The coatings were produced with consistent application of the tracks with fixed overlapping. The dependencies between the characteristics of tracks and the technological mode of deposition were revealed. Properties of coatings were determined for various overlapping of tracks and directions of the cladding layers.

  2. Zircoloy Cladding Oxidation Simulation for LWR under LOCA Conditions

    2003-04-25

    PRECIP-2 simulates zircaloy cladding oxidation under LOCA conditions of LWR’s. The code calculates oxygen concentration distribution across the cladding wall by solving the diffusion equation with moving boundary conditions, taking into account the structure change of the beta— phase, i.e. alpha precipitation during the cooling period. The code also predicts total oxygen uptake, thicknesses of alpha, beta and oxide layers.

  3. HYDRIDE-RELATED DEGRADATION OF SNF CLADDING UNDER REPOSITORY CONDITIONS

    SciTech Connect

    K. McCoy

    2000-12-12

    The purpose and scope of this analysis/model report is to analyze the degradation of commercial spent nuclear fuel (CSNF) cladding under repository conditions by the hydride-related metallurgical processes, such as delayed hydride cracking (DHC), hydride reorientation and hydrogen embrittlement, thereby providing a better understanding of the degradation process and clarifying which aspects of the process are known and which need further evaluation and investigation. The intended use is as an input to a more general analysis of cladding degradation.

  4. Pump apparatus

    SciTech Connect

    Kime, J.A.

    1987-02-17

    This patent describes a gas-oil well production system for pumping formation fluid wherein a down hole pump is provided having a barrel including a barrel fluid inlet, a barrel fluid outlet, a barrel chamber, and a plunger mounted in the barrel chamber having a plunger chamber. The plunger is reciprocally driven between an upper terminal position at the end of the plunger upstroke and a lower terminal position at the end of the plunger downstroke. The method for removing developed gaseous fluids in the formation fluid from the barrel chamber comprises: drawing formation fluid into the barrel chamber during the plunger upstroke; providing gas port means in the barrel; expelling the developed gaseous fluids from the barrel chamber through the gas port means during the occurrence of that portion of the plunger downstroke from the upper terminal position of the gas port means; and substantially blocking the gas port means and moving formation fluid into the plunger chamber during the occurrence of that portion of the plunger downstroke from below the gas port means to the lower terminal position.

  5. Hollow cylindrical plasma filament waveguide with discontinuous finite thickness cladding

    SciTech Connect

    Alshershby, Mostafa; Hao Zuoqiang; Lin Jingquan

    2013-01-15

    We have explored here a hollow cylindrical laser plasma multifilament waveguide with discontinuous finite thickness cladding, in which the separation between individual filaments is in the range of several millimeters and the waveguide cladding thickness is in the order of the microwave penetration depth. Such parameters give a closer representation of a realistic laser filament waveguide sustained by a long stable propagation of femtosecond (fs) laser pulses. We report how the waveguide losses depend on structural parameters like normalized plasma filament spacing, filament to filament distance or pitch, normal spatial frequency, and radius of the plasma filament. We found that for typical plasma parameters, the proposed waveguide can support guided modes of microwaves in extremely high frequency even with a cladding consisting of only one ring of plasma filaments. The loss of the microwave radiation is mainly caused by tunneling through the discontinuous finite cladding, i.e., confinement loss, and is weakly dependent on the plasma absorption. In addition, the analysis indicates that the propagation loss is fairly large compared with the loss of a plasma waveguide with a continuous infinite thickness cladding, while they are comparable when using a cladding contains more than one ring. Compared to free space propagation, this waveguide still presents a superior microwave transmission to some distance in the order of the filamentation length; thus, the laser plasma filaments waveguide may be a potential channel for transporting pulsed-modulated microwaves if ensuring a long and stable propagation of fs laser pulses.

  6. Uranium and cesium diffusion in fuel cladding of electrogenerating channel

    SciTech Connect

    Vasil’ev, I. V. Ivanov, A. S.; Churin, V. A.

    2014-12-15

    The results of reactor tests of a carbonitride fuel in a single-crystal cladding from a molybdenum-based alloy can be used in substantiating the operational reliability of fuels in developing a project of a megawatt space nuclear power plant. The results of experimental studies of uranium and cesium penetration into the single-crystal cladding of fuel elements with a carbonitride fuel are interpreted. Those fuel elements passed nuclear power tests in the Ya-82 pilot plant for 8300 h at a temperature of about 1500°C. It is shown that the diffusion coefficients for uranium diffusion into the cladding are virtually coincident with the diffusion coefficients measured earlier for uranium diffusion into polycrystalline molybdenum. It is found that the penetration of uranium into the cladding is likely to occur only in the case of a direct contact between the cladding and fuel. The experimentally observed nonmonotonic uranium-concentration profiles are explained in terms of predominant uranium diffusion along grain boundaries. It is shown that a substantially nonmonotonic behavior observed in our experiment for the uranium-concentration profile may be explained by the presence of a polycrystalline structure of the cladding in the surface region from its inner side. The diffusion coefficient is estimated for the grain-boundary diffusion of uranium. The diffusion coefficients for cesium are estimated on the basis of experimental data obtained in the present study.

  7. Polymer materials as modified optical fiber cladding for chemical sensors

    NASA Astrophysics Data System (ADS)

    Yuan, Jianming

    An intrinsic fiber optic chemical sensor has been designed and developed by using a polymer material as a modified fiber cladding. The sensor is constructed by replacing a certain portion of the original cladding with a chemically sensitive material, specifically, polyaniline or polypyrrole. Both the light absorption coefficient and the refractive index of the polymers change upon the exposure to different chemical vapors. These changes induce the optical intensity modulation of the fiber optic sensor. Polyaniline or polypyrrole is coated as the modified cladding by either spin-cast or in-situ deposition method for sensing HCl, NH3, H 2O2, and H4N2 vapors. All sensors show rapid and strong response to the chemical vapors. Thus, these sensors demonstrate that polyaniline and polypyrrole are viable candidate materials for the detection of volatile toxic gases. Sensors exhibit better performance when correct parameters, such as modification area, in-situ deposition time, and spin-rate, are used in the cladding modification process. The reversibility of the sensor depends on the reaction between the modified cladding material and the chemical vapors. Polyaniline cladding has better reversibility than polypyrrole. The optimized sensor response and sensitivity can be achieved by selecting an incident light with suitable wavelength, power, and incident angle.

  8. Residual Stress Measurements of Explosively Clad Cylindrical Pressure Vessels

    SciTech Connect

    Taylor, Douglas J; Watkins, Thomas R; Hubbard, Camden R; Hill, M. R.; Meith, W. A.

    2012-01-01

    Tantalum refractory liners were explosively clad into cylindrical pressure vessels, some of which had been previously autofrettaged. Using explosive cladding, the refractory liner formed a metallurgical bond with the steel of the pressure vessel at a cost of induced strain. Two techniques were employed to determine the residual stress state of the clad steel cylinders: neutron diffraction and mechanical slitting. Neutron diffraction is typically nondestructive; however, due to attenuation along the beam path, the cylinders had to be sectioned into rings that were nominally 25 mm thick. Slitting is a destructive method, requiring the sectioning of the cylindrical samples. Both techniques provided triaxial stress data and useful information on the effects of explosive cladding. The stress profiles in the hoop and radial directions were similar for an autofrettaged, nonclad vessel and a clad, nonautofrettaged vessel. The stress profiles in the axial direction appeared to be different. Further, the data suggested that residual stresses from the autofrettage and explosive cladding processes were not additive, in part due to evidence of reverse yielding. The residual stress data are presented, compared and discussed.

  9. HIP clad nickel base Alloy 625 for deep sour wells

    SciTech Connect

    Uhl, W.K.; Pendley, M.R.

    1984-05-01

    The hot isostatic pressing (HIP) process was used to clad nickel base Alloy 625 to AISI 4130 low alloy steel. The performance of the HIP clad material in the corrosive environment characteristic of deep, sour oil and gas wells was evaluated in laboratory tests. Included in the test program were NACE TM-01-77 sulfide stress cracking tests, chloride stress corrosion cracking tests in boiling MgCl /SUB 2'/ , and pitting and crevice corrosion tests. The HIP clad 625 performed excellently, displaying essentially the same corrosion resistance as wrought 625. Specifically the HIP clad 625 resisted sulfide stress cracking at applied stresses as high as 120% of yield strength and resisted chloride stress corrosion cracking at stresses exceeding 100% of yield. The HIP clad 625 also displayed immunity to pitting and crevice corrosion, with corrosion rates of <0.025 mm/y (1 mil/y). The 4130 base metal, however, was attacked severly in all tests. SEM/EDX analysis of the 625/4130 interface demonstrated that dilution of the cladding by the base metal was essentially eliminated.

  10. Phase transformations at steel/IN626 clad interfaces

    NASA Astrophysics Data System (ADS)

    Ayer, Raghavan; Mueller, R. R.; Leta, D. P.; Sisak, W. J.

    1989-04-01

    The microstructures of 4130 and 2.25Cr-1Mo steels clad to nickel base IN625 by welding and HIPing were examined by Analytical Electron Microscopy (AEM) and Secondary Ion Mass Spectroscopy (SIMS) to determine the interfacial microstructural characteristics which could affect their mechanical properties and corrosion resistance. The interface microstructures of the clads produced by the two methods were considerably different. The clad produced by welding was characterized by a low density of carbide precipitates confined to a very narrow region (˜1 μm) at the interface of ferrite and austenite. In addition, a thin region of untempered martensite was present at the interface which could affect its resistance to hydrogen embrittlement as well as other mechanical properties. The interface of the HIP clad composite contained several regions of distinct microstructural characteristics with widely varying densities of carbide precipitates. Relative to the clad produced by welding, extensive precipitation was observed both in the steel and in the IN625 at the interface, separated by a region free from precipitation. The extent of precipitation at the interface regions appears to be controlled essentially by the extent of carbon transport across the interface. The article describes the detailed analysis of the interface characteristics, and models are proposed to explain the microstructural evolution at the interface of the HIP and weld clad composites.

  11. Real-time laser cladding control with variable spot size

    NASA Astrophysics Data System (ADS)

    Arias, J. L.; Montealegre, M. A.; Vidal, F.; Rodríguez, J.; Mann, S.; Abels, P.; Motmans, F.

    2014-03-01

    Laser cladding processing has been used in different industries to improve the surface properties or to reconstruct damaged pieces. In order to cover areas considerably larger than the diameter of the laser beam, successive partially overlapping tracks are deposited. With no control over the process variables this conduces to an increase of the temperature, which could decrease mechanical properties of the laser cladded material. Commonly, the process is monitored and controlled by a PC using cameras, but this control suffers from a lack of speed caused by the image processing step. The aim of this work is to design and develop a FPGA-based laser cladding control system. This system is intended to modify the laser beam power according to the melt pool width, which is measured using a CMOS camera. All the control and monitoring tasks are carried out by a FPGA, taking advantage of its abundance of resources and speed of operation. The robustness of the image processing algorithm is assessed, as well as the control system performance. Laser power is decreased as substrate temperature increases, thus maintaining a constant clad width. This FPGA-based control system is integrated in an adaptive laser cladding system, which also includes an adaptive optical system that will control the laser focus distance on the fly. The whole system will constitute an efficient instrument for part repair with complex geometries and coating selective surfaces. This will be a significant step forward into the total industrial implementation of an automated industrial laser cladding process.

  12. Aluminum alloy clad fiber optic corrosion sensor

    NASA Astrophysics Data System (ADS)

    Rutherford, Paul S.; Ikegami, Roy; Shrader, John E.; Sherrer, David; Zabaronick, Noel; Zeakes, Jason S.; Murphy, Kent A.; Claus, Richard O.

    1997-06-01

    Life extension programs for military metallic aircraft are becoming increasingly important as defense budgets shrink and world economies realign themselves to an uncertain future. For existing military weapon systems, metallic corrosion damage costs as estimated $DOL8 billion per year. One approach to reducing this cost is to develop a reliable method to detect and monitor corrosion in hidden metallic structure with the use of corrosion sensors which would give an early indication of corrosion without significant disassembly, thereby reducing maintenance costs. This presentation describes the development, analysis, and testing of a fiber optic corrosion sensor developed jointly with the Virginia Polytechnic Fiber and Electro-Optics Research Center and sponsored by Wright Laboratory Materials Directorate. In the sensor which was researched, the normal cladding is removed in the sensor region, and replaced with aluminum alloy and allowed to corrode on coupons representative of C/KC-135 body structure in an ASTM B117 salt spray chamber and a Boeing developed Crevice Corrosion Cell. In this approach, the optical signal output of the sensor was originally designed to increase as corrosion takes place, however interaction with the corrosion byproducts yielded different results than anticipated. These test results to determine a correlation between the sensor output and the structural degradation due to corrosion are discussed.

  13. Cladding Attachment Over Thick Exterior Insulating Sheathing

    SciTech Connect

    Baker, P.; Eng, P.; Lepage, R.

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1.What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2.Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3.What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  14. Cladding Attachment Over Thick Exterior Insulating Sheathing

    SciTech Connect

    Baker, P.; Eng, P.; Lepage, R.

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1. What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2. Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3. What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  15. Weld overlay cladding with iron aluminides

    SciTech Connect

    Goodwin, G.M.

    1997-12-01

    The author has established a range of compositions for these alloys within which hot cracking resistance is very good, and within which cold cracking can be avoided in many instances by careful control of welding conditions, particularly preheat and postweld heat treatment. For example, crack-free butt welds have been produced for the first time in 12-mm thick wrought Fe{sub 3}Al plate. Cold cracking, however, still remains an issue in many cases. The author has developed a commercial source for composite weld filler metals spanning a wide range of achievable aluminum levels, and are pursuing the application of these filler metals in a variety of industrial environments. Welding techniques have been developed for both the gas tungsten arc and gas metal arc processes, and preliminary work has been done to utilize the wire arc process for coating of boiler tubes. Clad specimens have been prepared for environmental testing in-house, and a number of components have been modified and placed in service in operating kraft recovery boilers. In collaboration with a commercial producer of spiral weld overlay tubing, the author is attempting to utilize the new filler metals for this novel application.

  16. Power scaling from buried depressed-cladding waveguides realized in Nd:YVO4 by femtosecond-laser beam writing

    NASA Astrophysics Data System (ADS)

    Salamu, Gabriela; Pavel, Nicolaie

    2016-10-01

    We report on output power performances obtained by diode-laser pumping of buried cladding-waveguides that were inscribed with a femtosecond-laser beam writing technique in several Nd:YVO4 media. Continuous-wave output power of 3.4 W at 1.06 μm for an absorbed pump power at 808 nm of 10.3 W was obtained from a circular waveguide of 100-μm diameter that was realized in a 6.9-mm long, 0.5-at% Nd:YVO4 crystal; the slope efficiency with respect to the absorbed pump power was 0.36. The pump at 880 nm, directly into the 4F3/2 emitting level, was used to improve the waveguide output characteristics. With an absorbed pump power of 9.8 W at 880 nm, the same waveguide yielded 4.4 W at 1.06 μm, whereas for emission at 1.34 μm the output power reached 1.7 W; the slope efficiency improved to 0.47 for laser emission at 1.06 μm and reached 0.24 for operation at 1.34 μm. Results recorded from similar waveguides that were inscribed in 0.7-at% Nd:YVO4 and 1.0-at% Nd:YVO4 crystals are presented.

  17. Vanadium diffusion coating on HT-9 cladding for mitigating the fuel cladding chemical interactions

    NASA Astrophysics Data System (ADS)

    Lo, Wei-Yang; Yang, Yong

    2014-08-01

    Fuel cladding chemical interaction (FCCI) has been identified as one of the crucial issues for developing Ferritic/Martensitic (F/M) stainless steel claddings for metallic fuels in a fast reactor. The anticipated elevated temperature and high neutron flux can significantly aggravate the FCCI, in terms of formation of inter-diffusion and lower melting point eutectic phases. To mitigate the FCCI, vanadium carbide coating as a diffusion barrier was deposited on the HT-9 substrate using a pack cementation diffusion coating (PCDC) method, and the processing temperature was optimized down to 730 °C. A solid metallurgical bonding between the coating layer and substrate was achieved, and the coating is free from through depth cracks. The microstructural characterizations using SEM and TEM show a nanostructured grain structure. EDS/WDS and XRD analysis confirm the phase of coating layer as V2C. Diffusion couple tests at 660 °C for 100 h demonstrate that V2C layer with a thickness of less than 5 μm can effectively eliminate the inter-diffusion between the lanthanide cerium and HT-9 steel.

  18. LMFBR with booster pump in pumping loop

    DOEpatents

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  19. Winding for linear pump

    DOEpatents

    Kliman, Gerald B.; Brynsvold, Glen V.; Jahns, Thomas M.

    1989-01-01

    A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.

  20. Winding for linear pump

    DOEpatents

    Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.

    1989-08-22

    A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.

  1. Liquid metal pump

    DOEpatents

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  2. Polarization maintaining, high-power and high-efficiency (6+1)×1 pump/signal combiner

    NASA Astrophysics Data System (ADS)

    Kopp, Victor I.; Park, Jongchul; Wlodawski, Mitchell; Singer, Jonathan; Neugroschl, Dan

    2014-03-01

    We have developed an all-glass, fusion spliceable polarization maintaining (6+1)× 1 pump/signal combiner for fiber lasers and amplifiers. We utilize an enhanced tapered fiber bundle technology for multimode pump channels and a vanishing core fiber for the single mode polarization maintaining large mode area (PLMA) signal channel. The signal channel of the combiner is optimized to match a double-clad PLMA fiber with 20 micron core and 400 micron glass cladding with 0.065 numerical aperture (NA). The multimode pump channels have 200 micron core and 240 micron cladding with NA of 0.22 designed to deliver high power 980 nm pump light. The same double-clad PLMA fiber is used as both the signal input channel and the combined output for the device. Polarization axes of the input and output PLMA fibers are aligned during the fusion splices to achieve polarization crosstalk below -20 dB. Utilizing this approach, we have achieved coupling loss of ~0.4 dB for the signal channel as measured from the input PLMA to the output PLMA at a wavelength of 1060 nm and coupling loss below 0.01 dB for all pump channels as determined from the measured temperature rise of the combiner package temperature as the optical pump power at 974 nm is increased up to 45 W. Low signal and pump losses result in high efficiency lasing or amplification at over a kW of pump power for high power applications where a single mode, high polarization extinction ratio output is required.

  3. Weld overlay cladding with iron aluminides

    SciTech Connect

    Goodwin, G.M.

    1996-11-01

    The hot and cold cracking tendencies of some early iron aluminide alloy compositions limited their use to applications where good weldability was not required. Considerable progress has been made toward improving this situation. Using hot crack testing techniques developed at ORNL and a systematic study of alloy compositional effects, we have established a range of compositions within which hot cracking resistance is very good, essentially equivalent to stainless steel. Cold cracking, however, remains an issue, and extensive efforts are continuing to optimize composition and welding parameters, especially preheat and postweld heat treatment, to minimize its occurrence. In terms of filler metal and process development, we have progressed from sheared strip through aspiration cast rod and shielded metal arc electrodes to the point where we can now produce composite wire with a steel sheath and aluminum core in coil form, which permits the use of both the gas tungsten arc and gas metal arc processes. This is a significant advancement in that the gas metal arc process lends itself well to automated welding, and is the process of choice for commercial weld overlay applications. Using the newly developed filler metals, we have prepared clad specimens for testing in a variety of environments both in-house and outside ORNL, including laboratory and commercial organizations. As a means of assessing the field performance of this new type of material, we have modified several non-pressure boundary boiler components, including fuel nozzles and port shrouds, by introducing areas of weld overlay in strategic locations, and have placed these components in service in operating boilers for a side-by-side comparison with conventional corrosion-resistant materials.

  4. Diode edge-pumped passively Q-switched microchip laser

    NASA Astrophysics Data System (ADS)

    Kong, Weipeng; Tsunekane, Masaki; Taira, Takunori

    2015-09-01

    There is an increasing demand for high-intensity subnanosecond lasers for emerging industrial applications. While femtosecond and picosecond laser sources are considered promising, they suffer from the significant drawbacks of increased complexity and cost. In this regard, we demonstrate a unique edge-pumped passively Q-switched Nd∶YAG/Cr4+∶YAG microchip laser. The microchip is made of a Nd∶YAG/Sm∶YAG composite ceramic, and a Sm∶YAG cladding is utilized as both the pump beam waveguide and amplified spontaneous emission absorber. With the use of a flat-concave laser cavity, we obtain single-pulse energy of 1.66 mJ for an absorbed pump energy of 24 mJ. Further, the resulting pulse width is 683 ps, and the repetition rate is 10 Hz.

  5. Accident Performance of Light Water Reactor Cladding Materials

    SciTech Connect

    Nelson, Andrew T.

    2012-07-24

    During a loss of coolant accident as experienced at Fukushima, inadequate cooling of the reactor core forces component temperatures ever higher where they must withstand aggressive chemical environments. Conventional zirconium cladding alloys will readily oxidize in the presence of water vapor at elevated temperatures, rapidly degrading and likely failing. A cladding breach removes the critical barrier between actinides and fission products and the coolant, greatly increasing the probability of the release of radioactivity in the event of a containment failure. These factors have driven renewed international interest in both study and improvement of the materials used in commercial light water reactors. Characterization of a candidate cladding alloy or oxidation mitigation technique requires understanding of both the oxidation kinetics and hydrogen production as a function of temperature and atmosphere conditions. Researchers in the MST division supported by the DOE-NE Fuel Cycle Research and Development program are working to evaluate and quantify these parameters across a wide range of proposed cladding materials. The primary instrument employed is a simultaneous thermal analyzer (STA) equipped with a specialized water vapor furnace capable of maintaining temperatures above 1200 C in a range of atmospheres and water vapor contents. The STA utilizes thermogravimetric analysis and a coupled mass spectrometer to measure in situ oxidation and hydrogen production of candidate materials. This capability is unprecedented in study of materials under consideration for reactor cladding use, and is currently being expanded to investigate proposed coating techniques as well as the effect of coating defects on corrosion resistance.

  6. Cladding Alloys for Fluoride Salt Compatibility Final Report

    SciTech Connect

    Muralidharan, Govindarajan; Wilson, Dane F; Santella, Michael L; Holcomb, David Eugene

    2011-05-01

    This interim report provides an overview of several candidate technologies for cladding nickel-based corrosion protection layers onto high-temperature structural alloys. The report also provides a brief overview of the welding and weld performance issues associated with joining nickel-clad nickel-based alloys. From the available techniques, two cladding technologies were selected for initial evaluation. The first technique is a line-of-sight method that would be useful for coating large structures such as vessel interiors or large piping. The line-of-sight method is a laser-based surface cladding technique in which a high-purity nickel powder mixed into a polymer binder is first sprayed onto the surface, baked, and then rapidly melted using a high power laser. The second technique is a vapor phase technique based on the nickel-carbonyl process that is suitable for coating inaccessible surfaces such as the interior surfaces of heat exchangers. The final project report will feature an experimental evaluation of the performance of the two selected cladding techniques.

  7. Hydraulic pump

    SciTech Connect

    Polak, P.R.; Jantzen, D.E.

    1984-05-15

    This invention relates to an improved pump jack characterized by a hollow piston rod which telescopes down over the sucker rod to which it is clamped for reciprocating motion. The cylinder, in turn, is fastened in fixed position directly to the upper exposed end of the well casing. As fluid is introduced into the lower end of the cylinder it raises the piston into engagement with a pushrod housed in the upper cylinder head that lifts switch-actuating means associated therewith into a position operative to actuate a switch located adjacent thereto thereby causing the latter to change state and actuate a multi-function solenoid valve so as to cut off fluid flow to the cylinder. As gravity lowers the sucker rod and piston exhausting the hydraulic fluid therebeneath, an adjustable stop engages the pushrod from above so as to return it together with the switch-actuating means associated therewith to their original positions thereby resetting the switch to complete the operating cycle.

  8. Preparation of Plasma Cladding Gradient Wear-Resistant Layer and Study on Its Impact Fatigue Properties

    NASA Astrophysics Data System (ADS)

    Zhang, Dekun; Liu, Yuan; Yin, Yan

    2016-02-01

    Plasma cladding technology is used to prepare plasma cladding gradient wear-resistant specimens, and the performance of these specimens is analyzed and compared with those of single cladding specimens. The results indicate that plasma cladding gradient wear-resistant layers implement the gradient changes in microstructure and hardness from the surface of the outer cladding layer to the fusion line and that the outer and inner cladding layers are well combined, the inner cladding layer can improve rapid decreases in hardness of single wear-resistant samples from the cladding layer to the matrix, changes in hardness from the outer to inner cladding layer are buffered, and the inner cladding layer performs important functions in the transition between the outer cladding layer and substrate. The highest hardness of the outer layer, which reaches 735 HV0.1, is approximately 3.9 times that of the matrix. The impact fatigue resistance performance of the plasma gradient cladding specimens is superior to that of single cladding specimens, and fatigue cracks begin to form only after 1 × 105 cyclical impacts.

  9. Multiple pump housing

    DOEpatents

    Donoho, II, Michael R.; Elliott; Christopher M.

    2010-03-23

    A fluid delivery system includes a first pump having a first drive assembly, a second pump having a second drive assembly, and a pump housing. At least a portion of each of the first and second pumps are located in the housing.

  10. Fabrication of stainless steel clad tubing. [gas pressure bonding

    NASA Technical Reports Server (NTRS)

    Kovach, C. W.

    1978-01-01

    The feasibility of producing stainless steel clad carbon steel tubing by a gas pressure bonding process was evaluated. Such a tube product could provide substantial chromium savings over monolithic stainless tubing in the event of a serious chromium shortage. The process consists of the initial assembly of three component tubesets from conventionally produced tubing, the formation of a strong metallurgical bond between the three components by gas pressure bonding, and conventional cold draw and anneal processing to final size. The quality of the tubes produced was excellent from the standpoint of bond strength, mechanical, and forming properties. The only significant quality problem encountered was carburization of the stainless clad by the carbon steel core which can be overcome by further refinement through at least three different approaches. The estimated cost of clad tubing produced by this process is greater than that for monolithic stainless tubing, but not so high as to make the process impractical as a chromium conservation method.

  11. Nanoscale light-matter interactions in atomic cladding waveguides

    NASA Astrophysics Data System (ADS)

    Stern, Liron; Desiatov, Boris; Goykhman, Ilya; Levy, Uriel

    2013-03-01

    Alkali vapours, such as rubidium, are being used extensively in several important fields of research such as slow and stored light nonlinear optics quantum computation, atomic clocks and magnetometers. Recently, there is a growing effort towards miniaturizing traditional centimetre-size vapour cells. Owing to the significant reduction in device dimensions, light-matter interactions are greatly enhanced, enabling new functionalities due to the low power threshold needed for nonlinear interactions. Here, taking advantage of the mature platform of silicon photonics, we construct an efficient and flexible platform for tailored light-vapour interactions on a chip. Specifically, we demonstrate light-matter interactions in an atomic cladding waveguide, consisting of a silicon nitride nano-waveguide core with a rubidium vapour cladding. We observe the efficient interaction of the electromagnetic guided mode with the rubidium cladding and show that due to the high confinement of the optical mode, the rubidium absorption saturates at powers in the nanowatt regime.

  12. Nanoscale light–matter interactions in atomic cladding waveguides

    PubMed Central

    Stern, Liron; Desiatov, Boris; Goykhman, Ilya; Levy, Uriel

    2013-01-01

    Alkali vapours, such as rubidium, are being used extensively in several important fields of research such as slow and stored light nonlinear optics quantum computation, atomic clocks and magnetometers. Recently, there is a growing effort towards miniaturizing traditional centimetre-size vapour cells. Owing to the significant reduction in device dimensions, light–matter interactions are greatly enhanced, enabling new functionalities due to the low power threshold needed for nonlinear interactions. Here, taking advantage of the mature platform of silicon photonics, we construct an efficient and flexible platform for tailored light–vapour interactions on a chip. Specifically, we demonstrate light–matter interactions in an atomic cladding waveguide, consisting of a silicon nitride nano-waveguide core with a rubidium vapour cladding. We observe the efficient interaction of the electromagnetic guided mode with the rubidium cladding and show that due to the high confinement of the optical mode, the rubidium absorption saturates at powers in the nanowatt regime. PMID:23462991

  13. Optical Properties Of Low Loss Fluoride Glass-Cladded Fibers

    NASA Astrophysics Data System (ADS)

    Burk, M. J.; Tran, D. C.; Fisher, C. F.; Levin, K. H.; Hart, Patricia; Sigel, G. H.

    1984-12-01

    Recent improvements in preform processing and fiber drawing techniques have resulted in glass-cladded fluoride glass fibers having losses under 10 dB/km. Multicomponent zirconium fluoride glass was used, and care was taken to reduce impurities such as transition metals and water. The reduction of scattering centers was also a major concern. Preforms were made using the rotational casting approach, which resulted in glass-cladded preforms having no observable core-clad defects. The preforms were coated with teflon, and drawn into fibers using an r.f. induction furnace. The optical attenuation of the fibers was measured in the infrared region. The minimum loss occurred around 2.5 microns. The fiber scattering loss was also measured. A variety of lasers were used for this measurement, including an infrared color-center laser to obtain scattering data directly in the infrared region.

  14. Nanoscale light-matter interactions in atomic cladding waveguides.

    PubMed

    Stern, Liron; Desiatov, Boris; Goykhman, Ilya; Levy, Uriel

    2013-01-01

    Alkali vapours, such as rubidium, are being used extensively in several important fields of research such as slow and stored light nonlinear optics quantum computation, atomic clocks and magnetometers. Recently, there is a growing effort towards miniaturizing traditional centimetre-size vapour cells. Owing to the significant reduction in device dimensions, light-matter interactions are greatly enhanced, enabling new functionalities due to the low power threshold needed for nonlinear interactions. Here, taking advantage of the mature platform of silicon photonics, we construct an efficient and flexible platform for tailored light-vapour interactions on a chip. Specifically, we demonstrate light-matter interactions in an atomic cladding waveguide, consisting of a silicon nitride nano-waveguide core with a rubidium vapour cladding. We observe the efficient interaction of the electromagnetic guided mode with the rubidium cladding and show that due to the high confinement of the optical mode, the rubidium absorption saturates at powers in the nanowatt regime.

  15. Nanoscale light-matter interactions in atomic cladding waveguides.

    PubMed

    Stern, Liron; Desiatov, Boris; Goykhman, Ilya; Levy, Uriel

    2013-01-01

    Alkali vapours, such as rubidium, are being used extensively in several important fields of research such as slow and stored light nonlinear optics quantum computation, atomic clocks and magnetometers. Recently, there is a growing effort towards miniaturizing traditional centimetre-size vapour cells. Owing to the significant reduction in device dimensions, light-matter interactions are greatly enhanced, enabling new functionalities due to the low power threshold needed for nonlinear interactions. Here, taking advantage of the mature platform of silicon photonics, we construct an efficient and flexible platform for tailored light-vapour interactions on a chip. Specifically, we demonstrate light-matter interactions in an atomic cladding waveguide, consisting of a silicon nitride nano-waveguide core with a rubidium vapour cladding. We observe the efficient interaction of the electromagnetic guided mode with the rubidium cladding and show that due to the high confinement of the optical mode, the rubidium absorption saturates at powers in the nanowatt regime. PMID:23462991

  16. Fracture behavior and microstructural characteristics of irradiated Zircaloy cladding

    SciTech Connect

    Chung, H.M.; Yaggee, F.L.; Kassner, T.F.

    1985-06-01

    Zircaloy cladding tube specimens from commercial power reactor fuel assemblies (burnup >22 MWd/kgU) have been deformed to fracture at 325/sup 0/C by either the internal gas-pressurization or the expanding-mandrel technique in a helium or argon environment containing no fission product species (e.g., I, Cs, or Cd). The fracture surfaces of 11 irradiated specimens fractured by internal gas pressurization were examined by scanning electron microscopy, and 7 specimens were found to contain various degrees of the pseudocleavage feature that is characteristic of pellet-cladding interaction failures. Out of 10 test specimens fractured by expanding-mandrel loading, 5 were found to contain regions of pseudocleavage on the fracture surfaces. The specimens exhibited ''X-marks'' on the outer surface and brittle incipient cracks distributed on the inner surface, which are also characteristic of pellet-cladding interaction failures.

  17. Antifriction properties of gas thermal coatings of clad carbide powders

    SciTech Connect

    Borisov, Y.S.; Geleyshvili, T.P.; Gorbatov, L.N.; Molyar, A.G.; Kulgavyy, E.A.; Polishchuk, I.Y.

    1984-12-01

    A study is made of the antifriction properties of atomized coatings on VI-22 titanium alloy. Atomization was performed with carbides of titanium and chromium clad with cobalt, copper or nickel. Cladding was performed by the autoclave method by reducing copper, cobalt, and nickel from a solution of their salts with hydrogen under pressure. The clad coating thickness was 3 to 5 micro m. Electrolytically chrome plated titanium alloy and coatings of oxides were also tested for comparison. The structure of the coatings after atomization consisted of carbide particles uniformly distributed in a metal matrix. In friction the coatings worked in well, at relatively low coefficient of friction and slight wear. The most effective antifriction properties, minimum wear, and minimum coefficient of friction were achieved in coatings of composite TiC-Co and TiC-Cu powders.

  18. Results of NDE Technique Evaluation of Clad Hydrides

    SciTech Connect

    Dennis C. Kunerth

    2014-09-01

    This report fulfills the M4 milestone, M4FT-14IN0805023, Results of NDE Technique Evaluation of Clad Hydrides, under Work Package Number FT-14IN080502. During service, zirconium alloy fuel cladding will degrade via corrosion/oxidation. Hydrogen, a byproduct of the oxidation process, will be absorbed into the cladding and eventually form hydrides due to low hydrogen solubility limits. The hydride phase is detrimental to the mechanical properties of the cladding and therefore it is important to be able to detect and characterize the presence of this constituent within the cladding. Presently, hydrides are evaluated using destructive examination. If nondestructive evaluation techniques can be used to detect and characterize the hydrides, the potential exists to significantly increase test sample coverage while reducing evaluation time and cost. To demonstrate the viability this approach, an initial evaluation of eddy current and ultrasonic techniques were performed to demonstrate the basic ability to these techniques to detect hydrides or their effects on the microstructure. Conventional continuous wave eddy current techniques were applied to zirconium based cladding test samples thermally processed with hydrogen gas to promote the absorption of hydrogen and subsequent formation of hydrides. The results of the evaluation demonstrate that eddy current inspection approaches have the potential to detect both the physical damage induced by hydrides, e.g. blisters and cracking, as well as the combined effects of absorbed hydrogen and hydride precipitates on the electrical properties of the zirconium alloy. Similarly, measurements of ultrasonic wave velocities indicate changes in the elastic properties resulting from the combined effects of absorbed hydrogen and hydride precipitates as well as changes in geometry in regions of severe degradation. However, for both approaches, the signal responses intended to make the desired measurement incorporate a number of contributing

  19. Applications for reactor-pumped lasers

    NASA Astrophysics Data System (ADS)

    Lipinski, R. J.; McArthur, D. A.

    Nuclear reactor-pumped lasers (RPL's) have been developed in the US by the Department of Energy for over two decades, with the primary research occurring at Sandia National Laboratories and Idaho National Engineering Laboratory. The US program has experimentally demonstrated reactor-pumped lasing in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1,271, 1,733, 1,792, 2,032, 2,630, 2,650, and 3,370 nm with intrinsic efficiency as high as 2.5%. The major strengths of a reactor-pumped laser are continuous high-power operation, modular construction, self-contained power, compact size, and a variety of wavelengths (from visible to infrared). These characteristics suggest numerous applications not easily accessible to other laser types. The continuous high power of an RPL opens many potential manufacturing applications such as deep-penetration welding and cutting of thick structures, wide-area hardening of metal surfaces by heat treatment or cladding application, wide-area vapor deposition of ceramics onto metal surfaces, production of sub-micron sized particles for manufacturing of ceramics, and 3-D ceramic lithography. In addition, a ground-based RPL could beam its power to space for such activities as illuminating geosynchronous communication satellites in the earth's shadow to extend their lives, beaming power to orbital transfer vehicles, removing space debris, and providing power (from earth) to a lunar base during the long lunar night.

  20. Influence Of The Laser Cladding Strategies On The Mechanical Properties Of Inconel 718

    SciTech Connect

    Lamikiz, A.; Tabernero, I.; Ukar, E.; Lopez de Lacalle, L. N.

    2011-01-17

    This work presents different experimental results of the mechanical properties of Inconel registered 718 test parts built-up by laser cladding. Recently, turbine manufacturers for aeronautical sector have presented high interest on laser cladding processes. This process allows building fully functional structures on superalloys, such as Inconel registered 718, with high flexibility on complex shapes. However, there is limited data on mechanical properties of the laser cladding structures. Moreover, the available data do not include the influence of process parameters and laser cladding strategies. Therefore, a complete study of the influence of the laser cladding parameters and mainly, the variation of the tensile strength with the laser cladding strategy is presented. The results show that there is a high directionality of mechanical properties, depending on the strategies of laser cladding process. In other words, the test parts show a fiber -like structure that should be considered on the laser cladding strategy selection.

  1. Spatial mode-selective waveguide with hyperbolic cladding

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Xi, Z.; Xu, M.; Bäumer, S.; Adam, A. J. L.; Urbach, H. P.

    2016-09-01

    Hyperbolic Meta-Materials~(HMMs) are anisotropic materials with permittivity tensor that has both positive and negative eigenvalues. Here we report that by using a type II HMM as cladding material, a waveguide which only supports higher order modes can be achieved, while the lower order modes become leaky and are absorbed in the HMM cladding. This counter intuitive property can lead to novel application in optical communication and photonic integrated circuit. The loss in our HMM-Insulator-HMM~(HIH) waveguide is smaller than that of similar guided mode in a Metal-Insulator-Metal~(MIM) waveguide.

  2. Spatial mode-selective waveguide with hyperbolic cladding.

    PubMed

    Tang, Y; Xi, Z; Xu, M; Bäumer, S; Adam, A J L; Urbach, H P

    2016-09-15

    Hyperbolic metamaterials (HMMs) are anisotropic materials with a permittivity tensor that has both positive and negative eigenvalues. Here we report that by using a type II HMM as a cladding material, a waveguide that only supports higher-order modes can be achieved, while the lower-order modes become leaky and are absorbed in the HMM cladding. This counter-intuitive property can lead to novel application in optical communications and photonic integrated circuits. The loss in our HMM insulator-HMM (HIH) waveguide is smaller than that of similar guided modes in a metal-insulator-metal (MIM) waveguide. PMID:27628378

  3. Electromechanical characterization of silver-clad BSCCO tapes.

    SciTech Connect

    Salib, S.; Iyer, A. N.; Vipulanandan, C.; Salama, K.; Balachandran, U.; Energy Technology; Univ. of Houston

    1998-01-01

    During the fabrication of silver-clad BSCCO tapes they are subjected to stresses which could lead to degradation in their current transport property. In the present investigation, studies were made to evaluate the electromechanical characteristics of silver-clad BSCCO conductors. The tensile strain tolerance characteristics of the monofilament, multifilament and composite (15 and 30% of Ag powder by volume) tapes were evaluated at 77 K. The average irreversible strain of monofilament and composite tapes were 0.19 and 0.47%, respectively. No noticeable improvement in strain tolerance was observed with the multifilament tapes. Detailed phase and microstructural analysis have been conducted using scanning electron microscopy.

  4. CHARACTERIZATION OF HYDROGEN CONTENT IN ZIRCALOY-4 NUCLEAR FUEL CLADDING

    SciTech Connect

    Pfeif, E. A.; Mishra, B.; Olson, D. L.; Lasseigne, A. N.; Krzywosz, K.; Mader, E. V.

    2010-02-22

    Assessment of hydrogen uptake of underwater nuclear fuel clad and component materials will enable improved monitoring of fuel health. Zirconium alloys are used in nuclear reactors as fuel cladding, fuel channels, guide tubes and spacer grids, and are available for inspection in spent fuel pools. With increasing reactor exposure zirconium alloys experience hydrogen ingress due to neutron interactions and water-side corrosion that is not easily quantified without destructive hot cell examination. Contact and non-contact nondestructive techniques, using Seebeck coefficient measurements and low frequency impedance spectroscopy, to assess the hydrogen content and hydride formation within zircaloy 4 material that are submerged to simulate spent fuel pools are presented.

  5. Method and system for edge cladding of laser gain media

    SciTech Connect

    Bayramian, Andrew James; Caird, John Allyn; Schaffers, Kathleen Irene

    2014-03-25

    A gain medium operable to amplify light at a gain wavelength and having reduced transverse ASE includes an input surface and an output surface opposing the input surface. The gain medium also includes a central region including gain material and extending between the input surface and the output surface along a longitudinal optical axis of the gain medium. The gain medium further includes an edge cladding region surrounding the central region and extending between the input surface and the output surface along the longitudinal optical axis of the gain medium. The edge cladding region includes the gain material and a dopant operable to absorb light at the gain wavelength.

  6. Efficient microfluidic photocatalysis in a symmetrical metal-cladding waveguide.

    PubMed

    Zhu, Shu; Dai, Hailang; Jiang, Bei; Shen, Zhenhua; Chen, Xianfeng

    2016-02-14

    In this paper, a symmetrical metal-cladding optical waveguide based microfluidic chip with a self-organized and free-standing TiO2 nanotube membrane was utilized to perform efficient photocatalysis. The chip has a microchannel bonded with TiO2 nanotube coated glass. The employment of microfluidic chip for hydrolysis reaction can enable the transfer of mass and photons. Moreover, the incorporation of the double metal-cladding waveguide enhances the light-matter interaction and effectively improves the efficiency of photocatalysis.

  7. Welding fixture for nuclear fuel pin cladding assemblies

    DOEpatents

    Oakley, David J.; Feld, Sam H.

    1986-01-01

    A welding fixture for locating a driver sleeve about the open end of a nuclear fuel pin cladding. The welding fixture includes a holder provided with an open cavity having shoulders for properly positioning the driver sleeve, the end cap, and a soft, high temperature resistant plastic protective sleeve that surrounds a portion of the end cap stem. Ejected contaminant particles spewed forth by closure of the cladding by pulsed magnetic welding techniques are captured within a contamination trap formed in the holder for ultimate removal and disposal of contaminating particles along with the holder.

  8. Welding fixture for nuclear fuel pin cladding assemblies

    DOEpatents

    Oakley, D.J.; Feld, S.H.

    1984-02-22

    A welding fixture is described for locating a driver sleeve about the open end of a nuclear fuel pin cladding. The welding fixture includes a holder provided with an open cavity having shoulders for properly positioning the driver sleeve, the end cap, and a soft, high temperature resistant plastic protective sleeve that surrounds a portion of the end cap stem. Ejected contaminant particles spewed forth by closure of the cladding by pulsed magnetic welding techniques are captured within a contamination trap formed in the holder for ultimate removal and disposal of contaminating particles along with the holder.

  9. High-order harmonic noise-like pulsing of a passively mode-locked double-clad Er/Yb fibre ring laser

    NASA Astrophysics Data System (ADS)

    Pottiez, O.; Hernández-García, J. C.; Ibarra-Escamilla, B.; Kuzin, E. A.; Durán-Sánchez, M.; González-García, A.

    2014-11-01

    In this paper, we study noise-like pulse generation in a km-long fibre ring laser including a double-clad erbium-ytterbium fibre and passively mode-locked through nonlinear polarization evolution. Although single noise-like pulsing is only observed at moderate pump power, pulse energies as high as 120 nJ are reached in this regime. For higher pump power, the pulse splits into several noise-like pulses, which then rearrange into a stable and periodic pulse train. Harmonic mode locking from the 2nd to the 48th orders is readily obtained. At pump powers close to the damage threshold of the setup, much denser noise-like pulse trains are demonstrated, reaching harmonic orders beyond 1200 and repetition frequencies in excess of a quarter of a GHz. The mechanisms leading to noise-like pulse breaking and stable high-order harmonic mode locking are discussed.

  10. Spot weld attachment of thermocouples to a fuel rod cladding interior surface

    SciTech Connect

    Page, R.E.; Bates, S.O.; Pilger, J.P.

    1984-08-01

    Research was conducted by Pacific Northwest Laboratory to weld 0.020-inch-diameter thermocouples to the interior surface of Zircaloy 4 light-water reactor fuel cladding. Inconel sheathed Type K thermocouples were attached to fuel cladding to register cladding temperatures during loss-of-coolant accident testing. This report describes the development of welding parameters and the effects of thermocouple attachment on the burst strength and integrity of the cladding at temperatures up to 1550/sup 0/F.

  11. Evaluation of transient fuel pin cladding failure criteria for application to inherently safe LMFBR designs

    SciTech Connect

    Kramer, J M; DiMelfi, R J

    1984-03-01

    Purpose of report is to evaluate the methods for determining time-temperature-stress limits for cladding failure under accident conditions for inherently safe LMFBR designs. The range of expected thermal-mechanical cladding loading conditions is outlined for generic accident events, and application of existing mechanistic and empirical cladding failure models to these conditions is evaluated. The study is restricted to reference oxide fuel pins with austenitic stainless steel cladding.

  12. Report on Reactor Physics Assessment of Candidate Accident Tolerant Fuel Cladding Materials in LWRs

    SciTech Connect

    Powers, Jeffrey J.; George, Nathan; Maldonado, G. Ivan; Worrall, Andrew

    2015-08-28

    This work focuses on ATF concepts being researched at Oak Ridge National Laboratory (ORNL), expanding on previous studies of using alternate cladding materials in pressurized water reactors (PWRs). The neutronic performance of two leading alternate cladding materials were assessed in boiling water reactors (BWRs): iron-chromium-aluminum (FeCrAl) cladding, and silicon carbide (SiC)-based composite cladding. This report fulfills ORNL Milestone M3FT-15OR0202332 within the fiscal year 2015 (FY15)

  13. Evaluation of stainless steel cladding for use in current design LWRs. Final report

    SciTech Connect

    Strasser, A.; Santucci, J.; Lindquist, K.; Yario, W.; Stern, G.; Goldstein, L.; Joseph, L.

    1982-12-01

    The design of stainless steel-clad LWR fuel and its performance at steady-state, transient, and accident conditions were reviewed. The objective was to evaluate the potential benefits and disadvantages of substituting stainless steel-clad fuel for the currently used Zircaloy-clad fuel. For a large, modern PWR, the technology and the fuel-cycle costs of stainless steel- and Zircaloy-clad fuels were compared.

  14. A simple in-line fiber polarizer based on tapered flat-clad microfiber with a liquid cladding overlay

    NASA Astrophysics Data System (ADS)

    Lee, C.-L.; Chuang, H.-P.; Lai, K.-C.; Hsieh, I.-S.; Chang, T.-F.; Fan, J.-X.; Tsao, H.-H.; Hsu, K.-C.; Chen, N.-K.

    2008-11-01

    A novel and simple in-line fiber polarizer is presented. The proposed device is fabricated by tapering an anisotropic flat-cladding birefringent micro-fiber surrounding with low-dispersion optical-liquid cladding. We also presented a theoretical analysis for dispersive birefringence of flat-clad micro-fiber with liquid overlay. The proposed device can be useful as all-fiber polarizer for optical communications. Simulation results show the birefringence of the device can be enhanced when the aspect is larger. In the experimental measurement for polarization extinction ratio (PER) of the proposed device, a fiber-pigtailed 1549.25 nm DFB laser light was used as light source. The PER about 30 dB was demonstrated when the liquid with refractive index nD = 1.45 was used.

  15. DECONTAMINATION OF ZIRCALOY CLADDING HULLS FROM SPENT NUCLEAR FUEL

    SciTech Connect

    Rudisill, T.

    2010-09-29

    The feasibility of decontaminating spent fuel cladding hulls using hydrofluoric acid (HF) was investigated as part of the Global Energy Nuclear Partnership (GNEP) Separations Campaign. The concentrations of the fission product and transuranic (TRU) isotopes in the decontaminated hulls were compared to the limits for determining the low level waste (LLW) classification in the United States (US). The {sup 90}Sr and {sup 137}Cs concentrations met the disposal criteria for a Class C LLW; although, in a number of experiments the criteria for disposal as a Class B LLW were met. The TRU concentration in the hulls generally exceeded the Class C LLW limit by at least an order of magnitude. The concentration decreased sharply as the initial 30-40 {micro}m of the cladding hull surface were removed. At depths beyond this point, the TRU activity remained relatively constant, well above the Class C limit. Reprocessing of spent nuclear fuel generates a cladding waste which would likely require disposal as a Greater than Class C LLW in the US. If the cladding hulls could be treated to remove a majority of the actinide and fission product contamination, the hulls could potentially meet acceptance criteria for disposal as a LLW or allow recycle of the Zr metal. Discard of the hulls as a LLW would result in significant cost savings compared to disposal as a Greater than Class C waste which currently has no disposition path. During fuel irradiation and reprocessing, radioactive materials are produced and deposited in the Zircaloy cladding. Due to short depths of penetration, the majority of the fission products and actinide elements are located in the ZrO{sub 2} layer which forms on the surface of the cladding during fuel irradiation. Therefore, if the oxide layer is removed, the majority of the contamination should also be removed. It is very difficult, if not impossible to remove all of the activity from spent fuel cladding since traces of U and Th in the unirradiated Zircaloy

  16. Efficient phase-matched third harmonic generation in a metal-clad plasmonic double-slot waveguide

    NASA Astrophysics Data System (ADS)

    Wu, Tingting; Shum, Perry Ping; Shao, Xuguang; Sun, Yunxu; Huang, Tinaye; Wei, Lei

    2015-02-01

    We propose a metal-clad plasmonic double-slot waveguide with DDMEBT integrated into the slot region as the interactive material for third harmonic generation (THG) from the mid-IR (3600 nm) to the near-IR (1200 nm) region. Typically, an efficient THG process in a waveguide platform relies on three key aspects: high third-order nonlinear susceptibility of the interactive material, fulfillment of the phase-matching condition (PMC), and large pump-harmonic modal overlap. Although it has been theoretically predicted to be possible, designing waveguides to achieve the three key aspects simultaneously is still a major challenge. In the metal-clad plasmonic double-slot waveguide, the PMC between the zeroth mode at the fundamental wave (FW) and the second mode at the third harmonic (TH) is achieved. Taking advantage of the channel plasmon polariton (CPP), the electric fields at both FW and TH are tightly confined in the slot region. The specific slot waveguide structure is exploited to significantly enhance the pump-harmonic modal overlap by greatly reducing the counteractive electric field portion of the second mode at TH. According to our simulation, THG conversion efficiency reaches 1.4732 × 10-5 with 3 W pump power at a waveguide length of 12.3 μm. This THG efficiency is greatly enhanced because of the high third-order nonlinear optical susceptibility of the DDMEBT, the specific plasmonic slot waveguide structure, and the CPP nature of the guided modes—it is more than two times that obtained by simply considering a single slot under the same slot-width condition.

  17. Characteristics of a long-period fiber grating with reduced cladding for refractive index sensing

    NASA Astrophysics Data System (ADS)

    Chen, Haiyun; Gu, Zhengtian

    2011-10-01

    The sensitivity to surrounding refractive index (SRI) of a long-period fiber grating (LPFG) can be effectively improved by decreasing the cladding radius. When the cladding is reduced, a three-layer model is necessary to evaluate the effective refractive index (ERI) of the core mode. A variation of SRI can induce a greater resonant wavelength shift when the core mode is coupled to a higher-order cladding mode. However, as the cladding is reduced further, the highest-order cladding mode would be cut off, i.e. the number of cladding modes that a given fiber structure can support would be less; thus, the higher-order cladding modes that can be used for higher sensitivity are limited. Hence, the implementation of high sensitivity for SRI sensing with cladding-reduced LPFGs is dependent on the proper combination of cladding radius and cladding mode order. Based on the vector coupled-mode theory, the transmission spectrum and sensitivity are numerically analyzed with respect to the cladding radius, which shows that the SRI sensitivity of the HE12 mode with cladding radius a 2 = 20 µm is 32 times as high as that with a 2 = 62.5 µm and the SRI resolution is available to the order of 10-7.

  18. Continuously pumping and reactivating gas pump

    DOEpatents

    Batzer, Thomas H.; Call, Wayne R.

    1984-01-01

    Apparatus for continuous pumping using cycling cyropumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels the alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independent pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  19. Continuously pumping and reactivating gas pump

    DOEpatents

    Batzer, T.H.; Call, W.R.

    Apparatus for continuous pumping using cycling cryopumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels that alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independant pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  20. Alternative backing up pump for turbomolecular pumps

    DOEpatents

    Myneni, Ganapati Rao

    2003-04-22

    As an alternative to the use of a mechanical backing pump in the application of wide range turbomolecular pumps in ultra-high and extra high vacuum applications, palladium oxide is used to convert hydrogen present in the evacuation stream and related volumes to water with the water then being cryo-pumped to a low pressure of below about 1.e.sup.-3 Torr at 150.degree. K. Cryo-pumping is achieved using a low cost Kleemenco cycle cryocooler, a somewhat more expensive thermoelectric cooler, a Venturi cooler or a similar device to achieve the required minimization of hydrogen partial pressure.

  1. Tritium gas transfer pump development

    SciTech Connect

    Sharpe, C.L.

    1985-01-01

    Non-lubricated, hermetically sealed pumps for tritium service have been selected to replace Sprengel pumps in the existing Tritium Facility. These pumps will be the primary gas-transfer pumps in the planned Replacement Tritium Facility. The selected pumps are Metal Bellows Corporation's bellows pumps and Normetex scroll pumps. Pumping range for a Normetex/Metal Bellows system is from 0.01 torr suction to 2300 torr discharge. Performance characteristics of both pumps are presented. 10 figs.

  2. Optimization of Hydride Rim Formation in Unirradiated Zr 4 Cladding

    SciTech Connect

    Shimskey, Rick W.; Hanson, Brady D.; MacFarlan, Paul J.

    2013-09-30

    The purpose of this work is to build on the results reported in the M2 milestone M2FT 13PN0805051, document number FCRD-USED-2013-000151 (Hanson, 2013). In that work, it was demonstrated that unirradiated samples of zircaloy-4 cladding could be pre-hydrided at temperatures below 400°C in pure hydrogen gas and that the growth of hydrides on the surface could be controlled by changing the surface condition of the samples and form a desired hydride rim on the outside diameter of the cladding. The work performed at Pacific Northwest National Laboratory since the issuing of the M2 milestone has focused its efforts to optimize the formation of a hydride rim on available zircaloy-4 cladding samples by controlling temperature variation and gas flow control during pre-hydriding treatments. Surface conditioning of the outside surface was also examined as a variable. The results of test indicate that much of the variability in the hydride thickness is due to temperature variation occurring in the furnaces as well as how hydrogen gas flows across the sample surface. Efforts to examine other alloys, gas concentrations, and different surface conditioning plan to be pursed in the next FY as more cladding samples become available

  3. Reform in Teacher Education through the CLAD/BCLAD Policy.

    ERIC Educational Resources Information Center

    Barreto, Ramona Maile

    1997-01-01

    Analyzes obstacles facing multicultural/bilingual teacher education reform in the context of California's Crosscultural Language and Academic Development (CLAD) or Bilingual Crosscultural Language and Academic Development (BCLAD) programs, which try to translate theoretical frameworks concerned with cultural difference into credentialing policy.…

  4. Cladding burst behavior of Fe-based alloys under LOCA

    DOE PAGESBeta

    Terrani, Kurt A.; Dryepondt, Sebastien N.; Pint, Bruce A.; Massey, Caleb P.

    2015-12-17

    Burst behavior of austenitic and ferritic Fe-based alloy tubes has been examined under a simulated large break loss of coolant accident. Specifically, type 304 stainless steel (304SS) and oxidation resistant FeCrAl tubes were studied alongside Zircaloy-2 and Zircaloy-4 that are considered reference fuel cladding materials. Following the burst test, characterization of the cladding materials was carried out to gain insights regarding the integral burst behavior. Given the widespread availability of a comprehensive set of thermo-mechanical data at elevated temperatures for 304SS, a modeling framework was implemented to simulate the various processes that affect burst behavior in this Fe-based alloy. Themore » most important conclusion is that cladding ballooning due to creep is negligible for Fe-based alloys. Thus, unlike Zr-based alloys, cladding cross-sectional area remains largely unchanged up to the point of burst. Furthermore, for a given rod internal pressure, the temperature onset of burst in Fe-based alloys appears to be simply a function of the alloy's ultimate tensile strength, particularly at high rod internal pressures.« less

  5. Fundamental metallurgical aspects of axial splitting in zircaloy cladding

    SciTech Connect

    Chung, H. M.

    2000-04-03

    Fundamental metallurgical aspects of axial splitting in irradiated Zircaloy cladding have been investigated by microstructural characterization and analytical modeling, with emphasis on application of the results to understand high-burnup fuel failure under RIA situations. Optical microscopy, SEM, and TEM were conducted on BWR and PWR fuel cladding tubes that were irradiated to fluence levels of 3.3 x 10{sup 21} n cm{sup {minus}2} to 5.9 x 10{sup 21} n cm{sup {minus}2} (E > 1 MeV) and tested in hot cell at 292--325 C in Ar. The morphology, distribution, and habit planes of macroscopic and microscopic hydrides in as-irradiated and posttest cladding were determined by stereo-TEM. The type and magnitude of the residual stress produced in association with oxide-layer growth and dense hydride precipitation, and several synergistic factors that strongly influence axial-splitting behavior were analyzed. The results of the microstructural characterization and stress analyses were then correlated with axial-splitting behavior of high-burnup PWR cladding reported for simulated-RIA conditions. The effects of key test procedures and their implications for the interpretation of RIA test results are discussed.

  6. PERSPECTIVE WITH WEST PORTAL. THE BRIDGE IS CLAD IN HORIZONTAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PERSPECTIVE WITH WEST PORTAL. THE BRIDGE IS CLAD IN HORIZONTAL CLAPBOARD SIDING AND HAS A SHEET METAL ROOF. NOTE THE TWO OPENINGS THAT RUN THE LENGTH OF THE BRIDGE; ONE IS AT THE EAVES AND THE OTHER IS ABOUT 4’ ABOVE THE DECK. - Dreibelbis Station Bridge, Spanning Maiden Creek, Balthaser Road (TR 745), Lenhartsville, Berks County, PA

  7. Direct Laser Cladding , Current Status and Future Scope of Application

    NASA Astrophysics Data System (ADS)

    Weisheit, A.; Gasser, A.; Backes, G.; Jambor, T.; Pirch, N.; Wissenbach, K.

    During the last decades Direct Laser Cladding has become an established technique in many industrial fields for applying wear and corrosion protection layers on metallic surfaces as well as for the repair of high value-added components. The most important application fields are die and tool making, turbine components for aero engines and power generation, machine components such as axes and gears, and oil drilling components. Continuous wave (CW) lasers with a power up to 18 kW are used on automated machines with three or more axes, enabling 3D cladding . The outstanding feature of DLC is the high precision which leads to a minimum heat input into the work piece and a very low distortion. Due to the high cooling rates a fine grained microstructure is achieved during solidification. A new development in laser cladding is micro cladding in a size range below 50 \\upmum especially for electronic and medical applications. Furthermore, additive manufacturing is coming again into focus as a clean and resource-efficient method to manufacture and modify functional prototypes as well as unique and small lot parts.

  8. 78 FR 7451 - Clad Steel Plate From Japan; Determination

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ..., 2012 (77 FR 5052) and determined on May 7, 2012 that it would conduct a full review (77 FR 37439, June..., 2012 (77 FR 38825). The hearing was held in Washington, DC, on December 6, 2012, and all persons who... COMMISSION Clad Steel Plate From Japan; Determination On the basis of the record \\1\\ developed in the...

  9. Cladding burst behavior of Fe-based alloys under LOCA

    SciTech Connect

    Terrani, Kurt A.; Dryepondt, Sebastien N.; Pint, Bruce A.; Massey, Caleb P.

    2015-12-17

    Burst behavior of austenitic and ferritic Fe-based alloy tubes has been examined under a simulated large break loss of coolant accident. Specifically, type 304 stainless steel (304SS) and oxidation resistant FeCrAl tubes were studied alongside Zircaloy-2 and Zircaloy-4 that are considered reference fuel cladding materials. Following the burst test, characterization of the cladding materials was carried out to gain insights regarding the integral burst behavior. Given the widespread availability of a comprehensive set of thermo-mechanical data at elevated temperatures for 304SS, a modeling framework was implemented to simulate the various processes that affect burst behavior in this Fe-based alloy. The most important conclusion is that cladding ballooning due to creep is negligible for Fe-based alloys. Thus, unlike Zr-based alloys, cladding cross-sectional area remains largely unchanged up to the point of burst. Furthermore, for a given rod internal pressure, the temperature onset of burst in Fe-based alloys appears to be simply a function of the alloy's ultimate tensile strength, particularly at high rod internal pressures.

  10. An Innovative Ceramic Corrosion Protection System for Zircaloy Cladding

    SciTech Connect

    Ronald H. Baney, Dr. D. Butt, Dr. P. Demkowicz, Dr. G. Fuchs Department of Materials Science; James S. Tulenko, Department of Nuclear and Radiological Engineering; University of Florida.

    2003-02-19

    Light Water reactor (LWR) fuel performance is currently limited by thermal, chemical and mechanical constraints associated with the design, fabrication, and operation of the fuel in incore operation. Corrosion of the zirconium based (Zircaloy-4) alloy cladding of the fuel is a primary limiting factor. Recent success at the University of Florida in developing thin ceramic films with great adhesive properties for metal substrates offers an innovative breakthrough for eliminating a major weakness of the Zircaloy clad. ?The University of Florida proposes to coat the existing Zircaloy clad tubes with a ceramic coating for corrosion protection. An added bonus of this approach would be the implementation of a boron-containing burnable poison outer layer will also be demonstrated as part of the ceramic coating development. In this proposed effort, emphasis will be on the ceramic coating with only demonstration of feasibility on the burnable outer coating approach. This proposed program i s expected to give a step change (approximately a doubling) in clad lifetime before failure due to corrosion. In the development of ceramic coatings for Zircaloy-4 clad, silicon carbide and zirconium carbide coatings will first be applied to Zircaloy-4 coupons and cladding samples by thermal assisted chemical vapor deposition, plasma assisted chemical vapor deposition or by laser ablation deposition. All of these processes are in use at the University of Florida and have shown great potential. The questions of adhesion and thermal expansion mismatch of the ceramic coating to the Zircaloy substrate will be addressed. Several solutions to these conditions will be examined, if needed. These solutions include the use of a zirconium oxide compliant layer, employment of a laser roughened surface and the use of a gradient composition interlayer. These solutions have already been shown to be effective for other high modulus coatings on metal substrates. Mechanical properties and adhesion of the

  11. Orientation-Dependent Displacement Sensor Using an Inner Cladding Fiber Bragg Grating.

    PubMed

    Yang, Tingting; Qiao, Xueguang; Rong, Qiangzhou; Bao, Weijia

    2016-01-01

    An orientation-dependent displacement sensor based on grating inscription over a fiber core and inner cladding has been demonstrated. The device comprises a short piece of multi-cladding fiber sandwiched between two standard single-mode fibers (SMFs). The grating structure is fabricated by a femtosecond laser side-illumination technique. Two well-defined resonances are achieved by the downstream both core and cladding fiber Bragg gratings (FBGs). The cladding resonance presents fiber bending dependence, together with a strong orientation dependence because of asymmetrical distribution of the "cladding" FBG along the fiber cross-section. PMID:27626427

  12. Gas pump with movable gas pumping panels

    DOEpatents

    Osher, J.L.

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  13. Cladding hull decontamination and densification process. Part 1. The prototype cladding hull decontamination system

    SciTech Connect

    Lambright, T.M.; Montgomery, D.R.

    1980-04-01

    A prototype system for decontaminating Zircaloy-4 cladding hulls has been assembled and tested at Pacific Northwest Laboratory. The decontamination process consists of treatment with a gaseous mixture of hydrogen fluoride (HF) and argon (Ar) followed by a dilute aqueous etch of ammonium oxalate, ammonium citrate, ammonium fluoride, and hydrogen peroxide. The continuous cleaning process described in this report successfully descaled small portions of most charges, but was unable to handle the original design capacity of 4 kg/hr because of problems in the following areas: control of HF reactor temperatures, regulation of HF and argon mixtures and flows, isolation of the HF reactor atmosphere from the aqueous washer/rinser atmosphere, regulation of undesirable side reactions, and control over hull transport through the system. Due to the limited time available to solve these problems, the system did not attain fully operational status. The work was performed with unirradiated hulls that simulated irradiated hulls. The system was not built to be remotely operable. The process chemistry and system equipment are described in this report with particular emphasis on critical operating areas. Recommendations for improved system operation are included.

  14. A Novel Method of Modeling the Deformation Resistance for Clad Sheet

    SciTech Connect

    Hu Jianliang; Yi Youping; Xie Mantang

    2011-08-22

    Because of the excellent thermal conductivity, the clad sheet (3003/4004/3003) of aluminum alloy is extensively used in various heat exchangers, such as radiator, motorcar air conditioning, evaporator, and so on. The deformation resistance model plays an important role in designing the process parameters of hot continuous rolling. However, the complex behaviors of the plastic deformation of the clad sheet make the modeling very difficult. In this work, a novel method for modeling the deformation resistance of clad sheet was proposed by combining the finite element analysis with experiments. The deformation resistance model of aluminum 3003 and 4004 was proposed through hot compression test on the Gleeble-1500 thermo-simulation machine. And the deformation resistance model of clad sheet was proposed through finite element analysis using DEFORM-2D software. The relationship between cladding ratio and the deformation resistance was discussed in detail. The results of hot compression simulation demonstrate that the cladding ratio has great effects on the resistance of the clad sheet. Taking the cladding ratio into consideration, the mathematical model of the deformation resistance for clad sheet has been proved to have perfect forecasting precision of different cladding ratio. Therefore, the presented model can be used to predict the rolling force of clad sheet during the hot continuous rolling process.

  15. On microstructure and flexural strength of metal-ceramic composite cladding developed through microwave heating

    NASA Astrophysics Data System (ADS)

    Sharma, Apurbba Kumar; Gupta, Dheeraj

    2012-05-01

    A domestic multimode microwave applicator was used to develop carbide reinforced (tungsten-based) metal-matrix composite cladding on austenitic stainless steel substrate. Cladding was developed through microwave irradiation of the preplaced clad materials at 2.45 GHz for 420 s. Clads show metallurgical bonding with substrate by partial dilution of materials. Back scattered images of clad section confirm uniformly distributed reinforced particles in the metallic matrix. Presence of WC, W2C, NiSi, NiW and Co3W3C phases was detected in the clad. Flexural characteristics show two distinct load transitions attributable to deformations of the matrix and the reinforced particles. Clads fail at the upper transition load; further load is taken by the SS-316 substrate. Clads exhibit good stiffness and good adhesion with the substrate. Multi directional cracks were observed at the clad surface; on further loading, cracks get propagated into the clad thickness without getting peeled-off. Mechanism of clad development has been introduced.

  16. Proton pump inhibitors

    MedlinePlus

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This ...

  17. Insulin pump (image)

    MedlinePlus

    The catheter at the end of the insulin pump is inserted through a needle into the abdominal ... with diabetes. Dosage instructions are entered into the pump's small computer and the appropriate amount of insulin ...

  18. A Probabilistic-Micro-mechanical Methodology for Assessing Zirconium Alloy Cladding Failure

    SciTech Connect

    Pan, Y.M.; Chan, K.S.; Riha, D.S.

    2007-07-01

    Cladding failure of fuel rods caused by hydride-induced embrittlement is a reliability concern for spent nuclear fuel after extended burnup. Uncertainties in the cladding temperature, cladding stress, oxide layer thickness, and the critical stress value for hydride reorientation preclude an assessment of the cladding failure risk. A set of micro-mechanical models for treating oxide cracking, blister cracking, delayed hydride cracking, and cladding fracture was developed and incorporated in a computer model. Results obtained from the preliminary model calculations indicate that at temperatures below a critical temperature of 318.5 deg. C [605.3 deg. F], the time to failure by delayed hydride cracking in Zr-2.5%Nb decreased with increasing cladding temperature. The overall goal of this project is to develop a probabilistic-micro-mechanical methodology for assessing the probability of hydride-induced failure in Zircaloy cladding and thereby establish performance criteria. (authors)

  19. Photovoltaic pump systems

    NASA Astrophysics Data System (ADS)

    Klockgether, J.; Kiessling, K. P.

    1983-09-01

    Solar pump systems for the irrigation of fields and for water supply in regions with much sunshine are discussed. For surface water and sources with a hoisting depth of 12 m, a system with immersion pumps is used. For deep sources with larger hoisting depths, an underwater motor pump was developed. Both types of pump system meet the requirements of simple installation and manipulation, safe operation, maintenance free, and high efficiency reducing the number of solar cells needed.

  20. Rotary magnetic heat pump

    DOEpatents

    Kirol, Lance D.

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  1. Multiwell pumping device

    SciTech Connect

    Dysarz, E.D.

    1987-06-30

    This patent describes a balanced pumping apparatus for pumping two laterally spaced wells comprising: a left conductor on a left well; a right conductor on a right the well; a left pump casing inside the well conductor; a right pump casing inside the right well conductor; a left sucker rod inside the left pump casing; a right sucker rod inside the right pump casing; flexible linkage means for attachment to the top ends of the right sucker rod and left sucker rod; a drive motor with a rotating shaft; a drive sprocket rotatably engaging the flexible linkage means; a separate pump casing flange attached to the upper section of each well conductors; a separate upper flange attached to the upper section of each pump casing and positioned at an axial location above the point attached to the pump casing; a separate transition piece attached to the top of each pump casing flange; a separate pump support attached to the top of each transition piece; a plate-like structural support means placed in a vertical plane above the well conductors and supporting the drive motor, the drive sprocket, the flexible linkage means, and the sucker rods; a structural load transfer means connecting the plate-like structural support means to the well conductors; a motor control unit for supporting itself and controlling the drive motor; and a separate shaft extending across each pump support.

  2. Types of Breast Pumps

    MedlinePlus

    ... uses batteries or a cord plugged into an electrical outlet to power a small motorized pump that creates suction to ... pumping. Because these breast pumps rely on a power source, women who use ... situations when electricity or extra batteries may not be available. If ...

  3. Rotary magnetic heat pump

    DOEpatents

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  4. Pump for Saturated Liquids

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1986-01-01

    Boiling liquids pumped by device based on proven components. Expanding saturated liquid in nozzle and diverting its phases along separate paths in liquid/vapor separator raises pressure of liquid. Liquid cooled in process. Pump makes it unnecessary to pressurize cryogenic liquids in order to pump them. Problems of introducing noncondensable pressurizing gas avoided.

  5. Green pumped Alexandrite lasers

    NASA Astrophysics Data System (ADS)

    Kuper, Jerry W.; Brown, David C.

    2005-04-01

    Initial experiments with pulsed and CW pumping an alexandrite laser rod at 532 nm are presented. This pumping architecture holds promise for the production of scalable diode-pumped, tunable alexandrite laser systems operating in the near infrared (750 nm), and the ultraviolet (375 and 250 nm) spectral regions.

  6. [Double cladding ytterbium doped superfluorescence fiber source with 3 dB bandwidth reaching up to 80 nm].

    PubMed

    Han, Xu; Feng, Guo-Ying; Han, Jing-Hua; Wu, Chuan-Long; Zhou, Shou-Huan

    2012-11-01

    The present paper reports a double pass forward superfluorescent fiber source (SFS), which uses a length of large mode area double cladding ytterbium doped fiber as gain medium. The maximum output power of this SFS is 341 mW. With the output power between 201 and 341 mW, the 3dB bandwidth of this SFS was more than 80 nm. This is the widest 3 dB bandwidth obtained from ytterbium doped SFS. The output power of the SFS linearly increased with the increment of the pump source injected current. It's output power is not very high, but under normal circumstances, it could meet the needs of the SFS. From the energy level structure of ytterbium ions and the absorption cross-section/emission cross section of ytterbium ions in quartz substrate, the physical mechanisms responsible for superfluorescence were analyzed. This double-cladding ytterbium-doped superfluorescent fiber laser benefits from the superfluorescence radiation near 1 025 and 1 075 nm, so the superfluorescence with 3 dB bandwidth reaching up to 80 nm could be obtained. PMID:23387175

  7. Ultrasonic monitoring of material processing using clad buffer rod sensors

    NASA Astrophysics Data System (ADS)

    Ramos Franca, Demartonne

    Ultrasonic sensors and techniques are developed for in-line monitoring of polymer extrusion, cleanliness of molten metals and liquid flow speed at elevated temperature. Pulse-echo mode is used for the first two processes, while the through-transmission mode is applied in the third one. The ultrasonic probe consists of high performance clad buffer rods with different dimensions to thermally isolate the commercial ultrasonic transducer from materials at high temperature. The clad buffer rods are made of steel, polymer and ceramic. Steel clad buffer rods are introduced for in-line monitoring of polymer extrusion processes. Owing to its superior performance in pulse-echo mode, for the first time such a probe is installed and performs ultrasonic monitoring in the die of a co-extrusion machine and in the barrel section of a twin-screw extruder. It can reveal a variety of information relevant to process parameters, such as polymer layer thickness, interface location and adhesion quality, stability, or polymer composition change. For the ultrasonic monitoring of polymer processes, probes with acoustic impedance that matches that of the processed polymer may offer certain advantages such as quantitative viscoelastic evaluation; thus high temperature polymer clad buffer rods, in particular PEEK, are developed. It is demonstrated that this new probe exhibits unique advantages for in-line monitoring of the cure of epoxies and polymer extrusion process. Long steel clad buffer rods with a spherical focus lens machined at the probing end are proposed for cleanliness evaluation of molten metals. The potential of this focusing probe is demonstrated by means of high-resolution imaging and particles detection in molten zinc at temperatures higher than 600°C, using a single probe operated at pulse-echo mode. A contrapropagating ultrasonic flowmeter employing steel clad buffer rods is devised to operate at high temperature. It is demonstrated that these rods guide ultrasonic signals

  8. Jet pump assisted artery

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A procedure for priming an arterial heat pump is reported; the procedure also has a means for maintaining the pump in a primed state. This concept utilizes a capillary driven jet pump to create the necessary suction to fill the artery. Basically, the jet pump consists of a venturi or nozzle-diffuser type constriction in the vapor passage. The throat of this venturi is connected to the artery. Thus vapor, gas, liquid, or a combination of the above is pumped continuously out of the artery. As a result, the artery is always filled with liquid and an adequate supply of working fluid is provided to the evaporator of the heat pipe.

  9. Liquid metal electric pump

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1992-01-01

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  10. Filtration and Leach Testing for PUREX Cladding Sludge and REDOX Cladding Sludge Actual Waste Sample Composites

    SciTech Connect

    Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Hallen, Richard T.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

    2009-03-02

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan (Barnes and Voke 2006). The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Hanford Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP RPP WTP 467 (Fiskum et al. 2007), eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan. • Characterizing the homogenized sample groups. • Performing parametric leaching testing on each group for compounds of interest. • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on a filtration/leaching test performed using two of the eight waste composite samples. The sample groups examined in this report were the plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR). Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, thus requiring caustic leaching. WTP RPT 167 (Snow et al. 2008) describes the homogenization, characterization, and parametric leaching activities before benchtop filtration/leaching testing of these two waste groups. Characterization and initial parametric data in that report were used to plan a single filtration/leaching test using a blend of both wastes. The test focused on filtration testing of the waste and caustic leaching for aluminum, in the form

  11. Investigation of a quadrupole ultra-high vacuum ion pump

    NASA Technical Reports Server (NTRS)

    Schwarz, H. J.

    1974-01-01

    The new nonmagnetic ion pump resembles the quadrupole ionization gage. The dimensions are larger, and hyperbolically shaped electrodes replace the four rods. Their surfaces follow y sq. = 36 + x sq. (x, y in centimeters). The electrodes, 55 cm long, are positioned lengthwise in a tube. At one end a cathode emits electrons; at the other end a narrowly wound flat spiral of tungsten clad with titanium on cathode potential can be heated for titanium evaporation. Electrons accelerated by a dc potential of the surface electrodes oscillate between the ends on rotational trajectories, if a high frequency potential superimposed on the dc potential is properly adjusted. Pumping speeds (4-100 liter/sec) for different gases at different peak voltages (1000-3000V) at corresponding frequencies (57-100 MHz), and at different pressures 0.00001 to the minus 9 power Torr were observed. The lowest pressure reached was below 10 to the minus 10 power Torr.

  12. Efficient laser emission from cladding waveguide inscribed in Nd:GdVO(4) crystal by direct femtosecond laser writing.

    PubMed

    Liu, Hongliang; Tan, Yang; Vázquez de Aldana, Javier R; Chen, Feng

    2014-08-01

    We report on the fabrication of depressed cladding waveguides in Nd:GdVO(4) laser crystal by using femtosecond laser inscription. The cross section of the structure is a circular shape with a diameter of 150 μm. Under the optical pump at 808 nm, the continuous wave (cw) as well as pulsed (Q-switched by graphene saturable absorber) waveguide lasing at 1064 nm has been realized, supporting guidance of both TE and TM polarizations. The maximum output power of 0.57 W was obtained in the cw regime, while the maximum pulse energy of the pulsed laser emissions was up to 19 nJ (corresponding to a maximum average output power of 0.33 W, at a resonant frequency of 18 MHz). The slope efficiencies achieved for the cw and pulsed Nd:GdVO(4) waveguide lasers were as high as 68% and 52%, respectively. PMID:25078226

  13. Evaluation of Tritium Content and Release from Pressurized Water Reactor Fuel Cladding

    SciTech Connect

    Robinson, Sharon M.; Chattin, Marc Rhea; Giaquinto, Joseph; Jubin, Robert Thomas

    2015-09-01

    It is expected that tritium pretreatment will be required in future reprocessing plants to prevent the release of tritium to the environment (except for long-cooled fuels). To design and operate future reprocessing plants in a safe and environmentally compliant manner, the amount and form of tritium in the used nuclear fuel (UNF) must be understood and quantified. Tritium in light water reactor (LWR) fuel is dispersed between the fuel matrix and the fuel cladding, and some tritium may be in the plenum, probably as tritium labelled water (THO) or T2O. In a standard processing flowsheet, tritium management would be accomplished by treatment of liquid streams within the plant. Pretreating the fuel prior to dissolution to release the tritium into a single off-gas stream could simplify tritium management, so the removal of tritium in the liquid streams throughout the plant may not be required. The fraction of tritium remaining in the cladding may be reduced as a result of tritium pretreatment. Since Zircaloy® cladding makes up roughly 25% by mass of UNF in the United States, processes are being considered to reduce the volume of reprocessing waste for Zircaloy® clad fuel by recovering the zirconium from the cladding for reuse. These recycle processes could release the tritium in the cladding. For Zircaloy-clad fuels from light water reactors, the tritium produced from ternary fission and other sources is expected to be divided between the fuel, where it is generated, and the cladding. It has been previously documented that a fraction of the tritium produced in uranium oxide fuel from LWRs can migrate and become trapped in the cladding. Estimates of the percentage of tritium in the cladding typically range from 0–96%. There is relatively limited data on how the tritium content of the cladding varies with burnup and fuel history (temperature, power, etc.) and how pretreatment impacts its release. To gain a better understanding of how tritium in cladding

  14. Clad — Automatic Differentiation Using Clang and LLVM

    NASA Astrophysics Data System (ADS)

    Vassilev, V.; Vassilev, M.; Penev, A.; Moneta, L.; Ilieva, V.

    2015-05-01

    Differentiation is ubiquitous in high energy physics, for instance in minimization algorithms and statistical analysis, in detector alignment and calibration, and in theory. Automatic differentiation (AD) avoids well-known limitations in round-offs and speed, which symbolic and numerical differentiation suffer from, by transforming the source code of functions. We will present how AD can be used to compute the gradient of multi-variate functions and functor objects. We will explain approaches to implement an AD tool. We will show how LLVM, Clang and Cling (ROOT's C++11 interpreter) simplifies creation of such a tool. We describe how the tool could be integrated within any framework. We will demonstrate a simple proof-of-concept prototype, called Clad, which is able to generate n-th order derivatives of C++ functions and other language constructs. We also demonstrate how Clad can offload laborious computations from the CPU using OpenCL.

  15. Package Impact Models as a Precursor to Cladding Analysis

    SciTech Connect

    Klymyshyn, Nicholas A.; Adkins, Harold E.; Bajwa, C.; Piotter, Jason

    2010-07-22

    The evaluation of spent nuclear fuel casks under impact loading is an important safety topic that is reviewed as part of cask certification by the United States Nuclear Regulatory Commission. Explicit dynamic finite element models of full cask systems are increasingly common in industry for determining structural integrity during hypothetical drop accidents. Full cask model results are also used as the loading basis for single fuel pin impact models, which evaluate the response of fuel cladding under drop conditions. In this paper, a simplified cask system is evaluated to illustrate several important structural dynamic phenomena, including the effect of gaps between components, the difference in local response at various points on a cask during impact, and the effect of modeling various simplified representations of the basket and fuel assemblies contained within the cask. This paper focuses on the cask impact analysis, and how loading conditions for a subsequent fuel assembly or fuel cladding analysis can be extracted.

  16. Characterization of Fuel-Cladding Bond Strength Using Laser Shock

    SciTech Connect

    James A. Smith; David L. Cottle; Barry H. Rabin

    2014-04-01

    This paper describes new laser-based capabilities for characterization of fuel-cladding bond strength in nuclear fuels, and presents preliminary results obtained from studies on as-fabricated monolithic fuel consisting of uranium-10 wt.% molybdenum alloys clad in 6061 aluminum by hot isostatic pressing. Two complementary experimental methods are employed, laser-shock testing and laser-ultrasonic imaging. Measurements are spatially localized, non-contacting and require minimum specimen preparation, and are therefore ideally suited for applications involving radioactive materials, including irradiated materials. The theoretical principles and experimental approaches employed in characterization of nuclear fuel plates are described. The ability to measure layer thicknesses, elastic properties of the constituents, and the location and nature of laser-shock induced debonds is demonstrated, and preliminary bond strength measurement results are discussed.

  17. Fabrication of a tantalum-clad tungsten target for KENS

    NASA Astrophysics Data System (ADS)

    Kawai, Masayoshi; Kikuchi, Kenji; Kurishita, Hiroaki; Li, Jing-Feng; Furusaka, Michihiro

    2001-07-01

    Since the cold neutron source intensity of KENS (the spallation neutron source at High Energy Accelerator Research Organization) was decreased into about a third of the designed value because a cadmium liner at the cold neutron source deformed and obstructed the neutron beam line, the target-moderator-and-reflector assembly (TMRA) has been replaced by a new one aimed at improving the neutron performance and recovering the cold neutron source. The tantalum target has also been replaced by a tantalum-clad tungsten one. In order to bond the tantalum-clad with the tungsten block, a hot isostatic press (HIP) process was applied and optimized. It was found that gaseous interstitial impurity elements severely attacked tantalum and embrittled, and that the getter materials such as zirconium and tantalum were effective to reduce the embrittlement.

  18. HIP-clad products for the plastics industry

    NASA Astrophysics Data System (ADS)

    Bishop, Morley F.; Nickel, Clinton F.

    1999-07-01

    The production of plastics and plastics components requires equipment that can withstand severe wear and, in a high percentage of cases, wear and corrosion environments. There are two basic elements of plastic extrusion equipment: the barrels and the screws. Both must manifest similar properties, but since screw elements are less costly and easier to replace, they are usually designed to wear out first. Due to the high cost of wear/corrosion-resistance materials, the industry used clad (i.e., bimetallic) components. Barrel sections and screw segments are both produced as hot-isostatic press clad components using similar processes. There are any number of material combinations that are used and that are possible for the right application.

  19. Pulsed Magnetic Welding for Advanced Core and Cladding Steel

    SciTech Connect

    Cao, Guoping; Yang, Yong

    2013-12-19

    To investigate a solid-state joining method, pulsed magnetic welding (PMW), for welding the advanced core and cladding steels to be used in Generation IV systems, with a specific application for fuel pin end-plug welding. As another alternative solid state welding technique, pulsed magnetic welding (PMW) has not been extensively explored on the advanced steels. The resultant weld can be free from microstructure defects (pores, non-metallic inclusions, segregation of alloying elements). More specifically, the following objectives are to be achieved: 1. To design a suitable welding apparatus fixture, and optimize welding parameters for repeatable and acceptable joining of the fuel pin end-plug. The welding will be evaluated using tensile tests for lap joint weldments and helium leak tests for the fuel pin end-plug; 2 Investigate the microstructural and mechanical properties changes in PMW weldments of proposed advanced core and cladding alloys; 3. Simulate the irradiation effects on the PWM weldments using ion irradiation.

  20. Three-Layer Zn/Al/Zn Clad Solder for Die Attachment

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Ikeda, O.; Oda, Y.; Hata, S.; Kuroki, K.; Kuroda, H.; Hirose, A.

    2015-02-01

    Three-layer Zn/Al/Zn clad solders have been developed for high-temperature die attachment. The clad structure is used to improve the wettability and bondability of Zn-Al eutectic solder by preventing oxidation of the Al. The materials were produced by clad-rolling Zn and Al strips. TEM observations revealed that the Zn/Al clad interface was metallurgically bonded and that the Al oxide was almost entirely removed. The melting behavior of Zn/Al/Zn clad solder was examined. Eutectic melting began at the Zn/Al clad interface at 382°C, and all of the material melted within approximately 10 s. Unlike conventional Zn-Al solders, Zn/Al/Zn clad solders were successfully bonded without flux. The shear strength of a Zn/Al/Zn clad solder joint was three times that of a Pb-based solder joint. The bondability of Zn/Al/Zn clad solder was superior because the Al oxide films, which prevent bonding between chip and substrate, were fragmented by clad-rolling, and the outer Zn layers prevented Al oxidation during the bonding process.

  1. Multiresponse Optimization of Laser Cladding Steel + VC Using Grey Relational Analysis in the Taguchi Method

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Kovacevic, Radovan

    2016-07-01

    Laser cladding of metal matrix composite coatings (MMCs) has become an effective and economic method to improve the wear resistance of mechanical components. The clad quality characteristics such as clad height, carbide fraction, carbide dissolution, and matrix hardness in MMCs determine the wear resistance of the coatings. These clad quality characteristics are influenced greatly by the laser cladding processing parameters. In this study, American Iron and Steel Institute (AISI) 420 + 20% vanadium carbide (VC) was deposited on mild steel with a high powder direct diode laser. The Taguchi-based Grey relational method was used to optimize the laser cladding processing parameters (laser power, scanning speed, and powder feed rate) with the consideration of multiple clad characteristics related to wear resistance (clad height, carbide volume fraction, and Fe-matrix hardness). A Taguchi L9 orthogonal array was designed to study the effects of processing parameters on each response. The contribution and significance of each processing parameter on each clad characteristic were investigated by the analysis of variance (ANOVA). The Grey relational grade acquired from Grey relational analysis was used as the performance characteristic to obtain the optimal combination of processing parameters. Based on the optimal processing parameters, the phases and microstructure of the laser-cladded coating were characterized by using x-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS).

  2. 1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks.

    PubMed

    Xiao, Y; Brunet, F; Kanskar, M; Faucher, M; Wetter, A; Holehouse, N

    2012-01-30

    We have demonstrated a monolithic cladding-pumped ytterbium-doped single all-fiber laser oscillator generating 1 kW of CW signal power at 1080 nm with 71% slope efficiency and near diffraction-limited beam quality. Fiber components were highly integrated on "spliceless" passive fibers to promote laser efficiency and alleviate non-linear effects. The laser was pumped through a 7:1 pump combiner with seven 200-W 91x nm fiber-pigtailed wavelength-beam-combined diode-stack modules. The signal power of such a single all-fiber laser oscillator showed no evidence of roll-over, and the highest output was limited only by available pump power.

  3. Test plan for spent fuel cladding containment credit tests

    SciTech Connect

    Wilson, C N

    1983-11-01

    Lawrence Livermore National Laboratory has chosen Westinghouse Hanford Company as a subcontractor to assist them in determining the requirements for successful disposal of spent fuel rods in the proposed Nevada Test Site repository. An initial scoping test, with the objective of determining whether or not the cladding of a breached fuel rod can be given any credit as an effective barrier to radionuclide release, is described in this test plan. 8 references, 2 figures, 4 tables.

  4. Influence of curvature on the losses of doubly clad fibers.

    PubMed

    Marcuse, D

    1982-12-01

    The loss increase of the HE(11) mode of a doubly clad (depressed-index) fiber due to constant curvature is considered. The calculations presented in this paper are based on a simplified theory. We find that for typical fibers the leakage loss of the HE(11) mode begins to increase significantly when the radius of curvature of the fiber axis reaches the 1-10-cm range.

  5. DISSOLUTION OF ZIRCALOY 2 CLAD UO2 COMMERCIAL REACTOR FUEL

    SciTech Connect

    Kessinger, G.; Thompson, M.

    2009-08-07

    The primary goal of this investigation was to evaluate the effectiveness of the chop-leach process, with nitric acid solvent, to produce a nominally 300 g/L [U] and 1 M [H{sup +}] product solution. The results of this study show that this processing technique is appropriate for applications in which a low free acid and moderately high U content are desired. The 7.75 L of product solution, which was over 450 g/L in U, was successfully diluted to produce about 13 L of solvent extraction feed that was 302 g/L in U with a [H{sup +}] in the range 0.8-1.2 M. A secondary goal was to test the effectiveness of this treatment for the removal of actinides from Zircaloy cladding to produce a low-level radioactive waste (LLW) cladding product. Analysis of the cladding shows that actinides are present in the cladding at a concentration of about 5000 {eta}Ci/g, which is about 50 times greater than the acceptable transuranium element limit in low level radioactive waste. It appears that the concentration of nitric acid used for this dissolution study (initial concentration 4 M, with 10 M added as the dissolution proceeded) was inadequate to completely digest the UO{sub 2} present in the spent fuel. The mass of insoluble material collected from the initial treatments with nitric acid, 340 g, was much higher than expected, and analysis of this insoluble residue showed that it contained at least 200 g U.

  6. Graphene-clad tapered fiber: effective nonlinearity and propagation losses.

    PubMed

    Gorbach, A V; Marini, A; Skryabin, D V

    2013-12-15

    We derive a pulse propagation equation for a graphene-clad optical fiber, treating the optical response of the graphene and nonlinearity of the dielectric fiber core as perturbations in asymptotic expansion of Maxwell equations. We analyze the effective nonlinear and attenuation coefficients due to the graphene layer. Based on the recent experimental measurements of the nonlinear graphene conductivity, we predict considerable enhancement of the effective nonlinearity for subwavelength fiber core diameters. PMID:24322228

  7. Ion irradiation testing of Improved Accident Tolerant Cladding Materials

    SciTech Connect

    Anderoglu, Osman; Tesmer, Joseph R.; Maloy, Stuart A.

    2014-01-14

    This report summarizes the results of ion irradiations conducted on two FeCrAl alloys (named as ORNL A&B) for improving the accident tolerance of LWR nuclear fuel cladding. After irradiation with 1.5 MeV protons to ~0.5 to ~1 dpa and 300°C nanoindentations were performed on the cross-sections along the ion range. An increase in hardness was observed in both alloys. Microstructural analysis shows radiation induced defects.

  8. Measurement of dispersion in optical fibres with a microstructure cladding

    SciTech Connect

    Levchenko, A E; Kurkov, Andrei S; Semenov, S L

    2005-09-30

    Based on the interferometric technique, a setup is built for measuring the spectral dependence of chromatic dispersion in fibres with a microstructure cladding. The setup provides measurements in a broad spectral range from 670 to 1550 nm taking birefringence in the fibre into account. The results of measurements of dispersion in a standard fibre with this setup and a commercial device are in good agreement. (optical fibres)

  9. Microbial Biofilm Growth on Irradiated, Spent Nuclear Fuel Cladding

    SciTech Connect

    S.M. Frank

    2009-02-01

    A fundamental criticism regarding the potential for microbial influenced corrosion in spent nuclear fuel cladding or storage containers concerns whether the required microorganisms can, in fact, survive radiation fields inherent in these materials. This study was performed to unequivocally answer this critique by addressing the potential for biofilm formation, the precursor to microbial-influenced corrosion, in radiation fields representative of spent nuclear fuel storage environments. This study involved the formation of a microbial biofilm on irradiated spent nuclear fuel cladding within a hot cell environment. This was accomplished by introducing 22 species of bacteria, in nutrient-rich media, to test vessels containing irradiated cladding sections and that was then surrounded by radioactive source material. The overall dose rate exceeded 2 Gy/h gamma/beta radiation with the total dose received by some of the bacteria reaching 5 × 103 Gy. This study provides evidence for the formation of biofilms on spent-fuel materials, and the implication of microbial influenced corrosion in the storage and permanent deposition of spent nuclear fuel in repository environments.

  10. Recent developments in processing HTS silver-clad Bi-2223 tapes, coils and test magnets

    SciTech Connect

    Haldar, P.; Hoehn, J.G. Jr.; Motowidlo, L.R.; Balachandran, U.; Iwasa, Y.; Yunus, M.

    1993-10-01

    Considerable progress has been made in fabricating Bi-2223 high temperature superconductor (HTS) wires and tapes with high critical current densities that are attractive for electric power and high-field magnet applications. Powder-in-tube processed silver-clad Bi-2223 short tape samples, small coils and test magnets have been fabricated and measured at liquid nitrogen (77K), pumped liquid nitrogen (64 K), liquid neon (27K) and liquid helium (4.2K) temperatures. Optimization of thermo-mechanical process parameters have yielded J{sub c}`s in the superconducting core > 4.0 {times} 10{sup 4} A/cm{sup 2} at 77K zero field and > 2.0 {times} 10{sup 5} A/cm{sup 2} at 4.2K, zero field. Long lengths (up to 70 m) of mono-core conductors were fabricated and tested to carry significant amounts of current (23 A, {approximately}15,000 A/cm{sup 2}) at liquid nitrogen temperature. Recent test magnets assembled from pancake wound coils were measured to generate magnetic fields as high as 2.6, 1.8 and 0.36 Tesla at 4.2K, 27K and 77K respectively. These results show promise towards practical utilization of HTS materials.

  11. Final report on accident tolerant fuel performance analysis of APMT-Steel Clad/UO₂ fuel and APMT-Steel Clad/UN-U₃Si₅ fuel concepts

    SciTech Connect

    Unal, Cetin; Galloway, Jack D.

    2014-09-12

    In FY2014 our group completed and documented analysis of new Accident Tolerant Fuel (ATF) concepts using BISON. We have modeled the viability of moving from Zircaloy to stainless steel cladding in traditional light water reactors (LWRs). We have explored the reactivity penalty of this change using the MCNP-based burnup code Monteburns, while attempting to minimize this penalty by increasing the fuel pellet radius and decreasing the cladding thickness. Fuel performance simulations using BISON have also been performed to quantify changes to structural integrity resulting from thinner stainless steel claddings. We account for thermal and irradiation creep, fission gas swelling, thermal swelling and fuel relocation in the models for both Zircaloy and stainless steel claddings. Additional models that account for the lower oxidation stainless steel APMT are also invoked where available. Irradiation data for HT9 is used as a fallback in the absence of appropriate models. In this study the isotopic vectors within each natural element are varied to assess potential reactivity gains if advanced enrichment capabilities were levied towards cladding technologies. Recommendations on cladding thicknesses for a robust cladding as well as the constitutive components of a less penalizing composition are provided. In the first section (section 1-3), we present results accepted for publication in the 2014 TOPFUEL conference regarding the APMT/UO₂ ATF concept (J. Galloway & C. Unal, Accident Tolerant and Neutronically Favorable LWR Cladding, Proceedings of WRFPM 2014, Sendai, Japan, Paper No.1000050). Next we discuss our preliminary findings from the thermo-mechanical analysis of UN-U₃Si₅ fuel with APMT clad. In this analysis we used models developed from limited data that need to be updated when the irradiation data from ATF-1 test is available. Initial results indicate a swelling rate less than 1.5% is needed to prevent excessive clad stress.

  12. Analysis of transmission characteristics of doubly clad fibers with an inner cladding made of uniaxial crystal materials

    NASA Astrophysics Data System (ADS)

    Xiaoping, Zhang; Zhihong, Tan

    2002-04-01

    A doubly clad optical fiber with an inner cladding made of a uniaxial crystal material whose optical axis is parallel to the fiber axis was proposed, and exact characteristic equations of vector modes were derived. The influence of the ratio ( kcl) of the extraordinary to the ordinary ray indexes upon the waveguide dispersion was examined in detail. In view of the impossibility to deduce the expression of waveguide dispersion directly due to the complexity of the characteristic equations, a feasible approach to calculate waveguide dispersion was established. The calculated results indicate that the values of waveguide dispersion can be effectively changed through variation of kcl without changing the geometrical and optical parameters ( S and R). The influences of kcl, S and R on the propagation and cutoff characteristics of the low order modes are also analyzed.

  13. Characterization of SiC-SiC composites for accident tolerant fuel cladding

    NASA Astrophysics Data System (ADS)

    Deck, C. P.; Jacobsen, G. M.; Sheeder, J.; Gutierrez, O.; Zhang, J.; Stone, J.; Khalifa, H. E.; Back, C. A.

    2015-11-01

    Silicon carbide (SiC) is being investigated for accident tolerant fuel cladding applications due to its high temperature strength, exceptional stability under irradiation, and reduced oxidation compared to Zircaloy under accident conditions. An engineered cladding design combining monolithic SiC and SiC-SiC composite layers could offer a tough, hermetic structure to provide improved performance and safety, with a failure rate comparable to current Zircaloy cladding. Modeling and design efforts require a thorough understanding of the properties and structure of SiC-based cladding. Furthermore, both fabrication and characterization of long, thin-walled SiC-SiC tubes to meet application requirements are challenging. In this work, mechanical and thermal properties of unirradiated, as-fabricated SiC-based cladding structures were measured, and permeability and dimensional control were assessed. In order to account for the tubular geometry of the cladding designs, development and modification of several characterization methods were required.

  14. Robust cladding light stripper for high-power fiber lasers using soft metals.

    PubMed

    Babazadeh, Amin; Nasirabad, Reza Rezaei; Norouzey, Ahmad; Hejaz, Kamran; Poozesh, Reza; Heidariazar, Amir; Golshan, Ali Hamedani; Roohforouz, Ali; Jafari, S Naser Tabatabaei; Lafouti, Majid

    2014-04-20

    In this paper we present a novel method to reliably strip the unwanted cladding light in high-power fiber lasers. Soft metals are utilized to fabricate a high-power cladding light stripper (CLS). The capability of indium (In), aluminum (Al), tin (Sn), and gold (Au) in extracting unwanted cladding light is examined. The experiments show that these metals have the right features for stripping the unwanted light out of the cladding. We also find that the metal-cladding contact area is of great importance because it determines the attenuation and the thermal load on the CLS. These metals are examined in different forms to optimize the contact area to have the highest possible attenuation and avoid localized heating. The results show that sheets of indium are very effective in stripping unwanted cladding light.

  15. Technique for examining the fuel/cladding interface by TEM. [LMFBR

    SciTech Connect

    Yang, W.J.S.; Makenas, B.J.; Thomas, L.E.

    1983-05-01

    Fuel and fission-product interactions with the fuel-pin cladding is an area of concern and has been evaluated in the past principally by in-cell optical metallographic and electron-microprobe examinations. The applicability of three techniques for preparing specimens to reveal the microstructural details and local microchemistry of the fuel/cladding interface under conditions of high-resolution-scanning transmission-electron microscopy has been investigated. The specimen preparation techniques were designed to preserve the fuel/cladding interface and provide and maintain a specimen surface free from smearable alpha contamination. One of the techniques, Ni plating of a fuel cladding sample, preserved the entire cladding cross-section for examination. An Fe-oxide layer on the cladding inner surface was found in specimens prepared by this method. All three techniques of specimen preparation are described in some detail, along with their advantages and disadvantages.

  16. Method and etchant to join Ag-clad BSSCO superconducting tape

    DOEpatents

    Balachandran, U.; Iyer, A.N.; Huang, J.Y.

    1999-03-16

    A method of removing a silver cladding from high temperature superconducting material clad in silver (HTS) is disclosed. The silver clad HTS is contacted with an aqueous solution of HNO{sub 3} followed by an aqueous solution of NH{sub 4}OH and H{sub 2}O{sub 2} for a time sufficient to remove the silver cladding from the superconducting material without adversely affecting the superconducting properties of the superconducting material. A portion of the silver cladding may be masked with a material chemically impervious to HNO{sub 3} and to a combination of NH{sub 4}OH and H{sub 2}O{sub 2} to preserve the Ag coating. A silver clad superconductor is disclosed, made in accordance with the method discussed. 3 figs.

  17. Method and etchant to join ag-clad BSSCO superconducting tape

    DOEpatents

    Balachandran, Uthamalingam; Iyer, Anand N.; Huang, Jiann Yuan

    1999-01-01

    A method of removing a silver cladding from high temperature superconducting material clad in silver (HTS) is disclosed. The silver clad HTS is contacted with an aqueous solution of HNO.sub.3 followed by an aqueous solution of NH.sub.4 OH and H.sub.2 O.sub.2 for a time sufficient to remove the silver cladding from the superconducting material without adversely affecting the superconducting properties of the superconducting material. A portion of the silver cladding may be masked with a material chemically impervious to HNO.sub.3 and to a combination of NH.sub.4 OH and H.sub.2 O.sub.2 to preserve the Ag coating. A silver clad superconductor is disclosed, made in accordance with the method discussed.

  18. Enhanced ductility in round tensile bars produced by cladding a ductile ring

    NASA Astrophysics Data System (ADS)

    Chen, X. X.; Wu, P. D.; Embury, J. D.; Huang, Y.

    2010-03-01

    The effect of cladding a ductile ring on necking and fracture in round bars under tension is studied numerically using the finite element method based on the Gurson damage model. It is demonstrated that the cladding increases both the necking strain and the fracture strain. The effects of topological arrangement of cladding ring on necking and fracture are numerically investigated. It is indicated that while a topological arrangement of cladding has no noticeable effect on necking, it significantly influences the fracture strain. For a given volume fraction of cladding, the fracture strain could increase about 11% if the ductile ring is moved from the outmost to the innermost. It is also found that the subtle appearance of fracture surface due to cladding displays strong mesh sensitivity and may even be an artefact of the mesh.

  19. Refractive index sensitivity enhancement of optical fiber cladding mode by depositing nanofilm via ALD technology.

    PubMed

    Zhao, Ying; Pang, Fufei; Dong, Yanhua; Wen, Jianxiang; Chen, Zhenyi; Wang, Tingyun

    2013-11-01

    The atomic layer deposition (ALD) technology is introduced to enhance the sensitivity of optical fiber cladding mode to surrounding refractive index (SRI) variation. The highly uniform Al2O nanofilm was deposited around the double cladding fiber (DCF) which presents cladding mode resonant feature. With the high refractive index coating, the cladding mode resonant spectrum was tuned. And the sensitivity enhancement for SRI sensor was demonstrated. Through adjusting the deposition cycles, a maximum sensitivity of 723 nm/RIU was demonstrated in the DCF with 2500 deposition cycles at the SRI of 1.34. Based on the analysis of cladding modes reorganization, the cladding modes transition of the coated DCF was investigated theoretically. With the high performance nanofilm coating, the proposed SRI sensor is expected to have wide applications in chemical sensors and biosensors.

  20. Analysis and optimization of process parameters in Al-SiCp laser cladding

    NASA Astrophysics Data System (ADS)

    Riquelme, Ainhoa; Rodrigo, Pilar; Escalera-Rodríguez, María Dolores; Rams, Joaquín

    2016-03-01

    The laser cladding process parameters have great effect on the clad geometry and on dilution in the single and multi-pass aluminum matrix composite reinforced with SiC particles (Al/SiCp) coatings on ZE41 magnesium alloys deposited using a high-power diode laser (HPLD). The influence of the laser power (500-700 W), scan speed (3-17 mm/s) and laser beam focal position (focus, positive and negative defocus) on the shape factor, cladding-bead geometry, cladding-bead microstructure (including the presence of pores and cracks), and hardness has been evaluated. The correlation of these process parameters and their influence on the properties and ultimately, on the feasibility of the cladding process, is demonstrated. The importance of focal position is demonstrated. The different energy distribution of the laser beam cross section in focus plane or in positive and negative defocus plane affect on the cladding-bead properties.

  1. Pump isolation valve

    DOEpatents

    Kinney, Calvin L.; Wetherill, Todd M.

    1983-08-02

    The pump isolation valve provides a means by which the pump may be selectively isolated from the remainder of the coolant system while being compatible with the internal hydraulic arrangement of the pump during normal operation of the pump. The valve comprises a valve cylinder disposed around the pump and adjacent to the last pump diffuser with a turning vane attached to the lower end of the valve cylinder in a manner so as to hydraulically match with the discharge diffuser. The valve cylinder is connected to a drive means for sliding the valve cylinder relative to the diffuser support cylinder so as to block flow in either direction through the discharge diffuser when the valve is in the closed position and to aid in the flow of the coolant from the discharge diffuser by means of the turning vane when the valve is in the open position.

  2. Rotary blood pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J. (Inventor); Akkerman, James W. (Inventor); Aber, Greg S. (Inventor); Vandamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1993-01-01

    A rotary blood pump is presented. The pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial, and radial clearances of the blades associated with the flow straightener, inducer portion, impeller portion, and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with crosslinked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  3. DIRECT CURRENT ELECTROMAGNETIC PUMP

    DOEpatents

    Barnes, A.H.

    1957-11-01

    An improved d-c electromagnetic pump is presented in which the poles, and consequently the magetic gap at the poles, are tapered to be wider at the upstream end. In addition, the cross section of the tube carryiQ the liquid metal is tapered so that the velocity of the pumped liquid increases in the downstream direction at a rate such that the counter-induced voltage in the liquid metal remains constant as it traverses the region between the poles. This configuration compensates for the distortion of the magnetic field caused by the induced voltage that would otherwise result in the lowering of the pumping capacity. This improved electromagnetic pump as practical application in the pumping of liquid metal coolants for nuclear reactors where conventional positive displacement pumps have proved unsatisfactory due to the high temperatures and the corrosive properties of the liquid metals involved.

  4. Electrokinetic pumps and actuators

    SciTech Connect

    Phillip M. Paul

    2000-03-01

    Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps.

  5. DOE reactor-pumped laser program

    SciTech Connect

    Felty, J.R.; Lipinski, R.J.; McArthur, D.A.; Pickard, P.S.

    1993-12-31

    FALCON is a high-power, steady-state, nuclear reactor-pumped laser (RPL) concept that is being developed by the Department of Energy. The FALCON program has experimentally demonstrated reactor-pumped lasing in various mixtures of xenon, argon, neon, and helium at at wavelengths of 585, 703, 725, 1271, 1733, 1792, 2032, 2630, 2650, and 3370 nm with intrinsic efficiency as high as 2.5%. The major strengths of a reactor-pumped laser are continuous high-power operation, modular construction, self-contained power, compact size, and a variety of wavelengths (from visible to infrared). These characteristics suggest numerous applications not easily accessible to other laser types. A ground-based RPL could beam its power to space for such activities as illuminating geosynchronous communication satellites in the earth`s shadow to extend their lives, beaming power to orbital transfer vehicles, removing space debris, and providing power (from earth) to a lunar base during the long lunar night. The compact size and self-contained power also makes an RPL very suitable for ship basing so that power-beaming activities could be situated around the globe. The continuous high power of an RPL opens many potential manufacturing applications such as deep-penetration welding and cutting of thick structures, wide-area hardening of metal surfaces by heat treatment or cladding application, wide-area vapor deposition of ceramics onto metal surfaces, production of sub-micron sized particles for manufacturing of ceramics, wide-area deposition of diamond-like coatings, and 3-D ceramic lithography.

  6. DOE reactor-pumped laser program

    NASA Astrophysics Data System (ADS)

    Felty, James R.; Lipinski, Ronald J.; McArthur, David A.; Pickard, Paul S.

    1994-05-01

    FALCON is a high-power, steady-state, nuclear reactor-pumped laser (RPL) concept that is being developed by the Department of Energy. The FALCON program has experimentally demonstrated reactor-pumped lasing in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1271, 1733, 1792, 2032, 2630, 2650, and 3370 nm with intrinsic efficiency as high as 2.5%. The major strengths of a reactor-pumped laser are continuous high-power operation, modular construction, self-contained power, compact size, and a variety of wavelengths (from visible to infrared). These characteristics suggest numerous applications not easily accessible to other laser types. A ground-based RPL could beam its power to space for such activities as illuminating geosynchronous communication satellites in the earth's shadow to extend their lives, beaming power to orbital transfer vehicles, removing space debris, and providing power (from earth) to a lunar base during the long lunar night. The compact size and self-contained power also makes an RPL very suitable for ship basing so that power-beaming activities could be situated around the globe. The continuous high power of an RPL opens many potential manufacturing applications such as deep-penetration welding and cutting of thick structures, wide-area hardening of metal surfaces by heat treatment or cladding application, wide-area vapor deposition of ceramics onto metal surfaces, production of sub-micron sized particles for manufacturing of ceramics, wide-area deposition of diamond- like coatings, and 3-D ceramic lithography.

  7. Thermo-mechanical analysis of LWR SiC/SiC composite cladding

    NASA Astrophysics Data System (ADS)

    Ben-Belgacem, M.; Richet, V.; Terrani, K. A.; Katoh, Y.; Snead, L. L.

    2014-04-01

    A dedicated framework for thermo-mechanical analysis of the in-pile performance of SiC/SiC composite fuel cladding concepts in LWRs has been developed. This analysis framework focuses on cladding and omits any fuel-cladding interaction and fuel behavior. Since radial expansion of the cladding occurs early in life for these ceramic structures, fuel-cladding contact is expected to be delayed or eliminated and therefore it is not considered in this analysis. The analysis inputs recent out-of-pile and in-pile materials property data and phenomenological understanding of material evolution under neutron irradiation for nuclear-grade SiC/SiC composites to provide a best-estimate analysis. The analysis provides insight into the concept design and feasibility of SiC/SiC composite cladding concepts that exhibit significantly different behavior than metallic cladding structures. In particular, absence of any tangible creep (thermal or irradiation) coupled with a large and temperature-gradient-driven irradiation swelling strain gradient across the cladding, drive development of large stresses across the cladding thickness. The resulting analysis indicates that significant stresses develop after a modest neutron dose (∼1 dpa) and a pronounced variation across the cladding thickness exists and is opposite to that observed for metallic cladding structures where swelling or growth strains are either negligible (with small temperature dependence) or absent. Following this thermo-mechanical analysis, a best-estimate and parametric examination of SiC/SiC fuel rod cladding structures has been performed using appropriate Weibull statistics to prescribe basic design guidelines and to begin to define a probable design space.

  8. Development of the recovery technology for nickel superalloy blades of the aircraft engine by laser cladding

    NASA Astrophysics Data System (ADS)

    Bykovskiy, D. P.; Petrovskiy, V. N.; Polskiy, V. I.; Chirikov, S. N.; Dzhumaev, P. S.

    2016-09-01

    Development of cladding modes was performed with a superalloy nickel based powder on a flat substrate from material identical to compressor and turbine blades. Cross sections were made, and a visual inspection of the shape and the quality of the clad track as well as themetallographic analysis were performed. Microhardness of the deposition zone, chemical composition of the base, cladded metals, and the heat affected zone were determined.

  9. Detection of pump degradation

    SciTech Connect

    Greene, R.H.; Casada, D.A.; Ayers, C.W.

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  10. Submersible sodium pump

    DOEpatents

    Brynsvold, G.V.; Lopez, J.T.; Olich, E.E.; West, C.W.

    1989-11-21

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates. 14 figs.

  11. Submersible sodium pump

    DOEpatents

    Brynsvold, Glen V.; Lopez, John T.; Olich, Eugene E.; West, Calvin W.

    1989-01-01

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates.

  12. Champagne Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  13. Detection of pump degradation

    SciTech Connect

    Casada, D.

    1995-04-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  14. Wind pumping: A handbook

    SciTech Connect

    van Meel, J.; Smulders, P.

    1989-01-01

    The handbook is meant to provide energy and water-supply professionals and economists as well as field officers with an easily accessible source of information on wind pumping. It consolidates information acquired by institutions, professionals, and research centers in an easily extractable form. An overview of the characteristics of the technology is provided. The techniques for sizing of wind pumps and the sizing of alternative small pumps is discussed. Guidelines for financial and economic assessment of wind pumping are given. Particulars on installation, maintenance, and other logistical matters are also given. Several annexes provide supporting details and examples.

  15. Numerical analysis of lasing characteristics in highly bend-compensated large-mode-area ytterbium-doped double-clad leakage channel fibers.

    PubMed

    Thavasi Raja, G; Halder, Raktim; Varshney, S K

    2015-12-10

    The bend-induced mode-area reduction and thermal effects are vital factors that affect the power scaling of fiber lasers. Recently, bend-compensated large-mode-area double-clad modified hybrid leakage channel fiber (M-HLCF) has been reported with a mode area greater than 1000  μm, while sustaining the single-mode behavior at 1064 nm for high-temperature environments. In this work, the lasing characteristics of a newly designed ytterbium-doped double-clad M-HLCF (YDMHLCF) have been numerically investigated for strongly pumped conditions. The doped region size is optimally found through simulations, equivalent to the size of core diameter ∼38  μm in order to achieve maximum conversion efficiency for the bent and straight cases. Numerical simulations further confirm that a 2 m long YDMHLCF exhibits slope efficiency of 78% and conversion efficiency of 79% for the straight case and also almost the same for the practical bending radius of 7.5 cm when pumped with a 975 nm laser source. PMID:26836852

  16. Microstructure and Abrasive Wear Performance of Ni-Wc Composite Microwave Clad

    NASA Astrophysics Data System (ADS)

    Bansal, Amit; Zafar, Sunny; Sharma, Apurbba Kumar

    2015-10-01

    In the present work, Ni-WC powder was deposited on mild steel substrate to develop clads through microwave hybrid heating technique. The cladding trials were carried out in an industrial microwave applicator at 1.1 kW for 540 s. The Ni-WC composite clads were characterized for microstructure and abrasive wear performance through combination of x-ray diffraction, electron and optical microscopy, microhardness, and wear tests. Phase analysis of the Ni-WC clad indicated the presence of stable carbides such as WC, W2C, Ni2W4C, and Fe6W6C. The microstructure study of the clad layer revealed the presence of a uniformly distributed interlocked WC-based reinforcement embedded in the Ni-based matrix. The average Vicker's microhardness in the clad layer was observed to be 1028 ± 90 HV, which was approximately three times the microhardness of the substrate. Abrasive wear resistance of the microwave clads was superior to the MS substrate. Abrasion was the main wear mechanism in the Ni-WC clads and the substrate samples. However, the presence of WC-based reinforcement in the composite clads reduced microcutting, resulting in enhanced wear resistance.

  17. Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel

    NASA Astrophysics Data System (ADS)

    Wen, Peng; Feng, Zhenhua; Zheng, Shiqing

    2015-01-01

    Laser cladding is an advantaged repairing technology due to its low heat input and high flexibility. With preheating wire by resistance heat, laser hot wire cladding shows better process stability and higher deposition efficiency compared to laser cold wire/powder cladding. Multi-pass layer were cladded on the surface of martensite precipitation hardening stainless steel FV520B by fiber laser with ER410NiMo wire. Wire feed rate and preheat current were optimized to obtain stable wire transfer, which guaranteed good formation quality of single pass cladding. Response surface methodology (RSM) was used to optimize processing parameters and predict formation quality of multi-pass cladding. Laser power P, scanning speed Vs, wire feed rate Vf and overlap ratio η were selected as the input variables, while flatness ratio, dilution and incomplete fusion value as the responses. Optimal clad layer with flat surface, low dilution and no incomplete fusion was obtained by appropriately reducing Vf, and increasing P, Vs and η. No defect like pore or crack was found. The tensile strength and impact toughness of the clad layer is respectively 96% and 86% of those of the substrate. The clad layer showed nonuniform microstructure and was divided into quenched areas with coarse lath martensite and tempered areas with tempered martensite due to different thermal cycles in adjacent areas. The tempered areas showed similar hardness to the substrate.

  18. Orientation-Dependent Displacement Sensor Using an Inner Cladding Fiber Bragg Grating

    PubMed Central

    Yang, Tingting; Qiao, Xueguang; Rong, Qiangzhou; Bao, Weijia

    2016-01-01

    An orientation-dependent displacement sensor based on grating inscription over a fiber core and inner cladding has been demonstrated. The device comprises a short piece of multi-cladding fiber sandwiched between two standard single-mode fibers (SMFs). The grating structure is fabricated by a femtosecond laser side-illumination technique. Two well-defined resonances are achieved by the downstream both core and cladding fiber Bragg gratings (FBGs). The cladding resonance presents fiber bending dependence, together with a strong orientation dependence because of asymmetrical distribution of the “cladding” FBG along the fiber cross-section. PMID:27626427

  19. Structure-property correlations in nanostructured WC-12Co microwave clad

    NASA Astrophysics Data System (ADS)

    Zafar, Sunny; Sharma, Apurbba Kumar

    2016-05-01

    Nanostructured materials are known for enhanced properties as compared to their conventional counterparts. In the present work, microwave cladding technique was explored for depositing nanostructured WC-12Co clads on stainless steel substrates. Phase analysis of the WC-12Co microwave clads revealed the presence of Co6W6C, Co7W6, Co3W9C4, W2C and WC phases. The microstructure of the WC-12Co clads confirmed uniform distribution of nano-carbides in the form of clusters enclosed in the carbide network. Mechanical characterisation of the nanostructured clads was carried in terms of microhardness assessment and flexural strength measurement. The microwave induced clads exhibited excellent metallurgical bonding with the substrate and were free from interfacial cracks. The average microhardness of the developed clads was found in the order of 1760 ± 128HV. The flexural strength of the developed clads was observed to be 671 ± 28 MPa. The nanostructured clads exhibited good adhesion with the substrate without getting peeled-off under a load of 3.75 kN and a displacement of 3.72 mm.

  20. Development of data base with mechanical properties of un- and pre-irradiated VVER cladding

    SciTech Connect

    Asmolov, V.; Yegorova, L.; Kaplar, E.; Lioutov, K.; Smirnov, V.; Prokhorov, V.; Goryachev, A.

    1998-03-01

    Analysis of recent RIA test with PWR and VVER high burnup fuel, performed at CABRI, NSRR, IGR reactors has shown that the data base with mechanical properties of the preirradiated cladding is necessary to interpret the obtained results. During 1997 the corresponding cycle of investigations for VVER clad material was performed by specialists of NSI RRC KI and RIAR in cooperation with NRC (USA), IPSN (France) in two directions: measurements of mechanical properties of Zr-1%Nb preirradiated cladding versus temperature and strain rate; measurements of failure parameters for gas pressurized cladding tubes. Preliminary results of these investigations are presented in this paper.

  1. Theoretical analysis of swelling characteristics of cylindrical uranium dioxide fuel pins with a niobium - 1-percent-zirconium clad

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.

    1973-01-01

    The relations between clad creep strain and fuel volume swelling are shown for cylindrical UO2 fuel pins with a Nb-1Zr clad. These relations were obtained by using the computer code CYGRO-2. These clad-strain - fuel-volume-swelling relations may be used with any fuel-volume-swelling model, provided the fuel volume swelling is isotropic and independent of the clad restraints. The effects of clad temperature (over a range from 118 to 1642 K (2010 to 2960 R)), pin diameter, clad thickness and central hole size in the fuel have been investigated. In all calculations the irradiation time was 500 hours. The burnup rate was varied.

  2. Liquid pump for astronaut cooling

    NASA Technical Reports Server (NTRS)

    Carson, M. A.

    1972-01-01

    The Apollo portable life support system water-recirculation pump used for astronaut cooling is described. The problems associated with an early centrifugal pump and how these problems were overcome by the use of a new diaphragm pump are discussed. Performance comparisons of the two pump designs are given. Developmental problems and flight results with the diaphragm pump are discussed.

  3. Well-pump alignment system

    DOEpatents

    Drumheller, Douglas S.

    1998-01-01

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

  4. Gastrostomy feeding tube - pump - child

    MedlinePlus

    Feeding - gastrostomy tube - pump; G-tube - pump; Gastrostomy button - pump; Bard Button - pump; MIC-KEY - pump ... Your child has a gastrostomy tube (G-tube). This is a soft, plastic tube placed into your child's stomach. It delivers nutrition (food) and medicines until your ...

  5. 33. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING PLAN AND LOCATION OF PROPOSED ADDITIONS, METROPOLITAN WATER AND SEWERAGE BOARD, METROPOLITAN SEWERAGE WORKS, JULY 1908. Aperture card 6417. - Deer Island Pumping Station, Boston, Suffolk County, MA

  6. 32. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING PLANT AND LOCATION OF PROPOSED ADDITIONS, JULY 1898 SHEET NO. 1. Aperture card 4966-1 - Deer Island Pumping Station, Boston, Suffolk County, MA

  7. Looking south at boiler feedwater pumps (steam turbine pump on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking south at boiler feedwater pumps (steam turbine pump on left, electric motor pump on right). - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  8. Improved LWR Cladding Performance by EPD Surface Modification Technique

    SciTech Connect

    Corradini, Michael; Sridharan, Kumar

    2012-11-26

    This project will utilize the electro-phoretic deposition technique (EPD) in conjunction with nanofluids to deposit oxide coatings on prototypic zirconium alloy cladding surfaces. After demonstrating that this surface modification is reproducible and robust, the team will subject the modified surface to boiling and corrosion tests to characterize the improved nucleate boiling behavior and superior corrosion performance. The scope of work consists of the following three tasks: The first task will employ the EPD surface modification technique to coat the surface of a prototypic set of zirconium alloy cladding tube materials (e.g. Zircaloy and advanced alloys such as M5) with a micron-thick layer of zirconium oxide nanoparticles. The team will characterize the modified surface for uniformity using optical microscopy and scanning-electron microscopy, and for robustness using standard hardness measurements. After zirconium alloy cladding samples have been prepared and characterized using the EPD technique, the team will begin a set of boiling experiments to measure the heat transfer coefficient and critical heat flux (CHF) limit for each prepared sample and its control sample. This work will provide a relative comparison of the heat transfer performance for each alloy and the surface modification technique employed. As the boiling heat transfer experiments begin, the team will also begin corrosion tests for these zirconium alloy samples using a water corrosion test loop that can mimic light water reactor (LWR) operational environments. They will perform extended corrosion tests on the surface-modified zirconium alloy samples and control samples to examine the robustness of the modified surface, as well as the effect on surface oxidation

  9. Fabrication of a tantalum-clad tungsten target for LANSCE

    NASA Astrophysics Data System (ADS)

    Nelson, A. T.; O'Toole, J. A.; Valicenti, R. A.; Maloy, S. A.

    2012-12-01

    Development of a solid state bonding technique suitable to clad tungsten targets with tantalum was completed to improve operation of the Los Alamos Neutron Science Centers spallation target. Significant deterioration of conventional bare tungsten targets has historically resulted in transfer of tungsten into the cooling system through corrosion resulting in increased radioactivity outside the target and reduction of delivered neutron flux. The fabrication method chosen to join the tantalum cladding to the tungsten was hot isostatic pressing (HIP) given the geometry constraints of a cylindrical assembly and previous success demonstrated at KENS. Nominal HIP parameters of 1500 °C, 200 MPa, and 3 h were selected based upon previous work. Development of the process included significant surface engineering controls and characterization given tantalums propensity for oxide and carbide formation at high temperatures. In addition to rigorous acid cleaning implemented at each step of the fabrication process, a three layer tantalum foil gettering system was devised such that any free oxygen and carbon impurities contained in the argon gas within the HIP vessel was mitigated to the extent possible before coming into contact with the tantalum cladding. The result of the numerous controls and refined techniques was negligible coarsening of the native Ta2O5 surface oxide, no measureable oxygen diffusion into the tantalum bulk, and no detectable carburization despite use of argon containing up to 5 ppm oxygen and up to 40 ppm total CO, CO2, or organic contaminants. Post bond characterization of the interface revealed continuous bonding with a few microns of species interdiffusion.

  10. NEUTRONIC REACTOR FUEL PUMP

    DOEpatents

    Cobb, W.G.

    1959-06-01

    A reactor fuel pump is described which offers long life, low susceptibility to radiation damage, and gaseous fission product removal. An inert-gas lubricated bearing supports a journal on one end of the drive shsft. The other end has an impeller and expansion chamber which effect pumping and gas- liquid separation. (T.R.H.)

  11. Pump apparatus including deconsolidator

    SciTech Connect

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  12. Cryogenic Vacuum Pump

    NASA Technical Reports Server (NTRS)

    Zachman, C. A.

    1983-01-01

    System provides high pumping capacity even for noble gases. First stage, removes water and CO2 from input gas. Second stage, removes noble gases except helium and some lighter gases not trapped by first stage. Third stage, traps all remaining gases. All three stages mounted inside liquid-nitrogen Dewar that cools first stage. Pump small enough for general laboratory use.

  13. Water Treatment Technology - Pumps.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on pumps provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pumps in plant and distribution systems, pump…

  14. Micromachined peristaltic pumps

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    1999-01-01

    Micromachined pumps including a channel formed between a first membrane and a substrate or between first and second flexible membranes. A series of electrically conductive strips is applied to a surface of the substrate or one of the membranes. Application of a sequential voltage to the series of strips causes a region of closure to progress down the channel to achieve a pumping action.

  15. A Shocking New Pump

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Hydro Dynamics, Inc. received a technical helping hand from NASA that made their Hydrosonic Pump (HPump) a reality. Marshall engineers resolved a bearing problem in the rotor of the pump and recommended new bearings, housings and mounting hardware as a solution. The resulting HPump is able to heat liquids with greater energy efficiency using shock waves to generate heat.

  16. Magnetic heat pump design

    NASA Astrophysics Data System (ADS)

    Kirol, L. D.; Dacus, M. W.

    1988-03-01

    Heat pumps utilizing the magnetocaloric effect offer a potentially attractive alternative to conventional heat pumps and refrigerators. Many physical configurations of magnetic heat pumps are possible. Major classes include those requiring electrical energy input and those with mechanical energy input. Mechanical energy is used to move magnets, working material, or magnetic shielding. Each type of mechanical magnetic heat pump can be built in a rotary (recuperative) or reciprocal (regenerative) configuration. Machines with electrical energy input utilize modulation of the magnetic field to cause working material to execute the desired thermodynamic cycle, and can also be recuperative or regenerative. Recuperative rotary heat pumps in which working material is moved past stationary magnets is the preferred configuration. Regenerative devices suffer performance degradation from temperature change of regenerator material and mixing and conduction in the regenerator. Field modulated cycles are not practical due to ac losses in superconducting magnets. Development of methods for recuperator fluid pumping is the major challenge in design of rotary recuperative devices. Several pumping options are presented, and the design of a bench scale heat pump described.

  17. Detection of pump degradation

    SciTech Connect

    Casada, D.

    1994-12-31

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  18. Normetex Pump Alternatives Study

    SciTech Connect

    Clark, Elliot A.

    2013-04-25

    A mainstay pump for tritium systems, the Normetex scroll pump, is currently unavailable because the Normetex company went out of business. This pump was an all-metal scroll pump that served tritium processing facilities very well. Current tritium system operators are evaluating replacement pumps for the Normetex pump and for general used in tritium service. An all-metal equivalent alternative to the Normetex pump has not yet been identified. 1. The ideal replacement tritium pump would be hermetically sealed and contain no polymer components or oils. Polymers and oils degrade over time when they contact ionizing radiation. 2. Halogenated polymers (containing fluorine, chlorine, or both) and oils are commonly found in pumps. These materials have many properties that surpass those of hydrocarbon-based polymers and oils, including thermal stability (higher operating temperature) and better chemical resistance. Unfortunately, they are less resistant to degradation from ionizing radiation than hydrocarbon-based materials (in general). 3. Polymers and oils can form gaseous, condensable (HF, TF), liquid, and solid species when exposed to ionizing radiation. For example, halogenated polymers form HF and HCl, which are extremely corrosive upon reaction with water. If a pump containing polymers or oils must be used in a tritium system, the system must be designed to be able to process the unwanted by-products. Design features to mitigate degradation products include filters and chemical or physical traps (eg. cold traps, oil traps). 4. Polymer components can work in tritium systems, but must be replaced regularly. Polymer components performance should be monitored or be regularly tested, and regular replacement of components should be viewed as an expected normal event. A radioactive waste stream must be established to dispose of used polymer components and oil with an approved disposal plan developed based on the facility location and its regulators. Polymers have varying

  19. Reactivity Initiated Accident Simulation to Inform Transient Testing of Candidate Advanced Cladding

    SciTech Connect

    Brown, Nicholas R; Wysocki, Aaron J; Terrani, Kurt A

    2016-01-01

    Abstract. Advanced cladding materials with potentially enhanced accident tolerance will yield different light water reactor performance and safety characteristics than the present zirconium-based cladding alloys. These differences are due to different cladding material properties and responses to the transient, and to some extent, reactor physics, thermal, and hydraulic characteristics. Some of the differences in reactors physics characteristics will be driven by the fundamental properties (e.g., absorption in iron for an iron-based cladding) and others will be driven by design modifications necessitated by the candidate cladding materials (e.g., a larger fuel pellet to compensate for parasitic absorption). Potential changes in thermal hydraulic limits after transition from the current zirconium-based cladding to the advanced materials will also affect the transient response of the integral fuel. This paper leverages three-dimensional reactor core simulation capabilities to inform on appropriate experimental test conditions for candidate advanced cladding materials in a control rod ejection event. These test conditions are using three-dimensional nodal kinetics simulations of a reactivity initiated accident (RIA) in a representative state-of-the-art pressurized water reactor with both nuclear-grade iron-chromium-aluminum (FeCrAl) and silicon carbide based (SiC-SiC) cladding materials. The effort yields boundary conditions for experimental mechanical tests, specifically peak cladding strain during the power pulse following the rod ejection. The impact of candidate cladding materials on the reactor kinetics behavior of RIA progression versus reference zirconium cladding is predominantly due to differences in: (1) fuel mass/volume/specific power density, (2) spectral effects due to parasitic neutron absorption, (3) control rod worth due to hardened (or softened) spectrum, and (4) initial conditions due to power peaking and neutron transport cross sections in the

  20. Enforced one-dimensional photoconductivity in core-cladding hexabenzocoronenes.

    PubMed

    Cohen, Yaron S; Xiao, Shengxiong; Steigerwald, Michael L; Nuckolls, Colin; Kagan, Cherie R

    2006-12-01

    Photoconductivity in contorted hexabenzocoronene liquid crystals is found to be exclusively one-dimensional. Spectroscopic measurements and density functional theory support the existence of two pi-systems attributed to a low-energy radialene-core and higher energy out-of-plane alkoxyphenyl rings. Persistent photocurrents, measured as a function of field, channel length, and intensity, fit a stretched exponential characteristic of intracolumnar transport, restricted through the radialene-core by the alkoxyphenyl-cladding. Bimolecular recombination is enhanced with increasing carrier concentration by the system's one-dimensionality.

  1. Cladding and Duct Materials for Advanced Nuclear Recycle Reactors

    SciTech Connect

    Allen, Todd R.; Busby, Jeremy T; Klueh, Ronald L; Maloy, S; Toloczko, M

    2008-01-01

    The expanded use of nuclear energy without risk of nuclear weapons proliferation and with safe nuclear waste disposal is a primary goal of the Global Nuclear Energy Partnership (GNEP). To achieve that goal the GNEP is exploring advanced technologies for recycling spent nuclear fuel that do not separate pure plutonium, and advanced reactors that consume transuranic elements from recycled spent fuel. The GNEP s objectives will place high demands on reactor clad and structural materials. This article discusses the materials requirements of the GNEP s advanced nuclear recycle reactors program.

  2. Cladding and duct materials for advanced nuclear recycle reactors

    NASA Astrophysics Data System (ADS)

    Allen, T. R.; Busby, J. T.; Klueh, R. L.; Maloy, S. A.; Toloczko, M. B.

    2008-01-01

    The expanded use of nuclear energy without risk of nuclear weapons proliferation and with safe nuclear waste disposal is a primary goal of the Global Nuclear Energy Partnership (GNEP). To achieve that goal the GNEP is exploring advanced technologies for recycling spent nuclear fuel that do not separate pure plutonium, and advanced reactors that consume transuranic elements from recycled spent fuel. The GNEP’s objectives will place high demands on reactor clad and structural materials. This article discusses the materials requirements of the GNEP’s advanced nuclear recycle reactors program.

  3. Deep well solar pump

    SciTech Connect

    Vanek, J.

    1990-02-06

    This patent describes, in a pump having a source of gas under pressure, and a gas operated pump, a mechanism periodically injecting gas from the source of gas into the gas operated pump. It comprises: a long period pendulum turning towards a first position by gravity, an injection valve connected between the source of gas under pressure and the gas operated pump, a linkage between the pendulum and the injection valve. The linkage opening the injection valve when the pendulum is in the first position, an impulse tube connected between the injection valve and the gas operated pump, a member having a surface adjacent to the first position of the pendulum, and an elastic impulse bladder connected to the impulse tube adjacent to the surface so that inflation of the impulse bladder on the opening of the injection valve forces the impulse bladder against the pendulum urging the pendulum against the force of gravity toward a second position.

  4. Rotary Blood Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1996-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  5. Apparatus for Pumping a Fluid

    NASA Technical Reports Server (NTRS)

    Boeyen, Robert Van; Reeh, Jonathan

    2013-01-01

    A fluid pump has been developed for mechanically pumped fluid loops for spacecraft thermal control. Lynntech's technology utilizes a proprietary electrochemically driven pumping mechanism. Conventional rotodynamic and displacement pumps typically do not meet the stringent power and operational reliability requirements of space applications. Lynntech's developmental pump is a highly efficient solid-state pump with essentially no rotating or moving components (apart from metal bellows).

  6. Examination of T-111 clad uranium nitride fuel pins irradiated up to 13,000 hours at a clad temperature of 990 C

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.; Siegel, B. L.

    1973-01-01

    The examination of 27 fuel pins irradiated for up to 13,000 hours at 990 C is described. The fuel pin clad was a tantalum alloy with uranium nitride as the nuclear fuel. Two nominal fuel pin diameters were tested with a maximum burnup of 2.34 atom percent. Twenty-two fuel pins were tested for fission gas leaks; thirteen pins leaked. Clad ductility tests indicated clad embrittlement. The embrittlement is attributed to hydrogen from an n,p reaction in the fuel. Fuel swelling was burnup dependent, and the amount of fission gas release was low, generally less than 0.5 percent. No incompatibilities between fuel, liner, and clad were in evidence.

  7. An Examination of Collaborative Learning Assessment through Dialogue (CLAD) in Traditional and Hybrid Human Development Courses

    ERIC Educational Resources Information Center

    McCarthy, Wanda C.; Green, Peter J.; Fitch, Trey

    2010-01-01

    This investigation assessed the effectiveness of using Collaborative Learning Assessment through Dialogue (CLAD) (Fitch & Hulgin, 2007) with students in undergraduate human development courses. The key parts of CLAD are student collaboration, active learning, and altering the role of the instructor to a guide who enhances learning opportunities.…

  8. Cladding-mode obtained by core-offset structure and applied in fiber Bragg grating sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Xinpu; Peng, Wei; Liu, Yun; Li, Hong; Jing, Zhenguo; Yu, Qi; Zhou, Xinlei; Yao, Wenjuan; Wang, Yanjie; Liang, Yuzhang

    2011-12-01

    Comparing to core-modes of optical fibers, some cladding-modes are more sensitive to the surroundings which are very valuable to sensing application; recently, a novel type of FBG sensor with core-offset structure attracts more and more interests. Normally, the forward core-mode is not only reflected and coupled to the backward core mode by the Fiber Bragg Grating in the step-type photosensitive single mode fiber, but also coupled to the backward cladding-modes and the radiation modes, eventually they will leak or be absorbed by the high refraction index coating layer. These backward cladding-modes can also be used for sensing analysis. In this paper, we propose and develop a core-offset structure to obtain the backward core-mode and backward cladding-modes by using the wavelength shift of the backward core-mode and the power of the backward cladding-modes in Fiber Bragg Grating sensor, and the power of the backward cladding-modes are independent from temperature variation. We develop a mode coupling sensor model between the forward core-mode and the backward cladding-modes, and demonstrate two coupling methods in the core-offset structure experimentally. The sensor is fabricated and demonstrated for refractive index monitoring. Some specific works are under investigation now, more analysis and fabrication will be done to improve this cladding-mode based sensor design for applicable sensing technology.

  9. Recycle of Zirconium from Used Nuclear Fuel Cladding: A Major Element of Waste Reduction

    SciTech Connect

    Collins, Emory D; DelCul, Guillermo D; Terekhov, Dmitri; Emmanuel, N. V.

    2011-01-01

    Feasibility tests were initiated to determine if the zirconium in commercial used nuclear fuel (UNF) cladding can be recovered in sufficient purity to permit re-use, and if the recovery process can be operated economically. Initial tests are being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Early results indicate that quantitative recovery can be accomplished and product contamination with alloy constituents can be controlled sufficiently to meet purification requirements. Future tests with actual radioactive UNF cladding are planned. The objective of current research is to determine the feasibility of recovery and recycle of zirconium from used fuel cladding wastes. Zircaloy cladding, which contains 98+% of hafnium-free zirconium, is the second largest mass, on average {approx}25 wt %, of the components in used U.S. light-water-reactor fuel assemblies. Therefore, recovery and recycle of the zirconium would enable a large reduction in geologic waste disposal for advanced fuel cycles. Current practice is to compact or grout the cladding waste and store it for subsequent disposal in a geologic repository. This paper describes results of initial tests being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Future tests with actual radioactive UNF cladding are planned.

  10. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding

    NASA Astrophysics Data System (ADS)

    Terrani, K. A.; Zinkle, S. J.; Snead, L. L.

    2014-05-01

    Application of advanced oxidation-resistant iron alloys as light water reactor fuel cladding is proposed. The motivations are based on specific limitations associated with zirconium alloys, currently used as fuel cladding, under design-basis and beyond-design-basis accident scenarios. Using a simplified methodology, gains in safety margins under severe accidents upon transition to advanced oxidation-resistant iron alloys as fuel cladding are showcased. Oxidation behavior, mechanical properties, and irradiation effects of advanced iron alloys are briefly reviewed and compared to zirconium alloys as well as historic austenitic stainless steel cladding materials. Neutronic characteristics of iron-alloy-clad fuel bundles are determined and fed into a simple economic model to estimate the impact on nuclear electricity production cost. Prior experience with steel cladding is combined with the current understanding of the mechanical properties and irradiation behavior of advanced iron alloys to identify a combination of cladding thickness reduction and fuel enrichment increase (∼0.5%) as an efficient route to offset any penalties in cycle length, due to higher neutron absorption in the iron alloy cladding, with modest impact on the economics.

  11. Intercode Advanced Fuels and Cladding Comparison Using BISON, FRAPCON, and FEMAXI Fuel Performance Codes

    NASA Astrophysics Data System (ADS)

    Rice, Aaren

    As part of the Department of Energy's Accident Tolerant Fuels (ATF) campaign, new cladding designs and fuel types are being studied in order to help make nuclear energy a safer and more affordable source for power. This study focuses on the implementation and analysis of the SiC cladding and UN, UC, and U3Si2 fuels into three specific nuclear fuel performance codes: BISON, FRAPCON, and FEMAXI. These fuels boast a higher thermal conductivity and uranium density than traditional UO2 fuel which could help lead to longer times in a reactor environment. The SiC cladding has been studied for its reduced production of hydrogen gas during an accident scenario, however the SiC cladding is a known brittle and unyielding material that may fracture during PCMI (Pellet Cladding Mechanical Interaction). This work focuses on steady-state operation with advanced fuel and cladding combinations. By implementing and performing analysis work with these materials, it is possible to better understand some of the mechanical interactions that could be seen as limiting factors. In addition to the analysis of the materials themselves, a further analysis is done on the effects of using a fuel creep model in combination with the SiC cladding. While fuel creep is commonly ignored in the traditional UO2 fuel and Zircaloy cladding systems, fuel creep can be a significant factor in PCMI with SiC.

  12. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    NASA Astrophysics Data System (ADS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-06-01

    FeCrAl, an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In this study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. The total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  13. Cladding modes in photonic crystal fiber: characteristics and sensitivity to surrounding refractive index

    NASA Astrophysics Data System (ADS)

    Jiang, Xiuli; Gu, Zhengtian; Zheng, Li

    2016-01-01

    Characteristics of cladding modes in a photonic crystal fiber (PCF) with triangular air-hole lattice in the cladding are numerically analyzed using a finite element method. The transition for LP11 cladding mode to core mode with variation of the normalized wavelength has been shown. The transition of the LP01 cladding mode to the outer silica mode and reorganization of the LP0m cladding modes caused by varying the fiber radius has been investigated. By choosing the optimized fiber radius, which is located in the cladding modes' reorganization region, the sensitivity of the coupled wavelength between the core mode LP01 and cladding mode LP03 to surrounding refractive index is increased by a factor of five and reaches to 2660 nm/refractive index unit over the range of 1.40 to 1.42. The sensitivity is competitive with that of long-period grating in PCF in response to changes in refractive indices of the medium contained in the cladding air channels.

  14. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    SciTech Connect

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  15. Assessment of wear coefficients of nuclear zirconium claddings without and with pre-oxidation

    DOE PAGESBeta

    Qu, Jun; Cooley, Kevin M.; Shaw, Austin H.; Lu, Roger Y.; Blau, Peter J.

    2016-03-16

    In the cores of pressurized water nuclear reactors, water-flow induced vibration is known to cause claddings on the fuel rods to rub against their supporting grids. Such grid-to-rod-fretting (GTRF) may lead to fretting wear-through and the leakage of radioactive species. The surfaces of actual zirconium alloy claddings in a reactor are inevitably oxidized in the high-temperature pressurized water, and some claddings are even pre-oxidized. As a result, the wear process of the surface oxide film is expected to be quite different from the zirconium alloy substrate. In this paper, we attempt to measure the wear coefficients of zirconium claddings withoutmore » and with pre-oxidation rubbing against grid samples using a bench-scale fretting tribometer. Results suggest that the volumetric wear coefficient of the pre-oxidized cladding is 50 to 200 times lower than that of the untreated cladding. In terms of the linear rate of wear depth, the pre-oxidized alloy wears about 15 times more slowly than the untreated cladding. Finally, fitted with the experimentally-determined wear rates, a stage-wise GTRF engineering wear model demonstrates good agreement with in-reactor experience in predicting the trend of cladding lives.« less

  16. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    DOE PAGESBeta

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory insidemore » the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.« less

  17. Cladding Attachment Over Thick Exterior Insulating Sheathing (Fact Sheet)

    SciTech Connect

    Not Available

    2013-11-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of wood-framed walls and mass masonry wall assemblies. The location of the insulation on the exterior of the structure has many direct benefits, including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased airtightness and improved water management. For thick layers of exterior insulation (more than 1.5 in.), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. Although the approach has proven effective, there is significant resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved in the development of the vertical displacement resistance capacity. In addition, the long-term in-service performance of the system has been questioned due to potential creep effects of the assembly under the sustained dead load of the cladding and effects of varying environmental conditions. In addition, the current International Building Code (IBC) and International Residential Code (IRC) do not have a provision that specifically allows this assembly.

  18. Novel Accident-Tolerant Fuel Meat and Cladding

    SciTech Connect

    Robert D. Mariani; Pavel G Medvedev; Douglas L Porter; Steven L Hayes; James I. Cole; Xian-Ming Bai

    2013-09-01

    A novel accident-tolerant fuel meat and cladding are here proposed. The fuel meat design incorporates annular fuel with inserts and discs that are fabricated from a material having high thermal conductivity, for example niobium. The inserts are rods or tubes. Discs separate the fuel pellets. Using the BISON fuel performance code it was found that the peak fuel temperature can be lowered by more than 600 degrees C for one set of conditions with niobium metal as the thermal conductor. In addition to improved safety margin, several advantages are expected from the lower temperature such as decreased fission gas release and fuel cracking. Advantages and disadvantages are discussed. An enrichment of only 7.5% fully compensates the lost reactivity of the displaced UO2. Slightly higher enrichments, such as 9%, allow uprates and increased burnups to offset the initial costs for retooling. The design has applications for fast reactors and transuranic burning, which may accelerate its development. A zirconium silicide coating is also described for accident tolerant applications. A self-limiting degradation behavior for this coating is expected to produce a glassy, self-healing layer that becomes more protective at elevated temperature, with some similarities to MoSi2 and other silicides. Both the fuel and coating may benefit from the existing technology infrastructure and the associated wide expertise for a more rapid development in comparison to other, more novel fuels and cladding.

  19. Hydrogen motion in Zircaloy-4 cladding during a LOCA transient

    NASA Astrophysics Data System (ADS)

    Elodie, T.; Jean, D.; Séverine, G.; M-Christine, B.; Michel, C.; Berger, P.; Martine, B.; Antoine, A.

    2016-04-01

    Hydrogen and oxygen are key elements influencing the embrittlement of zirconium-based nuclear fuel cladding during the quench phase following a Loss Of Coolant Accident (LOCA). The understanding of the mechanisms influencing the motion of these two chemical elements in the metal is required to fully describe the material embrittlement. High temperature steam oxidation tests were performed on pre-hydrided Zircaloy-4 samples with hydrogen contents ranging between 11 and 400 wppm prior to LOCA transient. Thanks to the use of both Electron Probe Micro-Analysis (EPMA) and Elastic Recoil Detection Analysis (μ-ERDA), the chemical elements partitioning has been systematically quantified inside the prior-β phase. Image analysis and metallographic examinations were combined to provide an average oxygen profile as well as hydrogen profile within the cladding thickness after LOCA transient. The measured hydrogen profile is far from homogeneous. Experimental distributions are compared to those predicted numerically using calculations derived from a finite difference thermo-diffusion code (DIFFOX) developed at IRSN.

  20. Cladding and Structural Materials for Advanced Nuclear Energy Systems

    SciTech Connect

    Was, G S; Allen, T R; Ila, D; C,; Levi,; Morgan, D; Motta, A; Wang, L; Wirth, B

    2011-06-30

    The goal of this consortium is to address key materials issues in the most promising advanced reactor concepts that have yet to be resolved or that are beyond the existing experience base of dose or burnup. The research program consists of three major thrusts: 1) high-dose radiation stability of advanced fast reactor fuel cladding alloys, 2) irradiation creep at high temperature, and 3) innovative cladding concepts embodying functionally-graded barrier materials. This NERI-Consortium final report represents the collective efforts of a large number of individuals over a period of three and a half years and included 9 PIs, 4 scientists, 3 post-docs and 12 students from the seven participating institutions and 8 partners from 5 national laboratories and 3 industrial institutions (see table). University participants met semi-annually and participants and partners met annually for meetings lasting 2-3 days and designed to disseminate and discuss results, update partners, address outstanding issues and maintain focus and direction toward achieving the objectives of the program. The participants felt that this was a highly successful program to address broader issues that can only be done by the assembly of a range of talent and capabilities at a more substantial funding level than the traditional NERI or NEUP grant. As evidence of the success, this group, collectively, has published 20 articles in archival journals and made 57 presentations at international conferences on the results of this consortium.

  1. Pressure charged airlift pump

    DOEpatents

    Campbell, Gene K.

    1983-01-01

    A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.

  2. Deep well pump

    SciTech Connect

    Downen, J.L.; Sutliff, W.N.

    1981-06-16

    A pump barrel open at its lower end is coupled at its upper end by a tubular adapter assembly to the lower end of a pump tubing string. This assembly presents an internal bevelled sealing latching annulus, an axially bored pump head being radially expansively spring latched in a fixed axial sealed relation with the annulus to seal the upper end of the pump barrel from the adapter assembly to form a pump compression chamber surrounding a hollow polish rod extending upwardly from a plunger mounted on the lower end of the polish rod for reciprocation in the pump barrel. The plunger carries tandem travelling valves close beneath its connection with the polish rod. The lower valve opening to receive oil through the barrel and plunger on the down stroke and concurrently delivering such oil into the compression chamber. The upper valve closes on the down stroke and opening on the up stroke during which the lower valve closes to expel oil trapped in the compression chamber upward through the upper valve into the lower end of the hollow polish rod which oil is discharged at the upper end thereof into the pump tubing string through the fitting adapting the polish rod to the lower end of the sucker rod.

  3. Performance of mosquito's pump

    NASA Astrophysics Data System (ADS)

    Kikuchi, Kenji

    2005-11-01

    The flow of human blood in Mosquito's proboscis on Hagen-Poiseuille flow is investigated by using micro PIV system to apply mosquito's sucking system for micro-TAS devises. We want to know how high the power of Mosquito's pump is and how small the resistance in a proboscis is, a structure of Mosquito's sucking pump, and its characteristics as mechanical pump. We made the mosquito suck blood of our arm to obtain the average value, made many slices of a mosquito with 2μm thickness after fixed by wax. We anatomized the mosquito's head and picked up the sucking pump under the microscope to know its volume. Mosquito's pump shows high performance compared with the artificial pumps. The surfaces of proboscis were taken by using SEM, AFM because it is important factor for interaction between flow and its wall. Visualization of the blood flows near the tip of and inside proboscis are taken by micro PIV system to know the flow rate. We estimate the power of pump and the friction drag of proboscis by using these data.

  4. Fuel injection pump

    SciTech Connect

    Iiyama, A.; Nishimura, T.

    1988-12-06

    This patent describes a fuel injection pump comprising: (a) engageable first and second cam members, the first cam member reciprocating axially as the first cam member moves angularly relative to the second cam member when the first and second cam members are in engagement; (b) means for urging the first cam member toward the second cam member to engage the first and second cam members; (c) a plunger connected to the first cam member for reciprocation with the first cam member, the plunger defining at least a part of a pumping chamber, the pumping chamber contracting and expanding as the plunger reciprocates; (d) means for allowing fuel to move into the pumping chamber as the pumping chamber expands in a fuel intake stroke; (e) means for allowing the fuel to move out of the pumping chamber as the pumping chamber contracts in a fuel compression stroke; and (f) means for resisting movement of the plunger in at least part of the fuel compression stroke and relieving resistance to the movement of the plunger in the fuel intake stroke wherein the resisting means comprises a piston slidably mounted on the plunger, a spring urging the piston to seat the piston on a shoulder on the plunger so that the piston reciprocates as the plunger reciprocates, wherein the piston is seated on the shoulder in the fuel compression stroke and separates from the shoulder against the force of the spring in the fuel intake stroke, a second fluid chamber at least partially defined by the piston.

  5. Cyclic furnace oxidation of clad WI-52 systems at 1040 C and 1090 C

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.

    1972-01-01

    Cyclic furnace oxidation studies were conducted on the cobalt alloy WI-52 clad with Ni-30Cr, Fe-25Cr-4A1, and Ni-20Cr-4A1 foils (0.051 to 0.254 mm thick). Tests as long as 400 hours using 1- and 20-hour cycles showed that the Ni-Cr- and Fe-Cr-A1 claddings were about equally protective at both temperatures. The protective ability of these alloys was influenced by exposure temperature and cladding thickness. At both temperatures, they protected WI-52 about as well as, or better than, a widely used commercial aluminide coating. The Ni-Cr-Al claddings did not protect WI-52 nearly as well. Interdiffusion generally influenced the oxidation behavior of all clad WI-52 systems.

  6. Properties and features of structure formation CuCr-contact alloys in electron beam cladding

    SciTech Connect

    Durakov, Vasiliy G.; Dampilon, Bair V. E-mail: gnusov@rambler.ru; Gnyusov, Sergey F. E-mail: gnusov@rambler.ru

    2014-11-14

    The microstructure and properties of the contact CuCr alloy produced by electron-beam cladding have been investigated. The effect of the electron beam cladding parameters and preheating temperature of the base metal on the structure and the properties of the coatings has been determined. The bimodal structure of the cladding coating has been established. The short circuit currents tests have been carried out according to the Weil-Dobke synthetic circuit simulating procedure developed for vacuum circuit breakers (VCB) test in real electric circuits. Test results have shown that the electron beam cladding (EBC) contact material has better breaking capacity than that of commercially fabricated sintered contact material. The application of the technology of electron beam cladding for production of contact material would significantly improve specific characteristics and reliability of vacuum switching equipment.

  7. The sodium-bonding pin concept for advanced fuels part II: analysis of the cladding carburization

    SciTech Connect

    Ronchi, C.; Blank, M.; Coguerelle, M.; Rouault, J.

    1984-10-01

    Cladding carburization in irradiated liquid-metal fast breeder reactor carbide pins is analyzed with particular emphasis on sodium-bonding conditions. Original data from the French Project for advanced fuels and the Swelling Project performed by the European Institute for Transuranium Elements are discussed and compared with published results. The mechanisms of carbon transfer from the fuel to the steel cladding are examined and evaluated concluding that cladding carburization cannot be avoided with the present sodium-bonded pin design if hyperstoichiometric fuel is adopted. An assessment of the pin failure risks involved is made for different steels. Austenitic steels customarily used for cladding do not exhibit a fully satisfactory carburization resistance. Recently developed ferritic alloys are suggested for carbide fuel cladding in future applications.

  8. Space-efficient fiber ribbon composed of reduced-cladding single-mode fibers

    NASA Astrophysics Data System (ADS)

    Chang, J. H.; Bae, S. H.; Kim, Hoon; Ouh, C. H.; Jung, C. H.; Cho, H. S.; Chung, Y. C.

    2016-09-01

    We develop a space-efficient single-mode fiber (SMF) having a cladding diameter of only 82 μm. This SMF has the depressed-cladding index profile and its mode-field diameter, cutoff wavelength, and macro bending loss are designed to be similar to those of the conventional step-index SMF. We fabricate this reduced-cladding SMF and measure its optical and mechanical characteristics. The results show that this fiber satisfies major specifications of the ITU-T G.654 recommendations. We also fabricate a fiber ribbon by using twelve of these reduced-cladding SMFs. Compared to a commercial fiber ribbon made of twelve standard SMFs having 125-μm cladding diameter, this fiber ribbon can improve the spatial efficiency by ∼75%.

  9. Microstructure and Tribological Properties of In Situ Synthesized TiN Reinforced Ni/Ti Alloy Clad Layer Prepared by Plasma Cladding Technique

    NASA Astrophysics Data System (ADS)

    Jin, Guo; Li, Yang; Cui, Huawei; Cui, Xiufang; Cai, Zhaobing

    2016-06-01

    A Ni/Ti composite coating enhanced by an in situ synthesized TiN phase was fabricated on FV520B steel by plasma cladding technology. The in situ formation of the TiN phase was confirmed by XRD, SEM, and TEM. The cladding layer consisted of three regions on going from the top to the bottom, namely, columnar grain regions, columnar dendritic regions, and fine grain regions. The cladding layer was composed of Ni3Ti, TiN, (Fe, Ni), and Ti phases. The dendritic and columnar regions were mainly composed of the Ni3Ti and (Fe, Ni) phases. The Ti phase was observed at the branches of dendrite crystals and columnar grains. The volume fraction of the TiN phase in the cladding layer was about 3.2%. The maximum micro-hardness value of the in situ formed coating (760 HV0.2) was higher than that of the pure coating (537 HV0.2). The cladding layer had a small amount of scratch and wear debris when a load of 20 N was used. As the test load increased, the wear debris in the cladding layer also increased and the massive furrows were not observed.

  10. RENEWABLE LIQUID GETTERING PUMP

    DOEpatents

    Batzer, T.H.

    1962-08-21

    A method and structure were developed for pumping gases by simple absorption into a liquid gettering material. The invention comprises means ror continuously pumping a liquid getterrng material from a reservoir to the top of a generally vertical surface disposed in a vacuum pumping chamber to receive gaseous and other particles in the liquid gettering material which continuously flows downward over the vertical suiface. Means are provided for continuous removal, degassing, and return of a portion of the liquid gettering material from the reservoir connected with collectrng means at the base of the generally vertical plate. (AEC)

  11. Active radiation hardening of Tm-doped silica fiber based on pump bleaching.

    PubMed

    Xing, Ying-bin; Zhao, Nan; Liao, Lei; Wang, Yi-bo; Li, Hai-qing; Peng, Jing-gang; Yang, Lv-yun; Dai, Neng-li; Li, Jin-yan

    2015-09-21

    Tm-doped fiber laser or amplifier can be applied in varied adverse environments. In this work, we demonstrate the pump bleaching of Tm-doped silica fiber with 793nm pump source under gamma-ray irradiation in the range 50Gy-675Gy. The recovery time, the fiber slope efficiency and the fiber cladding absorption spectra after irradiation and bleaching have been measured. It is found that the recovery time and radiation induce absorption are positively associated with doses, however, the fiber slope efficiency of irradiated TDF and bleached TDF are both negatively correlated with doses. Based on the simulation of the fiber core temperature, the probable mechanism of pump bleaching is also discussed.

  12. The experimental study of a CW 1080 nm multi-point pump fiber laser

    NASA Astrophysics Data System (ADS)

    Zhang, Xuexia; Ge, Tingwu; Ding, Xing; Tan, Qirui; Wang, Zhiyong

    2016-07-01

    In this paper, we report on a CW 1080 nm fiber laser cascaded-pumped by a CW 975 nm diode laser. The fiber used in the experiment has a core diameter of 20 μm (NA  =  0.06), inner clad of 400 μm (NA  =  0.46), and an absorption coefficient of about 1.26 dB m-1 at 975 nm. An output power of 780 W with an optical conversion efficiency of 71% has been achieved at a pump light of 1.1 kW. To the best of our knowledge, this is the first time that a 1080 nm CW fiber laser has used a cascaded-pump coupler.

  13. Models for the Configuration and Integrity of Partially Oxidized Fuel Rod Cladding at High Temperatures

    SciTech Connect

    Siefken, L.J.

    1999-01-01

    Models were designed to resolve deficiencies in the SCDAP/RELAP5/MOD3.2 calculations of the configuration and integrity of hot, partially oxidized cladding. These models are expected to improve the calculations of several important aspects of fuel rod behavior. First, an improved mapping was established from a compilation of PIE results from severe fuel damage tests of the configuration of melted metallic cladding that is retained by an oxide layer. The improved mapping accounts for the relocation of melted cladding in the circumferential direction. Then, rules based on PIE results were established for calculating the effect of cladding that has relocated from above on the oxidation and integrity of the lower intact cladding upon which it solidifies. Next, three different methods were identified for calculating the extent of dissolution of the oxidic part of the cladding due to its contact with the metallic part. The extent of dissolution effects the stress and thus the integrity of the oxidic part of the cladding. Then, an empirical equation was presented for calculating the stress in the oxidic part of the cladding and evaluating its integrity based on this calculated stress. This empirical equation replaces the current criterion for loss of integrity which is based on temperature and extent of oxidation. Finally, a new rule based on theoretical and experimental results was established for identifying the regions of a fuel rod with oxidation of both the inside and outside surfaces of the cladding. The implementation of these models is expected to eliminate the tendency of the SCDAP/RELAP5 code to overpredict the extent of oxidation of the upper part of fuel rods and to underpredict the extent of oxidation of the lower part of fuel rods and the part with a high concentration of relocated material. This report is a revision and reissue of the report entitled, Improvements in Modeling of Cladding Oxidation and Meltdown.

  14. Technical basis for storage of Zircaloy-clad spent fuel in inert gases

    SciTech Connect

    Johnson, A.B. Jr.; Gilbert, E.R.

    1983-09-01

    This report summarizes the technical bases to establish safe conditions for dry storage of Zircaloy-clad fuel. Dry storage of fuel with zirconium alloy cladding has been licensed in Canada, the Federal Republic of Germany, and Switzerland. In addition, dry storage demonstrations, hot cell tests, and modeling have been conducted using Zircaloy-clad fuel. The demonstrations have included irradiated boiling water reactor, pressurized heavy-water reactor, and pressurized water reactor (PWR) fuel assemblies. Irradiated fuel has been emplaced in and retrieved from metal casks, dry wells, silos, and a vault. Dry storage tests and demonstrations have involved {similar_to}5,000 fuel rods, and {similar_to}600 rods have been monitored during dry storage in inert gases with maximum cladding temperatures ranging from 50 to 570{sup 0}C. Although some tests and demonstrations are still in progress, there is currently no evidence that any rods exposed to inert gases have failed (one PWR rod exposed to an air cover gas failed at {similar_to}70{sup 0}C). Based on this favorable experience, it is concluded that there is sufficient information on fuel rod behavior, storage conditions, and potential cladding failure mechanisms to support licensing of dry storage in the United States. This licensing position includes a requirement for inert cover gases and a maximum cladding temperature guideline of 380{sup 0}C for Zircaloy-clad fuel. Using an inert cover gas assures that even if fuel with cladding defects were placed in dry storage, or if defects develop during storage, the defects would not propagate. Tests and demonstrations involving Zircaloy-clad rods and assemblies with maximum cladding temperatures above 400{sup 0}C are in progress. When the results from these tests have been evaluated, the viability of higher temperature limits should be examined. Acceptable conditions for storage in air and dry storage of consolidated fuel are issues yet to be resolved.

  15. Analysis of Cladding Residues from the Dissolution of Irradiated Dresden-1 Reactor Fuel

    SciTech Connect

    KESSINGER, GF.

    2004-05-27

    The primary goal of this work was to evaluate the efficacy of the chop-leach spent fuel dissolution process, with nitric acid dissolvent, for removing actinides and fission products from Zircaloy cladding to produce a cladding capable of meeting low-level waste (LLW) disposal criteria. Analysis of the cladding shows that actinides are present in the cladding at concentrations 50 to 400 times greater than the acceptable TRU limit in LLW. It appears that the nitric acid used for dissolution (initial concentration 4 M, with 10 M added as the dissolution proceeded) was inadequate for solubilizing the fuel meat. Scanning electron micrographs of the as-sampled cladding surface showed particles of material high in U on the surface of the cut samples, suggesting the fuel meat was not completely dissolved. If the cladding is to meet LLW disposal limits, it is likely that a more robust chemical treatment will be required to more completely digest the fuel meat. Based on the available analytical results, and the interpretation of those results, the following conclusions are drawn. The chop-leach method, as performed initially was inadequate for complete digestion of the fuel meat present in the Dresden-1 fuel samples studied. This failure of the dissolution process resulted in cladding samples that contained TRU actinides about 400 times more TRU content than is allowable in LLW. The inductively-coupled plasma emission spectroscopy (ICP-ES) method appears to overestimate the quantities of a variety of elements, such as Ag, Ce, Gd, La, and Sb. It is believed this phenomenon is related to spectral interferences from d-block and f-block elements. Future studies should be performed to determine the efficacy of leaching to chemically polish the cladding surface and remove undissolved fuel meat. Further analyses of cladding samples, to more thoroughly characterize the nature of the U- and TRU-bearing phases present in the cladding, are recommended.

  16. Pressurized Vessel Slurry Pumping

    SciTech Connect

    Pound, C.R.

    2001-09-17

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air.

  17. Regenerative Hydride Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  18. Keeping Hearts Pumping

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A collaboration between NASA, Dr. Michael DeBakey, Dr. George Noon, and MicroMed Technology, Inc., resulted in a life-saving heart pump for patients awaiting heart transplants. The MicroMed DeBakey VAD functions as a "bridge to heart transplant" by pumping blood throughout the body to keep critically ill patients alive until a donor heart is available. Weighing less than 4 ounces and measuring 1 inch by 3 inches, the pump is approximately one-tenth the size of other currently marketed pulsatile VADs. This makes it less invasive and ideal for smaller adults and children. Because of the pump's small size, less than 5 percent of the patients implanted developed device-related infections. It can operate up to 8 hours on batteries, giving patients the mobility to do normal, everyday activities.The MicroMed DeBakey VAD is a registered trademark of MicroMed Technology, Inc.

  19. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  20. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  1. GAS METERING PUMP

    DOEpatents

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  2. Direct nuclear pumped laser

    DOEpatents

    Miley, George H.; Wells, William E.; DeYoung, Russell J.

    1978-01-01

    There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

  3. Lunar Base Heat Pump

    NASA Technical Reports Server (NTRS)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  4. Remotely Adjustable Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Kouns, H. H.; Gardner, L. D.

    1987-01-01

    Outlet pressure adjusted to match varying loads. Electrohydraulic servo has positioned sleeve in leftmost position, adjusting outlet pressure to maximum value. Sleeve in equilibrium position, with control land covering control port. For lowest pressure setting, sleeve shifted toward right by increased pressure on sleeve shoulder from servovalve. Pump used in aircraft and robots, where hydraulic actuators repeatedly turned on and off, changing pump load frequently and over wide range.

  5. Lunar base heat pump

    NASA Technical Reports Server (NTRS)

    Goldman, Jeffrey H.; Tetreault, R.; Fischbach, D.; Walker, D.

    1994-01-01

    A heat pump is a device which elevates the temperature of a heat flow by a means of an energy input. By doing this, the heat pump can cause heat to transfer faster from a warm region to a cool region, or it can cause heat to flow from a cool region to a warmer region. The second case is the one which finds vast commercial applications such as air conditioning, heating, and refrigeration. Aerospace applications of heat pumps include both cases. The NASA Johnson Space Center is currently developing a Life Support Systems Integration Facility (LSSIF, previously SIRF) to provide system-level integration, operational test experience, and performance data that will enable NASA to develop flight-certified hardware for future planetary missions. A high lift heat pump is a significant part of the TCS hardware development associated with the LSSIF. The high lift heat pump program discussed here is being performed in three phases. In Phase 1, the objective is to develop heat pump concepts for a lunar base, a lunar lander, and for a ground development unit for the SIRF. In Phase 2, the design of the SIRF ground test unit is being performed, including identification and evaluation of safety and reliability issues. In Phase 3, the SIRF unit will be manufactured, tested, and delivered to the NASA Johnson Space Center.

  6. Hydraulic well pump

    SciTech Connect

    Dollison, W.W.

    1987-09-08

    This patent describes a system for operating a sucker rod string connected with a well pump comprising: a double-acting fluid cylinder having opposing power ends; means for connecting the cylinder with the sucker rod string for raising and lowering the string to operate the pump; hydraulic pump means for supplying pressurized fluid alternately to the cylinder ends including a direction control movable between extend and retract conditions to extend and retract the cylinder; drive means for shifting the direction control; control means for operating the drive means responsive to the extend and retract movements of the cylinder; and means for applying a fluid counterbalancing force into the cylinder for offsetting the combined weights of the sucker rod string. A production fluid column in a well bore above the pump, and movable surface equipment supported on the cylinder include an accumulator connected with the hydraulic pump means and the direction control for supercharging the intake of the pump during the extend movement of the cylinder and for applying an opposing hydraulic force to the cylinder during the retract movement.

  7. Smart'' pump and treat

    SciTech Connect

    Isherwood, W.; Rice, D. Jr.; Ziagos, J. ); Nichols, E. )

    1991-09-01

    Lawrence Livermore National Laboratory (LLNL) is approaching the final phase of the Superfund decision-making process for site restoration and will soon initiate full scale cleanup. Despite some well-publicized failings of the pump and treat approach, we have concluded that intelligent application of this strategy if the best choice for ground water restoration at LLNL. Our proposed approach differs sufficiently from the pump and treat methods implemented at other sites that we call it smart'' pump and treat. Smart pump and treat consists of four distinct, but interrelated, elements: three preremediation strategies and one modification to pump and treat itself. Together, these techniques are an integrated program that utilizes an understanding of crucial aspects of contaminant flow and transport to speed up the remediation of contaminated aquifers. The four elements are: (1) a spatially detailed site characterization, linked with regional hydrogeologic models; (2) directed extraction, where the extraction and recharge locations are controlled by field-determined hydrogeologic parameters; (3) field-validated modeling that the matches the complexity of the collected data; and (4) adaptive pumping, whose pattern varies with time. Together, these techniques minimize the cost and the time to reach regulatory directed cleanup goals and maximize the rate of contaminant removal. 8 refs.

  8. Rotary blood pump

    NASA Technical Reports Server (NTRS)

    Benkowski, Robert J. (Inventor); Kiris, Cetin (Inventor); Kwak, Dochan (Inventor); Rosenbaum, Bernard J. (Inventor); Bacak, James W. (Inventor); DeBakey, Michael E. (Inventor)

    1999-01-01

    A blood pump that comprises a pump housing having a blood flow path therethrough, a blood inlet, and a blood outlet; a stator mounted to the pump housing, the stator having a stator field winding for producing a stator magnetic field; a flow straightener located within the pump housing, and comprising a flow straightener hub and at least one flow straightener blade attached to the flow straightener hub; a rotor mounted within the pump housing for rotation in response to the stator magnetic field, the rotor comprising an inducer and an impeller; the inducer being located downstream of the flow straightener, and comprising an inducer hub and at least one inducer blade attached to the inducer hub; the impeller being located downstream of the inducer, and comprising an impeller hub and at least one impeller blade attached to the impeller hub; and preferably also comprising a diffuser downstream of the impeller, the diffuser comprising a diffuser hub and at least one diffuser blade. Blood flow stagnation and clot formation within the pump are minimized by, among other things, providing the inducer hub with a diameter greater than the diameter of the flow straightener hub; by optimizing the axial spacing between the flow straightener hub and the inducer hub, and between the impeller hub and the diffuser hub; by optimizing the inlet angle of the diffuser blades; and by providing fillets or curved transitions between the upstream end of the inducer hub and the shaft mounted therein, and between the impeller hub and the shaft mounted therein.

  9. Auxiliary lubrication pump apparatus

    SciTech Connect

    Glesmann, H.C.; Thomas, R.G.

    1987-02-10

    This patent describes an auxiliary lubrication pump apparatus for use with a towing vehicle having an engine switch, a battery, and an interior compartment, and a towed vehicle having an automatic transmission which requires forced lubrication while being towed. The apparatus comprises: (a) a lubrication pump; (b) a transmission to pump hose connected between the automatic transmission and the lubrication pump; (c) a valve having at least one signal output and two inputs: (d) a hose means for connecting an output of the lubrication pump to one of the inputs of the valve; (e) a first outflow hose for connecting the automatic transmission to another input of the valve; (f) a second output hose for connecting the output of the valve to the automatic transmission; (g) pressure sensing means positioned to sense pressure as regards the second outflow hose; and (h) control means responsive to the pressure sensing means and having switch means for providing electricity to the lubrication pump and to provide an alarm whenever the control means detects through the pressure sensing means that inadequate pressure exists.

  10. Satellite Propellant Pump Research

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Veres, Joseph P.; Hah, Chunill; Nerone, Anthony L.; Cunningham, Cameron C.; Kraft, Thomas G.; Tavernelli, Paul F.; Fraser, Bryan

    2005-01-01

    NASA Glenn initiated a satellite propellant pump technology demonstration program. The goal was to demonstrate the technologies for a 60 percent efficient pump at 1 gpm flow rate and 500 psia pressure rise. The pump design and analysis used the in-house developed computer codes named PUMPA and HPUMP3D. The requirements lead to a 4-stage impeller type pump design with a tip diameter of 0.54 inches and a rotational speed of 57,000 rpm. Analyses indicated that flow cavitation was not a problem in the design. Since the flow was incompressible, the stages were identical. Only the 2-stage pump was designed, fabricated, assembled, and tested for demonstration. Water was selected as the surrogate fluid for hydrazine in this program. Complete mechanical design including stress and dynamic analyses were conducted. The pump was driven by an electric motor directly coupled to the impellers. Runs up to 57,000 rpm were conducted, where a pressure rise of 200 psia at a flow rate of 0.8 gpm was measured to validate the design effort.

  11. The Evolution of Ion Pumps.

    ERIC Educational Resources Information Center

    Maloney, Peter C.; Wilson, T. Hastings

    1985-01-01

    Constructs an evolutionary sequence to account for the diversity of ion pumps found today. Explanations include primary ion pumps in bacteria, features and distribution of ATP-driven pumps, preference for cation transport, and proton pump reversal. The integrated evolutionary hypothesis should encourage new experimental approaches. (DH)

  12. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  13. Tokamak pump limiters

    NASA Astrophysics Data System (ADS)

    Conn, Robert W.

    1984-12-01

    Experiments with pump limiters on several operating tokamaks have established them as efficient collectors of particles. The gas pressure rise within the chamber behind the limiters has been as high as 50 mTorr when there is no internal chamber pumping. Observations of the plasma power distribution over the front face of these limiter modules yield estimates for the scale length of radial power decay consistent with predictions of relatively simple theory. Interaction of the in-flowing plasma with recycling neutral gas near the limiter deflector plate is predicted to become important when the effective ionization mean free path is comparable to or less than the neutral atom mean path length within the throat structure of the limiter. Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6 MW of auxiliary neutral beam heating. Experiments have also been performed with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a regime may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased

  14. Well-pump alignment system

    DOEpatents

    Drumheller, D.S.

    1998-10-20

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

  15. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding

    NASA Astrophysics Data System (ADS)

    Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang

    2016-05-01

    There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity.

  16. Hard plastic clad silica fibers for near UV applications

    NASA Astrophysics Data System (ADS)

    Skutnik, Bolesh J.; Foley, Brian; Moran, Kelly

    2005-03-01

    Many medical applications have been developed using light sources not only in the visible and near infra-red (NIR) regions, but also in the near ultraviolet (near UV) region of the spectrum. Hard Plastic Clad Silica (HPCS) have found much use in medical applications in general, but generally HPCS fibers are not recommended below 400 nm. Here we will describe HPCS fibers with excellent mechanical reliability and with optical losses of only 1.5 dB/m at 275 nm and less than about 0.2 dB/m at 350 nm. How this combination of properties can benefit diagnostic and surgical applications in the near UV will also be discussed.

  17. Iridium alloy clad vent set manufacturing qualification studies

    SciTech Connect

    Ulrich, G.B. )

    1991-01-10

    Qualification studies have been successfully conducted to demonstrate iridium alloy Clad Vent Set (CVS) manufacturing readiness for the General Purpose Heat Source (GPHS) program at the Oak Ridge Y-12 Plant. These studies were joint comparison evaluations of both the Y-12 Plant and EG G Mound Applied Technologies, Inc. (EG G-MAT) products. Note: EG G-MAT formerly manufactured the iridium alloy CVS. The comparison evaluations involved work in a number of areas; however, only the CVS cup metallurgical evalution will be presented here. The initial metallurgical comparisons in conjunction with follow-up metallurgical work showed the Y-12 Plant CVS product to be comparable to the fully qualified (for Galileo and Ulysses missions) EG G-MAT product. This allowed the Y-12 Plant to commence pilot production of CVS components for potential use in the CRAF and CASSINI missions.

  18. Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes

    NASA Astrophysics Data System (ADS)

    Myzaferi, A.; Reading, A. H.; Cohen, D. A.; Farrell, R. M.; Nakamura, S.; Speck, J. S.; DenBaars, S. P.

    2016-08-01

    The bottom cladding design of semipolar III-nitride laser diodes is limited by stress relaxation via misfit dislocations that form via the glide of pre-existing threading dislocations (TDs), whereas the top cladding is limited by the growth time and temperature of the p-type layers. These design limitations have individually been addressed by using limited area epitaxy (LAE) to block TD glide in n-type AlGaN bottom cladding layers and by using transparent conducting oxide (TCO) top cladding layers to reduce the growth time and temperature of the p-type layers. In addition, a TCO-based top cladding should have significantly lower resistivity than a conventional p-type (Al)GaN top cladding. In this work, LAE and indium-tin-oxide cladding layers are used simultaneously in a ( 20 2 ¯ 1 ) III-nitride laser structure. Lasing was achieved at 446 nm with a threshold current density of 8.5 kA/cm2 and a threshold voltage of 8.4 V.

  19. Early implementation of SiC cladding fuel performance models in BISON

    SciTech Connect

    Powers, Jeffrey J.

    2015-09-18

    SiC-based ceramic matrix composites (CMCs) [5–8] are being developed and evaluated internationally as potential LWR cladding options. These development activities include interests within both the DOE-NE LWR Sustainability (LWRS) Program and the DOE-NE Advanced Fuels Campaign. The LWRS Program considers SiC ceramic matrix composites (CMCs) as offering potentially revolutionary gains as a cladding material, with possible benefits including more efficient normal operating conditions and higher safety margins under accident conditions [9]. Within the Advanced Fuels Campaign, SiC-based composites are a candidate ATF cladding material that could achieve several goals, such as reducing the rates of heat and hydrogen generation due to lower cladding oxidation rates in HT steam [10]. This work focuses on the application of SiC cladding as an ATF cladding material in PWRs, but these work efforts also support the general development and assessment of SiC as an LWR cladding material in a much broader sense.

  20. A comparative study on the wear behaviors of cladding candidates for accident-tolerant fuel

    NASA Astrophysics Data System (ADS)

    Lee, Young-Ho; Byun, Thak Sang

    2015-10-01

    Accident-tolerant fuels are expected to have considerably longer coping time to respond to the loss of active cooling under severe accidents and, at the same time, have comparable or improved fuel performance during normal operation. The wear resistance of accident tolerant fuels, therefore, needs to be examined to determine the applicability of these cladding candidates to the current operating PWRs because the most common failure of nuclear fuel claddings is still caused by grid-to-rod fretting during normal operations. In this study, reciprocating sliding wear tests on three kinds of cladding candidates for accident-tolerant fuels have been performed to investigate the tribological compatibilities of self-mated cladding candidates and to determine the direct applicability of conventional Zirconium-based alloys as supporting structural materials. The friction coefficients of the cladding candidates are strongly influenced by the test environments and coupled materials. The wear test results under water lubrication conditions indicate that the supporting structural materials for the cladding candidates of accident-tolerant fuels need to be replaced with the same cladding materials instead of using conventional Zirconium-based alloys.

  1. Evaluation of Missing Pellet Surface Geometry on Cladding Stress Distribution and Magnitude

    SciTech Connect

    Capps, Nathan A.; Montgomery, Robert O.; Sunderland, Dion J.; Spencer, Ben; Pytel, Martin; Wirth, Brian D.

    2014-10-01

    Missing pellet surface (MPS) defects are local geometric defects that periodically occur in nuclear fuel pellets, usually as a result of the mishandling during the manufacturing process. The presences of these defects can lead to clad stress concentrations that are substantial enough to cause a through wall failure for certain conditions of power level, burnup, and power increase. Consequently, the impact of potential MPS defects has limited the rate of power increase or ramp rates in both PWR and BWR systems. Improved 3D MPS models that consider the effect of the MPS geometry can provide better understanding of the margins against PCMI clad failure. The Peregrine fuel performance code has been developed as a part the Consortium of Advanced Simulations of Light Water Reactors (CASL) to consider the inherently multi-physics and multi-dimensional mechanisms that control fuel behavior, including cladding failure by the presence of MPS defects. This paper presents an evaluation of the cladding stress concentrations as a function of MPS defect geometry. The results are the first step in a probabilistic approach to assess cladding failure during power maneuvers. This analysis provides insight into how varying pellet defect geometries affect the distribution of the cladding stress and fuel and cladding temperature and will be used to develop stress concentration factors for 2D and 3D models.

  2. Review of fuel/cladding eutectic formation in metallic SFR fuel pins

    SciTech Connect

    Denman, M.; Todreas, N.; Driscoll, M.

    2012-07-01

    Sodium-cooled Fast Reactors (SFRs) remain a strong contender amongst the Generation IV reactor concepts. Metallic fuel has been a primary fuel option for SFR designers in the US and was used extensively in the first generation of SFRs. One of the benefits of metallic fuel is its chemical compatibility with the coolant; unfortunately this compatibility does not extend to steel cladding at elevated temperatures. It has been known that uranium, plutonium, and rare earths diffuse with cladding constituents to form a low melting point fuel/cladding eutectic which acts to thin the cladding once the interfacial temperature rises above the system liquidus temperature. Since the 1960's, many experiments have been performed and published to evaluate the rate of fuel/cladding eutectic formation and the temperature above which melting will begin as a function of fuel/cladding interfacial temperature, time at temperature, fuel constituents (uranium, fissium or uranium (plutonium) zirconium), cladding type (stainless steel 316, stainless steel 306, D9 or HT9), beginning of life linear power, plutonium enrichment and burnup. The results of these tests, however, remain scattered across conference and journal papers spanning 50 years. The tests used to collect this data also varied in experimental procedure throughout the years. This paper will consolidate the experimental data into four groups of similar test conditions and expand upon the testing performed for each group in detail. A companion paper in PSA 2011 will discuss predictive correlations formulated from this database. (authors)

  3. Effect of Temperature and Sheet Temper on Isothermal Solidification Kinetics in Clad Aluminum Brazing Sheet

    NASA Astrophysics Data System (ADS)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-09-01

    Isothermal solidification (IS) is a phenomenon observed in clad aluminum brazing sheets, wherein the amount of liquid clad metal is reduced by penetration of the liquid clad into the core. The objective of the current investigation is to quantify the rate of IS through the use of a previously derived parameter, the Interface Rate Constant (IRC). The effect of peak temperature and initial sheet temper on IS kinetics were investigated. The results demonstrated that IS is due to the diffusion of silicon (Si) from the liquid clad layer into the solid core. Reduced amounts of liquid clad at long liquid duration times, a roughened sheet surface, and differences in resolidified clad layer morphology between sheet tempers were observed. Increased IS kinetics were predicted at higher temperatures by an IRC model as well as by experimentally determined IRC values; however, the magnitudes of these values are not in good agreement due to deficiencies in the model when applied to alloys. IS kinetics were found to be higher for sheets in the fully annealed condition when compared with work-hardened sheets, due to the influence of core grain boundaries providing high diffusivity pathways for Si diffusion, resulting in more rapid liquid clad penetration.

  4. Analog and digital interface solutions for the common large-area display set (CLADS)

    NASA Astrophysics Data System (ADS)

    Hermann, David J.; Gorenflo, Ronald L.

    1997-07-01

    Battelle is under contract with Warner Robins Air Logistics Center to design a common large area display set (CLADS) for use in multiple airborne command, control, communications, computers and intelligence applications that currently use unique 19 inch cathode ray tubes (CRTs). The CLADS is a modular design, with common modules used wherever possible. Each CLADS includes an application-specific integration kit, which incorporates all of the unique interface components. Since there is no existing digital video interface standard for high resolution workstations, a standard interface was developed for CLADS and documented as an interface specification.One of the application-specific modules, the application video interface module (AVIM), readily incorporates most of the required application electrical interfaces for a given system into a single module. The analog AVIM, however, poses unique design problems when folding multiple application interface requirements into a single common AVIM for the most prevalent workstation display interface: analog RGB video. Future workstation display interfaces will incorporate fully digital video between the graphics hardware and the digital display device. A digital AVIM is described which utilizes a fiber channel interface to deliver high speed 1280 by 1024, 24- bit, 60 Hz digital video from a PCI graphics card to the CLADS. A video recording and playback device is described, as well as other common CLADS modules, including the display controller and power supply. This paper will discuss both the analog and digital AVIM interfaces, application BIT and power interfaces, as well as CLADS internal interfaces.

  5. Metal cladding envelope problems, retrofit solutions, and quality control investigations

    NASA Astrophysics Data System (ADS)

    Colantonio, Antonio

    1992-04-01

    This paper deals with a case study of a building envelope retrofit of an insulated sheet steel and corrugated metal clad building. The building in discussion is a satellite testing facility which requires specific clean room conditions with controlled interior temperature (22 degree(s)C +/- 1 degree(s)C) and high relative humidity conditions (45% +/- 3%) to facilitate satellite testing programs. Preliminary mechanical system inspections indicated substantial increase in air intake to make up for air leakage losses. An infrared inspection along with an approximate air leakage test of the building envelope was requested by the client to determine the magnitude of the building envelope problem. This investigation concluded that significant air leakage was present throughout the building envelope and that existing mechanical systems did not have sufficient capacity to pressurize the building and negate wind and stack effect. Exfiltration particularly through openings on the top sections of the building were causing interior moisture to saturate wall insulation and render it ineffective. Concern for rusting of metal components was indicated. The subsequent envelope analysis discovered a number of typical metal building details that led to poor air tightness and wall insulation ineffectiveness. These were correlated to infrared investigation data. The retrofit solutions produced for this building not only apply to this building but to other similar building types. Further investigations indicated that air leakage and mechanical system performance were significant problems with buildings using metal cladding systems comparable to this building. Quality control before, during and after construction was identified as an important function of the architectural commissioning of the retrofit work and infrared investigations were used to verify locations of air leakage and insulation effectiveness.

  6. Fabrication and testing of U-7Mo monolithic plate fuel with Zircaloy cladding

    NASA Astrophysics Data System (ADS)

    Pasqualini, E. E.; Robinson, A. B.; Porter, D. L.; Wachs, D. M.; Finlay, M. R.

    2016-10-01

    Nuclear fuel designs are being developed to replace highly enriched fuel used in research and test reactors with fuels of low enrichment. In the most challenging cases, U-(7-10 wt%)Mo monolithic plate fuels are proposed. One of the considered designs includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction during service. Zircaloy cladding, specifically Zry-4, was investigated as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry-4 clad U-7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry-4 and U-(7-10)Mo have similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch, which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly during or between roll passes. The final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction-either from fabrication or in-reactor testing-and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.7E+21 (average) fissions/cm3, 3.8E+21 (peak).

  7. Development of Diffusion barrier coatings and Deposition Technologies for Mitigating Fuel Cladding Chemical Interactions (FCCI)

    SciTech Connect

    Sridharan, Kumar; Allen, Todd; Cole, James

    2013-02-27

    The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium, zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.

  8. Thermal characteristics of an end-pumped high-power ytterbium-sensitized erbium-doped fiber laser under natural convection.

    PubMed

    Jeong, Y; Baek, S; Dupriez, P; Maran, J-N; Sahu, J K; Nilsson, J; Lee, B

    2008-11-24

    We investigate the thermal characteristics of a polymer-clad fiber laser under natural convection when it is strongly pumped up to the damage point of the fiber. For this, we utilize a temperature sensing technique based on a fiber Bragg grating sensor array. We have measured the longitudinal temperature distribution of a 2.4-m length ytterbium-sensitized erbium-doped fiber laser that was end-pumped at approximately 975 nm. The measured temperature distribution decreases exponentially, approximately, decaying away from the pump-launch end. We attribute this to the heat dissipation of absorbed pump power. The maximum temperature difference between the fiber ends was approximately 190 K at the maximum pump power of 60.8 W. From this, we estimate that the core temperature reached approximately 236 degrees C. PMID:19030073

  9. Polycrystalline Ceramic Er:YAG Laser In-Band Pumped by a High-Power Er,Yb Fiber Laser at 1532 nm

    NASA Astrophysics Data System (ADS)

    Shen, Deyuan; Chen, Hao; Qin, Xiangpeng; Zhang, Jian; Tang, Dingyuan; Yang, Xiaofang; Zhao, Ting

    2011-05-01

    We report on the high-power and efficient operation of a polycrystalline ceramic erbium-doped yttrium aluminum garnet (Er:Y3Al5O12, Er:YAG) laser resonantly pumped by a cladding-pumped Er,Yb fiber laser. The pump fiber laser was wavelength-locked to the absorption peak of Er:YAG at ˜1532 nm using a volume Bragg grating. The ceramic laser yielded 13.8 W of continuous-wave output at 1645 nm for 27.3 W of incident pump power, corresponding to a slope efficiency of 54.5% with respect to the incident pump power. The laser output characteristics of different Er3+ doping levels are compared, and the prospects for improvement in lasing efficiency and output power are discussed.

  10. Charpy toughness and tensile properties of a neutron irradiated stainless steel submerged-arc weld cladding overlay

    SciTech Connect

    Corwin, W.R.; Berggren, R.G.; Nanstad, R.K.

    1984-01-01

    The possibility of stainless steel cladding increasing the resistance of an operating nuclear reactor pressure vessel to extension of surface flaws is highly dependent upon the irradiated properties of the cladding. Therefore, weld overlay cladding irradiated at temperatures and fluences relevant to power reactor operation was examined. The cladding was applied to a pressure vessel steel plate by the submerged-arc, single-wire, oscillating electrode method. Three layers of cladding were applied to provide a cladding thickness adequate for fabrication of test specimens. The first layer was type 309, and the upper two layers were type 308 stainless steel. There was considerable dilution of the type 309 in the first layer of cladding as a result of excessive melting of the base plate. Specimens for the irradiation study were taken from near the base plate/cladding interface and also from the upper layers of cladding. Charpy V-notch and tensile specimens were irradiated at 288/sup 0/C to neutron fluences of 2 x 10/sup 23/ n/m/sup 2/ (E > 1 MeV). When irradiated, both types 308 and 309 cladding showed a 5 to 40% increase in yield strength accompanied by a slight increase in ductility in the temperature range from 25 to 288/sup 0/C. All cladding exhibited ductile-to-brittle transition behavior during impact testing.

  11. Effect of Specific Energy Input on Microstructure and Mechanical Properties of Nickel-Base Intermetallic Alloy Deposited by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Awasthi, Reena; Kumar, Santosh; Chandra, Kamlesh; Vishwanadh, B.; Kishore, R.; Viswanadham, C. S.; Srivastava, D.; Dey, G. K.

    2012-12-01

    This article describes the microstructural features and mechanical properties of nickel-base intermetallic alloy laser-clad layers on stainless steel-316 L substrate, with specific attention on the effect of laser-specific energy input (defined as the energy required per unit of the clad mass, kJ/g) on the microstructure and properties of the clad layer, keeping the other laser-cladding parameters same. Defect-free clad layers were observed, in which various solidified zones could be distinguished: planar crystallization near the substrate/clad interface, followed by cellular and dendritic morphology towards the surface of the clad layer. The clad layers were characterized by the presence of a hard molybdenum-rich hexagonal close-packed (hcp) intermetallic Laves phase dispersed in a relatively softer face-centered cubic (fcc) gamma solid solution or a fine lamellar eutectic phase mixture of an intermetallic Laves phase and gamma solid solution. The microstructure and properties of the clad layers showed a strong correlation with the laser-specific energy input. As the specific energy input increased, the dilution of the clad layer increased and the microstructure changed from a hypereutectic structure (with a compact dispersion of characteristic primary hard intermetallic Laves phase in eutectic phase mixture) to near eutectic or hypoeutectic structure (with reduced fraction of primary hard intermetallic Laves phase) with a corresponding decrease in the clad layer hardness.

  12. Effect of surface roughness on the texture and oxidation behavior of Zircaloy-4 cladding tube

    NASA Astrophysics Data System (ADS)

    Akhiani, Hamed; Szpunar, Jerzy A.

    2013-11-01

    Conventional pressure water reactors like CANDU use Zircaloy-4 as a fuel cladding tube. Surface roughness that arises from the manufacturing process, pilgering, may alter these tubes' properties in various ways. This paper presents a comparative study of cladding tubes with different surface conditions in order to investigate their effect on the Zircaloy-4 substrate and oxide textures as well as the oxidation kinetic. The experimental results reveal that surface roughness affects the oxidation rate and weight gain of the cladding tubes. Although surface polishing slightly changes the substrate texture, it induces no significant change in the oxide texture. Moreover, oxidation time does not significantly change the preferred orientation of the zirconium oxide.

  13. Screening of advanced cladding materials and UN-U3Si5 fuel

    NASA Astrophysics Data System (ADS)

    Brown, Nicholas R.; Todosow, Michael; Cuadra, Arantxa

    2015-07-01

    In the aftermath of Fukushima, a focus of the DOE-NE Advanced Fuels Campaign has been the development of advanced nuclear fuel and cladding options with the potential for improved performance in an accident. Uranium dioxide (UO2) fuels with various advanced cladding materials were analyzed to provide a reference for cladding performance impacts. For advanced cladding options with UO2 fuel, most of the cladding materials have some reactivity and discharge burn-up penalty (in GWd/t). Silicon carbide is one exception in that the reactor physics performance is predicted to be very similar to zirconium alloy cladding. Most candidate claddings performed similar to UO2-Zr fuel-cladding in terms of safety coefficients. The clear exception is that Mo-based materials were identified as potentially challenging from a reactor physics perspective due to high resonance absorption. This paper also includes evaluation of UN-U3Si5 fuels with Kanthal AF or APMT cladding. The objective of the U3Si5 phase in the UN-U3Si5 fuel concept is to shield the nitride phase from water. It was shown that UN-U3Si5 fuels with Kanthal AF or APMT cladding have similar reactor physics and fuel management performance over a wide parameter space of phase fractions when compared to UO2-Zr fuel-cladding. There will be a marginal penalty in discharge burn-up (in GWd/t) and the sensitivity to 14N content in UN ceramic composites is high. Analysis of the rim effect due to self-shielding in the fuel shows that the UN-based ceramic fuels are not expected to have significantly different relative burn-up distributions at discharge relative to the UO2 reference fuel. However, the overall harder spectrum in the UN ceramic composite fuels increases transuranic build-up, which will increase long-term activity in a once-thru fuel cycle but is expected to be a significant advantage in a fuel cycle with continuous recycling of transuranic material. It is recognized that the fuel and cladding properties assumed in

  14. Summary of work on coatings and claddings for fossil energy applications

    SciTech Connect

    Swindeman, R.W.

    1993-05-01

    A summary of efforts to examine coatings and cladding materials for high-strength austenitic steels is provided. Chromized coatings on 17--14CuMo stainless steel and a modified type 316 (HT-UPS) stainless steel were investigated. Claddings included alloy 671, 690, and an iron-aluminide intermetallic alloy. Structural alloys that were clad included type 304 stainless steel, modified type 316 stainless steel, and modified alloy 800H. The capability of producing co-extruded tubing of the experimental alloys was demonstrated.

  15. Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors

    SciTech Connect

    George, Nathan Michael; Terrani, Kurt A.; Powers, Jeffrey J.; Worrall, Andrew; Maldonado, Ivan

    2014-09-29

    A study analyzed the neutronics of alternate cladding materials in a pressurized water reactor (PWR) environment. Austenitic type 310 (310SS) and 304 stainless steels, ferritic Fe-20Cr-5Al (FeCrAl) and APMT™ alloys, and silicon carbide (SiC)-based materials were considered and compared with Zircaloy-4. SCALE 6.1 was used to analyze the associated neutronics penalty/advantage, changes in reactivity coefficients, and spectral variations once a transition in the cladding was made. In the cases examined, materials containing higher absorbing isotopes invoked a reduction in reactivity due to an increase in neutron absorption in the cladding. Higher absorbing materials produced a harder neutron spectrum in the fuel pellet, leading to a slight increase in plutonium production. A parametric study determined the geometric conditions required to match cycle length requirements for each alternate cladding material in a PWR. A method for estimating the end of cycle reactivity was implemented to compare each model to that of standard Zircaloy-4 cladding. By using a thinner cladding of 350 μm and keeping a constant outer diameter, austenitic stainless steels require an increase of no more than 0.5 wt% enriched 235U to match fuel cycle requirements, while the required increase for FeCrAl was about 0.1%. When modeling SiC (with slightly lower thermal absorption properties than that of Zircaloy), a standard cladding thickness could be implemented with marginally less enriched uranium (~0.1%). Moderator temperature and void coefficients were calculated throughout the depletion cycle. Nearly identical reactivity responses were found when coolant temperature and void properties were perturbed for each cladding material. By splitting the pellet into 10 equal areal sections, relative fission power as a function of radius was found to be similar for each cladding material. FeCrAl and 310SS cladding have a slightly higher fission power near the pellet’s periphery due to

  16. Polymeric waveguide electro-optic beam-steering device with DNA biopolymer conductive cladding layers

    NASA Astrophysics Data System (ADS)

    Aga, Roberto S.; Ouchen, Fahima; Lesko, Alyssa; Telek, Brian A.; Fehrman Cory, Emily M.; Bartsch, Carrie M.; Lombardi, Jack; Grote, James; Heckman, Emily M.

    2012-11-01

    A polymer electro-optic (EO) waveguide beam-steering device with deoxyribonucleic acid (DNA) biopolymer conductive cladding layers and a core layer of the commercially available EO polymer SEO100 is demonstrated with 100% relative poling efficiency. This demonstration device exhibits a deflection efficiency of 99 mrad/kV with a corresponding in-device EO coefficient r33 of 124 pm/V at 1550 nm. When the DNA biopolymer bottom cladding layer is replaced by the commonly used cladding polymer UV15, the deflection efficiency and in-device r33 drop to 34 mrad/kV and 43 pm/V, respectively.

  17. Uranium dioxide fuel cladding strain investigation with the use of CYGRO-2 computer program

    NASA Technical Reports Server (NTRS)

    Smith, J. R.

    1973-01-01

    Previously irradiated UO2 thermionic fuel pins in which gross fuel-cladding strain occurred were modeled with the use of a computer program to define controlling parameters which may contribute to cladding strain. The computed strain was compared with measured strain, and the computer input data were studied in an attempt to get agreement with measured strain. Because of the limitations of the program and uncertainties in input data, good agreement with measured cladding strain was not attained. A discussion of these limitations is presented.

  18. Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors

    DOE PAGESBeta

    George, Nathan Michael; Terrani, Kurt A.; Powers, Jeffrey J.; Worrall, Andrew; Maldonado, Ivan

    2014-09-29

    A study analyzed the neutronics of alternate cladding materials in a pressurized water reactor (PWR) environment. Austenitic type 310 (310SS) and 304 stainless steels, ferritic Fe-20Cr-5Al (FeCrAl) and APMT™ alloys, and silicon carbide (SiC)-based materials were considered and compared with Zircaloy-4. SCALE 6.1 was used to analyze the associated neutronics penalty/advantage, changes in reactivity coefficients, and spectral variations once a transition in the cladding was made. In the cases examined, materials containing higher absorbing isotopes invoked a reduction in reactivity due to an increase in neutron absorption in the cladding. Higher absorbing materials produced a harder neutron spectrum in themore » fuel pellet, leading to a slight increase in plutonium production. A parametric study determined the geometric conditions required to match cycle length requirements for each alternate cladding material in a PWR. A method for estimating the end of cycle reactivity was implemented to compare each model to that of standard Zircaloy-4 cladding. By using a thinner cladding of 350 μm and keeping a constant outer diameter, austenitic stainless steels require an increase of no more than 0.5 wt% enriched 235U to match fuel cycle requirements, while the required increase for FeCrAl was about 0.1%. When modeling SiC (with slightly lower thermal absorption properties than that of Zircaloy), a standard cladding thickness could be implemented with marginally less enriched uranium (~0.1%). Moderator temperature and void coefficients were calculated throughout the depletion cycle. Nearly identical reactivity responses were found when coolant temperature and void properties were perturbed for each cladding material. By splitting the pellet into 10 equal areal sections, relative fission power as a function of radius was found to be similar for each cladding material. FeCrAl and 310SS cladding have a slightly higher fission power near the pellet’s periphery due to the

  19. Heat driven pulse pump

    NASA Technical Reports Server (NTRS)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  20. Pump tank divider plate for sump suction sodium pumps

    DOEpatents

    George, John A.; Nixon, Donald R.

    1977-01-01

    A circular plate extends across the diameter of "sump suction" pump, with a close clearance between the edge of the plate and the wall of the pump tank. The plate is located above the pump impeller, inlet and outlet flow nozzles but below the sodium free surface and effectively divides the pump tank into two separate chambers. On change of pump speed, the close fitting flow restriction plate limits the rate of flow into or out of the upper chamber, thereby minimizing the rate of level change in the tank and permitting time for the pump cover gas pressure to be varied to maintain an essentially constant level.

  1. 20. Station Unwatering Pumps and Sump Pump, view to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Station Unwatering Pumps and Sump Pump, view to the north. The station unwatering pumps are the two large units in the center and right foreground of photograph and are marked with the numbers 1 and 2. The sump pump is the smaller unit in left foreground of photograph. These pumps are used for unwatering the draft chests for maintenance. Note the draft tube unwatering valve visible in background between the two unwatering pumps. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  2. Pumping of helium and hydrogen by sputter-ion pumps. II. Hydrogen pumping

    SciTech Connect

    Welch, K.M.; Pate, D.J.; Todd, R.J. )

    1994-05-01

    The pumping of helium by various forms of sputter-ion pumps (i.e., SIPs) is given in part I [K. M. Welch, D. J. Pate, and R. J. Todd, J. Vac. Sci. Technol. A [bold 11], 1607 (1993)]. The pumping of hydrogen in diode and triode SIPs is herein discussed. The type of cathode material used in these pumps is shown to have a significant impact on the effectiveness with which hydrogen is pumped. Examples of this include data for pumps with aluminum, titanium, and titanium-alloy cathodes. Diode pumps with aluminum cathodes are shown to be no more effective in the pumping of hydrogen than in the pumping of helium. The use of titanium anodes and titanium [ital shielding] of a pump body is also shown to impact measurably the speed of a pump at very low pressures. This stems from the fact that hydrogen is [times]10[sup 6] more soluble in titanium than in stainless steel. Hydrogen becomes resident in the anodes because of fast neutral burial. Ions and fast neutrals of hydrogen are also buried in the walls of pump bodies. Outgassing of this hydrogen from the anodes and pump bodies results in a gradual increase in pump base pressure and consequential decrease in hydrogen pump speed at very low base pressures.

  3. Electro-magnetically Actuated Minute Polymer Pump Fabricated using Packaging Technology

    NASA Astrophysics Data System (ADS)

    Balaji, G.; Singh, A.; Ananthasuresh, G. K.

    2006-04-01

    Design, fabrication and preliminary testing of a flat pump with millimetre thickness are described in this paper. The pump is entirely made of polymer materials barring the magnet and copper coils used for electromagnetic actuation. The fabrication is carried out using widely available microelectronic packaging machinery and techniques. Therefore, the fabrication of the pump is straightforward and inexpensive. Two types of prototypes are designed and built. One consists of copper coils that are etched on an epoxy plate and the other has wound insulated wire of 90 µm diameter to serve as a coil. The overall size of the first pump is 25 mm × 25 mm × 3.6 mm including the 3.1 mm-thick NdFeB magnet of diameter 12 mm. It consists of a pump chamber of 20 mm × 20 mm × 0.8 mm with copper coils etched from a copper-clad epoxy plate using dry-film lithography and milled using a CNC milling machine, two passive valves and the pump-diaphragm made of Kapton film of 0.089 mm thickness. The second pump has an overall size of 35 mm × 35 mm × 4.4 mm including the magnet and the windings. A breadboard circuit and DC power supply are used to test the pump by applying an alternating square-wave voltage pulse. A water slug in a tube attached to the inlet is used to observe and measure the air-flow induced by the pump against atmospheric pressure. The maximum flow rate was found to be 15 ml/min for a voltage of 2.5 V and a current of 19 mA at 68 Hz.

  4. Fuel injection pump

    SciTech Connect

    Hishinuma, O.; Masuda, A.; Ohmori, T.; Miyaki, M.; Takemoto, E.

    1987-06-09

    This patent describes a fuel injection pump for an internal combustion engine comprising: a housing having a cylindrical inner surface; a shaft having a portion disposed in rotatably sliding engagement with the cylindrical inner surface and having a first axial bore and a second radial bore therein; at least one pumping plunger slidably disposed in the second radial bore to cooperate therewith to define a compression chamber; a pumping plunger is adapted to be moved in the second radial bore to vary the volume of the compression chamber; an injection plunger slidably disposed in the first axial, bore to cooperate in defining the first and second pressure chambers separated from each other by the injection plunger.

  5. Miniature Lightweight Ion Pump

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P.

    2010-01-01

    This design offers a larger surface area for pumping of active gases and reduces the mass of the pump by eliminating the additional vacuum enclosure. There are three main components to this ion pump: the cathode and anode pumping elements assembly, the vacuum enclosure (made completely of titanium and used as the cathode and maintained at ground potential) containing the assembly, and the external magnet. These components are generally put in a noble diode (or differential) configuration of the ion pump technology. In the present state of the art, there are two cathodes, one made of titanium and the other of tantalum. The anodes are made up of an array of stainless steel cylinders positioned between the two cathodes. All the elements of the pump are in a vacuum enclosure. After the reduction of pressure in this enclosure to a few microns, a voltage is applied between the cathode and the anode elements. Electrons generated by the ionization are accelerated toward the anodes that are confined in the anode space by the axial magnetic field. For the generation of the axial field along the anode elements, the magnet is designed in a C-configuration and is fabricated from rare earth magnetic materials (Nd-B-Fe or Sm-Co) possessing high energy product values, and the yoke is fabricated from the high permeability material (Hiperco-50A composed of Fe-Co-V). The electrons in this region collide with the gas molecules and generate their positive ions. These ions are accelerated into the cathode and eject cathode material (Ti). The neutral atoms deposit on the anode surfaces. Because of the chemical activity of Ti, the atoms combine with chemically active gas molecules (e.g. N2, O2, etc.) and remove them. New layers of Ti are continually deposited, and the pumping of active gases is thus accomplished. Pumping of the inert gases is accomplished by their burial several atomic layers deep into the cathode. However, they tend to re-emit if the entrapping lattice atoms are

  6. Fluid pumping apparatus

    DOEpatents

    West, Phillip B.

    2006-01-17

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  7. Air-Operated Sump Pump

    NASA Technical Reports Server (NTRS)

    Nolt, Gary D.

    1988-01-01

    Pump removes liquid seepage from small, restricted area and against large pressure head. Developed for moving small amounts of water and oil from sump pit 85 ft (25.91 m) deep. Fits in space only 6 1/2 in. (16.5 cm) in diameter and 18 in. (45.7 cm) long. In discharge part of pumping cycle, air forces liquid out of pump chamber through pipe. During filling part of pumping cycle, water enters pump chamber from sump pit. Float in chamber next to pump chamber controls pressurization through timer and solenoid valve.

  8. Acoustical heat pumping engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  9. Regenerative adsorbent heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  10. Velocity pump reaction turbine

    DOEpatents

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  11. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  12. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  13. Fusion reactor pumped laser

    DOEpatents

    Jassby, Daniel L.

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  14. Acoustical heat pumping engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  15. High pressure reciprocating pump

    SciTech Connect

    Besic, D.

    1990-05-01

    This patent describes an improvement in a reciprocating pump having a plunger and a pumping chamber. It comprises: the plunger having a bore communicating with an intersection opening and wherein the plunger incudes a central axis; a suction valve and a discharge valve, each having an axis of actuation parallel to a central axis of the plunger; the suction valve comprising a cylindrical core having a central passageway, and the core is slidably received by a seating member and resiliently biased to the seating member.

  16. Measuring axial pump thrust

    DOEpatents

    Suchoza, B.P.; Becse, I.

    1988-11-08

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  17. Reactor coolant pump flywheel

    SciTech Connect

    Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

    2013-11-26

    A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

  18. Measuring axial pump thrust

    DOEpatents

    Suchoza, Bernard P.; Becse, Imre

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  19. 12. Sewage Ejector Pumps, view to the southwest. These pumps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Sewage Ejector Pumps, view to the southwest. These pumps are connected to sewage treatment tanks. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  20. Interfacial characteristics and properties of a low-clad-ratio AA4045/AA3003 cladding billet fabricated by semi-continuous casting

    NASA Astrophysics Data System (ADS)

    Han, Xing; Zhang, Hai-tao; Shao, Bo; Li, Lei; Qin, Ke; Cui, Jian-zhong

    2016-09-01

    A low-clad-ratio AA4045/AA3003 cladding billet was fabricated using a semi-continuous casting process and was subsequently extruded indirectly into a cladding pipe. The temperature distribution near the interface was measured. The microstructures, elemental distribution, Vickers hardness around the bonding interface, and the interfacial shear strength were examined. The results showed that the interface temperature rebounded when AA4045 melt contacted the supporting layer. The two alloys bonded well, with few defects, via the diffusion of Si and Mn in the temperature range from 569°C to 632°C. The mean shear strength of the bonding interface was 82.3 MPa, which was greater than that of AA3003 (75.8 MPa), indicating that the two alloys bonded with each other metallurgically via elemental interdiffusion. Moreover, no relative slip occurred between the two alloys during the extrusion process.

  1. Consolidation of cladding hulls from the electrometallurgical treatment of spent fuel.

    SciTech Connect

    Keiser, D. D., Jr.

    1998-04-10

    To consolidate metallic waste that is residual from Argonne National Laboratory's electrometallurgical treatment of spent nuclear fuel, waste ingots are currently being cast using an induction furnace located in a hot cell. These ingots, which have been developed to serve as final waste forms destined for repository disposal, are stainless steel (SS)-Zr alloys (the Zr is very near 15 wt.%). The charge for the alloys consists of stainless steel cladding hulls, Zr from the fuel being treated, noble metal fission products, and minor amounts of actinides that are present with the cladding hulls. The actual in-dated cladding hulls have been characterized before they were melted into ingots, and the final as-cast ingots have been characterized to determine the degree of consolidation of the charge material. It has been found that ingots can be effectively cast from irradiated cladding hulls residual from the electrometallurgical treatment process by employing an induction furnace located in a hot cell.

  2. The state-of-the-art laser bio-cladding technology

    NASA Astrophysics Data System (ADS)

    Liu, Jichang; Fuh, J. Y. H.; Lü, L.

    2010-11-01

    The current state and future trend of laser bio-cladding technology are discussed. Laser bio-cladding is used in implants including fabrication of metal scaffolds and bio-coating on the scaffolds. Scaffolds have been fabricated from stainless steel, Co-based alloy or Ti alloy using laser cladding, and new laser-deposited Ti alloys have been developed. Calcium phosphate bioceramic coatings have been deposited on scaffolds with laser to improve the wear resistence and corrosion resistence of implants and to induce bone regeneration. The types of biomaterial devices currently available in the market include replacement heart valve prosthesis, dental implants, hip/knee implants, catheters, pacemakers, oxygenators and vascular grafts. Laser bio-cladding process is attracting more and more attentions of people.

  3. Experimental verification of a theoretical model of an active cladding optical fiber fluorosensor

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia; Briant, Alvin L.; Egalon, Claudio O.; Rogowski, Robert S.; Nankung, Juock S.

    1993-01-01

    Experiments were conducted to verify a theoretical model on the injection efficiency of sources in the cladding of an optical fiber. The theoretical results predicted an increase in the injection efficiency for higher differences in refractive indices between the core and cladding. The experimental apparatus used consisted of a glass rod 50 cm long, coated at one end with a thin film of fluorescent substance. The fluorescent substance was excited with side illumination, perpendicular to the rod axis, using a 476 nm Argon-ion laser. Part of the excited fluorescence was injected into the core and guided to a detector. The signal was measured for several different cladding refractive indices. The cladding consisted of sugar dissolved in water and the refractive index was changed by varying the sugar concentration in the solution. The results indicate that the power injected into the rod, due to evanescent wave injection, increases with the difference in refractive index which is in qualitative agreement with theory.

  4. Evaluation of Corrosion of Aluminum Based Reactor Fuel Cladding Materials During Dry Storage

    SciTech Connect

    Peacock, H.B. Jr.

    1999-10-21

    This report provides an evaluation of the corrosion behavior of aluminum cladding alloys and aluminum-uranium alloys at conditions relevant to dry storage. The details of the corrosion program are described and the results to date are discussed.

  5. Detection of small-sized near-surface under-clad cracks for reactor pressure vessels

    SciTech Connect

    Taylor, T.T.; Crawford, S.L.; Doctor, S.R.; Posakony, G.J.

    1983-02-01

    The analysis of pressurized thermal shock (PTS) shows it is necessary for nondestructive evaluation to demonstrate high probability of detecting evaluation to demonstrate high probability of detecting cracks 0.250 inches deep and deeper at the clad/base metal interface. Ultrasonic techniques developed and used in Europe are evaluated in this paper for their applicability to US reactor pressure vessels for detecting cracks of interest for PTS. Flaw detectability experiments were carried out by testing the inspection technique's ability to detect artificial flaws under several types of clad, including some Manual Metal Arc (MMA) clad. Both ground and unground clad surfaces were evaluated. Crack sizing tests of the inspection technique were made using a crack tip diffraction technique.

  6. Effective thermal conductivity method for predicting spent nuclear fuel cladding temperatures in a dry fill gas

    SciTech Connect

    Bahney, Robert

    1997-12-19

    This paper summarizes the development of a reliable methodology for the prediction of peak spent nuclear fuel cladding temperature within the waste disposal package. The effective thermal conductivity method replaces other older methodologies.

  7. Development and study the performance of PBA cladding modified fiber optic intrinsic biosensor for urea detection

    NASA Astrophysics Data System (ADS)

    Botewad, S. N.; Pahurkar, V. G.; Muley, G. G.

    2016-05-01

    The fabrication and study of a cladding modified fiber optic intrinsic urea biosensor based on evanescent wave absorbance has been presented. The sensor was prepared using cladding modification technique by removing a small portion of cladding of an optical fiber and modifying with an active cladding of porous polyaniline-boric acid (PBA) matrix to immobilize enzyme-urease through cross-linking via glutaraldehyde. The nature of as-synthesized and deposited PBA film on fiber optic sensing element was studied by ultraviolet-visible (UV-vis) spectroscopy and X-ray diffraction (XRD) analysis. The performance of the developed sensor was studied for different urea concentrations in solutions prepared in phosphate buffer.

  8. Microstructure and properties of pure iron/copper composite cladding layers on carbon steel

    NASA Astrophysics Data System (ADS)

    Wan, Long; Huang, Yong-xian; Lü, Shi-xiong; Huang, Ti-fang; Lü, Zong-liang

    2016-08-01

    In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid-solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation (LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.

  9. Process improvement in laser hot wire cladding for martensitic stainless steel based on the Taguchi method

    NASA Astrophysics Data System (ADS)

    Huang, Zilin; Wang, Gang; Wei, Shaopeng; Li, Changhong; Rong, Yiming

    2016-09-01

    Laser hot wire cladding, with the prominent features of low heat input, high energy efficiency, and high precision, is widely used for remanufacturing metal parts. The cladding process, however, needs to be improved by using a quantitative method. In this work, volumetric defect ratio was proposed as the criterion to describe the integrity of forming quality for cladding layers. Laser deposition experiments with FV520B, one of martensitic stainless steels, were designed by using the Taguchi method. Four process variables, namely, laser power ( P), scanning speed ( V s), wire feed rate ( V f), and wire current ( I), were optimized based on the analysis of signal-to-noise (S/N) ratio. Metallurgic observation of cladding layer was conducted to compare the forming quality and to validate the analysis method. A stable and continuous process with the optimum parameter combination produced uniform microstructure with minimal defects and cracks, which resulted in a good metallurgical bonding interface.

  10. Laser Cladding of Ni50Cr: A Parametric and Dilution Study

    NASA Astrophysics Data System (ADS)

    Song, B.; Hussain, T.; Voisey, K. T.

    The increasing use of biomass as a fuel is leading to higher fireside corrosion of the heat exchangers in boilers due to the high chlorine and alkali metal content in the fuel. Laser cladding of Ni50Cr is a promising technique to enhance fireside corrosion resistance of boiler tubes from this aggressive environment. A parametric study is carried out on the blown powder based laser cladding of Ni50Cr on 304 stainless steel. Successful deposits were generated and the effects of the various process parameters on clad geometry and dilution are reported. The various commonly used techniques for determination of clad dilution are compared and some guidelines for their use are suggested.

  11. Compatibility study between U-UO2 cermet fuel and T91 cladding

    NASA Astrophysics Data System (ADS)

    Mishra, Sudhir; Kaity, Santu; Khan, K. B.; Sengupta, Pranesh; Dey, G. K.

    2016-12-01

    Cermet is a new fuel concept for the fast reactor system and is ideally designed to combine beneficial properties of both ceramic and metal. In order to understand fuel clad chemical compatibility, diffusion couples were prepared with U-UO2 cermet fuel and T91 cladding material. These diffusion couples were annealed at 923-1073 K for 1000 h and 1223 K for 50 h, subsequently their microstructures were examined using scanning electron microscope (SEM), X-ray energy dispersive spectroscope (EDS) and electron probe microanalyser (EPMA). It was observed that the interaction between the fuel and constituents of T91 clad was limited to a very small region up to the temperature 993 K and discrete U6(Fe,Cr) and U(Fe,Cr)2 intermetallic phases developed. Eutectic microstructure was observed in the reaction zone at 1223 K. The activation energy for reaction at the fuel clad interface was determined.

  12. Process improvement in laser hot wire cladding for martensitic stainless steel based on the Taguchi method

    NASA Astrophysics Data System (ADS)

    Huang, Zilin; Wang, Gang; Wei, Shaopeng; Li, Changhong; Rong, Yiming

    2016-07-01

    Laser hot wire cladding, with the prominent features of low heat input, high energy efficiency, and high precision, is widely used for remanufacturing metal parts. The cladding process, however, needs to be improved by using a quantitative method. In this work, volumetric defect ratio was proposed as the criterion to describe the integrity of forming quality for cladding layers. Laser deposition experiments with FV520B, one of martensitic stainless steels, were designed by using the Taguchi method. Four process variables, namely, laser power (P), scanning speed (V s), wire feed rate (V f), and wire current (I), were optimized based on the analysis of signal-to-noise (S/N) ratio. Metallurgic observation of cladding layer was conducted to compare the forming quality and to validate the analysis method. A stable and continuous process with the optimum parameter combination produced uniform microstructure with minimal defects and cracks, which resulted in a good metallurgical bonding interface.

  13. The Effect of Rare Earth on the Structure and Performance of Laser Clad Coatings

    NASA Astrophysics Data System (ADS)

    Bao, Ruiliang; Yu, Huijun; Chen, Chuanzhong; Dong, Qing

    Laser cladding is one kind of advanced surface modification technology and has the abroad prospect in making the wear-resistant coating on metal substrates. However, the application of laser cladding technology does not achieve the people's expectation in the practical production because of many defects such as cracks, pores and so on. The addiction of rare earth can effectively reduce the number of cracks in the clad coating and enhance the coating wear-resistance. In the paper, the effects of rare earth on metallurgical quality, microstructure, phase structure and wear-resistance are analyzed in turns. The preliminary discussion is also carried out on the effect mechanism of rare earth. At last, the development tendency of rare earth in the laser cladding has been briefly elaborated.

  14. Portable engine-pump assembly

    SciTech Connect

    Eberhardt, H.A.

    1987-02-17

    This patent describes a portable engine-pump assembly that is compact and light in weight comprising: an internal combustion engine mounted with its crankshaft extending vertically, a centrifugal pump having an impeller mounted for rotation on a pump shaft within a volute chamber, means mounting the pump on and immediately beneath the engine with the pump shaft extending vertically in accurate alignment and concentricity with the engine crankshaft, means coupling the engine crankshaft and the pump shaft together so that the engine crankshaft drives the pump shaft, the pump comprising a pump body defining the volute chamber and providing a pump inlet passage and a pump discharge passage oriented in generally horizontal directions, the pump body defining an inlet chamber providing passages for the flow of liquid from the pump inlet passage into the impeller from both above and below same and including an upper body portion and a lower body portion, and an exhaust system for the engine including an exhaust passage contained in the upper body portion, a muffler having an inlet, and means providing flow communication between the exhaust passage and the inlet of the muffler.

  15. Model analysis of separate-confinement heterojunction lasers with inhomogeneous cladding layers

    SciTech Connect

    Streifer, W.; Burnham, R.D.; Scifres, D.R.

    1983-05-01

    Separate-confinement heterostructure lasers with thin active regions are analyzed. For four different interior-cladding-region refractive-index spatial variations, i.e., step, triangular, parabolic, and inverted parabolic, wave-guide modes are calculated and thresholds are compared. Based on optical considerations alone, the step-index profile has the lowest threshold; however, for optimum cladding thicknesses the differences are not great.

  16. Coatings and claddings for the reduction of plasma contamination and surface erosion in fusion reactors

    SciTech Connect

    Kaminsky, M.

    1980-01-01

    For the successful operation of plasma devices and future fusion reactors it is necessary to control plasma impurity release and surface erosion. Effective methods to obtain such controls include the application of protective coatings to, and the use of clad materials for, certain first wall components. Major features of the development programs for coatings and claddings for fusion applications will be described together with an outline of the testing program. A discussion of some pertinent test results will be included.

  17. Comparison of different methods for stripping cladding light in the high-power fiber laser

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Chen, Zilun; Zhou, Hang; Hou, Jing

    2013-09-01

    Different methods for stripping cladding light in the high-power fiber laser have been presented. Original fluoroacrylate jacket of fiber selected 50mm-length is continuous removed, then use three different index polymers recoated the selected section to make the uniform light stripping possible. The power-handling capability of the device is tested over 140W cladding light, attenuation of 15dB is achieved and the local temperature does not exceed 70°C.

  18. Mechanical Properties of Fuel Cladding Candidate Alloys for Canadian SCWR Concept

    NASA Astrophysics Data System (ADS)

    Xu, Su; Amirkhiz, Babak Shalchi

    2016-02-01

    An assessment of tensile and creep of five representative candidate fuel cladding alloys for a Canadian Gen IV super-critical water reactor concept was performed based on database development work and complementary experiments including a transmission electron microscopy study of creep in stainless steels. The limiting property would be creep strength of candidate alloys for the "free-standing" fuel cladding design with a hot-spot peak temperature range of 1073-1123 K (800-850°C).

  19. 13. The River Pump House pump room, in this case ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. The River Pump House pump room, in this case in the 100-F Area in January 1945. In the 100 Area, the pumps supplied water to the 100 Area and to the export water system that ran to D and F reactors and the 200 areas. D-8248 - B Reactor, Richland, Benton County, WA

  20. Overview of Pump Room, showing pumps at right and power ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of Pump Room, showing pumps at right and power distribution cabinets for valve motors along north wall at left. View to east - Wellton-Mohawk Irrigation System, Pumping Plant No. 1, Bounded by Gila River & Union Pacific Railroad, Wellton, Yuma County, AZ

  1. PUMP SETS NO. 5 AND NO. 4. Each pump set ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PUMP SETS NO. 5 AND NO. 4. Each pump set consists of a Worthington Pump and a General Electric motor - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  2. 24. Pump Room interiordewatering pump motor on upper level. Note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Pump Room interior-dewatering pump motor on upper level. Note the removable roof hatch (steel frame) directly above motor. Dewatering pumps motor control center at left - Hunters Point Naval Shipyard, Drydock No. 4, East terminus of Palou Avenue, San Francisco, San Francisco County, CA

  3. 29. WORTHINGTON FIRE PUMP WITH TURBINE HIDDEN BEHIND. PUMP HOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. WORTHINGTON FIRE PUMP WITH TURBINE HIDDEN BEHIND. PUMP HOUSE IS LOCATED AT HEAD OF OLD TRASH GATES. PUMP ENTERS WATER ON EXTERIOR OF WALL IN FAR SIDE OF PHOTO. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  4. 39. THREECYLINDER HYDRAULIC OIL PUMP (MANUFACTURED BY WORTHINGTON: PUMP AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. THREE-CYLINDER HYDRAULIC OIL PUMP (MANUFACTURED BY WORTHINGTON: PUMP AND MACHINERY COMPANY, HOLYOKE MASSACHUSETTS) IN MACHINERY CHAMBER FOR SLUICE GATE WORKS ON GALLERY 1. NOTE OIL TANK ABOVE PUMP MOTOR. VIEW TO NORTHWEST. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR

  5. Magnetic-flux pump

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  6. Pump Flow Analysis

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Ingersoll-Rand Research, Inc.'s use of COSMIC's computer program MERIDL permits designers to evaluate performance and efficiency characteristics to be expected from the pump's impeller. It also provides information that enables a trained hydraulic engineer to make design improvements. Company was able to avoid the cost of developing new software and to improve some product design features.

  7. Well pumping apparatus

    SciTech Connect

    Meyer, E.D.

    1981-12-15

    A pumping apparatus that may be used with a well in which a sucker rod is connected with the well so as to remain in axial alignment with the same during shifting of the well and the sucker rod is supported clear of the well and the structure for operating the same.

  8. Hydraulic well pump

    SciTech Connect

    Dollison, W.W.

    1986-02-25

    This patent describes a system for operating a sucker rod string connected with a well pump. This pump consists of: a double-acting fluid cylinder having opposing power ends; means for connecting the cylinder with the sucker rod string for raising and lowering the string to operate the pump; means for supplying pressurized fluid alternately to the cylinder ends including a direction control movable between extend and retract conditions to extend and retract the cylinder; drive means for shifting the direction control; control means for operating the drive means responsive to the extend and retract movements of the cylinder; including limit valves positioned to simulate the hydraulic cylinder extend and retract stroke end locations, the limit valves being movably mounted for changing the location of each limit valve and the distance between the limit valves for selectively adjusting the length of the strokes of the hydraulic cylinder and the end limit of the extend and retract strokes of the cylinder. A cam operator is for opening and closing each of the limit valves at the end locations and means connecting the cam operator means with the hydraulic cylinder. Cable is reeved over the movable and fixed sheave means and secured along the second end thereof at a fixed location; and means for applying a fluid counterbalancing force into the cylinder for offsetting the combined weights of the sucker rods string, a production fluid column in a well core above the pump, and movable surface equipment supported on the cylinder.

  9. Heat pumps for industry

    NASA Astrophysics Data System (ADS)

    1991-09-01

    Research activities, both in the laboratory and in the field, confirm that heat pumps can improve energy efficiency and productivity for a multitude of process types. By using heat pumps, process industries can save significant amounts of energy and money and successfully control emissions. Those industries with special needs, such as recovering solvents, can meet them more energy efficiently and cost effectively with heat pumps. Through the years, the Office of Industrial Technologies (OIT) has helped industry solve its energy problems by joining in cooperative agreements with companies willing to do the research. The companies involved in these agreements share the costs of the research and benefit directly from the technology developed. OIT then has information from demonstration projects that it can pass on to others within industry. All the projects described in this brochure were joint ventures between DOE and industry participants. OIT will assist in accelerating the use of heat pumps in the industrial marketplace by continuing to work with industry on research and demonstration projects and to transfer research results and project performance information to the rest of industry. Successfully transferring this technology could conserve as much as 1.5 quads of energy annually at a savings of more than $4 billion at today's prices.

  10. Linear induction pump

    DOEpatents

    Meisner, John W.; Moore, Robert M.; Bienvenue, Louis L.

    1985-03-19

    Electromagnetic linear induction pump for liquid metal which includes a unitary pump duct. The duct comprises two substantially flat parallel spaced-apart wall members, one being located above the other and two parallel opposing side members interconnecting the wall members. Located within the duct are a plurality of web members interconnecting the wall members and extending parallel to the side members whereby the wall members, side members and web members define a plurality of fluid passageways, each of the fluid passageways having substantially the same cross-sectional flow area. Attached to an outer surface of each side member is an electrically conductive end bar for the passage of an induced current therethrough. A multi-phase, electrical stator is located adjacent each of the wall members. The duct, stators, and end bars are enclosed in a housing which is provided with an inlet and outlet in fluid communication with opposite ends of the fluid passageways in the pump duct. In accordance with a preferred embodiment, the inlet and outlet includes a transition means which provides for a transition from a round cross-sectional flow path to a substantially rectangular cross-sectional flow path defined by the pump duct.

  11. An Improved Archimedes Pump

    NASA Astrophysics Data System (ADS)

    Akoglu, Resat

    2002-12-01

    In this note we propose a slightly improved version of the Archimedes pump which was advertised as a toy model in The Physics Teacher. It consists of a hose wound densely around a tube (or pipe made of metallic or plastic material) which can be rotated mechanically (a hand driven one is the most primitive case as shown in the Picture 1) or electrically.

  12. Explosively pumped laser light

    DOEpatents

    Piltch, Martin S.; Michelotti, Roy A.

    1991-01-01

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  13. Progressive cavity pump

    SciTech Connect

    Mueller, J.W.

    1989-04-04

    A progressive cavity pump is described, comprising: a first housing portion defining an inlet; a second housing portion attachable to the first housing portion and defining an outlet; a substantially elastomeric stator comprising an outer portion removably attached to the first and second housing portions, having a first end and a second end spaced from the first end, an inner portion defining a pumping chamber and spaced an annular end portion interconnecting the first ends of the outer and inner portions; a rotor disposed in the inner portion of the stator and extending through the pumping chamber for pumping fluid from the inlet to the outlet in response to rotation of the rotor; and an elongated member disposed in the housing portions and generally annularly between the inner and outer portions of the stator and longitudinally between the annular end portion of the stator and a portion of the second housing portion, the member being removable from the housing portions and separable from the stator.

  14. Downhold hydraulic actuated pump

    SciTech Connect

    Roeder, G.K.

    1987-05-12

    This patent describes a downhole pump of the type having a main housing within which there is formed an engine chamber and a production chamber. A piston is reciprocatingly received within the engine chamber, a plunger reciprocatingly received within the production chamber, a connecting rod by which the piston and plunger are connected together; the combination with the main housing, piston, plunger.

  15. Downhole hydraulic actuated pump

    SciTech Connect

    Roeder, G.K.

    1988-09-06

    This patent describes a downhole hydraulically actuated pump assembly of the type having a main housing within which an engine and pump is enclosed; a connecting rod, an engine piston, a pump plunger, means by which the engine and connecting rod reciprocate the pump plunger and thereby produces fluid; the main housing has a lower end having a formation fluid inlet; and upper end having a power fluid inlet; and, a produced fluid outlet; the plunger divides one marginal end of the housing into upper and lower production chambers; the lower end of the connecting rod is hollow and extends through the plunger into fluid communication with the formation fluid inlet to provide a source of formation fluid for the upper and lower production chambers; a traveling value assembly contained within the plunger and arranged to transfer formation fluid from the hollow rod, through the plunger, and into the upper and lower production chambers, respectively, as the plunger upstrokes and downstrokes; produced fluid valve means by which fluid flows from the upper and lower production chambers and through the produced fluid outlet.

  16. Piezohydraulic Pump Development

    NASA Technical Reports Server (NTRS)

    Lynch, Christopher S.

    2005-01-01

    Reciprocating piston piezohydraulic pumps were developed originally under the Smart Wing Phase II program (Lynch) and later under the CHAP program (CSA, Kinetic Ceramics). These pumps focused on 10 cm scale stack actuators operating below resonance and, more recently, at resonance. A survey of commercially available linear actuators indicates that obtaining power density and specific power greater than electromagnetic linear actuators requires driving the stacks at frequencies greater than 1 KHz at high fields. In the case of 10 cm scale actuators the power supply signal conditioning becomes large and heavy and the soft PZT stack actuators generate a lot of heat due to internal losses. Reciprocation frequencies can be increased and material losses significantly decreased through use of millimeter scale single crystal stack actuators. We are presently targeting the design of pumps that utilize stacks at the 1-10 mm length scale and run at reciprocating frequencies of 20kHz or greater. This offers significant advantages over current approaches including eliminating audible noise and significantly increasing the power density and specific power of the system (including electronics). The pump currently under development will comprise an LC resonant drive of a resonant crystal and head mass operating against a resonant fluid column. Each of these resonant systems are high Q and together should produce a single high Q second order system.

  17. Shrouded inducer pump

    DOEpatents

    Meng, Sen Y.

    1989-01-01

    An improvement in a pump including a shrouded inducer, the improvement comprising first and second sealing means 32,36 which cooperate with a first vortex cell 38 and a series of secondary vortex cells 40 to remove any tangential velocity components from the recirculation flow.

  18. FY 2014 Status Report: of Vibration Testing of Clad Fuel (M4FT-14OR0805033)

    SciTech Connect

    Bevard, Bruce Balkcom

    2014-03-28

    The DOE Used Fuel Disposition Campaign (UFDC) tasked Oak Ridge National Laboratory (ORNL) to investigate the behavior of light-water-reactor (LWR) fuel cladding material performance related to extended storage and transportation of UNF. ORNL has been tasked to perform a systematic study on UNF integrity under simulated normal conditions of transportation (NCT) by using the recently developed hot-cell testing equipment, Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT). To support the testing on actual high-burnup UNF, fast-neutron irradiation of pre-hydrided zirconium-alloy cladding in the High Flux Isotope Reactor (HFIR) at elevated temperatures will be used to simulate the effects of high-burnup on fuel cladding for help in understanding the cladding materials properties relevant to extended storage and subsequent transportation. The irradiated pre-hydrided metallic materials testing will generate baseline data to benchmark hot-cell testing of the actual high-burnup UNF cladding. More importantly, the HFIR-irradiated samples will be free of alpha contamination and can be provided to researchers who do not have hot cell facilities to handle highly contaminated high-burnup UNF cladding to support their research projects for the UFDC.

  19. Effects of hydride morphology on the embrittlement of Zircaloy-4 cladding

    NASA Astrophysics Data System (ADS)

    Kim, Ju-Seong; Kim, Tae-Hoon; Kook, Dong-Hak; Kim, Yong-Soo

    2015-01-01

    Spent nuclear fuel claddings discharged from water reactors contain hydrogen up to 800 wppm depending on the burn-up and power history. During long-term dry storage, the cladding temperature slowly decreases with diminishing decay heat and absorbed hydrogen atoms are precipitated in Zr-matrix according to the terminal solid solubility of hydrogen. Under these conditions, hydrides can significantly reduce cladding ductility and impact resistance, especially when the radial hydrides are massively present in the material. In this study, the effects of hydride morphology on the embrittlement of Zircaloy-4 cladding were investigated using a ring compression test. The results show that circumferentially hydrided Zircaloy-4 cladding is brittle at room temperature but its ductility is regained substantially as the temperature goes above 150 °C. On the other hand, radially hydrided cladding remains brittle at 150 °C and micro-cracks developed in the radial hydrides can act as crack propagation paths. Fracture energy analysis shows that ductile to brittle transition temperature is low in between 25 °C and 100 °C in the former case, whereas it lies in between 200 °C and 250 °C in the latter case.

  20. Evaluation of the fabricability of advanced iron aluminide-clad austenitic stainless steel tubing

    SciTech Connect

    Mohn, W.R.; Topolski, M.J.

    1993-07-01

    Researchers at Babcock & Wilcox Alliance Research Center have investigated methods to produce bimetallic tubing consisting of iron aluminide-clad austenitic stainless steel for practical use in fossil fueled energy equipment. In the course of this work, the compatibility of iron aluminide with four candidate austenitic stainless steel substrates was first evaluated using diffusion couples. Based on these results, a combination of iron aluminide and 304 stainless steel was selected for further development. Two composite billets of this combination were then prepared and extruded in separate trails at 2200F and 2000F. Both extrusions yielded 2-inch OD clad tubes, each approximately 18 feet long. Results of the evaluation show that the tube extruded at 2000F had a sound, integrally bonded clad layer throughout its entire length. However, the tube extruded at 2200F exhibited regions of disbonding between the clad layer and the substrate. In supplement to this work, an assessment of the technical and economic merits of iron aluminide-clad austenitic stainless steel components in power generation systems was conducted by B&W Fossil Power Division. Future activities should include an investigation of lower extrusion processing temperatures to optimize the fabrication of high quality iron-aluminide clad tubing.

  1. Development of new ferritic steels as cladding material for metallic fuel fast breeder reactor

    NASA Astrophysics Data System (ADS)

    Tokiwai, Moriyasu; Horie, Masaaki; Kako, Kenji; Fujiwara, Masayuki

    1993-09-01

    The excellent thermal, chemical and neutronic properties of metallic fuel (U-Pu-Zr alloy) will lead to drastic improvements in fast reactor safety and the related fuel cycle economy. Some new high molybdenum 12Cr ferritic stainless steel candidate cladding alloys have been designed to achieve the mechanical properties required for high performance metallic fuel elements. These candidate claddings were irradiated by ion bombardment and tested to determine their strength and creep rupture properties. A 12Cr-8Mo and a 12Cr-8Mo-0.1Y 2O 3 steel were fabricated into cladding via a powder metallurgy process and by a mechanical alloying process, respectively. These claddings had two and three times the creep rupture strength (pressurized at 650°C for 10000 h) of a conventional 12Cr ferritic steel (HT-9). These two steels also showed no void formation up to 350 dpa by Ni 3+ irradiation. A zircaloy-2 lined steel cladding tube has also been fabricated for the purpose of reducing fuel-cladding interdiffusion and chemical interaction.

  2. Erosion and Corrosion Behavior of Laser Cladded Stainless Steels with Tungsten Carbide

    NASA Astrophysics Data System (ADS)

    Singh, Raghuvir; Kumar, Mukesh; Kumar, Deepak; Mishra, Suman K.

    2012-11-01

    Laser cladding of tungsten carbide (WC) on stainless steels 13Cr-4Ni and AISI 304 substrates has been performed using high power diode laser. The cladded stainless steels were characterized for microstructural changes, hardness, solid particle erosion resistance and corrosion behavior. Resistance of the clad to solid particle erosion was evaluated using alumina particles according to ASTM G76 and corrosion behavior was studied by employing the anodic polarization and open circuit potential measurement in 3.5% NaCl solution and tap water. The hardness of laser cladded AISI 304 and 13Cr-4Ni stainless steel was increased up to 815 and 725Hv100 g, respectively. The erosion resistance of the modified surface was improved significantly such that the erosion rate of cladded AISI 304 (at 114 W/mm2) was observed ~0.74 mg/cm2/h as compared to ~1.16 and 0.97 mg/cm2/h for untreated AISI 304 and 13Cr-4Ni, respectively. Laser cladding of both the stainless steels, however, reduced the corrosion resistance in both NaCl and tap water.

  3. Feasibility study of fuel cladding performance for application in ultra-long cycle fast reactor

    NASA Astrophysics Data System (ADS)

    Jung, Ju Ang; Kim, Seung Hyun; Shin, Sang Hun; Bang, In Cheol; Kim, Ji Hyun

    2013-09-01

    As a part of the research and development activities for long-life core sodium-cooled fast reactors, the cladding performance of the ultra-long cycle fast reactor (UCFR) is evaluated with two design power levels (1000 MWe and 100 MWe) and cladding peak temperatures (873 K and 923 K). The key design concept of the UCFR is that it is non-refueling during its 30-60 years of operation. This concept may require a maximum peak cladding temperature of 923 K and a cladding radiation damage of over 200 dpa (displacements per atom). Therefore, for the design of the UCFR, deformation due to thermal creep, irradiation creep, and swelling must be taken into consideration through quantitative evaluations. As candidate cladding materials for use in UCFRs, ferritic-martensitic (FM) steels, oxide dispersion strengthened (ODS) steels, and SiC-based composite materials are studied using deformation behavior modeling for a feasibility evaluation. The results of this study indicate that SiC is a potential UCFR cladding material, with the exception of irradiation creep due to high neutron fluence stemming from its long operating time of about 30-60 years.

  4. Fracture properties of a neutron-irradiated stainless steel submerged arc weld cladding overlay

    SciTech Connect

    Corwin, W.R.; Berggren, R.G.; Nanstad, R.K.

    1984-01-01

    The ability of stainless steel cladding to increase the resistance of an operating nuclear reactor pressure vessel to extension of surface flaws depends greatly on the properties of the irradiated cladding. Therefore, weld overlay cladding irradiated at temperatures and fluences relevant to power reactor operation was examined. The cladding was applied to a pressure vessel steel plate by the submerged arc, single-wire, oscillating-electrode method. Three layers of cladding provided a thickness adequate for fabrication of test specimens. The first layer was type 309, and the upper two layers were type 308 stainless steel. The type 309 was diluted considerably by excessive melting of the base plate. Specimens were taken from near the base plate-cladding interface and also from the upper layers. Charpy V-notch and tensile specimens were irradiated at 288/sup 0/C to a fluence of 2 x 10/sup 23/ neutrons/m/sup 2/ (>1 MeV). 10 refs., 16 figs., 4 tabs.

  5. Stress analysis of asymmetrical cold rolling of clad sheet using the slab method

    NASA Astrophysics Data System (ADS)

    Hwang, Y. M.; Tzou, G. Y.

    1996-10-01

    An analytical model for general asymmetrical cold rolling of clad sheet bonded before rolling was proposed to explore the plastic deformation behavior of the clad sheet using the slab method. The model allowed easy calculation of the neutral points between the upper and lower rolls and the clad sheet; rolling pressure distribution along the contact interface of the roll, horizontal stresses in the component layers of the clad sheet, shear stresses at the interface of the clad sheet, and rolling force. These characteristics as affected by various rolling conditions (e.g., thickness ratio and shear yield stress ratio of the raw clad sheet, roll speed ratio, reduction, frictional coefficient, roll radius ratio, etc.) were analyzed systematically. This approach yielded complete forms for the rolling pressure distribution, rolling force, and rolling torque. Moreover, the computational time required by this analytical model is about 1/20 to 1/25 of that required by the RUNGE KUTTA numerical method under the same rolling conditions.

  6. RSES heat pump technician certification

    SciTech Connect

    Zeiner, J.

    1996-06-01

    In 1987 the National Heat Pump certification test was developed by the Refrigeration Service Engineers Society (RSES), and in 1994, the program was more specifically named Heat Pump Service Technician Certification. This report describes the benefits of certification.

  7. Fuel Pumping System And Method

    DOEpatents

    Shafer, Scott F.; Wang, Lifeng

    2005-12-13

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  8. Fuel pumping system and method

    DOEpatents

    Shafer, Scott F.; Wang, Lifeng ,

    2006-12-19

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  9. Oil well pumping apparatus

    SciTech Connect

    Whatley, D. L.; Chaviers, W. M.

    1985-07-23

    The present system and apparatus for pumping an oil well damps out the stretch and over travel in sucker rod over travel particularly when the rod string approaches its point of reversal of direction either up or down. This is accomplished by decelerating the rate of travel of the rod string and at its end of travel pausing for a time period sufficient to allow rod string oscillations to damp out prior to reversal of rod string direction which due to the long length of the rod string, its weight and the weight of the trapped oil avoids breaking the rod string and the time loss occasioned thereby in both loss of well production and costly replacement of equipment and the time loss resulting therefrom. The present invention also achieves substantial recovery of hi-viscosity oil not recoverable at present by standard recovery procedures. This is accomplished with a sensor positioned to be actuated by the ram of the hydraulic drive. When the sensor is actuated, it energizes a time delay relay which holds the sucker rod string in the upper most raised position allowing the suction to be maintained on the bottom hole pump with the standing valve open. This allows the hi-viscus oil to enter the bottom hole pump barrel. When the time delay relay is released, the sucker rod string starts its downward movement closing the bottom hole standing valve. This traps the hi-viscus oil in the pump barrel which is then displaced by the downward-movement of the plunger in the bottom hole pump.

  10. Absorption heat pumps

    NASA Astrophysics Data System (ADS)

    Huhtinen, M.; Heikkilae, M.; Andersson, R.

    1987-03-01

    The aim of the study was to analyze the technical and economic feasibility of absorption heat pumps in Finland. The work was done as a case study: the technical and economic analyses have been carried out for six different cases, where in each the suitable size and type of the heat pump plant and the auxiliary components and connections were specified. The study also detailed the costs concerning the procurement, installation and test runs of the machinery, as well as the savings in energy costs incurred by the introduction of the plant. Conclusions were drawn of the economic viability of the applications studied. The following cases were analyzed: heat recovery from flue gases and productin of district heat in plants using peat, natural gas, and municipal wastes as a fuel. Heat recovery in the pulp and paper industry for the upgrading of pressure of secondary steam and for the heating of white liquor and combustion and drying the air. Heat recovery in a peat-fulled heat and power plant from flue gases that have been used for the drying of peat. According to the study, the absorption heat pump suits best to the production of district heat, when the heat source is the primary energy is steam produced by the boiler. Included in the flue as condensing is the purification of flue gases. Accordingly, benefit is gained on two levels in thick applications. In heat and power plants the use of absorption heat pumps is less economical, due to the fact that the steam used by the pump reduces the production of electricity, which is rated clearly higher than heat.

  11. Shoring pumping station excavation

    SciTech Connect

    Glover, J.B.; Reardon, D.J. )

    1991-11-01

    The city of San Mateo, Calif., operates three 12- to 50-year old wastewater pumping stations on a 24-m (80-ft) wide lot located in a residential area near San Francisco Bay. Because the aging stations have difficulty pumping peak 2.19-m{sup 3}/s (50-mgd) wet-weather flows and have structural and maintenance problems, a new 2.62-m{sup 3}/s (60-mgd) station was proposed - the Dale Avenue Pumping Station - to replace the existing ones. To prevent potential damage to adjacent homes, the new station was originally conceived as a circular caisson type; however, a geotechnical investigation recommended against this type of structure because the stiff soils could make sinking the structure difficult. This prompted an investigation of possible shoring methods for the proposed structure. Several shoring systems were investigated, including steel sheeting, soldier beams and lagging, tieback systems, open excavation, and others; however, each had disadvantages that prevented its use. Because these conventional techniques were unacceptable, attention was turned to using deep soil mixing (DSM) to create a diaphragm wall around the area to be excavated before constructing the pumping station. Although this method has been used extensively in Japan since 1983, the Dale Avenue Pumping Station would be the technology's first US application. The technology's anticipated advantages were its impermeability, its fast and efficient installation that did not require tiebacks under existing homes, its adaptability to subsurface conditions ranging from soft ground to stiff clay to gravels, and its lack of pile-driving requirements that would cause high vibration levels during installation.

  12. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    2000-01-01

    An apparatus is provided for a blood pump bearing system within a pump housing to support long-term highspeed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the Ir shaft to support big speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  13. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    1999-01-01

    Methods and apparatus are provided for a blood pump bearing system within a pump housing to support long-term high-speed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the shaft to support high speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  14. Prediction of pump cavitation performance

    NASA Technical Reports Server (NTRS)

    Moore, R. D.

    1974-01-01

    A method for predicting pump cavitation performance with various liquids, liquid temperatures, and rotative speeds is presented. Use of the method requires that two sets of test data be available for the pump of interest. Good agreement between predicted and experimental results of cavitation performance was obtained for several pumps operated in liquids which exhibit a wide range of properties. Two cavitation parameters which qualitatively evaluate pump cavitation performance are also presented.

  15. High energy noise-like pulsing in a double-clad Er/Yb figure-of-eight fiber laser.

    PubMed

    Lauterio-Cruz, J P; Hernandez-Garcia, J C; Pottiez, O; Estudillo-Ayala, J M; Kuzin, E A; Rojas-Laguna, R; Santiago-Hernandez, H; Jauregui-Vazquez, D

    2016-06-27

    In this work, we study a 215-m-long figure-of-eight fiber laser including a double-clad erbium-ytterbium fiber and a nonlinear optical loop mirror based on nonlinear polarization evolution. For proper adjustments, self-starting passive mode-locking is obtained. Measurements show that the mode-locked pulses actually are noise-like pulses, by analyzing the autocorrelation, scope traces and the very broad and flat spectrum extending over a record bandwidth of more than 200 nm, beyond the 1750 nm upper wavelength limit of the optical spectrum analyzer. Noise-like pulsing was observed for moderate and high pump power preserving the same behavior, reaching pulse energies as high as 300 nJ, with pulse durations of a few tens of ns and a coherence length in the order of 1 ps. Stable fundamental mode locking as well as harmonic mode locking up to the 6th order were observed. The bandwidth was further extended to more than 450 nm when a 100-m piece of highly nonlinear fiber was inserted at the laser output. The enhanced performances obtained compared to other similar schemes could be related to the absence of a polarizer in the present setup, so that the state of polarization along the cavity is no longer restricted. PMID:27410541

  16. 5. Station Unwatering Pumps and Sump Pump for Units 1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Station Unwatering Pumps and Sump Pump for Units 1 and 2, view to the west. The unwatering pumps are the two larger items toward the right side of the photograph (one in foreground and one in background. The smaller item toward the left of the photograph is the sump pump. These pumps are used for draining water from the draft chest for maintenance. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  17. Guide to Geothermal Heat Pumps

    SciTech Connect

    2011-02-01

    Geothermal heat pumps, also known as ground source heat pumps, geoexchange, water-source, earth-coupled, and earth energy heat pumps, take advantage of this resource and represent one of the most efficient and durable options on the market to heat and cool your home.

  18. Corrosion of aluminum cladding under optimized water conditions

    SciTech Connect

    Gibbs, A.

    1992-07-08

    Experience at SRS, ORNL, BNL, and Georgia Institute of Technology involving irradiated aluminum clad fuel and target elements, as well as studies of non-irradiated aluminum indicate that some types of aluminum assemblies can be kept in a continually well-deionized water atmosphere for up to 25 years without problems. SRS experience ranges from 2.75 years for the L-1.1 charge kept in deionized D[sub 2]O[sup 1] to greater than 10 years for assemblies stored in the Receiving Basin for Off-site Fuel (RBOF)[sup 2]. Experience at Georgia Institute of Technology reactor in Atlanta yielded the longest value of 25 years without problems. The common denominators in all of the reports is that the water is continually deionized to approximately 2 M[Omega] (2 [times] 10[sup 6]ohms) resistivity and the containers for the water are stainless steel or other non-porous material. This resistivity value is equivalent to a value of 0.5 micromhos or microSiemens conductivity and is reagent grade II quality water.[sup 3] 4 tabs, 26 refs.

  19. Corrosion of aluminum cladding under optimized water conditions

    SciTech Connect

    Gibbs, A.

    1992-07-08

    Experience at SRS, ORNL, BNL, and Georgia Institute of Technology involving irradiated aluminum clad fuel and target elements, as well as studies of non-irradiated aluminum indicate that some types of aluminum assemblies can be kept in a continually well-deionized water atmosphere for up to 25 years without problems. SRS experience ranges from 2.75 years for the L-1.1 charge kept in deionized D{sub 2}O{sup 1} to greater than 10 years for assemblies stored in the Receiving Basin for Off-site Fuel (RBOF){sup 2}. Experience at Georgia Institute of Technology reactor in Atlanta yielded the longest value of 25 years without problems. The common denominators in all of the reports is that the water is continually deionized to approximately 2 M{Omega} (2 {times} 10{sup 6}ohms) resistivity and the containers for the water are stainless steel or other non-porous material. This resistivity value is equivalent to a value of 0.5 micromhos or microSiemens conductivity and is reagent grade II quality water.{sup 3} 4 tabs, 26 refs.

  20. Characterization of Cassini GPHS Fueled-Clad Production Girth Welds

    SciTech Connect

    Franco-Ferreira, E.A.

    2000-03-23

    Fueled clads for radioisotope power systems are produced by encapsulating {sup 238}PuO{sub 2} in iridium alloy cups, which are joined at their equators by gas tungsten arc welding. Cracking problems at the girth weld tie-in area during production of the Galileo/Ulysses GPHS capsules led to the development of a first-generation ultrasonic test for girth weld inspection at the Savannah River Plant. A second-generation test and equipment with significantly improved sensitivity and accuracy were jointly developed by the Oak Ridge Y-12 Plant and Westinghouse Savannah River Company for use during the production of Cassini GPHS capsules by the Los Alamos National Laboratory. The test consisted of Lamb wave ultrasonic scanning of the entire girth weld from each end of the capsule combined with a time-of-flight evaluation to aid in characterizing nonrelevant indications. Tangential radiography was also used as a supplementary test for further evaluation of reflector geometry. Each of the 317 fueled GPHS capsules, which were girth welded for the Cassini Program, was subjected to a series of nondestructive tests that included visual, dimensional, helium leak rate, and ultrasonic testing. Thirty-three capsules were rejected prior to ultrasonic testing. Of the 44 capsules rejected by the standard ultrasonic test, 22 were upgraded to flight quality through supplementary testing for an overall process acceptance rate of 82.6%. No confirmed instances of weld cracking were found.