Science.gov

Sample records for 96-well polycarbonate-based microfluidic

  1. 96-well format-based microfluidic platform for parallel interconnection of multiple multicellular spheroids.

    PubMed

    Kim, Jin-Young; Fluri, David A; Kelm, Jens M; Hierlemann, Andreas; Frey, Olivier

    2015-06-01

    In this article, we present a microfluidic platform, compatible with conventional 96-well formats, that enables facile and parallelized culturing and testing of spherical microtissues in a standard incubator. The platform can accommodate multiple microtissues (up to 66) of different cell types, formed externally by using the hanging-drop method, and enables microtissue interconnection through microfluidic channels for continuous media perfusion or dosage of substances. The platform contains 11 separate channels, and each channel has six tissue compartments. Primary rat liver tissues were cultured over 8 days, and multiple tumor tissues (HCT116) were exposed to various concentrations of 5-fluorouracil for platform characterization.

  2. A simple 96 well microfluidic chip combined with visual and densitometry detection for resource-poor point of care testing

    PubMed Central

    Yang, Minghui; Sun, Steven; Kostov, Yordan

    2010-01-01

    There is a well-recognized need for low cost biodetection technologies for resource-poor settings with minimal medical infrastructure. Lab-on-a-chip (LOC) technology has the ability to perform biological assays in such settings. The aim of this work is to develop a low cost, high-throughput detection system for the analysis of 96 samples simultaneously outside the laboratory setting. To achieve this aim, several biosensing elements were combined: a syringe operated ELISA lab-on-a-chip (ELISA-LOC) which integrates fluid delivery system into a miniature 96-well plate; a simplified non-enzymatic reporter and detection approach using a gold nanoparticle-antibody conjugate as a secondary antibody and silver enhancement of the visual signal; and Carbon nanotubes (CNT) to increase primary antibody immobilization and improve assay sensitivity. Combined, these elements obviate the need for an ELISA washer, electrical power for operation and a sophisticated detector. We demonstrate the use of the device for detection of Staphylococcal enterotoxin B, a major foodborne toxin using three modes of detection, visual detection, CCD camera and document scanner. With visual detection or using a document scanner to measure the signal, the limit of detection (LOD) was 0.5ng/ml. In addition to visual detection, for precise quantitation of signal using densitometry and a CCD camera, the LOD was 0.1ng/ml for the CCD analysis and 0.5 ng/ml for the document scanner. The observed sensitivity is in the same range as laboratory-based ELISA testing. The point of care device can analyze 96 samples simultaneously, permitting high throughput diagnostics in the field and in resource poor areas without ready access to laboratory facilities or electricity. PMID:21503269

  3. Electrothermal micromixing in 96 well plate

    NASA Astrophysics Data System (ADS)

    Kauffmann, Paul; Loire, Sophie; Mezic, Igor

    2011-11-01

    Diagnostic and pharmacology processes could be greatly accelerated by appropriate mixing. Here electrothermal flows are explored to provide mixing of conductive physiological solutions (=1.6 S/m) in a 96 well plate. Three interdigitated electrodes provide an electric field (< 15Vpp, 1MHz) beneath each well. Polarization and conduction phenomenon of the fluid in a well will be first modeled numerically and compared to an electrical circuit model. Due to high conductivity and permittivity of the fluid, the impedance of the array of filled wells collapse dramatically (96 wells: R = 1Ohm, C=250nF). The power supply challenges accordingly raised by arrays of electrothermal micromixers will be then analyzed. The efficiency of different methods of mixing in those wells will be also compared: the addition of low frequency signal leading to AC electro-osmotic perturbations, a blinking vortices method. The experimental results will be compared to simulations.

  4. 96-well microtiter plates for biofouling simulation in biomedical settings.

    PubMed

    Gomes, L C; Moreira, J M R; Teodósio, J S; Araújo, J D P; Miranda, J M; Simões, M; Melo, L F; Mergulhão, F J

    2014-01-01

    Microtiter plates with 96 wells are routinely used in biofilm research mainly because they enable high-throughput assays. These platforms are used in a variety of conditions ranging from static to dynamic operation using different shaking frequencies and orbital diameters. The main goals of this work were to assess the influence of nutrient concentration and flow conditions on biofilm formation by Escherichia coli in microtiter plates and to define the operational conditions to be used in order to simulate relevant biomedical scenarios. Assays were performed in static mode and in incubators with distinct orbital diameters using different concentrations of glucose, peptone and yeast extract. Computational fluid dynamics (CFD) was used to simulate the flow inside the wells for shaking frequencies ranging from 50 to 200 rpm and orbital diameters from 25 to 100 mm. Higher glucose concentrations enhanced adhesion of E. coli in the first 24 h, but variation in peptone and yeast extract concentration had no significant impact on biofilm formation. Numerical simulations indicate that 96-well microtiter plates can be used to simulate a variety of biomedical scenarios if the operating conditions are carefully set.

  5. Parabolic growth patterns in 96-well plate cell growth experiments.

    PubMed

    Faessel, H M; Levasseur, L M; Slocum, H K; Greco, W R

    1999-05-01

    In preparing for the routine use of the ubiquitous in vitro cell growth inhibition assay for the study of anticancer agents, we characterized the statistical properties of the assay and found some surprising results. Parabolic well-to-well cell growth patterns were discovered, which could profoundly affect the results of routine growth inhibition studies of anticancer and other agents. Four human ovarian cell lines, A2780/WT, A2780/DX5, A2780/DX5B, and A121, and one human ileocecal adenocarcinoma cell line, HCT-8, were seeded into plastic 96-well plates with a 12-channel pipette, without drugs, and grown from 1-5 d. The wells were washed with a plate washer, cells stained with sulforhodamine B (SRB), and dye absorbance measured with a plate reader. Variance models were fit to the data from replicates to determine the nature of the heteroscedastic error structure. Exponential growth models were fit to data to estimate doubling times for each cell line. Polynomial models were fit to data from 10-plate stacks of 96-well plates to explore nonuniformity of cell growth in wells in different regions of the stacks. Each separate step in the assay was examined for precision, patterns, and underlying causes of variation. Differential evaporation of water from wells is likely a major, but not exclusive, contributor to the systematic well-to-well cell growth patterns. Because the fundamental underlying causes of the parabolic growth patterns were not conclusively found, a randomization step for the growth assay was developed.

  6. A Novel 96well-formatted Micro-gap Plate Enabling Drug Response Profiling on Primary Tumour Samples

    NASA Astrophysics Data System (ADS)

    Ma, Wei-Yuan; Hsiung, Lo-Chang; Wang, Chen-Ho; Chiang, Chi-Ling; Lin, Ching-Hung; Huang, Chiun-Sheng; Wo, Andrew M.

    2015-04-01

    Drug-based treatments are the most widely used interventions for cancer management. Personalized drug response profiling remains inherently challenging with low cell count harvested from tumour sample. We present a 96well-formatted microfluidic plate with built-in micro-gap that preserves up to 99.2% of cells during multiple assay/wash operation and only 9,000 cells needed for a single reagent test (i.e. 1,000 cells per test spot x 3 selected concentration x triplication), enabling drug screening and compatibility with conventional automated workstations. Results with MCF7 and MDA-MB-231 cell lines showed that no statistical significance was found in dose-response between the device and conventional 96-well plate control. Primary tumour samples from breast cancer patients tested in the device also showed good IC50 prediction. With drug screening of primary cancer cells must consider a wide range of scenarios, e.g. suspended/attached cell types and rare/abundant cell availability, the device enables high throughput screening even for suspended cells with low cell count since the signature microfluidic cell-trapping feature ensures cell preservation in a multiple solution exchange protocol.

  7. Polycarbonate based nonchemically amplified photoresists for extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Blakey, Idriss; Yu, Anguang; Blinco, James; Jack, Kevin S.; Liu, Heping; Leeson, Michael; Yueh, Wang; Younkin, Todd; Whittaker, Andrew K.

    2010-04-01

    Some initial EUVL patterning results for polycarbonate based non-chemically amplified resists are presented. Without full optimization the developer a resolution of 60 nm line spaces could be obtained. With slight overexposure (1.4 × E0) 43.5 nm lines at a half pitch of 50 nm could be printed. At 2x E0 a 28.6 nm lines at a half pitch of 50 nm could be obtained with a LER that was just above expected for mask roughness. Upon being irradiated with EUV photons, these polymers undergo chain scission with the loss of carbon dioxide and carbon monoxide. The remaining photoproducts appear to be non-volatile under standard EUV irradiation conditions, but do exhibit increased solubility in developer compared to the unirradiated polymer. The sensitivity of the polymers to EUV light is related to their oxygen content and ways to increase the sensitivity of the polymers to 10 mJ cm-2 is discussed.

  8. HIGHLY SENSITIVE ASSAY FOR ANTICHOLINESTERASE COMPOUNDS USING 96 WELL PLATE FORMAT

    EPA Science Inventory

    The rapid and sensitive detection of organophosphate insecticides using a 96 well plate format is reported. Several features of this assay make it attractive for development as a laboratory-based or field screening assay. Acetylcholinesterase (AChE) was stabilized in a gelati...

  9. An improved 96-well turbidity assay for T4 lysozyme activity.

    PubMed

    Toro, Tasha B; Nguyen, Thao P; Watt, Terry J

    2015-01-01

    T4 lysozyme (T4L) is an important model system for investigating the relationship between protein structure and function. Despite being extensively studied, a reliable, quantitative activity assay for T4L has not been developed. Here, we present an improved T4L turbidity assay as well as an affinity-based T4L expression and purification protocol. This assay is designed for 96-well format and utilizes conditions amenable for both T4L and other lysozymes. This protocol enables easy, efficient, and quantitative characterization of T4L variants and allows comparison between different lysozymes. Our method: •Is applicable for all lysozymes, with enhanced sensitivity for T4 lysozyme compared to other 96-well plate turbidity assays;•Utilizes standardized conditions for comparing T4 lysozyme variants and other lysozymes; and•Incorporates a simplified expression and purification protocol for T4 lysozyme.

  10. Stretch Injury of Human Induced Pluripotent Stem Cell Derived Neurons in a 96 Well Format

    PubMed Central

    Sherman, Sydney A.; Phillips, Jack K.; Costa, J. Tighe; Cho, Frances S.; Oungoulian, Sevan R.; Finan, John D.

    2016-01-01

    Traumatic brain injury (TBI) is a major cause of mortality and morbidity with limited therapeutic options. Traumatic axonal injury (TAI) is an important component of TBI pathology. It is difficult to reproduce TAI in animal models of closed head injury, but in vitro stretch injury models reproduce clinical TAI pathology. Existing in vitro models employ primary rodent neurons or human cancer cell line cells in low throughput formats. This in vitro neuronal stretch injury model employs human induced pluripotent stem cell-derived neurons (hiPSCNs) in a 96 well format. Silicone membranes were attached to 96 well plate tops to create stretchable, culture substrates. A custom-built device was designed and validated to apply repeatable, biofidelic strains and strain rates to these plates. A high content approach was used to measure injury in a hypothesis-free manner. These measurements are shown to provide a sensitive, dose-dependent, multi-modal description of the response to mechanical insult. hiPSCNs transition from healthy to injured phenotype at approximately 35% Lagrangian strain. Continued development of this model may create novel opportunities for drug discovery and exploration of the role of human genotype in TAI pathology. PMID:27671211

  11. Biofilm Localization in the Vertical Wall of Shaking 96-Well Plates

    PubMed Central

    Gomes, Luciana C.; Moreira, Joana M. R.; Simões, Manuel; Melo, Luís F.; Mergulhão, Filipe J.

    2014-01-01

    Microtiter plates with 96 wells are being increasingly used for biofilm studies due to their high throughput, low cost, easy handling, and easy application of several analytical methods to evaluate different biofilm parameters. These methods provide bulk information about the biofilm formed in each well but lack in detail, namely, regarding the spatial location of the biofilms. This location can be obtained by microscopy observation using optical and electron microscopes, but these techniques have lower throughput and higher cost and are subjected to equipment availability. This work describes a differential crystal violet (CV) staining method that enabled the determination of the spatial location of Escherichia coli biofilms formed in the vertical wall of shaking 96-well plates. It was shown that the biofilms were unevenly distributed on the wall with denser cell accumulation near the air-liquid interface. The results were corroborated by scanning electron microscopy and a correlation was found between biofilm accumulation and the wall shear strain rates determined by computational fluid dynamics. The developed method is quicker and less expensive and has a higher throughput than the existing methods available for spatial location of biofilms in microtiter plates. PMID:24834360

  12. Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24- or 96-well plates.

    PubMed

    Battegay, M; Cooper, S; Althage, A; Bänziger, J; Hengartner, H; Zinkernagel, R M

    1991-06-01

    Titers of lymphocytic choriomeningitis virus (LCMV) were determined on adherent fibroblast cell lines in 24- or 96-well plates. After absorption of virus by cells and 48 h incubation under a methylcellulose overlay, cell monolayers were fixed with 4% formaldehyde in phosphate-buffered saline, permeabilized by incubation in 0.5% Triton X-100 in balanced salt solution and then stained with a monoclonal rat anti-LCMV and a peroxidase-labeled second stage antibody. The sensitivity of the assay is within a factor of 2-4 of conventional plaquing methods. The method also detects poorly or non-plaquing LCMV isolates, and therefore drastically reduces the need for titration of LCMV in mice. The method is quicker (2-3 days), as compared to conventional methods (4-6 days) and less expensive in terms of work and materials.

  13. High throughput preparation of fly genomic DNA in 96-well format using a paint-shaker.

    PubMed

    Lang, Michael; Nagy, Olga; Lang, Claus; Orgogozo, Virginie

    2015-01-01

    Sample homogenization is an essential step for genomic DNA extraction, with multiple downstream applications in Molecular Biology. Genotyping hundreds or thousands of samples requires an automation of this homogenization step, and high throughput homogenizer equipment currently costs 7000 euros or more. We present an apparatus for homogenization of individual Drosophila adult flies in 96-well micro-titer dishes, which was built from a small portable paint-shaker (F5 portable paint-shaker, Ushake). Single flies are disrupted in each well that contains extraction buffer and a 4-mm metal ball. Our apparatus can hold up to five 96-well micro-titer plates. Construction of the homogenizer apparatus takes about 3-4 days, and all equipment can be obtained from a home improvement store. The total material cost is approximately 700 euros including the paint-shaker. We tested the performance of our apparatus using the ZR-96 Quick-gDNA™ kit (Zymo Research) homogenization buffer and achieved nearly complete tissue homogenization after 15 minutes of shaking. PCR tests did not detect any cross contamination between samples of neighboring wells. We obtained on average 138 ng of genomic DNA per fly, and DNA quality was adequate for standard PCR applications. In principle, our tissue homogenizer can be used for isolation of DNA suitable for library production and high throughput genotyping by Multiplexed Shotgun Genotyping (MSG), as well as RNA isolation from single flies. The sample adapter can also hold and shake other items, such as centrifuge tubes (15-50 mL) or small bottles. PMID:26818699

  14. High throughput preparation of fly genomic DNA in 96-well format using a paint-shaker

    PubMed Central

    Lang, Michael; Nagy, Olga; Lang, Claus; Orgogozo, Virginie

    2015-01-01

    Sample homogenization is an essential step for genomic DNA extraction, with multiple downstream applications in Molecular Biology. Genotyping hundreds or thousands of samples requires an automation of this homogenization step, and high throughput homogenizer equipment currently costs 7000 euros or more. We present an apparatus for homogenization of individual Drosophila adult flies in 96-well micro-titer dishes, which was built from a small portable paint-shaker (F5 portable paint-shaker, Ushake). Single flies are disrupted in each well that contains extraction buffer and a 4-mm metal ball. Our apparatus can hold up to five 96-well micro-titer plates. Construction of the homogenizer apparatus takes about 3–4 days, and all equipment can be obtained from a home improvement store. The total material cost is approximately 700 euros including the paint-shaker. We tested the performance of our apparatus using the ZR-96 Quick-gDNA™ kit (Zymo Research) homogenization buffer and achieved nearly complete tissue homogenization after 15 minutes of shaking. PCR tests did not detect any cross contamination between samples of neighboring wells. We obtained on average 138 ng of genomic DNA per fly, and DNA quality was adequate for standard PCR applications. In principle, our tissue homogenizer can be used for isolation of DNA suitable for library production and high throughput genotyping by Multiplexed Shotgun Genotyping (MSG), as well as RNA isolation from single flies. The sample adapter can also hold and shake other items, such as centrifuge tubes (15–50 mL) or small bottles. PMID:26818699

  15. A solid-phase Bcr-Abl kinase assay in 96-well hydrogel plates.

    PubMed

    Wu, Ding; Mand, Michael R; Veach, Darren R; Parker, Laurie L; Clarkson, Bayard; Kron, Stephen J

    2008-04-01

    Regulated phosphorylation by protein tyrosine kinases (PTKs), such as c-Abl, is critical to cellular homeostasis. In turn, once deregulated as in the chronic myeloid leukemia (CML) fusion protein Bcr-Abl, PTKs can promote cancer onset and progression. The dramatic success of the Bcr-Abl inhibitor imatinib as therapy for CML has inspired interest in other PTKs as targets for cancer drug discovery. Here we report a novel PTK activity and inhibition screening method using hydrogel-immobilized peptide substrates. Using acrylate crosslinkers, we tether peptides via terminal cysteines to thiol-presenting hydrogels in 96-well plates. These surfaces display low background and high reproducibility, allowing semiquantitative detection of peptide phosphorylation by recombinant c-Abl or by Bcr-Abl activity in cell extracts using traditional anti-phosphotyrosine immunodetection and chemifluorescence. The capabilities of this assay are demonstrated by performing model screens for inhibition with several commercially available PTK inhibitors and a collection of pyridopyrimidine Src/Abl dual inhibitors. This assay provides a practical method to measure the activity of a single kinase present in a whole cell lysate with high sensitivity and specificity as a valuable means for efficient small molecule screening.

  16. Thermodynamic equilibrium solubility measurements in simulated fluids by 96-well plate method in early drug discovery.

    PubMed

    Bharate, Sonali S; Vishwakarma, Ram A

    2015-04-01

    An early prediction of solubility in physiological media (PBS, SGF and SIF) is useful to predict qualitatively bioavailability and absorption of lead candidates. Despite of the availability of multiple solubility estimation methods, none of the reported method involves simplified fixed protocol for diverse set of compounds. Therefore, a simple and medium-throughput solubility estimation protocol is highly desirable during lead optimization stage. The present work introduces a rapid method for assessment of thermodynamic equilibrium solubility of compounds in aqueous media using 96-well microplate. The developed protocol is straightforward to set up and takes advantage of the sensitivity of UV spectroscopy. The compound, in stock solution in methanol, is introduced in microgram quantities into microplate wells followed by drying at an ambient temperature. Microplates were shaken upon addition of test media and the supernatant was analyzed by UV method. A plot of absorbance versus concentration of a sample provides saturation point, which is thermodynamic equilibrium solubility of a sample. The established protocol was validated using a large panel of commercially available drugs and with conventional miniaturized shake flask method (r(2)>0.84). Additionally, the statistically significant QSPR models were established using experimental solubility values of 52 compounds.

  17. Development of a quantitative 96-well method to image glycogen storage in primary rat hepatocytes.

    PubMed

    Pilling, James; Garside, Helen; Ainscow, Edward

    2010-08-01

    Within the liver, hormonal control of glycogen metabolism allows for rapid release and uptake of glucose from the circulation, providing a reserve of glucose that can be utilised by other organs. Traditionally, cellular glycogen storage has been detected using Periodic acid Schiff (PAS) staining of histopathology samples or a biochemical assay. Colorimetric measurement of glycogen content using PAS staining is hard to quantify whilst biochemical techniques give limited information about events such as cytotoxicity or allow analysis of hepatic heterogeneity. Here, we describe the development of an imaging based method to quantify glycogen storage in 96-well cultures of primary rat hepatocytes using the inherent fluorescence properties of the Schiff reagent. PAS-stained hepatocytes were imaged using an automated fluorescent microscope, with the amount of glycogen present in each cell being quantified. Using this technique, we found an increase in glycogen storage in response to insulin (EC50 = 0.31 nM) that was in agreement with that determined using biochemical quantification (EC50 = 0.32 nM). Furthermore, a dose dependent increase in glycogen storage was also seen in response to glycogen synthase kinase inhibitors and glycogen phosphorylase inhibitors. This technique allows rapid assessment of cellular glycogen storage in response to hormones and small molecule inhibitors.

  18. A highly sensitive and versatile virus titration assay in the 96-well microplate format.

    PubMed

    Borisevich, V; Nistler, R; Hudman, D; Yamshchikov, G; Seregin, A; Yamshchikov, V

    2008-02-01

    This report describes a fast, reproducible, inexpensive and convenient assay system for virus titration in the 96-well format. The micromethod substantially increases assay throughput and improves the data reproducibility. A highly simplified variant of virus quantification is based on immunohistochemical detection of virus amplification foci obtained without use of agarose or semisolid overlays. It can be incorporated into several types of routine virological assays successfully replacing the laborious and time-consuming conventional methods based on plaque formation under semisolid overlays. The method does not depend on the development of CPE and can be accommodated to assay viruses with substantial differences in growth properties. The use of enhanced immunohistochemical detection enabled a five- to six-fold reduction of the total assay time. The micromethod was specifically developed to take advantage of multichannel pipettor use to simplify handling of a large number of samples. The method performs well with an inexpensive low-power binocular, thus offering a routine assay system usable outside of specialized laboratory setting, such as for testing of clinical or field samples. When used in focus reduction-neutralization tests (FRNT), the method accommodates very small volumes of immune serum, which is often a decisive factor in experiments involving small rodent models.

  19. Automated expression and solubility screening of His-tagged proteins in 96-well format.

    PubMed

    Vincentelli, Renaud; Canaan, Stéphane; Offant, Julien; Cambillau, Christian; Bignon, Christophe

    2005-11-01

    A growing need for sensitive and high-throughput methods for screening the expression and solubility of recombinant proteins exists in structural genomics. Originally, the emergency solution was to use immediately available techniques such as manual lysis of expression cells followed by analysis of protein expression by gel electrophoresis. However, these handmade methods quickly proved to be unfit for the high-throughput demand of postgenomics, and it is now generally accepted that the long-term solution to this problem will be based on automation, on industrial standard-formatted experiments, and on downsizing samples and consumables. In agreement with this consensus, we have set up a fully automated method based on a dot-blot technology and using 96-well format consumables for assessing by immunodetection the amount of total and soluble recombinant histidine (His)-tagged proteins expressed in Escherichia coli. The method starts with the harvest of expression cells and ends with the display of solubility/expression results in milligrams of recombinant protein per liter of culture using a three-color code to assist analysis. The program autonomously processes 160 independent cultures at a time.

  20. Detection of enteroviruses in shellfish by fluorogenic polymerase chain reaction integrated with 96-well microplate scanning.

    PubMed

    Shieh, Y Carol; Baric, Ralph S

    2002-01-01

    A one-step procedure was developed to confirm viral targets by using a fluorometric 96-well microplate scanner following polymerase chain reaction (PCR). The fluorogenic PCR, integrated with fluorometric scanning, measured the end point fluorescence of viral PCR amplicon/probe hybrids and permitted the use of nonfluorogenic PCR conditions with addition of a Cy3 fluorophore-labeled linear probe for viruses. This linear probe generated higher ratios of viral signal-to-noise than a comparative beacon probe. Detection efficiency with a Cy3/quencher linear probe was comparable with Southern analysis at the level > or = 0.27 plaque-forming units (PFU) of poliovirus/PCR. For the reaction containing < 0.27 PFU, the fluorometric measurements of the first-round PCR viral amplicon were not as sensitive as Southern analysis; however, equivalent sensitivities were achieved with fluorogenic nested PCR. Concentrates of 11 oyster samples exposed to municipal sewage were tested for enteroviruses; the fluorogenic detection correlated 100% with Southern analysis. This method using fluorometric scanning of viral amplicon is simple; it requires neither continuously monitoring equipment nor redesigning PCR primers; and it accurately detects enteroviruses in oyster sample concentrates in less time than classic spectrophotometry or Southern analysis.

  1. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    PubMed

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  2. Fluorinert, an oxygen carrier, improves cell culture performance in deep square 96-well plates by facilitating oxygen transfer.

    PubMed

    Meyer, Aaron; Condon, Russell G G; Keil, Gregory; Jhaveri, Nikita; Liu, Zhong; Tsao, Yung-Shyeng

    2012-01-01

    In bioprocess development, the 96-well plate format has been widely used for high-throughput screening of production cell line or culture conditions. However, suspension cell cultures in conventional 96-well plates often fail to reach high cell density under normal agitation presumably due to constraints in oxygen transfer. Although more vigorous agitation can improve gas transfer in 96-well plate format, it often requires specialized instruments. In this report, we employed Fluorinert, a biologically inert perfluorocarbon, to improve oxygen transfer in 96-well plate and to enable the growth of a Chinese Hamster Ovary cell line expressing a recombinant monoclonal antibody. When different amounts of Fluorinert were added to the cell culture medium, a dose-dependent improvement in cell growth was observed in both conventional and deep square 96-well plates. When sufficient Fluorinert was present in the culture, the cell growth rate, the peak cell density, and recombinant protein production levels achieved in deep square 96-wells were comparable to cultures in ventilated shake flasks. Although Fluorinert is known to dissolve gases such as oxygen and CO(2), it does not dissolve nor extract medium components, such as glucose, lactate, or amino acids. We conclude that mixing Fluorinert with culture media is a suitable model for miniaturization of cell line development and process optimization. Proper cell growth and cellular productivity can be obtained with a standard shaker without the need for any additional aeration or vigorous agitation. PMID:21954223

  3. Macroscale versus microscale methods for physiological analysis of biofilms formed in 96-well microtiter plates.

    PubMed

    Gomes, L C; Moreira, J M R; Miranda, J M; Simões, M; Melo, L F; Mergulhão, F J

    2013-12-01

    Microtiter plates with 96 wells have become one of the preferred platforms for biofilm studies mainly because they enable high-throughput assays. In this work, macroscale and microscale methods were used to study the impact of hydrodynamic conditions on the physiology and location of Escherichia coli JM109(DE3) biofilms formed in microtiter plates. Biofilms were formed in shaking and static conditions, and two macroscale parameters were assayed: the total amount of biofilm was measured by the crystal violet assay and the metabolic activity was determined by the resazurin assay. From the macroscale point of view, there were no statistically significant differences between the biofilms formed in static and shaking conditions. However, at a microscale level, the differences between both conditions were revealed using scanning electron microscopy (SEM). It was observed that biofilm morphology and spatial distribution along the wall were different in these conditions. Simulation of the hydrodynamic conditions inside the wells at a microscale was performed by computational fluid dynamics (CFD). These simulations showed that the shear strain rate was unevenly distributed on the walls during shaking conditions and that regions of higher shear strain rate were obtained closer to the air/liquid interface. Additionally, it was shown that wall regions subjected to higher shear strain rates were associated with the formation of biofilms containing cells of smaller size. Conversely, regions with lower shear strain rate were prone to have a more uniform spatial distribution of adhered cells of larger size. The results presented on this work highlight the wealth of information that may be gathered by complementing macroscale approaches with a microscale analysis of the experiments. PMID:24140575

  4. Human tear analysis with miniaturized multiplex cytokine assay on “wall-less” 96-well plate

    PubMed Central

    Quah, Joanne; Tong, Louis; Kim, Namyong

    2015-01-01

    Purpose Tears are a particularly limited body fluid and commonly used in the diagnosis of patients who have ocular diseases. A popular method for analysis of ocular inflammation in tears uses Luminex® bead multiplex technology to generate valuable multiple cytokine profile outputs with 25–50 µl tear sample volume. We propose a method for measuring tear cytokines with 5 μl tear sample volume and 80% reduced Luminex reagents compared to previous protocols. Methods Using human tears pooled from 1,000 participants, the DA-Bead-based method running at 5–20 µl volume, using manual pipetting, in conjunction with a magnetic Luminex cytokine (four-plex) panel assay in a 96-well format was performed and validated for tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-1β, and IL-6. Results Upon use of the DA-Bead method at the 5 μl volume with cytokine standards, the concentrations of each of the four cytokines were found to be linear over a range of 3.5–4 log pg/ml with an intra-assay coefficient of variation (CV) ≤5%, inter-assay %CV ≤10%, and accuracy within the 70–130% range. Upon use of a 5 µl healthy pooled tear sample, cytokine concentrations were detected with a precision intra-assay %CV ˂ 20% for IL-6, IFN-γ, or TNF-α or 30.37% with IL-1β. The inter-assay %CV with tears was ≤20.84% for all cytokines. Tear volumes run at 5 μl on DA-Bead produced a similar cytokine expression profile at a 1-month interval and were highly correlated with the larger 10 μl–based tear sample volume cytokine profile with R2 = 0.98. Conclusions DA-Bead assay is highly sensitive and reproducible and has a performance profile that is potentially suitable for use in standard clinical scenarios. Considering the use of as little as 5 µl of assay beads and 5 µl sample, this is also likely to reduce the assay cost significantly and ease diagnosis of patients with ocular diseases. PMID:26539027

  5. UV Induced Degradation of Polycarbonate-Based Lens Materials and Implications for the Heath Care Field

    NASA Astrophysics Data System (ADS)

    Harkay, J. R.; Henry, Jerry

    2006-10-01

    Experimental research is being carried out at Keene State at the undergraduate level that utilizes facilities in both physics and chemistry to study the effects of mono- and polychromatic UV radiation from various sources, including a Deuterium lamp, a solarization unit (at Polyonics, a local industry), and the Sun, to study the photodegradation of polycarbonate-based lens materials used to produce eyewear. Literature in the field of optometry and ophthalmology indicates a correlation between exposure to the UVB band of natural sunlight and the onset of cataract formation, as well as other eye disorders. The public is usually advised that plastic eyeglass lenses will provide protection from this damaging radiation. It is well known that polycarbonate plastic ``yellows'' when exposed to intense sunlight and, particularly, UV light^1,2, either via photo-Fries rearrangement or by a photooxidative process, forming polyconjugated systems and is an industrial concern primarily for cosmetic reasons. We have preliminary data, however, that indicates that the yellowing'' is an indication of a more sinister problem in the case of eyeglasses in that it is accompanied by an increase in transmissivity in the UVB band where the wearer expects and needs protection. Our group includes a local optometrist who will share results with peers in his field. [1] A. Andrady, J. Polymer Sci., 42, 1991 [2] E. P. Gorelov, Inst. Khim. Fiz., Russian Federation

  6. UV Induced Degradation of Polycarbonate-Based Lens Materials and Implications for the Heath Care Field

    NASA Astrophysics Data System (ADS)

    Harkay, J. Russell; Henry, Jerry

    2007-04-01

    Experimental undergraduate research at Keene State College has utilized facilities in physics and chemistry and at Polyonics, a local firm to study the effects of mono- and polychromatic UV radiation from various sources, including a Deuterium lamp, a solarization unit, a monochromator, and natural sunlight to study the photodegradation of polycarbonate-based lens materials used to produce eyewear using spectrophotometry and FTIR analysis. Ophthalmologic literature indicates a correlation between exposure to the UVB band of sunlight and the onset of cataract formation and macular degeneration. It is well known that polycarbonate plastic ``yellows'' when exposed to intense sunlight and, particularly, UV light either via photo-Fries rearrangement or by a photo oxidative process, forming polyconjugated systems and is a concern primarily for cosmetic reasons. Our data indicates that the ``yellowing'' is an indication of a more sinister problem in the case of eyeglasses in that spectrophotometric comparison shows it is accompanied by an increase in transmissivity in the UVB band where the wearer expects and needs protection. FTIR results indicate a degradation of molecular stabilizers and the appearance of free radicals that indicate a breakdown of the resin's chemical structure. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NES07.B1.4

  7. UV-curable low surface energy fluorinated polycarbonate-based polyurethane dispersion.

    PubMed

    Hwang, Hyeon-Deuk; Kim, Hyun-Joong

    2011-10-15

    UV-curable low surface energy fluorinated polycarbonate-based polyurethane dispersions were synthesized by incorporating a hydroxy-terminated perfluoropolyether (PFPE) into the soft segment of polyurethane. The effects of the PFPE content on the UV-curing behavior, physical, surface, thermal properties and refractive index were investigated. The UV-curing behavior was analyzed by photo-differential scanning calorimetry. The surface free energy of the UV-cured film, which is related to the water or oil repellency, was calculated from contact angle measurements using the Lewis acid-base three liquids method. The surface free energy decreased significantly with increasing fluorine concentration because PFPE in the soft segment was tailored to the surface and produced a UV-cured film with a hydrophobic fluorine enriched surface, as confirmed by X-ray photoelectron spectroscopy. With increasing the fluorine content, the refractive indices of UV-cured films decreased. However, the UV-curing rate and final conversion was decreased with increasing contents of PFPE, which resulted in the decrease of the glass transition temperature (T(g)), crosslink density, tensile strength and surface hardness. PMID:21788027

  8. UV-curable low surface energy fluorinated polycarbonate-based polyurethane dispersion.

    PubMed

    Hwang, Hyeon-Deuk; Kim, Hyun-Joong

    2011-10-15

    UV-curable low surface energy fluorinated polycarbonate-based polyurethane dispersions were synthesized by incorporating a hydroxy-terminated perfluoropolyether (PFPE) into the soft segment of polyurethane. The effects of the PFPE content on the UV-curing behavior, physical, surface, thermal properties and refractive index were investigated. The UV-curing behavior was analyzed by photo-differential scanning calorimetry. The surface free energy of the UV-cured film, which is related to the water or oil repellency, was calculated from contact angle measurements using the Lewis acid-base three liquids method. The surface free energy decreased significantly with increasing fluorine concentration because PFPE in the soft segment was tailored to the surface and produced a UV-cured film with a hydrophobic fluorine enriched surface, as confirmed by X-ray photoelectron spectroscopy. With increasing the fluorine content, the refractive indices of UV-cured films decreased. However, the UV-curing rate and final conversion was decreased with increasing contents of PFPE, which resulted in the decrease of the glass transition temperature (T(g)), crosslink density, tensile strength and surface hardness.

  9. Ion transport in polycarbonate based solid polymer electrolytes: experimental and computational investigations.

    PubMed

    Sun, Bing; Mindemark, Jonas; Morozov, Evgeny V; Costa, Luciano T; Bergman, Martin; Johansson, Patrik; Fang, Yuan; Furó, István; Brandell, Daniel

    2016-04-14

    Among the alternative host materials for solid polymer electrolytes (SPEs), polycarbonates have recently shown promising functionality in all-solid-state lithium batteries from ambient to elevated temperatures. While the computational and experimental investigations of ion conduction in conventional polyethers have been extensive, the ion transport in polycarbonates has been much less studied. The present work investigates the ionic transport behavior in SPEs based on poly(trimethylene carbonate) (PTMC) and its co-polymer with ε-caprolactone (CL) via both experimental and computational approaches. FTIR spectra indicated a preferential local coordination between Li(+) and ester carbonyl oxygen atoms in the P(TMC20CL80) co-polymer SPE. Diffusion NMR revealed that the co-polymer SPE also displays higher ion mobilities than PTMC. For both systems, locally oriented polymer domains, a few hundred nanometers in size and with limited connections between them, were inferred from the NMR spin relaxation and diffusion data. Potentiostatic polarization experiments revealed notably higher cationic transference numbers in the polycarbonate based SPEs as compared to conventional polyether based SPEs. In addition, MD simulations provided atomic-scale insight into the structure-dynamics properties, including confirmation of a preferential Li(+)-carbonyl oxygen atom coordination, with a preference in coordination to the ester based monomers. A coupling of the Li-ion dynamics to the polymer chain dynamics was indicated by both simulations and experiments.

  10. Enzymatic surface erosion of high tensile strength polycarbonates based on natural phenols.

    PubMed

    Sommerfeld, Sven D; Zhang, Zheng; Costache, Marius C; Vega, Sebastián L; Kohn, Joachim

    2014-03-10

    Surface erosion has been recognized as a valuable design tool for resorbable biomaterials within the context of drug delivery devices, surface coatings, and when precise control of strength retention is critical. Here we report on high tensile strength, aromatic-aliphatic polycarbonates based on natural phenols, tyrosol (Ty) and homovanillyl alcohol (Hva), that exhibit enzymatic surface erosion by lipase. The Young's moduli of the polymers for dry and fully hydrated samples are 1.0 to 1.2 GPa and 0.8 to 1.2 GPa, respectively. Typical characteristics of enzymatic surface erosion were confirmed for poly(tyrosol carbonate) films with concomitant mass-loss and thickness-loss at linear rates of 0.14 ± 0.01 mg cm(-2) d(-1) and 3.0 ± 0.8 μm d(-1), respectively. The molecular weight and the mechanical properties of the residual films remained constant. Changing the ratio of Ty and Hva provided control over the glass transition temperature (T(g)) and the enzymatic surface erosion: increasing the Hva content in the polymers resulted in higher T(g) and lower enzymatic erosion rate. Polymers with more than 50 mol % Hva were stable at 37 °C in enzyme solution. Analysis on thin films using quartz crystal microbalance with dissipation (QCM-D) demonstrated that the onset temperature of the enzymatic erosion was approximately 20 °C lower than the wet T(g) for all tested polymers. This new finding demonstrates that relatively high tensile strength polycarbonates can undergo enzymatic surface erosion. Moreover, it also sheds light on the connection between T(g) and enzymatic degradation and explains why few of the high strength polymers follow an enzyme-meditated degradation pathway.

  11. Enzymatic Surface Erosion of High Tensile Strength Polycarbonates Based on Natural Phenols

    PubMed Central

    2015-01-01

    Surface erosion has been recognized as a valuable design tool for resorbable biomaterials within the context of drug delivery devices, surface coatings, and when precise control of strength retention is critical. Here we report on high tensile strength, aromatic–aliphatic polycarbonates based on natural phenols, tyrosol (Ty) and homovanillyl alcohol (Hva), that exhibit enzymatic surface erosion by lipase. The Young’s moduli of the polymers for dry and fully hydrated samples are 1.0 to 1.2 GPa and 0.8 to 1.2 GPa, respectively. Typical characteristics of enzymatic surface erosion were confirmed for poly(tyrosol carbonate) films with concomitant mass-loss and thickness-loss at linear rates of 0.14 ± 0.01 mg cm–2 d–1 and 3.0 ± 0.8 μm d–1, respectively. The molecular weight and the mechanical properties of the residual films remained constant. Changing the ratio of Ty and Hva provided control over the glass transition temperature (Tg) and the enzymatic surface erosion: increasing the Hva content in the polymers resulted in higher Tg and lower enzymatic erosion rate. Polymers with more than 50 mol % Hva were stable at 37 °C in enzyme solution. Analysis on thin films using quartz crystal microbalance with dissipation (QCM-D) demonstrated that the onset temperature of the enzymatic erosion was approximately 20 °C lower than the wet Tg for all tested polymers. This new finding demonstrates that relatively high tensile strength polycarbonates can undergo enzymatic surface erosion. Moreover, it also sheds light on the connection between Tg and enzymatic degradation and explains why few of the high strength polymers follow an enzyme-meditated degradation pathway. PMID:24432806

  12. MStern Blotting-High Throughput Polyvinylidene Fluoride (PVDF) Membrane-Based Proteomic Sample Preparation for 96-Well Plates.

    PubMed

    Berger, Sebastian T; Ahmed, Saima; Muntel, Jan; Cuevas Polo, Nerea; Bachur, Richard; Kentsis, Alex; Steen, Judith; Steen, Hanno

    2015-10-01

    We describe a 96-well plate compatible membrane-based proteomic sample processing method, which enables the complete processing of 96 samples (or multiples thereof) within a single workday. This method uses a large-pore hydrophobic PVDF membrane that efficiently adsorbs proteins, resulting in fast liquid transfer through the membrane and significantly reduced sample processing times. Low liquid transfer speeds have prevented the useful 96-well plate implementation of FASP as a widely used membrane-based proteomic sample processing method. We validated our approach on whole-cell lysate and urine and cerebrospinal fluid as clinically relevant body fluids. Without compromising peptide and protein identification, our method uses a vacuum manifold and circumvents the need for digest desalting, making our processing method compatible with standard liquid handling robots. In summary, our new method maintains the strengths of FASP and simultaneously overcomes one of the major limitations of FASP without compromising protein identification and quantification. PMID:26223766

  13. Toward Microbioreactor Arrays: A Slow-Responding Oxygen Sensor for Monitoring of Microbial Cultures in Standard 96-Well Plates.

    PubMed

    Glauche, Florian; John, Gernot T; Arain, Sarina; Knepper, Andreas; Neubauer, Antje; Goelling, Detlef; Lang, Christine; Violet, Norman; King, Rudibert; Neubauer, Peter

    2015-08-01

    In this study, a slow-responding chemo-optical sensor for dissolved oxygen (DO) integrated into a 96-well plate was developed. The slow response time ensures that the measured oxygen value does not change much during plate transport to the microplate reader. The sensor therefore permits at-line DO measurement of microbial cultures. Moreover, it eliminates the necessity of individual optical measurement systems for each culture plate, as many plates can be measured successively. Combined with the 96-well format, this increases the experimental throughput enormously. The novel sensor plate (Slow OxoPlate) consists of fluorophores suspended in a polymer matrix that were placed into u-bottom 96-well plates. Response time was measured using sodium sulfite, and a t90 value of 9.7 min was recorded. For application, DO values were then measured in Escherichia coli and Saccharomyces cerevisiae cultures grown under fed-batch-like conditions. Depending on the DO sensor's response time, different information on the oxygenation state of the culture plate was obtained: a fast sensor variant detects disturbance through sampling, whereas the slow sensor indicates oxygen limitation during incubation. A combination of the commercially available OxoPlate and the Slow OxoPlate enables operators of screening facilities to validate their cultivation procedures with regard to oxygen availability. PMID:25720599

  14. Establishment and validation of a method for multi-dose irradiation of cells in 96-well microplates

    SciTech Connect

    Abatzoglou, Ioannis; Zois, Christos E.; Pouliliou, Stamatia

    2013-02-15

    Highlights: ► We established a method for multi-dose irradiation of cell cultures within a 96-well plate. ► Equations to adjust to preferable dose levels are produced and provided. ► Up to eight different dose levels can be tested in one microplate. ► This method results in fast and reliable estimation of radiation dose–response curves. -- Abstract: Microplates are useful tools in chemistry, biotechnology and molecular biology. In radiobiology research, these can be also applied to assess the effect of a certain radiation dose delivered to the whole microplate, to test radio-sensitivity, radio-sensitization or radio-protection. Whether different radiation doses can be accurately applied to a single 96-well plate to further facilitate and accelerated research by one hand and spare funds on the other, is a question dealt in the current paper. Following repeated ion-chamber, TLD and radiotherapy planning dosimetry we established a method for multi-dose irradiation of cell cultures within a 96-well plate, which allows an accurate delivery of desired doses in sequential columns of the microplate. Up to eight different dose levels can be tested in one microplate. This method results in fast and reliable estimation of radiation dose–response curves.

  15. Toward Microbioreactor Arrays: A Slow-Responding Oxygen Sensor for Monitoring of Microbial Cultures in Standard 96-Well Plates.

    PubMed

    Glauche, Florian; John, Gernot T; Arain, Sarina; Knepper, Andreas; Neubauer, Antje; Goelling, Detlef; Lang, Christine; Violet, Norman; King, Rudibert; Neubauer, Peter

    2015-08-01

    In this study, a slow-responding chemo-optical sensor for dissolved oxygen (DO) integrated into a 96-well plate was developed. The slow response time ensures that the measured oxygen value does not change much during plate transport to the microplate reader. The sensor therefore permits at-line DO measurement of microbial cultures. Moreover, it eliminates the necessity of individual optical measurement systems for each culture plate, as many plates can be measured successively. Combined with the 96-well format, this increases the experimental throughput enormously. The novel sensor plate (Slow OxoPlate) consists of fluorophores suspended in a polymer matrix that were placed into u-bottom 96-well plates. Response time was measured using sodium sulfite, and a t90 value of 9.7 min was recorded. For application, DO values were then measured in Escherichia coli and Saccharomyces cerevisiae cultures grown under fed-batch-like conditions. Depending on the DO sensor's response time, different information on the oxygenation state of the culture plate was obtained: a fast sensor variant detects disturbance through sampling, whereas the slow sensor indicates oxygen limitation during incubation. A combination of the commercially available OxoPlate and the Slow OxoPlate enables operators of screening facilities to validate their cultivation procedures with regard to oxygen availability.

  16. A 96-well screen filter plate for high-throughput biological sample preparation and LC-MS/MS analysis.

    PubMed

    Peng, Sean X; Cousineau, Martin; Juzwin, Stephen J; Ritchie, David M

    2006-01-01

    A novel 96-well screen filter plate (patent pending) has been invented to eliminate a time-consuming and labor-intensive step in preparation of in vivo study samples--to remove blood or plasma clots. These clots plug the pipet tips during a manual or automated sample-transfer step causing inaccurate pipetting or total pipetting failure. Traditionally, these blood and plasma clots are removed by picking them out manually one by one from each sample tube before any sample transfer can be made. This has significantly slowed the sample preparation process and has become a bottleneck for automated high-throughput sample preparation using robotic liquid handlers. Our novel screen filter plate was developed to solve this problem. The 96-well screen filter plate consists of 96 stainless steel wire-mesh screen tubes connected to the 96 openings of a top plate so that the screen filter plate can be readily inserted into a 96-well sample storage plate. Upon insertion, the blood and plasma clots are excluded from entering the screen tube while clear sample solutions flow freely into it. In this way, sample transfer can be easily completed by either manual or automated pipetting methods. In this report, three structurally diverse compounds were selected to evaluate and validate the use of the screen filter plate. The plasma samples of these compounds were transferred and processed in the presence and absence of the screen filter plate and then analyzed by LC-MS/MS methods. Our results showed a good agreement between the samples prepared with and without the screen filter plate, demonstrating the utility and efficiency of this novel device for preparation of blood and plasma samples. The device is simple, easy to use, and reusable. It can be employed for sample preparation of other biological fluids that contain floating particulates or aggregates. PMID:16383347

  17. Ice-Cap: a method for growing Arabidopsis and tomato plants in 96-well plates for high-throughput genotyping.

    PubMed

    Su, Shih-Heng; Clark, Katie A; Gibbs, Nicole M; Bush, Susan M; Krysan, Patrick J

    2011-11-09

    It is becoming common for plant scientists to develop projects that require the genotyping of large numbers of plants. The first step in any genotyping project is to collect a tissue sample from each individual plant. The traditional approach to this task is to sample plants one-at-a-time. If one wishes to genotype hundreds or thousands of individuals, however, using this strategy results in a significant bottleneck in the genotyping pipeline. The Ice-Cap method that we describe here provides a high-throughput solution to this challenge by allowing one scientist to collect tissue from several thousand seedlings in a single day (1,2). This level of throughput is made possible by the fact that tissue is harvested from plants 96-at-a-time, rather than one-at-a-time. The Ice-Cap method provides an integrated platform for performing seedling growth, tissue harvest, and DNA extraction. The basis for Ice-Cap is the growth of seedlings in a stacked pair of 96-well plates. The wells of the upper plate contain plugs of agar growth media on which individual seedlings germinate. The roots grow down through the agar media, exit the upper plate through a hole, and pass into a lower plate containing water. To harvest tissue for DNA extraction, the water in the lower plate containing root tissue is rapidly frozen while the seedlings in the upper plate remain at room temperature. The upper plate is then peeled away from the lower plate, yielding one plate with 96 root tissue samples frozen in ice and one plate with 96 viable seedlings. The technique is named "Ice-Cap" because it uses ice to capture the root tissue. The 96-well plate containing the seedlings can then wrapped in foil and transferred to low temperature. This process suspends further growth of the seedlings, but does not affect their viability. Once genotype analysis has been completed, seedlings with the desired genotype can be transferred from the 96-well plate to soil for further propagation. We have demonstrated

  18. Development of a fluorimetric multispecies 96-well micro-plate growth test for screening metal toxicity to phytoplankton

    SciTech Connect

    Peterson, H.G.; Ruecker, N.J.; Cantin, I.A.; Nyholm, N.; Dal-Jensen, S.

    1995-12-31

    The rapid and cost-effective screening of industrial waste is an ideal approach to regulations that offer true protection of aquatic habitats. For these tests to be ecologically important protection of large groups of organisms is also essential. This can best be done by testing batteries of species. Photosynthetic organisms compose 99.9% of habitats as well as providing food for higher trophic levels. A test was developed that can accommodate the testing of most phytoplanktonic species irrespective of morphology (unicellular, multicellular, colonial, filamentous). Forty eight to 72 h growth tests were carried out with green algae, diatoms, and cyanobacteria. The algae were incubated with different levels of toxicants in 96-well microplates which were read in a 96-well fluorometric plate reader. Phytoplankton emitting low levels of fluorescence can be incubated with DCMU, which can increase the fluorescent signal 2 to 4 times. The data from the plate reader is transferred to a computer spreadsheet and inhibition levels are automatically calculated. Eleven metal mining wastes from across Canada were tested against this method using the following phytoplanktonic species: Selenastrum, Nannochloris (green algae), Nitzschia (diatom), Microcystis, and Pseudoanabaena (cyanobacteria). These wastes were also screened against Microtox. All wastes were highly toxic to the tested phytoplankton, but only 4 were toxic to Microtox{trademark}.

  19. Protocol: high throughput silica-based purification of RNA from Arabidopsis seedlings in a 96-well format

    PubMed Central

    2011-01-01

    The increasing popularity of systems-based approaches to plant research has resulted in a demand for high throughput (HTP) methods to be developed. RNA extraction from multiple samples in an experiment is a significant bottleneck in performing systems-level genomic studies. Therefore we have established a high throughput method of RNA extraction from Arabidopsis thaliana to facilitate gene expression studies in this widely used plant model. We present optimised manual and automated protocols for the extraction of total RNA from 9-day-old Arabidopsis seedlings in a 96 well plate format using silica membrane-based methodology. Consistent and reproducible yields of high quality RNA are isolated averaging 8.9 μg total RNA per sample (~20 mg plant tissue). The purified RNA is suitable for subsequent qPCR analysis of the expression of over 500 genes in triplicate from each sample. Using the automated procedure, 192 samples (2 × 96 well plates) can easily be fully processed (samples homogenised, RNA purified and quantified) in less than half a day. Additionally we demonstrate that plant samples can be stored in RNAlater at -20°C (but not 4°C) for 10 months prior to extraction with no significant effect on RNA yield or quality. Additionally, disrupted samples can be stored in the lysis buffer at -20°C for at least 6 months prior to completion of the extraction procedure providing a flexible sampling and storage scheme to facilitate complex time series experiments. PMID:22136293

  20. 96-Well Plate Colorimetric Assay for K(sub i) Determination of (plusmn)-2-Benzylsuccinic Acid, an Inhibitor of Carboxypeptidase A

    ERIC Educational Resources Information Center

    Wentland, Mark P.; Raza, Shaan; Yingtong Gao

    2004-01-01

    An appropriate assay to determine the inhibition potency of carboxypeptidase A (CPA) in 96-well format to illustrate how high throughput screening is used in modern drug discovery to identify bioactive molecules is developed. Efforts in developing a colorimetric 96-well plate assay for determination of the K(sub i) for inhibition of CPA by…

  1. Scalable 96-well Plate Based iPSC Culture and Production Using a Robotic Liquid Handling System.

    PubMed

    Conway, Michael K; Gerger, Michael J; Balay, Erin E; O'Connell, Rachel; Hanson, Seth; Daily, Neil J; Wakatsuki, Tetsuro

    2015-01-01

    Continued advancement in pluripotent stem cell culture is closing the gap between bench and bedside for using these cells in regenerative medicine, drug discovery and safety testing. In order to produce stem cell derived biopharmaceutics and cells for tissue engineering and transplantation, a cost-effective cell-manufacturing technology is essential. Maintenance of pluripotency and stable performance of cells in downstream applications (e.g., cell differentiation) over time is paramount to large scale cell production. Yet that can be difficult to achieve especially if cells are cultured manually where the operator can introduce significant variability as well as be prohibitively expensive to scale-up. To enable high-throughput, large-scale stem cell production and remove operator influence novel stem cell culture protocols using a bench-top multi-channel liquid handling robot were developed that require minimal technician involvement or experience. With these protocols human induced pluripotent stem cells (iPSCs) were cultured in feeder-free conditions directly from a frozen stock and maintained in 96-well plates. Depending on cell line and desired scale-up rate, the operator can easily determine when to passage based on a series of images showing the optimal colony densities for splitting. Then the necessary reagents are prepared to perform a colony split to new plates without a centrifugation step. After 20 passages (~3 months), two iPSC lines maintained stable karyotypes, expressed stem cell markers, and differentiated into cardiomyocytes with high efficiency. The system can perform subsequent high-throughput screening of new differentiation protocols or genetic manipulation designed for 96-well plates. This technology will reduce the labor and technical burden to produce large numbers of identical stem cells for a myriad of applications. PMID:26068617

  2. Facile preparation of a photoactivatable surface on a 96-well plate: a versatile and multiplex cell migration assay platform.

    PubMed

    Kamimura, Masao; Scheideler, Olivia; Shimizu, Yoshihisa; Yamamoto, Shota; Yamaguchi, Kazuo; Nakanishi, Jun

    2015-06-01

    Cell migration is an essential cellular activity in various physiological and pathological processes, such as wound healing and cancer metastasis. Therefore, in vitro cell migration assays are important not only for fundamental biological studies but also for evaluating potential drugs that control cell migration activity in medical applications. In this regard, robust control over cell migrating microenvironments is critical for reliable and quantitative analysis as cell migration is highly dependent upon the microenvironments. Here, we developed a facile method for making a commercial glass-bottom 96-well plate photoactivatable for cell adhesion, aiming to develop a versatile and multiplex cell migration assay platform. Cationic poly-d-lysine was adsorbed to the anionic glass surface via electrostatic interactions and, subsequently, functionalized with poly(ethylene glycol) (PEG) bearing a photocleavable reactive group. The initial PEGylated surface is non-cell-adhesive. However, upon near-ultraviolet (UV) irradiation, the photorelease of PEG switches the surface from non-biofouling to cell-adhesive. With this platform, we assayed cell migration in the following procedure: (1) create cell-attaching regions of precise geometries by controlled photoirradiation, (2) seed cells to allow them to attach selectively to the irradiated regions, (3) expose UV light to the remaining PEGylated regions to extend the cell-adhesive area, (4) analyse cell migration using microscopy. Surface modification of the glass surface was characterized by ζ-potential and contact angle measurements. The PEGylated surface showed cell-resistivity and became cell-adhesive upon releasing PEG by near-UV irradiation. The method was applied for parallelly evaluating the effect of model drugs on the migration of epithelial MDCK cells in the multiplexed platform. The dose-response relationship for cytochalasin D treatment on cell migration behavior was successfully evaluated with high

  3. CometChip: a high-throughput 96-well platform for measuring DNA damage in microarrayed human cells.

    PubMed

    Ge, Jing; Prasongtanakij, Somsak; Wood, David K; Weingeist, David M; Fessler, Jessica; Navasummrit, Panida; Ruchirawat, Mathuros; Engelward, Bevin P

    2014-10-18

    DNA damaging agents can promote aging, disease and cancer and they are ubiquitous in the environment and produced within human cells as normal cellular metabolites. Ironically, at high doses DNA damaging agents are also used to treat cancer. The ability to quantify DNA damage responses is thus critical in the public health, pharmaceutical and clinical domains. Here, we describe a novel platform that exploits microfabrication techniques to pattern cells in a fixed microarray. The 'CometChip' is based upon the well-established single cell gel electrophoresis assay (a.k.a. the comet assay), which estimates the level of DNA damage by evaluating the extent of DNA migration through a matrix in an electrical field. The type of damage measured by this assay includes abasic sites, crosslinks, and strand breaks. Instead of being randomly dispersed in agarose in the traditional assay, cells are captured into an agarose microwell array by gravity. The platform also expands from the size of a standard microscope slide to a 96-well format, enabling parallel processing. Here we describe the protocols of using the chip to evaluate DNA damage caused by known genotoxic agents and the cellular repair response followed after exposure. Through the integration of biological and engineering principles, this method potentiates robust and sensitive measurements of DNA damage in human cells and provides the necessary throughput for genotoxicity testing, drug development, epidemiological studies and clinical assays.

  4. Suspended microfluidics.

    PubMed

    Casavant, Benjamin P; Berthier, Erwin; Theberge, Ashleigh B; Berthier, Jean; Montanez-Sauri, Sara I; Bischel, Lauren L; Brakke, Kenneth; Hedman, Curtis J; Bushman, Wade; Keller, Nancy P; Beebe, David J

    2013-06-18

    Although the field of microfluidics has made significant progress in bringing new tools to address biological questions, the accessibility and adoption of microfluidics within the life sciences are still limited. Open microfluidic systems have the potential to lower the barriers to adoption, but the absence of robust design rules has hindered their use. Here, we present an open microfluidic platform, suspended microfluidics, that uses surface tension to fill and maintain a fluid in microscale structures devoid of a ceiling and floor. We developed a simple and ubiquitous model predicting fluid flow in suspended microfluidic systems and show that it encompasses many known capillary phenomena. Suspended microfluidics was used to create arrays of collagen membranes, mico Dots (μDots), in a horizontal plane separating two fluidic chambers, demonstrating a transwell platform able to discern collective or individual cellular invasion. Further, we demonstrated that μDots can also be used as a simple multiplexed 3D cellular growth platform. Using the μDot array, we probed the combined effects of soluble factors and matrix components, finding that laminin mitigates the growth suppression properties of the matrix metalloproteinase inhibitor GM6001. Based on the same fluidic principles, we created a suspended microfluidic metabolite extraction platform using a multilayer biphasic system that leverages the accessibility of open microchannels to retrieve steroids and other metabolites readily from cell culture. Suspended microfluidics brings the high degree of fluidic control and unique functionality of closed microfluidics into the highly accessible and robust platform of open microfluidics.

  5. Microfluidic electronics.

    PubMed

    Cheng, Shi; Wu, Zhigang

    2012-08-21

    Microfluidics, a field that has been well-established for several decades, has seen extensive applications in the areas of biology, chemistry, and medicine. However, it might be very hard to imagine how such soft microfluidic devices would be used in other areas, such as electronics, in which stiff, solid metals, insulators, and semiconductors have previously dominated. Very recently, things have radically changed. Taking advantage of native properties of microfluidics, advances in microfluidics-based electronics have shown great potential in numerous new appealing applications, e.g. bio-inspired devices, body-worn healthcare and medical sensing systems, and ergonomic units, in which conventional rigid, bulky electronics are facing insurmountable obstacles to fulfil the demand on comfortable user experience. Not only would the birth of microfluidic electronics contribute to both the microfluidics and electronics fields, but it may also shape the future of our daily life. Nevertheless, microfluidic electronics are still at a very early stage, and significant efforts in research and development are needed to advance this emerging field. The intention of this article is to review recent research outcomes in the field of microfluidic electronics, and address current technical challenges and issues. The outlook of future development in microfluidic electronic devices and systems, as well as new fabrication techniques, is also discussed. Moreover, the authors would like to inspire both the microfluidics and electronics communities to further exploit this newly-established field.

  6. A new approach to the application of solid phase extraction disks with LC-MS/MS for the analysis of drugs on a 96-well plate format.

    PubMed

    Cudjoe, Erasmus; Pawliszyn, Janusz

    2009-11-01

    A new 96-well disk solid phase extraction sample preparation technique which does not involve vacuum pumps integrated with liquid chromatographic tandem mass spectrometric (LC-MS/MS) was developed for high throughput determination of benzodiazepines (nordiazepam, diazepam, lorazepam and oxazepam). In addition, the method completely allows the re-use of the SPE disk membranes for subsequent analyses after re-conditioning. The method utilizes a robotic autosampler for parallel extractions in a 96-well plate format. Results have been presented for independent extractions from three matrices; phosphate buffer solution, urine, and plasma. Factors affecting data reproducibility, extraction kinetics, sample throughput, and reliability of the system were investigated and optimized. A total time required per sample was 0.94 min using 96-well format. Method reproducibility was < or =9% relative standard deviation for all three matrices. Limits of detection and quantitation recorded were respectively in the range 0.02-0.15 and 0.2-2.0 ng/mL with linearity ranging from 0.2 to 500 ng/mL for all matrices.

  7. Microfluidic crystallization.

    PubMed

    Leng, Jacques; Salmon, Jean-Baptiste

    2009-01-01

    Microfluidics offers a wide range of new tools that permit one to revisit the formation of crystals in solution and yield insights into crystallization processes. We review such recent microfluidic devices and particularly emphasize lab-on-chips dedicated to the high-throughput screening of crystallization conditions of proteins with nanolitre consumption. We also thoroughly discuss the possibilities offered by the microfluidic tools to acquire thermodynamic and kinetic data that may improve industrial processes and shed a new light on nucleation and growth mechanisms.

  8. Cell Treatment and Lysis in 96-Well Filter-Bottom Plates for Screening Bcr-Abl Activity and Inhibition in Whole-Cell Extracts

    PubMed Central

    MAND, MICHAEL R.; WU, DING; VEACH, DARREN R.; KRON, STEPHEN J.

    2015-01-01

    Although conventional high-throughput screens performed in vitro with purified protein kinases are powerful tools to discover new kinase inhibitors, they are far from ideal for determining efficacy in vivo. As a complementary approach, cell-based, target-driven secondary screens may help predict in vivo compound potency and specificity as well as evaluate bioavailability and toxicity. Here the authors report a simple protocol for treating K562 Bcr-Abl-expressing cells with small-molecule kinase inhibitors in 96-well filter-bottom plates followed by in-plate cell lysis. The lysates were assayed via a solid-phase kinase assay, allowing determination of apparent IC50 for known Bcr-Abl inhibitors as well as facilitating the screening of a small kinase inhibitor library. This approach may have further applications in generating lysates for analyzing kinase activity and inhibition in other nonadherent suspension cell lines. PMID:20237206

  9. Toward Biomarker Development in Large Clinical Cohorts: An Integrated High-Throughput 96-Well-Plate-Based Sample Preparation Workflow for Versatile Downstream Proteomic Analyses.

    PubMed

    Sun, Zeyu; Liu, Xiaoli; Jiang, Jing; Huang, Haijun; Wang, Jie; Wu, Daxian; Li, Lanjuan

    2016-09-01

    We describe a cheap, robust, fast, high-throughput, and flexible proteomic sample processing method based on a regular 96-well plate by acetone precipitation under low centrifuge speed (96PACS), which enables predigestion processing of 96 samples within 2 h. Tested on a complex Huh-7 total lysate, 96PACS produced comparable proteome coverage and even showed better reproducibility than FASP. Quantitative performance of 96PACS was further tested using data-independent acquisition and parallel reaction monitoring quantitation in a set of 6 benchmark samples consisting of 6 serial dilutions of BSA spiked in complex E. coli proteome background. The protocol was also successfully modified for automation and was validated in a comparative label-free proteomic study to develop serum markers for early detection of liver fibrosis and necroinflammation in patients chronically infected with hepatitis B virus. PMID:27471874

  10. GT1-7 cell-based cytoxicity screening assay on 96-well microplates as a platform for the safety assessment of genetically modified Gerbera hybrida extracts.

    PubMed

    Fallarero, Adyary; Ainasoja, Miia; Sandberg, Malena; Teeri, Teemu H; Vuorela, Pia M

    2009-01-01

    In this investigation, a GT1-7 cell-based cytotoxicity screening assay in 96-well microplates was set up. The assay, using propidium iodide fluorescence, was proven to be reliable, with good quality (Z' = 0.51) and low plate-to-plate and day-to-day variations. Further on, a library containing extracts from 227 genetic modification (GM) Gerbera hybrida and 42 Gerbera varieties was screened; however, no differences between them were found. Based on these findings, we propose the use of the current assay within the first-tier screening studies of large collections. Also, these results provide valuable information for GM Gerbera risk-assessment purposes and offer a model for the toxicity cell-based screening of GM crops.

  11. Microfluidic technologies.

    PubMed

    Bhagat, Ali Asgar S; Lim, Chwee Teck

    2012-01-01

    Presence of circulating tumor cells (CTCs) in blood is an important intermediate step in cancer metastasis, a mortal consequence of cancer. However, CTCs are extremely rare in blood with highly heterogeneous morphologies and molecular signatures, thus making their isolation technically very challenging. In the past decade, a flurry of new microfluidic-based technologies has emerged to address this compelling problem. This chapter highlights the current state of the art in microfluidic systems developed for CTCs separation and isolation. The techniques presented are broadly classified as physical- or affinity-based isolation depending on the separation principle. The performance of these techniques is evaluated based on accepted separation metrics including sensitivity, purity and processing/analysis time. Finally, further insights associated with realizing an integrated microfluidic CTC lab-on-chip system as an onco-diagnostic tool will be discussed. PMID:22527494

  12. CYP isoform induction screening in 96-well plates: use of 7-benzyloxy-4-trifluoromethylcoumarin as a substrate for studies with rat hepatocytes.

    PubMed

    Price, R J; Surry, D; Renwick, A B; Meneses-Lorente, G; Lake, B G; Evans, D C

    2000-08-01

    1. In this study, 7-benzyloxy-4-trifluoromethylcoumarin (BFC) was evaluated as a substrate to assess the induction of cytochrome P450 (CYP) isoform enzyme activities in rat hepatocytes using a 96-well plate format. 2. BFC was metabolized by both untreated and sodium phenobarbitone (NaPB)-treated rat hepatocytes in a time- and concentration-dependent manner to the highly fluorescent product 7-hydroxy-4-trifluoromethylcoumarin (HFC). 3. HFC was extensively conjugated with D-glucuronic acid and/or sulphate in both untreated and NaPB-treated rat hepatocytes, thus necessitating the inclusion of an enzymatic deconjugation step in the assay procedure. 4. The time-course of induction of 7-ethoxyresorufin metabolism by the CYP1A inducer beta-naphthoflavone (BNF), 7-benzyloxyresorufin metabolism by the CYP2B inducer NaPB and BFC metabolism b both BNF and NaPB was studied in rat hepatocytes treated for 24-96 h. The optimal time for induction of metabolism of all three substrates was 72 h, with no medium changes being necessary during this period. 5. The effect of treatment with 0.5-20 microM BNF, 50-2000 microM NaPB, 2-20 microM dexamethasone (DEX), 20-100 microM methylclofenapate (MCP), and 50 and 200 microM isoniazid (ISN) for 72 h on BFC metabolism in cultured rat hepatocytes was studied. BFC metabolism was induced by treatment with BNF, NaPB and MCP, but not with either DEX or ISN. 6. The metabolism of BFC in liver microsomes from the control rat and rat treated with CYP isoform inducers was also studied. BFC metabolism was induced by treatment with NaPB, BNF and DEX. 7. The metabolism of BFC was also studied using microsomes from baculovirus-infected insect cells containing rat cDNA-expressed CYP1A, CYP2B, CYP2C and CYP3A isoforms. Whereas BFC was metabolized to some extent by all the rat cDNA-expressed CYP isoforms examined, at a substrate concentration of 2.5 microM the greatest rates of BFC metabolism were observed with the CYP1A1, CYP1A2 and CYP2B1 preparations. 8

  13. Identification of photosynthesis inhibitors of pelagic marine algae using 96-well plate microfractionation for enhanced throughput in effect-directed analysis.

    PubMed

    Booij, Petra; Vethaak, A Dick; Leonards, Pim E G; Sjollema, Sascha B; Kool, Jeroen; de Voogt, Pim; Lamoree, Marja H

    2014-07-15

    Because of large-scale production and use of an increasing diversity of chemicals in modern society, estuarine and coastal waters may be contaminated with numerous substances. Some of these compounds have the potential to affect microalgae at the base of the pelagic food chain. Therefore, we identified the main chemical stressors that negatively affect the effective photosystem II efficiency (ϕPSII) in marine microalgae of the Dutch estuarine and coastal waters. An enhanced effect-directed analysis (EDA) was carried out by combining reversed-phase ultra performance liquid chromatography fractionation of extracts from passive samplers, followed by effect assessment using the pulse amplitude modulation fluorometry assay and chemical analysis of biologically active fractions using high-resolution mass spectrometry. This study focuses on a novel microfractionation technique using 96-well plates to enhance throughput in EDA, structure elucidation, and the analytical and effect confirmation of the compounds that are identified. Although there are numerous unknown compounds present in estuarine and coastal waters, our EDA study shows that atrazine, diuron, irgarol, isoproturon, terbutryn, and terbutylazine are the main contributors to the observed effect on the ϕPSII of marine microalgae. PMID:24926900

  14. Characterization of multiple platelet activation pathways in patients with bleeding as a high-throughput screening option: use of 96-well Optimul assay

    PubMed Central

    Lordkipanidzé, Marie; Lowe, Gillian C.; Kirkby, Nicholas S.; Chan, Melissa V.; Lundberg, Martina H.; Morgan, Neil V.; Bem, Danai; Nisar, Shaista P.; Leo, Vincenzo C.; Jones, Matthew L.; Mundell, Stuart J.; Daly, Martina E.; Mumford, Andrew D.; Warner, Timothy D.; Watson, Steve P.; Watson, Steve P.; Mumford, Andrew D.; Mundell, Stuart J.; Gissen, Paul; Daly, Martina E.; Lester, Will; Clark, Justin; Williams, Mike; Motwani, Jayashree; Marshall, Dianne; Nyatanga, Priscilla; Mann, Pat; Kirwan, Julie; Wilde, Jonathan; Dunkley, Tracey; Greenway, April; Makris, Michael; Pavord, Sue; Dattani, Rashesh; Grimley, Gerry Dolan Charlotte; Stokley, Simone; Astwood, Emma; Chang, Cherry; Foros, Merri; Trower, Linda; Thachil, Jecko; Hay, Charlie; Pike, Gill; Will, Andrew; Grainger, John; Foulkes, Matt; Fareh, Mona; Talks, Kate; Biss, Tina; Kesteven, Patrick; Hanley, John; Vowles, Julie; Basey, Lesley; Barnes, Michelle; Collins, Peter; Rayment, Rachel; Alikhan, Raza; Morris, Ana Guerrero Rebecca; Mansell, Dianne; Toh, Cheng Hock; Martlew, Vanessa; Murphy, Elaine; Lachmann, Robin; Rose, Peter; Chapman, Oliver; Lokare, Anand; Marshall, Kathryn; Khan, Naseem; Keeling, David; Giangrande, Paul; Austin, Steve; Bevan, David; Alamelu, Jayanthi

    2014-01-01

    Up to 1% of the population have mild bleeding disorders, but these remain poorly characterized, particularly with regard to the roles of platelets. We have compared the usefulness of Optimul, a 96-well plate-based assay of 7 distinct pathways of platelet activation to characterize inherited platelet defects in comparison with light transmission aggregometry (LTA). Using Optimul and LTA, concentration-response curves were generated for arachidonic acid, ADP, collagen, epinephrine, Thrombin receptor activating-peptide, U46619, and ristocetin in samples from (1) healthy volunteers (n = 50), (2) healthy volunteers treated with antiplatelet agents in vitro (n = 10), and (3) patients with bleeding of unknown origin (n = 65). The assays gave concordant results in 82% of cases (κ = 0.62, P < .0001). Normal platelet function results were particularly predictive (sensitivity, 94%; negative predictive value, 91%), whereas a positive result was not always substantiated by LTA (specificity, 67%; positive predictive value, 77%). The Optimul assay was significantly more sensitive at characterizing defects in the thromboxane pathway, which presented with normal responses with LTA. The Optimul assay is sensitive to mild platelet defects, could be used as a rapid screening assay in patients presenting with bleeding symptoms, and detects changes in platelet function more readily than LTA. This trial was registered at www.isrctn.org as #ISRCTN 77951167. PMID:24408324

  15. Quantum dot immunoassays in renewable surface column and 96-well plate formats for the fluorescence detection of Botulinum neurotoxin using high-affinity antibodies

    SciTech Connect

    Warner, Marvin G.; Grate, Jay W.; Tyler, Abby J.; Ozanich, Richard M.; Miller, Keith D.; Lou, Jianlong; Marks, James D.; Bruckner-Lea, Cindy J.

    2009-09-01

    A fluorescence sandwich immunoassay using high affinity antibodies and quantum dot (QD) reporters has been developed for detection of botulinum toxin serotype A (BoNT/A). For the development of the assay, a nontoxic recombinant fragment of the holotoxin (BoNT/A-HC-fragment) has been used as a structurally valid simulant for the full toxin molecule. The antibodies used, AR4 and RAZ1, bind to nonoverlapping epitopes present on both the full toxin and on the recombinant fragment. In one format, the immunoassay is carried out in a 96-well plate with detection in a standard plate reader. Detection down to 31 pM of the BoNT/Hc-fragment was demonstrated with a total incubation time of 3 hours, using AR4 as the capture antibody and QD-coupled RAZ1 as the reporter. In a second format, the AR4 capture antibody was coupled to Sepharose beads, and the immunochemical reactions were carried out in microcentrifuge tubes with an incubation time of 1 hour. These beads were subsequently captured and concentrated in a rotating rod “renewable surface” flow cell as part of a sequential injection fluidic system. This flow cell was equipped with a fiber optic system for fluorescence measurements. In PBS buffer solution matrix, the BoNT/A-HC-fragment was detected to concentrations as low as 5 pM using the fluidic measurement approach.

  16. Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF) with silver colloids in 96-well plates: Application to ultra fast and sensitive immunoassays, High Throughput Screening and drug discovery.

    PubMed

    Aslan, Kadir; Holley, Patrick; Geddes, Chris D

    2006-05-30

    Fluorescence detection is the basis of most assays used in drug discovery and High Throughput Screening (HTS) today. In all of these assays, assay rapidity and sensitivity is a primary concern, the sensitivity determined by both the quantum yield of the fluorophores and efficiency of the detection system, while rapidity is determined by the physical and biophysical parameters of temperature, concentration, assay bioaffinity, etc. In this paper we describe a platform technology that promises to fundamentally address these two physical constraints of sensitivity and rapidity. By combining the use of Metal-Enhanced Fluorescence (MEF), a near-field effect that can significantly enhance fluorescence signatures, with low power microwave heating, we can significantly increase the sensitivity of surface assays as well as >95% kinetically complete the assay within a few seconds. In addition, the metallic nanostructures used to facilitate MEF appear to be preferentially heated as compared to the surface assay fluid, advantageously localizing the MEF and heating around the nanostructures. To demonstrate proof of principle, a 96-well plate has been functionalized with silver nanostructures, and a model protein avidin-biotin assay studied. In our findings, a greater than 5-fold fluorescence enhancement coupled with a approximately 90-fold increase in assay kinetics was observed, but with no assay washing steps needed due to the silver-enhanced evanescent field mode of excitation. These findings promise to strongly facilitate high throughput fluorescence-based processes, such as in biology, drug discovery and general compound screening.

  17. Soluble penicillin-binding protein 2a: beta-lactam binding and inhibition by non-beta-lactams using a 96-well format.

    PubMed

    Toney, J H; Hammond, G G; Leiting, B; Pryor, K D; Wu, J K; Cuca, G C; Pompliano, D L

    1998-01-01

    High level methicillin resistance in Staphylococcus aureus is dependent upon the acquisition of the mecA gene encoding penicillin-binding protein 2a (PBP2a). PBP2a is a member of a family of peptidoglycan biosynthetic enzymes involved in assembly of the cell wall in bacteria and is poorly inactivated by beta-lactam antibiotics. We describe a 96-well-filter binding assay using recombinant, soluble PBP2a which allows for kinetic measurement of penicillin binding. The deacylation rate constant for the PBP2a-penicillin G covalent complex was found to be 5.7 +/- 1.0 x 10(-5) s-1 at 30 degrees C (half-life of approximately 200 min). For the PBP2a acylation reaction, the value of K(m) (penicillin G) = 0.5 +/- 0.1 mM and kcat = 1 x 10(-3) s-1, which yields a second-order rate constant (kcat/K(m)) for inactivation of 2.0 M-1 s-1. Using this assay, several non-beta-lactam inhibitors including Cibacron blue have been found which exhibit IC50 values between 10 and 30 microM. The binding affinities of several carbapenems and beta-lactams correlated well between the filter binding assay described in this report and an electrophoretic assay for PBP2a using membranes prepared form methicillin-resistant S. aureus. PMID:9448849

  18. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey (Inventor)

    2015-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  19. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2016-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  20. Facile preparation of glycoprotein-imprinted 96-well microplates for enzyme-linked immunosorbent assay by boronate affinity-based oriented surface imprinting.

    PubMed

    Bi, Xiaodong; Liu, Zhen

    2014-01-01

    Molecularly imprinted polymers (MIPs), as inexpensive and stable substitutes of antibodies, have shown great promise in immunoassays. Glycoproteins are of significant diagnostic value. To facilitate the application of MIPs in clinical diagnostics, a general and facile imprinting method toward glycoproteins oriented for an enzyme-linked immunosorbent assay (ELISA) in the form of a 96-well microplate is essential but has not been fully explored yet. In this study, a new method called boronate affinity-based oriented surface imprinting was proposed for facile preparation of glycoprotein-imprinted microplates. A template glycoprotein was first immobilized by a boronic acid-modified microplate through boronate affinity binding, and then, a thin layer of polyaniline was formed to cover the microplate surface via in-water self-copolymerization. After the template was removed by an acidic solution, 3D cavities that can rebind the template were fabricated on the microplate surface. Using horseradish peroxidase (HRP) as a model target, the effects of imprinting conditions as well as the properties and performance of the prepared MIPs were investigated. α-Fetoprotein (AFP)-imprinted microplate was then prepared, and thereby, a MIP-based ELISA method was established. The prepared MIPs exhibited several highly favorable features, including excellent specificity, widely applicable binding pH, superb tolerance for interference, high binding strength, fast equilibrium kinetics, and reusability. The MIP-based ELISA method was finally applied to the analysis of AFP in human serum. The result was in good agreement with that by radioimmunoassay, showing a promising prospect of the proposed method in clinical diagnostics.

  1. Microfluidic interconnects

    DOEpatents

    Benett, William J.; Krulevitch, Peter A.

    2001-01-01

    A miniature connector for introducing microliter quantities of solutions into microfabricated fluidic devices. The fluidic connector, for example, joins standard high pressure liquid chromatography (HPLC) tubing to 1 mm diameter holes in silicon or glass, enabling ml-sized volumes of sample solutions to be merged with .mu.l-sized devices. The connector has many features, including ease of connect and disconnect; a small footprint which enables numerous connectors to be located in a small area; low dead volume; helium leak-tight; and tubing does not twist during connection. Thus the connector enables easy and effective change of microfluidic devices and introduction of different solutions in the devices.

  2. Droplet microfluidics.

    PubMed

    Teh, Shia-Yen; Lin, Robert; Hung, Lung-Hsin; Lee, Abraham P

    2008-02-01

    Droplet-based microfluidic systems have been shown to be compatible with many chemical and biological reagents and capable of performing a variety of "digital fluidic" operations that can be rendered programmable and reconfigurable. This platform has dimensional scaling benefits that have enabled controlled and rapid mixing of fluids in the droplet reactors, resulting in decreased reaction times. This, coupled with the precise generation and repeatability of droplet operations, has made the droplet-based microfluidic system a potent high throughput platform for biomedical research and applications. In addition to being used as microreactors ranging from the nano- to femtoliter range; droplet-based systems have also been used to directly synthesize particles and encapsulate many biological entities for biomedicine and biotechnology applications. This review will focus on the various droplet operations, as well as the numerous applications of the system. Due to advantages unique to droplet-based systems, this technology has the potential to provide novel solutions to today's biomedical engineering challenges for advanced diagnostics and therapeutics.

  3. Microfluidic electrochemical reactors

    DOEpatents

    Nuzzo, Ralph G.; Mitrovski, Svetlana M.

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  4. Microfluidic interconnects

    DOEpatents

    Benett, William J.; Krulevitch, Peter A.

    2001-01-01

    A miniature connector for introducing microliter quantities of solutions into microfabricated fluidic devices, and which incorporates a molded ring or seal set into a ferrule cartridge, with or without a compression screw. The fluidic connector, for example, joins standard high pressure liquid chromatography (HPLC) tubing to 1 mm diameter holes in silicon or glass, enabling ml-sized volumes of sample solutions to be merged with .mu.l-sized devices. The connector has many features, including ease of connect and disconnect; a small footprint which enables numerous connectors to be located in a small area; low dead volume; helium leak-tight; and tubing does not twist during connection. Thus the connector enables easy and effective change of microfluidic devices and introduction of different solutions in the devices.

  5. Microfluidic System for Automated Cell-based Assays.

    PubMed

    Lee, Philip J; Ghorashian, Navid; Gaige, Terry A; Hung, Paul J

    2007-12-01

    Microfluidic cell culture is a promising technology for applications in the drug screening industry. Key benefits include improved biological function, higher quality cell-based data, reduced reagent consumption, and lower cost. In this work, we demonstrate how a microfluidic cell culture design was adapted to be compatible with the standard 96-well plate format. Key design features include the elimination of tubing and connectors, the ability to maintain long term continuous perfusion cell culture using a passive gravity driven pump, and direct analysis on the outlet wells of the microfluidic plate. A single microfluidic culture plate contained 8 independent flow units, each with 10(4) cells at a flow rate of 50 μl/day (6 minute residence time). The cytotoxicity of the anti-cancer drug etoposide was measured on HeLa cells cultured in this format, using a commercial lactate dehydrogenase (LDH) plate reader assay. The integration of microfluidic cell culture methods with commercial automation capabilities offers an exciting opportunity for improved cell-based screening.

  6. Microfluidic sieve valves

    DOEpatents

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L

    2015-01-13

    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  7. High Throughput Gene Expression Measurement with Real Time PCR in a Microfluidic Dynamic Array

    PubMed Central

    Spurgeon, Sandra L.; Jones, Robert C.; Ramakrishnan, Ramesh

    2008-01-01

    We describe a high throughput gene expression platform based on microfluidic dynamic arrays. This system allows 2,304 simultaneous real time PCR gene expression measurements in a single chip, while requiring less pipetting than is required to set up a 96 well plate. We show that one can measure the expression of 45 different genes in 18 tissues with replicates in a single chip. The data have excellent concordance with conventional real time PCR and the microfluidic dynamic arrays show better reproducibility than commercial DNA microarrays. PMID:18301740

  8. Microfluidic perfusion culture.

    PubMed

    Hattori, Koji; Sugiura, Shinji; Kanamori, Toshiyuki

    2014-01-01

    Microfluidic perfusion culture is a novel technique to culture animal cells in a small-scale microchamber with medium perfusion. Polydimethylsiloxane (PDMS) is the most popular material to fabricate a microfluidic perfusion culture chip. Photolithography and replica molding techniques are generally used for fabrication of a microfluidic perfusion culture chip. Pressure-driven perfusion culture system is convenient technique to carry out the perfusion culture of animal cells in a microfluidic device. Here, we describe a general theory on microfluid network design, microfabrication technique, and experimental technique for pressure-driven perfusion culture in an 8 × 8 microchamber array on a glass slide-sized microchip made out of PDMS. PMID:24297421

  9. Micro-fluidic interconnect

    DOEpatents

    Okandan, Murat; Galambos, Paul C.; Benavides, Gilbert L.; Hetherington, Dale L.

    2006-02-28

    An apparatus for simultaneously aligning and interconnecting microfluidic ports is presented. Such interconnections are required to utilize microfluidic devices fabricated in Micro-Electromechanical-Systems (MEMS) technologies, that have multiple fluidic access ports (e.g. 100 micron diameter) within a small footprint, (e.g. 3 mm.times.6 mm). Fanout of the small ports of a microfluidic device to a larger diameter (e.g. 500 microns) facilitates packaging and interconnection of the microfluidic device to printed wiring boards, electronics packages, fluidic manifolds etc.

  10. Microfluidics for manipulating cells.

    PubMed

    Mu, Xuan; Zheng, Wenfu; Sun, Jiashu; Zhang, Wei; Jiang, Xingyu

    2013-01-14

    Microfluidics, a toolbox comprising methods for precise manipulation of fluids at small length scales (micrometers to millimeters), has become useful for manipulating cells. Its uses range from dynamic management of cellular interactions to high-throughput screening of cells, and to precise analysis of chemical contents in single cells. Microfluidics demonstrates a completely new perspective and an excellent practical way to manipulate cells for solving various needs in biology and medicine. This review introduces and comments on recent achievements and challenges of using microfluidics to manipulate and analyze cells. It is believed that microfluidics will assume an even greater role in the mechanistic understanding of cell biology and, eventually, in clinical applications.

  11. Microfluidics in biotechnology

    PubMed Central

    Barry, Richard; Ivanov, Dimitri

    2004-01-01

    Microfluidics enables biotechnological processes to proceed on a scale (microns) at which physical processes such as osmotic movement, electrophoretic-motility and surface interactions become enhanced. At the microscale sample volumes and assay times are reduced, and procedural costs are lowered. The versatility of microfluidic devices allows interfacing with current methods and technologies. Microfluidics has been applied to DNA analysis methods and shown to accelerate DNA microarray assay hybridisation times. The linking of microfluidics to protein analysis techologies, e.g. mass spectrometry, enables picomole amounts of peptide to be analysed within a controlled micro-environment. The flexibility of microfluidics will facilitate its exploitation in assay development across multiple biotechnological disciplines. PMID:15056390

  12. Unconventional microfluidics: expanding the discipline

    PubMed Central

    Nawaz, Ahmad Ahsan; Mao, Xiaole; Stratton, Zackary S.; Huang, Tony Jun

    2014-01-01

    Since its inception, the discipline of microfluidics has been harnessed for innovations in the biomedicine/chemistry fields—and to great effect. This success has had the natural side-effect of stereotyping microfluidics as a platform for medical diagnostics and miniaturized lab processes. But microfluidics has more to offer. And very recently, some researchers have successfully applied microfluidics to fields outside its traditional domains. In this Focus article, we highlight notable examples of such “unconventional” microfluidics applications (e.g., robotics, electronics). It is our hope that these early successes in unconventional microfluidics prompt further creativity, and inspire readers to expand the microfluidics discipline. PMID:23478651

  13. Unconventional microfluidics: expanding the discipline.

    PubMed

    Nawaz, Ahmad Ahsan; Mao, Xiaole; Stratton, Zackary S; Huang, Tony Jun

    2013-04-21

    Since its inception, the discipline of microfluidics has been harnessed for innovations in the biomedicine/chemistry fields-and to great effect. This success has had the natural side-effect of stereotyping microfluidics as a platform for medical diagnostics and miniaturized lab processes. But microfluidics has more to offer. And very recently, some researchers have successfully applied microfluidics to fields outside its traditional domains. In this Focus article, we highlight notable examples of such "unconventional" microfluidics applications (e.g., robotics, electronics). It is our hope that these early successes in unconventional microfluidics prompt further creativity, and inspire readers to expand the microfluidics discipline.

  14. β-Cyclodextrin enhanced on-line organic solvent field-amplified sample stacking in capillary zone electrophoresis for analysis of ambroxol in human plasma, following liquid-liquid extraction in the 96-well format.

    PubMed

    Li, Ji; Bi, Youwei; Wang, Li; Sun, Fanlu; Chen, Zhao; Xu, Guili; Fan, Guorong

    2012-07-01

    A field-amplified sample stacking (FASS) and capillary zone electrophoresis (CZE) method is described for the quantification of ambroxol hydrochloride in human plasma, following liquid-liquid extraction in the 96-well format. The separation was carried out at 25 °C in a 31.2 cm × 75 μm fused-silica capillary with an applied voltage of 15 kV. The background electrolyte (BGE) was composed of 6.25 mM borate-25 mM phosphate (pH 3.0) and 1mM β-cyclodextrin. The detection wavelength was 210 nm. Clean-up and preconcentration of plasma biosamples were developed by 96-well format liquid-liquid extraction (LLE). In this study, FASS in combination with β-cyclodextrin enhanced the sensitivity about 60-70 fold in total. The method was suitably validated with respect to stability, specificity, linearity, lower limit of quantitation, accuracy, precision, extraction recovery and robustness. The calibration graph was linear for ambroxol hydrochloride from 2 to 500 ng/ml. The lower limit of quantification was 2 ng/ml. The intra- and inter-day precisions of lowest limit of quantification (LLOQ) were 9.61 and 11.80%, respectively. The method developed was successfully applied to the evaluation of clinical pharmacokinetic study of ambroxol hydrochloride tablet after oral administration to 12 healthy volunteers.

  15. β-Cyclodextrin enhanced on-line organic solvent field-amplified sample stacking in capillary zone electrophoresis for analysis of ambroxol in human plasma, following liquid-liquid extraction in the 96-well format.

    PubMed

    Li, Ji; Bi, Youwei; Wang, Li; Sun, Fanlu; Chen, Zhao; Xu, Guili; Fan, Guorong

    2012-07-01

    A field-amplified sample stacking (FASS) and capillary zone electrophoresis (CZE) method is described for the quantification of ambroxol hydrochloride in human plasma, following liquid-liquid extraction in the 96-well format. The separation was carried out at 25 °C in a 31.2 cm × 75 μm fused-silica capillary with an applied voltage of 15 kV. The background electrolyte (BGE) was composed of 6.25 mM borate-25 mM phosphate (pH 3.0) and 1mM β-cyclodextrin. The detection wavelength was 210 nm. Clean-up and preconcentration of plasma biosamples were developed by 96-well format liquid-liquid extraction (LLE). In this study, FASS in combination with β-cyclodextrin enhanced the sensitivity about 60-70 fold in total. The method was suitably validated with respect to stability, specificity, linearity, lower limit of quantitation, accuracy, precision, extraction recovery and robustness. The calibration graph was linear for ambroxol hydrochloride from 2 to 500 ng/ml. The lower limit of quantification was 2 ng/ml. The intra- and inter-day precisions of lowest limit of quantification (LLOQ) were 9.61 and 11.80%, respectively. The method developed was successfully applied to the evaluation of clinical pharmacokinetic study of ambroxol hydrochloride tablet after oral administration to 12 healthy volunteers. PMID:22464560

  16. Liquid chromatography/tandem mass spectrometric bioanalysis using normal-phase columns with aqueous/organic mobile phases - a novel approach of eliminating evaporation and reconstitution steps in 96-well SPE.

    PubMed

    Naidong, Weng; Shou, Wilson Z; Addison, Thomas; Maleki, Saber; Jiang, Xiangyu

    2002-01-01

    Bioanalytical methods using automated 96-well solid-phase extraction (SPE) and liquid chromatography with electrospray tandem mass spectrometry (LC/MS/MS) are widely used in the pharmaceutical industry. SPE methods typically require manual steps of drying of the eluates and reconstituting of the analytes with a suitable injection solvent possessing elution strength weaker than the mobile phase. In this study, we demonstrated a novel approach of eliminating these two steps in 96-well SPE by using normal-phase LC/MS/MS methods with low aqueous/high organic mobile phases, which consisted of 70-95% organic solvent, 5-30% water, and small amount of volatile acid or buffer. While the commonly used SPE elution solvents (i.e. acetonitrile and methanol) have stronger elution strength than a mobile phase on reversed-phase chromatography, they are weaker elution solvents than a mobile phase for normal-phase LC/MS/MS and therefore can be injected directly. Analytical methods for a range of polar pharmaceutical compounds, namely, omeprazole, metoprolol, fexofenadine, pseudoephedrine as well as rifampin and its metabolite 25-desacetyl-rifampin, in biological fluids, were developed and optimized based on the foregoing principles. As a result of the time saving, a batch of 96 samples could be processed in one hour. These bioanalytical LC/MS/MS methods were validated according to "Guidance for Industry - Bioanalytical Method Validation" recommended by the Food and Drug Administration (FDA) of the United States.

  17. Stem cells in microfluidics

    PubMed Central

    Wu, Huei-Wen; Lin, Chun-Che; Lee, Gwo-Bin

    2011-01-01

    Microfluidic techniques have been recently developed for cell-based assays. In microfluidic systems, the objective is for these microenvironments to mimic in vivo surroundings. With advantageous characteristics such as optical transparency and the capability for automating protocols, different types of cells can be cultured, screened, and monitored in real time to systematically investigate their morphology and functions under well-controlled microenvironments in response to various stimuli. Recently, the study of stem cells using microfluidic platforms has attracted considerable interest. Even though stem cells have been studied extensively using bench-top systems, an understanding of their behavior in in vivo-like microenvironments which stimulate cell proliferation and differentiation is still lacking. In this paper, recent cell studies using microfluidic systems are first introduced. The various miniature systems for cell culture, sorting and isolation, and stimulation are then systematically reviewed. The main focus of this review is on papers published in recent years studying stem cells by using microfluidic technology. This review aims to provide experts in microfluidics an overview of various microfluidic systems for stem cell research. PMID:21522491

  18. Microfluidics and microbial engineering.

    PubMed

    Kou, Songzi; Cheng, Danhui; Sun, Fei; Hsing, I-Ming

    2016-02-01

    The combination of microbial engineering and microfluidics is synergistic in nature. For example, microfluidics is benefiting from the outcome of microbial engineering and many reported point-of-care microfluidic devices employ engineered microbes as functional parts for the microsystems. In addition, microbial engineering is facilitated by various microfluidic techniques, due to their inherent strength in high-throughput screening and miniaturization. In this review article, we firstly examine the applications of engineered microbes for toxicity detection, biosensing, and motion generation in microfluidic platforms. Secondly, we look into how microfluidic technologies facilitate the upstream and downstream processes of microbial engineering, including DNA recombination, transformation, target microbe selection, mutant characterization, and microbial function analysis. Thirdly, we highlight an emerging concept in microbial engineering, namely, microbial consortium engineering, where the behavior of a multicultural microbial community rather than that of a single cell/species is delineated. Integrating the disciplines of microfluidics and microbial engineering opens up many new opportunities, for example in diagnostics, engineering of microbial motors, development of portable devices for genetics, high throughput characterization of genetic mutants, isolation and identification of rare/unculturable microbial species, single-cell analysis with high spatio-temporal resolution, and exploration of natural microbial communities.

  19. Nanomaterials meet microfluidics.

    PubMed

    Pumera, Martin

    2011-05-28

    Nanomaterials and lab-on-a-chip platforms have undergone enormous development during the past decade. Here, we present an overview of how microfluidics benefited from the use of nanomaterials for the enhanced separation and detection of analytes. We also discuss how nanomaterials benefit from microfluidics in terms of synthesis and in terms of the simulation of environments for nanomotors and nanorobots. In our opinion, the "marriage" of nanomaterials and microfluidics is highly beneficial and is expected to solve vital challenges in related fields.

  20. A 96-well single-pot protein precipitation, liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the determination of muraglitazar, a novel diabetes drug, in human plasma.

    PubMed

    Xue, Y-J; Liu, Jane; Pursley, Janice; Unger, Steve

    2006-02-01

    A 96-well single-pot protein precipitation, liquid chromatography/tandem mass spectrometry (LC/MS/MS) method has been developed and validated for the determination of muraglitazar, a PPAR alpha/gamma dual agonist, in human plasma. The internal standard, a chemical analogue, was dissolved in acetonitrile containing 0.1% formic acid. The solvent system was also served as a protein precipitation reagent. Human plasma samples (0.1 mL) and the internal standard solution (0.3 mL) were added to a 96-well plate. The plate was vortexed for 1 min and centrifuged for 5 min. Then the supernatant layers were directly injected into the LC/MS/MS system. The chromatographic separation was achieved isocratically on a Phenomenox C18(2) Luna column (2 mm x 50 mm, 5 microm). The mobile phase contained 20/80 (v/v) of water and acetonitrile containing 0.1% formic acid. Detection was by positive ion electrospray tandem mass spectrometry on a Sciex API 3000. The standard curve, which ranged from 1 to 1000 ng/mL, was fitted to a 1/x weighted quadratic regression model. This single-pot approach effectively eliminated three time consuming sample preparation steps: sample transfer, dry-down, and reconstitution before the injection, while it preserved all the benefits of the traditional protein precipitation. By properly adjusting the autosampler needle offset level, only the supernatant was injected, without disturbing the precipitated proteins in the bottom. As a result, the quality of chromatography and column life were not compromised. After more than 600 injections, there was only slightly increase of column back-pressure. The validation results demonstrated that this method was rugged and provide satisfactory precision and accuracy. The method has been successfully applied to analyze human plasma samples in support of a first-in-man study. This method has also been validated in monkey and mouse plasma for the determination of muraglitazar. PMID:16388995

  1. Microfluidics: reframing biological enquiry.

    PubMed

    Duncombe, Todd A; Tentori, Augusto M; Herr, Amy E

    2015-09-01

    The underlying physical properties of microfluidic tools have led to new biological insights through the development of microsystems that can manipulate, mimic and measure biology at a resolution that has not been possible with macroscale tools. Microsystems readily handle sub-microlitre volumes, precisely route predictable laminar fluid flows and match both perturbations and measurements to the length scales and timescales of biological systems. The advent of fabrication techniques that do not require highly specialized engineering facilities is fuelling the broad dissemination of microfluidic systems and their adaptation to specific biological questions. We describe how our understanding of molecular and cell biology is being and will continue to be advanced by precision microfluidic approaches and posit that microfluidic tools - in conjunction with advanced imaging, bioinformatics and molecular biology approaches - will transform biology into a precision science.

  2. Microfluidic chemical reaction circuits

    DOEpatents

    Lee, Chung-cheng; Sui, Guodong; Elizarov, Arkadij; Kolb, Hartmuth C.; Huang, Jiang; Heath, James R.; Phelps, Michael E.; Quake, Stephen R.; Tseng, Hsian-rong; Wyatt, Paul; Daridon, Antoine

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  3. Cell manipulation in microfluidics.

    PubMed

    Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu

    2013-06-01

    Recent advances in the lab-on-a-chip field in association with nano/microfluidics have been made for new applications and functionalities to the fields of molecular biology, genetic analysis and proteomics, enabling the expansion of the cell biology field. Specifically, microfluidics has provided promising tools for enhancing cell biological research, since it has the ability to precisely control the cellular environment, to easily mimic heterogeneous cellular environment by multiplexing, and to analyze sub-cellular information by high-contents screening assays at the single-cell level. Various cell manipulation techniques in microfluidics have been developed in accordance with specific objectives and applications. In this review, we examine the latest achievements of cell manipulation techniques in microfluidics by categorizing externally applied forces for manipulation: (i) optical, (ii) magnetic, (iii) electrical, (iv) mechanical and (v) other manipulations. We furthermore focus on history where the manipulation techniques originate and also discuss future perspectives with key examples where available.

  4. Microfluidic fuel cells

    NASA Astrophysics Data System (ADS)

    Kjeang, Erik

    Microfluidic fuel cell architectures are presented in this thesis. This work represents the mechanical and microfluidic portion of a microfluidic biofuel cell project. While the microfluidic fuel cells developed here are targeted to eventual integration with biocatalysts, the contributions of this thesis have more general applicability. The cell architectures are developed and evaluated based on conventional non-biological electrocatalysts. The fuel cells employ co-laminar flow of fuel and oxidant streams that do not require a membrane for physical separation, and comprise carbon or gold electrodes compatible with most enzyme immobilization schemes developed to date. The demonstrated microfluidic fuel cell architectures include the following: a single cell with planar gold electrodes and a grooved channel architecture that accommodates gaseous product evolution while preventing crossover effects; a single cell with planar carbon electrodes based on graphite rods; a three-dimensional hexagonal array cell based on multiple graphite rod electrodes with unique scale-up opportunities; a single cell with porous carbon electrodes that provides enhanced power output mainly attributed to the increased active area; a single cell with flow-through porous carbon electrodes that provides improved performance and overall energy conversion efficiency; and a single cell with flow-through porous gold electrodes with similar capabilities and reduced ohmic resistance. As compared to previous results, the microfluidic fuel cells developed in this work show improved fuel cell performance (both in terms of power density and efficiency). In addition, this dissertation includes the development of an integrated electrochemical velocimetry approach for microfluidic devices, and a computational modeling study of strategic enzyme patterning for microfluidic biofuel cells with consecutive reactions.

  5. Electro-Microfluidic Packaging

    SciTech Connect

    BENAVIDES, GILBERT L.; GALAMBOS, PAUL C.

    2002-06-01

    Electro-microfluidics is experiencing explosive growth in new product developments. There are many commercial applications for electro-microfluidic devices such as chemical sensors, biological sensors, and drop ejectors for both printing and chemical analysis. The number of silicon surface micromachined electro-microfluidic products is likely to increase. Manufacturing efficiency and integration of microfluidics with electronics will become important. Surface micromachined microfluidic devices are manufactured with the same tools as IC's (integrated circuits) and their fabrication can be incorporated into the IC fabrication process. In order to realize applications for devices must be developed. An Electro-Microfluidic Dual In-line Package (EMDIP{trademark}) was developed surface micromachined electro-microfluidic devices, a practical method for getting fluid into these to be a standard solution that allows for both the electrical and the fluidic connections needed to operate a great variety of electro-microfluidic devices. The EMDIP{trademark} includes a fan-out manifold that, on one side, mates directly with the 200 micron diameter Bosch etched holes found on the device, and, on the other side, mates to lager 1 mm diameter holes. To minimize cost the EMDIP{trademark} can be injection molded in a great variety of thermoplastics which also serve to optimize fluid compatibility. The EMDIP{trademark} plugs directly into a fluidic printed wiring board using a standard dual in-line package pattern for the electrical connections and having a grid of multiple 1 mm diameter fluidic connections to mate to the underside of the EMDIP{trademark}.

  6. Flock-based microfluidics.

    PubMed

    Hitzbleck, Martina; Lovchik, Robert D; Delamarche, Emmanuel

    2013-05-21

    Flock-based microfluidics are created by depositing hydrophilic microfibers on an adhesive-coated substrate using an electric field. This enables the fabrication of self-powered microfluidics from one or more different kinds of fibers that form 2D and 3D flowpaths, which can wick 40 microliters of liquid per square centimeter. With this approach, large areas of functional wicking materials can be produced at extremely low cost.

  7. Surface acoustic wave microfluidics

    PubMed Central

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S.; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2014-01-01

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering, and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting, and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next. PMID:23900527

  8. Surface acoustic wave microfluidics.

    PubMed

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2013-09-21

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next.

  9. MEMS in microfluidic channels.

    SciTech Connect

    Ashby, Carol Iris Hill; Okandan, Murat; Michalske, Terry A.; Sounart, Thomas L.; Matzke, Carolyn M.

    2004-03-01

    Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.

  10. Punch card programmable microfluidics.

    PubMed

    Korir, George; Prakash, Manu

    2015-01-01

    Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external components has remained elusive. Combining the idea of punch card programming with arbitrary fluid control, here we describe a self-contained, hand-crank powered, multiplex and robust programmable microfluidic platform. A paper tape encodes information as a series of punched holes. A mechanical reader/actuator reads these paper tapes and correspondingly executes operations onto a microfluidic chip coupled to the platform in a plug-and-play fashion. Enabled by the complexity of codes that can be represented by a series of holes in punched paper tapes, we demonstrate independent control of 15 on-chip pumps with enhanced mixing, normally-closed valves and a novel on-demand impact-based droplet generator. We demonstrate robustness of operation by encoding a string of characters representing the word "PUNCHCARD MICROFLUIDICS" using the droplet generator. Multiplexing is demonstrated by implementing an example colorimetric water quality assays for pH, ammonia, nitrite and nitrate content in different water samples. With its portable and robust design, low cost and ease-of-use, we envision punch card programmable microfluidics will bring complex control of microfluidic chips into field-based applications in low-resource settings and in the hands of children around the world. PMID:25738834

  11. Punch card programmable microfluidics.

    PubMed

    Korir, George; Prakash, Manu

    2015-01-01

    Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external components has remained elusive. Combining the idea of punch card programming with arbitrary fluid control, here we describe a self-contained, hand-crank powered, multiplex and robust programmable microfluidic platform. A paper tape encodes information as a series of punched holes. A mechanical reader/actuator reads these paper tapes and correspondingly executes operations onto a microfluidic chip coupled to the platform in a plug-and-play fashion. Enabled by the complexity of codes that can be represented by a series of holes in punched paper tapes, we demonstrate independent control of 15 on-chip pumps with enhanced mixing, normally-closed valves and a novel on-demand impact-based droplet generator. We demonstrate robustness of operation by encoding a string of characters representing the word "PUNCHCARD MICROFLUIDICS" using the droplet generator. Multiplexing is demonstrated by implementing an example colorimetric water quality assays for pH, ammonia, nitrite and nitrate content in different water samples. With its portable and robust design, low cost and ease-of-use, we envision punch card programmable microfluidics will bring complex control of microfluidic chips into field-based applications in low-resource settings and in the hands of children around the world.

  12. Automation of in-tip solid-phase microextraction in 96-well format for the determination of a model drug compound in human plasma by liquid chromatography with tandem mass spectrometric detection.

    PubMed

    Xie, W; Mullett, W M; Miller-Stein, C M; Pawliszyn, J

    2009-02-01

    Studies using in-tip solid phase microextraction (in-tip SPME) in a 96-well plate format are conducted to investigate the feasibility of SPME automation. The sample preparation process, including extraction and desorption, was fully automated and coupled with currently commercially available automated liquid handling systems. Several process parameters including extraction time and speed, and desorption time were investigated. An LC-MS/MS method has been developed and validated to determine the levels of a drug compound (MK-0533) in human plasma that demonstrates the suitability of this new approach. The developed method has a lower limit of quantitation (LLOQ) of 5 ng/mL when 0.25 mL of human plasma is processed and is validated in the concentration range of 5-2, 000 ng/mL. The successful application of the assay in clinical sample analysis indicates that in-tip SPME can be easily automated and has great potential to be used for high throughput quantitative determination of drugs in pharmaceutical industry.

  13. Microfluidic Mixing: A Review

    PubMed Central

    Lee, Chia-Yen; Chang, Chin-Lung; Wang, Yao-Nan; Fu, Lung-Ming

    2011-01-01

    The aim of microfluidic mixing is to achieve a thorough and rapid mixing of multiple samples in microscale devices. In such devices, sample mixing is essentially achieved by enhancing the diffusion effect between the different species flows. Broadly speaking, microfluidic mixing schemes can be categorized as either “active”, where an external energy force is applied to perturb the sample species, or “passive”, where the contact area and contact time of the species samples are increased through specially-designed microchannel configurations. Many mixers have been proposed to facilitate this task over the past 10 years. Accordingly, this paper commences by providing a high level overview of the field of microfluidic mixing devices before describing some of the more significant proposals for active and passive mixers. PMID:21686184

  14. Microfluidic platforms for mechanobiology

    PubMed Central

    Polacheck, William J.; Li, Ran; Uzel, Sebastien G. M.

    2013-01-01

    Mechanotransduction has been a topic of considerable interest since early studies demonstrated a link between mechanical force and biological response. Until recently, studies of fundamental phenomena were based either on in vivo experiments with limited control or direct access, or on large-scale in vitro studies lacking many of the potentially important physiological factors. With the advent of microfluidics, many of the previous limitations of in vitro testing were eliminated or reduced through greater control or combined functionalities. At the same time, imaging capabilities were tremendously enhanced. In this review, we discuss how microfluidics has transformed the study of mechanotransduction. This is done in the context of the various cell types that exhibit force-induced responses and the new biological insights that have been elucidated. We also discuss new microfluidic studies that could produce even more realistic models of in vivo conditions by combining multiple stimuli or creating a more realistic microenvironment. PMID:23649165

  15. Punch Card Programmable Microfluidics

    PubMed Central

    Korir, George; Prakash, Manu

    2015-01-01

    Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external components has remained elusive. Combining the idea of punch card programming with arbitrary fluid control, here we describe a self-contained, hand-crank powered, multiplex and robust programmable microfluidic platform. A paper tape encodes information as a series of punched holes. A mechanical reader/actuator reads these paper tapes and correspondingly executes operations onto a microfluidic chip coupled to the platform in a plug-and-play fashion. Enabled by the complexity of codes that can be represented by a series of holes in punched paper tapes, we demonstrate independent control of 15 on-chip pumps with enhanced mixing, normally-closed valves and a novel on-demand impact-based droplet generator. We demonstrate robustness of operation by encoding a string of characters representing the word “PUNCHCARD MICROFLUIDICS” using the droplet generator. Multiplexing is demonstrated by implementing an example colorimetric water quality assays for pH, ammonia, nitrite and nitrate content in different water samples. With its portable and robust design, low cost and ease-of-use, we envision punch card programmable microfluidics will bring complex control of microfluidic chips into field-based applications in low-resource settings and in the hands of children around the world. PMID:25738834

  16. Microfluidic Flame Barrier

    NASA Technical Reports Server (NTRS)

    Mungas, Gregory S. (Inventor); Fisher, David J. (Inventor); Mungas, Christopher (Inventor)

    2013-01-01

    Propellants flow through specialized mechanical hardware that is designed for effective and safe ignition and sustained combustion of the propellants. By integrating a micro-fluidic porous media element between a propellant feed source and the combustion chamber, an effective and reliable propellant injector head may be implemented that is capable of withstanding transient combustion and detonation waves that commonly occur during an ignition event. The micro-fluidic porous media element is of specified porosity or porosity gradient selected to be appropriate for a given propellant. Additionally the propellant injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation.

  17. Experimental Microfluidic System

    NASA Technical Reports Server (NTRS)

    Culbertson, Christopher; Gonda, Steve; Ramsey, John Michael

    2005-01-01

    The ultimate goal of this project is to integrate microfluidic devices with NASA's space bioreactor systems. In such a system, the microfluidic device would provide realtime feedback control of the bioreactor by monitoring pH, glucose, and lactate levels in the cell media; and would provide an analytical capability to the bioreactor in exterrestrial environments for monitoring bioengineered cell products and health changes in cells due to environmental stressors. Such integrated systems could be used as biosentinels both in space and on planet surfaces. The objective is to demonstrate the ability of microfabricated devices to repeatedly and reproducibly perform bead cytometry experiments in micro, lunar, martian, and hypergravity (1.8g).

  18. Validation and application of a liquid chromatography-tandem mass spectrometric method for the determination of GDC-0834 and its metabolite in human plasma using semi-automated 96-well protein precipitation.

    PubMed

    Shin, Young G; Jones, Steve A; Murakami, Stan C; Liu, Lichuan; Wong, Harvey; Buonarati, Michael H; Hop, Cornelis E C A

    2012-11-01

    A liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the determination of GDC-0834 and its amide hydrolysis metabolite (M1) in human plasma to support clinical development. The method consisted of semi-automated 96-well protein precipitation extraction for sample preparation and LC-MS/MS analysis in positive ion mode using TurboIonSpray® for analysis. D6-GDC-0834 and D6-M1 metabolite were used as internal standards. A linear regression (weighted 1/concentration(2) ) was used to fit calibration curves over the concentration range of 1 - 500 ng/mL for both GDC-0834 and M1 metabolite. The accuracy (percentage bias) at the lower limit of quantitation (LLOQ) was 5.20 and 0.100% for GDC-0834 and M1 metabolite, respectively. The precision (CV) for samples at the LLOQ was 3.13-8.84 and 5.20-8.93% for GDC-0834 and M1 metabolite, respectively. For quality control samples at 3, 200 and 400 ng/mL, the between-run CV was ≤ 7.38% for GDC-0834 and ≤ 8.20% for M1 metabolite. Between run percentage bias ranged from -2.76 to 6.98% for GDC-0834 and from -6.73 to 2.21% for M1 metabolite. GDC-0834 and M1 metabolite were stable in human plasma for 31 days at -20 and -70°C. This method was successfully applied to support a GDC-0834 human pharmacokinetic-based study.

  19. A rapid method for the determination of perfluoroalkyl substances including structural isomers of perfluorooctane sulfonic acid in human serum using 96-well plates and column-switching ultra-high performance liquid chromatography tandem mass spectrometry.

    PubMed

    Salihovic, Samira; Kärrman, Anna; Lindström, Gunilla; Lind, P Monica; Lind, Lars; van Bavel, Bert

    2013-08-30

    To facilitate high-throughput analysis suitable for large epidemiological studies we developed an automated column-switching ultra-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for determination of perfluorocarboxylic acids (PFCAs; C5, C6, C7, C8, C9, C10, C11, C12, and C13), perfluoroalkyl sulfonic acids (PFSAs; C4, C6, C8, and C10), perfluorooctane sulfonamide (PFOSA), and five groups of structural perfluorooctane sulfonic acid (PFOS) isomers in human serum or plasma. The analytical procedure involves rapid protein precipitation using 96-well plates followed by an automated sample clean-up using an on-line trap column removing many potentially interfering sample components while through the mobile phase gradient the target analytes are eluted onto the analytical column for further separation and subsequent mass detection. The method was linear (R(2)<0.995) at concentrations ranging from 0.01 to 60ngmL(-1) with method detection limits ranging between 0.01 and 0.17ngmL(-1) depending on the analyte. The developed method was precise, with repeatability (n=7) and reproducibility (n=103) coefficients of variation between 2% and 20% for most compounds including PFOS (2% and 8%) and its structural isomers (2-6% and 4-8%). The method was in conformity with a standard reference material. The column-switching HPLC-MS/MS method has been successfully applied for the determination of perfluoroalkyl substances including structural PFOS isomers in human plasma from an epidemiological study.

  20. Chemistry in Microfluidic Channels

    ERIC Educational Resources Information Center

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  1. Mammosphere culture of cancer stem cells in a microfluidic device

    NASA Astrophysics Data System (ADS)

    Saadin, Katayoon; White, Ian M.

    2012-03-01

    It is known that tumor-initiating cells with stem-like properties will form spherical colonies - termed mammospheres - when cultured in serum-free media on low-attachment substrates. Currently this assay is performed in commercially available 96-well trays with low-attachment surfaces. Here we report a novel microsystem that features on-chip mammosphere culture on low attachment surfaces. We have cultured mammospheres in this microsystem from well-studied human breast cancer cell lines. To enable the long-term culture of these unattached cells, we have integrated diffusion-based delivery columns that provide zero-convection delivery of reagents, such as fresh media, staining agents, or drugs. The multi-layer system consists of parallel cell-culture chambers on top of a low-attachment surface, connected vertically with a microfluidic reagent delivery layer. This design incorporates a reagent reservoir, which is necessary to reduce evaporation from the cell culture micro-chambers. The development of this microsystem will lead to the integration of mammosphere culture with other microfluidic functions, including circulating tumor cell recovery and high throughput drug screening. This will enable the cancer research community to achieve a much greater understanding of these tumor initiating cancer stem cells.

  2. Electrotaxis of Caenorhabditis elegans in a microfluidic environment.

    PubMed

    Rezai, Pouya; Siddiqui, Asad; Selvaganapathy, Ponnambalam Ravi; Gupta, Bhagwati P

    2010-01-21

    The nematode (worm) Caenorhabditis elegans is one of the most widely studied organisms for biomedical research. Currently, C. elegans assays are performed either on petri dishes, 96-well plates or using pneumatically controlled microfluidic devices. In this work, we demonstrate that the electric field can be used as a powerful stimulus to control movement of worms in a microfluidic environment. We found that this response (termed electrotaxis) is directional, fully penetrant and highly sensitive. The characterization of electrotaxis revealed that it is mediated by neuronal activity that varies with the age and size of animals. Although the speed of swimming is unaffected by changes in the electric field strength and direction, our results show that each developmental stage responds to a specific range of electric field with a specific speed. Finally, we provide evidence that the exposure to the electric field has no discernible effect on the ability of animals to survive and reproduce. Our method has potential in precisely controlling, directing, and transporting worms in an efficient and automated manner. This opens up significant possibilities for high-throughput screening of C. elegans for drug discovery and other applications. PMID:20066250

  3. PREFACE: Nano- and microfluidics Nano- and microfluidics

    NASA Astrophysics Data System (ADS)

    Jacobs, Karin

    2011-05-01

    The field of nano- and microfluidics emerged at the end of the 1990s parallel to the demand for smaller and smaller containers and channels for chemical, biochemical and medical applications such as blood and DNS analysis [1], gene sequencing or proteomics [2, 3]. Since then, new journals and conferences have been launched and meanwhile, about two decades later, a variety of microfluidic applications are on the market. Briefly, 'the small flow becomes mainstream' [4]. Nevertheless, research in nano- and microfluidics is more than downsizing the spatial dimensions. For liquids on the nanoscale, surface and interface phenomena grow in importance and may even dominate the behavior in some systems. The studies collected in this special issue all concentrate on these type of systems and were part ot the priority programme SPP1164 'Nano- and Microfluidics' of the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG). The priority programme was initiated in 2002 by Hendrik Kuhlmann and myself and was launched in 2004. Friction between a moving liquid and a solid wall may, for instance, play an important role so that the usual assumption of a no-slip boundary condition is no longer valid. Likewise, the dynamic deformations of soft objects like polymers, vesicles or capsules in flow arise from the subtle interplay between the (visco-)elasticity of the object and the viscous stresses in the surrounding fluid and, potentially, the presence of structures confining the flow like channels. Consequently, new theories were developed ( see articles in this issue by Münch and Wagner, Falk and Mecke, Bonthuis et al, Finken et al, Almenar and Rauscher, Straube) and experiments were set up to unambiguously demonstrate deviations from bulk, or 'macro', behavior (see articles in this issue by Wolff et al, Vinogradova and Belyaev, Hahn et al, Seemann et al, Grüner and Huber, Müller-Buschbaum et al, Gutsche et al, Braunmüller et al, Laube et al, Brücker, Nottebrock et al

  4. Microfluidic perfusion culture of human induced pluripotent stem cells under fully defined culture conditions.

    PubMed

    Yoshimitsu, Ryosuke; Hattori, Koji; Sugiura, Shinji; Kondo, Yuki; Yamada, Rotaro; Tachikawa, Saoko; Satoh, Taku; Kurisaki, Akira; Ohnuma, Kiyoshi; Asashima, Makoto; Kanamori, Toshiyuki

    2014-05-01

    Human induced pluripotent stem cells (hiPSCs) are a promising cell source for drug screening. For this application, self-renewal or differentiation of the cells is required, and undefined factors in the culture conditions are not desirable. Microfluidic perfusion culture allows the production of small volume cultures with precisely controlled microenvironments, and is applicable to high-throughput cellular environment screening. Here, we developed a microfluidic perfusion culture system for hiPSCs that uses a microchamber array chip under defined extracellular matrix (ECM) and culture medium conditions. By screening various ECMs we determined that fibronectin and laminin are appropriate for microfluidic devices made out of the most popular material, polydimethylsiloxane (PDMS). We found that the growth rate of hiPSCs under pressure-driven perfusion culture conditions was higher than under static culture conditions in the microchamber array. We applied our new system to self-renewal and differentiation cultures of hiPSCs, and immunocytochemical analysis showed that the state of the hiPSCs was successfully controlled. The effects of three antitumor drugs on hiPSCs were comparable between microchamber array and 96-well plates. We believe that our system will be a platform technology for future large-scale screening of fully defined conditions for differentiation cultures on integrated microfluidic devices.

  5. Droplet microfluidics based microseparation systems.

    PubMed

    Xiao, Zhiliang; Niu, Menglei; Zhang, Bo

    2012-06-01

    Lab on a chip (LOC) technology is a promising miniaturization approach. The feature that it significantly reduced sample consumption makes great sense in analytical and bioanalytical chemistry. Since the start of LOC technology, much attention has been focused on continuous flow microfluidic systems. At the turn of the century, droplet microfluidics, which was also termed segmented flow microfluidics, was introduced. Droplet microfluidics employs two immiscible phases to form discrete droplets, which are ideal vessels with confined volume, restricted dispersion, limited cross-contamination, and high surface area. Due to these unique features, droplet microfluidics proves to be a versatile tool in microscale sample handling. This article reviews the utility of droplet microfluidics in microanalytical systems with an emphasize on separation science, including sample encapsulation at ultra-small volume, compartmentalization of separation bands, isolation of droplet contents, and related detection techniques.

  6. Microfluidic Chips for Semen Analysis

    PubMed Central

    Segerink, L.I.; Sprenkels, A.J.; Oosterhuis, G.J.E.; Vermes, I.; van den Berg, A.

    2012-01-01

    The gold standard of semen analysis is still an manual method, which is time-consuming, labour intensive and needs thorough quality control. Microfluidics can also offer advantages for this application. Therefore a first step in the development of a microfluidic chip has been made, which enables the man the semen analysis at home. In this article recent efforts to determine the concentration and motility using a microfluidic chip are summarized.

  7. Microfluidic device, and related methods

    NASA Technical Reports Server (NTRS)

    Wong, Eric W. (Inventor)

    2010-01-01

    A method of making a microfluidic device is provided. The method features patterning a permeable wall on a substrate, and surrounding the permeable wall with a solid, non-permeable boundary structure to establish a microfluidic channel having a cross-sectional dimension less than 5,000 microns and a cross-sectional area at least partially filled with the permeable wall so that fluid flowing through the microfluidic channel at least partially passes through the permeable wall.

  8. The Microfluidic Jukebox

    PubMed Central

    Tan, Say Hwa; Maes, Florine; Semin, Benoît; Vrignon, Jérémy; Baret, Jean-Christophe

    2014-01-01

    Music is a form of art interweaving people of all walks of life. Through subtle changes in frequencies, a succession of musical notes forms a melody which is capable of mesmerizing the minds of people. With the advances in technology, we are now able to generate music electronically without relying solely on physical instruments. Here, we demonstrate a musical interpretation of droplet-based microfluidics as a form of novel electronic musical instruments. Using the interplay of electric field and hydrodynamics in microfluidic devices, well controlled frequency patterns corresponding to musical tracks are generated in real time. This high-speed modulation of droplet frequency (and therefore of droplet sizes) may also provide solutions that reconciles high-throughput droplet production and the control of individual droplet at production which is needed for many biochemical or material synthesis applications. PMID:24781785

  9. The Microfluidic Jukebox

    NASA Astrophysics Data System (ADS)

    Tan, Say Hwa; Maes, Florine; Semin, Benoît; Vrignon, Jérémy; Baret, Jean-Christophe

    2014-04-01

    Music is a form of art interweaving people of all walks of life. Through subtle changes in frequencies, a succession of musical notes forms a melody which is capable of mesmerizing the minds of people. With the advances in technology, we are now able to generate music electronically without relying solely on physical instruments. Here, we demonstrate a musical interpretation of droplet-based microfluidics as a form of novel electronic musical instruments. Using the interplay of electric field and hydrodynamics in microfluidic devices, well controlled frequency patterns corresponding to musical tracks are generated in real time. This high-speed modulation of droplet frequency (and therefore of droplet sizes) may also provide solutions that reconciles high-throughput droplet production and the control of individual droplet at production which is needed for many biochemical or material synthesis applications.

  10. Surface Acoustic Wave Microfluidics

    NASA Astrophysics Data System (ADS)

    Yeo, Leslie Y.; Friend, James R.

    2014-01-01

    Fluid manipulations at the microscale and beyond are powerfully enabled through the use of 10-1,000-MHz acoustic waves. A superior alternative in many cases to other microfluidic actuation techniques, such high-frequency acoustics is almost universally produced by surface acoustic wave devices that employ electromechanical transduction in wafer-scale or thin-film piezoelectric media to generate the kinetic energy needed to transport and manipulate fluids placed in adjacent microfluidic structures. These waves are responsible for a diverse range of complex fluid transport phenomena - from interfacial fluid vibration and drop and confined fluid transport to jetting and atomization - underlying a flourishing research literature spanning fundamental fluid physics to chip-scale engineering applications. We highlight some of this literature to provide the reader with a historical basis, routes for more detailed study, and an impression of the field's future directions.

  11. Microfluidic colloid filtration

    PubMed Central

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-01-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level. PMID:26927706

  12. Microfluidic redox battery.

    PubMed

    Lee, Jin Wook; Goulet, Marc-Antoni; Kjeang, Erik

    2013-07-01

    A miniaturized microfluidic battery is proposed, which is the first membraneless redox battery demonstrated to date. This unique concept capitalizes on dual-pass flow-through porous electrodes combined with stratified, co-laminar flow to generate electrical power on-chip. The fluidic design is symmetric to allow for both charging and discharging operations in forward, reverse, and recirculation modes. The proof-of-concept device fabricated using low-cost materials integrated in a microfluidic chip is shown to produce competitive power levels when operated on a vanadium redox electrolyte. A complete charge/discharge cycle is performed to demonstrate its operation as a rechargeable battery, which is an important step towards providing sustainable power to lab-on-a-chip and microelectronic applications. PMID:23712370

  13. Microfluidic channel fabrication method

    DOEpatents

    Arnold, Don W.; Schoeniger, Joseph S.; Cardinale, Gregory F.

    2001-01-01

    A new channel structure for microfluidic systems and process for fabricating this structure. In contrast to the conventional practice of fabricating fluid channels as trenches or grooves in a substrate, fluid channels are fabricated as thin walled raised structures on a substrate. Microfluidic devices produced in accordance with the invention are a hybrid assembly generally consisting of three layers: 1) a substrate that can or cannot be an electrical insulator; 2) a middle layer, that is an electrically conducting material and preferably silicon, forms the channel walls whose height defines the channel height, joined to and extending from the substrate; and 3) a top layer, joined to the top of the channels, that forms a cover for the channels. The channels can be defined by photolithographic techniques and are produced by etching away the material around the channel walls.

  14. Microfluidic colloid filtration

    NASA Astrophysics Data System (ADS)

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-03-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level.

  15. Microfluidic redox battery.

    PubMed

    Lee, Jin Wook; Goulet, Marc-Antoni; Kjeang, Erik

    2013-07-01

    A miniaturized microfluidic battery is proposed, which is the first membraneless redox battery demonstrated to date. This unique concept capitalizes on dual-pass flow-through porous electrodes combined with stratified, co-laminar flow to generate electrical power on-chip. The fluidic design is symmetric to allow for both charging and discharging operations in forward, reverse, and recirculation modes. The proof-of-concept device fabricated using low-cost materials integrated in a microfluidic chip is shown to produce competitive power levels when operated on a vanadium redox electrolyte. A complete charge/discharge cycle is performed to demonstrate its operation as a rechargeable battery, which is an important step towards providing sustainable power to lab-on-a-chip and microelectronic applications.

  16. Microfluidic colloid filtration.

    PubMed

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J C; Wessling, Matthias

    2016-01-01

    Filtration of natural and colloidal matter is an essential process in today's water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a "cake layer"--often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level. PMID:26927706

  17. High-Throughput Cytotoxicity Testing System of Acetaminophen Using a Microfluidic Device (MFD) in HepG2 Cells.

    PubMed

    Ju, Seon Min; Jang, Hyun-Jun; Kim, Kyu-Bong; Kim, Jeongyun

    2015-01-01

    A lab-on-a-chip (LOC) is a microfluidic device (MFD) that integrates several lab functions into a single chip of only millimeters in size. LOC provides several advantages, such as low fluidic volumes consumption, faster analysis, compactness, and massive parallelization. These properties enable a microfluidic-based high-throughput drug screening (HTDS) system to acquire cell-based abundant cytotoxicity results depending on linear gradient concentration of drug with only few hundreds of microliters of the drug. Therefore, a microfluidic device was developed containing an array of eight separate microchambers for cultivating HepG2 cells to be exposed to eight different concentrations of acetaminophen (APAP) through a diffusive-mixing-based concentration gradient generator. Every chamber array with eight different concentrations (0, 5.7, 11.4, 17.1, 22.8, 28.5, 34.2, or 40 mM) APAP had four replicating cell culture chambers. Consequently, 32 experimental results were acquired with a single microfluidic device experiment. The microfluidic high-throughput cytotoxicity device (μHTCD) and 96-well culture system showed comparable cytotoxicity results with increasing APAP concentration of 0 to 40 mM. The HTDS system yields progressive concentration-dependent cytotoxicity results using minimal reagent and time. Data suggest that the HTDS system may be applicable as alternative method for cytotoxicity screening for new drugs in diverse cell types. PMID:26241707

  18. Microfluidic Biochip Design

    NASA Technical Reports Server (NTRS)

    Panzarella, Charles

    2004-01-01

    As humans prepare for the exploration of our solar system, there is a growing need for miniaturized medical and environmental diagnostic devices for use on spacecrafts, especially during long-duration space missions where size and power requirements are critical. In recent years, the biochip (or Lab-on-a- Chip) has emerged as a technology that might be able to satisfy this need. In generic terms, a biochip is a miniaturized microfluidic device analogous to the electronic microchip that ushered in the digital age. It consists of tiny microfluidic channels, pumps and valves that transport small amounts of sample fluids to biosensors that can perform a variety of tests on those fluids in near real time. It has the obvious advantages of being small, lightweight, requiring less sample fluids and reagents and being more sensitive and efficient than larger devices currently in use. Some of the desired space-based applications would be to provide smaller, more robust devices for analyzing blood, saliva and urine and for testing water and food supplies for the presence of harmful contaminants and microorganisms. Our group has undertaken the goal of adapting as well as improving upon current biochip technology for use in long-duration microgravity environments. In addition to developing computational models of the microfluidic channels, valves and pumps that form the basis of every biochip, we are also trying to identify potential problems that could arise in reduced gravity and develop solutions to these problems. One such problem is due to the prevalence of bubbly sample fluids in microgravity. A bubble trapped in a microfluidic channel could be detrimental to the operation of a biochip. Therefore, the process of bubble formation in microgravity needs to be studied, and a model of this process has been developed and used to understand how bubbles develop and move through biochip components. It is clear that some type of bubble filter would be necessary in Space, and

  19. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  20. High-pressure microfluidics

    NASA Astrophysics Data System (ADS)

    Hjort, K.

    2015-03-01

    When using appropriate materials and microfabrication techniques, with the small dimensions the mechanical stability of microstructured devices allows for processes at high pressures without loss in safety. The largest area of applications has been demonstrated in green chemistry and bioprocesses, where extraction, synthesis and analyses often excel at high densities and high temperatures. This is accessible through high pressures. Capillary chemistry has been used since long but, just like in low-pressure applications, there are several potential advantages in using microfluidic platforms, e.g., planar isothermal set-ups, large local variations in geometries, dense form factors, small dead volumes and precisely positioned microstructures for control of reactions, catalysis, mixing and separation. Other potential applications are in, e.g., microhydraulics, exploration, gas driven vehicles, and high-pressure science. From a review of the state-of-art and frontiers of high pressure microfluidics, the focus will be on different solutions demonstrated for microfluidic handling at high pressures and challenges that remain.

  1. Multilayer microfluidic PEGDA hydrogels.

    PubMed

    Cuchiara, Michael P; Allen, Alicia C B; Chen, Theodore M; Miller, Jordan S; West, Jennifer L

    2010-07-01

    Development of robust 3D tissue analogs in vitro is limited by passive, diffusional mass transport. Perfused microfluidic tissue engineering scaffolds hold the promise to improve mass transport limitations and promote the development of complex, metabolically dense, and clinically relevant tissues. We report a simple and robust multilayer replica molding technique in which poly(dimethylsiloxane) (PDMS) and poly(ethylene glycol) diacrylate (PEGDA) are serially replica molded to develop microfluidic PEGDA hydrogel networks embedded within independently fabricated PDMS housings. We demonstrate the ability to control solute-scaffold effective diffusivity as a function of solute molecular weight and hydrogel concentration. Within cell laden microfluidic hydrogels, we demonstrate increased cellular viability in perfused hydrogel systems compared to static controls. We observed a significant increase in cell viability at all time points greater than zero at distances up to 1 mm from the perfused channel. Knowledge of spatiotemporal mass transport and cell viability gradients provides useful engineering design parameters necessary to maximize overall scaffold viability and metabolic density. This work has applications in the development of hydrogels as in vitro diagnostics and ultimately as regenerative medicine based therapeutics.

  2. Monolithic microfluidic concentrators and mixers

    DOEpatents

    Frechet, Jean M.; Svec, Frantisek; Yu, Cong; Rohr, Thomas

    2005-05-03

    Microfluidic devices comprising porous monolithic polymer for concentration, extraction or mixing of fluids. A method for in situ preparation of monolithic polymers by in situ initiated polymerization of polymer precursors within microchannels of a microfluidic device and their use for solid phase extraction (SPE), preconcentration, concentration and mixing.

  3. Microfluidic Stamping on Sheath Flow.

    PubMed

    Yoon, Dong Hyun; Tanaka, Daiki; Sekiguchi, Tetsushi; Shoji, Shuichi

    2016-06-01

    A microfluidic stamping method to form functional shapes on a cross section in fiber-shaped flow is proposed. Microfluidic stamping and overstamping allow various cross sectional shapes on the 3D flow. The shapes can be controlled by a change in combination of structures and fluidic conditions which correspond to stamp type and stamping force. PMID:27149895

  4. Centrifugal microfluidics for biomedical applications.

    PubMed

    Gorkin, Robert; Park, Jiwoon; Siegrist, Jonathan; Amasia, Mary; Lee, Beom Seok; Park, Jong-Myeon; Kim, Jintae; Kim, Hanshin; Madou, Marc; Cho, Yoon-Kyoung

    2010-07-21

    The centrifugal microfluidic platform has been a focus of academic and industrial research efforts for almost 40 years. Primarily targeting biomedical applications, a range of assays have been adapted on the system; however, the platform has found limited commercial success as a research or clinical tool. Nonetheless, new developments in centrifugal microfluidic technologies have the potential to establish wide-spread utilization of the platform. This paper presents an in-depth review of the centrifugal microfluidic platform, while highlighting recent progress in the field and outlining the potential for future applications. An overview of centrifugal microfluidic technologies is presented, including descriptions of advantages of the platform as a microfluidic handling system and the principles behind centrifugal fluidic manipulation. The paper also discusses a history of significant centrifugal microfluidic platform developments with an explanation of the evolution of the platform as it pertains to academia and industry. Lastly, we review the few centrifugal microfluidic-based sample-to-answer analysis systems shown to date and examine the challenges to be tackled before the centrifugal platform can be more broadly accepted as a new diagnostic platform. In particular, fully integrated, easy to operate, inexpensive and accurate microfluidic tools in the area of in vitro nucleic acid diagnostics are discussed.

  5. Polycarbonate based three-phase nanocomposite dielectrics

    NASA Astrophysics Data System (ADS)

    Sain, P. K.; Goyal, R. K.; Prasad, Y. V. S. S.; Bhargava, A. K.

    2016-08-01

    Three-phase polycarbonate (PC) matrix nanocomposites are prepared using the solution method. One of the nanocomposite fillers is dielectric and the other is conducting. Lead zirconate titanate (PZT) is used as the dielectric filler. The conducting fillers, nano-Cu and multi-walled carbon nanotubes (MWCNTs), are used to make two different nanocomposites, MWCNT–PZT–PC and Cu–PZT–PC. The prepared nanocomposites are characterized using density measurement, x-ray diffractometry, scanning electron microscopy, energy dispersive x-ray spectroscopy, and differential scanning calorimetry. Percolation is absent in both three-phase nanocomposites within the study’s concentration window of conducting fillers. The dielectric properties of the nanocomposites are evaluated using a precision impedance analyser. The dielectric constant of the Cu–PZT–PC nanocomposite increases to 14 (a dissipation factor of 0.17), whereas in the case of the MWCNT–PZT–PC nanocomposite it increases to 8.5 (a dissipation factor of 0.002). The melting point of both nanocomposites decreases with respect to the control PC. The frequency (1 kHz to 1 MHz) and temperature (room temperature to 200 °C) dependence of the dielectric constant and dissipation factor are examined. For the Cu–PZT–PC nanocomposites, the dielectric constant decreases with increasing frequency, whereas in the case of the MWCNT–PZT–PC nanocomposites the dielectric constant is almost constant. The dielectric constant and dissipation factor exhibit a slight temperature dependence.

  6. Polycarbonate based three-phase nanocomposite dielectrics

    NASA Astrophysics Data System (ADS)

    Sain, P. K.; Goyal, R. K.; Prasad, Y. V. S. S.; Bhargava, A. K.

    2016-08-01

    Three-phase polycarbonate (PC) matrix nanocomposites are prepared using the solution method. One of the nanocomposite fillers is dielectric and the other is conducting. Lead zirconate titanate (PZT) is used as the dielectric filler. The conducting fillers, nano-Cu and multi-walled carbon nanotubes (MWCNTs), are used to make two different nanocomposites, MWCNT-PZT-PC and Cu-PZT-PC. The prepared nanocomposites are characterized using density measurement, x-ray diffractometry, scanning electron microscopy, energy dispersive x-ray spectroscopy, and differential scanning calorimetry. Percolation is absent in both three-phase nanocomposites within the study’s concentration window of conducting fillers. The dielectric properties of the nanocomposites are evaluated using a precision impedance analyser. The dielectric constant of the Cu-PZT-PC nanocomposite increases to 14 (a dissipation factor of 0.17), whereas in the case of the MWCNT-PZT-PC nanocomposite it increases to 8.5 (a dissipation factor of 0.002). The melting point of both nanocomposites decreases with respect to the control PC. The frequency (1 kHz to 1 MHz) and temperature (room temperature to 200 °C) dependence of the dielectric constant and dissipation factor are examined. For the Cu-PZT-PC nanocomposites, the dielectric constant decreases with increasing frequency, whereas in the case of the MWCNT-PZT-PC nanocomposites the dielectric constant is almost constant. The dielectric constant and dissipation factor exhibit a slight temperature dependence.

  7. Inertial microfluidic physics.

    PubMed

    Amini, Hamed; Lee, Wonhee; Di Carlo, Dino

    2014-08-01

    Microfluidics has experienced massive growth in the past two decades, and especially with advances in rapid prototyping researchers have explored a multitude of channel structures, fluid and particle mixtures, and integration with electrical and optical systems towards solving problems in healthcare, biological and chemical analysis, materials synthesis, and other emerging areas that can benefit from the scale, automation, or the unique physics of these systems. Inertial microfluidics, which relies on the unconventional use of fluid inertia in microfluidic platforms, is one of the emerging fields that make use of unique physical phenomena that are accessible in microscale patterned channels. Channel shapes that focus, concentrate, order, separate, transfer, and mix particles and fluids have been demonstrated, however physical underpinnings guiding these channel designs have been limited and much of the development has been based on experimentally-derived intuition. Here we aim to provide a deeper understanding of mechanisms and underlying physics in these systems which can lead to more effective and reliable designs with less iteration. To place the inertial effects into context we also discuss related fluid-induced forces present in particulate flows including forces due to non-Newtonian fluids, particle asymmetry, and particle deformability. We then highlight the inverse situation and describe the effect of the suspended particles acting on the fluid in a channel flow. Finally, we discuss the importance of structured channels, i.e. channels with boundary conditions that vary in the streamwise direction, and their potential as a means to achieve unprecedented three-dimensional control over fluid and particles in microchannels. Ultimately, we hope that an improved fundamental and quantitative understanding of inertial fluid dynamic effects can lead to unprecedented capabilities to program fluid and particle flow towards automation of biomedicine, materials

  8. Microfluidic Cell Culture Device

    NASA Technical Reports Server (NTRS)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  9. Spatial Manipulation with Microfluidics

    PubMed Central

    Lin, Benjamin; Levchenko, Andre

    2015-01-01

    Biochemical gradients convey information through space, time, and concentration, and are ultimately capable of spatially resolving distinct cellular phenotypes, such as differentiation, proliferation, and migration. How these gradients develop, evolve, and function during development, homeostasis, and various disease states is a subject of intense interest across a variety of disciplines. Microfluidic technologies have become essential tools for investigating gradient sensing in vitro due to their ability to precisely manipulate fluids on demand in well-controlled environments at cellular length scales. This review will highlight their utility for studying gradient sensing along with relevant applications to biology. PMID:25905100

  10. Electro-Microfluidic Packaging

    NASA Astrophysics Data System (ADS)

    Benavides, G. L.; Galambos, P. C.

    2002-06-01

    There are many examples of electro-microfluidic products that require cost effective packaging solutions. Industry has responded to a demand for products such as drop ejectors, chemical sensors, and biological sensors. Drop ejectors have consumer applications such as ink jet printing and scientific applications such as patterning self-assembled monolayers or ejecting picoliters of expensive analytes/reagents for chemical analysis. Drop ejectors can be used to perform chemical analysis, combinatorial chemistry, drug manufacture, drug discovery, drug delivery, and DNA sequencing. Chemical and biological micro-sensors can sniff the ambient environment for traces of dangerous materials such as explosives, toxins, or pathogens. Other biological sensors can be used to improve world health by providing timely diagnostics and applying corrective measures to the human body. Electro-microfluidic packaging can easily represent over fifty percent of the product cost and, as with Integrated Circuits (IC), the industry should evolve to standard packaging solutions. Standard packaging schemes will minimize cost and bring products to market sooner.

  11. Microfluidic Biochip Design

    NASA Technical Reports Server (NTRS)

    Panzarella, Charles

    2004-01-01

    As humans prepare for the exploration of our solar system, there is a growing need for miniaturized medical and environmental diagnostic devices for use on spacecrafts, especially during long-duration space missions where size and power requirements are critical. In recent years, the biochip (or Lab-on-a-Chip) has emerged as a technology that might be able to satisfy this need. In generic terms, a biochip is a miniaturized microfluidic device analogous to the electronic microchip that ushered in the digital age. It consists of tiny microfluidic channels, pumps and valves that transport small amounts of sample fluids to biosensors that can perform a variety of tests on those fluids in near real time. It has the obvious advantages of being small, lightweight, requiring less sample fluids and reagents and being more sensitive and efficient than larger devices currently in use. Some of the desired space-based applications would be to provide smaller, more robust devices for analyzing blood, saliva and urine and for testing water and food supplies for the presence of harmful contaminants and microorganisms. Our group has undertaken the goal of adapting as well as improving upon current biochip technology for use in long-duration microgravity environments.

  12. Rapid Microfluidic Assay for the Detection of Botulinum Neurotoxin in Animal Sera

    PubMed Central

    Babrak, Lmar; Lin, Alice; Stanker, Larry H.; McGarvey, Jeffery; Hnasko, Robert

    2016-01-01

    Potent Botulinum neurotoxins (BoNTs) represent a threat to public health and safety. Botulism is a disease caused by BoNT intoxication that results in muscle paralysis that can be fatal. Sensitive assays capable of detecting BoNTs from different substrates and settings are essential to limit foodborne contamination and morbidity. In this report, we describe a rapid 96-well microfluidic double sandwich immunoassay for the sensitive detection of BoNT-A from animal sera. This BoNT microfluidic assay requires only 5 μL of serum, provides results in 75 min using a standard fluorescence microplate reader and generates minimal hazardous waste. The assay has a <30 pg·mL−1 limit of detection (LOD) of BoNT-A from spiked human serum. This sensitive microfluidic BoNT-A assay offers a fast and simplified workflow suitable for the detection of BoNT-A from serum samples of limited volume in most laboratory settings. PMID:26742073

  13. Rapid Microfluidic Assay for the Detection of Botulinum Neurotoxin in Animal Sera.

    PubMed

    Babrak, Lmar; Lin, Alice; Stanker, Larry H; McGarvey, Jeffery; Hnasko, Robert

    2016-01-01

    Potent Botulinum neurotoxins (BoNTs) represent a threat to public health and safety. Botulism is a disease caused by BoNT intoxication that results in muscle paralysis that can be fatal. Sensitive assays capable of detecting BoNTs from different substrates and settings are essential to limit foodborne contamination and morbidity. In this report, we describe a rapid 96-well microfluidic double sandwich immunoassay for the sensitive detection of BoNT-A from animal sera. This BoNT microfluidic assay requires only 5 μL of serum, provides results in 75 min using a standard fluorescence microplate reader and generates minimal hazardous waste. The assay has a <30 pg·mL(-1) limit of detection (LOD) of BoNT-A from spiked human serum. This sensitive microfluidic BoNT-A assay offers a fast and simplified workflow suitable for the detection of BoNT-A from serum samples of limited volume in most laboratory settings. PMID:26742073

  14. Solvent resistant microfluidic DNA synthesizer.

    PubMed

    Huang, Yanyi; Castrataro, Piero; Lee, Cheng-Chung; Quake, Stephen R

    2007-01-01

    We fabricated a microfluidic DNA synthesizer out of perfluoropolyether (PFPE), an elastomer with excellent chemical compatibility which makes it possible to perform organic chemical reactions, and synthesized 20-mer oligonucleotides on chip. PMID:17180201

  15. Passive microfluidic array card and reader

    SciTech Connect

    Dugan, Lawrence Christopher; Coleman, Matthew A.

    2011-08-09

    A microfluidic array card and reader system for analyzing a sample. The microfluidic array card includes a sample loading section for loading the sample onto the microfluidic array card, a multiplicity of array windows, and a transport section or sections for transporting the sample from the sample loading section to the array windows. The microfluidic array card reader includes a housing, a receiving section for receiving the microfluidic array card, a viewing section, and a light source that directs light to the array window of the microfluidic array card and to the viewing section.

  16. Towards printable open air microfluidics.

    SciTech Connect

    Collord, Andrew; Cook, Adam W.; Clem, Paul Gilbert; Fenton, Kyle Ross; Apblett, Christopher Alan; Branson, Eric D.

    2010-04-01

    We have demonstrated a novel microfluidic technique for aqueous media, which uses super-hydrophobic materials to create microfluidic channels that are open to the atmosphere. We have demonstrated the ability to perform traditional electrokinetic operations such as ionic separations and electrophoresis using these devices. The rate of evaporation was studied and found to increase with decreasing channel size, which places a limitation on the minimum size of channel that could be used for such a device.

  17. Microfluidic serial dilution ladder.

    PubMed

    Ahrar, Siavash; Hwang, Michelle; Duncan, Philip N; Hui, Elliot E

    2014-01-01

    Serial dilution is a fundamental procedure that is common to a large number of laboratory protocols. Automation of serial dilution is thus a valuable component for lab-on-a-chip systems. While a handful of different microfluidic strategies for serial dilution have been reported, approaches based on continuous flow mixing inherently consume larger amounts of sample volume and chip real estate. We employ valve-driven circulatory mixing to address these issues and also introduce a novel device structure to store each stage of the dilution process. The dilution strategy is based on sequentially mixing the rungs of a ladder structure. We demonstrate a 7-stage series of 1 : 1 dilutions with R(2) equal to 0.995 in an active device area of 1 cm(2).

  18. Enhanced Microfluidic Electromagnetic Measurements

    NASA Technical Reports Server (NTRS)

    Giovangrandi, Laurent (Inventor); Ricco, Antonio J. (Inventor); Kovacs, Gregory (Inventor)

    2015-01-01

    Techniques for enhanced microfluidic impedance spectroscopy include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. Flow in the channel is laminar. A dielectric constant of a fluid constituting either sheath flow is much less than a dielectric constant of the core fluid. Electrical impedance is measured in the channel between at least a first pair of electrodes. In some embodiments, enhanced optical measurements include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. An optical index of refraction of a fluid constituting either sheath flow is much less than an optical index of refraction of the core fluid. An optical property is measured in the channel.

  19. Inertial Focusing in Microfluidics

    PubMed Central

    Martel, Joseph M.; Toner, Mehmet

    2015-01-01

    When Segré and Silberberg in 1961 witnessed particles in a laminar pipe flow congregating at an annulus in the pipe, scientists were perplexed and spent decades learning why such behavior occurred, finally understanding that it was caused by previously unknown forces on particles in an inertial flow. The advent of microfluidics opened a new realm of possibilities for inertial focusing in the processing of biological fluids and cellular suspensions and created a field that is now rapidly expanding. Over the past five years, inertial focusing has enabled high-throughput, simple, and precise manipulation of bodily fluids for a myriad of applications in point-of-care and clinical diagnostics. This review describes the theoretical developments that have made the field of inertial focusing what it is today and presents the key applications that will make inertial focusing a mainstream technology in the future. PMID:24905880

  20. Electrodes for microfluidic applications

    DOEpatents

    Crocker, Robert W.; Harnett, Cindy K.; Rognlien, Judith L.

    2006-08-22

    An electrode device for high pressure applications. These electrodes, designed to withstand pressure of greater than 10,000 psi, are adapted for use in microfluidic devices that employ electrokinetic or electrophoretic flow. The electrode is composed, generally, of an outer electrically insulating tubular body having a porous ceramic frit material disposed in one end of the outer body. The pores of the porous ceramic material are filled with an ion conductive polymer resin. A conductive material situated on the upper surface of the porous ceramic frit material and, thus isolated from direct contact with the electrolyte, forms a gas diffusion electrode. A metal current collector, in contact with the gas diffusion electrode, provides connection to a voltage source.

  1. Digital Microfluidic Cell Culture.

    PubMed

    Ng, Alphonsus H C; Li, Bingyu Betty; Chamberlain, M Dean; Wheeler, Aaron R

    2015-01-01

    Digital microfluidics (DMF) is a droplet-based liquid-handling technology that has recently become popular for cell culture and analysis. In DMF, picoliter- to microliter-sized droplets are manipulated on a planar surface using electric fields, thus enabling software-reconfigurable operations on individual droplets, such as move, merge, split, and dispense from reservoirs. Using this technique, multistep cell-based processes can be carried out using simple and compact instrumentation, making DMF an attractive platform for eventual integration into routine biology workflows. In this review, we summarize the state-of-the-art in DMF cell culture, and describe design considerations, types of DMF cell culture, and cell-based applications of DMF. PMID:26643019

  2. Parallel Imaging Microfluidic Cytometer

    PubMed Central

    Ehrlich, Daniel J.; McKenna, Brian K.; Evans, James G.; Belkina, Anna C.; Denis, Gerald V.; Sherr, David; Cheung, Man Ching

    2011-01-01

    By adding an additional degree of freedom from multichannel flow, the parallel microfluidic cytometer (PMC) combines some of the best features of flow cytometry (FACS) and microscope-based high-content screening (HCS). The PMC (i) lends itself to fast processing of large numbers of samples, (ii) adds a 1-D imaging capability for intracellular localization assays (HCS), (iii) has a high rare-cell sensitivity and, (iv) has an unusual capability for time-synchronized sampling. An inability to practically handle large sample numbers has restricted applications of conventional flow cytometers and microscopes in combinatorial cell assays, network biology, and drug discovery. The PMC promises to relieve a bottleneck in these previously constrained applications. The PMC may also be a powerful tool for finding rare primary cells in the clinic. The multichannel architecture of current PMC prototypes allows 384 unique samples for a cell-based screen to be read out in approximately 6–10 minutes, about 30-times the speed of most current FACS systems. In 1-D intracellular imaging, the PMC can obtain protein localization using HCS marker strategies at many times the sample throughput of CCD-based microscopes or CCD-based single-channel flow cytometers. The PMC also permits the signal integration time to be varied over a larger range than is practical in conventional flow cytometers. The signal-to-noise advantages are useful, for example, in counting rare positive cells in the most difficult early stages of genome-wide screening. We review the status of parallel microfluidic cytometry and discuss some of the directions the new technology may take. PMID:21704835

  3. Digital Microfluidics Sample Analyzer

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G.; Srinivasan, Vijay; Eckhardt, Allen; Paik, Philip Y.; Sudarsan, Arjun; Shenderov, Alex; Hua, Zhishan; Pamula, Vamsee K.

    2010-01-01

    Three innovations address the needs of the medical world with regard to microfluidic manipulation and testing of physiological samples in ways that can benefit point-of-care needs for patients such as premature infants, for which drawing of blood for continuous tests can be life-threatening in their own right, and for expedited results. A chip with sample injection elements, reservoirs (and waste), droplet formation structures, fluidic pathways, mixing areas, and optical detection sites, was fabricated to test the various components of the microfluidic platform, both individually and in integrated fashion. The droplet control system permits a user to control droplet microactuator system functions, such as droplet operations and detector operations. Also, the programming system allows a user to develop software routines for controlling droplet microactuator system functions, such as droplet operations and detector operations. A chip is incorporated into the system with a controller, a detector, input and output devices, and software. A novel filler fluid formulation is used for the transport of droplets with high protein concentrations. Novel assemblies for detection of photons from an on-chip droplet are present, as well as novel systems for conducting various assays, such as immunoassays and PCR (polymerase chain reaction). The lab-on-a-chip (a.k.a., lab-on-a-printed-circuit board) processes physiological samples and comprises a system for automated, multi-analyte measurements using sub-microliter samples of human serum. The invention also relates to a diagnostic chip and system including the chip that performs many of the routine operations of a central labbased chemistry analyzer, integrating, for example, colorimetric assays (e.g., for proteins), chemiluminescence/fluorescence assays (e.g., for enzymes, electrolytes, and gases), and/or conductometric assays (e.g., for hematocrit on plasma and whole blood) on a single chip platform.

  4. Recent Progress of Microfluidics in Translational Applications

    PubMed Central

    Liu, Zongbin; Han, Xin

    2016-01-01

    Microfluidics, featuring microfabricated structures, is a technology for manipulating fluids at the micrometer scale. The small dimension and flexibility of microfluidic systems are ideal for mimicking molecular and cellular microenvironment, and show great potential in translational research and development. Here, the recent progress of microfluidics in biological and biomedical applications, including molecular analysis, cellular analysis, and chip-based material delivery and biomimetic design is presented. The potential future developments in the translational microfluidics field are also discussed. PMID:27091777

  5. Machine vision for digital microfluidics.

    PubMed

    Shin, Yong-Jun; Lee, Jeong-Bong

    2010-01-01

    Machine vision is widely used in an industrial environment today. It can perform various tasks, such as inspecting and controlling production processes, that may require humanlike intelligence. The importance of imaging technology for biological research or medical diagnosis is greater than ever. For example, fluorescent reporter imaging enables scientists to study the dynamics of gene networks with high spatial and temporal resolution. Such high-throughput imaging is increasingly demanding the use of machine vision for real-time analysis and control. Digital microfluidics is a relatively new technology with expectations of becoming a true lab-on-a-chip platform. Utilizing digital microfluidics, only small amounts of biological samples are required and the experimental procedures can be automatically controlled. There is a strong need for the development of a digital microfluidics system integrated with machine vision for innovative biological research today. In this paper, we show how machine vision can be applied to digital microfluidics by demonstrating two applications: machine vision-based measurement of the kinetics of biomolecular interactions and machine vision-based droplet motion control. It is expected that digital microfluidics-based machine vision system will add intelligence and automation to high-throughput biological imaging in the future.

  6. Machine vision for digital microfluidics

    NASA Astrophysics Data System (ADS)

    Shin, Yong-Jun; Lee, Jeong-Bong

    2010-01-01

    Machine vision is widely used in an industrial environment today. It can perform various tasks, such as inspecting and controlling production processes, that may require humanlike intelligence. The importance of imaging technology for biological research or medical diagnosis is greater than ever. For example, fluorescent reporter imaging enables scientists to study the dynamics of gene networks with high spatial and temporal resolution. Such high-throughput imaging is increasingly demanding the use of machine vision for real-time analysis and control. Digital microfluidics is a relatively new technology with expectations of becoming a true lab-on-a-chip platform. Utilizing digital microfluidics, only small amounts of biological samples are required and the experimental procedures can be automatically controlled. There is a strong need for the development of a digital microfluidics system integrated with machine vision for innovative biological research today. In this paper, we show how machine vision can be applied to digital microfluidics by demonstrating two applications: machine vision-based measurement of the kinetics of biomolecular interactions and machine vision-based droplet motion control. It is expected that digital microfluidics-based machine vision system will add intelligence and automation to high-throughput biological imaging in the future.

  7. Foams for Microfluidics

    NASA Astrophysics Data System (ADS)

    Raven, Jan-Paul

    2005-11-01

    We present an experimental investigation of the assembly of microbubbles into a 2D foam and its flow in microchannels. Using a flow focusing method, we can produce a foam in situ on a microfluidic chip for a large range of liquid fractions. We study its flow dissipation along a channel, and the effect of constrictions. Microscopic imaging allows monitoring the transition from separated bubbles into the desired foam in which bubbles are closely packed. The foam flowrate depends non-linearly on the applied pressure, displaying a threshold pressure due to capillarity. The measurements are made in a channel with a height of 250 μm, resulting in bubbles whose height to diameter aspect ratio ranges between 0.3 and 1. We also produce an ultraflat foam (reducing the channel height to about 8 μm) with a bubble aspect ratio down to 0.02; we observe a marked change in bubble shape during the flow. The control of microfoam flows provides possible applications like transporting amphiphilic molecules on interfaces or the individual handling of gas pockets.

  8. Microfluidic stretchable RF electronics.

    PubMed

    Cheng, Shi; Wu, Zhigang

    2010-12-01

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  9. Microfluidic Compartmentalized Directed Evolution

    PubMed Central

    Paegel, Brian M.; Joyce, Gerald F.

    2010-01-01

    Summary Directed evolution studies often make use of water-in-oil compartments, which conventionally are prepared by bulk emulsification, a crude process that generates non-uniform droplets and can damage biochemical reagents. A microfluidic emulsification circuit was devised that generates uniform water-in-oil droplets (21.9 ± 0.8 μm radius) with high throughput (107–108 droplets per hour). The circuit contains a radial array of aqueous flow nozzles that intersect a surrounding oil flow channel. This device was used to evolve RNA enzymes with RNA ligase activity, selecting enzymes that could resist inhibition by neomycin. Each molecule in the population had the opportunity to undergo 108-fold selective amplification within its respective compartment. Then the progeny RNAs were harvested and used to seed new compartments. During five rounds of this procedure, the enzymes acquired mutations that conferred resistance to neomycin and caused some enzymes to become dependent on neomycin for optimal activity. PMID:20659684

  10. Imaging Liquids Using Microfluidic Cells

    SciTech Connect

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li

    2013-05-10

    Chemistry occurring in the liquid and liquid surface is important in many applications. Chemical imaging of liquids using vacuum based analytical techniques is challenging due to the difficulty in working with liquids with high volatility. Recent development in microfluidics enabled and increased our capabilities to study liquid in situ using surface sensitive techniques such as electron microscopy and spectroscopy. Due to its small size, low cost, and flexibility in design, liquid cells based on microfluidics have been increasingly used in studying and imaging complex phenomena involving liquids. This paper presents a review of microfluidic cells that were developed to adapt to electron microscopes and various spectrometers for in situ chemical analysis and imaging of liquids. The following topics will be covered including cell designs, fabrication techniques, unique technical features for vacuum compatible cells, and imaging with electron microscopy and spectroscopy. Challenges are summarized and recommendations for future development priority are proposed.

  11. 3D-Printed Microfluidics.

    PubMed

    Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert

    2016-03-14

    The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia.

  12. Microfluidic devices for droplet injection

    NASA Astrophysics Data System (ADS)

    Aubrecht, Donald; Akartuna, Ilke; Weitz, David

    2012-02-01

    As picoliter-scale reaction vessels, microfluidic water-in-oil emulsions have found application for high-throughput, large-sample number analyses. Often, the biological or chemical system under investigation needs to be encapsulated into droplets to prevent cross contamination prior to the introduction of reaction reagents. Previous techniques of picoinjection or droplet synchronization and merging enable the addition of reagents to individual droplets, but present limitations on what can be added to each droplet. We present microfluidic devices that couple the strengths of picoinjection and droplet merging, allowing us to selectively add precise volume to our droplet reactions.

  13. Microfluidic device for drug delivery

    NASA Technical Reports Server (NTRS)

    Beebe, David J. (Inventor); MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Mensing, Glennys A. (Inventor)

    2010-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  14. Integrated microfluidic probe station

    NASA Astrophysics Data System (ADS)

    Perrault, C. M.; Qasaimeh, M. A.; Brastaviceanu, T.; Anderson, K.; Kabakibo, Y.; Juncker, D.

    2010-11-01

    The microfluidic probe (MFP) consists of a flat, blunt tip with two apertures for the injection and reaspiration of a microjet into a solution—thus hydrodynamically confining the microjet—and is operated atop an inverted microscope that enables live imaging. By scanning across a surface, the microjet can be used for surface processing with the capability of both depositing and removing material; as it operates under immersed conditions, sensitive biological materials and living cells can be processed. During scanning, the MFP is kept immobile and centered over the objective of the inverted microscope, a few micrometers above a substrate that is displaced by moving the microscope stage and that is flushed continuously with the microjet. For consistent and reproducible surface processing, the gap between the MFP and the substrate, the MFP's alignment, the scanning speed, the injection and aspiration flow rates, and the image capture need all to be controlled and synchronized. Here, we present an automated MFP station that integrates all of these functionalities and automates the key operational parameters. A custom software program is used to control an independent motorized Z stage for adjusting the gap, a motorized microscope stage for scanning the substrate, up to 16 syringe pumps for injecting and aspirating fluids, and an inverted fluorescence microscope equipped with a charge-coupled device camera. The parallelism between the MFP and the substrate is adjusted using manual goniometer at the beginning of the experiment. The alignment of the injection and aspiration apertures along the scanning axis is performed using a newly designed MFP screw holder. We illustrate the integrated MFP station by the programmed, automated patterning of fluorescently labeled biotin on a streptavidin-coated surface.

  15. Fabrication of plastic microfluidic components

    NASA Astrophysics Data System (ADS)

    Martin, Peter M.; Matson, Dean W.; Bennett, Wendy D.; Hammerstrom, D. J.

    1998-09-01

    Plastic components have many advantages, including ease of fabrication, low cost, chemical inertness, lightweight, and disposability. We report on the fabrication of three plastics-based microfluidic components: a motherboard, a dialysis unit, and a metal sensor. Microchannels, headers, and interconnects were produced in thin sheets (>=50 microns) of polyimide, PMMA, polyethylene, and polycarbonate using a direct-write excimer laser micromachining system. Machined sheets were laminated by thermal and adhesive bonding to form leak-tight microfluidic components. The microfluidic motherboard borrowed the `functionality on a chip' concept from the electronics industry and was the heart of a complex microfluidic analytical device. The motherboard platform was designed to be tightly integrated and self-contained (i.e., liquid flows are all confined within machined microchannels), reducing the need for tubing with fluid distribution and connectivity. This concept greatly facilitated system integration and miniaturization. As fabricated, the motherboard consisted of three fluid reservoirs connected to micropumps by microchannels. The fluids could either be pumped independently or mixed in microchannels prior to being directed to exterior analytical components via outlet ports. The microdialysis device was intended to separate electrolytic solutes from low volume samples prior to mass spectrometric analysis. The device consisted of a dialysis membrane laminated between opposed serpentine microchannels containing the sample fluid and a buffer solution. The laminated metal sensor consisted of fluid reservoirs, micro-flow channels, micropumps, mixing channels, reaction channels, and detector circuitry.

  16. Microfluidic-integrated DNA nanobiosensors.

    PubMed

    Ansari, M I Haque; Hassan, Shabir; Qurashi, Ahsanulhaq; Khanday, Firdous Ahmad

    2016-11-15

    Over the last few decades, an increased demand has emerged for integrating biosensors with microfluidic- and nanofluidic-based lab-on-chip (LOC) devices for point-of-care (POC) diagnostics, in the medical industry and environmental monitoring of pathogenic threat agents. Such a merger of microfluidics with biosensing technologies allows for the precise control of volumes, as low as one nanolitre and the integration of various types of bioassays on a single miniaturized platform. This integration offers several favorable advantages, such as low reagent consumption, automation of sample preparation, reduction in processing time, low cost analysis, minimal handling of hazardous materials, high detection accuracy, portability and disposability. This review provides a synopsis of the most recent developments in the microfluidic-integrated biosensing field by delineating the fundamental theory of microfluidics, fabrication techniques and a detailed account of the various transduction methods that are employed. Lastly, the review discusses state-of-the-art DNA biosensors with a focus on optical DNA biosensors.

  17. Bioinspired multicompartmental microfibers from microfluidics.

    PubMed

    Cheng, Yao; Zheng, Fuyin; Lu, Jie; Shang, Luoran; Xie, Zhuoying; Zhao, Yuanjin; Chen, Yongping; Gu, Zhongze

    2014-08-13

    Bioinspired multicompartmental microfibers are generated by novel capillary microfluidics. The resultant microfibers possess multicompartment body-and-shell compositions with specifically designed geometries. Potential use of these microfibers for tissue-engineering applications is demonstrated by creating multifunctional fibers with a spatially controlled encapsulation of cells.

  18. Microfluidic-integrated DNA nanobiosensors.

    PubMed

    Ansari, M I Haque; Hassan, Shabir; Qurashi, Ahsanulhaq; Khanday, Firdous Ahmad

    2016-11-15

    Over the last few decades, an increased demand has emerged for integrating biosensors with microfluidic- and nanofluidic-based lab-on-chip (LOC) devices for point-of-care (POC) diagnostics, in the medical industry and environmental monitoring of pathogenic threat agents. Such a merger of microfluidics with biosensing technologies allows for the precise control of volumes, as low as one nanolitre and the integration of various types of bioassays on a single miniaturized platform. This integration offers several favorable advantages, such as low reagent consumption, automation of sample preparation, reduction in processing time, low cost analysis, minimal handling of hazardous materials, high detection accuracy, portability and disposability. This review provides a synopsis of the most recent developments in the microfluidic-integrated biosensing field by delineating the fundamental theory of microfluidics, fabrication techniques and a detailed account of the various transduction methods that are employed. Lastly, the review discusses state-of-the-art DNA biosensors with a focus on optical DNA biosensors. PMID:27179566

  19. Arrays of horizontally-oriented mini-reservoirs generate steady microfluidic flows for continuous perfusion cell culture and gradient generation.

    PubMed

    Zhu, Xiaoyue; Yi Chu, Leonard; Chueh, Bor-han; Shen, Mingwu; Hazarika, Bhaskar; Phadke, Nandita; Takayama, Shuichi

    2004-11-01

    This paper describes the use of arrays of horizontally-oriented reservoirs to deliver liquids through microchannels at a constant flow rate over extended periods of time (hours to days). The horizontal orientation maintains a constant hydraulic pressure drop across microfluidic channels even as the volumes of liquids within the reservoirs change over time. For a given channel-reservoir system, the magnitude of the flow velocity depends linearly on the height difference between reservoirs. The simple structure and operation mechanism make this pumping system versatile. A one-inlet-one-outlet system was used to continuously deliver media for perfusion cell culture, and an array of inlet reservoirs coupled to an outlet reservoir via microchannels was used to drive flows of multiple laminar streams. The parallel pumping scheme conveniently generated various smooth and step concentration gradients, and allowed evaluation of the effect of colchicine on myoblasts. Since the reservoir arrays are configured to be compatible with commercialized multichannel pipettors designed for 96 well plate handling, this simple pumping scheme is envisioned to be broadly useful for medium to high throughput microfluidic perfusion cell culture assays, cell migration assays, multiple laminar flow drug tests, and any other applications needing multiple microfluidic streams.

  20. PDMS-based turbulent microfluidic mixer.

    PubMed

    You, Jae Bem; Kang, Kyowon; Tran, Thanh Tinh; Park, Hongkeun; Hwang, Wook Ryol; Kim, Ju Min; Im, Sung Gap

    2015-04-01

    Over the past decade, homogeneous mixing in microfluidic devices has been a critical challenge, because of the inherently low flow rates in microfluidic channels. Although several mixer designs have been suggested to achieve efficient mixing, most of them involve intricate structures requiring a series of laborious fabrication processes. Operation at high flow rates can greatly enhance mixing by induction of turbulence, but devices that can resist such a high pressure drop to induce turbulence in microfluidic channels are difficult to fabricate, especially for commonly used poly(dimethylsiloxane) (PDMS)-based microfluidic devices. We have developed a Y-shaped, turbulent microfluidic mixer made of PDMS and a glass substrate by strong bonding of the substrates to a nanoadhesive layer deposited via initiated chemical vapor deposition. The high bonding strength of the nanoadhesive layer enables safe operation of the PDMS/glass turbulent microfluidic mixer at a total water flow rate of 40 mL min(-1), corresponding to a Reynolds number, Re, of ~4423, one of the highest values achieved in a microfluidic channel. The turbulence generated as a result of the high Re allows rapid mixing of the input fluids on contact. Image analysis showed that mixing started as soon as the fluids were introduced into the mixer. The experimental results matched the numerical predictions well, demonstrating that convective mixing was dominant as a result of turbulence induced in the microfluidic channel. Using the turbulent microfluidic mixer, we have demonstrated high throughput formation of emulsions with narrower size distribution. It was shown that as the flow rate increases inside the microfluidic channel, the size distribution of resulting emulsions decreases owing to the increase in the turbulent energy dissipation. The turbulent microfluidic mixer developed in this work not only enables rapid mixing of streams, but also increases throughputs of microfluidic reactors.

  1. Complex micropatterning of proteins within microfluidic channels.

    PubMed

    Kim, Miju; Doh, Junsang

    2014-01-01

    Microfluidic channels containing protein micropatterned surfaces are useful in many bioanalytical and biological applications. In this study, we developed a new method to integrate microfluidics and protein micropatterning by attaching poly(dimethylsiloxane) (PDMS) microfluidic channels to bio-friendly photoresist films via poly(dopamine) (PDA) adhesive. A bio-friendly photoresist poly(2,2-dimethoxy nitrobenzyl methacrylate-r-methyl methacrylate-r-poly(ethylene glycol) methacrylate) (PDMP) was synthesized and used. By performing microscope projection photolithography (MPP) to the PDMP thin films within PDMS microchannels, complex micropatterns of proteins were successfully generated within microfluidic channels. PMID:25570075

  2. Implementation of Microfluidic Sandwich ELISA for Superior Detection of Plant Pathogens

    PubMed Central

    Thaitrong, Numrin; Charlermroj, Ratthaphol; Himananto, Orawan; Seepiban, Channarong; Karoonuthaisiri, Nitsara

    2013-01-01

    Rapid and economical screening of plant pathogens is a high-priority need in the seed industry. Crop quality control and disease surveillance demand early and accurate detection in addition to robustness, scalability, and cost efficiency typically required for selective breeding and certification programs. Compared to conventional bench-top detection techniques routinely employed, a microfluidic-based approach offers unique benefits to address these needs simultaneously. To our knowledge, this work reports the first attempt to perform microfluidic sandwich ELISA for Acidovorax citrulli (Ac), watermelon silver mottle virus (WSMoV), and melon yellow spot virus (MYSV) screening. The immunoassay occurs on the surface of a reaction chamber represented by a microfluidic channel. The capillary force within the microchannel draws a reagent into the reaction chamber as well as facilitates assay incubation. Because the underlying pad automatically absorbs excess fluid, the only operation required is sequential loading of buffers/reagents. Buffer selection, antibody concentrations, and sample loading scheme were optimized for each pathogen. Assay optimization reveals that the 20-folds lower sample volume demanded by the microchannel structure outweighs the 2- to 4-folds higher antibody concentrations required, resulting in overall 5–10 folds of reagent savings. In addition to cutting the assay time by more than 50%, the new platform offers 65% cost savings from less reagent consumption and labor cost. Our study also shows 12.5-, 2-, and 4-fold improvement in assay sensitivity for Ac, WSMoV, and MYSV, respectively. Practical feasibility is demonstrated using 19 real plant samples. Given a standard 96-well plate format, the developed assay is compatible with commercial fluorescent plate readers and readily amendable to robotic liquid handling systems for completely hand-free assay automation. PMID:24376668

  3. Implementation of microfluidic sandwich ELISA for superior detection of plant pathogens.

    PubMed

    Thaitrong, Numrin; Charlermroj, Ratthaphol; Himananto, Orawan; Seepiban, Channarong; Karoonuthaisiri, Nitsara

    2013-01-01

    Rapid and economical screening of plant pathogens is a high-priority need in the seed industry. Crop quality control and disease surveillance demand early and accurate detection in addition to robustness, scalability, and cost efficiency typically required for selective breeding and certification programs. Compared to conventional bench-top detection techniques routinely employed, a microfluidic-based approach offers unique benefits to address these needs simultaneously. To our knowledge, this work reports the first attempt to perform microfluidic sandwich ELISA for Acidovorax citrulli (Ac), watermelon silver mottle virus (WSMoV), and melon yellow spot virus (MYSV) screening. The immunoassay occurs on the surface of a reaction chamber represented by a microfluidic channel. The capillary force within the microchannel draws a reagent into the reaction chamber as well as facilitates assay incubation. Because the underlying pad automatically absorbs excess fluid, the only operation required is sequential loading of buffers/reagents. Buffer selection, antibody concentrations, and sample loading scheme were optimized for each pathogen. Assay optimization reveals that the 20-folds lower sample volume demanded by the microchannel structure outweighs the 2- to 4-folds higher antibody concentrations required, resulting in overall 5-10 folds of reagent savings. In addition to cutting the assay time by more than 50%, the new platform offers 65% cost savings from less reagent consumption and labor cost. Our study also shows 12.5-, 2-, and 4-fold improvement in assay sensitivity for Ac, WSMoV, and MYSV, respectively. Practical feasibility is demonstrated using 19 real plant samples. Given a standard 96-well plate format, the developed assay is compatible with commercial fluorescent plate readers and readily amendable to robotic liquid handling systems for completely hand-free assay automation. PMID:24376668

  4. Implementation of microfluidic sandwich ELISA for superior detection of plant pathogens.

    PubMed

    Thaitrong, Numrin; Charlermroj, Ratthaphol; Himananto, Orawan; Seepiban, Channarong; Karoonuthaisiri, Nitsara

    2013-01-01

    Rapid and economical screening of plant pathogens is a high-priority need in the seed industry. Crop quality control and disease surveillance demand early and accurate detection in addition to robustness, scalability, and cost efficiency typically required for selective breeding and certification programs. Compared to conventional bench-top detection techniques routinely employed, a microfluidic-based approach offers unique benefits to address these needs simultaneously. To our knowledge, this work reports the first attempt to perform microfluidic sandwich ELISA for Acidovorax citrulli (Ac), watermelon silver mottle virus (WSMoV), and melon yellow spot virus (MYSV) screening. The immunoassay occurs on the surface of a reaction chamber represented by a microfluidic channel. The capillary force within the microchannel draws a reagent into the reaction chamber as well as facilitates assay incubation. Because the underlying pad automatically absorbs excess fluid, the only operation required is sequential loading of buffers/reagents. Buffer selection, antibody concentrations, and sample loading scheme were optimized for each pathogen. Assay optimization reveals that the 20-folds lower sample volume demanded by the microchannel structure outweighs the 2- to 4-folds higher antibody concentrations required, resulting in overall 5-10 folds of reagent savings. In addition to cutting the assay time by more than 50%, the new platform offers 65% cost savings from less reagent consumption and labor cost. Our study also shows 12.5-, 2-, and 4-fold improvement in assay sensitivity for Ac, WSMoV, and MYSV, respectively. Practical feasibility is demonstrated using 19 real plant samples. Given a standard 96-well plate format, the developed assay is compatible with commercial fluorescent plate readers and readily amendable to robotic liquid handling systems for completely hand-free assay automation.

  5. Nanofluidic interfaces in microfluidic networks

    DOE PAGESBeta

    Millet, Larry J.; Doktycz, Mitchel John; Retterer, Scott T.

    2015-09-24

    The integration of nano- and microfluidic technologies enables the construction of tunable interfaces to physical and biological systems across relevant length scales. The ability to perform chemical manipulations of miniscule sample volumes is greatly enhanced through these technologies and extends the ability to manipulate and sample the local fluidic environments at subcellular, cellular and community or tissue scales. Here we describe the development of a flexible surface micromachining process for the creation of nanofluidic channel arrays integrated within SU-8 microfluidic networks. The use of a semi-porous, silicon rich, silicon nitride structural layer allows rapid release of the sacrificial silicon dioxidemore » during the nanochannel fabrication. Nanochannel openings that form the interface to biological samples are customized using focused ion beam milling. The compatibility of these interfaces with on-chip microbial culture is demonstrated.« less

  6. Nanofluidic interfaces in microfluidic networks

    SciTech Connect

    Millet, Larry J.; Doktycz, Mitchel John; Retterer, Scott T.

    2015-09-24

    The integration of nano- and microfluidic technologies enables the construction of tunable interfaces to physical and biological systems across relevant length scales. The ability to perform chemical manipulations of miniscule sample volumes is greatly enhanced through these technologies and extends the ability to manipulate and sample the local fluidic environments at subcellular, cellular and community or tissue scales. Here we describe the development of a flexible surface micromachining process for the creation of nanofluidic channel arrays integrated within SU-8 microfluidic networks. The use of a semi-porous, silicon rich, silicon nitride structural layer allows rapid release of the sacrificial silicon dioxide during the nanochannel fabrication. Nanochannel openings that form the interface to biological samples are customized using focused ion beam milling. The compatibility of these interfaces with on-chip microbial culture is demonstrated.

  7. Viscosimeter on a microfluidic chip.

    PubMed

    Guillot, Pierre; Panizza, Pascal; Salmon, Jean-Baptiste; Joanicot, Mathieu; Colin, Annie; Bruneau, Charles-Henri; Colin, Thierry

    2006-07-01

    In this work, a viscosimeter implemented on a microfluidic chip is presented. The physical principle of this system is to use laminar parallel flows in a microfluidic channel. The fluid to be studied flows side by side with a reference fluid of known viscosity. By using optical microscopy, the shape of the interface between both fluids can be determined. Knowing the flow rates of the two liquids and the geometrical features of the channel, the mean shear rate sustained by the fluid and its viscosity can thus be computed. Accurate and precise measurements of the viscosity as a function of the shear rate can be made using less than 300 microL of fluid. Several complex fluids are tested with viscosities ranging from 10(-)(3) to 70 Pa.s.

  8. Self-assembly via microfluidics.

    PubMed

    Wang, Lei; Sánchez, Samuel

    2015-12-01

    The self-assembly of amphiphilic building blocks has attracted extensive interest in myriad fields in recent years, due to their great potential in the nanoscale design of functional hybrid materials. Microfluidic techniques provide an intriguing method to control kinetic aspects of the self-assembly of molecular amphiphiles by the facile adjustment of the hydrodynamics of the fluids. Up to now, there have been several reports about one-step direct self-assembly of different building blocks with versatile and multi-shape products without templates, which demonstrated the advantages of microfluidics. These assemblies with different morphologies have great applications in various areas such as cancer therapy, micromotor fabrication, and controlled drug delivery.

  9. Liquid dielectrophoresis and surface microfluidics

    PubMed Central

    Kaler, Karan V. I. S.; Prakash, Ravi; Chugh, Dipankar

    2010-01-01

    Liquid dielectrophoresis (L-DEP), when deployed at microscopic scales on top of hydrophobic surfaces, offers novel ways of rapid and automated manipulation of very small amounts of polar aqueous samples for microfluidic applications and development of laboratory-on-a-chip devices. In this article we highlight some of the more recent developments and applications of L-DEP in handling and processing of various types of aqueous samples and reagents of biological relevance including emulsions using such microchip based surface microfluidic (SMF) devices. We highlighted the utility of these devices for on-chip bioassays including nucleic acid analysis. Furthermore, the parallel sample processing capabilities of these SMF devices together with suitable on- or off-chip detection capabilities suggest numerous applications and utility in conducting automated multiplexed assays, a capability much sought after in the high throughput diagnostic and screening assays. PMID:20697595

  10. Integrating plasmonic diagnostics and microfluidics

    PubMed Central

    Niu, Lifang; Zhang, Nan; Liu, Hong; Zhou, Xiaodong; Knoll, Wolfgang

    2015-01-01

    Plasmonics is generally divided into two categories: surface plasmon resonance (SPR) of electromagnetic modes propagating along a (noble) metal/dielectric interface and localized SPRs (LSPRs) on nanoscopic metallic structures (particles, rods, shells, holes, etc.). Both optical transducer concepts can be combined with and integrated in microfluidic devices for biomolecular analyte detections, with the benefits of small foot-print for point-of-care detection, low-cost for one-time disposal, and ease of being integrated into an array format. The key technologies in such integration include the plasmonic chip, microfluidic channel fabrication, surface bio-functionalization, and selection of the detection scheme, which are selected according to the specifics of the targeting analytes. This paper demonstrates a few examples of the many versions of how to combine plasmonics and integrated microfluidics, using different plasmonic generation mechanisms for different analyte detections. One example is a DNA sensor array using a gold film as substrate and surface plasmon fluorescence spectroscopy and microscopy as the transduction method. This is then compared to grating-coupled SPR for poly(ethylene glycol) thiol interaction detected by angle interrogation, gold nanohole based LSPR chip for biotin-strepavidin detection by wavelength shift, and gold nanoholes/nanopillars for the detection of prostate specific antigen by quantum dot labels excited by the LSPR. Our experimental results exemplified that the plasmonic integrated microfluidics is a promising tool for understanding the biomolecular interactions and molecular recognition process as well as biosensing, especially for on-site or point-of-care diagnostics. PMID:26392832

  11. Multidimensional bioseparation with modular microfluidics

    DOEpatents

    Chirica, Gabriela S.; Renzi, Ronald F.

    2013-08-27

    A multidimensional chemical separation and analysis system is described including a prototyping platform and modular microfluidic components capable of rapid and convenient assembly, alteration and disassembly of numerous candidate separation systems. Partial or total computer control of the separation system is possible. Single or multiple alternative processing trains can be tested, optimized and/or run in parallel. Examples related to the separation and analysis of human bodily fluids are given.

  12. Acoustically-driven microfluidic systems

    SciTech Connect

    Wang, A W; Benett, W J; Tarte, L R

    2000-06-23

    We have demonstrated a non-contact method of concentrating and mixing particles in a plastic microfluidic chamber employing acoustic radiation pressure. A flaw cell package has also been designed that integrates liquid sample interconnects, electrical contacts and a removable sample chamber. Experiments were performed on 1, 3, 6, and 10 {micro}m polystyrene beads. Increased antibody binding to a solid-phase substrate was observed in the presence of acoustic mixing due to improve mass transport.

  13. Continuous Flow Microfluidic Bioparticle Concentrator

    NASA Astrophysics Data System (ADS)

    Martel, Joseph M.; Smith, Kyle C.; Dlamini, Mcolisi; Pletcher, Kendall; Yang, Jennifer; Karabacak, Murat; Haber, Daniel A.; Kapur, Ravi; Toner, Mehmet

    2015-06-01

    Innovative microfluidic technology has enabled massively parallelized and extremely efficient biological and clinical assays. Many biological applications developed and executed with traditional bulk processing techniques have been translated and streamlined through microfluidic processing with the notable exception of sample volume reduction or centrifugation, one of the most widely utilized processes in the biological sciences. We utilize the high-speed phenomenon known as inertial focusing combined with hydraulic resistance controlled multiplexed micro-siphoning allowing for the continuous concentration of suspended cells into pre-determined volumes up to more than 400 times smaller than the input with a yield routinely above 95% at a throughput of 240 ml/hour. Highlighted applications are presented for how the technology can be successfully used for live animal imaging studies, in a system to increase the efficient use of small clinical samples, and finally, as a means of macro-to-micro interfacing allowing large samples to be directly coupled to a variety of powerful microfluidic technologies.

  14. Whole-Teflon microfluidic chips

    PubMed Central

    Ren, Kangning; Dai, Wen; Zhou, Jianhua; Su, Jing; Wu, Hongkai

    2011-01-01

    Although microfluidics has shown exciting potential, its broad applications are significantly limited by drawbacks of the materials used to make them. In this work, we present a convenient strategy for fabricating whole-Teflon microfluidic chips with integrated valves that show outstanding inertness to various chemicals and extreme resistance against all solvents. Compared with other microfluidic materials [e.g., poly(dimethylsiloxane) (PDMS)] the whole-Teflon chip has a few more advantages, such as no absorption of small molecules, little adsorption of biomolecules onto channel walls, and no leaching of residue molecules from the material bulk into the solution in the channel. Various biological cells have been cultured in the whole-Teflon channel. Adherent cells can attach to the channel bottom, spread, and proliferate well in the channels (with similar proliferation rate to the cells in PDMS channels with the same dimensions). The moderately good gas permeability of the Teflon materials makes it suitable to culture cells inside the microchannels for a long time. PMID:21536918

  15. Continuous Flow Microfluidic Bioparticle Concentrator

    PubMed Central

    Martel, Joseph M.; Smith, Kyle C.; Dlamini, Mcolisi; Pletcher, Kendall; Yang, Jennifer; Karabacak, Murat; Haber, Daniel A.; Kapur, Ravi; Toner, Mehmet

    2015-01-01

    Innovative microfluidic technology has enabled massively parallelized and extremely efficient biological and clinical assays. Many biological applications developed and executed with traditional bulk processing techniques have been translated and streamlined through microfluidic processing with the notable exception of sample volume reduction or centrifugation, one of the most widely utilized processes in the biological sciences. We utilize the high-speed phenomenon known as inertial focusing combined with hydraulic resistance controlled multiplexed micro-siphoning allowing for the continuous concentration of suspended cells into pre-determined volumes up to more than 400 times smaller than the input with a yield routinely above 95% at a throughput of 240 ml/hour. Highlighted applications are presented for how the technology can be successfully used for live animal imaging studies, in a system to increase the efficient use of small clinical samples, and finally, as a means of macro-to-micro interfacing allowing large samples to be directly coupled to a variety of powerful microfluidic technologies. PMID:26061253

  16. Bubbles and foams in microfluidics.

    PubMed

    Huerre, Axel; Miralles, Vincent; Jullien, Marie-Caroline

    2014-09-28

    Microfluidics offers great tools to produce highly-controlled dispersions of gas into liquid, from isolated bubbles to organized microfoams. Potential technological applications are manifold, from novel materials to scaffolds for tissue engineering or enhanced oil recovery. More fundamentally, microfluidics makes it possible to investigate the physics of complex systems such as foams at scales where the capillary forces become dominant, in model experiments involving few well-controlled parameters. In this context, this review does not have the ambition to detail in a comprehensive manner all the techniques and applications involving bubbles and foams in microfluidics. Rather, it focuses on particular consequences of working at the microscale, under confinement, and hopes to provide insight into the physics of such systems. The first part of this work focuses on bubbles, and more precisely on (i) bubble generation, where the confinement can suppress capillary instabilities while inertial effects may play a role, and (ii) bubble dynamics, paying special attention to the lubrication film between bubble and wall and the influence of confinement. The second part addresses the formation and dynamics of microfoams, emphasizing structural differences from macroscopic foams and the influence of the confinement.

  17. Modular microfluidic system for biological sample preparation

    DOEpatents

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  18. Integrating Electronics and Microfluidics on Paper.

    PubMed

    Hamedi, Mahiar M; Ainla, Alar; Güder, Firat; Christodouleas, Dionysios C; Fernández-Abedul, M Teresa; Whitesides, George M

    2016-07-01

    Paper microfluidics and printed electronics have developed independently, and are incompatible in many aspects. Monolithic integration of microfluidics and electronics on paper is demonstrated. This integration makes it possible to print 2D and 3D fluidic, electrofluidic, and electrical components on paper, and to fabricate devices using them.

  19. Microfluidic opportunities in the field of nutrition

    PubMed Central

    Li, Sixing; Kiehne, Justin; Sinoway, Lawrence I.; Cameron, Craig E.

    2013-01-01

    Nutrition has always been closely related to human health, which is a constant motivational force driving research in a variety of disciplines. Over the years, the rapidly emerging field of microfluidics has been pushing forward the healthcare industry with the development of microfluidic-based, point-of-care (POC) diagnostic devices. Though a great deal of work has been done in developing microfluidic platforms for disease diagnoses, potential microfluidic applications in the field of nutrition remain largely unexplored. In this Focus article, we would like to investigate the potential chances for microfluidics in the field of nutrition. We will first highlight some of the recent advances in microfluidic blood analysis systems that have the capacity to detect biomarkers of nutrition. Then we will examine existing examples of microfluidic devices for the detection of specific biomarkers of nutrition or nutrient content in food. Finally, we will discuss the challenges in this field and provide some insight into the future of applied microfluidics in nutrition. PMID:24056522

  20. Opportunities for microfluidic technologies in synthetic biology

    PubMed Central

    Gulati, Shelly; Rouilly, Vincent; Niu, Xize; Chappell, James; Kitney, Richard I.; Edel, Joshua B.; Freemont, Paul S.; deMello, Andrew J.

    2009-01-01

    We introduce microfluidics technologies as a key foundational technology for synthetic biology experimentation. Recent advances in the field of microfluidics are reviewed and the potential of such a technological platform to support the rapid development of synthetic biology solutions is discussed. PMID:19474079

  1. Principles, Techniques, and Applications of Tissue Microfluidics

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called "tissue microfluidics" because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets.

  2. Microfluidic tools for cell biological research

    PubMed Central

    Velve-Casquillas, Guilhem; Le Berre, Maël; Piel, Matthieu; Tran, Phong T.

    2010-01-01

    Summary Microfluidic technology is creating powerful tools for cell biologists to control the complete cellular microenvironment, leading to new questions and new discoveries. We review here the basic concepts and methodologies in designing microfluidic devices, and their diverse cell biological applications. PMID:21152269

  3. Principles, Techniques, and Applications of Tissue Microfluidics

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called tissue microfluidics because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets. The proposed principles represent a paradigm shift in microfluidic technology in three important ways: Microfluidic devices are to be directly integrated with, onto, or around tissue samples, in contrast to the conventional method of off-chip sample extraction followed by sample insertion in microfluidic devices. Architectural and operational principles of microfluidic devices are to be subordinated to suit specific tissue structure and needs, in contrast to the conventional method of building devices according to fluidic function alone and without regard to tissue structure. Sample acquisition from tissue is to be performed on-chip and is to be integrated with the diagnostic measurement within the same device, in contrast to the conventional method of off-chip sample prep and

  4. Microfluidic desalination techniques and their potential applications.

    PubMed

    Roelofs, S H; van den Berg, A; Odijk, M

    2015-09-01

    In this review we discuss recent developments in the emerging research field of miniaturized desalination. Traditionally desalination is performed to convert salt water into potable water and research is focused on improving performance of large-scale desalination plants. Microfluidic desalination offers several new opportunities in comparison to macro-scale desalination, such as providing a platform to increase fundamental knowledge of ion transport on the nano- and microfluidic scale and new microfluidic sample preparation methods. This approach has also lead to the development of new desalination techniques, based on micro/nanofluidic ion-transport phenomena, which are potential candidates for up-scaling to (portable) drinking water devices. This review assesses microfluidic desalination techniques on their applications and is meant to contribute to further implementation of microfluidic desalination techniques in the lab-on-chip community.

  5. New materials for microfluidics in biology.

    PubMed

    Ren, Kangning; Chen, Yin; Wu, Hongkai

    2014-02-01

    With its continuous progress, microfluidics has become a key enabling technology in biological research. During the past few years, the major growth of microfluidics shifted to the introduction of new materials in making microfluidic chips, primarily driven by the demand of versatile strategies to interface microfluidics with biological cell studies. Although polydimethylsiloxane is still used as primary frame material, hydrogels have been increasingly employed in cell-culture related applications. Moreover, plastics and paper are attracting more attention in commercial device fabrication. Aiming to reflect this trend, current review focuses on the progress of microfluidic chip materials over the time span of January 2011 through June 2013, and provides critical discussion of the resulting major new tools in biological research.

  6. Recent developments in microfluidics for cell studies.

    PubMed

    Xiong, Bin; Ren, Kangning; Shu, Yiwei; Chen, Yin; Shen, Bo; Wu, Hongkai

    2014-08-20

    As a technique for precisely manipulating fluid at the micrometer scale, the field of microfluidics has experienced an explosive growth over the past two decades, particularly owing to the advances in device design and fabrication. With the inherent advantages associated with its scale of operation, and its flexibility in being incorporated with other microscale techniques for manipulation and detection, microfluidics has become a major enabling technology, which has introduced new paradigms in various fields involving biological cells. A microfluidic device is able to realize functions that are not easily imaginable in conventional biological analysis, such as highly parallel, sophisticated high-throughput analysis, single-cell analysis in a well-defined manner, and tissue engineering with the capability of manipulation at the single-cell level. Major advancements in microfluidic device fabrication and the growing trend of implementing microfluidics in cell studies are presented, with a focus on biological research and clinical diagnostics.

  7. New materials for microfluidics in biology.

    PubMed

    Ren, Kangning; Chen, Yin; Wu, Hongkai

    2014-02-01

    With its continuous progress, microfluidics has become a key enabling technology in biological research. During the past few years, the major growth of microfluidics shifted to the introduction of new materials in making microfluidic chips, primarily driven by the demand of versatile strategies to interface microfluidics with biological cell studies. Although polydimethylsiloxane is still used as primary frame material, hydrogels have been increasingly employed in cell-culture related applications. Moreover, plastics and paper are attracting more attention in commercial device fabrication. Aiming to reflect this trend, current review focuses on the progress of microfluidic chip materials over the time span of January 2011 through June 2013, and provides critical discussion of the resulting major new tools in biological research. PMID:24484884

  8. Surface-micromachined microfluidic devices

    DOEpatents

    Galambos, Paul C.; Okandan, Murat; Montague, Stephen; Smith, James H.; Paul, Phillip H.; Krygowski, Thomas W.; Allen, James J.; Nichols, Christopher A.; Jakubczak, II, Jerome F.

    2003-01-01

    Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators.

  9. Active droplet generation in microfluidics.

    PubMed

    Chong, Zhuang Zhi; Tan, Say Hwa; Gañán-Calvo, Alfonso M; Tor, Shu Beng; Loh, Ngiap Hiang; Nguyen, Nam-Trung

    2016-01-01

    The reliable generation of micron-sized droplets is an important process for various applications in droplet-based microfluidics. The generated droplets work as a self-contained reaction platform in droplet-based lab-on-a-chip systems. With the maturity of this platform technology, sophisticated and delicate control of the droplet generation process is needed to address increasingly complex applications. This review presents the state of the art of active droplet generation concepts, which are categorized according to the nature of the induced energy. At the liquid/liquid interface, an energy imbalance leads to instability and droplet breakup.

  10. Microfluidic Applications of Soft Lithography

    SciTech Connect

    Rose, K A; Krulevitch, P; Hamilton, J

    2001-04-10

    The soft lithography fabrication technique was applied to three microfluidic devices. The method was used to create an original micropump design and retrofit to existing designs for a DNA manipulation device and a counter biological warfare sample preparation device. Each device presented unique and original challenges to the soft lithography application. AI1 design constraints of the retrofit devices were satisfied using PDMS devices created through variation of soft lithography methods. The micropump utilized the versatility of PDMS, creating design options not available with other materials. In all cases, the rapid processing of soft lithography reduced the fabrication time, creating faster turnaround for design modifications.

  11. Active droplet generation in microfluidics.

    PubMed

    Chong, Zhuang Zhi; Tan, Say Hwa; Gañán-Calvo, Alfonso M; Tor, Shu Beng; Loh, Ngiap Hiang; Nguyen, Nam-Trung

    2016-01-01

    The reliable generation of micron-sized droplets is an important process for various applications in droplet-based microfluidics. The generated droplets work as a self-contained reaction platform in droplet-based lab-on-a-chip systems. With the maturity of this platform technology, sophisticated and delicate control of the droplet generation process is needed to address increasingly complex applications. This review presents the state of the art of active droplet generation concepts, which are categorized according to the nature of the induced energy. At the liquid/liquid interface, an energy imbalance leads to instability and droplet breakup. PMID:26555381

  12. Magneto-Hydrodynamics Based Microfluidics

    PubMed Central

    Qian, Shizhi; Bau, Haim H.

    2009-01-01

    In microfluidic devices, it is necessary to propel samples and reagents from one part of the device to another, stir fluids, and detect the presence of chemical and biological targets. Given the small size of these devices, the above tasks are far from trivial. Magnetohydrodynamics (MHD) offers an elegant means to control fluid flow in microdevices without a need for mechanical components. In this paper, we review the theory of MHD for low conductivity fluids and describe various applications of MHD such as fluid pumping, flow control in fluidic networks, fluid stirring and mixing, circular liquid chromatography, thermal reactors, and microcoolers. PMID:20046890

  13. Microfluidic devices: useful tools for bioprocess intensification.

    PubMed

    Marques, Marco P C; Fernandes, Pedro

    2011-01-01

    The dawn of the new millennium saw a trend towards the dedicated use of microfluidic devices for process intensification in biotechnology. As the last decade went by, it became evident that this pattern was not a short-lived fad, since the deliverables related to this field of research have been consistently piling-up. The application of process intensification in biotechnology is therefore seemingly catching up with the trend already observed in the chemical engineering area, where the use of microfluidic devices has already been upgraded to production scale. The goal of the present work is therefore to provide an updated overview of the developments centered on the use of microfluidic devices for process intensification in biotechnology. Within such scope, particular focus will be given to different designs, configurations and modes of operation of microreactors, but reference to similar features regarding microfluidic devices in downstream processing will not be overlooked. Engineering considerations and fluid dynamics issues, namely related to the characterization of flow in microchannels, promotion of micromixing and predictive tools, will also be addressed, as well as reflection on the analytics required to take full advantage of the possibilities provided by microfluidic devices in process intensification. Strategies developed to ease the implementation of experimental set-ups anchored in the use of microfluidic devices will be briefly tackled. Finally, realistic considerations on the current advantages and limitation on the use of microfluidic devices for process intensification, as well as prospective near future developments in the field, will be presented.

  14. Self-contained microfluidic systems: a review.

    PubMed

    Boyd-Moss, Mitchell; Baratchi, Sara; Di Venere, Martina; Khoshmanesh, Khashayar

    2016-08-16

    Microfluidic systems enable rapid diagnosis, screening and monitoring of diseases and health conditions using small amounts of biological samples and reagents. Despite these remarkable features, conventional microfluidic systems rely on bulky expensive external equipment, which hinders their utility as powerful analysis tools outside of research laboratories. 'Self-contained' microfluidic systems, which contain all necessary components to facilitate a complete assay, have been developed to address this limitation. In this review, we provide an in-depth overview of self-contained microfluidic systems. We categorise these systems based on their operating mechanisms into three major groups: passive, hand-powered and active. Several examples are provided to discuss the structure, capabilities and shortcomings of each group. In particular, we discuss the self-contained microfluidic systems enabled by active mechanisms, due to their unique capability for running multi-step and highly controllable diagnostic assays. Integration of self-contained microfluidic systems with the image acquisition and processing capabilities of smartphones, especially those equipped with accessory optical components, enables highly sensitive and quantitative assays, which are discussed. Finally, the future trends and possible solutions to expand the versatility of self-contained, stand-alone microfluidic platforms are outlined. PMID:27425637

  15. Simplified prototyping of perfusable polystyrene microfluidics

    PubMed Central

    Tran, Reginald; Ahn, Byungwook; R. Myers, David; Qiu, Yongzhi; Sakurai, Yumiko; Moot, Robert; Mihevc, Emma; Trent Spencer, H.; Doering, Christopher; A. Lam, Wilbur

    2014-01-01

    Cell culture in microfluidic systems has primarily been conducted in devices comprised of polydimethylsiloxane (PDMS) or other elastomers. As polystyrene (PS) is the most characterized and commonly used substrate material for cell culture, microfluidic cell culture would ideally be conducted in PS-based microsystems that also enable tight control of perfusion and hydrodynamic conditions, which are especially important for culture of vascular cell types. Here, we report a simple method to prototype perfusable PS microfluidics for endothelial cell culture under flow that can be fabricated using standard lithography and wet laboratory equipment to enable stable perfusion at shear stresses up to 300 dyn/cm2 and pumping pressures up to 26 kPa for at least 100 h. This technique can also be extended to fabricate perfusable hybrid PS-PDMS microfluidics of which one application is for increased efficiency of viral transduction in non-adherent suspension cells by leveraging the high surface area to volume ratio of microfluidics and adhesion molecules that are optimized for PS substrates. These biologically compatible microfluidic devices can be made more accessible to biological-based laboratories through the outsourcing of lithography to various available microfluidic foundries. PMID:25379106

  16. Laser Ablation of Polymer Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Killeen, Kevin

    2004-03-01

    Microfluidic technology is ideal for processing precious samples of limited volumes. Some of the most important classes of biological samples are both high in sample complexity and low in concentration. Combining the elements of sample pre-concentration, chemical separation and high sensitivity detection with chemical identification is essential for realizing a functional microfluidic based analysis system. Direct write UV laser ablation has been used to rapidly fabricate microfluidic devices capable of high performance liquid chromatography (HPLC)-MS. These chip-LC/MS devices use bio-compatible, solvent resistant and flexible polymer materials such as polyimide. A novel microfluidic to rotary valve interface enables, leak free, high pressure fluid switching between multiple ports of the microfluidic chip-LC/MS device. Electrospray tips with outer dimension of 50 um and inner of 15 um are formed by ablating the polymer material concentrically around a multilayer laminated channel structure. Biological samples of digested proteins were used to evaluate the performance of these microfluidic devices. Liquid chromatography separation and similar sample pretreatments have been performed using polymeric microfluidic devices with on-chip separation channels. Mass spectrometry was performed using an Agilent Technologies 1100 series ion trap mass spectrometer. Low fmol amounts of protein samples were positively and routinely identified by searching the MS/MS spectral data against protein databases. The sensitivity and separation performance of the chip-LC devices has been found to be comparable to state of the art nano-electrospray systems.

  17. Surface-Micromachined Microfluidic Devices

    DOEpatents

    Galambos, Paul C.; Okandan, Murat; Montague, Stephen; Smith, James H.; Paul, Phillip H.; Krygowski, Thomas W.; Allen, James J.; Nichols, Christopher A.; Jakubczak, II, Jerome F.

    2004-09-28

    Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators. Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators.

  18. A waveguide based microfluidic application

    NASA Astrophysics Data System (ADS)

    Taheri, Nooshin S.; Chan, Peggy; Friend, James R.; Yeo, Leslie

    2013-12-01

    Microfluidics is based on the performance of fluids in a microenvironment. As the microfluidics research advances in the cellular behaviour, the need for improved micro devices grows. This work introduces the design and fabrication of a micro ridge waveguide to be employed in fluids manipulations. Then it investigates the characteristics of the device in order to control the movement of the fluids on top of the ridge of the waveguide. The elastic vibration is excited along the ridge of the guide with the use of thickness poled lead zirconate titanate (PZT) elements attached to both sides of the waveguide. To excite anti-symmetric or flexural mode in the ridge of the guide, the propagation velocity has been kept significantly below the Rayleigh wave velocity. The velocity reduction of 15% is achieved with the high aspect ratio ridge (H/W =3) design. A three dimensional model of the micro waveguide has also been developed to determine the vibration characteristics; the natural frequency and the considered mode of the micro waveguide through finite element analysis using ANSYS. The travelling wave along the ridge of the guide is able to transmit strong vibration to the fluid atop of the substrate. The results represents a promising approach, through recasting the waveguide structure to be suitable in fluids and particle in fluids manipulations in one dimensional environment with the strong confined energy, at smaller scale with higher vibration displacement.

  19. All-aqueous multiphase microfluidics

    PubMed Central

    Song, Yang; Sauret, Alban; Cheung Shum, Ho

    2013-01-01

    Immiscible aqueous phases, formed by dissolving incompatible solutes in water, have been used in green chemical synthesis, molecular extraction and mimicking of cellular cytoplasm. Recently, a microfluidic approach has been introduced to generate all-aqueous emulsions and jets based on these immiscible aqueous phases; due to their biocompatibility, these all-aqueous structures have shown great promises as templates for fabricating biomaterials. The physico-chemical nature of interfaces between two immiscible aqueous phases leads to unique interfacial properties, such as an ultra-low interfacial tension. Strategies to manipulate components and direct their assembly at these interfaces needs to be explored. In this paper, we review progress on the topic over the past few years, with a focus on the fabrication and stabilization of all-aqueous structures in a multiphase microfluidic platform. We also discuss future efforts needed from the perspectives of fluidic physics, materials engineering, and biology for fulfilling potential applications ranging from materials fabrication to biomedical engineering. PMID:24454609

  20. Screening of biomineralization using microfluidics.

    PubMed

    Yin, Huabing; Ji, Bozhi; Dobson, Phillip S; Mosbahi, Khedidja; Glidle, Andrew; Gadegaard, Nikolaj; Freer, Andy; Cooper, Jonathan M; Cusack, Maggie

    2009-01-01

    Biomineralization is the process where biological systems produce well-defined composite structures such as shell, teeth, and bones. Currently, there is substantial momentum to investigate the processes implicated in biomineralization and to unravel the complex roles of proteins in the control of polymorph switching. An understanding of these processes may have wide-ranging significance in health care applications and in the development of advanced materials. We have demonstrated a microfluidic approach toward these challenges. A reversibly sealed T-junction microfluidic device was fabricated to investigate the influence of extrapallial (EP) fluid proteins in polymorph control of crystal formation in mollusk shells. A range of conditions were investigated on chip, allowing fast screening of various combinations of ion, pH, and protein concentrations. The dynamic formation of crystals was monitored on chip and combined with in situ Raman to reveal the polymorph in real time. To this end, we have demonstrated the unique advantages of this integrated approach in understanding the processes involved in biomineralization and revealing information that is impossible to obtain using traditional methods.

  1. Reactions in droplets in microfluidic channels.

    PubMed

    Song, Helen; Chen, Delai L; Ismagilov, Rustem F

    2006-11-13

    Fundamental and applied research in chemistry and biology benefits from opportunities provided by droplet-based microfluidic systems. These systems enable the miniaturization of reactions by compartmentalizing reactions in droplets of femoliter to microliter volumes. Compartmentalization in droplets provides rapid mixing of reagents, control of the timing of reactions on timescales from milliseconds to months, control of interfacial properties, and the ability to synthesize and transport solid reagents and products. Droplet-based microfluidics can help to enhance and accelerate chemical and biochemical screening, protein crystallization, enzymatic kinetics, and assays. Moreover, the control provided by droplets in microfluidic devices can lead to new scientific methods and insights.

  2. High-Voltage CMOS Controller for Microfluidics.

    PubMed

    Khorasani, M; Behnam, M; van den Berg, L; Backhouse, C J; Elliott, D G

    2009-04-01

    A high-voltage microfluidic controller designed using DALSA semiconductor's 0.8-mum low-voltage/high-voltage complementary metal-oxide semiconductor/double diffused metal-oxide semiconductor process is presented. The chip's four high-voltage output drivers can switch 300 V, and the dc-dc boost converter can generate up to 68 V using external passive components. This integrated circuit represents an advancement in microfluidic technology when used in conjunction with a charge coupling device (CCD)-based optical system and a glass microfluidic channel, enabling a portable and cost-efficient platform for genetic analysis.

  3. Microfluidic systems for pathogen sensing: a review.

    PubMed

    Mairhofer, Jürgen; Roppert, Kriemhilt; Ertl, Peter

    2009-01-01

    Rapid pathogen sensing remains a pressing issue today since conventional identification methodsare tedious, cost intensive and time consuming, typically requiring from 48 to 72 h. In turn, chip based technologies, such as microarrays and microfluidic biochips, offer real alternatives capable of filling this technological gap. In particular microfluidic biochips make the development of fast, sensitive and portable diagnostic tools possible, thus promising rapid and accurate detection of a variety of pathogens. This paper will provide a broad overview of the novel achievements in the field of pathogen sensing by focusing on methods and devices that compliment microfluidics.

  4. Microfluidic biolector-microfluidic bioprocess control in microtiter plates.

    PubMed

    Funke, Matthias; Buchenauer, Andreas; Schnakenberg, Uwe; Mokwa, Wilfried; Diederichs, Sylvia; Mertens, Alan; Müller, Carsten; Kensy, Frank; Büchs, Jochen

    2010-10-15

    In industrial-scale biotechnological processes, the active control of the pH-value combined with the controlled feeding of substrate solutions (fed-batch) is the standard strategy to cultivate both prokaryotic and eukaryotic cells. On the contrary, for small-scale cultivations, much simpler batch experiments with no process control are performed. This lack of process control often hinders researchers to scale-up and scale-down fermentation experiments, because the microbial metabolism and thereby the growth and production kinetics drastically changes depending on the cultivation strategy applied. While small-scale batches are typically performed highly parallel and in high throughput, large-scale cultivations demand sophisticated equipment for process control which is in most cases costly and difficult to handle. Currently, there is no technical system on the market that realizes simple process control in high throughput. The novel concept of a microfermentation system described in this work combines a fiber-optic online-monitoring device for microtiter plates (MTPs)--the BioLector technology--together with microfluidic control of cultivation processes in volumes below 1 mL. In the microfluidic chip, a micropump is integrated to realize distinct substrate flow rates during fed-batch cultivation in microscale. Hence, a cultivation system with several distinct advantages could be established: (1) high information output on a microscale; (2) many experiments can be performed in parallel and be automated using MTPs; (3) this system is user-friendly and can easily be transferred to a disposable single-use system. This article elucidates this new concept and illustrates applications in fermentations of Escherichia coli under pH-controlled and fed-batch conditions in shaken MTPs. PMID:20517981

  5. Microfluidic microarray systems and methods thereof

    SciTech Connect

    West, Jay A. A.; Hukari, Kyle W.; Hux, Gary A.

    2009-04-28

    Disclosed are systems that include a manifold in fluid communication with a microfluidic chip having a microarray, an illuminator, and a detector in optical communication with the microarray. Methods for using these systems for biological detection are also disclosed.

  6. 3D-printed microfluidic devices.

    PubMed

    Amin, Reza; Knowlton, Stephanie; Hart, Alexander; Yenilmez, Bekir; Ghaderinezhad, Fariba; Katebifar, Sara; Messina, Michael; Khademhosseini, Ali; Tasoglu, Savas

    2016-06-20

    Microfluidics is a flourishing field, enabling a wide range of biochemical and clinical applications such as cancer screening, micro-physiological system engineering, high-throughput drug testing, and point-of-care diagnostics. However, fabrication of microfluidic devices is often complicated, time consuming, and requires expensive equipment and sophisticated cleanroom facilities. Three-dimensional (3D) printing presents a promising alternative to traditional techniques such as lithography and PDMS-glass bonding, not only by enabling rapid design iterations in the development stage, but also by reducing the costs associated with institutional infrastructure, equipment installation, maintenance, and physical space. With the recent advancements in 3D printing technologies, highly complex microfluidic devices can be fabricated via single-step, rapid, and cost-effective protocols, making microfluidics more accessible to users. In this review, we discuss a broad range of approaches for the application of 3D printing technology to fabrication of micro-scale lab-on-a-chip devices.

  7. Replaceable Microfluidic Cartridges for a PCR Biosensor

    NASA Technical Reports Server (NTRS)

    Francis, Kevin; Sullivan, Ron

    2005-01-01

    The figure depicts a replaceable microfluidic cartridge that is a component of a miniature biosensor that detects target deoxyribonucleic acid (DNA) sequences. The biosensor utilizes (1) polymerase chain reactions (PCRs) to multiply the amount of DNA to be detected, (2) fluorogenic polynucleotide probe chemicals for labeling the target DNA sequences, and (3) a high-sensitivity epifluorescence-detection optoelectronic subsystem. Microfluidics is a relatively new field of device development in which one applies techniques for fabricating microelectromechanical systems (MEMS) to miniature systems for containing and/or moving fluids. Typically, microfluidic devices are microfabricated, variously, from silicon or polymers. The development of microfluidic devices for applications that involve PCR and fluorescence-based detection of PCR products poses special challenges

  8. Multiplex single particle analysis in microfluidics.

    PubMed

    Dannhauser, D; Romeo, G; Causa, F; De Santo, I; Netti, P A

    2014-10-21

    A straightforward way to measure separated micrometric sized particles in microfluidic flow is reported. The light scattering profile (LSP) of each single particle is fully characterized by using a CMOS-camera based small angle light scattering (SALS) apparatus, ranging from 2° up to 30°. To ensure controlled particle passage through the incident laser, a viscoelastic 3D alignment effect by viscoelastic induced particle migration has been implemented in a simple and cost-effective microfluidic device. Different polystyrene particle sizes are measured in microfluidic flows and the obtained scattering signatures are matched with the Lorenz-Mie based scattering theory. The results confirm the possibility of using this apparatus for real multiplex particle analyses in microfluidic particle flows.

  9. Microfluidic Tools for Protein Crystallography

    NASA Astrophysics Data System (ADS)

    Abdallah, Bahige G.

    X-ray crystallography is the most widely used method to determine the structure of proteins, providing an understanding of their functions in all aspects of life to advance applications in fields such as drug development and renewable energy. New techniques, namely serial femtosecond crystallography (SFX), have unlocked the ability to unravel the structures of complex proteins with vital biological functions. A key step and major bottleneck of structure determination is protein crystallization, which is very arduous due to the complexity of proteins and their natural environments. Furthermore, crystal characteristics govern data quality, thus need to be optimized to attain the most accurate reconstruction of the protein structure. Crystal size is one such characteristic in which narrowed distributions with a small modal size can significantly reduce the amount of protein needed for SFX. A novel microfluidic sorting platform was developed to isolate viable ~200 nm -- ~600 nm photosystem I (PSI) membrane protein crystals from ~200 nm -- ~20 ?m crystal samples using dielectrophoresis, as confirmed by fluorescence microscopy, second-order nonlinear imaging of chiral crystals (SONICC), and dynamic light scattering. The platform was scaled-up to rapidly provide 100s of microliters of sorted crystals necessary for SFX, in which similar crystal size distributions were attained. Transmission electron microscopy was used to view the PSI crystal lattice, which remained well-ordered postsorting, and SFX diffraction data was obtained, confirming a high-quality, viable crystal sample. Simulations indicated sorted samples provided accurate, complete SFX datasets with 3500-fold less protein than unsorted samples. Microfluidic devices were also developed for versatile, rapid protein crystallization screening using nanovolumes of sample. Concentration gradients of protein and precipitant were generated to crystallize PSI, phycocyanin, and lysozyme using modified counterdiffusion

  10. Microfluidic Devices in Advanced Caenorhabditis elegans Research.

    PubMed

    Muthaiyan Shanmugam, Muniesh; Subhra Santra, Tuhin

    2016-01-01

    The study of model organisms is very important in view of their potential for application to human therapeutic uses. One such model organism is the nematode worm, Caenorhabditis elegans. As a nematode, C. elegans have ~65% similarity with human disease genes and, therefore, studies on C. elegans can be translated to human, as well as, C. elegans can be used in the study of different types of parasitic worms that infect other living organisms. In the past decade, many efforts have been undertaken to establish interdisciplinary research collaborations between biologists, physicists and engineers in order to develop microfluidic devices to study the biology of C. elegans. Microfluidic devices with the power to manipulate and detect bio-samples, regents or biomolecules in micro-scale environments can well fulfill the requirement to handle worms under proper laboratory conditions, thereby significantly increasing research productivity and knowledge. The recent development of different kinds of microfluidic devices with ultra-high throughput platforms has enabled researchers to carry out worm population studies. Microfluidic devices primarily comprises of chambers, channels and valves, wherein worms can be cultured, immobilized, imaged, etc. Microfluidic devices have been adapted to study various worm behaviors, including that deepen our understanding of neuromuscular connectivity and functions. This review will provide a clear account of the vital involvement of microfluidic devices in worm biology. PMID:27490525

  11. Microfluidic dielectrophoretic sorter using gel vertical electrodes

    PubMed Central

    Luo, Jason; Nelson, Edward L.; Li, G. P.; Bachman, Mark

    2014-01-01

    We report the development and results of a two-step method for sorting cells and small particles in a microfluidic device. This approach uses a single microfluidic channel that has (1) a microfabricated sieve which efficiently focuses particles into a thin stream, followed by (2) a dielectrophoresis (DEP) section consisting of electrodes along the channel walls for efficient continuous sorting based on dielectric properties of the particles. For our demonstration, the device was constructed of polydimethylsiloxane, bonded to a glass surface, and conductive agarose gel electrodes. Gold traces were used to make electrical connections to the conductive gel. The device had several novel features that aided performance of the sorting. These included a sieving structure that performed continuous displacement of particles into a single stream within the microfluidic channel (improving the performance of downstream DEP, and avoiding the need for additional focusing flow inlets), and DEP electrodes that were the full height of the microfluidic walls (“vertical electrodes”), allowing for improved formation and control of electric field gradients in the microfluidic device. The device was used to sort polymer particles and HeLa cells, demonstrating that this unique combination provides improved capability for continuous DEP sorting of particles in a microfluidic device. PMID:24926390

  12. Microfluidic dielectrophoretic sorter using gel vertical electrodes.

    PubMed

    Luo, Jason; Nelson, Edward L; Li, G P; Bachman, Mark

    2014-05-01

    We report the development and results of a two-step method for sorting cells and small particles in a microfluidic device. This approach uses a single microfluidic channel that has (1) a microfabricated sieve which efficiently focuses particles into a thin stream, followed by (2) a dielectrophoresis (DEP) section consisting of electrodes along the channel walls for efficient continuous sorting based on dielectric properties of the particles. For our demonstration, the device was constructed of polydimethylsiloxane, bonded to a glass surface, and conductive agarose gel electrodes. Gold traces were used to make electrical connections to the conductive gel. The device had several novel features that aided performance of the sorting. These included a sieving structure that performed continuous displacement of particles into a single stream within the microfluidic channel (improving the performance of downstream DEP, and avoiding the need for additional focusing flow inlets), and DEP electrodes that were the full height of the microfluidic walls ("vertical electrodes"), allowing for improved formation and control of electric field gradients in the microfluidic device. The device was used to sort polymer particles and HeLa cells, demonstrating that this unique combination provides improved capability for continuous DEP sorting of particles in a microfluidic device.

  13. Bistable diverter valve in microfluidics

    NASA Astrophysics Data System (ADS)

    Tesař, V.; Bandalusena, H. C. H.

    2011-05-01

    Bistable diverter valves are useful for a large number of no-moving-part flow control applications, and there is a considerable interest in using them also in microfluidics, especially for handling small pressure-driven flows. However, with decreasing Reynolds number, the Coanda effect—on which the flow diverting effect depends—becomes less effective. Authors performed a study, involving flow visualisation, PIV experiments, measurements of the flow rates, and numerical flowfield computations, aimed at clarifying behaviour of a typical fluidic valve at low Reynolds numbers. A typical fluidic valve originally developed for high Re operation was demonstrated to be useful, though with progressively limited efficiency, down to surprisingly low Re values as small as Re = 800. Also observed was a previously not reported discontinuation in the otherwise monotonic decrease in performance at Re between 1,500 and 2,000.

  14. Additive-free digital microfluidics.

    PubMed

    Freire, Sergio L S; Tanner, Brendan

    2013-07-16

    Digital microfluidics, a technique for manipulation of droplets, is becoming increasingly important for the development of miniaturized platforms for laboratory processes. Despite the enthusiasm, droplet motion is frequently hindered by the desorption of proteins or other analytes to surfaces. Current approaches to minimize this unwanted surface fouling involve the addition of extra species to the droplet or its surroundings, which might be problematic depending on the droplet content. Here, a new strategy is introduced to move droplets containing cells and other analytes on solid substrates, without extra moieties; in particular, droplets with bovine serum albumin could be moved at a concentration 2000 times higher than previously reported (without additives). This capability is achieved by using a soot-based superamphiphobic surface combined with a new device geometry, which favors droplet rolling. Contrasting with electrowetting, wetting forces are not required for droplet motion.

  15. Microfluidic control of axonal guidance

    NASA Astrophysics Data System (ADS)

    Gu, Ling; Black, Bryan; Ordonez, Simon; Mondal, Argha; Jain, Ankur; Mohanty, Samarendra

    2014-10-01

    The precision of axonal pathfinding and the accurate formation of functional neural circuitry are crucial for an organism during development as well as during adult central and peripheral nerve regeneration. While chemical cues are believed to be primarily responsible for axonal pathfinding, we hypothesize that forces due to localized fluid flow may directly affect neuronal guidance during early organ development. Here, we report direct evidence of fluid flow influencing axonal migration, producing turning angles of up to 90°. Microfluidic flow simulations indicate that an axon may experience significant bending force due to cross-flow, which may contribute to the observed axonal turning. This method of flow-based guidance was successfully used to fasciculate one advancing axon onto another, showcasing the potential of this technique to be used for the formation of in vitro neuronal circuits.

  16. Rapid microfluidic thermal cycler for nucleic acid amplification

    DOEpatents

    Beer, Neil Reginald; Vafai, Kambiz

    2015-10-27

    A system for thermal cycling a material to be thermal cycled including a microfluidic heat exchanger; a porous medium in the microfluidic heat exchanger; a microfluidic thermal cycling chamber containing the material to be thermal cycled, the microfluidic thermal cycling chamber operatively connected to the microfluidic heat exchanger; a working fluid at first temperature; a first system for transmitting the working fluid at first temperature to the microfluidic heat exchanger; a working fluid at a second temperature, a second system for transmitting the working fluid at second temperature to the microfluidic heat exchanger; a pump for flowing the working fluid at the first temperature from the first system to the microfluidic heat exchanger and through the porous medium; and flowing the working fluid at the second temperature from the second system to the heat exchanger and through the porous medium.

  17. Microfluidic devices with thick-film electrochemical detection

    DOEpatents

    Wang, Joseph; Tian, Baomin; Sahlin, Eskil

    2005-04-12

    An apparatus for conducting a microfluidic process and analysis, including at least one elongated microfluidic channel, fluidic transport means for transport of fluids through the microfluidic channel, and at least one thick-film electrode in fluidic connection with the outlet end of the microfluidic channel. The present invention includes an integrated on-chip combination reaction, separation and thick-film electrochemical detection microsystem, for use in detection of a wide range of analytes, and methods for the use thereof.

  18. Microfluidic Flow Injection Analysis with Thermal Lens Microscopic Detection for Determination of NGAL

    NASA Astrophysics Data System (ADS)

    Radovanović, Tatjana; Liu, Mingqiang; Likar, Polona; Klemenc, Matjaž; Franko, Mladen

    2015-06-01

    A combined microfluidic flow injection analysis-thermal lens microscopy (FIA-TLM) system was applied for determination of neutrophil gelatinase-associated lipocalin (NGAL)—a biomarker of acute kidney injury. NGAL was determined following a commercial ELISA assay and transfer of the resulting solution into the FIA-TLM system with a 100 m deep microchannel. At an excitation power of 100 mW, the FIA-TLM provided about seven times lower limits of detection (1.5 pg as compared to a conventional ELISA test, and a sample throughput of six samples per minute, which compares favorably with sample throughput of the microtiter plate reader, which reads 96 wells in about 30 min. Comparison of results for NGAL in plasma samples from healthy individuals and for NGAL dynamics in patients undergoing coronary angiography measured with transmission mode spectrometry on a microtiter plate reader and with FIA-TLM showed good agreement. In addition to improved LOD, the high sensitivity of FIA-TLM offers possibilities of a further reduction of the total reaction time of the NGAL ELISA test by sacrificing some of the sensitivity while reducing the duration of individual incubation steps.

  19. [Research Progress of Application of Microfluidics Techniques in Cryopreservation].

    PubMed

    Zhou, Nanfeng; Yang, Yun; Zhou, Xinli

    2015-06-01

    Microfluidics technology may be an effective method to solve some problems in cryopreservation. This review presents the research progress of microfluidics technology in the field of cell membrane transport properties, cryoprotectant addition and washout and the vitrification for cryopreservation of biological materials. Existing problems of microfluidics technology in the application of cryopreservation are summarized and future research directions are indicated as well.

  20. Polymer-based platform for microfluidic systems

    DOEpatents

    Benett, William; Krulevitch, Peter; Maghribi, Mariam; Hamilton, Julie; Rose, Klint; Wang, Amy W.

    2009-10-13

    A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.

  1. Alternative Energy: A New Frontier for Microfluidics

    NASA Astrophysics Data System (ADS)

    Buie, Cullen

    2011-03-01

    Microfuidics is classified as the physics of fluid manipulation at sub-mm length scales. Typically, microfluidic techniques benefit from small sample volumes, low power consumption, and increased surface-to-volume ratio. Because of their high surface to volume ratio, microfluidic systems often utilize surface phenomena such as wettability (i.e. droplet microfluidics) and surface charge (i.e. electrokinetics) for actuation. To date, most applications of microfluidics are in medicine or biology with the purpose of creating ``lab on a chip'' devices. However, the scale of microfluidics is favorable for other engineering problems as well. In this talk we will discuss how phenomena typically applied to lab on a chip devices can be used to enhance energy systems. Specifically, we explore electric field driven fluid and particle flows such as electrophoresis, electroosmosis, and dielectrophoresis. We will show how these phenomena can solve a diverse array of problems, from water management in fuel cells to the selection of microorganisms for bio-energy applications.

  2. Mechanically activated artificial cell by using microfluidics

    PubMed Central

    Ho, Kenneth K. Y.; Lee, Lap Man; Liu, Allen P.

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology. PMID:27610921

  3. Microfluidic devices for cell cultivation and proliferation

    PubMed Central

    Tehranirokh, Masoomeh; Kouzani, Abbas Z.; Francis, Paul S.; Kanwar, Jagat R.

    2013-01-01

    Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell culture in microperfusion systems to deliver continuous nutrient supplies for long term cell culture. It offers many opportunities to mimic the cell-cell and cell-extracellular matrix interactions of tissues by creating gradient concentrations of biochemical signals such as growth factors, chemokines, and hormones. Other applications of cell cultivation in microfluidic systems include high resolution cell patterning on a modified substrate with adhesive patterns and the reconstruction of complicated tissue architectures. In this review, recent advances in microfluidic platforms for cell culturing and proliferation, for both simple monolayer (2D) cell seeding processes and 3D configurations as accurate models of in vivo conditions, are examined. PMID:24273628

  4. Mechanically activated artificial cell by using microfluidics.

    PubMed

    Ho, Kenneth K Y; Lee, Lap Man; Liu, Allen P

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology. PMID:27610921

  5. Mechanically activated artificial cell by using microfluidics.

    PubMed

    Ho, Kenneth K Y; Lee, Lap Man; Liu, Allen P

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology.

  6. Microfluidic CODES: a scalable multiplexed electronic sensor for orthogonal detection of particles in microfluidic channels.

    PubMed

    Liu, Ruxiu; Wang, Ningquan; Kamili, Farhan; Sarioglu, A Fatih

    2016-04-21

    Numerous biophysical and biochemical assays rely on spatial manipulation of particles/cells as they are processed on lab-on-a-chip devices. Analysis of spatially distributed particles on these devices typically requires microscopy negating the cost and size advantages of microfluidic assays. In this paper, we introduce a scalable electronic sensor technology, called microfluidic CODES, that utilizes resistive pulse sensing to orthogonally detect particles in multiple microfluidic channels from a single electrical output. Combining the techniques from telecommunications and microfluidics, we route three coplanar electrodes on a glass substrate to create multiple Coulter counters producing distinct orthogonal digital codes when they detect particles. We specifically design a digital code set using the mathematical principles of Code Division Multiple Access (CDMA) telecommunication networks and can decode signals from different microfluidic channels with >90% accuracy through computation even if these signals overlap. As a proof of principle, we use this technology to detect human ovarian cancer cells in four different microfluidic channels fabricated using soft lithography. Microfluidic CODES offers a simple, all-electronic interface that is well suited to create integrated, low-cost lab-on-a-chip devices for cell- or particle-based assays in resource-limited settings.

  7. Droplet Microfluidics for Virus Discovery

    NASA Astrophysics Data System (ADS)

    Rotem, Assaf; Cockrell, Shelley; Guo, Mira; Pipas, James; Weitz, David

    2012-02-01

    The ability to detect, isolate, and characterize an infectious agent is important for diagnosing and curing infectious diseases. Detecting new viral diseases is a challenge because the number of virus particles is often low and/or localized to a small subset of cells. Even if a new virus is detected, it is difficult to isolate it from clinical or environmental samples where multiple viruses are present each with very different properties. Isolation is crucial for whole genome sequencing because reconstructing a genome from fragments of many different genomes is practically impossible. We present a Droplet Microfluidics platform that can detect, isolate and sequence single viral genomes from complex samples containing mixtures of many viruses. We use metagenomic information about the sample of mixed viruses to select a short genomic sequence whose genome we are interested in characterizing. We then encapsulate single virions from the same sample in picoliter volume droplets and screen for successful PCR amplification of the sequence of interest. The selected drops are pooled and their contents sequenced to reconstruct the genome of interest. This method provides a general tool for detecting, isolating and sequencing genetic elements in clinical and environmental samples.

  8. Surfactant adsorption kinetics in microfluidics

    PubMed Central

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore–surfactant interactions. PMID:27688765

  9. Microfluidics for research and applications in oncology.

    PubMed

    Chaudhuri, Parthiv Kant; Ebrahimi Warkiani, Majid; Jing, Tengyang; Kenry; Lim, Chwee Teck

    2016-01-21

    Cancer is currently one of the top non-communicable human diseases, and continual research and developmental efforts are being made to better understand and manage this disease. More recently, with the improved understanding in cancer biology as well as the advancements made in microtechnology and rapid prototyping, microfluidics is increasingly being explored and even validated for use in the detection, diagnosis and treatment of cancer. With inherent advantages such as small sample volume, high sensitivity and fast processing time, microfluidics is well-positioned to serve as a promising platform for applications in oncology. In this review, we look at the recent advances in the use of microfluidics, from basic research such as understanding cancer cell phenotypes as well as metastatic behaviors to applications such as the detection, diagnosis, prognosis and drug screening. We then conclude with a future outlook on this promising technology. PMID:26010996

  10. 3D-printed microfluidic automation.

    PubMed

    Au, Anthony K; Bhattacharjee, Nirveek; Horowitz, Lisa F; Chang, Tim C; Folch, Albert

    2015-04-21

    Microfluidic automation - the automated routing, dispensing, mixing, and/or separation of fluids through microchannels - generally remains a slowly-spreading technology because device fabrication requires sophisticated facilities and the technology's use demands expert operators. Integrating microfluidic automation in devices has involved specialized multi-layering and bonding approaches. Stereolithography is an assembly-free, 3D-printing technique that is emerging as an efficient alternative for rapid prototyping of biomedical devices. Here we describe fluidic valves and pumps that can be stereolithographically printed in optically-clear, biocompatible plastic and integrated within microfluidic devices at low cost. User-friendly fluid automation devices can be printed and used by non-engineers as replacement for costly robotic pipettors or tedious manual pipetting. Engineers can manipulate the designs as digital modules into new devices of expanded functionality. Printing these devices only requires the digital file and electronic access to a printer.

  11. Microfluidic systems for single DNA dynamics

    PubMed Central

    Mai, Danielle J.; Brockman, Christopher

    2012-01-01

    Recent advances in microfluidics have enabled the molecular-level study of polymer dynamics using single DNA chains. Single polymer studies based on fluorescence microscopy allow for the direct observation of non-equilibrium polymer conformations and dynamical phenomena such as diffusion, relaxation, and molecular stretching pathways in flow. Microfluidic devices have enabled the precise control of model flow fields to study the non-equilibrium dynamics of soft materials, with device geometries including curved channels, cross-slots, and microfabricated obstacles and structures. This review explores recent microfluidic systems that have advanced the study of single polymer dynamics, while identifying new directions in the field that will further elucidate the relationship between polymer microstructure and bulk rheological properties. PMID:23139700

  12. Microfluidic serpentine antennas with designed mechanical tunability.

    PubMed

    Huang, YongAn; Wang, Yezhou; Xiao, Lin; Liu, Huimin; Dong, Wentao; Yin, Zhouping

    2014-11-01

    This paper describes the design and characterization of microfluidic serpentine antennas with reversible stretchability and designed mechanical frequency modulation (FM). The microfluidic antennas are designed based on the Poisson's ratio of the elastomer in which the liquid alloy antenna is embedded, to controllably decrease, stabilize or increase its resonance frequency when being stretched. Finite element modelling was used in combination with experimental verification to investigate the effects of substrate dimensions and antenna aspect ratios on the FM sensitivity to uniaxial stretching. It could be designed within the range of -1.2 to 0.6 GHz per 100% stretch. When the aspect ratio of the serpentine antenna is between 1.0 and 1.5, the resonance frequency is stable under stretching, bending, and twisting. The presented microfluidic serpentine antenna design could be utilized in the field of wireless mobile communication for the design of wearable electronics, with a stable resonance frequency under dynamic applied strain up to 50%.

  13. 3D-printed microfluidic automation.

    PubMed

    Au, Anthony K; Bhattacharjee, Nirveek; Horowitz, Lisa F; Chang, Tim C; Folch, Albert

    2015-04-21

    Microfluidic automation - the automated routing, dispensing, mixing, and/or separation of fluids through microchannels - generally remains a slowly-spreading technology because device fabrication requires sophisticated facilities and the technology's use demands expert operators. Integrating microfluidic automation in devices has involved specialized multi-layering and bonding approaches. Stereolithography is an assembly-free, 3D-printing technique that is emerging as an efficient alternative for rapid prototyping of biomedical devices. Here we describe fluidic valves and pumps that can be stereolithographically printed in optically-clear, biocompatible plastic and integrated within microfluidic devices at low cost. User-friendly fluid automation devices can be printed and used by non-engineers as replacement for costly robotic pipettors or tedious manual pipetting. Engineers can manipulate the designs as digital modules into new devices of expanded functionality. Printing these devices only requires the digital file and electronic access to a printer. PMID:25738695

  14. Packaging of electro-microfluidic devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.

    2003-04-15

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  15. Packaging of electro-microfluidic devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Watson, Robert D.

    2002-01-01

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  16. 3D-Printed Microfluidic Automation

    PubMed Central

    Au, Anthony K.; Bhattacharjee, Nirveek; Horowitz, Lisa F.; Chang, Tim C.; Folch, Albert

    2015-01-01

    Microfluidic automation – the automated routing, dispensing, mixing, and/or separation of fluids through microchannels – generally remains a slowly-spreading technology because device fabrication requires sophisticated facilities and the technology’s use demands expert operators. Integrating microfluidic automation in devices has involved specialized multi-layering and bonding approaches. Stereolithography is an assembly-free, 3D-printing technique that is emerging as an efficient alternative for rapid prototyping of biomedical devices. Here we describe fluidic valves and pumps that can be stereolithographically printed in optically-clear, biocompatible plastic and integrated within microfluidic devices at low cost. User-friendly fluid automation devices can be printed and used by non-engineers as replacement for costly robotic pipettors or tedious manual pipetting. Engineers can manipulate the designs as digital modules into new devices of expanded functionality. Printing these devices only requires the digital file and electronic access to a printer. PMID:25738695

  17. Microfluidic sampling system for tissue analytics

    PubMed Central

    Hokkanen, A.; Stuns, I.; Schmid, P.; Kokkonen, A.; Gao, F.; Steinecker, A.; Budczies, J.; Heimala, P.; Hakalahti, L.

    2015-01-01

    We have developed a microfluidics based sampling system for tissue analytics. The proof-of-concept of the sampling system was demonstrated by extracting lipid samples from tissue biopsies. The sample collection system consists of a disposable silicon based multiport microneedle integrated with polymer microfluidics. The polymethyl methacrylate polymer microfluidic chip has a 10 μl sample reservoir and actuation membranes for liquid pumping. A special automated robotic system was developed to control the positioning of the needle and the sampling procedure on preselected spots on the tissue. Real breast cancer tissue samples were used to test the feasibility of the sampling system. We successfully measured indicative cancer biomarkers from the tissue surface. Phosphatidylcholine and phosphoethanolamine were extracted from the tissue membrane with methyl tert-butyl ether solvent and detected by mass spectrometry. In the future, this tool could be used in characterization of preoperative biopsies and tumour tissues removed during surgery. PMID:26421088

  18. Droplet microfluidics in (bio)chemical analysis.

    PubMed

    Basova, Evgenia Yu; Foret, Frantisek

    2015-01-01

    Droplet microfluidics may soon change the paradigm of performing chemical analyses and related instrumentation. It can improve not only the analysis scale, possibility for sensitivity improvement, and reduced consumption of chemical and biological reagents, but also the speed of performing a variety of unit operations. At present, microfluidic platforms can reproducibly generate monodisperse droplet populations at kHz or higher rates with droplet sizes suitable for high-throughput experiments, single-cell detection or even single molecule analysis. In addition to being used as microreactors with volume in the micro- to femtoliter range, droplet based systems have also been used to directly synthesize particles and encapsulate biological entities for biomedicine and biotechnology applications. This minireview summarizes various droplet microfluidics operations and applications for (bio)chemical assays described in the literature during the past few years.

  19. A perspective on microfluidic biofuel cells

    PubMed Central

    Lee, Jin wook; Kjeang, Erik

    2010-01-01

    This review article presents how microfluidic technologies and biological materials are paired to assist in the development of low cost, green energy fuel cell systems. Miniaturized biological fuel cells, employing enzymes or microorganisms as biocatalysts in an environmentally benign configuration, can become an attractive candidate for small-scale power source applications such as biological sensors, implantable medical devices, and portable electronics. State-of-the-art biofuel cell technologies are reviewed with emphasis on microfabrication compatibility and microfluidic fuel cell designs. Integrated microfluidic biofuel cell prototypes are examined with comparisons of their performance achievements and fabrication methods. The technical challenges for further developments and the potential research opportunities for practical cell designs are discussed. PMID:21139699

  20. Molecular Imaging Probe Development using Microfluidics

    PubMed Central

    Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Wu, Anna M.; Tomlinson, James S.; Shen, Clifton K.-F.

    2012-01-01

    In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional systems. Numerous chemical reactions have been successfully performed in micro-reactors and the results convincingly demonstrate with great benefits to aid synthetic procedures, such as purer products, higher yields, shorter reaction times compared to the corresponding batch/macroscale reactions, and more benign reaction conditions. Several ‘proof-of-principle’ examples of molecular imaging probe syntheses using microfluidics, along with basics of device architecture and operation, and their potential limitations are discussed here. PMID:22977436

  1. Microfluidic Pumps Containing Teflon [Trademark] AF Diaphragms

    NASA Technical Reports Server (NTRS)

    Willis, Peter; White, Victor; Grunthaner, Frank; Ikeda, Mike; Mathies, Richard A.

    2009-01-01

    Microfluidic pumps and valves based on pneumatically actuated diaphragms made of Teflon AF polymers are being developed for incorporation into laboratory-on-a-chip devices that must perform well over temperature ranges wider than those of prior diaphragm-based microfluidic pumps and valves. Other potential applications include implanted biomedical microfluidic devices, wherein the biocompatability of Teflon AF polymers would be highly advantageous. These pumps and valves have been demonstrated to function stably after cycling through temperatures from -125 to 120 C. These pumps and valves are intended to be successors to similar prior pumps and valves containing diaphragms made of polydimethylsiloxane (PDMS) [commonly known as silicone rubber]. The PDMS-containing valves ae designed to function stably only within the temperature range from 5 to 80 C. Undesirably, PDMS membranes are somwehat porous and retain water. PDMS is especially unsuitable for use at temperatures below 0 C because the formation of ice crystals increases porosity and introduces microshear.

  2. Droplets and Bubbles in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Anna, Shelley Lynn

    2016-01-01

    Precise, tunable emulsions and foams produced in microfluidic geometries have found wide application in biochemical analysis and materials synthesis and characterization. Superb control of the volume, uniformity, and generation rate of droplets and bubbles arises from unique features of the microscale behavior of fluid interfaces. Fluid interfaces confined within microfluidic channels behave quite differently than their counterparts in unbounded flows. Confinement inhibits capillary instabilities so that breakup occurs by largely quasi-static mechanisms. The three-dimensional flow near confined interfaces in rectangular geometries and feedback effects from resistance changes in the entire microfluidic network play important roles in regulating the interfacial deformation. Timescales for transport of surfactants and particles to interfaces compete with flow timescales at the microscale, providing further opportunity for tuning the interfacial coverage and properties of individual droplets and bubbles.

  3. A perspective on microfluidic biofuel cells.

    PubMed

    Lee, Jin Wook; Kjeang, Erik

    2010-01-01

    This review article presents how microfluidic technologies and biological materials are paired to assist in the development of low cost, green energy fuel cell systems. Miniaturized biological fuel cells, employing enzymes or microorganisms as biocatalysts in an environmentally benign configuration, can become an attractive candidate for small-scale power source applications such as biological sensors, implantable medical devices, and portable electronics. State-of-the-art biofuel cell technologies are reviewed with emphasis on microfabrication compatibility and microfluidic fuel cell designs. Integrated microfluidic biofuel cell prototypes are examined with comparisons of their performance achievements and fabrication methods. The technical challenges for further developments and the potential research opportunities for practical cell designs are discussed.

  4. MEMS and microfluidics for diagnostics devices.

    PubMed

    Rosen, Y; Gurman, P

    2010-06-01

    There are conditions in clinical medicine demanding critical therapeutic decisions. These conditions necessitate accuracy, rapidity, accessibility, cost-effectiveness and mobility. New technologies have been developed in order to address these challenges. Microfluidics and Micro Electro-Mechanical Systems are two of such technologies. Microfluidics, a discipline that involves processing fluids at the microscale in etched microchannels, is being used to build lab- on-a-chip systems to run chemical and biological assays. These systems are being transformed into handheld devices designed to be used at remote settings or at the bedside. MEMS are microscale electromechanical elements integrated in lab chip systems or used as individual components. MEMS based sensors represents a highly developed field with successful commercialized products currently being incorporated into vitro,ex vivo and in vivo devices. In the present paper several examples of microfluidic devices and MEMS sensors are introduced together with some current examples of commercialized products. Future challenges and trends will be discussed. PMID:20199381

  5. A microfluidic toolbox approach to CBRNE sensing

    NASA Astrophysics Data System (ADS)

    Gärtner, Claudia; Klemm, Richard; Hlawatsch, Nadine; Becker, Holger

    2012-06-01

    Microfluidics has proven to be a very effective technology for the identification of biological and chemical analytes in a CBRNE scenario. As it will be shown in the following, the required steps of those analytical processes are manifold making the development of an integrated microfluidic device a complicated project with a high level of technological risk, because all necessary analytical processes have to be implemented into a single device. The implementation is initiated by a dissection of the biochemical workflow into mandatory bio-analytical steps and the resulting protocol for each of those steps is translated into an appropriate design of a chip-based unit. In this report, examples for such chipbased functional modules are given. In addition, examples for a merging of positively tested modules into an integrated chip are shown and, finally, representatives for a smooth interaction between outer world, microfluidic chip, and chip driving instrument are presented.

  6. Polycarbonate-Based Blends for Optical Non-linear Applications

    NASA Astrophysics Data System (ADS)

    Stanculescu, F.; Stanculescu, A.

    2016-02-01

    This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.

  7. Polycarbonate-Based Blends for Optical Non-linear Applications.

    PubMed

    Stanculescu, F; Stanculescu, A

    2016-12-01

    This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.

  8. Polycarbonate-Based Blends for Optical Non-linear Applications.

    PubMed

    Stanculescu, F; Stanculescu, A

    2016-12-01

    This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised. PMID:26873262

  9. Microfluidic Assessment of Frying Oil Degradation

    NASA Astrophysics Data System (ADS)

    Liu, Mei; Xie, Shaorong; Ge, Ji; Xu, Zhensong; Wu, Zhizheng; Ru, Changhai; Luo, Jun; Sun, Yu

    2016-06-01

    Monitoring the quality of frying oil is important for the health of consumers. This paper reports a microfluidic technique for rapidly quantifying the degradation of frying oil. The microfluidic device generates monodispersed water-in-oil droplets and exploits viscosity and interfacial tension changes of frying oil samples over their frying/degradation process. The measured parameters were correlated to the total polar material percentage that is widely used in the food industry. The results reveal that the steady-state length of droplets can be used for unambiguously assessing frying oil quality degradation.

  10. Active liquid degassing in microfluidic systems.

    PubMed

    Karlsson, J Mikael; Gazin, Muriel; Laakso, Sanna; Haraldsson, Tommy; Malhotra-Kumar, Surbhi; Mäki, Minna; Goossens, Herman; van der Wijngaart, Wouter

    2013-11-21

    We present a method for efficient air bubble removal in microfluidic applications. Air bubbles are extracted from a liquid chamber into a vacuum chamber through a semipermeable membrane, consisting of PDMS coated with amorphous Teflon(®) AF 1600. Whereas air is efficiently extracted through the membrane, water loss is greatly reduced by the Teflon even at elevated temperatures. We present the water loss and permeability change with the amount of added Teflon AF to the membrane. Also, we demonstrate bubble-free, multiplex DNA amplification using PCR in a PDMS microfluidic device. PMID:24056885

  11. Physics and applications of microfluidics in biology.

    PubMed

    Beebe, David J; Mensing, Glennys A; Walker, Glenn M

    2002-01-01

    Fluid flow at the microscale exhibits unique phenomena that can be leveraged to fabricate devices and components capable of performing functions useful for biological studies. The physics of importance to microfluidics are reviewed. Common methods of fabricating microfluidic devices and systems are described. Components, including valves, mixers, and pumps, capable of controlling fluid flow by utilizing the physics of the microscale are presented. Techniques for sensing flow characteristics are described and examples of devices and systems that perform bioanalysis are presented. The focus of this review is microscale phenomena and the use of the physics of the scale to create devices and systems that provide functionality useful to the life sciences.

  12. Droplet actuation in an electrified microfluidic network.

    PubMed

    Wehking, Jonathan D; Kumar, Ranganathan

    2015-02-01

    This work demonstrates that liquid droplet emulsions in a microchannel can be deformed, decelerated and/or pinned by applying a suitable electrical potential. By concentrating a potential gradient at the corners, we show that different droplets can be passively binned by size and on demand in a branched microfluidic device. The deformation, deceleration, squeezing and release of droplets in a three-dimensional numerical simulation are qualitatively verified by experiments in a PDMS microfluidic device. The forces required for pinning or binning a droplet provide a delicate balance between hydrodynamics and the electric field, and are obtained using appropriate non-dimensional parameters. PMID:25435073

  13. Pulsed laser triggered high speed microfluidic switch

    NASA Astrophysics Data System (ADS)

    Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu

    2008-10-01

    We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.

  14. Microfluidic device for acoustic cell lysis

    SciTech Connect

    Branch, Darren W.; Cooley, Erika Jane; Smith, Gennifer Tanabe; James, Conrad D.; McClain, Jaime L.

    2015-08-04

    A microfluidic acoustic-based cell lysing device that can be integrated with on-chip nucleic acid extraction. Using a bulk acoustic wave (BAW) transducer array, acoustic waves can be coupled into microfluidic cartridges resulting in the lysis of cells contained therein by localized acoustic pressure. Cellular materials can then be extracted from the lysed cells. For example, nucleic acids can be extracted from the lysate using silica-based sol-gel filled microchannels, nucleic acid binding magnetic beads, or Nafion-coated electrodes. Integration of cell lysis and nucleic acid extraction on-chip enables a small, portable system that allows for rapid analysis in the field.

  15. Microfluidic Assessment of Frying Oil Degradation.

    PubMed

    Liu, Mei; Xie, Shaorong; Ge, Ji; Xu, Zhensong; Wu, Zhizheng; Ru, Changhai; Luo, Jun; Sun, Yu

    2016-01-01

    Monitoring the quality of frying oil is important for the health of consumers. This paper reports a microfluidic technique for rapidly quantifying the degradation of frying oil. The microfluidic device generates monodispersed water-in-oil droplets and exploits viscosity and interfacial tension changes of frying oil samples over their frying/degradation process. The measured parameters were correlated to the total polar material percentage that is widely used in the food industry. The results reveal that the steady-state length of droplets can be used for unambiguously assessing frying oil quality degradation.

  16. Detection methods for centrifugal microfluidic platforms.

    PubMed

    Burger, Robert; Amato, Letizia; Boisen, Anja

    2016-02-15

    Centrifugal microfluidics has attracted much interest from academia as well as industry, since it potentially offers solutions for affordable, user-friendly and portable biosensing. A wide range of so-called fluidic unit operations, e.g. mixing, metering, liquid routing, and particle separation, have been developed and allow automation and integration of complex assay protocols in lab-on-a-disc systems. Besides liquid handling, the detection strategy for reading out the assay is crucial for developing a fully integrated system. In this review, we focus on biosensors and readout methods for the centrifugal microfluidics platform and cover optical as well as mechanical and electrical detection principles.

  17. Microfluidic fuel cells for energy generation.

    PubMed

    Safdar, M; Jänis, J; Sánchez, S

    2016-08-01

    Sustainable energy generation is of recent interest due to a growing energy demand across the globe and increasing environmental issues caused by conventional non-renewable means of power generation. In the context of microsystems, portable electronics and lab-on-a-chip based (bio)chemical sensors would essentially require fully integrated, reliable means of power generation. Microfluidic-based fuel cells can offer unique advantages compared to conventional fuel cells such as high surface area-to-volume ratio, ease of integration, cost effectiveness and portability. Here, we summarize recent developments which utilize the potential of microfluidic devices for energy generation. PMID:27367869

  18. Micro-Fluidic Device for Drug Delivery

    NASA Technical Reports Server (NTRS)

    Beebe, David J. (Inventor); MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Mensing, Glennys A. (Inventor)

    2014-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  19. Rapid Protein Separations in Microfluidic Devices

    NASA Technical Reports Server (NTRS)

    Fan, Z. H.; Das, Champak; Xia, Zheng; Stoyanov, Alexander V.; Fredrickson, Carl K.

    2004-01-01

    This paper describes fabrication of glass and plastic microfluidic devices for protein separations. Although the long-term goal is to develop a microfluidic device for two-dimensional gel electrophoresis, this paper focuses on the first dimension-isoelectric focusing (IEF). A laser-induced fluorescence (LIF) imaging system has been built for imaging an entire channel in an IEF device. The whole-channel imaging eliminates the need to migrate focused protein bands, which is required if a single-point detector is used. Using the devices and the imaging system, we are able to perform IEF separations of proteins within minutes rather than hours in traditional bench-top instruments.

  20. Microfluidic Assessment of Frying Oil Degradation

    PubMed Central

    Liu, Mei; Xie, Shaorong; Ge, Ji; Xu, Zhensong; Wu, Zhizheng; Ru, Changhai; Luo, Jun; Sun, Yu

    2016-01-01

    Monitoring the quality of frying oil is important for the health of consumers. This paper reports a microfluidic technique for rapidly quantifying the degradation of frying oil. The microfluidic device generates monodispersed water-in-oil droplets and exploits viscosity and interfacial tension changes of frying oil samples over their frying/degradation process. The measured parameters were correlated to the total polar material percentage that is widely used in the food industry. The results reveal that the steady-state length of droplets can be used for unambiguously assessing frying oil quality degradation. PMID:27312884

  1. Microfluidic Assessment of Frying Oil Degradation.

    PubMed

    Liu, Mei; Xie, Shaorong; Ge, Ji; Xu, Zhensong; Wu, Zhizheng; Ru, Changhai; Luo, Jun; Sun, Yu

    2016-01-01

    Monitoring the quality of frying oil is important for the health of consumers. This paper reports a microfluidic technique for rapidly quantifying the degradation of frying oil. The microfluidic device generates monodispersed water-in-oil droplets and exploits viscosity and interfacial tension changes of frying oil samples over their frying/degradation process. The measured parameters were correlated to the total polar material percentage that is widely used in the food industry. The results reveal that the steady-state length of droplets can be used for unambiguously assessing frying oil quality degradation. PMID:27312884

  2. Recent developments in microfluidics-based chemotaxis studies.

    PubMed

    Wu, Jiandong; Wu, Xun; Lin, Francis

    2013-07-01

    Microfluidic devices can better control cellular microenvironments compared to conventional cell migration assays. Over the past few years, microfluidics-based chemotaxis studies showed a rapid growth. New strategies were developed to explore cell migration in manipulated chemical gradients. In addition to expanding the use of microfluidic devices for a broader range of cell types, microfluidic devices were used to study cell migration and chemotaxis in complex environments. Furthermore, high-throughput microfluidic chemotaxis devices and integrated microfluidic chemotaxis systems were developed for medical and commercial applications. In this article, we review recent developments in microfluidics-based chemotaxis studies and discuss the new trends in this field observed over the past few years.

  3. Microfluidics and Raman microscopy: current applications and future challenges.

    PubMed

    Chrimes, Adam F; Khoshmanesh, Khashayar; Stoddart, Paul R; Mitchell, Arnan; Kalantar-Zadeh, Kourosh

    2013-07-01

    Raman microscopy systems are becoming increasingly widespread and accessible for characterising chemical species. Microfluidic systems are also progressively finding their way into real world applications. Therefore, it is anticipated that the integration of Raman systems with microfluidics will become increasingly attractive and practical. This review aims to provide an overview of Raman microscopy-microfluidics integrated systems for researchers who are actively interested in utilising these tools. The fundamental principles and application strengths of Raman microscopy are discussed in the context of microfluidics. Various configurations of microfluidics that incorporate Raman microscopy methods are presented, with applications highlighted. Data analysis methods are discussed, with a focus on assisting the interpretation of Raman-microfluidics data from complex samples. Finally, possible future directions of Raman-microfluidic systems are presented.

  4. Microfluidic flow counterbalanced capillary electrophoresis.

    PubMed

    Xia, Ling; Dutta, Debashis

    2013-04-01

    Flow counterbalanced capillary electrophoresis (FCCE) offers a powerful approach to realizing difficult charge based separations in compact microchip devices with application of relatively small electrical voltages. The need for dynamically controlling the pressure-gradient in the FCCE column however presents a significant challenge in implementing this technique on the microchip platform. In this article, we report the use of a simple on-chip pumping unit that allows precise introduction of a periodic pressure-driven backflow into a microfluidic separation channel enabling an FCCE analysis. The backflow in our device was produced by fabricating a shallow segment (0.5 μm deep) downstream of the analysis column (5 μm deep) and applying an electric field across it. A mismatch in the electroosmotic transport rate at the interface of this segment was shown to yield a pressure-gradient that could reverse the flow of the analyte bands without inverting the direction of the electric field. Although such a pressure-gradient also led to additional band broadening in the system, overall, the separation resolution of our device was observed to improve with an increasing number of back-and-forth sample passes through the analysis channel. For our current design, the corresponding improvement in the effective separation length was as much as 52% of the actual distance travelled by the chosen FITC-labeled amino acid samples. The reported device is well suited for further miniaturization of the FCCE method to the nanofluidic length scale which likely would improve its performance, and is easily integrable to other analytical procedures on the microchip platform for lab-on-a-chip applications. PMID:23420375

  5. Development & Characterization of Multifunctional Microfluidic Materials

    NASA Astrophysics Data System (ADS)

    Ucar, Ahmet Burak

    The field of microfluidics has been mostly investigated for miniaturized lab on a chip devices for analytical and clinical applications. However, there is an emerging class of "smart" microfluidic materials, combining microfluidics with soft polymers to yield new functionalities. The best inspiration for such materials found in nature is skin, whose functions are maintained and controlled by a vascular "microfluidic" network. We report here the development and characterization of a few new classes of microfluidic materials. First, we introduced microfluidic materials that can change their stiffness on demand. These materials were based on an engineered microchannel network embedded into a matrix of polydimethylsiloxane (PDMS), whose channels were filled with a liquid photoresist (SU- 8). The elastomer filled with the photoresist was initially soft. The materials were shaped into a desired geometry and then exposed to UV-light. Once photocured, the material preserved the defined shape and it could be bent, twisted or stretched with a very high recoverable strain. As soon as the external force was removed the material returned back to its predefined shape. Thus, the polymerized SU-8 acted as the 'endoskeleton' of the microfluidic network, which drastically increased the composite's elastic and bending moduli. Second, we demonstrated a class of simple and versatile soft microfluidic materials that can be turned optically transparent or colored on demand. These materials were made in the form of flexible sheets containing a microchannel network embedded in PDMS, similar to the photocurable materials. However, this time the channels were filled with a glycerolwater mixture, whose refractive index was matched with that of the PDMS matrix. By pumping such dye solutions into the channel network and consecutively replacing the medium, we showed that we can control the material's color and light transmittance in the visible and near-infrared regions, which can be used for

  6. Development & Characterization of Multifunctional Microfluidic Materials

    NASA Astrophysics Data System (ADS)

    Ucar, Ahmet Burak

    The field of microfluidics has been mostly investigated for miniaturized lab on a chip devices for analytical and clinical applications. However, there is an emerging class of "smart" microfluidic materials, combining microfluidics with soft polymers to yield new functionalities. The best inspiration for such materials found in nature is skin, whose functions are maintained and controlled by a vascular "microfluidic" network. We report here the development and characterization of a few new classes of microfluidic materials. First, we introduced microfluidic materials that can change their stiffness on demand. These materials were based on an engineered microchannel network embedded into a matrix of polydimethylsiloxane (PDMS), whose channels were filled with a liquid photoresist (SU- 8). The elastomer filled with the photoresist was initially soft. The materials were shaped into a desired geometry and then exposed to UV-light. Once photocured, the material preserved the defined shape and it could be bent, twisted or stretched with a very high recoverable strain. As soon as the external force was removed the material returned back to its predefined shape. Thus, the polymerized SU-8 acted as the 'endoskeleton' of the microfluidic network, which drastically increased the composite's elastic and bending moduli. Second, we demonstrated a class of simple and versatile soft microfluidic materials that can be turned optically transparent or colored on demand. These materials were made in the form of flexible sheets containing a microchannel network embedded in PDMS, similar to the photocurable materials. However, this time the channels were filled with a glycerolwater mixture, whose refractive index was matched with that of the PDMS matrix. By pumping such dye solutions into the channel network and consecutively replacing the medium, we showed that we can control the material's color and light transmittance in the visible and near-infrared regions, which can be used for

  7. Exosome isolation: a microfluidic road-map.

    PubMed

    Liga, A; Vliegenthart, A D B; Oosthuyzen, W; Dear, J W; Kersaudy-Kerhoas, M

    2015-06-01

    Exosomes, first isolated 30 years ago, are nanoscale vesicles shed by most types of cells. The nucleic acid rich content of these nanoparticles, floating in virtually all bodily fluids, has great potential for non-invasive molecular diagnostics and may represent a novel therapeutic delivery system. However, current isolation techniques such as ultracentrifugation are not convenient and do not result in high purity isolation. This represents an interesting challenge for microfluidic technologies, from a cost-effective perspective as well as for enhanced purity capabilities, and point-of-care acquisition and diagnosis. In this frontier review, we present the current challenges, comment the first microfluidic advances in this new field and propose a roadmap for future developments. This review enables biologists and clinicians familiar with exosome enrichment to assess the performance of novel microfluidic devices and, equally, enables microfluidic engineers to educate themselves about this new class of promising biomarker-rich particles and the challenges arising from their clinical use. PMID:25940789

  8. Microfluidic biosensors for intelligent metabolite monitoring

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Nitin; Park, Jongwon; Kim, Chang-Soo

    2007-09-01

    We present an intelligent microfluidic system with oxidase enzyme coupled biosensors. Baseline (zero-value) drift and sensitivity degradation are two common problems related with biosensors. In order to overcome these problems there is a great need for integrating an on-demand, in situ self-diagnosis and self-calibration unit along with the sensor. Utilizing the microfluidic technology, we explore the feasibility of implementing this function without any externally coupled bulky apparatus. A microsystem including a microfluidic channel and calibration electrodes are prepared by microfabrication techniques. A novel method of using hydrogen and oxygen bubbles generated by electrolysis of water is used to saturate the solution with these gases in the microfluidic channel where the biosensor is placed. The hydrogen bubble provides oxygen-depleted microenvironment to conduct a zero-value calibration procedure for the sensor. The oxygen bubble provides high sensitivity and constant oxygen background environment to allow stable enzyme reactions that is not limited or perturbed by the fluctuation of background oxygen in sample solutions. Commercial oxygen sensors and pH sensors are used to confirm whether saturation or depletion of oxygen has occurred with minimum local pH change near the sensor during the electrolytic bubble generation. The glucose data obtained from the experiments assure that our proposed method is promising to overcome the above mentioned two problems.

  9. Microfluidic distillation chip for methanol concentration detection.

    PubMed

    Wang, Yao-Nan; Liu, Chan-Chiung; Yang, Ruey-Jen; Ju, Wei-Jhong; Fu, Lung-Ming

    2016-03-17

    An integrated microfluidic distillation system is proposed for separating a mixed ethanol-methanol-water solution into its constituent components. The microfluidic chip is fabricated using a CO2 laser system and comprises a serpentine channel, a boiling zone, a heating zone, and a cooled collection chamber filled with de-ionized (DI) water. In the proposed device, the ethanol-methanol-water solution is injected into the microfluidic chip and driven through the serpentine channel and into the collection chamber by means of a nitrogen carrier gas. Following the distillation process, the ethanol-methanol vapor flows into the collection chamber and condenses into the DI water. The resulting solution is removed from the collection tank and reacted with a mixed indicator. Finally, the methanol concentration is inversely derived from the absorbance measurements obtained using a spectrophotometer. The experimental results show the proposed microfluidic system achieves an average methanol distillation efficiency of 97%. The practicality of the proposed device is demonstrated by detecting the methanol concentrations of two commercial fruit wines. It is shown that the measured concentration values deviate by no more than 3% from those obtained using a conventional bench top system.

  10. A microfluidic Transwell to study chemotaxis.

    PubMed

    Zhang, Chentian; Barrios, Maria P; Alani, Rhoda M; Cabodi, Mario; Wong, Joyce Y

    2016-03-15

    Chemotaxis is typically studied in vitro using commercially available products such as the Transwell® in which cells migrate through a porous membrane in response to one or more clearly defined chemotactic stimuli. Despite its widespread use, the Transwell assay suffers from being largely an endpoint assay, with built-in errors due to inconsistent pore size and human sampling. In this study, we report a microfluidic chemotactic chip that provides real-time monitoring, consistent paths for cell migration, and easy on-chip staining for quantifying migration. To compare its performance with that of a traditional Transwell chamber, we investigate the chemotactic response of MDA-MB-231 1833 metastatic breast cancer cells to epidermal growth factor (EGF). The results show that while both platforms were able to detect a chemotactic response, we observed a dose-dependent response of breast cancer cells towards EGF with low non-specific migration using the microfluidic platform, whereas we observed a dose-independent response of breast cancer cells towards EGF with high levels of non-specific migration using the commercially available Transwell.The microfluidic platform also allowed EGF-dependent chemotactic responses to be observed 24h, a substantially longer window than seen with the Transwell. Thus the performance of our microfluidic platform revealed phenomena that were not detected in the Transwell under the conditions tested.

  11. High content screening in microfluidic devices

    PubMed Central

    Cheong, Raymond; Paliwal, Saurabh; Levchenko, Andre

    2011-01-01

    Importance of the field Miniaturization is key to advancing the state-of-the-art in high content screening (HCS), in order to enable dramatic cost savings through reduced usage of expensive biochemical reagents and to enable large-scale screening on primary cells. Microfluidic technology offers the potential to enable HCS to be performed with an unprecedented degree of miniaturization. Areas covered in this review This perspective highlights a real-world example from the authors’ work of HCS assays implemented in a highly miniaturized microfluidic format. Advantages of this technology are discussed, including cost savings, high throughput screening on primary cells, improved accuracy, the ability to study complex time-varying stimuli, and ease of automation, integration, and scaling. What the reader will gain The reader will understand the capabilities of a new microfluidics-based platform for HCS, and the advantages it provides over conventional plate-based HCS. Take home message Microfluidics technology will drive significant advancements and broader usage and applicability of HCS in drug discovery. PMID:21852997

  12. 3D-printed microfluidic devices.

    PubMed

    Amin, Reza; Knowlton, Stephanie; Hart, Alexander; Yenilmez, Bekir; Ghaderinezhad, Fariba; Katebifar, Sara; Messina, Michael; Khademhosseini, Ali; Tasoglu, Savas

    2016-06-01

    Microfluidics is a flourishing field, enabling a wide range of biochemical and clinical applications such as cancer screening, micro-physiological system engineering, high-throughput drug testing, and point-of-care diagnostics. However, fabrication of microfluidic devices is often complicated, time consuming, and requires expensive equipment and sophisticated cleanroom facilities. Three-dimensional (3D) printing presents a promising alternative to traditional techniques such as lithography and PDMS-glass bonding, not only by enabling rapid design iterations in the development stage, but also by reducing the costs associated with institutional infrastructure, equipment installation, maintenance, and physical space. With the recent advancements in 3D printing technologies, highly complex microfluidic devices can be fabricated via single-step, rapid, and cost-effective protocols, making microfluidics more accessible to users. In this review, we discuss a broad range of approaches for the application of 3D printing technology to fabrication of micro-scale lab-on-a-chip devices. PMID:27321137

  13. Wax-bonding 3D microfluidic chips.

    PubMed

    Gong, Xiuqing; Yi, Xin; Xiao, Kang; Li, Shunbo; Kodzius, Rimantas; Qin, Jianhua; Wen, Weijia

    2010-10-01

    We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes. The hot-melt adhesive wax can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate (PMMA) film, glass sheets, or metal plate. The bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by vacuating and venting the chip in a hot-water bath. To study the biocompatibility and applicability of the wax-based microfluidic chip, we tested the PCR compatibility with the chip materials first. Then we applied the wax-paper based microfluidic chip to HeLa cell electroporation (EP). Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein (GFP) recombinant Escherichia coli (E. coli) bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration.

  14. Rare cell isolation and analysis in microfluidics

    PubMed Central

    Chen, Yuchao; Li, Peng; Huang, Po-Hsun; Xie, Yuliang; Mai, John D.; Wang, Lin; Nguyen, Nam-Trung; Huang, Tony Jun

    2014-01-01

    Rare cells are low-abundance cells in a much larger population of background cells. Conventional benchtop techniques have limited capabilities to isolate and analyze rare cells because of their generally low selectivity and significant sample loss. Recent rapid advances in microfluidics have been providing robust solutions to the challenges in the isolation and analysis of rare cells. In addition to the apparent performance enhancements resulting in higher efficiencies and sensitivity levels, microfluidics provides other advanced features such as simpler handling of small sample volumes and multiplexing capabilities for high-throughput processing. All of these advantages make microfluidics an excellent platform to deal with the transport, isolation, and analysis of rare cells. Various cellular biomarkers, including physical properties, dielectric properties, as well as immunoaffinities, have been explored for isolating rare cells. In this Focus article, we discuss the design considerations of representative microfluidic devices for rare cell isolation and analysis. Examples from recently published works are discussed to highlight the advantages and limitations of the different techniques. Various applications of these techniques are then introduced. Finally, a perspective on the development trends and promising research directions in this field are proposed. PMID:24406985

  15. Differential white cell count by centrifugal microfluidics.

    SciTech Connect

    Sommer, Gregory Jon; Tentori, Augusto M.; Schaff, Ulrich Y.

    2010-07-01

    We present a method for counting white blood cells that is uniquely compatible with centrifugation based microfluidics. Blood is deposited on top of one or more layers of density media within a microfluidic disk. Spinning the disk causes the cell populations within whole blood to settle through the media, reaching an equilibrium based on the density of each cell type. Separation and fluorescence measurement of cell types stained with a DNA dye is demonstrated using this technique. The integrated signal from bands of fluorescent microspheres is shown to be proportional to their initial concentration in suspension. Among the current generation of medical diagnostics are devices based on the principle of centrifuging a CD sized disk functionalized with microfluidics. These portable 'lab on a disk' devices are capable of conducting multiple assays directly from a blood sample, embodied by platforms developed by Gyros, Samsung, and Abaxis. [1,2] However, no centrifugal platform to date includes a differential white blood cell count, which is an important metric complimentary to diagnostic assays. Measuring the differential white blood cell count (the relative fraction of granulocytes, lymphocytes, and monocytes) is a standard medical diagnostic technique useful for identifying sepsis, leukemia, AIDS, radiation exposure, and a host of other conditions that affect the immune system. Several methods exist for measuring the relative white blood cell count including flow cytometry, electrical impedance, and visual identification from a stained drop of blood under a microscope. However, none of these methods is easily incorporated into a centrifugal microfluidic diagnostic platform.

  16. Inventions Utilizing Microfluidics and Colloidal Particles

    NASA Technical Reports Server (NTRS)

    Marr, David W.; Gong, Tieying; Oakey, John; Terray, Alexander V.; Wu, David T.

    2009-01-01

    Several related inventions pertain to families of devices that utilize microfluidics and/or colloidal particles to obtain useful physical effects. The families of devices can be summarized as follows: (1) Microfluidic pumps and/or valves wherein colloidal-size particles driven by electrical, magnetic, or optical fields serve as the principal moving parts that propel and/or direct the affected flows. (2) Devices that are similar to the aforementioned pumps and/or valves except that they are used to manipulate light instead of fluids. The colloidal particles in these devices are substantially constrained to move in a plane and are driven to spatially order them into arrays that function, variously, as waveguides, filters, or switches for optical signals. (3) Devices wherein the ultra-laminar nature of microfluidic flows is exploited to effect separation, sorting, or filtering of colloidal particles or biological cells in suspension. (4) Devices wherein a combination of confinement and applied electrical and/or optical fields forces the colloidal particles to become arranged into three-dimensional crystal lattices. Control of the colloidal crystalline structures could be exploited to control diffraction of light. (5) Microfluidic devices, incorporating fluid waveguides, wherein switching of flows among different paths would be accompanied by switching of optical signals.

  17. Discrete elements for 3D microfluidics.

    PubMed

    Bhargava, Krisna C; Thompson, Bryant; Malmstadt, Noah

    2014-10-21

    Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry.

  18. Understanding cell passage through constricted microfluidic channels

    NASA Astrophysics Data System (ADS)

    Cartas-Ayala, Marco A.; Karnik, Rohit

    2012-11-01

    Recently, several microfluidic platforms have been proposed to characterize cells based on their behaviour during cell passage through constricted channels. Variables like transit time have been analyzed in disease states like sickle cell anemia, malaria and sepsis. Nevertheless, it is hard to make direct comparisons between different platforms and cell types. We present experimental results of the relationship between solid deformable particle properties, i.e. stiffness and relative particle size, and flow properties, i.e. particle's velocity. We measured the hydrodynamic variables during the flow of HL-60 cells, a white myeloid cell type, in narrow microfluidic square channels using a microfluidic differential manometer. We measured the flow force required to move cells of different sizes through microchannels and quantified friction forces opposing cell passage. We determined the non-dimensional parameters that influence the flow of cells and we used them to obtain a non dimensional expression that can be used to predict the forces needed to drive cells through microchannels. We found that the friction force needed to flow HL-60 through a microfluidic channel is the sum of two parts. The first part is a static friction force that is proportional to the force needed to keep the force compressed. The second part is a factor that is proportional to the cell velocity, hence a dynamic term, and slightly sensitive to the compressive force. We thank CONACYT (Mexican Science and Technology Council) for supporting this project, grant 205899.

  19. Recent advances in microfluidic detection systems

    PubMed Central

    Baker, Christopher A; Duong, Cindy T; Grimley, Alix; Roper, Michael G

    2009-01-01

    There are numerous detection methods available for methods are being put to use for detection on these miniaturized systems, with the analyte of interest driving the choice of detection method. In this article, we summarize microfluidic 2 years. More focus is given to unconventional approaches to detection routes and novel strategies for performing high-sensitivity detection. PMID:20414455

  20. The promise of microfluidic artificial lungs.

    PubMed

    Potkay, Joseph A

    2014-11-01

    Microfluidic or microchannel artificial lungs promise to enable a new class of truly portable, therapeutic artificial lungs through feature sizes and blood channel designs that closely mimic those found in their natural counterpart. These new artificial lungs could potentially: 1) have surface areas and priming volumes that are a fraction of current technologies thereby decreasing device size and reducing the foreign body response; 2) contain blood flow networks in which cells and platelets experience pressures, shear stresses, and branching angles that copy those in the human lung thereby improving biocompatibility; 3) operate efficiently with room air, eliminating the need for gas cylinders and complications associated with hyperoxemia; 4) exhibit biomimetic hydraulic resistances, enabling operation with natural pressures and eliminating the need for blood pumps; and, 5) provide increased gas exchange capacity enabling respiratory support for active patients. This manuscript reviews recent research efforts in microfluidic artificial lungs targeted at achieving the advantages above, investigates the ultimate performance and scaling limits of these devices using a proven mathematical model, and discusses the future challenges that must be overcome in order for microfluidic artificial lungs to be applied in the clinic. If all of these promising advantages are realized and the remaining challenges are met, microfluidic artificial lungs could revolutionize the field of pulmonary rehabilitation.

  1. Microfluidic immunomagnetic cell separation from whole blood.

    PubMed

    Bhuvanendran Nair Gourikutty, Sajay; Chang, Chia-Pin; Puiu, Poenar Daniel

    2016-02-01

    Immunomagnetic-based separation has become a viable technique for the separation of cells and biomolecules. Here we report on the design and analysis of a simple and efficient microfluidic device for high throughput and high efficiency capture of cells tagged with magnetic particles. This is made possible by using a microfluidic chip integrated with customized arrays of permanent magnets capable of creating large magnetic field gradients, which determine the effective capturing of the tagged cells. This method is based on manipulating the cells which are under the influence of a combination of magnetic and fluid dynamic forces in a fluid under laminar flow through a microfluidic chip. A finite element analysis (FEA) model is developed to analyze the cell separation process and predict its behavior, which is validated subsequently by the experimental results. The magnetic field gradients created by various arrangements of magnetic arrays have been simulated using FEA and the influence of these field gradients on cell separation has been studied with the design of our microfluidic chip. The proof-of-concept for the proposed technique is demonstrated by capturing white blood cells (WBCs) from whole human blood. CD45-conjugated magnetic particles were added into whole blood samples to label WBCs and the mixture was flown through our microfluidic device to separate the labeled cells. After the separation process, the remaining WBCs in the elute were counted to determine the capture efficiency, and it was found that more than 99.9% WBCs have been successfully separated from whole blood. The proposed design can be used for positive selection as well as for negative enrichment of rare cells. PMID:26773879

  2. Mixing in polymeric microfluidic devices.

    SciTech Connect

    Schunk, Peter Randall; Sun, Amy Cha-Tien; Davis, Robert H.; Brotherton, Christopher M. (University of Colorado at Boulder, Boulder, CO)

    2006-04-01

    This SAND report describes progress made during a Sandia National Laboratories sponsored graduate fellowship. The fellowship was funded through an LDRD proposal. The goal of this project is development and characterization of mixing strategies for polymeric microfluidic devices. The mixing strategies under investigation include electroosmotic flow focusing, hydrodynamic focusing, physical constrictions and porous polymer monoliths. For electroosmotic flow focusing, simulations were performed to determine the effect of electroosmotic flow in a microchannel with heterogeneous surface potential. The heterogeneous surface potential caused recirculations to form within the microchannel. These recirculations could then be used to restrict two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the mixing region surface potential to the average channel surface potential was made large in magnitude and negative in sign, and when the ratio of the characteristic convection time to the characteristic diffusion time was minimized. Based on these results, experiments were performed to evaluate the manipulation of surface potential using living-radical photopolymerization. The material chosen to manipulate typically exhibits a negative surface potential. Using living-radical surface grafting, a positive surface potential was produced using 2-(Dimethylamino)ethyl methacrylate and a neutral surface was produced using a poly(ethylene glycol) surface graft. Simulations investigating hydrodynamic focusing were also performed. For this technique, mixing is enhanced by using a tertiary fluid stream to constrict the two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the tertiary flow stream flow-rate to the mixing streams flow-rate was maximized. Also, like the electroosmotic focusing mixer, mixing was also maximized when the ratio of the characteristic convection time to the

  3. Microfluidics on liquid handling stations (μF-on-LHS): a new industry-compatible microfluidic platform

    NASA Astrophysics Data System (ADS)

    Kittelmann, Jörg; Radtke, Carsten P.; Waldbaur, Ansgar; Neumann, Christiane; Hubbuch, Jürgen; Rapp, Bastian E.

    2014-03-01

    Since the early days microfluidics as a scientific discipline has been an interdisciplinary research field with a wide scope of potential applications. Besides tailored assays for point-of-care (PoC) diagnostics, microfluidics has been an important tool for large-scale screening of reagents and building blocks in organic chemistry, pharmaceutics and medical engineering. Furthermore, numerous potential marketable products have been described over the years. However, especially in industrial applications, microfluidics is often considered only an alternative technology for fluid handling, a field which is industrially mostly dominated by large-scale numerically controlled fluid and liquid handling stations. Numerous noteworthy products have dominated this field in the last decade and have been inhibited the widespread application of microfluidics technology. However, automated liquid handling stations and microfluidics do not have to be considered as mutually exclusive approached. We have recently introduced a hybrid fluidic platform combining an industrially established liquid handling station and a generic microfluidic interfacing module that allows probing a microfluidic system (such as an essay or a synthesis array) using the instrumentation provided by the liquid handling station. We term this technology "Microfluidic on Liquid Handling Stations (μF-on-LHS)" - a classical "best of both worlds"- approach that allows combining the highly evolved, automated and industry-proven LHS systems with any type of microfluidic assay. In this paper we show, to the best of our knowledge, the first droplet microfluidics application on an industrial LHS using the μF-on-LHS concept.

  4. Microfluidics as a tool for C. elegans research.

    PubMed

    San-Miguel, Adriana; Lu, Hang

    2013-09-24

    Microfluidics has emerged as a set of powerful tools that have greatly advanced some areas of biological research, including research using C. elegans. The use of microfluidics has enabled many experiments that are otherwise impossible with conventional methods. Today there are many examples that demonstrate the main advantages of using microfluidics for C. elegans research, achieving precise environmental conditions and facilitating worm handling. Examples range from behavioral analysis under precise chemical or odor stimulation, locomotion studies in well-defined structural surroundings, and even long-term culture on chip. Moreover, microfluidics has enabled coupling worm handling and imaging thus facilitating genetic screens, optogenetic studies, and laser ablation experiments. In this article, we review some of the applications of microfluidics for C. elegans research and provide guides for the design, fabrication, and use of microfluidic devices for C. elegans research studies.

  5. Integrated microfluidic platforms for investigating neuronal networks

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Joon

    This dissertation describes the development and application of integrated microfluidics-based assay platforms to study neuronal activities in the nervous system in-vitro. The assay platforms were fabricated using soft lithography and micro/nano fabrication including microfluidics, surface patterning, and nanomaterial synthesis. The use of integrated microfluidics-based assay platform allows culturing and manipulating many types of neuronal tissues in precisely controlled microenvironment. Furthermore, they provide organized multi-cellular in-vitro model, long-term monitoring with live cell imaging, and compatibility with molecular biology techniques and electrophysiology experiment. In this dissertation, the integrated microfluidics-based assay platforms are developed for investigation of neuronal activities such as local protein synthesis, impairment of axonal transport by chemical/physical variants, growth cone path finding under chemical/physical cues, and synaptic transmission in neuronal circuit. Chapter 1 describes the motivation, objectives, and scope for developing in-vitro platform to study various neuronal activities. Chapter 2 introduces microfluidic culture platform for biochemical assay with large-scale neuronal tissues that are utilized as model system in neuroscience research. Chapter 3 focuses on the investigation of impaired axonal transport by beta-Amyloid and oxidative stress. The platform allows to control neuronal processes and to quantify mitochondrial movement in various regions of axons away from applied drugs. Chapter 4 demonstrates the development of microfluidics-based growth cone turning assay to elucidate the mechanism underlying axon guidance under soluble factors and shear flow. Using this platform, the behaviors of growth cone of mammalian neurons are verified under the gradient of inhibitory molecules and also shear flow in well-controlled manner. In Chapter 5, I combine in-vitro multicellular model with microfabricated MEA

  6. Digital Microfluidic Processing of Mammalian Embryos for Vitrification

    PubMed Central

    Abdelgawad, Mohamed; Sun, Yu

    2014-01-01

    Cryopreservation is a key technology in biology and clinical practice. This paper presents a digital microfluidic device that automates sample preparation for mammalian embryo vitrification. Individual micro droplets manipulated on the microfluidic device were used as micro-vessels to transport a single mouse embryo through a complete vitrification procedure. Advantages of this approach, compared to manual operation and channel-based microfluidic vitrification, include automated operation, cryoprotectant concentration gradient generation, and feasibility of loading and retrieval of embryos. PMID:25250666

  7. Elastomeric microfluidic diode and rectifier work with Newtonian fluids

    PubMed Central

    Liu, John; Chen, Yan; Taylor, Clive R.; Scherer, Axel; Kartalov, Emil P.

    2009-01-01

    We report on two microfluidic elastomeric autoregulatory devices—a diode and a rectifier. They exhibit physically interesting and complex nonlinear behaviors (saturation, bias-dependent resistance, and rectification) with a Newtonian fluid. Due to their autoregulatory properties, they operate without active external control. As a result, they enable increased microfluidic device density and overall system miniaturization. The demonstrated diode and rectifier would also be useful components in future microfluidic logic circuitry. PMID:20057932

  8. Expanding Imaging Capabilities for Microfluidics: Applicability of Darkfield Internal Reflection Illumination (DIRI) to Observations in Microfluidics

    PubMed Central

    Kawano, Yoshihiro; Otsuka, Chino; Sanzo, James; Higgins, Christopher; Nirei, Tatsuo; Schilling, Tobias; Ishikawa, Takuji

    2015-01-01

    Microfluidics is used increasingly for engineering and biomedical applications due to recent advances in microfabrication technologies. Visualization of bubbles, tracer particles, and cells in a microfluidic device is important for designing a device and analyzing results. However, with conventional methods, it is difficult to observe the channel geometry and such particles simultaneously. To overcome this limitation, we developed a Darkfield Internal Reflection Illumination (DIRI) system that improved the drawbacks of a conventional darkfield illuminator. This study was performed to investigate its utility in the field of microfluidics. The results showed that the developed system could clearly visualize both microbubbles and the channel wall by utilizing brightfield and DIRI illumination simultaneously. The methodology is useful not only for static phenomena, such as clogging, but also for dynamic phenomena, such as the detection of bubbles flowing in a channel. The system was also applied to simultaneous fluorescence and DIRI imaging. Fluorescent tracer beads and channel walls were observed clearly, which may be an advantage for future microparticle image velocimetry (μPIV) analysis, especially near a wall. Two types of cell stained with different colors, and the channel wall, can be recognized using the combined confocal and DIRI system. Whole-slide imaging was also conducted successfully using this system. The tiling function significantly expands the observing area of microfluidics. The developed system will be useful for a wide variety of engineering and biomedical applications for the growing field of microfluidics. PMID:25748425

  9. Expanding imaging capabilities for microfluidics: applicability of darkfield internal reflection illumination (DIRI) to observations in microfluidics.

    PubMed

    Kawano, Yoshihiro; Otsuka, Chino; Sanzo, James; Higgins, Christopher; Nirei, Tatsuo; Schilling, Tobias; Ishikawa, Takuji

    2015-01-01

    Microfluidics is used increasingly for engineering and biomedical applications due to recent advances in microfabrication technologies. Visualization of bubbles, tracer particles, and cells in a microfluidic device is important for designing a device and analyzing results. However, with conventional methods, it is difficult to observe the channel geometry and such particles simultaneously. To overcome this limitation, we developed a Darkfield Internal Reflection Illumination (DIRI) system that improved the drawbacks of a conventional darkfield illuminator. This study was performed to investigate its utility in the field of microfluidics. The results showed that the developed system could clearly visualize both microbubbles and the channel wall by utilizing brightfield and DIRI illumination simultaneously. The methodology is useful not only for static phenomena, such as clogging, but also for dynamic phenomena, such as the detection of bubbles flowing in a channel. The system was also applied to simultaneous fluorescence and DIRI imaging. Fluorescent tracer beads and channel walls were observed clearly, which may be an advantage for future microparticle image velocimetry (μPIV) analysis, especially near a wall. Two types of cell stained with different colors, and the channel wall, can be recognized using the combined confocal and DIRI system. Whole-slide imaging was also conducted successfully using this system. The tiling function significantly expands the observing area of microfluidics. The developed system will be useful for a wide variety of engineering and biomedical applications for the growing field of microfluidics.

  10. Large-Volume Microfluidic Cell Sorting for Biomedical Applications.

    PubMed

    Warkiani, Majid Ebrahimi; Wu, Lidan; Tay, Andy Kah Ping; Han, Jongyoon

    2015-01-01

    Microfluidic cell-separation technologies have been studied for almost two decades, but the limited throughput has restricted their impact and range of application. Recent advances in microfluidics enable high-throughput cell sorting and separation, and this has led to various novel diagnostic and therapeutic applications that previously had been impossible to implement using microfluidics technologies. In this review, we focus on recent progress made in engineering large-volume microfluidic cell-sorting methods and the new applications enabled by them. PMID:26194427

  11. Microfluidic-Based Robotic Sampling System for Radioactive Solutions

    SciTech Connect

    Jack D. Law; Julia L. Tripp; Tara E. Smith; Veronica J. Rutledge; Troy G. Garn; John Svoboda; Larry Macaluso

    2014-02-01

    A novel microfluidic based robotic sampling system has been developed for sampling and analysis of liquid solutions in nuclear processes. This system couples the use of a microfluidic sample chip with a robotic system designed to allow remote, automated sampling of process solutions in-cell and facilitates direct coupling of the microfluidic sample chip with analytical instrumentation. This system provides the capability for near real time analysis, reduces analytical waste, and minimizes the potential for personnel exposure associated with traditional sampling methods. A prototype sampling system was designed, built and tested. System testing demonstrated operability of the microfluidic based sample system and identified system modifications to optimize performance.

  12. Fundamentals of microfluidic cell culture in controlled microenvironments†

    PubMed Central

    Young, Edmond W. K.; Beebe, David J.

    2010-01-01

    Microfluidics has the potential to revolutionize the way we approach cell biology research. The dimensions of microfluidic channels are well suited to the physical scale of biological cells, and the many advantages of microfluidics make it an attractive platform for new techniques in biology. One of the key benefits of microfluidics for basic biology is the ability to control parameters of the cell microenvironment at relevant length and time scales. Considerable progress has been made in the design and use of novel microfluidic devices for culturing cells and for subsequent treatment and analysis. With the recent pace of scientific discovery, it is becoming increasingly important to evaluate existing tools and techniques, and to synthesize fundamental concepts that would further improve the efficiency of biological research at the microscale. This tutorial review integrates fundamental principles from cell biology and local microenvironments with cell culture techniques and concepts in microfluidics. Culturing cells in microscale environments requires knowledge of multiple disciplines including physics, biochemistry, and engineering. We discuss basic concepts related to the physical and biochemical microenvironments of the cell, physicochemical properties of that microenvironment, cell culture techniques, and practical knowledge of microfluidic device design and operation. We also discuss the most recent advances in microfluidic cell culture and their implications on the future of the field. The goal is to guide new and interested researchers to the important areas and challenges facing the scientific community as we strive toward full integration of microfluidics with biology. PMID:20179823

  13. Fundamentals and applications of inertial microfluidics: a review.

    PubMed

    Zhang, Jun; Yan, Sheng; Yuan, Dan; Alici, Gursel; Nguyen, Nam-Trung; Ebrahimi Warkiani, Majid; Li, Weihua

    2016-01-01

    In the last decade, inertial microfluidics has attracted significant attention and a wide variety of channel designs that focus, concentrate and separate particles and fluids have been demonstrated. In contrast to conventional microfluidic technologies, where fluid inertia is negligible and flow remains almost within the Stokes flow region with very low Reynolds number (Re ≪ 1), inertial microfluidics works in the intermediate Reynolds number range (~1 < Re < ~100) between Stokes and turbulent regimes. In this intermediate range, both inertia and fluid viscosity are finite and bring about several intriguing effects that form the basis of inertial microfluidics including (i) inertial migration and (ii) secondary flow. Due to the superior features of high-throughput, simplicity, precise manipulation and low cost, inertial microfluidics is a very promising candidate for cellular sample processing, especially for samples with low abundant targets. In this review, we first discuss the fundamental kinematics of particles in microchannels to familiarise readers with the mechanisms and underlying physics in inertial microfluidic systems. We then present a comprehensive review of recent developments and key applications of inertial microfluidic systems according to their microchannel structures. Finally, we discuss the perspective of employing fluid inertia in microfluidics for particle manipulation. Due to the superior benefits of inertial microfluidics, this promising technology will still be an attractive topic in the near future, with more novel designs and further applications in biology, medicine and industry on the horizon.

  14. Fundamentals and applications of inertial microfluidics: a review.

    PubMed

    Zhang, Jun; Yan, Sheng; Yuan, Dan; Alici, Gursel; Nguyen, Nam-Trung; Ebrahimi Warkiani, Majid; Li, Weihua

    2016-01-01

    In the last decade, inertial microfluidics has attracted significant attention and a wide variety of channel designs that focus, concentrate and separate particles and fluids have been demonstrated. In contrast to conventional microfluidic technologies, where fluid inertia is negligible and flow remains almost within the Stokes flow region with very low Reynolds number (Re ≪ 1), inertial microfluidics works in the intermediate Reynolds number range (~1 < Re < ~100) between Stokes and turbulent regimes. In this intermediate range, both inertia and fluid viscosity are finite and bring about several intriguing effects that form the basis of inertial microfluidics including (i) inertial migration and (ii) secondary flow. Due to the superior features of high-throughput, simplicity, precise manipulation and low cost, inertial microfluidics is a very promising candidate for cellular sample processing, especially for samples with low abundant targets. In this review, we first discuss the fundamental kinematics of particles in microchannels to familiarise readers with the mechanisms and underlying physics in inertial microfluidic systems. We then present a comprehensive review of recent developments and key applications of inertial microfluidic systems according to their microchannel structures. Finally, we discuss the perspective of employing fluid inertia in microfluidics for particle manipulation. Due to the superior benefits of inertial microfluidics, this promising technology will still be an attractive topic in the near future, with more novel designs and further applications in biology, medicine and industry on the horizon. PMID:26584257

  15. Microfabrication and Applications of Opto-Microfluidic Sensors

    PubMed Central

    Zhang, Daiying; Men, Liqiu; Chen, Qiying

    2011-01-01

    A review of research activities on opto-microfluidic sensors carried out by the research groups in Canada is presented. After a brief introduction of this exciting research field, detailed discussion is focused on different techniques for the fabrication of opto-microfluidic sensors, and various applications of these devices for bioanalysis, chemical detection, and optical measurement. Our current research on femtosecond laser microfabrication of optofluidic devices is introduced and some experimental results are elaborated. The research on opto-microfluidics provides highly sensitive opto-microfluidic sensors for practical applications with significant advantages of portability, efficiency, sensitivity, versatility, and low cost. PMID:22163904

  16. Advances in microfluidics in combating infectious diseases.

    PubMed

    Tay, Andy; Pavesi, Andrea; Yazdi, Saeed Rismani; Lim, Chwee Teck; Warkiani, Majid Ebrahimi

    2016-01-01

    One of the important pursuits in science and engineering research today is to develop low-cost and user-friendly technologies to improve the health of people. Over the past decade, research efforts in microfluidics have been made to develop methods that can facilitate low-cost diagnosis of infectious diseases, especially in resource-poor settings. Here, we provide an overview of the recent advances in microfluidic devices for point-of-care (POC) diagnostics for infectious diseases and emphasis is placed on malaria, sepsis and AIDS/HIV. Other infectious diseases such as SARS, tuberculosis, and dengue are also briefly discussed. These infectious diseases are chosen as they contribute the most to disability-adjusted life-years (DALYs) lost according to the World Health Organization (WHO). The current state of research in this area is evaluated and projection toward future applications and accompanying challenges are also discussed. PMID:26854743

  17. Microfluidics Expanding the Frontiers of Microbial Ecology

    PubMed Central

    Rusconi, Roberto; Garren, Melissa; Stocker, Roman

    2014-01-01

    The ability afforded by microfluidics to observe the behaviors of microbes in highly controlled and confined microenvironments, across scales from a single cell to mixed communities, has significantly contributed to expand the frontiers of microbial ecology over the last decade. Spatially and temporally varying distributions of organisms and chemical cues that mimic natural microbial habitats can now be established by exploiting physics at the micrometer scale and by incorporating structures with specific geometries and materials. Here we review applications of microfluidics that have resulted in highly insightful discoveries on fundamental aspects of microbial life, ranging from growth and sensing to cell-cell interactions and population dynamics. We anticipate that this flexible, multidisciplinary technology will continue to facilitate discoveries regarding the ecology of microorganisms and help uncover strategies to control phenomena such as biofilm formation and antibiotic resistance. PMID:24773019

  18. Preparative Microfluidic Electrosynthesis of Drug Metabolites

    PubMed Central

    2013-01-01

    In vivo, a drug molecule undergoes its first chemical transformation within the liver via CYP450-catalyzed oxidation. The chemical outcome of the first pass hepatic oxidation is key information to any drug development process. Electrochemistry can be used to simulate CYP450 oxidation, yet it is often confined to the analytical scale, hampering product isolation and full characterization. In an effort to replicate hepatic oxidations, while retaining high throughput at the preparative scale, microfluidic technology and electrochemistry are combined in this study by using a microfluidic electrochemical cell. Several commercial drugs were subjected to continuous-flow electrolysis. They were chosen for their various chemical reactivity: their metabolites in vivo are generated via aromatic hydroxylation, alkyl oxidation, glutathione conjugation, or sulfoxidation. It is demonstrated that such metabolites can be synthesized by flow electrolysis at the 10 to 100 mg scale, and the purified products are fully characterized. PMID:24900614

  19. Microfluidic route to generation of celloidosomes

    NASA Astrophysics Data System (ADS)

    Gundabala, Venkata; Martinez-Escobar, Sergio; Marquez, Samantha; Marquez, Manuel; Fernandez-Nieves, Alberto; Microfluidics Team

    2013-03-01

    Here we present a microfluidic method to generate alginate particles with a liquid core and a shell with yeast cells encapsulated in it. This particular class of celloidosomes with cells embedded into the thin shell region at the surface, allows for easy access of oxygen to the cells improving their viability. The liquid core opens the possibility of encapsulating multiple types of cells into the core and the shell. The microfluidic method involving double emulsion technology employed here ensures robust control over the size of the particles and density of the encapsulated cells. The study has shown that the stability of the inner core is very much dependent on the viscosity of the oil used for collecting the emulsion.

  20. 3D Printed Multimaterial Microfluidic Valve.

    PubMed

    Keating, Steven J; Gariboldi, Maria Isabella; Patrick, William G; Sharma, Sunanda; Kong, David S; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.

  1. Microfluidic Electroporation for Cellular Analysis and Delivery

    PubMed Central

    Geng, Tao

    2013-01-01

    Electroporation is a simple yet powerful technique for breaching cell membrane barrier. The applications of electroporation can be generally divided into two categories: the release of intracellular proteins, nucleic acids and other metabolites for analysis and the delivery of exogenous reagents such as genes, drugs and nanoparticles with therapeutic purposes or for cellular manipulation. In this review, we go over the basic physics associated with cell electroporation and highlight recent technological advances on microfluidic platforms for conducting electroporation. Within the context of its working mechanism, we summarize the accumulated knowledge on how the parameters of electroporation affect its performance for various tasks. We discuss various strategies and designs for conducting electroporation at microscale and then focus on analysis of intracellular contents and delivery of exogenous agents as two major applications of the technique. Finally, an outlook for future applications of microfluidic electroporation in increasingly diverse utilities is presented. PMID:23917998

  2. Microfluidic device for unidirectional axon growth

    NASA Astrophysics Data System (ADS)

    Malishev, E.; Pimashkin, A.; Gladkov, A.; Pigareva, Y.; Bukatin, A.; Kazantsev, V.; Mukhina, I.; Dubina, M.

    2015-11-01

    In order to better understand the communication and connectivity development of neuron networks, we designed microfluidic devices with several chambers for growing dissociated neuronal cultures from mice fetal hippocampus (E18). The chambers were connected with microchannels providing unidirectional axonal growth between “Source” and “Target” neural sub-networks. Experiments were performed in a hippocampal cultures plated in a poly-dimethylsiloxane (PDMS) microfluidic chip, aligned with a 60 microelectrode array (MEA). Axonal growth through microchannels was observed with brightfield, phase-contrast and fluorescence microscopy, and after 7 days in vitro electrical activity was recorded. Visual inspection and spike propagation analysis showed the predominant axonal growth in microchannels in a direction from “Source” to “Target”.

  3. Tuning Fluidic Resistance via Liquid Crystal Microfluidics

    PubMed Central

    Sengupta, Anupam

    2013-01-01

    Flow of molecularly ordered fluids, like liquid crystals, is inherently coupled with the average local orientation of the molecules, or the director. The anisotropic coupling—typically absent in isotropic fluids—bestows unique functionalities to the flowing matrix. In this work, we harness this anisotropy to pattern different pathways to tunable fluidic resistance within microfluidic devices. We use a nematic liquid crystalline material flowing in microchannels to demonstrate passive and active modulation of the flow resistance. While appropriate surface anchoring conditions—which imprint distinct fluidic resistances within microchannels under similar hydrodynamic parameters—act as passive cues, an external field, e.g., temperature, is used to actively modulate the flow resistance in the microfluidic device. We apply this simple concept to fabricate basic fluidic circuits, which can be hierarchically extended to create complex resistance networks, without any additional design or morphological patterning of the microchannels. PMID:24256819

  4. Microfluidic electroporation for cellular analysis and delivery.

    PubMed

    Geng, Tao; Lu, Chang

    2013-10-01

    Electroporation is a simple yet powerful technique for breaching the cell membrane barrier. The applications of electroporation can be generally divided into two categories: the release of intracellular proteins, nucleic acids and other metabolites for analysis and the delivery of exogenous reagents such as genes, drugs and nanoparticles with therapeutic purposes or for cellular manipulation. In this review, we go over the basic physics associated with cell electroporation and highlight recent technological advances on microfluidic platforms for conducting electroporation. Within the context of its working mechanism, we summarize the accumulated knowledge on how the parameters of electroporation affect its performance for various tasks. We discuss various strategies and designs for conducting electroporation at the microscale and then focus on analysis of intracellular contents and delivery of exogenous agents as two major applications of the technique. Finally, an outlook for future applications of microfluidic electroporation in increasingly diverse utilities is presented.

  5. 3D Printed Multimaterial Microfluidic Valve

    PubMed Central

    Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  6. Magnetic Tethering of Microswimmers in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Chawan, Aschvin; Jana, Saikat; Ghosh, Suvojit; Jung, Sunghwan; Puri, Ishwar

    2013-03-01

    Exercising control over animal locomotion is well known in the macro world. In the micro-scale world, such methods require more sophistication. We magnetize Paramecium multimicronucleatum by internalization of magnetite nanoparticles coated with bovine serum albumin (BSA). This enables control of their motion in a microfluidic device using a magnetic field. Miniature permanent magnets embedded within the device are used to tether the magnetized organisms to specific locations along a micro-channel. Ciliary beatings of the microswimmer generate shear flows nearby. We apply this setup to enhance cross-stream mixing in a microfluidic device by supplementing molecular diffusion. The device is similar to an active micromixer but requires no external power sources or artificial actuators. We optically characterize the effectiveness of the mechanism in a variety of flow situations.

  7. 3D Printed Multimaterial Microfluidic Valve.

    PubMed

    Keating, Steven J; Gariboldi, Maria Isabella; Patrick, William G; Sharma, Sunanda; Kong, David S; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  8. Stem cell niche engineering through droplet microfluidics.

    PubMed

    Allazetta, Simone; Lutolf, Matthias P

    2015-12-01

    Stem cells reside in complex niches in which their behaviour is tightly regulated by various biochemical and biophysical signals. In order to unveil some of the crucial stem cell-niche interactions and expedite the implementation of stem cells in clinical and pharmaceutical applications, in vitro methodologies are being developed to reconstruct key features of stem cell niches. Recently, droplet-based microfluidics has emerged as a promising strategy to build stem cell niche models in a miniaturized and highly precise fashion. This review highlights current advances in using droplet microfluidics in stem cell biology. We also discuss recent efforts in which microgel technology has been interfaced with high-throughput analyses to engender screening paradigms with an unparalleled potential for basic and applied biological studies.

  9. Research highlights: microfluidics meets big data.

    PubMed

    Tseng, Peter; Weaver, Westbrook M; Masaeli, Mahdokht; Owsley, Keegan; Di Carlo, Dino

    2014-03-01

    In this issue we highlight a collection of recent work in which microfluidic parallelization and automation have been employed to address the increasing need for large amounts of quantitative data concerning cellular function--from correlating microRNA levels to protein expression, increasing the throughput and reducing the noise when studying protein dynamics in single-cells, and understanding how signal dynamics encodes information. The painstaking dissection of cellular pathways one protein at a time appears to be coming to an end, leading to more rapid discoveries which will inevitably translate to better cellular control--in producing useful gene products and treating disease at the individual cell level. From these studies it is also clear that development of large scale mutant or fusion libraries, automation of microscopy, image analysis, and data extraction will be key components as microfluidics contributes its strengths to aid systems biology moving forward.

  10. Microfluidics expanding the frontiers of microbial ecology.

    PubMed

    Rusconi, Roberto; Garren, Melissa; Stocker, Roman

    2014-01-01

    Microfluidics has significantly contributed to the expansion of the frontiers of microbial ecology over the past decade by allowing researchers to observe the behaviors of microbes in highly controlled microenvironments, across scales from a single cell to mixed communities. Spatially and temporally varying distributions of organisms and chemical cues that mimic natural microbial habitats can now be established by exploiting physics at the micrometer scale and by incorporating structures with specific geometries and materials. In this article, we review applications of microfluidics that have resulted in insightful discoveries on fundamental aspects of microbial life, ranging from growth and sensing to cell-cell interactions and population dynamics. We anticipate that this flexible multidisciplinary technology will continue to facilitate discoveries regarding the ecology of microorganisms and help uncover strategies to control microbial processes such as biofilm formation and antibiotic resistance.

  11. Optical trapping for complex fluid microfluidics

    NASA Astrophysics Data System (ADS)

    Vestad, Tor; Oakey, John; Marr, David W. M.

    2004-10-01

    Many proposed applications of microfluidics involve the manipulation of complex fluid mixtures such as blood or bacterial suspensions. To sort and handle the constituent particles within these suspensions, we have developed a miniaturized automated cell sorter using optical traps. This microfluidic cell sorter offers the potential to perform chip-top microbiology more rapidly and with less associated hardware and preparation time than other techniques currently available. To realize the potential of this technology in practical clinical and consumer lab-on-a-chip devices however, microscale control of not only particulates but also the fluid phase must be achieved. To address this, we have developed a mechanical fluid control scheme that integrates well with our optical separations approach. We demonstrate here a combined technique, one that employs both mechanical actuation and optical trapping for the precise control of complex suspensions. This approach enables both cell and particle separations as well as the subsequent fluid control required for the completion of complex analyses.

  12. Cell-based bioassays in microfluidic systems

    NASA Astrophysics Data System (ADS)

    Itle, Laura J.; Zguris, Jeanna C.; Pishko, Michael V.

    2004-12-01

    The development of cell-based bioassays for high throughput drug screening or the sensing of biotoxins is contingent on the development of whole cell sensors for specific changes in intracellular conditions and the integration of those systems into sample delivery devices. Here we show the feasibility of using a 5-(and-6)-carboxy SNARF-1, acetoxymethyl ester, acetate, a fluorescent dye capable of responding to changes in intracellular pH, as a detection method for the bacterial endotoxin, lipopolysaccharide. We used photolithography to entrap cells with this dye within poly(ethylene) glyocol diacrylate hydrogels in microfluidic channels. After 18 hours of exposure to lipopolysaccharide, we were able to see visible changes in the fluorescent pattern. This work shows the feasibility of using whole cell based biosensors within microfluidic networks to detect cellular changes in response to exogenous agents.

  13. Plasmonic nanoshell synthesis in microfluidic composite foams.

    PubMed

    Duraiswamy, Suhanya; Khan, Saif A

    2010-09-01

    The availability of robust, scalable, and automated nanoparticle manufacturing processes is crucial for the viability of emerging nanotechnologies. Metallic nanoparticles of diverse shape and composition are commonly manufactured by solution-phase colloidal chemistry methods, where rapid reaction kinetics and physical processes such as mixing are inextricably coupled, and scale-up often poses insurmountable problems. Here we present the first continuous flow process to synthesize thin gold "nanoshells" and "nanoislands" on colloidal silica surfaces, which are nanoparticle motifs of considerable interest in plasmonics-based applications. We assemble an ordered, flowing composite foam lattice in a simple microfluidic device, where the lattice cells are alternately aqueous drops containing reagents for nanoparticle synthesis or gas bubbles. Microfluidic foam generation enables precisely controlled reagent dispensing and mixing, and the ordered foam structure facilitates compartmentalized nanoparticle growth. This is a general method for aqueous colloidal synthesis, enabling continuous, inherently digital, scalable, and automated production processes for plasmonic nanomaterials.

  14. Microfluidic 3D models of cancer

    PubMed Central

    Sung, Kyung Eun; Beebe, David J.

    2014-01-01

    Despite advances in medicine and biomedical sciences, cancer still remains a major health issue. Complex interactions between tumors and their microenvironment contribute to tumor initiation and progression and also contribute to the development of drug resistant tumor cell populations. The complexity and heterogeneity of tumors and their microenvironment make it challenging to both study and treat cancer. Traditional animal cancer models and in vitro cancer models are limited in their ability to recapitulate human structures and functions, thus hindering the identification of appropriate drug targets and therapeutic strategies. The development and application of microfluidic 3D cancer models has the potential to overcome some of the limitations inherent to traditional models. This review summarizes the progress in microfluidic 3D cancer models, their benefits, and their broad application to basic cancer biology, drug screening, and drug discovery. PMID:25017040

  15. Microfluidic 3D models of cancer.

    PubMed

    Sung, Kyung Eun; Beebe, David J

    2014-12-15

    Despite advances in medicine and biomedical sciences, cancer still remains a major health issue. Complex interactions between tumors and their microenvironment contribute to tumor initiation and progression and also contribute to the development of drug resistant tumor cell populations. The complexity and heterogeneity of tumors and their microenvironment make it challenging to both study and treat cancer. Traditional animal cancer models and in vitro cancer models are limited in their ability to recapitulate human structures and functions, thus hindering the identification of appropriate drug targets and therapeutic strategies. The development and application of microfluidic 3D cancer models have the potential to overcome some of the limitations inherent to traditional models. This review summarizes the progress in microfluidic 3D cancer models, their benefits, and their broad application to basic cancer biology, drug screening, and drug discovery.

  16. Femtolitre chemistry assisted by microfluidic pen lithography

    PubMed Central

    Carbonell, Carlos; Stylianou, Kyriakos C.; Hernando, Jordi; Evangelio, Emi; Barnett, Sarah A.; Nettikadan, Saju; Imaz, Inhar; Maspoch, Daniel

    2013-01-01

    Chemical reactions at ultrasmall volumes are becoming increasingly necessary to study biological processes, to synthesize homogenous nanostructures and to perform high-throughput assays and combinatorial screening. Here we show that a femtolitre reaction can be realized on a surface by handling and mixing femtolitre volumes of reagents using a microfluidic stylus. This method, named microfluidic pen lithography, allows mixing reagents in isolated femtolitre droplets that can be used as reactors to conduct independent reactions and crystallization processes. This strategy overcomes the high-throughput limitations of vesicles and micelles and obviates the usually costly step of fabricating microdevices and wells. We anticipate that this process enables performing distinct reactions (acid-base, enzymatic recognition and metal-organic framework synthesis), creating multiplexed nanoscale metal-organic framework arrays, and screening combinatorial reactions to evaluate the crystallization of novel peptide-based materials. PMID:23863998

  17. Living anionic polymerization using a microfluidic reactor

    SciTech Connect

    Iida, Kazunori; Chastek, Thomas Q.; Beers, Kathryn L.; Cavicchi, Kevin A.; Chun, Jaehun; Fasolka, Michael J.

    2009-02-01

    Living anionic polymerizations were conducted within aluminum-polyimide microfluidic devices. Polymerizations of styrene in cyclohexane were carried out at various conditions, including elevated temperature (60 °C) and high monomer concentration (42%, by volume). The reactions were safely maintained at a controlled temperature at all points in the reactor. Conducting these reactions in a batch reactor results in uncontrolled heat generation with potentially dangerous rises in pressure. Moreover, the microfluidic nature of these devices allows for flexible 2D designing of the flow channel. Four flow designs were examined (straight, periodically pinched, obtuse zigzag, and acute zigzag channels). The ability to use the channel pattern to increase the level of mixing throughout the reactor was evaluated. When moderately high molecular mass polymers with increased viscosity were made, the patterned channels produced polymers with narrower PDI, indicating that passive mixing arising from the channel design is improving the reaction conditions.

  18. Photopatterned materials in bioanalytical microfluidic technology.

    PubMed

    Tentori, Augusto M; Herr, Amy E

    2011-05-01

    Microfluidic technologies are playing an increasingly important role in biological inquiry. Sophisticated approaches to the microanalysis of biological specimens rely, in part, on the fine fluid and material control offered by microtechnology, as well as a sufficient capacity for systems integration. A suite of techniques that utilize photopatterning of polymers on fluidic surfaces, within fluidic volumes, and as primary device structures underpins recent technological innovation in bioanalysis. Well-characterized photopatterning approaches enable previously fabricated or commercially fabricated devices to be customized by the user in a straight-forward manner, making the tools accessible to laboratories that do not focus on microfabrication technology innovation. In this review of recent advances, we summarize reported microfluidic devices with photopatterned structures and regions as platforms for a diverse set of biological measurements and assays.

  19. Multiplexed microfluidic approach for nucleic acid enrichment

    DOEpatents

    VanderNoot, Victoria A.; Langevin, Stanley Alan; Bent, Zachary; Renzi, Ronald F.; Ferko, Scott M.; Van De Vreugde, James L.; Lane, Todd; Patel, Kamlesh; Branda, Steven

    2016-04-26

    A system for enhancing a nucleic acid sample may include a one pump, a denaturing chamber; a microfluidic hydroxyapatite chromatography device configured for performing hydroxyapatite chromatography on the nucleic acid sample, a sample collector, and tubing connecting the pump with the denaturing chamber, the hydroxyapatite chromatography device and the sample collector such that the pump may be used to move the nucleic acid sample from the denaturing chamber to the hydroxyapatite chromatography device and then to the sample collector.

  20. Integrated Micro-Optics for Microfluidic Detection.

    PubMed

    Kazama, Yuto; Hibara, Akihide

    2016-01-01

    A method of embedding micro-optics into a microfluidic device was proposed and demonstrated. First, the usefulness of embedded right-angle prisms was demonstrated in microscope observation. Lateral-view microscopic observation of an aqueous dye flow in a 100-μm-sized microchannel was demonstrated. Then, the embedded right-angle prisms were utilized for multi-beam laser spectroscopy. Here, crossed-beam thermal lens detection of a liquid sample was applied to glucose detection. PMID:26753713

  1. Controlling Mass Transport in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Kuo, Jason S.; Chiu, Daniel T.

    2011-07-01

    Microfluidic platforms offer exquisite capabilities in controlling mass transport for biological studies. In this review, we focus on recent developments in manipulating chemical concentrations at the microscale. Some techniques prevent or accelerate mixing, whereas others shape the concentration gradients of chemical and biological molecules. We also highlight several in vitro biological studies in the areas of organ engineering, cancer, and blood coagulation that have benefited from accurate control of mass transfer.

  2. Fluid control structures in microfluidic devices

    NASA Technical Reports Server (NTRS)

    Mathies, Richard A. (Inventor); Grover, William H. (Inventor); Skelley, Alison (Inventor); Lagally, Eric (Inventor); Liu, Chung N. (Inventor)

    2008-01-01

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  3. Fluid control structures in microfluidic devices

    DOEpatents

    Mathies, Richard A.; Grover, William H.; Skelley, Alison; Lagally, Eric; Liu, Chung N.

    2008-11-04

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  4. Simple Check Valves for Microfluidic Devices

    NASA Technical Reports Server (NTRS)

    Willis, Peter A.; Greer, Harold F.; Smith, J. Anthony

    2010-01-01

    A simple design concept for check valves has been adopted for microfluidic devices that consist mostly of (1) deformable fluorocarbon polymer membranes sandwiched between (2) borosilicate float glass wafers into which channels, valve seats, and holes have been etched. The first microfluidic devices in which these check valves are intended to be used are micro-capillary electrophoresis (microCE) devices undergoing development for use on Mars in detecting compounds indicative of life. In this application, it will be necessary to store some liquid samples in reservoirs in the devices for subsequent laboratory analysis, and check valves are needed to prevent cross-contamination of the samples. The simple check-valve design concept is also applicable to other microfluidic devices and to fluidic devices in general. These check valves are simplified microscopic versions of conventional rubber- flap check valves that are parts of numerous industrial and consumer products. These check valves are fabricated, not as separate components, but as integral parts of microfluidic devices. A check valve according to this concept consists of suitably shaped portions of a deformable membrane and the two glass wafers between which the membrane is sandwiched (see figure). The valve flap is formed by making an approximately semicircular cut in the membrane. The flap is centered over a hole in the lower glass wafer, through which hole the liquid in question is intended to flow upward into a wider hole, channel, or reservoir in the upper glass wafer. The radius of the cut exceeds the radius of the hole by an amount large enough to prevent settling of the flap into the hole. As in a conventional rubber-flap check valve, back pressure in the liquid pushes the flap against the valve seat (in this case, the valve seat is the adjacent surface of the lower glass wafer), thereby forming a seal that prevents backflow.

  5. Formation of interconnections to microfluidic devices

    DOEpatents

    Matzke, Carolyn M.; Ashby, Carol I. H.; Griego, Leonardo

    2003-07-29

    A method is disclosed to form external interconnections to a microfluidic device for coupling of a fluid or light or both into a microchannel of the device. This method can be used to form optical or fluidic interconnections to microchannels previously formed on a substrate, or to form both the interconnections and microchannels during the same process steps. The optical and fluidic interconnections are formed parallel to the plane of the substrate, and are fluid tight.

  6. Microfluidics apparatus and methods for use thereof

    SciTech Connect

    Peeters, John P.; Wiggins, Thomas; Ghosh, Madhushree; Bottomley, Lawrence A.; Seminara, Salvatore; Hu, Zhiyu; Seeley, Timothy; Kossek, Sebastian

    2005-08-09

    A microfluidics device includes a plurality of interaction cells and fluid control means including i) means for providing to the interaction cells a preparation fluid, and ii) means for providing to the interaction cells a sample fluid, wherein each interaction cell receives a different sample fluid. A plurality of microcantilevers may be disposed in each of the interaction cells, wherein each of the plurality of microcantilevers configured to deflect in response to an interaction involving a component of the sample fluid.

  7. A capillary valve for microfluidic systems.

    SciTech Connect

    Cummings, Eric B.; Kanouff, Michael P.; Rush, Brian M.

    2004-10-01

    Microfluidic systems are becoming increasingly complicated as the number of applications grows. The use of microfluidic systems for chemical and biological agent detection, for example, requires that a given sample be subjected to many process steps, which requires microvalves to control the position and transport of the sample. Each microfluidic application has its own specific valve requirements and this has precipitated the wide variety of valve designs reported in the literature. Each of these valve designs has its strengths and weaknesses. The strength of the valve design proposed here is its simplicity, which makes it easy to fabricate, easy to actuate, and easy to integrate with a microfluidic system. It can be applied to either gas phase or liquid phase systems. This novel design uses a secondary fluid to stop the flow of the primary fluid in the system. The secondary fluid must be chosen based on the type of flow that it must stop. A dielectric fluid must be used for a liquid phase flow driven by electroosmosis, and a liquid with a large surface tension should be used to stop a gas phase flow driven by a weak pressure differential. Experiments were carried out investigating certain critical functions of the design. These experiments verified that the secondary fluid can be reversibly moved between its 'valve opened' and 'valve closed' positions, where the secondary fluid remained as one contiguous piece during this transport process. The experiments also verified that when Fluorinert is used as the secondary fluid, the valve can break an electric circuit. It was found necessary to apply a hydrophobic coating to the microchannels to stop the primary fluid, an aqueous electrolyte, from wicking past the Fluorinert and short-circuiting the valve. A simple model was used to develop valve designs that could be closed using an electrokinetic pump, and re-opened by simply turning the pump off and allowing capillary forces to push the secondary fluid back into its

  8. Mixing in microfluidic devices and enhancement methods

    PubMed Central

    Ward, Kevin; Fan, Z Hugh

    2015-01-01

    Mixing in microfluidic devices presents a challenge due to laminar flows in microchannels, which result from low Reynolds numbers determined by the channel’s hydraulic diameter, flow velocity, and solution’s kinetic viscosity. To address this challenge, novel methods of mixing enhancement within microfluidic devices have been explored for a variety of applications. Passive mixing methods have been created, including those using ridges or slanted wells within the microchannels, as well as their variations with improved performance by varying geometry and patterns, by changing the properties of channel surfaces, and by optimization via simulations. In addition, active mixing methods including microstirrers, acoustic mixers, and flow pulsation have been investigated and integrated into microfluidic devices to enhance mixing in a more controllable manner. In general, passive mixers are easy to integrate, but difficult to control externally by users after fabrication. Active mixers usually take efforts to integrate within a device and they require external components (e.g. power sources) to operate. However, they can be controlled by users to a certain degree for tuned mixing. In this article, we provide a general overview of a number of passive and active mixers, discuss their advantages and disadvantages, and make suggestions on choosing a mixing method for a specific need as well as advocate possible integration of key elements of passive and active mixers to harness the advantages of both types. PMID:26549938

  9. Microfluidic Biosensing Systems Using Magnetic Nanoparticles

    PubMed Central

    Giouroudi, Ioanna; Keplinger, Franz

    2013-01-01

    In recent years, there has been rapidly growing interest in developing hand held, sensitive and cost-effective on-chip biosensing systems that directly translate the presence of certain bioanalytes (e.g., biomolecules, cells and viruses) into an electronic signal. The impressive and rapid progress in micro- and nanotechnology as well as in biotechnology enables the integration of a variety of analytical functions in a single chip. All necessary sample handling and analysis steps are then performed within the chip. Microfluidic systems for biomedical analysis usually consist of a set of units, which guarantees the manipulation, detection and recognition of bioanalytes in a reliable and flexible manner. Additionally, the use of magnetic fields for performing the aforementioned tasks has been steadily gaining interest. This is because magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the biosensing system. In combination with these applied magnetic fields, magnetic nanoparticles are utilized. Some of the merits of magnetic nanoparticles are the possibility of manipulating them inside microfluidic channels by utilizing high gradient magnetic fields, their detection by integrated magnetic microsensors, and their flexibility due to functionalization by means of surface modification and specific binding. Their multi-functionality is what makes them ideal candidates as the active component in miniaturized on-chip biosensing systems. In this review, focus will be given to the type of biosening systems that use microfluidics in combination with magnetoresistive sensors and detect the presence of bioanalyte tagged with magnetic nanoparticles. PMID:24022689

  10. A programmable and reconfigurable microfluidic chip.

    PubMed

    Renaudot, Raphael; Agache, Vincent; Fouillet, Yves; Laffite, Guillaume; Bisceglia, Emilie; Jalabert, Laurent; Kumemura, Momoko; Collard, Dominique; Fujita, Hiroyuki

    2013-12-01

    This article reports an original concept enabling the rapid fabrication of continuous-flow microfluidic chips with a programmable and reconfigurable geometry. The concept is based on a digital microfluidic platform featuring an array of individually addressable electrodes. A selection of electrodes is switched on sequentially to create a de-ionized (DI) water finger specific pattern, while the surrounding medium consists of liquid-phase paraffin. The water displacement is induced by both electrowetting on dielectric and liquid dielectrophoresis phenomena. Once the targeted DI water pattern is obtained, the chip temperature is lowered by turning on an integrated thermoelectric cooler, forming channel structures made of solidified paraffin with edges delimitated by the DI water pattern. As a result, the chip can be used afterwards to conduct in-flow continuous microfluidic experiments. This process is resettable and reversible by heating up the chip to melt the paraffin and reconfigure the microchannel design on demand, offering the advantages of cost, adaptability, and robustness. This paper reports experimental results describing the overall concept, which is illustrated with typical and basic fluidic geometries.

  11. Robust fluidic connections to freestanding microfluidic hydrogels

    PubMed Central

    Baer, Bradly B.; Larsen, Taylor S. H.

    2015-01-01

    Biomimetic scaffolds approaching physiological scale, whose size and large cellular load far exceed the limits of diffusion, require incorporation of a fluidic means to achieve adequate nutrient/metabolite exchange. This need has driven the extension of microfluidic technologies into the area of biomaterials. While construction of perfusable scaffolds is essentially a problem of microfluidic device fabrication, functional implementation of free-standing, thick-tissue constructs depends upon successful integration of external pumping mechanisms through optimized connective assemblies. However, a critical analysis to identify optimal materials/assembly components for hydrogel substrates has received little focus to date. This investigation addresses this issue directly by evaluating the efficacy of a range of adhesive and mechanical fluidic connection methods to gelatin hydrogel constructs based upon both mechanical property analysis and cell compatibility. Results identify a novel bioadhesive, comprised of two enzymatically modified gelatin compounds, for connecting tubing to hydrogel constructs that is both structurally robust and non-cytotoxic. Furthermore, outcomes from this study provide clear evidence that fluidic interconnect success varies with substrate composition (specifically hydrogel versus polydimethylsiloxane), highlighting not only the importance of selecting the appropriately tailored components for fluidic hydrogel systems but also that of encouraging ongoing, targeted exploration of this issue. The optimization of such interconnect systems will ultimately promote exciting scientific and therapeutic developments provided by microfluidic, cell-laden scaffolds. PMID:26045731

  12. Intensely oscillating cavitation bubble in microfluidics

    NASA Astrophysics Data System (ADS)

    Siew-Wan, Ohl; Tandiono; Klaseboer, Evert; Dave, Ow; Choo, Andre; Claus-Dieter, Ohl

    2015-12-01

    This study reports the technical breakthrough in generating intense ultrasonic cavitation in the confinement of a microfluidics channel [1], and applications that has been developed on this platform for the past few years [2,3,4,5]. Our system consists of circular disc transducers (10-20 mm in diameter), the microfluidics channels on PDMS (polydimethylsiloxane), and a driving circuitry. The cavitation bubbles are created at the gas- water interface due to strong capillary waves which are generated when the system is driven at its natural frequency (around 100 kHz) [1]. These bubbles oscillate and collapse within the channel. The bubbles are useful for sonochemistry and the generation of sonoluminescence [2]. When we add bacteria (Escherichia coli), and yeast cells (Pichia pastoris) into the microfluidics channels, the oscillating and collapsing bubbles stretch and lyse these cells [3]. Furthermore, the system is effective (DNA of the harvested intracellular content remains largely intact), and efficient (yield reaches saturation in less than 1 second). In another application, human red blood cells are added to a microchamber. Cell stretching and rapture are observed when a laser generated cavitation bubble expands and collapses next to the cell [4]. A numerical model of a liquid pocket surrounded by a membrane with surface tension which was placed next to an oscillating bubble was developed using the Boundary Element Method. The simulation results showed that the stretching of the liquid pocket occurs only when the surface tension is within a certain range.

  13. A metering rotary nanopump for microfluidic systems.

    PubMed

    Darby, Scott G; Moore, Matthew R; Friedlander, Troy A; Schaffer, David K; Reiserer, Ron S; Wikswo, John P; Seale, Kevin T

    2010-12-01

    We describe the design, fabrication, and testing of a microfabricated metering rotary nanopump for the purpose of driving fluid flow in microfluidic devices. The miniature peristaltic pump is composed of a set of microfluidic channels wrapped in a helix around a central camshaft in which a non-cylindrical cam rotates. The cam compresses the helical channels to induce peristaltic flow as it is rotated. The polydimethylsiloxane (PDMS) nanopump design is able to produce intermittent delivery or removal of several nanolitres of fluid per revolution as well as consistent continuous flow rates ranging from as low as 15 nL min(-1) to above 1.0 µL min(-1). At back pressures encountered in typical microfluidic devices, the pump acts as a high impedance flow source. The durability, biocompatibility, ease of integration with soft-lithographic fabrication, the use of a simple rotary motor instead of multiple synchronized pneumatic or mechanical actuators, and the absence of power consumption or fluidic conductance in the resting state all contribute to a compact pump with a low cost of fabrication and versatile implementation. This suggests that the pump design may be useful for a wide variety of biological experiments and point of care devices.

  14. Wearable tactile sensor based on flexible microfluidics.

    PubMed

    Yeo, Joo Chuan; Yu, Jiahao; Koh, Zhao Ming; Wang, Zhiping; Lim, Chwee Teck

    2016-08-16

    In this work, we develop a liquid-based thin film microfluidic tactile sensor of high flexibility, robustness and sensitivity. The microfluidic elastomeric structure comprises a pressure sensitive region and parallel arcs that interface with screen-printed electrodes. The microfluidic sensor is functionalized with a highly conductive metallic liquid, eutectic gallium indium (eGaIn). Microdeformation on the pressure sensor results in fluid displacement which corresponds to a change in electrical resistance. By emulating parallel electrical circuitry in our microchannel design, we reduced the overall electrical resistance of the sensor, therefore enhancing its device sensitivity. Correspondingly, we report a device workable within a range of 4 to 100 kPa and sensitivity of up to 0.05 kPa(-1). We further demonstrate its robustness in withstanding >2500 repeated loading and unloading cycles. Finally, as a proof of concept, we demonstrate that the sensors may be multiplexed to detect forces at multiple regions of the hand. In particular, our sensors registered unique electronic signatures in object grasping, which could provide better assessment of finger dexterity. PMID:27438370

  15. Orientation-Based Control of Microfluidics

    PubMed Central

    Norouzi, Nazila; Bhakta, Heran C.; Grover, William H.

    2016-01-01

    Most microfluidic chips utilize off-chip hardware (syringe pumps, computer-controlled solenoid valves, pressure regulators, etc.) to control fluid flow on-chip. This expensive, bulky, and power-consuming hardware severely limits the utility of microfluidic instruments in resource-limited or point-of-care contexts, where the cost, size, and power consumption of the instrument must be limited. In this work, we present a technique for on-chip fluid control that requires no off-chip hardware. We accomplish this by using inert compounds to change the density of one fluid in the chip. If one fluid is made 2% more dense than a second fluid, when the fluids flow together under laminar flow the interface between the fluids quickly reorients to be orthogonal to Earth’s gravitational force. If the channel containing the fluids then splits into two channels, the amount of each fluid flowing into each channel is precisely determined by the angle of the channels relative to gravity. Thus, any fluid can be routed in any direction and mixed in any desired ratio on-chip simply by holding the chip at a certain angle. This approach allows for sophisticated control of on-chip fluids with no off-chip control hardware, significantly reducing the cost of microfluidic instruments in point-of-care or resource-limited settings. PMID:26950700

  16. A metering rotary nanopump for microfluidic systems

    PubMed Central

    Darby, Scott G.; Moore, Matthew R.; Friedlander, Troy A.; Schaffer, David K.; Reiserer, Ron S.; Wikswo, John P.

    2014-01-01

    We describe the design, fabrication, and testing of a microfabricated metering rotary nanopump for the purpose of driving fluid flow in microfluidic devices. The miniature peristaltic pump is composed of a set of microfluidic channels wrapped in a helix around a central cam shaft in which a non-cylindrical cam rotates. The cam compresses the helical channels to induce peristaltic flow as it is rotated. The polydimethylsiloxane (PDMS) nanopump design is able to produce intermittent delivery or removal of several nanoliters of fluid per revolution as well as consistent continuous flow rates ranging from as low as 15 nL/min to above 1.0 µL/min. At back pressures encountered in typical microfluidic devices, the pump acts as a high impedance flow source. The durability, biocompatibility, ease of integration with soft-lithographic fabrication, the use of a simple rotary motor instead of multiple synchronized pneumatic or mechanical actuators, and the absence of power consumption or fluidic conductance in the resting state all contribute to a compact pump with a low cost of fabrication and versatile implementation. This suggests that the pump design may be useful for a wide variety of biological experiments and point of care devices. PMID:20959938

  17. Wearable tactile sensor based on flexible microfluidics.

    PubMed

    Yeo, Joo Chuan; Yu, Jiahao; Koh, Zhao Ming; Wang, Zhiping; Lim, Chwee Teck

    2016-08-16

    In this work, we develop a liquid-based thin film microfluidic tactile sensor of high flexibility, robustness and sensitivity. The microfluidic elastomeric structure comprises a pressure sensitive region and parallel arcs that interface with screen-printed electrodes. The microfluidic sensor is functionalized with a highly conductive metallic liquid, eutectic gallium indium (eGaIn). Microdeformation on the pressure sensor results in fluid displacement which corresponds to a change in electrical resistance. By emulating parallel electrical circuitry in our microchannel design, we reduced the overall electrical resistance of the sensor, therefore enhancing its device sensitivity. Correspondingly, we report a device workable within a range of 4 to 100 kPa and sensitivity of up to 0.05 kPa(-1). We further demonstrate its robustness in withstanding >2500 repeated loading and unloading cycles. Finally, as a proof of concept, we demonstrate that the sensors may be multiplexed to detect forces at multiple regions of the hand. In particular, our sensors registered unique electronic signatures in object grasping, which could provide better assessment of finger dexterity.

  18. Microfluidic Blood Cell Preparation: Now and Beyond

    PubMed Central

    Yu, Zeta Tak For; Yong, Koh Meng Aw; Fu, Jianping

    2014-01-01

    Blood plays an important role in homeostatic regulation with each of its cellular components having important therapeutic and diagnostic uses. Therefore, separation and sorting of blood cells has been of a great interest to clinicians and researchers. However, while conventional methods of processing blood have been successful in generating relatively pure fractions, they are time consuming, labor intensive, and are not optimal for processing small volume blood samples. In recent years, microfluidics has garnered great interest from clinicians and researchers as a powerful technology for separating blood into different cell fractions. As microfluidics involves fluid manipulation at the microscale level, it has the potential for achieving high-resolution separation and sorting of blood cells down to a single-cell level, with an added benefit of integrating physical and biological methods for blood cell separation and analysis on the same single chip platform. This paper will first review the conventional methods of processing and sorting blood cells, followed by a discussion on how microfluidics is emerging as an efficient tool to rapidly change the field of blood cell sorting for blood-based therapeutic and diagnostic applications. PMID:24515899

  19. Orientation-Based Control of Microfluidics.

    PubMed

    Norouzi, Nazila; Bhakta, Heran C; Grover, William H

    2016-01-01

    Most microfluidic chips utilize off-chip hardware (syringe pumps, computer-controlled solenoid valves, pressure regulators, etc.) to control fluid flow on-chip. This expensive, bulky, and power-consuming hardware severely limits the utility of microfluidic instruments in resource-limited or point-of-care contexts, where the cost, size, and power consumption of the instrument must be limited. In this work, we present a technique for on-chip fluid control that requires no off-chip hardware. We accomplish this by using inert compounds to change the density of one fluid in the chip. If one fluid is made 2% more dense than a second fluid, when the fluids flow together under laminar flow the interface between the fluids quickly reorients to be orthogonal to Earth's gravitational force. If the channel containing the fluids then splits into two channels, the amount of each fluid flowing into each channel is precisely determined by the angle of the channels relative to gravity. Thus, any fluid can be routed in any direction and mixed in any desired ratio on-chip simply by holding the chip at a certain angle. This approach allows for sophisticated control of on-chip fluids with no off-chip control hardware, significantly reducing the cost of microfluidic instruments in point-of-care or resource-limited settings. PMID:26950700

  20. Microfluidic pressure sensing using trapped air compression.

    PubMed

    Srivastava, Nimisha; Burns, Mark A

    2007-05-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid-air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d approximately 50 microm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700-100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions. PMID:17476384

  1. Microfluidic pressure sensing using trapped air compression.

    PubMed

    Srivastava, Nimisha; Burns, Mark A

    2007-05-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid-air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d approximately 50 microm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700-100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions.

  2. Orientation-Based Control of Microfluidics.

    PubMed

    Norouzi, Nazila; Bhakta, Heran C; Grover, William H

    2016-01-01

    Most microfluidic chips utilize off-chip hardware (syringe pumps, computer-controlled solenoid valves, pressure regulators, etc.) to control fluid flow on-chip. This expensive, bulky, and power-consuming hardware severely limits the utility of microfluidic instruments in resource-limited or point-of-care contexts, where the cost, size, and power consumption of the instrument must be limited. In this work, we present a technique for on-chip fluid control that requires no off-chip hardware. We accomplish this by using inert compounds to change the density of one fluid in the chip. If one fluid is made 2% more dense than a second fluid, when the fluids flow together under laminar flow the interface between the fluids quickly reorients to be orthogonal to Earth's gravitational force. If the channel containing the fluids then splits into two channels, the amount of each fluid flowing into each channel is precisely determined by the angle of the channels relative to gravity. Thus, any fluid can be routed in any direction and mixed in any desired ratio on-chip simply by holding the chip at a certain angle. This approach allows for sophisticated control of on-chip fluids with no off-chip control hardware, significantly reducing the cost of microfluidic instruments in point-of-care or resource-limited settings.

  3. Rapid and Specific Drug Quality Testing Assay for Artemisinin and Its Derivatives Using a Luminescent Reaction and Novel Microfluidic Technology

    PubMed Central

    Ho, Nga T.; Desai, Darash; Zaman, Muhammad H.

    2015-01-01

    Globally, it is estimated that about 10–30% of pharmaceuticals are of poor quality. Poor-quality drugs lead to long-term drug resistance, create morbidity, and strain the financial structure of the health system. The current technologies for substandard drug detection either are too expensive for low-resource regions or only provide qualitative results. To address the current limitations with point-of-care technologies, we have developed an affordable and robust assay to quantify the amount of active pharmaceutical ingredients (APIs) to test product quality. Our novel assay consists of two parts: detection reagent (probe) and a microfluidic testing platform. As antimalarials are of high importance in the global fight against malaria and are often substandard, they are chosen as the model to validate our assay. As a proof-of-concept, we have tested the assay with artesunate pure and substandard samples (Arsuamoon tablets) from Africa and compared with the conventional 96-well plate with spectrophotometer to demonstrate the quantitative efficacy and performance of our system. PMID:25897061

  4. Rapid and specific drug quality testing assay for artemisinin and its derivatives using a luminescent reaction and novel microfluidic technology.

    PubMed

    Ho, Nga T; Desai, Darash; Zaman, Muhammad H

    2015-06-01

    Globally, it is estimated that about 10-30% of pharmaceuticals are of poor quality. Poor-quality drugs lead to long-term drug resistance, create morbidity, and strain the financial structure of the health system. The current technologies for substandard drug detection either are too expensive for low-resource regions or only provide qualitative results. To address the current limitations with point-of-care technologies, we have developed an affordable and robust assay to quantify the amount of active pharmaceutical ingredients (APIs) to test product quality. Our novel assay consists of two parts: detection reagent (probe) and a microfluidic testing platform. As antimalarials are of high importance in the global fight against malaria and are often substandard, they are chosen as the model to validate our assay. As a proof-of-concept, we have tested the assay with artesunate pure and substandard samples (Arsuamoon tablets) from Africa and compared with the conventional 96-well plate with spectrophotometer to demonstrate the quantitative efficacy and performance of our system. PMID:25897061

  5. Electrostatic actuators for portable microfluidic systems

    NASA Astrophysics Data System (ADS)

    Tice, Joshua

    Both developed and developing nations have an urgent need to diagnose disease cheaply, reliably, and independently of centralized facilities. Microfulidic platforms are well-positioned to address the need for portable diagnostics, mainly due to their obvious advantage in size. However, most microfluidic methods rely on equipment outside of the chip either for driving fluid flow (e.g., syringe pumps) or for taking measurements (e.g., lasers or microscopes). The energy and space requirements of the whole system inhibit portability and contribute to costs. To capitalize on the strengths of microfluidic platforms and address the serious needs of society, system components need to be miniaturized. Also, miniaturization should be accomplished as simply as possible, considering that simplicity is usually requisite for achieving truly transformative technology. Herein, I attempt to address the issue of controlling fluid flow in portable microfluidic systems. I focus on systems that are driven by elastomer-based membrane valves, since these valves are inherently simple, yet they are capable of sophisticated fluid manipulation. Others have attempted to modify pneumatic microvalves for portable applications, e.g., by transitioning to electromagnetic, thermopneumatic, or piezoelectric actuation principles. However, none of these strategies maintain the proper balance of simplicity, functionality, and ease of integration. My research centers on electrostatic actuators, due to their conceptual simplicity and the efficacy of electrostatic forces on the microscale. To ensure easy integration with polymer-based systems, and to maintain simplicity in the fabrication procedure, the actuators were constructed solely from poly(dimethylsiloxane) and multi-walled carbon nanotubes. In addition, the actuators were fabricated exclusively with soft-lithographic techniques. A mathematical model was developed to identify actuator parameters compatible with soft-lithography, and also to

  6. Microfluidic devices and methods for integrated flow cytometry

    DOEpatents

    Srivastava, Nimisha; Singh, Anup K.

    2011-08-16

    Microfluidic devices and methods for flow cytometry are described. In described examples, various sample handling and preparation steps may be carried out within a same microfluidic device as flow cytometry steps. A combination of imaging and flow cytometry is described. In some examples, spiral microchannels serve as incubation chambers. Examples of automated sample handling and flow cytometry are described.

  7. Split and flow: reconfigurable capillary connection for digital microfluidic devices.

    PubMed

    Lapierre, Florian; Harnois, Maxime; Coffinier, Yannick; Boukherroub, Rabah; Thomy, Vincent

    2014-09-21

    Supplying liquid to droplet-based microfluidic microsystems remains a delicate task facing the problems of coupling continuous to digital or macro- to microfluidic systems. Here, we take advantage of superhydrophobic microgrids to address this problem. Insertion of a capillary tube inside a microgrid aperture leads to a simple and reconfigurable droplet generation setup.

  8. Microfluidics and Microfabrication in a Chemical Engineering Lab

    ERIC Educational Resources Information Center

    Archer, Shivaun D.

    2011-01-01

    Microfluidics, the manipulation of fluids in channels with micron dimensions, has emerged as an exciting new field that impacts the broad area of nano/microtechnology. This is an important area to train the next generation of chemical engineers. This paper describes an experiment where students are given a problem to design a microfluidic mixer…

  9. Desktop aligner for fabrication of multilayer microfluidic devices.

    PubMed

    Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping

    2015-07-01

    Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm(-1). To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices.

  10. Desktop aligner for fabrication of multilayer microfluidic devices

    PubMed Central

    Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping

    2015-01-01

    Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm−1. To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices. PMID:26233409

  11. Desktop aligner for fabrication of multilayer microfluidic devices.

    PubMed

    Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping

    2015-07-01

    Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm(-1). To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices. PMID:26233409

  12. Split and flow: reconfigurable capillary connection for digital microfluidic devices.

    PubMed

    Lapierre, Florian; Harnois, Maxime; Coffinier, Yannick; Boukherroub, Rabah; Thomy, Vincent

    2014-09-21

    Supplying liquid to droplet-based microfluidic microsystems remains a delicate task facing the problems of coupling continuous to digital or macro- to microfluidic systems. Here, we take advantage of superhydrophobic microgrids to address this problem. Insertion of a capillary tube inside a microgrid aperture leads to a simple and reconfigurable droplet generation setup. PMID:25058858

  13. Microfluidics-Based PCR for Fusion Transcript Detection.

    PubMed

    Chen, Hui

    2016-01-01

    The microfluidic technology allows the production of network of submillimeter-size fluidic channels and reservoirs in a variety of material systems. The microfluidic-based polymerase chain reaction (PCR) allows automated multiplexing of multiple samples and multiple assays simultaneously within a network of microfluidic channels and chambers that are co-ordinated in controlled fashion by the valves. The individual PCR reaction is performed in nanoliter volume, which allows testing on samples with limited DNA and RNA. The microfluidics devices are used in various types of PCR such as digital PCR and single molecular emulsion PCR for genotyping, gene expression, and miRNA expression. In this chapter, the use of a microfluidics-based PCR for simultaneous screening of 14 known fusion transcripts in patients with leukemia is described. PMID:26843050

  14. Diffusion phenomena of cells and biomolecules in microfluidic devices

    PubMed Central

    Yildiz-Ozturk, Ece; Yesil-Celiktas, Ozlem

    2015-01-01

    Biomicrofluidics is an emerging field at the cross roads of microfluidics and life sciences which requires intensive research efforts in terms of introducing appropriate designs, production techniques, and analysis. The ultimate goal is to deliver innovative and cost-effective microfluidic devices to biotech, biomedical, and pharmaceutical industries. Therefore, creating an in-depth understanding of the transport phenomena of cells and biomolecules becomes vital and concurrently poses significant challenges. The present article outlines the recent advancements in diffusion phenomena of cells and biomolecules by highlighting transport principles from an engineering perspective, cell responses in microfluidic devices with emphases on diffusion- and flow-based microfluidic gradient platforms, macroscopic and microscopic approaches for investigating the diffusion phenomena of biomolecules, microfluidic platforms for the delivery of these molecules, as well as the state of the art in biological applications of mammalian cell responses and diffusion of biomolecules. PMID:26180576

  15. Review: Microfluidic Applications in Metabolomics and Metabolic Profiling

    PubMed Central

    Kraly, James R.; Holcomb, Ryan E.; Guan, Qian; Henry, Charles S.

    2009-01-01

    Metabolomics is an emerging area of research focused on measuring small molecules in biological samples. There are a number of different types of metabolomics, ranging from global profiling of all metabolites in a single sample to measurement of a selected group of analytes. Microfluidics and related technologies have been used in this research area with good success. The aim of this review article is to summarize the use of microfluidics in metabolomics. Direct application of microfluidics to the determination of small molecules is covered first. Next, important sample preparation methods developed for microfluidics and applicable to metabolomics are covered. Finally, a summary of metabolomic work as it relates to analysis of cellular events using microfluidics is covered. PMID:19800473

  16. Integrated Multi-process Microfluidic Systems for Automating Analysis

    PubMed Central

    Yang, Weichun; Woolley, Adam T.

    2010-01-01

    Microfluidic technologies have been applied extensively in rapid sample analysis. Some current challenges for standard microfluidic systems are relatively high detection limits, and reduced resolving power and peak capacity compared to conventional approaches. The integration of multiple functions and components onto a single platform can overcome these separation and detection limitations of microfluidics. Multiplexed systems can greatly increase peak capacity in multidimensional separations and can increase sample throughput by analyzing many samples simultaneously. On-chip sample preparation, including labeling, preconcentration, cleanup and amplification, can all serve to speed up and automate processes in integrated microfluidic systems. This paper summarizes advances in integrated multi-process microfluidic systems for automated analysis, their benefits and areas for needed improvement. PMID:20514343

  17. Microfluidic platforms for advanced risk assessments of nanomaterials.

    PubMed

    Mahto, Sanjeev Kumar; Charwat, Verena; Ertl, Peter; Rothen-Rutishauser, Barbara; Rhee, Seog Woo; Sznitman, Josué

    2015-05-01

    In the past few years, promising efforts to utilize microfabrication-based technologies have laid the foundation for developing advanced, and importantly more physiologically-realistic, microfluidic methods for risk assessment of engineered nanomaterials (ENMs). In the present review, we discuss the wave of recent developments using microfluidic-based in vitro models and platforms for nanotoxicological assays, such as determination of cell viability, cellular dose, oxidative stress and nuclear damage. Here, we specifically highlight the tangible advantages of microfluidic devices in providing promising tools to tackle many of the current and ongoing challenges faced with traditional toxicology assays. Most importantly, microfluidic technology not only allows to recreate physiologically-relevant in vitro models for nanotoxicity examinations, but also provides platforms that deliver an attractive strategy towards improved control over applied ENM doses. In a final step, we present examples of state-of-the-art microfluidic platforms for in vitro assessment of potential adverse ENM effects.

  18. Microfluidics-Based PCR for Fusion Transcript Detection.

    PubMed

    Chen, Hui

    2016-01-01

    The microfluidic technology allows the production of network of submillimeter-size fluidic channels and reservoirs in a variety of material systems. The microfluidic-based polymerase chain reaction (PCR) allows automated multiplexing of multiple samples and multiple assays simultaneously within a network of microfluidic channels and chambers that are co-ordinated in controlled fashion by the valves. The individual PCR reaction is performed in nanoliter volume, which allows testing on samples with limited DNA and RNA. The microfluidics devices are used in various types of PCR such as digital PCR and single molecular emulsion PCR for genotyping, gene expression, and miRNA expression. In this chapter, the use of a microfluidics-based PCR for simultaneous screening of 14 known fusion transcripts in patients with leukemia is described.

  19. Microfluidic production of multiple emulsions and functional microcapsules.

    PubMed

    Lee, Tae Yong; Choi, Tae Min; Shim, Tae Soup; Frijns, Raoul A M; Kim, Shin-Hyun

    2016-09-21

    Recent advances in microfluidics have enabled the controlled production of multiple-emulsion drops with onion-like topology. The multiple-emulsion drops possess an intrinsic core-shell geometry, which makes them useful as templates to create microcapsules with a solid membrane. High flexibility in the selection of materials and hierarchical order, achieved by microfluidic technologies, has provided versatility in the membrane properties and microcapsule functions. The microcapsules are now designed not just for storage and release of encapsulants but for sensing microenvironments, developing structural colours, and many other uses. This article reviews the current state of the art in the microfluidic-based production of multiple-emulsion drops and functional microcapsules. The three main sections of this paper discuss distinct microfluidic techniques developed for the generation of multiple emulsions, four representative methods used for solid membrane formation, and various applications of functional microcapsules. Finally, we outline the current limitations and future perspectives of microfluidics and microcapsules. PMID:27470590

  20. A microfluidic timer for timed valving and pumping in centrifugal microfluidics.

    PubMed

    Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-03-21

    Accurate timing of microfluidic operations is essential for the automation of complex laboratory workflows, in particular for the supply of sample and reagents. Here we present a new unit operation for timed valving and pumping in centrifugal microfluidics. It is based on temporary storage of pneumatic energy and time delayed sudden release of said energy. The timer is loaded at a relatively higher spinning frequency. The countdown is started by reducing to a relatively lower release frequency, at which the timer is released after a pre-defined delay time. We demonstrate timing for 1) the sequential release of 4 liquids at times of 2.7 s ± 0.2 s, 14.0 s ± 0.5 s, 43.4 s ± 1.0 s and 133.8 s ± 2.3 s, 2) timed valving of typical assay reagents (contact angles 36-78°, viscosities 0.9-5.6 mPa s) and 3) on demand valving of liquids from 4 inlet chambers in any user defined sequence controlled by the spinning protocol. The microfluidic timer is compatible to all wetting properties and viscosities of common assay reagents and does neither require assistive equipment, nor coatings. It can be monolithically integrated into a microfluidic test carrier and is compatible to scalable fabrication technologies such as thermoforming or injection molding. PMID:25648105

  1. Microfluidics @ the Beach: Introduction of Microfluidics Technology to the ChE Curriculum at Cal State Long Beach

    ERIC Educational Resources Information Center

    Lo, Roger C.; Bhatia, Hina; Venkatraman, Rahul; Jang, Larry K.

    2015-01-01

    Microfluidics involves the study of the behavior of fluids at microscale, fluid manipulations, and the design of the devices that can effectively perform such manipulations. We are developing two new elective courses to include microfluidics in our curriculum at CSULB. Herein, we present the results of the first course, Microfabrication and…

  2. Hydrophilic PEO-PDMS for microfluidic applications

    NASA Astrophysics Data System (ADS)

    Yao, Mingjin; Fang, Ji

    2012-02-01

    Polydimethylsiloxane (PDMS) is a popularly used nontoxic and biocompatible material in microfluidic systems, which is relatively cheap and does not break easily like glass. The simple fabrication, optical transparency and elastomeric property make PDMS a handy material to work with. In order to develop different applications of PDMS in microfluidics and bioengineering, it is necessary to modify the PDMS surface nature to improve wetting characteristics, and to have a better control in nonspecific binding of proteins and cells, as well as to increase adhesion. At the moment, the hydrophilic surface modification performance of PDMS is known to recover its hydrophobicity shortly after oxidation modification, which is not stable in the long term (Owen and Smith 1994 J. Adhes. Sci. Technol. 8 1063-75). This paper presents a long-term stable hydrophilic surface modification processing of PDMS. The poly(dimethylsiloxane-ethylene oxide polymeric) (PDMS-b-PEO) is used in this project as a surfactant additive to be added into the PDMS base and the curing agent mixture during polymerization and to create hydrophilic PEO-PDMS. The contact angle can be controlled at 21.5-80.9° with the different mixing ratios and the hydrophilicity will remain stable for two months and then slightly varied later. We also investigate the bonding conditions of the modified PDMS to a silicon wafer and a glass wafer. To demonstrate its applications, we designed a device which consists of microchannels on a silicon wafer, and PEO-PDMS is utilized as a cover sheet. The capillary function was investigated under the different contact angles of PED-PDMS and with different aspect ratios of microchannels. All of the processes and testing data are presented in detail. This easy and cost-effective modified PDMS with a good bonding property can be widely used in the capillary device and systems, and microfluidic devices for fluid flow control of the microchannels in biological, chemical, medical

  3. Interfacial microfluidic transport on micropatterned superhydrophobic textile.

    PubMed

    Xing, Siyuan; Jiang, Jia; Pan, Tingrui

    2013-05-21

    Textile-enabled interfacial microfluidics, utilizing fibrous hydrophilic yarns (e.g., cotton) to guide biological reagent flows, has been extended to various biochemical analyses recently. The restricted capillary-driving mechanism, however, persists as a major challenge for continuous and facilitated biofluidic transport. In this paper, we have first introduced a novel interfacial microfluidic transport principle to drive three-dimensional liquid flows on a micropatterned superhydrophobic textile (MST) platform in a more autonomous and controllable manner. Specifically, the MST system utilizes the surface tension-induced Laplace pressure to facilitate the liquid motion along the hydrophilic yarn, in addition to the capillarity present in the fibrous structure. The fabrication of MST is simply accomplished by stitching hydrophilic cotton yarn into a superhydrophobic fabric substrate (contact angle 140 ± 3°), from which well-controlled wetting patterns are established for interfacial microfluidic operations. The geometric configurations of the stitched micropatterns, e.g., the lengths and diameters of the yarn and bundled arrangement, can all influence the transport process, which is investigated both experimentally and theoretically. Two operation modes, discrete and continuous transport, are also presented in detail. In addition, the gravitational effect as well as the droplet removal process have been also considered and quantitatively analysed during the transport process. As a demonstration, an MST design has been implemented on an artificial skin surface to collect and remove sweat in a highly efficient and facilitated means. The results have illustrated that the novel interfacial transport on the textile platform can be potentially extended to a variety of biofluidic collection and removal applications.

  4. Cell Blebbing in Confined Microfluidic Environments

    PubMed Central

    Ibo, Markela; Srivastava, Vasudha; Robinson, Douglas N.; Gagnon, Zachary R.

    2016-01-01

    Migrating cells can extend their leading edge by forming myosin-driven blebs and F-actin-driven pseudopods. When coerced to migrate in resistive environments, Dictyostelium cells switch from using predominately pseudopods to blebs. Bleb formation has been shown to be chemotactic and can be influenced by the direction of the chemotactic gradient. In this study, we determine the blebbing responses of developed cells of Dictyostelium discoideum to cAMP gradients of varying steepness produced in microfluidic channels with different confining heights, ranging between 1.7 μm and 3.8 μm. We show that microfluidic confinement height, gradient steepness, buffer osmolarity and Myosin II activity are important factors in determining whether cells migrate with blebs or with pseudopods. Dictyostelium cells were observed migrating within the confines of microfluidic gradient channels. When the cAMP gradient steepness is increased from 0.7 nM/μm to 20 nM/μm, cells switch from moving with a mixture of blebs and pseudopods to moving only using blebs when chemotaxing in channels with confinement heights less than 2.4 μm. Furthermore, the size of the blebs increases with gradient steepness and correlates with increases in myosin-II localization at the cell cortex. Reduction of intracellular pressure by high osmolarity buffer or inhibition of myosin-II by blebbistatin leads to a decrease in bleb formation and bleb size. Together, our data reveal that the protrusion type formed by migrating cells can be influenced by the channel height and the steepness of the cAMP gradient, and suggests that a combination of confinement-induced myosin-II localization and cAMP-regulated cortical contraction leads to increased intracellular fluid pressure and bleb formation. PMID:27706201

  5. Micro-Fluidic Diffusion Coefficient Measurement

    SciTech Connect

    Forster, F.K.; Galambos, P.

    1998-10-06

    A new method for diffusion coefficient measurement applicable to micro-fluidics is pre- sented. The method Iltilizes an analytical model describing laminar dispersion in rect- anglllar ~llicro_channe]s. The Illethod ~vas verified throllgh measllremen~ of fllloresceill diffusivity in water and aqueolls polymer solutions of differing concentration. The diffll- sivity of flllorescein was measlmed as 0.64 x 10-gm2/s in water, 0.49 x 10-gm2/s in the 4 gm/dl dextran solution and 0.38 x 10-9n12/s in the 8 gnl/dl dextran solution.

  6. Microstructure fabrication on glasses for microfluidics

    NASA Astrophysics Data System (ADS)

    Chen, Qiuping; Chen, Qiuling; Liao, Guihua; Milanese, Daniel

    2008-12-01

    Micro-channels were fabricated in sodalime glass through imprinting, and then joined to a glass slab by thermal assisted direct bonding (TADB). These techniques are simple and low cost, suitable for mass production of micro-fluidic devices. The joined samples were characterized before and after TADB by optical microscopy, profilometer, SEM, shear strength test and Vickers hardness test. The integrity of channels is maintained also after the TADB. The interface between the two glass slabs was found to be without impurities, bubbles and cracks. The bonding strength was also measured to be 31.94MPa.

  7. Active micromachines: Microfluidics powered by mesoscale turbulence.

    PubMed

    Thampi, Sumesh P; Doostmohammadi, Amin; Shendruk, Tyler N; Golestanian, Ramin; Yeomans, Julia M

    2016-07-01

    Dense active matter, from bacterial suspensions and microtubule bundles driven by motor proteins to cellular monolayers and synthetic Janus particles, is characterized by mesoscale turbulence, which is the emergence of chaotic flow structures. By immersing an ordered array of symmetric rotors in an active fluid, we introduce a microfluidic system that exploits spontaneous symmetry breaking in mesoscale turbulence to generate work. The lattice of rotors self-organizes into a spin state where neighboring discs continuously rotate in permanent alternating directions due to combined hydrodynamic and elastic effects. Our virtual prototype demonstrates a new research direction for the design of micromachines powered by the nematohydrodynamic properties of active turbulence.

  8. Method for forming polymerized microfluidic devices

    SciTech Connect

    Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.; Renzi, Ronald F.; Claudnic, Mark R.

    2013-03-12

    Methods for making a microfluidic device according to embodiments of the present invention include defining.about.cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  9. Fabrication of functional materials in microfluidics

    NASA Astrophysics Data System (ADS)

    Shum, Ho Cheung

    In this thesis, we present a study on how droplets prepared in microfluidics can be used for fabrication of functional materials. We utilize the high degree of fluidic control enabled by miniaturizing the channels to achieve monodisperse single and multiple emulsion with high encapsulation efficiency. By engineering the interfaces of such emulsions and/or applying appropriate reactions, novel functional materials have been fabricated for encapsulation and release applications and for carrying out reactions in confined environments. Glass capillary microfluidics is used in the majority of the thesis. Glass offers excellent solvent resistance to most organic solvents needed for fabricating the desired materials. In Chapter 1, we describe a double-emulsion-templated approach to form polymer vesicles, also known as polymersomes. By dissolving amphiphilic block copolymers in a volatile solvent, which forms the shell layer of double emulsions, polymersomes are formed after evaporation of the volatile solvent. In Chapter 2, we apply the same approach to fabricate phospholipid vesicles. In Chapter 3, we investigate the physics of membrane formation at interfaces laden with amphiphilic diblock copolymers. In Chapter 4, we fabricate polymersomes with multiple compaitalents by using controlled double emulsion drops with multiple inner droplets as templates. In Chapter 5, we describe a non-microfluidic approach for fabricating similar polymersomes with large number of compartments. In Chapter 6, we show that the double-emulsion templated approach for forming polymersomes can be applied to two-dimensional stamped devices, which can be easily scaled up for production of large amount of polymersomes. Apart from polymersomes, controlled emulsions can also be used for generating other functional materials. In Chapter 7, we use double emulsion drops as microreactors for fabricating particles of hydroxyapatite. In Chapter 8, we generate solid capsules by emulsifying a molten phase as

  10. Dielectric elastomer actuators for active microfluidic control

    NASA Astrophysics Data System (ADS)

    McCoul, David; Murray, Coleman; Di Carlo, Dino; Pei, Qibing

    2013-04-01

    Dielectric elastomers with low modulus and large actuation strain have been investigated for applications in which they serve as "active" microfluidic channel walls. Anisotropically prestrained acrylic elastomer membranes are bonded to cover open trenches formed on a silicone elastomer substrate. Actuation of the elastomer membranes increases the cross-sectional area of the resulting channels, in turn controlling hydraulic flow rate and pressure. Bias voltage increases the active area of the membranes, allowing intrachannel pressure to alter channel geometry. The channels have also demonstrated the ability to actively clear a blockage. Applications may include adaptive microfilters, micro-peristaltic pumps, and reduced-complexity lab-on-a-chip devices.

  11. Nanostructured surfaces for microfluidics and sensing applications.

    SciTech Connect

    Picraux, Samuel Thomas; Piech, Marcin; Schneider, John F.; Vail, Sean; Hayes, Mark A.; Garcia, Anthony A.; Bell, Nelson Simmons; Gust, D; Yang, Dongqing

    2007-01-01

    The present work demonstrates the use of light to move liquids on a photoresponsive monolayer, providing a new method for delivering analyses in lab-on-chip environments for microfluidic systems. The light-driven motion of liquids was achieved on photoresponsive azobenzene modified surfaces. The surface energy components of azobenzene modified surfaces were calculated by Van Oss theory. The motion of the liquid was achieved by generation of a surface tension gradient by isomerization of azobenzene monolayers using UV and Visible light, thereby establishing a surface energy heterogeneity on the edge of the droplet. Contact angle measurements of various solvents were used to demonstrate the requirement for fluid motion.

  12. Active micromachines: Microfluidics powered by mesoscale turbulence

    PubMed Central

    Thampi, Sumesh P.; Doostmohammadi, Amin; Shendruk, Tyler N.; Golestanian, Ramin; Yeomans, Julia M.

    2016-01-01

    Dense active matter, from bacterial suspensions and microtubule bundles driven by motor proteins to cellular monolayers and synthetic Janus particles, is characterized by mesoscale turbulence, which is the emergence of chaotic flow structures. By immersing an ordered array of symmetric rotors in an active fluid, we introduce a microfluidic system that exploits spontaneous symmetry breaking in mesoscale turbulence to generate work. The lattice of rotors self-organizes into a spin state where neighboring discs continuously rotate in permanent alternating directions due to combined hydrodynamic and elastic effects. Our virtual prototype demonstrates a new research direction for the design of micromachines powered by the nematohydrodynamic properties of active turbulence. PMID:27419229

  13. Microfluidic viscometers for shear rheology of complex fluids and biofluids.

    PubMed

    Gupta, Siddhartha; Wang, William S; Vanapalli, Siva A

    2016-07-01

    The rich diversity of man-made complex fluids and naturally occurring biofluids is opening up new opportunities for investigating their flow behavior and characterizing their rheological properties. Steady shear viscosity is undoubtedly the most widely characterized material property of these fluids. Although widely adopted, macroscale rheometers are limited by sample volumes, access to high shear rates, hydrodynamic instabilities, and interfacial artifacts. Currently, microfluidic devices are capable of handling low sample volumes, providing precision control of flow and channel geometry, enabling a high degree of multiplexing and automation, and integrating flow visualization and optical techniques. These intrinsic advantages of microfluidics have made it especially suitable for the steady shear rheology of complex fluids. In this paper, we review the use of microfluidics for conducting shear viscometry of complex fluids and biofluids with a focus on viscosity curves as a function of shear rate. We discuss the physical principles underlying different microfluidic viscometers, their unique features and limits of operation. This compilation of technological options will potentially serve in promoting the benefits of microfluidic viscometry along with evincing further interest and research in this area. We intend that this review will aid researchers handling and studying complex fluids in selecting and adopting microfluidic viscometers based on their needs. We conclude with challenges and future directions in microfluidic rheometry of complex fluids and biofluids.

  14. Experimental and numerical studies on standing surface acoustic wave microfluidics.

    PubMed

    Mao, Zhangming; Xie, Yuliang; Guo, Feng; Ren, Liqiang; Huang, Po-Hsun; Chen, Yuchao; Rufo, Joseph; Costanzo, Francesco; Huang, Tony Jun

    2016-02-01

    Standing surface acoustic waves (SSAW) are commonly used in microfluidics to manipulate cells and other micro/nano particles. However, except for a simple one-dimensional (1D) harmonic standing waves (HSW) model, a practical model that can predict particle behaviour in SSAW microfluidics is still lacking. Herein, we established a two-dimensional (2D) SSAW microfluidic model based on the basic theory in acoustophoresis and our previous modelling strategy to predict the acoustophoresis of microparticles in SSAW microfluidics. This 2D SSAW microfluidic model considers the effects of boundary vibrations, channel materials, and channel dimensions on the acoustic propagation; as an experimental validation, the acoustophoresis of microparticles under continuous flow through narrow channels made of PDMS and silicon was studied. The experimentally observed motion of the microparticles matched well with the numerical predictions, while the 1D HSW model failed to predict many of the experimental observations. Particularly, the 1D HSW model cannot account for particle aggregation on the sidewall in PDMS channels, which is well explained by our 2D SSAW microfluidic model. Our model can be used for device design and optimization in SSAW microfluidics. PMID:26698361

  15. Microfluidic viscometers for shear rheology of complex fluids and biofluids.

    PubMed

    Gupta, Siddhartha; Wang, William S; Vanapalli, Siva A

    2016-07-01

    The rich diversity of man-made complex fluids and naturally occurring biofluids is opening up new opportunities for investigating their flow behavior and characterizing their rheological properties. Steady shear viscosity is undoubtedly the most widely characterized material property of these fluids. Although widely adopted, macroscale rheometers are limited by sample volumes, access to high shear rates, hydrodynamic instabilities, and interfacial artifacts. Currently, microfluidic devices are capable of handling low sample volumes, providing precision control of flow and channel geometry, enabling a high degree of multiplexing and automation, and integrating flow visualization and optical techniques. These intrinsic advantages of microfluidics have made it especially suitable for the steady shear rheology of complex fluids. In this paper, we review the use of microfluidics for conducting shear viscometry of complex fluids and biofluids with a focus on viscosity curves as a function of shear rate. We discuss the physical principles underlying different microfluidic viscometers, their unique features and limits of operation. This compilation of technological options will potentially serve in promoting the benefits of microfluidic viscometry along with evincing further interest and research in this area. We intend that this review will aid researchers handling and studying complex fluids in selecting and adopting microfluidic viscometers based on their needs. We conclude with challenges and future directions in microfluidic rheometry of complex fluids and biofluids. PMID:27478521

  16. Microfluidics, Chromatography, and Atomic-Force Microscopy

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2008-01-01

    A Raman-and-atomic-force microscope (RAFM) has been shown to be capable of performing several liquid-transfer and sensory functions essential for the operation of a microfluidic laboratory on a chip that would be used to perform rapid, sensitive chromatographic and spectro-chemical analyses of unprecedentedly small quantities of liquids. The most novel aspect of this development lies in the exploitation of capillary and shear effects at the atomic-force-microscope (AFM) tip to produce shear-driven flow of liquids along open microchannels of a microfluidic device. The RAFM can also be used to perform such functions as imaging liquids in microchannels; removing liquid samples from channels for very sensitive, tip-localized spectrochemical analyses; measuring a quantity of liquid adhering to the tip; and dip-pen deposition from a chromatographic device. A commercial Raman-spectroscopy system and a commercial AFM were integrated to make the RAFM so as to be able to perform simultaneous topographical AFM imaging and surface-enhanced Raman spectroscopy (SERS) at the AFM tip. The Raman-spectroscopy system includes a Raman microprobe attached to an optical microscope, the translation stage of which is modified to accommodate the AFM head. The Raman laser excitation beam, which is aimed at the AFM tip, has a wavelength of 785 nm and a diameter of about 5 m, and its power is adjustable up to 10 mW. The AFM is coated with gold to enable tip-localized SERS.

  17. Microfluidic Sample Preparation for Medical Diagnostics.

    PubMed

    Cui, Francis; Rhee, Minsoung; Singh, Anup; Tripathi, Anubhav

    2015-01-01

    Fast and reliable diagnoses are invaluable in clinical care. Samples (e.g., blood, urine, and saliva) are collected and analyzed for various biomarkers to quickly and sensitively assess disease progression, monitor response to treatment, and determine a patient's prognosis. Processing conventional samples entails many manual time-consuming steps. Consequently, clinical specimens must be processed by skilled technicians before antigens or nucleic acids are detected, and these are often present at dilute concentrations. Recently, several automated microchip technologies have been developed that potentially offer many advantages over traditional bench-top extraction methods. The smaller length scales and more refined transport mechanisms that characterize these microfluidic devices enable faster and more efficient biomarker enrichment and extraction. Additionally, they can be designed to perform multiple tests or experimental steps on one integrated, automated platform. This review explores the current research on microfluidic methods of sample preparation that are designed to aid diagnosis, and covers a broad spectrum of extraction techniques and designs for various types of samples and analytes. PMID:26290952

  18. Microfluidic Screening of Electric Fields for Electroporation

    NASA Astrophysics Data System (ADS)

    Garcia, Paulo A.; Ge, Zhifei; Moran, Jeffrey L.; Buie, Cullen R.

    2016-02-01

    Electroporation is commonly used to deliver molecules such as drugs, proteins, and/or DNA into cells, but the mechanism remains poorly understood. In this work a rapid microfluidic assay was developed to determine the critical electric field threshold required for inducing bacterial electroporation. The microfluidic device was designed to have a bilaterally converging channel to amplify the electric field to magnitudes sufficient to induce electroporation. The bacterial cells are introduced into the channel in the presence of SYTOX®, which fluorescently labels cells with compromised membranes. Upon delivery of an electric pulse, the cells fluoresce due to transmembrane influx of SYTOX® after disruption of the cell membranes. We calculate the critical electric field by capturing the location within the channel of the increase in fluorescence intensity after electroporation. Bacterial strains with industrial and therapeutic relevance such as Escherichia coli BL21 (3.65 ± 0.09 kV/cm), Corynebacterium glutamicum (5.20 ± 0.20 kV/cm), and Mycobacterium smegmatis (5.56 ± 0.08 kV/cm) have been successfully characterized. Determining the critical electric field for electroporation facilitates the development of electroporation protocols that minimize Joule heating and maximize cell viability. This assay will ultimately enable the genetic transformation of bacteria and archaea considered intractable and difficult-to-transfect, while facilitating fundamental genetic studies on numerous diverse microbes.

  19. Droplet microfluidics driven by gradients of confinement

    PubMed Central

    Dangla, Rémi; Kayi, S. Cagri; Baroud, Charles N.

    2013-01-01

    The miniaturization of droplet manipulation methods has led to drops being proposed as microreactors in many applications of biology and chemistry. In parallel, microfluidic methods have been applied to generate monodisperse emulsions for applications in the pharmaceuticals, cosmetics, and food industries. To date, microfluidic droplet production has been dominated by a few designs that use hydrodynamic forces, resulting from the flowing fluids, to break drops at a junction. Here we present a platform for droplet generation and manipulation that does not depend on the fluid flows. Instead, we use devices that incorporate height variations to subject the immiscible interfaces to gradients of confinement. The resulting curvature imbalance along the interface causes the detachment of monodisperse droplets, without the need for a flow of the external phase. Once detached, the drops are self-propelled due to the gradient of surface energy. We show that the size of the drops is determined by the device geometry; it is insensitive to the physical fluid properties and depends very weakly on the flow rate of the dispersed phase. This allows us to propose a geometric theoretical model that predicts the dependence of droplet size on the geometric parameters, which is in agreement with experimental measurements. The approach presented here can be applied in a wide range of standard applications, while simplifying the device operations. We demonstrate examples for single-droplet operations and high-throughput generation of emulsions, all of which are performed in simple and inexpensive devices. PMID:23284169

  20. Protein immobilization techniques for microfluidic assays

    PubMed Central

    Kim, Dohyun; Herr, Amy E.

    2013-01-01

    Microfluidic systems have shown unequivocal performance improvements over conventional bench-top assays across a range of performance metrics. For example, specific advances have been made in reagent consumption, throughput, integration of multiple assay steps, assay automation, and multiplexing capability. For heterogeneous systems, controlled immobilization of reactants is essential for reliable, sensitive detection of analytes. In most cases, protein immobilization densities are maximized, while native activity and conformation are maintained. Immobilization methods and chemistries vary significantly depending on immobilization surface, protein properties, and specific assay goals. In this review, we present trade-offs considerations for common immobilization surface materials. We overview immobilization methods and chemistries, and discuss studies exemplar of key approaches—here with a specific emphasis on immunoassays and enzymatic reactors. Recent “smart immobilization” methods including the use of light, electrochemical, thermal, and chemical stimuli to attach and detach proteins on demand with precise spatial control are highlighted. Spatially encoded protein immobilization using DNA hybridization for multiplexed assays and reversible protein immobilization surfaces for repeatable assay are introduced as immobilization methods. We also describe multifunctional surface coatings that can perform tasks that were, until recently, relegated to multiple functional coatings. We consider the microfluidics literature from 1997 to present and close with a perspective on future approaches to protein immobilization. PMID:24003344

  1. Microfluidic actuation using electrochemically generated bubbles.

    PubMed

    Hua, Susan Z; Sachs, Frederick; Yang, David X; Chopra, Harsh Deep

    2002-12-15

    Bubble-based actuation in microfluidic applications is attractive owing to elementary microfabrication requirements. In the present study, the mechanical and chemical characteristics of electrochemically generated bubble valves were studied. By generating electrochemical bubbles as valves directly inside the channel, valves could be closed and opened in milliseconds. Whereas bubble inflation (or valve closing) rate increases with applied voltage, small microfluidic dimensions accelerate bubble deflation rates. It is found that bubbles need not collapse fully to restore full flow, and the channel opens when its hydraulic resistance equals that between the bubble and the wall--a process requiring only milliseconds. Since only picomoles of salt are needed to generate bubbles, pH gradients that are invariably associated with electrochemical reactions were readily suppressed by using a small amount of buffer, as visualized by a pH-sensitive fluorescent dye. A range of common laboratory reagents and electrolytes in varying concentrations, including weak to strong acids and bases, as well as nonaqueous/aqueous mixtures were successfully tested. Using such bubble valves, an eight-way multiplexer was fabricated and tested. PMID:12510764

  2. Microfluidic one-way streets for algae

    NASA Astrophysics Data System (ADS)

    Dunkel, Jorn; Kantsler, Vasily; Polin, Marco; Goldstein, Raymond E.

    2012-02-01

    Controlling locomotion and transport of microorganisms is a key challenge in the development of future biotechnological applications. Here, we demonstrate the use of optimized microfluidic ratchets to rectify the mean swimming direction in suspensions of the unicellular green alga Chlamydomonas reinhardtii, which is a promising candidate for the photosynthetic production of hydrogen. To assess the potential of microfluidic barriers for the manipulation of algal swimming, we studied first the scattering of individual C. reinhardtii from solid boundaries. High-speed imaging reveals the surprising result that these quasi-spherical ``puller''-type microswimmers primarily interact with surfaces via direct flagellar contact, whereas hydrodynamic effects play a subordinate role. A minimal theoretical model, based on run-and-turn motion and the experimentally measured surface-scattering law, predicts the existence of optimal wedge-shaped ratchets that maximize rectification of initially uniform suspensions. We confirm this prediction in experimental measurements with different geometries. Since the mechano-elastic properties of eukaryotic flagella are conserved across many genera, we expect that our results and methods are applicable to a broad class of biflagellate microorganisms.

  3. Microfluidic-chip platform for cell sorting

    NASA Astrophysics Data System (ADS)

    Malik, Sarul; Balyan, Prerna; Akhtar, J.; Agarwal, Ajay

    2016-04-01

    Cell sorting and separation are considered to be very crucial preparatory steps for numerous clinical diagnostics and therapeutics applications in cell biology research arena. Label free cell separation techniques acceptance rate has been increased to multifold by various research groups. Size based cell separation method focuses on the intrinsic properties of the cell which not only avoids clogging issues associated with mechanical and centrifugation filtration methods but also reduces the overall cost for the process. Consequentially flow based cell separation method for continuous flow has attracted the attention of millions. Due to the realization of structures close to particle size in micro dimensions, the microfluidic devices offer precise and rapid particle manipulation which ultimately leads to an extraordinary cell separation results. The proposed microfluidic device is fabricated to separate polystyrene beads of size 1 µm, 5 µm, 10 µm and 20 µm. The actual dimensions of blood corpuscles were kept in mind while deciding the particle size of polystyrene beads which are used as a model particles for study.

  4. Patent protection and licensing in microfluidics.

    PubMed

    Yetisen, Ali K; Volpatti, Lisa R

    2014-07-01

    Microfluidic devices offer control over low-volume samples in order to achieve high-throughput analysis, and reduce turnaround time and costs. Their efficient commercialisation has implications for biomedical sciences, veterinary medicine, environmental monitoring and industrial applications. In particular, market diffusion of microfluidic laboratory and point-of-care diagnostic devices can contribute to the improvement of global health. In their commercialisation, consultancy and patent protection are essential elements that complement academic publishing. The awareness of knowledge transfer strategies can help academics to create value for their research. The aim of this article is to provide a guidance to (1) overview the terminology in patent law, (2) elucidate the process of filing a patent in the US, EU, Japan and internationally, (3) discuss strategies to licence a patent, and (4) explain tactics to defend a patent in a potential infringement. Awareness of the patent law and rights allows obtaining optimised, valid and valuable patents, while accelerating implementation to market route. Striking a balance between academic publishing, consultancy to industry and patent protection can increase commercial potential, enhance economic growth and create social impact. PMID:24825780

  5. Microfluidic plug steering using surface acoustic waves.

    PubMed

    Sesen, Muhsincan; Alan, Tuncay; Neild, Adrian

    2015-07-21

    Digital microfluidic systems, in which isolated droplets are dispersed in a carrier medium, offer a method to study biological assays and chemical reactions highly efficiently. However, it's challenging to manipulate these droplets in closed microchannel devices. Here, we present a method to selectively steer plugs (droplets with diameters larger than the channel's width) at a specially designed Y-junction within a microfluidic chip. The method makes use of surface acoustic waves (SAWs) impinging on a multiphase interface in which an acoustic contrast is present. As a result, the liquid-liquid interface is subjected to acoustic radiation forces. These forces are exploited to steer plugs into selected branches of the Y-junction. Furthermore, the input power can be finely tuned to split a plug into two uneven plugs. The steering of plugs as a whole, based on plug volume and velocity is thoroughly characterized. The results indicate that there is a threshold plug volume after which the steering requires elevated electrical energy input. This plug steering method can easily be integrated to existing lab-on-a-chip devices and it offers a robust and active plug manipulation technique in closed microchannels.

  6. Retinal synaptic regeneration via microfluidic guiding channels.

    PubMed

    Su, Ping-Jung; Liu, Zongbin; Zhang, Kai; Han, Xin; Saito, Yuki; Xia, Xiaojun; Yokoi, Kenji; Shen, Haifa; Qin, Lidong

    2015-08-28

    In vitro culture of dissociated retinal neurons is an important model for investigating retinal synaptic regeneration (RSR) and exploring potentials in artificial retina. Here, retinal precursor cells were cultured in a microfluidic chip with multiple arrays of microchannels in order to reconstruct the retinal neuronal synapse. The cultured retinal cells were physically connected through microchannels. Activation of electric signal transduction by the cells through the microchannels was demonstrated by administration of glycinergic factors. In addition, an image-based analytical method was used to quantify the synaptic connections and to assess the kinetics of synaptic regeneration. The rate of RSR decreased significantly below 100 μM of inhibitor glycine and then approached to a relatively constant level at higher concentrations. Furthermore, RSR was enhanced by chemical stimulation with potassium chloride. Collectively, the microfluidic synaptic regeneration chip provides a novel tool for high-throughput investigation of RSR at the cellular level and may be useful in quality control of retinal precursor cell transplantation.

  7. Liquid alloy printing of microfluidic stretchable electronics.

    PubMed

    Jeong, Seung Hee; Hagman, Anton; Hjort, Klas; Jobs, Magnus; Sundqvist, Johan; Wu, Zhigang

    2012-11-21

    Recently, microfluidic stretchable electronics has attracted great interest from academia since conductive liquids allow for larger cross-sections when stretched and hence low resistance at longer lengths. However, as a serial process it has suffered from low throughput, and a parallel processing technology is needed for more complex systems and production at low costs. In this work, we demonstrate such a technology to implement microfluidic electronics by stencil printing of a liquid alloy onto a semi-cured polydimethylsiloxane (PDMS) substrate, assembly of rigid active components, encapsulation by pouring uncured PDMS on-top and subsequent curing. The printing showed resolution of 200 μm and linear resistance increase of the liquid conductors when elongated up to 60%. No significant change of resistance was shown for a circuit with one LED after 1000 times of cycling between a 0% and an elongation of 60% every 2 s. A radio frequency identity (RFID) tag was demonstrated using the developed technology, showing that good performance could be maintained well into the radio frequency (RF) range. PMID:23038427

  8. Microfluidic droplet enrichment for targeted sequencing

    PubMed Central

    Eastburn, Dennis J.; Huang, Yong; Pellegrino, Maurizio; Sciambi, Adam; Ptáček, Louis J.; Abate, Adam R.

    2015-01-01

    Targeted sequence enrichment enables better identification of genetic variation by providing increased sequencing coverage for genomic regions of interest. Here, we report the development of a new target enrichment technology that is highly differentiated from other approaches currently in use. Our method, MESA (Microfluidic droplet Enrichment for Sequence Analysis), isolates genomic DNA fragments in microfluidic droplets and performs TaqMan PCR reactions to identify droplets containing a desired target sequence. The TaqMan positive droplets are subsequently recovered via dielectrophoretic sorting, and the TaqMan amplicons are removed enzymatically prior to sequencing. We demonstrated the utility of this approach by generating an average 31.6-fold sequence enrichment across 250 kb of targeted genomic DNA from five unique genomic loci. Significantly, this enrichment enabled a more comprehensive identification of genetic polymorphisms within the targeted loci. MESA requires low amounts of input DNA, minimal prior locus sequence information and enriches the target region without PCR bias or artifacts. These features make it well suited for the study of genetic variation in a number of research and diagnostic applications. PMID:25873629

  9. Real-time monitoring system for microfluidics

    NASA Astrophysics Data System (ADS)

    Sapuppo, F.; Cantelli, G.; Fortuna, L.; Arena, P.; Bucolo, M.

    2007-05-01

    A new non-invasive real-time system for the monitoring and control of microfluidodynamic phenomena is proposed. The general purpose design of such system is suitable for in vitro and in vivo experimental setup and therefore for microfluidic application in the biomedical field such as lab-on-chip and for research studies in the field of microcirculation. The system consists of an ad hoc optical setup for image magnification providing images suitable for image acquisition and processing. The optic system was designed and developed using discrete opto-mechanic components mounted on a breadboard in order to provide an optic path accessible at any point where the information needs to be acquired. The optic sensing, acquisition, and processing were performed using an integrated vision system based on the Cellular Nonlinear Networks (CNNs) analogic technology called Focal Plane Processor (FPP, Eye-RIS, Anafocus) and inserted in the optic path. Ad hoc algorithms were implemented for the real-time analysis and extraction of fluido-dynamic parameters in micro-channels. They were tested on images recorded during in vivo microcirculation experiments on hamsters and then they were applied on images optically acquired and processed in real-time during in vitro experiments on a continuous microfluidic device (serpentine mixer, ThinXXS) with a two-phase fluid.

  10. Computational modelling of microfluidic capillary breakup phenomena

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Sprittles, James; Oliver, Jim

    2013-11-01

    Capillary breakup phenomena occur in microfluidic flows when liquid volumes divide. The fundamental process of breakup is a key factor in the functioning of a number of microfluidic devices such as 3D-Printers or Lab-on-Chip biomedical technologies. It is well known that the conventional model of breakup is singular as pinch-off is approached, but, despite this, theoretical predictions of the global flow on the millimetre-scale appear to agree well with experimental data, at least until the topological change. However, as one approaches smaller scales, where interfacial effects become more dominant, it is likely that such unphysical singularities will influence the global dynamics of the drop formation process. In this talk we develop a computational framework based on the finite element method capable of resolving diverse spatio-temporal scales for the axisymmetric breakup of a liquid jet, so that the pinch-off dynamics can be accurately captured. As well as the conventional model, we discuss the application of the interface formation model to this problem, which allows the pinch-off to be resolved singularity-free, and has already been shown to produce improved flow predictions for related ``singular'' capillary flows.

  11. Droplet microfluidics with a nanoemulsion continuous phase.

    PubMed

    Gu, Tonghan; Yeap, Eunice W Q; Somasundar, Ambika; Chen, Ran; Hatton, T Alan; Khan, Saif A

    2016-07-01

    We present the first study of a novel, generalizable method that uses a water-in-oil nanoemulsion as the continuous phase to generate uniform aqueous micro-droplets in a capillary-based microfluidic system. We first study the droplet generation mechanism in this system and compare it to the more conventional case where a simple oil/solvent (with surfactant) is used as the continuous phase. Next, we present two versatile methods - adding demulsifying chemicals and heat treatment - to allow active online chemical interaction between the continuous and dispersed phases. These methods allow each generated micro-droplet to act as a well-mixed micro-reactor with walls that are 'permeable' to the nanoemulsion droplets and their contents. Finally, we demonstrate an application of this system in the fabrication of uniform hydrogel (alginate) micro-beads with control over particle properties such as size and swelling. Our work expands the toolbox of droplet-based microfluidics, enabling new opportunities and applications involving active colloidal continuous phases carrying chemical payloads, both in advanced materials synthesis and droplet-based screening and diagnostic methods.

  12. Microfluidic fabrication of asymmetric giant lipid vesicles

    PubMed Central

    Hu, Peichi C.; Li, Su; Malmstadt, Noah

    2011-01-01

    We have developed a microfluidic technology for the fabrication of compositionally asymmetric giant unilamellar vesicles (GUVs). The vesicles are assembled in two independent steps. In each step, a lipid monolayer is formed at a water-oil interface. The first monolayer is formed inside of a microfluidic device with a multiphase droplet flow configuration consisting of a continuous oil stream in which water droplets are formed. These droplets are dispensed into a vessel containing a layer of oil over a layer of water. The second lipid monolayer is formed by transferring the droplets through this second oil-water interface by centrifugation. By dissolving different lipid compositions in the different oil phases, the composition of each leaflet of the resulting lipid bilayer can be controlled. We have demonstrated membrane asymmetry by showing differential fluorescence quenching of labeled lipids in each leaflet and by demonstrating that asymmetric GUVs will bind an avidin-coated surface only when biotinylated lipids are targeted to the outer leaflet. In addition, we have demonstrated the successful asymmetric targeting of phosphatidylserine lipids to each leaflet, producing membranes with a biomimetic and physiologically relevant compositional asymmetry. PMID:21449588

  13. Microfluidic Screening of Electric Fields for Electroporation

    PubMed Central

    Garcia, Paulo A.; Ge, Zhifei; Moran, Jeffrey L.; Buie, Cullen R.

    2016-01-01

    Electroporation is commonly used to deliver molecules such as drugs, proteins, and/or DNA into cells, but the mechanism remains poorly understood. In this work a rapid microfluidic assay was developed to determine the critical electric field threshold required for inducing bacterial electroporation. The microfluidic device was designed to have a bilaterally converging channel to amplify the electric field to magnitudes sufficient to induce electroporation. The bacterial cells are introduced into the channel in the presence of SYTOX®, which fluorescently labels cells with compromised membranes. Upon delivery of an electric pulse, the cells fluoresce due to transmembrane influx of SYTOX® after disruption of the cell membranes. We calculate the critical electric field by capturing the location within the channel of the increase in fluorescence intensity after electroporation. Bacterial strains with industrial and therapeutic relevance such as Escherichia coli BL21 (3.65 ± 0.09 kV/cm), Corynebacterium glutamicum (5.20 ± 0.20 kV/cm), and Mycobacterium smegmatis (5.56 ± 0.08 kV/cm) have been successfully characterized. Determining the critical electric field for electroporation facilitates the development of electroporation protocols that minimize Joule heating and maximize cell viability. This assay will ultimately enable the genetic transformation of bacteria and archaea considered intractable and difficult-to-transfect, while facilitating fundamental genetic studies on numerous diverse microbes. PMID:26893024

  14. Patent protection and licensing in microfluidics.

    PubMed

    Yetisen, Ali K; Volpatti, Lisa R

    2014-07-01

    Microfluidic devices offer control over low-volume samples in order to achieve high-throughput analysis, and reduce turnaround time and costs. Their efficient commercialisation has implications for biomedical sciences, veterinary medicine, environmental monitoring and industrial applications. In particular, market diffusion of microfluidic laboratory and point-of-care diagnostic devices can contribute to the improvement of global health. In their commercialisation, consultancy and patent protection are essential elements that complement academic publishing. The awareness of knowledge transfer strategies can help academics to create value for their research. The aim of this article is to provide a guidance to (1) overview the terminology in patent law, (2) elucidate the process of filing a patent in the US, EU, Japan and internationally, (3) discuss strategies to licence a patent, and (4) explain tactics to defend a patent in a potential infringement. Awareness of the patent law and rights allows obtaining optimised, valid and valuable patents, while accelerating implementation to market route. Striking a balance between academic publishing, consultancy to industry and patent protection can increase commercial potential, enhance economic growth and create social impact.

  15. Microfluidic Wheatstone bridge for rapid sample analysis.

    PubMed

    Tanyeri, Melikhan; Ranka, Mikhil; Sittipolkul, Natawan; Schroeder, Charles M

    2011-12-21

    We developed a microfluidic analogue of the classic Wheatstone bridge circuit for automated, real-time sampling of solutions in a flow-through device format. We demonstrate precise control of flow rate and flow direction in the "bridge" microchannel using an on-chip membrane valve, which functions as an integrated "variable resistor". We implement an automated feedback control mechanism in order to dynamically adjust valve opening, thereby manipulating the pressure drop across the bridge and precisely controlling fluid flow in the bridge channel. At a critical valve opening, the flow in the bridge channel can be completely stopped by balancing the flow resistances in the Wheatstone bridge device, which facilitates rapid, on-demand fluid sampling in the bridge channel. In this article, we present the underlying mechanism for device operation and report key design parameters that determine device performance. Overall, the microfluidic Wheatstone bridge represents a new and versatile method for on-chip flow control and sample manipulation. PMID:22030805

  16. Microfluidic Radiometal Labeling Systems for Biomolecules

    SciTech Connect

    Reichert, D E; Kenis, P J. A.

    2011-12-29

    In a typical labeling procedure with radiometals, such as Cu-64 and Ga-68; a very large (~ 100-fold) excess of the non-radioactive reactant (precursor) is used to promote rapid and efficient incorporation of the radioisotope into the PET imaging agent. In order to achieve high specific activities, careful control of reaction conditions and extensive chromatographic purifications are required in order to separate the labeled compounds from the cold precursors. Here we propose a microfluidic approach to overcome these problems, and achieve high specific activities in a more convenient, semi-automated fashion and faster time frame. Microfluidic reactors, consisting of a network of micron-sized channels (typical dimensions in the range 10 - 300¼m), filters, separation columns, electrodes and reaction loops/chambers etched onto a solid substrate, are now emerging as an extremely useful technology for the intensification and miniaturization of chemical processes. The ability to manipulate, process and analyze reagent concentrations and reaction interfaces in both space and time within the channel network of a microreactor provides the fine level of reaction control that is desirable in PET radiochemistry practice. These factors can bring radiometal labeling, specifically the preparation of radio-labeled biomolecules such as antibodies, much closer to their theoretical maximum specific activities.

  17. Macromolecular Crystal Growth by Means of Microfluidics

    NASA Technical Reports Server (NTRS)

    vanderWoerd, Mark; Ferree, Darren; Spearing, Scott; Monaco, Lisa; Molho, Josh; Spaid, Michael; Brasseur, Mike; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We have performed a feasibility study in which we show that chip-based, microfluidic (LabChip(TM)) technology is suitable for protein crystal growth. This technology allows for accurate and reliable dispensing and mixing of very small volumes while minimizing bubble formation in the crystallization mixture. The amount of (protein) solution remaining after completion of an experiment is minimal, which makes this technique efficient and attractive for use with proteins, which are difficult or expensive to obtain. The nature of LabChip(TM) technology renders it highly amenable to automation. Protein crystals obtained in our initial feasibility studies were of excellent quality as determined by X-ray diffraction. Subsequent to the feasibility study, we designed and produced the first LabChip(TM) device specifically for protein crystallization in batch mode. It can reliably dispense and mix from a range of solution constituents into two independent growth wells. We are currently testing this design to prove its efficacy for protein crystallization optimization experiments. In the near future we will expand our design to incorporate up to 10 growth wells per LabChip(TM) device. Upon completion, additional crystallization techniques such as vapor diffusion and liquid-liquid diffusion will be accommodated. Macromolecular crystallization using microfluidic technology is envisioned as a fully automated system, which will use the 'tele-science' concept of remote operation and will be developed into a research facility for the International Space Station as well as on the ground.

  18. Integrated Microfluidics for Protein Modification Discovery.

    PubMed

    Noach-Hirsh, Meirav; Nevenzal, Hadas; Glick, Yair; Chorni, Evelin; Avrahami, Dorit; Barbiro-Michaely, Efrat; Gerber, Doron; Tzur, Amit

    2015-10-01

    Protein post-translational modifications mediate dynamic cellular processes with broad implications in human disease pathogenesis. There is a large demand for high-throughput technologies supporting post-translational modifications research, and both mass spectrometry and protein arrays have been successfully utilized for this purpose. Protein arrays override the major limitation of target protein abundance inherently associated with MS analysis. This technology, however, is typically restricted to pre-purified proteins spotted in a fixed composition on chips with limited life-time and functionality. In addition, the chips are expensive and designed for a single use, making complex experiments cost-prohibitive. Combining microfluidics with in situ protein expression from a cDNA microarray addressed these limitations. Based on this approach, we introduce a modular integrated microfluidic platform for multiple post-translational modifications analysis of freshly synthesized protein arrays (IMPA). The system's potency, specificity and flexibility are demonstrated for tyrosine phosphorylation and ubiquitination in quasicellular environments. Unlimited by design and protein composition, and relying on minute amounts of biological material and cost-effective technology, this unique approach is applicable for a broad range of basic, biomedical and biomarker research.

  19. Integrated Microfluidics for Protein Modification Discovery*

    PubMed Central

    Noach-Hirsh, Meirav; Nevenzal, Hadas; Glick, Yair; Chorni, Evelin; Avrahami, Dorit; Barbiro-Michaely, Efrat; Gerber, Doron; Tzur, Amit

    2015-01-01

    Protein post-translational modifications mediate dynamic cellular processes with broad implications in human disease pathogenesis. There is a large demand for high-throughput technologies supporting post-translational modifications research, and both mass spectrometry and protein arrays have been successfully utilized for this purpose. Protein arrays override the major limitation of target protein abundance inherently associated with MS analysis. This technology, however, is typically restricted to pre-purified proteins spotted in a fixed composition on chips with limited life-time and functionality. In addition, the chips are expensive and designed for a single use, making complex experiments cost-prohibitive. Combining microfluidics with in situ protein expression from a cDNA microarray addressed these limitations. Based on this approach, we introduce a modular integrated microfluidic platform for multiple post-translational modifications analysis of freshly synthesized protein arrays (IMPA). The system's potency, specificity and flexibility are demonstrated for tyrosine phosphorylation and ubiquitination in quasicellular environments. Unlimited by design and protein composition, and relying on minute amounts of biological material and cost-effective technology, this unique approach is applicable for a broad range of basic, biomedical and biomarker research. PMID:26276765

  20. Accelerating Yeast Prion Biology using Droplet Microfluidics

    NASA Astrophysics Data System (ADS)

    Ung, Lloyd; Rotem, Assaf; Jarosz, Daniel; Datta, Manoshi; Lindquist, Susan; Weitz, David

    2012-02-01

    Prions are infectious proteins in a misfolded form, that can induce normal proteins to take the misfolded state. Yeast prions are relevant, as a model of human prion diseases, and interesting from an evolutionary standpoint. Prions may also be a form of epigenetic inheritance, which allow yeast to adapt to stressful conditions at rates exceeding those of random mutations and propagate that adaptation to their offspring. Encapsulation of yeast in droplet microfluidic devices enables high-throughput measurements with single cell resolution, which would not be feasible using bulk methods. Millions of populations of yeast can be screened to obtain reliable measurements of prion induction and loss rates. The population dynamics of clonal yeast, when a fraction of the cells are prion expressing, can be elucidated. Furthermore, the mechanism by which certain strains of bacteria induce yeast to express prions in the wild can be deduced. Integrating the disparate fields of prion biology and droplet microfluidics reveals a more complete picture of how prions may be more than just diseases and play a functional role in yeast.

  1. Retinal synaptic regeneration via microfluidic guiding channels

    PubMed Central

    Su, Ping-Jung; Liu, Zongbin; Zhang, Kai; Han, Xin; Saito, Yuki; Xia, Xiaojun; Yokoi, Kenji; Shen, Haifa; Qin, Lidong

    2015-01-01

    In vitro culture of dissociated retinal neurons is an important model for investigating retinal synaptic regeneration (RSR) and exploring potentials in artificial retina. Here, retinal precursor cells were cultured in a microfluidic chip with multiple arrays of microchannels in order to reconstruct the retinal neuronal synapse. The cultured retinal cells were physically connected through microchannels. Activation of electric signal transduction by the cells through the microchannels was demonstrated by administration of glycinergic factors. In addition, an image-based analytical method was used to quantify the synaptic connections and to assess the kinetics of synaptic regeneration. The rate of RSR decreased significantly below 100 μM of inhibitor glycine and then approached to a relatively constant level at higher concentrations. Furthermore, RSR was enhanced by chemical stimulation with potassium chloride. Collectively, the microfluidic synaptic regeneration chip provides a novel tool for high-throughput investigation of RSR at the cellular level and may be useful in quality control of retinal precursor cell transplantation. PMID:26314276

  2. Plumbing Fixture for a Microfluidic Cartridge

    NASA Technical Reports Server (NTRS)

    Francis, Kevin

    2007-01-01

    A fixture has been devised for making the plumbing connections between a microfluidic device in a replaceable cartridge and an external fluidic system. The fixture includes a 0.25-in. (6.35-mm) thick steel plate, to which the cartridge is fastened by two 10-32 thumb screws. The plate holds one plumbing fitting for the inlet and one for the outlet of the microfluidic device. Each fitting includes a fused-silica tube of 0.006-in. (approx.0.15-mm) inside diameter within a fluorinated ethylene-propylene (FEP) tube of 0.0155-in. (approx.0.39-mm) inside diameter and 0.062- in. (approx.1.57-mm) outside diameter. The FEP tube is press-fit through the steel plate so that its exposed end is flush with the surface of the plate, and the silica tube protrudes 0.03 in. (approx.0.76 mm) from the plate/FEP-tube-end surface. The cartridge includes a glass cover plate that contains 0.06-mm-wide access ports. When the cartridge is fastened to the steel plate, the silica tubes become inserted through the access ports and into the body of the cartridge, while the ends of the FEP tubes become butted against the glass cover plate. An extremely tight seal is thereby made.

  3. Laser microfluidics: fluid actuation by light

    NASA Astrophysics Data System (ADS)

    Delville, Jean-Pierre; de Saint Vincent, Matthieu Robert; Schroll, Robert D.; Chraïbi, Hamza; Issenmann, Bruno; Wunenburger, Régis; Lasseux, Didier; Zhang, Wendy W.; Brasselet, Etienne

    2009-03-01

    The development of microfluidic devices is still hindered by the lack of robust fundamental building blocks that constitute any fluidic system. An attractive approach is optical actuation because light field interaction is contactless and dynamically reconfigurable, and solutions have been anticipated through the use of optical forces to manipulate microparticles in flows. Following the concept of an 'optical chip' advanced from the optical actuation of suspensions, we propose in this survey new routes to extend this concept to microfluidic two-phase flows. First, we investigate the destabilization of fluid interfaces by the optical radiation pressure and the formation of liquid jets. We analyze the droplet shedding from the jet tip and the continuous transport in laser-sustained liquid channels. In the second part, we investigate a dissipative light-flow interaction mechanism consisting in heating locally two immiscible fluids to produce thermocapillary stresses along their interface. This opto-capillary coupling is implemented in adequate microchannel geometries to manipulate two-phase flows and propose a contactless optical toolbox including valves, droplet sorters and switches, droplet dividers or droplet mergers. Finally, we discuss radiation pressure and opto-capillary effects in the context of the 'optical chip' where flows, channels and operating functions would all be performed optically on the same device.

  4. Microfluidic plug steering using surface acoustic waves.

    PubMed

    Sesen, Muhsincan; Alan, Tuncay; Neild, Adrian

    2015-07-21

    Digital microfluidic systems, in which isolated droplets are dispersed in a carrier medium, offer a method to study biological assays and chemical reactions highly efficiently. However, it's challenging to manipulate these droplets in closed microchannel devices. Here, we present a method to selectively steer plugs (droplets with diameters larger than the channel's width) at a specially designed Y-junction within a microfluidic chip. The method makes use of surface acoustic waves (SAWs) impinging on a multiphase interface in which an acoustic contrast is present. As a result, the liquid-liquid interface is subjected to acoustic radiation forces. These forces are exploited to steer plugs into selected branches of the Y-junction. Furthermore, the input power can be finely tuned to split a plug into two uneven plugs. The steering of plugs as a whole, based on plug volume and velocity is thoroughly characterized. The results indicate that there is a threshold plug volume after which the steering requires elevated electrical energy input. This plug steering method can easily be integrated to existing lab-on-a-chip devices and it offers a robust and active plug manipulation technique in closed microchannels. PMID:26079216

  5. Retinal synaptic regeneration via microfluidic guiding channels.

    PubMed

    Su, Ping-Jung; Liu, Zongbin; Zhang, Kai; Han, Xin; Saito, Yuki; Xia, Xiaojun; Yokoi, Kenji; Shen, Haifa; Qin, Lidong

    2015-01-01

    In vitro culture of dissociated retinal neurons is an important model for investigating retinal synaptic regeneration (RSR) and exploring potentials in artificial retina. Here, retinal precursor cells were cultured in a microfluidic chip with multiple arrays of microchannels in order to reconstruct the retinal neuronal synapse. The cultured retinal cells were physically connected through microchannels. Activation of electric signal transduction by the cells through the microchannels was demonstrated by administration of glycinergic factors. In addition, an image-based analytical method was used to quantify the synaptic connections and to assess the kinetics of synaptic regeneration. The rate of RSR decreased significantly below 100 μM of inhibitor glycine and then approached to a relatively constant level at higher concentrations. Furthermore, RSR was enhanced by chemical stimulation with potassium chloride. Collectively, the microfluidic synaptic regeneration chip provides a novel tool for high-throughput investigation of RSR at the cellular level and may be useful in quality control of retinal precursor cell transplantation. PMID:26314276

  6. Phaseguides: a paradigm shift in microfluidic priming and emptying.

    PubMed

    Vulto, Paul; Podszun, Susann; Meyer, Philipp; Hermann, Carsten; Manz, Andreas; Urban, Gerald A

    2011-05-01

    Phaseguide technology gives complete control over filling and emptying of any type of microfluidic structures, independent of the chamber and channel geometry. The technique is based on a step-wise advancement of the liquid-air interface using the meniscus pinning effect. In this paper, the main effects and parameters underlying the phaseguiding principle are discussed and a demonstration is given of its potential for dead angle filling, spatially controlled phaseguide overflow and sequential phaseguide overflow, all accumulating in a passive valving approach. Phaseguides represent a new direction in microfluidic design thinking that will prove a leap forward towards more simple, flexible and reliable microfluidic systems. PMID:21394334

  7. Protein Microarrays with Novel Microfluidic Methods: Current Advances

    PubMed Central

    Dixit, Chandra K.; Aguirre, Gerson R.

    2014-01-01

    Microfluidic-based micromosaic technology has allowed the pattering of recognition elements in restricted micrometer scale areas with high precision. This controlled patterning enabled the development of highly multiplexed arrays multiple analyte detection. This arraying technology was first introduced in the beginning of 2001 and holds tremendous potential to revolutionize microarray development and analyte detection. Later, several microfluidic methods were developed for microarray application. In this review we discuss these novel methods and approaches which leverage the property of microfluidic technologies to significantly improve various physical aspects of microarray technology, such as enhanced imprinting homogeneity, stability of the immobilized biomolecules, decreasing assay times, and reduction of the costs and of the bulky instrumentation.

  8. Microfluidic Synthesis of Nanoparticles and their Biosensing Applications.

    PubMed

    Boken, Jyoti; Soni, Sarvesh K; Kumar, Dinesh

    2016-11-01

    We present an extensive overview of the evolution and progress made in the field of microstructures and nanostructures preparation using microfluidic techniques in recent times. A microfluidic system creates particles that are within a narrow range of shape and size distribution. It enables controlling the shape, size and composition of nanomaterials (NMs) for various applications. A brief evaluation of the advantages of both droplet-based and continuous flow synthesis of nanoparticles (NPs) is discussed in detail and compared with the traditional wet chemical batch synthesis approach. Due to increasing applications of biosensing, nanobiotechnology, nanomedicine and diagnostics devices, special attention should be paid to metal NPs developed through microfluidic routes.

  9. Recent microfluidic devices for studying gamete and embryo biomechanics.

    PubMed

    Lai, David; Takayama, Shuichi; Smith, Gary D

    2015-06-25

    The technical challenges of biomechanic research such as single cell analysis at a high monetary cost, labor, and time for just a small number of measurements is a good match to the strengths of microfluidic devices. New scientific discoveries in the fertilization and embryo development process, of which biomechanics is a major subset of interest, is crucial to fuel the continual improvement of clinical practice in assisted reproduction. The following review will highlight some recent microfluidic devices tailored for gamete and embryo biomechanics where biomimicry arises as a major theme of microfluidic device design and function, and the application of fundamental biomechanic principles are used to improve outcomes of cryopreservation.

  10. Liposome production by microfluidics: potential and limiting factors

    PubMed Central

    Carugo, Dario; Bottaro, Elisabetta; Owen, Joshua; Stride, Eleanor; Nastruzzi, Claudio

    2016-01-01

    This paper provides an analysis of microfluidic techniques for the production of nanoscale lipid-based vesicular systems. In particular we focus on the key issues associated with the microfluidic production of liposomes. These include, but are not limited to, the role of lipid formulation, lipid concentration, residual amount of solvent, production method (including microchannel architecture), and drug loading in determining liposome characteristics. Furthermore, we propose microfluidic architectures for the mass production of liposomes with a view to potential industrial translation of this technology. PMID:27194474

  11. Method for making electro-fluidic connections in microfluidic devices

    DOEpatents

    Frye-Mason, Gregory C.; Martinez, David; Manginell, Ronald P.; Heller, Edwin J.; Chanchani, Rajen

    2004-08-10

    A method for forming electro-fluidic interconnections in microfluidic devices comprises forming an electrical connection between matching bond pads on a die containing an active electrical element and a microfluidic substrate and forming a fluidic seal ring that circumscribes the active electrical element and a fluidic feedthrough. Preferably, the electrical connection and the seal ring are formed in a single bonding step. The simple method is particularly useful for chemical microanalytical systems wherein a plurality of microanalytical components, such as a chemical preconcentrator, a gas chromatography column, and a surface acoustic wave detector, are fluidically interconnected on a hybrid microfluidic substrate having electrical connection to external support electronics.

  12. Virtual microfluidics for digital quantification and single-cell sequencing.

    PubMed

    Xu, Liyi; Brito, Ilana L; Alm, Eric J; Blainey, Paul C

    2016-09-01

    We have developed hydrogel-based virtual microfluidics as a simple and robust alternative to complex engineered microfluidic systems for the compartmentalization of nucleic acid amplification reactions. We applied in-gel digital multiple displacement amplification (dMDA) to purified DNA templates, cultured bacterial cells and human microbiome samples in the virtual microfluidics system, and demonstrated whole-genome sequencing of single-cell MDA products with excellent coverage uniformity and markedly reduced chimerism compared with products of liquid MDA reactions. PMID:27479330

  13. Recent microfluidic devices for studying gamete and embryo biomechanics.

    PubMed

    Lai, David; Takayama, Shuichi; Smith, Gary D

    2015-06-25

    The technical challenges of biomechanic research such as single cell analysis at a high monetary cost, labor, and time for just a small number of measurements is a good match to the strengths of microfluidic devices. New scientific discoveries in the fertilization and embryo development process, of which biomechanics is a major subset of interest, is crucial to fuel the continual improvement of clinical practice in assisted reproduction. The following review will highlight some recent microfluidic devices tailored for gamete and embryo biomechanics where biomimicry arises as a major theme of microfluidic device design and function, and the application of fundamental biomechanic principles are used to improve outcomes of cryopreservation. PMID:25801423

  14. On demand nanoliter-scale microfluidic droplet generation, injection, and mixing using a passive microfluidic device.

    PubMed

    Tangen, Uwe; Sharma, Abhishek; Wagler, Patrick; McCaskill, John S

    2015-01-01

    We here present and characterize a programmable nanoliter scale droplet-on-demand device that can be used separately or readily integrated into low cost single layer rapid prototyping microfluidic systems for a wide range of user applications. The passive microfluidic device allows external (off-the-shelf) electronically controlled pinch valves to program the delivery of nanoliter scale aqueous droplets from up to 9 different inputs to a central outlet channel. The inputs can be either continuous aqueous fluid streams or microliter scale aqueous plugs embedded in a carrier fluid, in which case the number of effective input solutions that can be employed in an experiment is no longer strongly constrained (100 s-1000 s). Both nanoliter droplet sequencing output and nanoliter-scale droplet mixing are reported with this device. Optimization of the geometry and pressure relationships in the device was achieved in several hardware iterations with the support of open source microfluidic simulation software and equivalent circuit models. The requisite modular control of pressure relationships within the device is accomplished using hydrodynamic barriers and matched resistance channels with three different channel heights, custom parallel reversible microfluidic I/O connections, low dead-volume pinch valves, and a simply adjustable array of external screw valves. Programmable sequences of droplet mixes or chains of droplets can be achieved with the device at low Hz frequencies, limited by device elasticity, and could be further enhanced by valve integration. The chip has already found use in the characterization of droplet bunching during export and the synthesis of a DNA library. PMID:25759752

  15. Microfluidic structures and methods for integrating a functional component into a microfluidic device

    DOEpatents

    Simmons, Blake; Domeier, Linda; Woo, Noble; Shepodd, Timothy; Renzi, Ronald F.

    2008-04-01

    Injection molding is used to form microfluidic devices with integrated functional components. One or more functional components are placed in a mold cavity which is then closed. Molten thermoplastic resin is injected into the mold and then cooled, thereby forming a solid substrate including the functional component(s). The solid substrate including the functional component(s) is then bonded to a second substrate which may include microchannels or other features.

  16. On demand nanoliter-scale microfluidic droplet generation, injection, and mixing using a passive microfluidic device

    PubMed Central

    Tangen, Uwe; Sharma, Abhishek

    2015-01-01

    We here present and characterize a programmable nanoliter scale droplet-on-demand device that can be used separately or readily integrated into low cost single layer rapid prototyping microfluidic systems for a wide range of user applications. The passive microfluidic device allows external (off-the-shelf) electronically controlled pinch valves to program the delivery of nanoliter scale aqueous droplets from up to 9 different inputs to a central outlet channel. The inputs can be either continuous aqueous fluid streams or microliter scale aqueous plugs embedded in a carrier fluid, in which case the number of effective input solutions that can be employed in an experiment is no longer strongly constrained (100 s–1000 s). Both nanoliter droplet sequencing output and nanoliter-scale droplet mixing are reported with this device. Optimization of the geometry and pressure relationships in the device was achieved in several hardware iterations with the support of open source microfluidic simulation software and equivalent circuit models. The requisite modular control of pressure relationships within the device is accomplished using hydrodynamic barriers and matched resistance channels with three different channel heights, custom parallel reversible microfluidic I/O connections, low dead-volume pinch valves, and a simply adjustable array of external screw valves. Programmable sequences of droplet mixes or chains of droplets can be achieved with the device at low Hz frequencies, limited by device elasticity, and could be further enhanced by valve integration. The chip has already found use in the characterization of droplet bunching during export and the synthesis of a DNA library. PMID:25759752

  17. Microfluidic gradient PCR (MG-PCR): a new method for microfluidic DNA amplification.

    PubMed

    Zhang, Chunsun; Xing, Da

    2010-02-01

    This study develops a new microfluidic DNA amplification strategy for executing parallel DNA amplification in the microfluidic gradient polymerase chain reaction (MG-PCR) device. The developed temperature gradient microfluidic system is generated by using an innovative fin design. The device mainly consists of modular thermally conductive copper flake which is attached onto a finned aluminum heat sink with a small fan. In our microfluidic temperature gradient prototype, a non-linear temperature gradient is produced along the gradient direction. On the copper flake of length 45 mm, width 40 mm and thickness 4 mm, the temperature gradient easily spans the range from 97 to 52 degrees Celsius. By making full use of the hot (90-97 degrees Celsius) and cold (60-70 degrees Celsius) regions on the temperature gradient device, the parallel, two-temperature MG-PCR amplification is feasible. As a demonstration, the MG-PCR from three parallel reactions of 112-bp Escherichia coli DNA fragment is performed in a continuous-flow format, in which the flow of the PCR reagent in the closed loop is induced by the buoyancy-driven nature convection. Although the prototype is not optimized, the MG-PCR amplification can be completed in less than 45 min. However, the MG-PCR thermocycler presented herein can be further scaled-down, and thus the amplification times and reagent consumption can be further reduced. In addition, the currently developed temperature gradient technology can be applied onto other continuous-flow MG-PCR systems or used for other analytical purposes such as parallel and combination measurements, and fluorescent melting curve analysis.

  18. Batch-reactor microfluidic device: first human use of a microfluidically produced PET radiotracer.

    PubMed

    Lebedev, Artem; Miraghaie, Reza; Kotta, Kishore; Ball, Carroll E; Zhang, Jianzhong; Buchsbaum, Monte S; Kolb, Hartmuth C; Elizarov, Arkadij

    2013-01-01

    The very first microfluidic device used for the production of (18)F-labeled tracers for clinical research is reported along with the first human Positron Emission Tomography scan obtained with a microfluidically produced radiotracer. The system integrates all operations necessary for the transformation of [(18)F]fluoride in irradiated cyclotron target water to a dose of radiopharmaceutical suitable for use in clinical research. The key microfluidic technologies developed for the device are a fluoride concentration system and a microfluidic batch reactor assembly. Concentration of fluoride was achieved by means of absorption of the fluoride anion on a micro ion-exchange column (5 μL of resin) followed by release of the radioactivity with 45 μL of the release solution (95 ± 3% overall efficiency). The reactor assembly includes an injection-molded reactor chip and a transparent machined lid press-fitted together. The resulting 50 μL cavity has a unique shape designed to minimize losses of liquid during reactor filling and liquid evaporation. The cavity has 8 ports for gases and liquids, each equipped with a 2-way on-chip mechanical valve rated for pressure up to 20.68 bar (300 psi). The temperature is controlled by a thermoelectric heater capable of heating the reactor up to 180 °C from RT in 150 s. A camera captures live video of the processes in the reactor. HPLC-based purification and reformulation units are also integrated in the device. The system is based on "split-box architecture", with reagents loaded from outside of the radiation shielding. It can be installed either in a standard hot cell, or as a self-shielded unit. Along with a high level of integration and automation, split-box architecture allowed for multiple production runs without the user being exposed to radiation fields. The system was used to support clinical trials of [(18)F]fallypride, a neuroimaging radiopharmaceutical under IND Application #109,880.

  19. On demand nanoliter-scale microfluidic droplet generation, injection, and mixing using a passive microfluidic device.

    PubMed

    Tangen, Uwe; Sharma, Abhishek; Wagler, Patrick; McCaskill, John S

    2015-01-01

    We here present and characterize a programmable nanoliter scale droplet-on-demand device that can be used separately or readily integrated into low cost single layer rapid prototyping microfluidic systems for a wide range of user applications. The passive microfluidic device allows external (off-the-shelf) electronically controlled pinch valves to program the delivery of nanoliter scale aqueous droplets from up to 9 different inputs to a central outlet channel. The inputs can be either continuous aqueous fluid streams or microliter scale aqueous plugs embedded in a carrier fluid, in which case the number of effective input solutions that can be employed in an experiment is no longer strongly constrained (100 s-1000 s). Both nanoliter droplet sequencing output and nanoliter-scale droplet mixing are reported with this device. Optimization of the geometry and pressure relationships in the device was achieved in several hardware iterations with the support of open source microfluidic simulation software and equivalent circuit models. The requisite modular control of pressure relationships within the device is accomplished using hydrodynamic barriers and matched resistance channels with three different channel heights, custom parallel reversible microfluidic I/O connections, low dead-volume pinch valves, and a simply adjustable array of external screw valves. Programmable sequences of droplet mixes or chains of droplets can be achieved with the device at low Hz frequencies, limited by device elasticity, and could be further enhanced by valve integration. The chip has already found use in the characterization of droplet bunching during export and the synthesis of a DNA library.

  20. A light writable microfluidic "flash memory": optically addressed actuator array with latched operation for microfluidic applications.

    PubMed

    Hua, Zhishan; Pal, Rohit; Srivannavit, Onnop; Burns, Mark A; Gulari, Erdogan

    2008-03-01

    This paper presents a novel optically addressed microactuator array (microfluidic "flash memory") with latched operation. Analogous to the address-data bus mediated memory address protocol in electronics, the microactuator array consists of individual phase-change based actuators addressed by localized heating through focused light patterns (address bus), which can be provided by a modified projector or high power laser pointer. A common pressure manifold (data bus) for the entire array is used to generate large deflections of the phase change actuators in the molten phase. The use of phase change material as the working media enables latched operation of the actuator array. After the initial light "writing" during which the phase is temporarily changed to molten, the actuated status is self-maintained by the solid phase of the actuator without power and pressure inputs. The microfluidic flash memory can be re-configured by a new light illumination pattern and common pressure signal. The proposed approach can achieve actuation of arbitrary units in a large-scale array without the need for complex external equipment such as solenoid valves and electrical modules, which leads to significantly simplified system implementation and compact system size. The proposed work therefore provides a flexible, energy-efficient, and low cost multiplexing solution for microfluidic applications based on physical displacements. As an example, the use of the latched microactuator array as "normally closed" or "normally open" microvalves is demonstrated. The phase-change wax is fully encapsulated and thus immune from contamination issues in fluidic environments.

  1. Microfluidic parallel circuit for measurement of hydraulic resistance.

    PubMed

    Choi, Sungyoung; Lee, Myung Gwon; Park, Je-Kyun

    2010-01-01

    We present a microfluidic parallel circuit that directly compares the test channel of an unknown hydraulic resistance with the reference channel with a known resistance, thereby measuring the unknown resistance without any measurement setup, such as standard pressure gauges. Many of microfluidic applications require the precise transport of fluid along a channel network with complex patterns. Therefore, it is important to accurately characterize and measure the hydraulic resistance of each channel segment, and determines whether the device principle works well. However, there is no fluidic device that includes features, such as the ability to diagnose microfluidic problems by measuring the hydraulic resistance of a microfluidic component in microscales. To address the above need, we demonstrate a simple strategy to measure an unknown hydraulic resistance, by characterizing the hydraulic resistance of microchannels with different widths and defining an equivalent linear channel of a microchannel with repeated patterns of a sudden contraction and expansion.

  2. Collective waves in dense and confined microfluidic droplet arrays.

    PubMed

    Schiller, Ulf D; Fleury, Jean-Baptiste; Seemann, Ralf; Gompper, Gerhard

    2015-08-01

    Excitation mechanisms for collective waves in confined dense one-dimensional microfluidic droplet arrays are investigated by experiments and computer simulations. We demonstrate that distinct modes can be excited by creating specific 'defect' patterns in flowing droplet trains. Excited longitudinal modes exhibit a short-lived cascade of pairs of laterally displacing droplets. Transversely excited modes obey the dispersion relation of microfluidic phonons and induce a coupling between longitudinal and transverse modes, whose origin is the hydrodynamic interaction of the droplets with the confining walls. Moreover, we investigate the long-time behaviour of the oscillations and discuss possible mechanisms for the onset of instabilities. Our findings demonstrate that the collective dynamics of microfluidic droplet ensembles can be studied particularly well in dense and confined systems. Experimentally, the ability to control microfluidic droplets may allow the modulation of the refractive index of optofluidic crystals, which is a promising approach for the production of dynamically programmable metamaterials. PMID:26107262

  3. Regenerated bacterial cellulose microfluidic column for glycoproteins separation.

    PubMed

    Chen, Chuntao; Zhu, Chunlin; Huang, Yang; Nie, Ying; Yang, Jiazhi; Shen, Ruiqi; Sun, Dongping

    2016-02-10

    To analysis and separate glycoproteins, a simple strategy to prepare regenerated bacterial cellulose (RBC) column with concanavalin A (Con A) lectin immobilized in microfluidic system was applied. RBC was filled into microchannel to fabricate RBC microcolumn after bacterial cellulose dissolved in NaOH-sulfourea water solution. Lectin Con A was covalently connected onto RBC matrix surface via Schiff-base formation. Lysozyme (non-glycoprotein) and transferrin (glycoprotein) were successfully separated based on their different affinities toward the immobilized Con A. Overall, the RBC microfluidic system presents great potential application in affinity chromatography of glycoproteins analysis, and this research represents a significant step to prepare bacterial cellulose (BC) as column packing material in microfluidic system. What is more, troublesome operations for lectin affinity chromatography were simplified by integrating the microfluidic chip onto a HPLC (High Performance Liquid Chromatography) system.

  4. Polyurethane-based microfluidic devices for blood contacting applications.

    PubMed

    Wu, Wen-I; Sask, Kyla N; Brash, John L; Selvaganapathy, P Ravi

    2012-03-01

    Protein adsorption on PDMS surfaces poses a significant challenge in microfluidic devices that come into contact with biofluids such as blood. Polyurethane (PU) is often used for the construction of medical devices, but despite having several attractive properties for biointerfacing, it has not been widely used in microfluidic devices. In this work we developed two new fabrication processes for making thin, transparent and flexible PU-based microfluidic devices. Methods for the fabrication and bonding of microchannels, the integration of fluidic interconnections and surface modification with hydrophilic polyethylene oxide (PEO) to reduce protein adsorption are detailed. Using these processes, microchannels were produced having high transparency (96% that of glass in visible light), high bond strength (326.4 kPa) and low protein adsorption (80% reduction in fibrinogen adsorption vs. unmodified PDMS), which is critical for prevention of fouling. Our findings indicate that PEO modified PU could serve as an effective alternative to PDMS in blood contacting microfluidic applications.

  5. [Application of microfluidics in aquatic environmental pollution analysis].

    PubMed

    Wang, Hu; Wei, Jun-Feng; Zheng, Guo-Xia

    2014-04-01

    Recently, a new type of chip technology, microfluidics, has received global attention for its rapid analysis speed, low reagent consumption, small size and simple operation, etc. Based on a micro-channel network and supported by a Micro-Electro-Mechanic System (MEMS), this technology integrates all the functions of a laboratory into one small piece of chip, which is called "lab on the chip". This paper presented a brief introduction about microfluidics and its representative developments. Future prospects in the aspects of instrument miniaturization, system integration, chip materials, and detection techniques, as well as the implementation of microfluidics in aquatic environmental pollutant analysis were thoroughly discussed. Some problems faced now were put forward. With the rapid progress in the microfluidics, a universal low-cost microchip capable of high speed multi-channel detection and integrated with many kinds of detection methods would be the research focus in the future.

  6. A personal stroll through the historical development of Canadian microfluidics.

    PubMed

    Harrison, D Jed

    2013-07-01

    The historical background of microfluidics research within Canada is discussed, from the period 1990 to the present. The emphasis is on the recollections and perspectives of the author, D. Jed Harrison.

  7. Biomimetic microfluidic device for in vitro antihypertensive drug evaluation.

    PubMed

    Li, Lei; Lv, Xiaoqing; Ostrovidov, Serge; Shi, Xuetao; Zhang, Ning; Liu, Jing

    2014-07-01

    Microfluidic devices have emerged as revolutionary, novel platforms for in vitro drug evaluation. In this work, we developed a facile method for evaluating antihypertensive drugs using a microfluidic chip. This microfluidic chip was generated using the elastic material poly(dimethylsiloxane) (PDMS) and a microchannel structure that simulated a blood vessel as fabricated on the chip. We then cultured human umbilical vein endothelial cells (HUVECs) inside the channel. Different pressures and shear stresses could be applied on the cells. The generated vessel mimics can be used for evaluating the safety and effects of antihypertensive drugs. Here, we used hydralazine hydrochloride as a model drug. The results indicated that hydralazine hydrochloride effectively decreased the pressure-induced dysfunction of endothelial cells. This work demonstrates that our microfluidic system provides a convenient and cost-effective platform for studying cellular responses to drugs under mechanical pressure. PMID:24673554

  8. Liquid density effect on burst frequency in centrifugal microfluidic platforms.

    PubMed

    Al-Faqheri, Wisam; Ibrahim, Fatimah; Thio, Tzer Hwai Gilbert; Joseph, Karunan; Mohktar, Mas S; Madou, Marc

    2015-01-01

    Centrifugal microfluidic platforms are widely used in various advanced processes such as biomedical diagnostics, chemical analysis and drug screening. This paper investigates the effect of liquid density on the burst frequency of the centrifugal microfluidic platform. This effect is experimentally investigated and compared to theoretical values. It is found that increasing the liquid density results in lower burst frequency and it is in agreement with theoretical calculations. Moreover, in this study we proposed the use of the microfluidic CD platform as an inexpensive and simple sensor for liquid density measurements. The proposed liquid sensor requires much less liquid volume (in the range of microliters) compared to conventional density meters. This study presents fundamental work which allows for future advance studies with the aim of designing and fabricating centrifugal microfluidic platforms for more complex tasks such as blood analysis.

  9. Surface Micromachine Microfluidics: Design, Fabrication, Packaging, and Characterization

    SciTech Connect

    Galambos, Paul; Eaton, William P.; Shul, Randy; Willison, Christi Gober; Sniegowski, Jeffrey J.; Miller, Samuel L.; Guttierez, Daniel

    1999-06-30

    The field of microfluidics is undergoing rapid growth in terms of new device and system development. Among the many methods of fabricating microfluidic devices and systems, surface micromachining is relatively underrepresented due to difficulties in the introduction of fluids into the very small channels produced, packaging problems, and difficulties in device and system characterization. The potential advantages of using surface micromachining including compatibility with the existing integrated circuit tool set, integration of electronic sensing and actuation with microfluidics, and fluid volume minimization. In order to explore these potential advantages we have developed first generation surface micromachined microfluidic devices (channels) using an adapted pressure sensor fabrication process to produce silicon nitride channels, and the SUMMiT process to produce polysilicon channels. The channels were characterized by leak testing and flow rate vs. pressure measurements. The fabrication processes used and results of these tests are reported in this paper.

  10. Mixing and Pumping in Microfluidic Systems using Motile Bacteria

    NASA Astrophysics Data System (ADS)

    Kim, Min Jun; Breuer, Kenneth

    2003-11-01

    Experimental results are presented showing the use of bacterial carpets to achieve enhanced mixing and pumping in microfluidic channels. Bacterial carpets are formed by flowing high concentration of Serratia marcescens (2 5 × 10^9/ml) into a microfluidic network, fabricated using PDMS molding technologies. The bacteria cells stick to the surface while most of their flagella remain free to rotate in the fluid. The mixing of two streams of a Dextran solution brought together at a Y-junction in a microfluidic network is recorded using video microscopy. Significant enhancement of diffusion due to the carpet flagella motion is observed. The bacterial carpet is also observed to act as a microfluidic pump. The motion of fluorescent particles (500 nm) as they are pumped by the bacterial carpet around a circular "racetrack" is analysed using Particle Tracking Velocimetry (PTV). Significant pumping is observed. The physical mechanisms for the enhanced diffusion and the pumping generated by bacterial carpet are also discussed.

  11. Microfluidic cell chips for high-throughput drug screening.

    PubMed

    Chi, Chun-Wei; Ahmed, Ah Rezwanuddin; Dereli-Korkut, Zeynep; Wang, Sihong

    2016-05-01

    The current state of screening methods for drug discovery is still riddled with several inefficiencies. Although some widely used high-throughput screening platforms may enhance the drug screening process, their cost and oversimplification of cell-drug interactions pose a translational difficulty. Microfluidic cell-chips resolve many issues found in conventional HTS technology, providing benefits such as reduced sample quantity and integration of 3D cell culture physically more representative of the physiological/pathological microenvironment. In this review, we introduce the advantages of microfluidic devices in drug screening, and outline the critical factors which influence device design, highlighting recent innovations and advances in the field including a summary of commercialization efforts on microfluidic cell chips. Future perspectives of microfluidic cell devices are also provided based on considerations of present technological limitations and translational barriers. PMID:27071838

  12. Computational design optimization for microfluidic magnetophoresis

    PubMed Central

    Plouffe, Brian D.; Lewis, Laura H.; Murthy, Shashi K.

    2011-01-01

    Current macro- and microfluidic approaches for the isolation of mammalian cells are limited in both efficiency and purity. In order to design a robust platform for the enumeration of a target cell population, high collection efficiencies are required. Additionally, the ability to isolate pure populations with minimal biological perturbation and efficient off-chip recovery will enable subcellular analyses of these cells for applications in personalized medicine. Here, a rational design approach for a simple and efficient device that isolates target cell populations via magnetic tagging is presented. In this work, two magnetophoretic microfluidic device designs are described, with optimized dimensions and operating conditions determined from a force balance equation that considers two dominant and opposing driving forces exerted on a magnetic-particle-tagged cell, namely, magnetic and viscous drag. Quantitative design criteria for an electromagnetic field displacement-based approach are presented, wherein target cells labeled with commercial magnetic microparticles flowing in a central sample stream are shifted laterally into a collection stream. Furthermore, the final device design is constrained to fit on standard rectangular glass coverslip (60 (L)×24 (W)×0.15 (H) mm3) to accommodate small sample volume and point-of-care design considerations. The anticipated performance of the device is examined via a parametric analysis of several key variables within the model. It is observed that minimal currents (<500 mA) are required to generate magnetic fields sufficient to separate cells from the sample streams flowing at rate as high as 7 ml∕h, comparable to the performance of current state-of-the-art magnet-activated cell sorting systems currently used in clinical settings. Experimental validation of the presented model illustrates that a device designed according to the derived rational optimization can effectively isolate (∼100%) a magnetic-particle-tagged cell

  13. Ultrafast microfluidics using surface acoustic waves

    PubMed Central

    Yeo, Leslie Y.; Friend, James R.

    2009-01-01

    We demonstrate that surface acoustic waves (SAWs), nanometer amplitude Rayleigh waves driven at megahertz order frequencies propagating on the surface of a piezoelectric substrate, offer a powerful method for driving a host of extremely fast microfluidic actuation and micro∕bioparticle manipulation schemes. We show that sessile drops can be translated rapidly on planar substrates or fluid can be pumped through microchannels at 1–10 cm∕s velocities, which are typically one to two orders quicker than that afforded by current microfluidic technologies. Through symmetry-breaking, azimuthal recirculation can be induced within the drop to drive strong inertial microcentrifugation for micromixing and particle concentration or separation. Similar micromixing strategies can be induced in the same microchannel in which fluid is pumped with the SAW by merely changing the SAW frequency to rapidly switch the uniform through-flow into a chaotic oscillatory flow by exploiting superpositioning of the irradiated sound waves from the sidewalls of the microchannel. If the flow is sufficiently quiescent, the nodes of the transverse standing wave that arises across the microchannel also allow for particle aggregation, and hence, sorting on nodal lines. In addition, the SAW also facilitates other microfluidic capabilities. For example, capillary waves excited at the free surface of a sessile drop by the SAW underneath it can be exploited for micro∕nanoparticle collection and sorting at nodal points or lines at low powers. At higher powers, the large accelerations off the substrate surface as the SAW propagates across drives rapid destabilization of the drop free surface giving rise to inertial liquid jets that persist over 1–2 cm in length or atomization of the entire drop to produce 1–10 μm monodispersed aerosol droplets, which can be exploited for ink-jet printing, mass spectrometry interfacing, or pulmonary drug delivery. The atomization of polymer∕protein solutions

  14. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    PubMed Central

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973

  15. Clear Castable Polyurethane Elastomer for Fabrication of Microfluidic Devices

    PubMed Central

    Domansky, Karel; Leslie, Daniel C.; McKinney, James; Fraser, Jacob P.; Sliz, Josiah D.; Hamkins-Indik, Tiama; Hamilton, Geraldine A.; Bahinski, Anthony; Ingber, Donald E.

    2013-01-01

    Polydimethylsiloxane (PDMS) has numerous desirable properties for fabricating microfluidic devices, including optical transparency, flexibility, biocompatibility, and fabrication by casting; however, partitioning of small hydrophobic molecules into the bulk of PDMS hinders industrial acceptance of PDMS microfluidic devices for chemical processing and drug development applications. Here we describe an attractive alternative material that is similar to PDMS in terms of optical transparency, flexibility and castability, but that is also resistant to absorption of small hydrophobic molecules. PMID:23954953

  16. Direct digital manufacturing of autonomous centrifugal microfluidic device

    NASA Astrophysics Data System (ADS)

    Ukita, Yoshiaki; Takamura, Yuzuru; Utsumi, Yuichi

    2016-06-01

    This paper presents strategies that attempt to solve two key problems facing the commercialization of microfluidics: cost reduction in microfluidic chip manufacturing and microfluidic device driver development. To reduce the cost of microfluidic chip manufacturing, we propose to use of three-dimensional (3D) printers for direct digital manufacturing (DDM). An evaluation of 3D micro-scale structure printing using several 3D printers is reported, and some of the technical issues to be addressed in the future are suggested. To evaluate micro-scale printing, three types of 3D printers, with the ability to print structures on the scale of several hundred meters, were selected by first screening six 3D printers. Line and space patterns with line widths of 100–500 µm and an aspect ratio of one were printed and evaluated. The estimated critical dimension was around 200 µm. The manufacturing of a monolithic microfluidic chip with embedded channels was also demonstrated. Monolithic microfluidic chips with embedded microchannels having 500 × 500 and 250 × 250 µm2 cross sections and 2–20 mm lengths were printed, and the fidelity of the channel shape, residual supporting material, and flow of liquid water were evaluated. The liquid flow evaluation showed that liquid water could flow through all of the microchannels with the 500 × 500 µm2 cross section, whereas this was not possible through some of the channels with the 250 × 250 µm2 cross section because of the residual resin or supporting material. To reduce the device-driver cost, we propose to use of the centrifugal microfluidic concept. An autonomous microfluidic device that could implement sequential flow control under a steadily rotating condition was printed. Four-step flow injection under a steadily rotating condition at 1500 rpm was successfully demonstrated without any external triggering such as changing the rotational speed.

  17. Centrifugal microfluidic platforms: advanced unit operations and applications.

    PubMed

    Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-10-01

    Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as

  18. Centrifugal microfluidic platforms: advanced unit operations and applications.

    PubMed

    Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-10-01

    Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as

  19. Direct digital manufacturing of autonomous centrifugal microfluidic device

    NASA Astrophysics Data System (ADS)

    Ukita, Yoshiaki; Takamura, Yuzuru; Utsumi, Yuichi

    2016-06-01

    This paper presents strategies that attempt to solve two key problems facing the commercialization of microfluidics: cost reduction in microfluidic chip manufacturing and microfluidic device driver development. To reduce the cost of microfluidic chip manufacturing, we propose to use of three-dimensional (3D) printers for direct digital manufacturing (DDM). An evaluation of 3D micro-scale structure printing using several 3D printers is reported, and some of the technical issues to be addressed in the future are suggested. To evaluate micro-scale printing, three types of 3D printers, with the ability to print structures on the scale of several hundred meters, were selected by first screening six 3D printers. Line and space patterns with line widths of 100-500 µm and an aspect ratio of one were printed and evaluated. The estimated critical dimension was around 200 µm. The manufacturing of a monolithic microfluidic chip with embedded channels was also demonstrated. Monolithic microfluidic chips with embedded microchannels having 500 × 500 and 250 × 250 µm2 cross sections and 2-20 mm lengths were printed, and the fidelity of the channel shape, residual supporting material, and flow of liquid water were evaluated. The liquid flow evaluation showed that liquid water could flow through all of the microchannels with the 500 × 500 µm2 cross section, whereas this was not possible through some of the channels with the 250 × 250 µm2 cross section because of the residual resin or supporting material. To reduce the device-driver cost, we propose to use of the centrifugal microfluidic concept. An autonomous microfluidic device that could implement sequential flow control under a steadily rotating condition was printed. Four-step flow injection under a steadily rotating condition at 1500 rpm was successfully demonstrated without any external triggering such as changing the rotational speed.

  20. Polymeric infrared compatible microfluidic devices for spectrochemical analysis.

    PubMed

    Barich, Michael V; Krummel, Amber T

    2013-11-01

    An innovative fabrication method is presented that affords the combination of polydimethyl-siloxane (PDMS) microfluidic technology with vibrational spectroscopy. PDMS devices are produced with uniform thicknesses ranging from 25 to 400 μm. The optical characteristics of the microfluidic devices in the mid-infrared are reported. The broad utility of this approach is demonstrated through IR imaging of flows in functional gradient generators and flow-focusing devices. PMID:24099528

  1. Collective oscillations and coupled modes in confined microfluidic droplet arrays

    NASA Astrophysics Data System (ADS)

    Schiller, Ulf D.; Fleury, Jean-Baptiste; Seemann, Ralf; Gompper, Gerhard

    Microfluidic droplets have a wide range of applications ranging from analytic assays in cellular biology to controlled mixing in chemical engineering. Ensembles of microfluidic droplets are interesting model systems for non-equilibrium many-body phenomena. When flowing in a microchannel, trains of droplets can form microfluidic crystals whose dynamics are governed by long-range hydrodynamic interactions and boundary effects. In this contribution, excitation mechanisms for collective waves in dense and confined microfluidic droplet arrays are investigated by experiments and computer simulations. We demonstrate that distinct modes can be excited by creating specific `defect' patterns in flowing droplet trains. While longitudinal modes exhibit a short-lived cascade of pairs of laterally displacing droplets, transversely excited modes form propagating waves that behave like microfluidic phonons. We show that the confinement induces a coupling between longitudinal and transverse modes. We also investigate the life time of the collective oscillations and discuss possible mechanisms for the onset of instabilities. Our results demonstrate that microfluidic phonons can exhibit effects beyond the linear theory, which can be studied particularly well in dense and confined systems. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SE 1118/4.

  2. Microfluidics: an enabling screening technology for enhanced oil recovery (EOR).

    PubMed

    Lifton, Victor A

    2016-05-21

    Oil production is a critical industrial process that affects the entire world population and any improvements in its efficiency while reducing its environmental impact are of utmost societal importance. The paper reviews recent applications of microfluidics and microtechnology to study processes of oil extraction and recovery. It shows that microfluidic devices can be useful tools in investigation and visualization of such processes used in the oil & gas industry as fluid propagation, flooding, fracturing, emulsification and many others. Critical macro-scale processes that define oil extraction and recovery are controlled by the micro-scale processes based on wetting, adhesion, surface tension, colloids and other concepts of microfluidics. A growing number of research efforts demonstrates that microfluidics is becoming, albeit slowly, an accepted methodology in this area. We propose several areas of development where implementation of microfluidics may bring about deeper understanding and hence better control over the processes of oil recovery based on fluid propagation, droplet generation, wettability control. Studies of processes such as hydraulic fracturing, sand particle propagation in porous networks, high throughput screening of chemicals (for example, emulsifiers and surfactants) in microfluidic devices that simulate oil reservoirs are proposed to improve our understanding of these complicated physico-chemical systems. We also discuss why methods of additive manufacturing (3D printing) should be evaluated for quick prototyping and modification of the three-dimensional structures replicating natural oil-bearing rock formations for studies accessible to a wider audience of researchers. PMID:27087065

  3. Rapid prototyping of multiphase microfluidics with robotic cutters

    NASA Astrophysics Data System (ADS)

    Li, Zidong; Zhao, Zhengtuo; Lo, Joe Fu-jiou

    2014-03-01

    Microfluidic devices offer novel techniques to address biological and biomedical issues. Standard microfluidic fabrication uses photolithography to pattern channels on silicon wafers with high resolution. Even the relatively straightforward SU8 and soft lithography in microfluidics require investing and training in photolithography, which is also time consuming due to complicated thick resist procedures, including sensitive substrate pretreatment, coating, soft bake, expose, post-exposure bake, and developing steps. However, for applications where low resolution (>200 μm) and high turn-around (> 4 designs/day) prototyping are met with little or no lithography infrastructure, robotic cutters [1] offer flexible options for making glass and PDMS microfluidics. We describe the use of robotics cutters for designing microfluidic geometries, and compliment it with safe glass etching, with depths down to 60 μm. Soft lithography patterning of 200 μm thick PDMS membrane was also explored. Without high equipment investment and lengthy student training, both glass and PDMS microfluidics can be achieved in small facilities using this technique.

  4. Development, characterization and application of momentum dominated jet microfluidics

    NASA Astrophysics Data System (ADS)

    Resto, Pedro J.

    Microfluidics is the scientific field that deals with the study and control of small volumes of liquid. Microfluidics has found its way into many areas of science including biotechnology, the life sciences, defense, public health and pharmacology. One of the most important aspects of microfluidics is the ability to move and control liquid at the micro scale. The laws of physics at the micro scale are different from the laws of physics at the macro scale. For example, the macro scale is dominated by momentum, turbulence and gravity whereas surface tension, inter-atomic forces, capillary action, viscosity, laminar flow, diffusion, fluidic resistance and surface area to volume ratios dominate the micro scale. The research community has taken advantage of these micro scale forces to perform tasks not possible at the macro scale. However, there exists a transition zone between the micro and macro scale where both inertia and viscosity of the fluid are finite, between Stokes flow and inviscid flow, so that inertia or viscosity cannot be discounted. This thesis work is on the characterization of jet microfluidics; this is the control of liquid at the micro scale using inertia. We define two flow regimes: inertia enhanced passive pumping and inertia actuated flow. We then apply our microfluidic technology to electrophysiology where we develop of a new high-throughput drug discovery tool using jet microfluidics and patch clamping.

  5. A pump-free membrane-controlled perfusion microfluidic platform.

    PubMed

    Goral, Vasiliy N; Tran, Elizabeth; Yuen, Po Ki

    2015-09-01

    In this article, we present a microfluidic platform for passive fluid pumping for pump-free perfusion cell culture, cell-based assay, and chemical applications. By adapting the passive membrane-controlled pumping principle from the previously developed perfusion microplate, which utilizes a combination of hydrostatic pressure generated by different liquid levels in the wells and fluid wicking through narrow strips of a porous membrane connecting the wells to generate fluid flow, a series of pump-free membrane-controlled perfusion microfluidic devices was developed and their use for pump-free perfusion cell culture and cell-based assays was demonstrated. Each pump-free membrane-controlled perfusion microfluidic device comprises at least three basic components: an open well for generating fluid flow, a micron-sized deep chamber/channel for cell culture or for fluid connection, and a wettable porous membrane for controlling the fluid flow. Each component is fluidically connected either by the porous membrane or by the micron-sized deep chamber/channel. By adapting and incorporating the passive membrane-controlled pumping principle into microfluidic devices, all the benefits of microfluidic technologies, such as small sample volumes, fast and efficient fluid exchanges, and fluid properties at the micro-scale, can be fully taken advantage of with this pump-free membrane-controlled perfusion microfluidic platform.

  6. Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.

    PubMed

    Yuen, Po Ki; Su, Hui; Goral, Vasiliy N; Fink, Katherine A

    2011-04-21

    This technical note presents a fabrication method and applications of three-dimensional (3D) interconnected microporous poly(dimethylsiloxane) (PDMS) microfluidic devices. Based on soft lithography, the microporous PDMS microfluidic devices were fabricated by molding a mixture of PDMS pre-polymer and sugar particles in a microstructured mold. After curing and demolding, the sugar particles were dissolved and washed away from the microstructured PDMS replica revealing 3D interconnected microporous structures. Other than introducing microporous structures into the PDMS replica, different sizes of sugar particles can be used to alter the surface wettability of the microporous PDMS replica. Oxygen plasma assisted bonding was used to enclose the microstructured microporous PDMS replica using a non-porous PDMS with inlet and outlet holes. A gas absorption reaction using carbon dioxide (CO(2)) gas acidified water was used to demonstrate the advantages and potential applications of the microporous PDMS microfluidic devices. We demonstrated that the acidification rate in the microporous PDMS microfluidic device was approximately 10 times faster than the non-porous PDMS microfluidic device under similar experimental conditions. The microporous PDMS microfluidic devices can also be used in cell culture applications where gas perfusion can improve cell survival and functions.

  7. Perspective: Flicking with flow: Can microfluidics revolutionize the cancer research?

    PubMed Central

    Das, Tamal; Chakraborty, Suman

    2013-01-01

    According to the World Health Organization, cancer is one of the leading causes of death worldwide. Cancer research, in its all facets, is truly interdisciplinary in nature, cutting across the fields of fundamental and applied sciences, as well as biomedical engineering. In recent years, microfluidics has been applied successfully in cancer research. There remain, however, many elusive features of this disease, where microfluidic systems could throw new lights. In addition, some inherent features of microfluidic systems remain unexploited in cancer research. In this article, we first briefly review the advancement of microfluidics in cancer biology. We then describe the biophysical aspects of cancer and outline how microfluidic system could be useful in developing a deeper understanding on the underlying mechanisms. We next illustrate the effects of the confined environment of microchannel on cellular dynamics and argue that the tissue microconfinement could be a crucial facet in tumor development. Lastly, we attempt to highlight some of the most important problems in cancer biology, to inspire next level of microfluidic applications in cancer research. PMID:24403993

  8. Microfluidics: a groundbreaking technology for PET tracer production?

    PubMed

    Rensch, Christian; Jackson, Alexander; Lindner, Simon; Salvamoser, Ruben; Samper, Victor; Riese, Stefan; Bartenstein, Peter; Wängler, Carmen; Wängler, Björn

    2013-07-05

    Application of microfluidics to Positron Emission Tomography (PET) tracer synthesis has attracted increasing interest within the last decade. The technical advantages of microfluidics, in particular the high surface to volume ratio and resulting fast thermal heating and cooling rates of reagents can lead to reduced reaction times, increased synthesis yields and reduced by-products. In addition automated reaction optimization, reduced consumption of expensive reagents and a path towards a reduced system footprint have been successfully demonstrated. The processing of radioactivity levels required for routine production, use of microfluidic-produced PET tracer doses in preclinical and clinical imaging as well as feasibility studies on autoradiolytic decomposition have all given promising results. However, the number of microfluidic synthesizers utilized for commercial routine production of PET tracers is very limited. This study reviews the state of the art in microfluidic PET tracer synthesis, highlighting critical design aspects, strengths, weaknesses and presenting several characteristics of the diverse PET market space which are thought to have a significant impact on research, development and engineering of microfluidic devices in this field. Furthermore, the topics of batch- and single-dose production, cyclotron to quality control integration as well as centralized versus de-centralized market distribution models are addressed.

  9. Heterogeneous integration of gels into microfluidics using a mesh carrier.

    PubMed

    Eker, Bilge; Temiz, Yuksel; Delamarche, Emmanuel

    2014-12-01

    The incorporation of hydrogels inside microfluidics is a promising method for localizing receptors inside microfluidic structures for many bio-analytical applications as well as for working with cells. However, current methods rely on the in situ polymerization of hydrogels and therefore necessitate optical masks and extensive post-polymerization steps for example for washing uncrosslinked gel precursors and receptors. Here, we report a simple and efficient method for the integration of hydrogels to microfluidic chips. Small volumes of poly(ethylene)glycol-based acrylamide (PEGACA) hydrogels are photopolymerized on a mesh, rinsed, partially dried and transferred to microfluidic structures by simple contact. The gels can be derivatized before transfer with receptors such as streptavidin, antibodies, or can entrap beads as small as 200 nm. We detail the role of meshes relative to the mesh density and wettability and demonstrate how hydrogels can be transferred into capillary-driven microfluidic chips, which are easily sealed using a dry-film resist. By analogy to microfabrication strategies wherein critical components are produced separately and then combined, our method introduces the concept of heterogeneous integration of critical (bio)chemicals to microfluidic chips using an intermediate mesh carrier. PMID:24999091

  10. Membrane-less microfiltration using inertial microfluidics.

    PubMed

    Warkiani, Majid Ebrahimi; Tay, Andy Kah Ping; Guan, Guofeng; Han, Jongyoon

    2015-01-01

    Microfiltration is a ubiquitous and often crucial part of many industrial processes, including biopharmaceutical manufacturing. Yet, all existing filtration systems suffer from the issue of membrane clogging, which fundamentally limits the efficiency and reliability of the filtration process. Herein, we report the development of a membrane-less microfiltration system by massively parallelizing inertial microfluidics to achieve a macroscopic volume processing rates (~ 500 mL/min). We demonstrated the systems engineered for CHO (10-20 μm) and yeast (3-5 μm) cells filtration, which are two main cell types used for large-scale bioreactors. Our proposed system can replace existing filtration membrane and provide passive (no external force fields), continuous filtration, thus eliminating the need for membrane replacement. This platform has the desirable combinations of high throughput, low-cost, and scalability, making it compatible for a myriad of microfiltration applications and industrial purposes. PMID:26154774

  11. Microfluidic ultralow interfacial tensiometry with magnetic particles.

    PubMed

    Tsai, Scott S H; Wexler, Jason S; Wan, Jiandi; Stone, Howard A

    2013-01-01

    We describe a technique that measures ultralow interfacial tensions using paramagnetic spheres in a co-flow microfluidic device designed with a magnetic section. Our method involves tuning the distance between the co-flowing interface and the magnet's center, and observing the behavior of the spheres as they approach the liquid-liquid interface-the particles either pass through or are trapped by the interface. Using threshold values of the magnet-to-interface distance, we make estimates of the two-fluid interfacial tension. We demonstrate the effectiveness of this technique for measuring very low interfacial tensions, O(10(-6)-10(-5)) N m(-1), by testing solutions of different surfactant concentrations, and we show that our results are comparable with measurements made using a spinning drop tensiometer. PMID:23154819

  12. A nanoliter microfluidic serial dilution bioreactor.

    PubMed

    Gu, Guo-Yue; Lee, Yi-Wei; Chiang, Chih-Chung; Yang, Ya-Tang

    2015-07-01

    Bacterial culture is a basic technique in both fundamental and applied microbiology. The excessive reagent consumption and laborious maintenance of bulk bioreactors for microbial culture have prompted the development of miniaturized on-chip bioreactors. With the minimal choice of two compartments (N = 2) and discrete time, periodic dilution steps, we realize a microfluidic bioreactor that mimics macroscopic serial dilution transfer culture. This device supports automated, long-term microbial cultures with a nanoliter-scale working volume and real-time monitoring of microbial populations at single-cell resolution. Because of the high surface-to-volume ratio, the device also operates as an effective biofilm-flow reactor to support cogrowth of planktonic and biofilm populations. We expect that such devices will open opportunities in many fields of microbiology.

  13. Molecular Probes for Thermometry in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Gosse, Charlie; Bergaud, Christian; Löw, Peter

    The temperature is an important parameter with regard to chemical reactivity. It is therefore essential to ensure good thermal control within microsystems designed to carry out biological analysis. We begin by reviewing temperature measurement in the context of the lab-on-a-chip, and outlining the various generic strategies available. We then turnmore specifically to luminescentmolecular probes.We shall show that they all exploit the effect of temperature on a chemical reaction (in the broad sense of the term). More precisely, these probes can be divided in three main categories depending on whether one relies on a phase transition, the modification of a reaction rate, or a shift in an equilibrium. We shall also discuss the main experimental strategies used to transform the image obtained by fluorescence microscopy into a thermal map. Finally, we shall extend the discussion to a few other spectroscopic techniques and examine the prospects for this particular area of microfluidics.

  14. Investigation of nerve injury through microfluidic devices

    PubMed Central

    Siddique, Rezina; Thakor, Nitish

    2014-01-01

    Traumatic injuries, both in the central nervous system (CNS) and peripheral nervous system (PNS), can potentially lead to irreversible damage resulting in permanent loss of function. Investigating the complex dynamics involved in these processes may elucidate the biological mechanisms of both nerve degeneration and regeneration, and may potentially lead to the development of new therapies for recovery. A scientific overview on the biological foundations of nerve injury is presented. Differences between nerve regeneration in the central and PNS are discussed. Advances in microtechnology over the past several years have led to the development of invaluable tools that now facilitate investigation of neurobiology at the cellular scale. Microfluidic devices are explored as a means to study nerve injury at the necessary simplification of the cellular level, including those devices aimed at both chemical and physical injury, as well as those that recreate the post-injury environment. PMID:24227311

  15. Droplet Microfluidics for Artificial Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Punnamaraju, Srikoundinya; Steckl, Andrew

    2012-02-01

    Droplet interface bilayer is a versatile approach that allows formation of artificial lipid bilayer membrane at the interface of two lipid monolayer coated aqueous droplets in a lipid filled oil medium. Versatility exists in the form of voltage control of DIB area, ability of forming networks of DIBs, volume control of droplets and lipid-oil, and ease of reformation. Significant effect of voltage on the area and capacitance of DIB as well as DIB networks are characterized using simultaneous optical and electrical recordings. Mechanisms behind voltage-induced effects on DIBs are investigated. Photo induced effect on the DIB membrane porosity is obtained by incorporating UVC-sensitive photo-polymerizable lipids in DIB. Photo-induced effects can be extended for in-vitro studies of triggered release of encapsulated contents across membranes. A droplet based low voltage digital microfluidic platform is developed to automate DIB formation, which could potentially be used for forming arrays of lipid bilayer membranes.

  16. Sample preparation system for microfluidic applications

    DOEpatents

    Mosier, Bruce P.; Crocker, Robert W.; Patel, Kamlesh D.; Harnett, Cindy K.

    2007-05-08

    An apparatus that couples automated injection with flow feedback to provide nanoliter accuracy in controlling microliter volumes. The apparatus comprises generally a source of hydraulic fluid pressure, a fluid isolator joined to the outlet of the hydraulic pressure source and a flow sensor to provide pressure-driven analyte metering. For operation generally and particularly in microfluidic systems the hydraulic pressure source is typically an electrokinetic (EK) pump that incorporates gasless electrodes. The apparatus is capable of metering sub-microliter volumes at flowrates of 1 100 .mu.L/min into microsystem load pressures of up to 1000 50 psi, respectively. Flowrates can be specified within 0.5 .mu.L/min and volumes as small as 80 nL can be metered.

  17. Membrane-less microfiltration using inertial microfluidics

    PubMed Central

    Warkiani, Majid Ebrahimi; Tay, Andy Kah Ping; Guan, Guofeng; Han, Jongyoon

    2015-01-01

    Microfiltration is a ubiquitous and often crucial part of many industrial processes, including biopharmaceutical manufacturing. Yet, all existing filtration systems suffer from the issue of membrane clogging, which fundamentally limits the efficiency and reliability of the filtration process. Herein, we report the development of a membrane-less microfiltration system by massively parallelizing inertial microfluidics to achieve a macroscopic volume processing rates (~ 500 mL/min). We demonstrated the systems engineered for CHO (10–20 μm) and yeast (3–5 μm) cells filtration, which are two main cell types used for large-scale bioreactors. Our proposed system can replace existing filtration membrane and provide passive (no external force fields), continuous filtration, thus eliminating the need for membrane replacement. This platform has the desirable combinations of high throughput, low-cost, and scalability, making it compatible for a myriad of microfiltration applications and industrial purposes. PMID:26154774

  18. Digital microfluidic immunocytochemistry in single cells

    PubMed Central

    Ng, Alphonsus H. C.; Dean Chamberlain, M.; Situ, Haozhong; Lee, Victor; Wheeler, Aaron R.

    2015-01-01

    We report a new technique called Digital microfluidic Immunocytochemistry in Single Cells (DISC). DISC automates protocols for cell culture, stimulation and immunocytochemistry, enabling the interrogation of protein phosphorylation on pulsing with stimulus for as little as 3 s. DISC was used to probe the phosphorylation states of platelet-derived growth factor receptor (PDGFR) and the downstream signalling protein, Akt, to evaluate concentration- and time-dependent effects of stimulation. The high time resolution of the technique allowed for surprising new observations—for example, a 10 s pulse stimulus of a low concentration of PDGF is sufficient to cause >30% of adherent fibroblasts to commit to Akt activation. With the ability to quantitatively probe signalling events with high time resolution at the single-cell level, we propose that DISC may be an important new technique for a wide range of applications, especially for screening signalling responses of a heterogeneous cell population. PMID:26104298

  19. A membraneless microfluidic fuel cell stack

    NASA Astrophysics Data System (ADS)

    Salloum, Kamil S.; Posner, Jonathan D.

    A membraneless microfluidic fuel cell stack architecture is presented that reuses reactants from one cell to a subsequent one, analogous to PEMFC stacks. On-chip reactant reuse improves fuel utilization and power densities relative to single cells. The reactants flow separately through porous electrodes and interface with a non-reacting and conductive electrolyte which maintains their separation. The reactants remain separated downstream of the interface and are used in subsequent downstream cells. This fuel cell uses porous carbon for electrocatalysts and vanadium redox species as reactants with a sulfuric acid supporting electrolyte. The overall power density of the fuel cell increases with reactant flow rate and decreasing the separating electrolyte flow rate. The peak power, maximum fuel utilization, and efficiency nearly double when electrically connecting the cells in parallel.

  20. Recent Advances in Microfluidic Cell Separations

    PubMed Central

    Gao, Yan; Li, Wenjie; Pappas, Dimitri

    2013-01-01

    The isolation and sorting of cells has become an increasingly important step in chemical and biological analyses. As a unit operation in more complex analyses, isolating a phenotypically pure cell population from a heterogeneous sample presents unique challenges. Microfluidic systems are ideal platforms for performing cell separations, enabling integration with other techniques and enhancing traditional separation modalities. In recent years there have been several techniques that use surface antigen affinity, physical interactions, or a combination of the two to achieve high separation purity and efficiency. This review discusses methods including magnetophoretic, acoustophoretic, sedimentation, electric, and hydrodynamic methods for physical separations. We also discuss affinity methods, including magnetic sorting, flow sorting, and affinity capture. PMID:23778244

  1. On the quantification of mixing in microfluidics.

    PubMed

    Hashmi, Ali; Xu, Jie

    2014-10-01

    Methods for quantifying mixing in microfluidics have varied largely in the past, and various indices have been employed to represent the extent of mixing. Mixing between two or more colored liquids is usually quantified using simple mathematical functions operated over a sequence of images. The function, usually termed mixing indices, involves a measure of standard deviation. Here, we first review some mixing indices and then experimentally verify the index most representative of a mixing event. It is observed that the relative mixing index is not affected by the lighting conditions, unlike other known mixing indices. Based on this finding, the use of a relative mixing index is advocated for further use in the lab-on-a-chip community for quantifying mixing events.

  2. Engineering particle morphology with microfluidic droplets

    NASA Astrophysics Data System (ADS)

    Kang, Zhanxiao; Kong, Tiantian; Lei, Leyan; Zhu, Pingan; Tian, Xiaowei; Wang, Liqiu

    2016-07-01

    The controlled generation of microparticles with non-spherical features is of increasing importance. Such particles are useful for fundamental studies in areas such as self-assembly, as well as biomedical applications from drug carriers to photonic devices. We propose a simple model that captures the dominating factors controlling the size and morphology of non-spherical particles from phase separated droplets. The validity of our model is verified by comparing the generated non-spherical microparticles by droplet microfluidics. This simple relationship between the dominating factors and the final morphologies enables the production of non-spherical particles with well-defined shapes and tightly-controlled dimensions for a variety of applications from drug delivery vehicles to structural materials.

  3. Membrane-less microfiltration using inertial microfluidics.

    PubMed

    Warkiani, Majid Ebrahimi; Tay, Andy Kah Ping; Guan, Guofeng; Han, Jongyoon

    2015-07-08

    Microfiltration is a ubiquitous and often crucial part of many industrial processes, including biopharmaceutical manufacturing. Yet, all existing filtration systems suffer from the issue of membrane clogging, which fundamentally limits the efficiency and reliability of the filtration process. Herein, we report the development of a membrane-less microfiltration system by massively parallelizing inertial microfluidics to achieve a macroscopic volume processing rates (~ 500 mL/min). We demonstrated the systems engineered for CHO (10-20 μm) and yeast (3-5 μm) cells filtration, which are two main cell types used for large-scale bioreactors. Our proposed system can replace existing filtration membrane and provide passive (no external force fields), continuous filtration, thus eliminating the need for membrane replacement. This platform has the desirable combinations of high throughput, low-cost, and scalability, making it compatible for a myriad of microfiltration applications and industrial purposes.

  4. Microfluidic Tools for Biological Sample Preparation

    SciTech Connect

    Visuri, S R; Ness, K; Dzenitis, J; Benett, B; Bettencourt, K; Hamilton, J; Fisher, K; Krulevitch, P

    2002-04-10

    Researchers at Lawrence Livermore National Laboratory are developing means to collect and identify fluid-based biological pathogens in the forms of proteins, viruses, and bacteria. To support detection instruments, we are developing a flexible fluidic sample preparation unit. The overall goal of this Microfluidic Module is to input a fluid sample, containing background particulates and potentially target compounds, and deliver a processed sample for detection. We are developing techniques for sample purification, mixing, and filtration that would be useful to many applications including immunologic and nucleic acid assays. Sample preparation functions are accomplished with acoustic radiation pressure, dielectrophoresis, and solid phase extraction. We are integrating these technologies into packaged systems with pumps and valves to control fluid flow and investigating small-scale detection methods.

  5. Neuromuscular junction in a microfluidic device.

    PubMed

    Park, Hyun Sung; Liu, Su; McDonald, John; Thakor, Nitish; Yang, In Hong

    2013-01-01

    Malfunctions at the site of neuromuscular junction (NMJ) of post-injuries or diseases are major barriers to recovery of function. The ability to efficiently derive motor neurons (MN) from embryonic stem cells has indicated promise toward the development of new therapies in increasing functional outcomes post injury. Recent advances in micro-technologies have provided advanced culture platforms allowing compartmentalization of sub-cellular components of neurons. In this study, we combined these advances in science and technology to develop a compartmentalized in vitro NMJ model. The developed NMJ system is between mouse embryonic stem cell (mESC)-derived MNs and c2c12 myotubes cultured in a compartmentalized polydimethylsiloxane (PDMS) microfluidic device. While some functional in vitro NMJ systems have been reported, this system would further contribute to research in NMJ-related diseases by providing a system to study the site of action of NMJ aimed at improving promoting better functional recovery. PMID:24110317

  6. Droplet Microfluidics for Chip-Based Diagnostics

    PubMed Central

    Kaler, Karan V. I. S.; Prakash, Ravi

    2014-01-01

    Droplet microfluidics (DMF) is a fluidic handling technology that enables precision control over dispensing and subsequent manipulation of droplets in the volume range of microliters to picoliters, on a micro-fabricated device. There are several different droplet actuation methods, all of which can generate external stimuli, to either actively or passively control the shape and positioning of fluidic droplets over patterned substrates. In this review article, we focus on the operation and utility of electro-actuation-based DMF devices, which utilize one or more micro-/nano-patterned substrates to facilitate electric field-based handling of chemical and/or biological samples. The underlying theory of DMF actuations, device fabrication methods and integration of optical and opto-electronic detectors is discussed in this review. Example applications of such electro-actuation-based DMF devices have also been included, illustrating the various actuation methods and their utility in conducting chip-based laboratory and clinical diagnostic assays. PMID:25490590

  7. Microfluidic and biosensor applications of fluoropolymer films

    NASA Astrophysics Data System (ADS)

    McLaughlin, Glen Wallace

    2001-07-01

    Deposition of fluoropolymer films in microfluidic and biosensor applications enables the fabrication and miniaturization of several new integrated sensor devices that could provide a method for measuring oxygen consumption at the cellular level, providing an unique measurement device to be incorporated in cell based sensors. Fluoropolymer films have several properties that make them an excellent candidate for microfluidic and biosensor applications. These films are chemically inert, biocompatible, selectively gas permeable, have a low friction coefficient, are non-polarizable, and are capable of being processed using standard integrated circuit fabrication techniques. This allows for the seamless incorporation of these films into many different sensor applications, ranging from coating fluid interconnect channels to minimize protein absorption, to the realization of different miniaturized sensors which are capable of making point specific measurements. Film deposition is accomplished using an industrial standard plasma enhanced chemical vapor deposition (PECVD) chamber, customized with the capability of producing a pulsed plasma. The film deposition process has been characterised in situ using real time power measurement techniques, ultra violet optical emission spectroscopy (OES) measurements, and Langmuir probe measurements. These measurements along with post processing measurements of the films properties utilizing X-ray photoelectron spectroscopy (XPS) measurements, fourier transform infra-red spectroscopy (FTIR), ellipsometric measurements, contact angle measurements, and electrical characterization methods have been utilized to optimize the films properties for various applications. This thesis presents the characterization and optimization of the pulsed plasma deposited polytetrafluoroethylene (PTFE) film process along with the development of a solid state dissolved oxygen sensor using the PTFE film as the oxygen permeable membrane. The plasma deposition

  8. Microfluidic System for Solution Array Based Bioassays

    SciTech Connect

    Dougherty, G M; Tok, J B; Pannu, S S; Rose, K A

    2006-02-10

    The objective of this project is to demonstrate new enabling technology for multiplex biodetection systems that are flexible, miniaturizable, highly automated, low cost, and high performance. It builds on prior successes at LLNL with particle-based solution arrays, such as those used in the Autonomous Pathogen Detection System (APDS) successfully field deployed to multiple locations nationwide. We report the development of a multiplex solution array immunoassay based upon engineered metallic nanorod particles. Nanobarcodes{reg_sign} particles are fabricated by sequential electrodeposition of dissimilar metals within porous alumina templates, yielding optically encoded striping patterns that can be read using standard laboratory microscope optics and PC-based image processing software. The addition of self-assembled monolayer (SAM) coatings and target-specific antibodies allows each encoded class of nanorod particles to be directed against a different antigen target. A prototype assay panel directed against bacterial, viral, and soluble protein targets demonstrates simultaneous detection at sensitivities comparable to state of the art immunoassays, with minimal cross-reactivity. Studies have been performed to characterize the colloidal properties (zeta potential) of the suspended nanorod particles as a function of pH, the ionic strength of the suspending solution, and surface functionalization state. Additional studies have produced means for the non-contact manipulation of the particles, including the insertion of magnetic nickel stripes within the encoding pattern, and control via externally applied electromagnetic fields. Using the results of these studies, the novel Nanobarcodes{reg_sign} based assay was implemented in a prototype automated system with the sample processing functions and optical readout performed on a microfluidic card. The unique physical properties of the nanorod particles enable the development of integrated microfluidic systems for

  9. Probing cell mechanical properties with microfluidic devices

    NASA Astrophysics Data System (ADS)

    Rowat, Amy

    2012-02-01

    Exploiting flow on the micron-scale is emerging as a method to probe cell mechanical properties with 10-1000x advances in throughput over existing technologies. The mechanical properties of cells and the cell nucleus are implicated in a wide range of biological contexts: for example, the ability of white blood cells to deform is central to immune response; and malignant cells show decreased stiffness compared to benign cells. We recently developed a microfluidic device to probe cell and nucleus mechanical properties: cells are forced to deform through a narrow constrictions in response to an applied pressure; flowing cells through a series of constrictions enables us to probe the ability of hundreds of cells to deform and relax during flow. By tuning the constriction width so it is narrower than the width of the cell nucleus, we can specifically probe the effects of nuclear physical properties on whole cell deformability. We show that the nucleus is the rate-limiting step in cell passage: inducing a change in its shape to a multilobed structure results in cells that transit more quickly; increased levels of lamin A, a nuclear protein that is key for nuclear shape and mechanical stability, impairs the passage of cells through constrictions. We are currently developing a new class of microfluidic devices to simultaneously probe the deformability of hundreds of cell samples in parallel. Using the same soft lithography techniques, membranes are fabricated to have well-defined pore distribution, width, length, and tortuosity. We design the membranes to interface with a multiwell plate, enabling simultaneous measurement of hundreds of different samples. Given the wide spectrum of diseases where altered cell and nucleus mechanical properties are implicated, such a platform has great potential, for example, to screen cells based on their mechanical phenotype against a library of drugs.

  10. Reciprocating flow-based centrifugal microfluidics mixer.

    PubMed

    Noroozi, Zahra; Kido, Horacio; Micic, Miodrag; Pan, Hansheng; Bartolome, Christian; Princevac, Marko; Zoval, Jim; Madou, Marc

    2009-07-01

    Proper mixing of reagents is of paramount importance for an efficient chemical reaction. While on a large scale there are many good solutions for quantitative mixing of reagents, as of today, efficient and inexpensive fluid mixing in the nanoliter and microliter volume range is still a challenge. Complete, i.e., quantitative mixing is of special importance in any small-scale analytical application because the scarcity of analytes and the low volume of the reagents demand efficient utilization of all available reaction components. In this paper we demonstrate the design and fabrication of a novel centrifugal force-based unit for fast mixing of fluids in the nanoliter to microliter volume range. The device consists of a number of chambers (including two loading chambers, one pressure chamber, and one mixing chamber) that are connected through a network of microchannels, and is made by bonding a slab of polydimethylsiloxane (PDMS) to a glass slide. The PDMS slab was cast using a SU-8 master mold fabricated by a two-level photolithography process. This microfluidic mixer exploits centrifugal force and pneumatic pressure to reciprocate the flow of fluid samples in order to minimize the amount of sample and the time of mixing. The process of mixing was monitored by utilizing the planar laser induced fluorescence (PLIF) technique. A time series of high resolution images of the mixing chamber were analyzed for the spatial distribution of light intensities as the two fluids (suspension of red fluorescent particles and water) mixed. Histograms of the fluorescent emissions within the mixing chamber during different stages of the mixing process were created to quantify the level of mixing of the mixing fluids. The results suggest that quantitative mixing was achieved in less than 3 min. This device can be employed as a stand alone mixing unit or may be integrated into a disk-based microfluidic system where, in addition to mixing, several other sample preparation steps may be

  11. Biosensing with Quantum Dots: A Microfluidic Approach

    PubMed Central

    Vannoy, Charles H.; Tavares, Anthony J.; Noor, M. Omair; Uddayasankar, Uvaraj; Krull, Ulrich J.

    2011-01-01

    Semiconductor quantum dots (QDs) have served as the basis for signal development in a variety of biosensing technologies and in applications using bioprobes. The use of QDs as physical platforms to develop biosensors and bioprobes has attracted considerable interest. This is largely due to the unique optical properties of QDs that make them excellent choices as donors in fluorescence resonance energy transfer (FRET) and well suited for optical multiplexing. The large majority of QD-based bioprobe and biosensing technologies that have been described operate in bulk solution environments, where selective binding events at the surface of QDs are often associated with relatively long periods to reach a steady-state signal. An alternative approach to the design of biosensor architectures may be provided by a microfluidic system (MFS). A MFS is able to integrate chemical and biological processes into a single platform and allows for manipulation of flow conditions to achieve, by sample transport and mixing, reaction rates that are not entirely diffusion controlled. Integrating assays in a MFS provides numerous additional advantages, which include the use of very small amounts of reagents and samples, possible sample processing before detection, ultra-high sensitivity, high throughput, short analysis time, and in situ monitoring. Herein, a comprehensive review is provided that addresses the key concepts and applications of QD-based microfluidic biosensors with an added emphasis on how this combination of technologies provides for innovations in bioassay designs. Examples from the literature are used to highlight the many advantages of biosensing in a MFS and illustrate the versatility that such a platform offers in the design strategy. PMID:22163723

  12. Single cell microfluidics for systems oncology

    NASA Astrophysics Data System (ADS)

    Fan, Rong

    2012-02-01

    The singular term ``cancer'' is never one kind of disease, but deceivingly encompasses a large number of heterogeneous disease states, which makes it impossible to completely treat cancer using a generic approach. Rather systems approaches are urgently required to assess cancer heterogeneity, stratify patients and enable the most effective, individualized treatment. The heterogeneity of tumors at the single cell level is reflected by the hierarchical complexity of the tumor microenvironment. To identify all the cellular components, including both tumor and infiltrating immune cells, and to delineate the associated cell-to-cell signaling network that dictates tumor initiation, progression and metastasis, we developed a single cell microfluidics chip that can analyze a panel of proteins that are potentially associated inter-cellular signaling network in tumor microenvironment from hundreds of single cells in parallel. This platform integrates two advanced technologies -- microfluidic single cell handling and ultra-high density protein array. This device was first tested for highly multiplexed profiling of secreted proteins including tumor-immune signaling molecules from monocytic leukemia cells. We observed profound cellular heterogeneity with all functional phenotypes quantitatively identified. Correlation analysis further indicated the existence of an intercellular cytokine network in which TNFα-induced secondary signaling cascades further increased functional cellular diversity. It was also exploited to evaluate polyfunctionality of tumor antigen-specific T cells from melanoma patients being treated with adoptive T cell transfer immunotherapy. This platform could be further extended to analyze both solid tumor cells (e.g. human lung carcinoma cells) and infiltrating immune cells (e.g. macrophages) so as to enable systems analysis of the complex tumor microenvironment from small amounts of clinical specimens, e.g. skinny needle biopsies. Thus, it could potentially

  13. Microfluidics: Fluid physics at the nanoliter scale

    NASA Astrophysics Data System (ADS)

    Squires, Todd M.; Quake, Stephen R.

    2005-10-01

    Microfabricated integrated circuits revolutionized computation by vastly reducing the space, labor, and time required for calculations. Microfluidic systems hold similar promise for the large-scale automation of chemistry and biology, suggesting the possibility of numerous experiments performed rapidly and in parallel, while consuming little reagent. While it is too early to tell whether such a vision will be realized, significant progress has been achieved, and various applications of significant scientific and practical interest have been developed. Here a review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena. Specifically, this review explores the Reynolds number Re, addressing inertial effects; the Péclet number Pe, which concerns convective and diffusive transport; the capillary number Ca expressing the importance of interfacial tension; the Deborah, Weissenberg, and elasticity numbers De, Wi, and El, describing elastic effects due to deformable microstructural elements like polymers; the Grashof and Rayleigh numbers Gr and Ra, describing density-driven flows; and the Knudsen number, describing the importance of noncontinuum molecular effects. Furthermore, the long-range nature of viscous flows and the small device dimensions inherent in microfluidics mean that the influence of boundaries is typically significant. A variety of strategies have been developed to manipulate fluids by exploiting boundary effects; among these are electrokinetic effects, acoustic streaming, and fluid-structure interactions. The goal is to describe the physics behind the rich variety of fluid phenomena occurring on the nanoliter scale using simple scaling arguments, with the hopes of developing an intuitive sense for this occasionally counterintuitive world.

  14. IDENTIFICATION OF SALMONELLA-POSITIVE FECAL SAMPLES USING A 96-WELL MICROCULTURE PLATE TECHNIQUE (RX METHOD)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional Salmonella isolation involves multiple sample transfers to culture media performed by an experienced microbiologist. The Reaction (RX) Plate method, a modification of the RX tube designed by Gailey et al. (2004), consolidates pre-enrichment (buffered peptone water or GN Hajna), enrichm...

  15. IDENTIFICATION OF SALMONELLA-POSITIVE FECAL SAMPLES USING A 96-WELL MICROCULTURE PLATE TECHNIQUE (RX METHOD)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional Salmonella isolation involves multiple sample transfers to culture media performed by an experienced microbiologist. The modified semi-solid RV and XLT (RX) Plate method, a modification of the RX tube format designed by Gailey et al. (2004), consolidates pre-enrichment (buffered pepton...

  16. Folate content in fresh-cut vegetable packed products by 96-well microtiter plate microbiological assay.

    PubMed

    Fajardo, Violeta; Alonso-Aperte, Elena; Varela-Moreiras, Gregorio

    2015-02-15

    Ready-to-eat foods have nowadays become a significant portion of the diet. Accordingly, nutritional composition of these food categories should be well-known, in particular its folate content. However, there is a broad lack of folate data in food composition tables and databases. A total of 21 fresh-cut vegetable and fruit packed products were analysed for total folate (TF) content using a validated method that relies on the folate-dependent growth of chloramphenicol-resistant Lactobacillus casei subspecies rhamnosus (NCIMB 10463). Mean TF content ranged from 10.0 to 140.9μg/100g for the different matrices on a fresh weight basis. Higher TF quantity, 140.9-70.1μg/100g, was found in spinach, rocket, watercress, chard and broccoli. Significant differences were observed between available data for fresh vegetables and fruits from food composition tables or databases and the analysed results for fresh-cut packed products. Supplied data support the potential of folate-rich fresh-cut ready-to-eat vegetables to increase folate intake significantly.

  17. HIGHLY SENSITIVE ASSAY FOR ANTICHOLINESTERASE COMPOUNDS USING 96 WELL PLATE FORMAT

    EPA Science Inventory

    One of the approaches for reducing uncertainties in the assessment of human exposure is to better characterize concentrations of hazardous compounds that may be present in our immediate environment. A significant limitation to this approach, however, is that sampling and labora...

  18. Development of a 96-well plate iodine binding assay for amylose content determination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereal starch amylose/amylopectin (AM/AP) ratios are critical in functional properties for food and industrial applications. Conventional methods for the determination of AM/AP of cereal starches are very time consuming and labor intensive making it very difficult to screen large sample sets. Stud...

  19. Determining cereal starch amylose content using a dual wavelength iodine binding 96 well plate assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereal starch amylose/amylopectin (AM/AP) ratios are critical in functional properties for food and industrial applications. Conventional determination of AM/AP of cereal starches are very time consuming and labor intensive making it very difficult to screen large sample sets. Studying these large...

  20. A Microfluidics-HPLC/Differential Mobility Spectrometer Macromolecular Detection System for Human and Robotic Missions

    NASA Technical Reports Server (NTRS)

    Coy, S. L.; Killeen, K.; Han, J.; Eiceman, G. A.; Kanik, I.; Kidd, R. D.

    2011-01-01

    Our goal is to develop a unique, miniaturized, solute analyzer based on microfluidics technology. The analyzer consists of an integrated microfluidics High Performance Liquid Chromatographic chip / Differential Mobility Spectrometer (?HPLCchip/ DMS) detection system

  1. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices

    PubMed Central

    Shen, Richang; Gurkan, Umut A.

    2016-01-01

    Microfluidic platforms offer revolutionary and practical solutions to challenging problems in biology and medicine. Even though traditional micro/nanofabrication technologies expedited the emergence of the microfluidics field, recent advances in advanced additive manufacturing hold significant potential for single-step, stand-alone microfluidic device fabrication. One such technology, which holds a significant promise for next generation microsystem fabrication is three-dimensional (3D) printing. Presently, building 3D printed stand-alone microfluidic devices with fully embedded microchannels for applications in biology and medicine has the following challenges: (i) limitations in achievable design complexity, (ii) need for a wider variety of transparent materials, (iii) limited z-resolution, (iv) absence of extremely smooth surface finish, and (v) limitations in precision fabrication of hollow and void sections with extremely high surface area to volume ratio. We developed a new way to fabricate stand-alone microfluidic devices with integrated manifolds and embedded microchannels by utilizing a 3D printing and laser micromachined lamination based hybrid manufacturing approach. In this new fabrication method, we exploit the minimized fabrication steps enabled by 3D printing, and reduced assembly complexities facilitated by laser micromachined lamination method. The new hybrid fabrication method enables key features for advanced microfluidic system architecture: (i) increased design complexity in 3D, (ii) improved control over microflow behavior in all three directions and in multiple layers, (iii) transverse multilayer flow and precisely integrated flow distribution, and (iv) enhanced transparency for high resolution imaging and analysis. Hybrid manufacturing approaches hold great potential in advancing microfluidic device fabrication in terms of standardization, fast production, and user-independent manufacturing. PMID:27512530

  2. Batch-reactor microfluidic device: first human use of a microfluidically produced PET radiotracer†

    PubMed Central

    Miraghaie, Reza; Kotta, Kishore; Ball, Carroll E.; Zhang, Jianzhong; Buchsbaum, Monte S.; Kolb, Hartmuth C.; Elizarov, Arkadij

    2013-01-01

    The very first microfluidic device used for the production of 18F-labeled tracers for clinical research is reported along with the first human Positron Emission Tomography scan obtained with a microfluidically produced radiotracer. The system integrates all operations necessary for the transformation of [18F]fluoride in irradiated cyclotron target water to a dose of radiopharmaceutical suitable for use in clinical research. The key microfluidic technologies developed for the device are a fluoride concentration system and a microfluidic batch reactor assembly. Concentration of fluoride was achieved by means of absorption of the fluoride anion on a micro ion-exchange column (5 μL of resin) followed by release of the radioactivity with 45 μL of the release solution (95 ± 3% overall efficiency). The reactor assembly includes an injection-molded reactor chip and a transparent machined lid press-fitted together. The resulting 50 μL cavity has a unique shape designed to minimize losses of liquid during reactor filling and liquid evaporation. The cavity has 8 ports for gases and liquids, each equipped with a 2-way on-chip mechanical valve rated for pressure up to 20.68 bar (300 psi). The temperature is controlled by a thermoelectric heater capable of heating the reactor up to 180 °C from RT in 150 s. A camera captures live video of the processes in the reactor. HPLC-based purification and reformulation units are also integrated in the device. The system is based on “split-box architecture”, with reagents loaded from outside of the radiation shielding. It can be installed either in a standard hot cell, or as a self-shielded unit. Along with a high level of integration and automation, split-box architecture allowed for multiple production runs without the user being exposed to radiation fields. The system was used to support clinical trials of [18F]fallypride, a neuroimaging radiopharmaceutical under IND Application #109,880. PMID:23135409

  3. A Comprehensive Microfluidics Device Construction and Characterization Module for the Advanced Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Piunno, Paul A. E.; Zetina, Adrian; Chu, Norman; Tavares, Anthony J.; Noor, M. Omair; Petryayeva, Eleonora; Uddayasankar, Uvaraj; Veglio, Andrew

    2014-01-01

    An advanced analytical chemistry undergraduate laboratory module on microfluidics that spans 4 weeks (4 h per week) is presented. The laboratory module focuses on comprehensive experiential learning of microfluidic device fabrication and the core characteristics of microfluidic devices as they pertain to fluid flow and the manipulation of samples.…

  4. Accelerated Biofluid Filling in Complex Microfluidic Networks by Vacuum-Pressure Accelerated Movement (V-PAM).

    PubMed

    Yu, Zeta Tak For; Cheung, Mei Ki; Liu, Shirley Xiaosu; Fu, Jianping

    2016-09-01

    Rapid fluid transport and exchange are critical operations involved in many microfluidic applications. However, conventional mechanisms used for driving fluid transport in microfluidics, such as micropumping and high pressure, can be inaccurate and difficult for implementation for integrated microfluidics containing control components and closed compartments. Here, a technology has been developed termed Vacuum-Pressure Accelerated Movement (V-PAM) capable of significantly enhancing biofluid transport in complex microfluidic environments containing dead-end channels and closed chambers. Operation of the V-PAM entails a pressurized fluid loading into microfluidic channels where gas confined inside can rapidly be dissipated through permeation through a thin, gas-permeable membrane sandwiched between microfluidic channels and a network of vacuum channels. Effects of different structural and operational parameters of the V-PAM for promoting fluid filling in microfluidic environments have been studied systematically. This work further demonstrates the applicability of V-PAM for rapid filling of temperature-sensitive hydrogels and unprocessed whole blood into complex irregular microfluidic networks such as microfluidic leaf venation patterns and blood circulatory systems. Together, the V-PAM technology provides a promising generic microfluidic tool for advanced fluid control and transport in integrated microfluidics for different microfluidic diagnosis, organs-on-chips, and biomimetic studies. PMID:27409528

  5. A novel microfluidic chip based on fiber sensor

    NASA Astrophysics Data System (ADS)

    Su, Bo; Duan, Guoteng; Han, Xue

    2013-08-01

    We have fabricated a novel microfluidic chip based on fiber sensor with casting PDMS method. The optical fiber is used to transmit excitation light, so the diameter of the excitation beam is decreased to 93μm. In order to improve the coupling efficiency of the excitation light in the fiber, the optical fiber collimation device is used to couple beam. The microfluidic chip consists of multimode optical fiber, PDMS cover slab and PDMS base slab. The mould of cover slab is made through twice exposal, however the base slab is achieved using once exposal only. The depths of microfluidic channel and optical fiber channel in the PDMS cover slab are 50μm and 90μm, respectively, and the optical fiber channel in the PDMS base slab is only 40μm. This design can make the centers of the microfluidic channel and the fiber channel in the same point, so the microfluidic channel and the optical fiber can be aimed at easily. In addition, the size of microfluidic channel depth is near the size of light spot of optical fiber, so the detection sensitivity is improved without using the optical focusing system. The detection system of the microfluidic chip is manufactured and it composed of high voltage modules, darkroom, LED light source, photomultiplier and data acquisition circuit, moreover, the software of the detection system is developed. The high voltage modules with four 2kV are used to control the sample amount in the separation channel, so the sensitivity is improved. The microfluidic chip is placed in the darkroom to avoid the interference of external light. The high brightness blue light emitting diode (LED) is used as excitation light sources for inducing fluorescence detection through coupling the LED light into the optical fiber. The photomultiplier is used to amplify the fluorescence signals and the function of data acquisition circuit is data collection and data processing. Under the control of software, the experiment process can be implemented easily. As an

  6. Microfluidic systems for stem cell-based neural tissue engineering.

    PubMed

    Karimi, Mahdi; Bahrami, Sajad; Mirshekari, Hamed; Basri, Seyed Masoud Moosavi; Nik, Amirala Bakhshian; Aref, Amir R; Akbari, Mohsen; Hamblin, Michael R

    2016-07-01

    Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.

  7. Characteristic impedance of a microchannel with two immiscible microfluids

    NASA Astrophysics Data System (ADS)

    Jaramillo Raquejo, Daniela

    2014-05-01

    Consider the case of a microcapillary of radius R with two microfluidic immiscible. The micro-capillary region 0 < r < R1 is occupied by the microfluidic less dense and less viscous; while the microcapillary region R1 <0 < R is occupied by the microfluidic more dense and more viscous. Determine the characteristic impedance of the microcapillary in this case when both microfluidics are driven by the same pressure gradient as the boundary condition at the wall of the microcapillary is of the non-Newtonian slip. The Navier Stokes equation is solved for both microfluidic methods using the Laplace transform. The velocity profiles are expressed in terms of Bessel functions. Similarly, the characteristic impedance of the microcapillary is expressed by a complex formula Bessel functions. Obtain the analytical results are important for designing engineering microdevices with applications in pharmaceutical, food engineering, nanotechnology and biotechnology in general in particular. For future research it is interesting to consider the case of boundary conditions with memory effects.

  8. Pump-free transport of magnetic particles in microfluidic channels

    NASA Astrophysics Data System (ADS)

    Danckwardt, Nils Z.; Franzreb, Matthias; Guber, Andreas E.; Saile, Volker

    2011-11-01

    The use of magnetic particles in microfluidic devices offers new possibilities and a new degree of freedom to sequential synthesis and preparative or analytical procedures in very small volumes. In contrast to most of the traditional approaches where the liquid phase is flushed or pumped along a solid phase, the transport of magnetic particles through a microfluidic channel has the advantage of reduced reagent consumption and simpler, smaller systems. By lining up different reservoirs along the transport direction, reactions with different agents can be accomplished. Here, we present a pump and valve-free microfluidic particle transport system. By creating a simple and very effective layout of soft magnetic structures, which concentrate an external homogeneous magnetic field, a passive, thus easy to operate structure was generated. Most importantly, this layout is based on a simple tube by which fluidic and magnetic parts are separated. The tube itself is disposable and can be replaced prior to vital reactions, thus helping reduce sample cross-contaminations without affecting the particle transport properties. The layout of the device was thoroughly examined by a computer simulation of the particle trajectories, and the results were confirmed by experiments on a micro-machined demonstrator, which revealed an effective transport speed of up to 5 mm/s in 30 mT magnetic fields. Thus, we present a microfluidic transport device that combines the advantages of magnetic particles in microfluidic systems with a simple single-use technology for, e.g., bioanalytical purposes.

  9. Microfluidic Devices for Forensic DNA Analysis: A Review.

    PubMed

    Bruijns, Brigitte; van Asten, Arian; Tiggelaar, Roald; Gardeniers, Han

    2016-01-01

    Microfluidic devices may offer various advantages for forensic DNA analysis, such as reduced risk of contamination, shorter analysis time and direct application at the crime scene. Microfluidic chip technology has already proven to be functional and effective within medical applications, such as for point-of-care use. In the forensic field, one may expect microfluidic technology to become particularly relevant for the analysis of biological traces containing human DNA. This would require a number of consecutive steps, including sample work up, DNA amplification and detection, as well as secure storage of the sample. This article provides an extensive overview of microfluidic devices for cell lysis, DNA extraction and purification, DNA amplification and detection and analysis techniques for DNA. Topics to be discussed are polymerase chain reaction (PCR) on-chip, digital PCR (dPCR), isothermal amplification on-chip, chip materials, integrated devices and commercially available techniques. A critical overview of the opportunities and challenges of the use of chips is discussed, and developments made in forensic DNA analysis over the past 10-20 years with microfluidic systems are described. Areas in which further research is needed are indicated in a future outlook.

  10. Teaching microfluidic diagnostics using Jell-O(®) chips.

    PubMed

    Yang, Cheng Wei T; Lagally, Eric T

    2013-01-01

    Microfluidics has emerged as a versatile technology that has found many applications, including DNA chips, fuel cells, and diagnostics. As the field of microfluidic diagnostics grows, it is important to introduce the principles of this technology to young students and the general public. The objective of this project was to create a simple and effective method that could be used to teach key microfluidics concepts using easily accessible materials. Similar to the poly(dimethylsiloxane) soft lithography technique, a Jell-O(®) "chip" is produced by pouring a mixture of Jell-O(®) and gelatine solution into a mold, which is constructed using foam plate, coffee stirrers, and double-sided tape. The plate is transferred to a 4°C refrigerator for curing, and then the Jell-O(®) chip is peeled off for experimental demonstrations. Three types of chips have been fabricated with different molds: a JELLO mold, a Y-channel mold, and a pH-sensor mold. Using these devices, the basics of microfluidic diagnostics can be demonstrated in one or two class periods. The method described in this chapter provides teachers with a fast and inexpensive way to introduce this technology, and students with a fun and hands-on way to understand the basics of microfluidic diagnostics. PMID:23329433

  11. Laser micromachined hybrid open/paper microfluidic chips.

    PubMed

    Chumo, B; Muluneh, M; Issadore, D

    2013-01-01

    Paper-based microfluidics are an increasingly popular alternative to devices with conventional open channel geometries. The low cost of fabrication and the absence of external instrumentation needed to drive paper microchannels make them especially well suited for medical diagnostics in resource-limited settings. Despite the advantages of paper microfluidics, many assays performed using conventional open channel microfluidics are challenging to translate onto paper, such as bead, emulsion, and cell-based assays. To overcome this challenge, we have developed a hybrid open-channel/paper channel microfluidic device. In this design, wick-driven paper channels control the flow rates within conventional microfluidics. We fabricate these hybrid chips using laser-micromachined polymer sheets and filter paper. In contrast to previous efforts that utilized external, macroscopic paper-based pumps, we integrated micro-scale paper and open channels onto a single chip to control multiple open channels and control complex laminar flow-pattern within individual channels. We demonstrated that flow patterns within the open channels can be quantitatively controlled by modulating the geometry of the paper channels, and that these flow rates agree with Darcy's law. The utility of these hybrid chips, for applications such as bead-, cell-, or emulsion-based assays, was demonstrated by constructing a hybrid chip that hydrodynamically focused micrometer-sized polystyrene beads stably for >10 min, as well as cells, without external instrumentation to drive fluid flow.

  12. Predicting the behavior of microfluidic circuits made from discrete elements

    PubMed Central

    Bhargava, Krisna C.; Thompson, Bryant; Iqbal, Danish; Malmstadt, Noah

    2015-01-01

    Microfluidic devices can be used to execute a variety of continuous flow analytical and synthetic chemistry protocols with a great degree of precision. The growing availability of additive manufacturing has enabled the design of microfluidic devices with new functionality and complexity. However, these devices are prone to larger manufacturing variation than is typical of those made with micromachining or soft lithography. In this report, we demonstrate a design-for-manufacturing workflow that addresses performance variation at the microfluidic element and circuit level, in context of mass-manufacturing and additive manufacturing. Our approach relies on discrete microfluidic elements that are characterized by their terminal hydraulic resistance and associated tolerance. Network analysis is employed to construct simple analytical design rules for model microfluidic circuits. Monte Carlo analysis is employed at both the individual element and circuit level to establish expected performance metrics for several specific circuit configurations. A protocol based on osmometry is used to experimentally probe mixing behavior in circuits in order to validate these approaches. The overall workflow is applied to two application circuits with immediate use at on the bench-top: series and parallel mixing circuits that are modularly programmable, virtually predictable, highly precise, and operable by hand. PMID:26516059

  13. Asphaltenes yield curve measurements on a microfluidic platform.

    PubMed

    Sieben, Vincent J; Tharanivasan, Asok Kumar; Ratulowski, John; Mostowfi, Farshid

    2015-10-21

    We describe a microfluidic apparatus and method for performing asphaltene yield measurements on crude oil samples. Optical spectroscopy measurements are combined with a microfluidic fluid handling platform to create an automated microfluidic apparatus to measure the asphaltene yield. The microfluidic measurements show good agreement with conventional wet chemistry measurements as well as available models. The initial absorbance of the oil is measured, and asphaltenes are removed from the oil by the gradual addition of n-alkane, which leads to flocculation and subsequent filtration. The absorbance of the de-asphalted oil (maltenes) is then measured and the initial asphaltene content is determined by the change in absorbance. The solubility of asphaltene is evaluated by varying the titrant-to-oil ratio (e.g., n-heptane-oil), which induces no, partial, or full precipitation of asphaltenes depending on the chosen ratio. The absorbance of the filtrate is measured and normalized to the maximum content to determine the fractional precipitation at each ratio. Traditionally, a yield curve comprised of 20 such ratios would require weeks to months to generate, while consuming over 6 L of solvent and more than 100 g of crude oil sample. Using the microfluidic approach described here, the same measurement can be performed in 1 day, with 0.5 L of solvent and 10 g of crude oil sample. The substantial reduction in time and consumables will enable more frequent asphaltene yield measurements and reduce its environmental impact significantly. PMID:26333290

  14. Microfluidic Devices for Forensic DNA Analysis: A Review

    PubMed Central

    Bruijns, Brigitte; van Asten, Arian; Tiggelaar, Roald; Gardeniers, Han

    2016-01-01

    Microfluidic devices may offer various advantages for forensic DNA analysis, such as reduced risk of contamination, shorter analysis time and direct application at the crime scene. Microfluidic chip technology has already proven to be functional and effective within medical applications, such as for point-of-care use. In the forensic field, one may expect microfluidic technology to become particularly relevant for the analysis of biological traces containing human DNA. This would require a number of consecutive steps, including sample work up, DNA amplification and detection, as well as secure storage of the sample. This article provides an extensive overview of microfluidic devices for cell lysis, DNA extraction and purification, DNA amplification and detection and analysis techniques for DNA. Topics to be discussed are polymerase chain reaction (PCR) on-chip, digital PCR (dPCR), isothermal amplification on-chip, chip materials, integrated devices and commercially available techniques. A critical overview of the opportunities and challenges of the use of chips is discussed, and developments made in forensic DNA analysis over the past 10–20 years with microfluidic systems are described. Areas in which further research is needed are indicated in a future outlook. PMID:27527231

  15. Teflon films for chemically-inert microfluidic valves and pumps.

    PubMed

    Grover, William H; von Muhlen, Marcio G; Manalis, Scott R

    2008-06-01

    We present a simple method for fabricating chemically-inert Teflon microfluidic valves and pumps in glass microfluidic devices. These structures are modeled after monolithic membrane valves and pumps that utilize a featureless polydimethylsiloxane (PDMS) membrane bonded between two etched glass wafers. The limited chemical compatibility of PDMS has necessitated research into alternative materials for microfluidic devices. Previous work has shown that spin-coated amorphous fluoropolymers and Teflon-fluoropolymer laminates can be fabricated and substituted for PDMS in monolithic membrane valves and pumps for space flight applications. However, the complex process for fabricating these spin-coated Teflon films and laminates may preclude their use in many research and manufacturing contexts. As an alternative, we show that commercially-available fluorinated ethylene-propylene (FEP) Teflon films can be used to fabricate chemically-inert monolithic membrane valves and pumps in glass microfluidic devices. The FEP Teflon valves and pumps presented here are simple to fabricate, function similarly to their PDMS counterparts, maintain their performance over extended use, and are resistant to virtually all chemicals. These structures should facilitate lab-on-a-chip research involving a vast array of chemistries that are incompatible with native PDMS microfluidic devices. PMID:18497911

  16. Fabrication of polyimide based microfluidic channels for biosensor devices

    NASA Astrophysics Data System (ADS)

    Zulfiqar, Azeem; Pfreundt, Andrea; Svendsen, Winnie Edith; Dimaki, Maria

    2015-03-01

    The ever-increasing complexity of the fabrication process of Point-of-care (POC) devices, due to high demand of functional versatility, compact size and ease-of-use, emphasizes the need of multifunctional materials that can be used to simplify this process. Polymers, currently in use for the fabrication of the often needed microfluidic channels, have limitations in terms of their physicochemical properties. Therefore, the use of a multipurpose biocompatible material with better resistance to the chemical, thermal and electrical environment, along with capability of forming closed channel microfluidics is inevitable. This paper demonstrates a novel technique of fabricating microfluidic devices using polyimide (PI) which fulfills the aforementioned properties criteria. A fabrication process to pattern microfluidic channels, using partially cured PI, has been developed by using a dry etching method. The etching parameters are optimized and compared to those used for fully cured PI. Moreover, the formation of closed microfluidic channel on wafer level by bonding two partially cured PI layers or a partially cured PI to glass with high bond strength has been demonstrated. The reproducibility in uniformity of PI is also compared to the most commonly used SU8 polymer, which is a near UV sensitive epoxy resin. The potential applications of PI processing are POC and biosensor devices integrated with microelectronics.

  17. [Application of microfluidics in sperm isolation and in vitro fertilization].

    PubMed

    Li, Fang-Fang; Wang, Xiao-Ying; Zhou, Shu-Min; You, Fan

    2014-05-01

    Due to the low effectiveness of traditional assisted reproductive technology (ART), new technological possibilities are constantly explored. Lots of studies have demonstrated the potential of microfluidics to revolutionize the fundamental processes of in vitro fertilization (IVF). With the advantages of high efficiency, short time, harmless collection, real-time observation of separation, similar microenvironment, and automation, the application of microfluidics in sperm isolation and IVF has shown an evident superiority over the conventional approaches and provided a new platform for ART. This review highlights the application of various microfluidic techniques in sperm motility assessment and isolation, sperm chemotaxis assay, IVF, sperm concentration, and sperm separation and enrichment in recent years. It also briefly introduces the basic principles, structural design, and operation processes of the microfluidic platform, focusing on the advantages and disadvantages of each method and the potential of their clinical application. Obviously, there are still some challenges to the application of microfluidics in ART. However, it is believed that the development of this new technology would be toward a highly integrated application of several steps in one single device, known as IVF-lab-on-a-chip.

  18. Microfluidics expands the zebrafish potentials in pharmaceutically relevant screening.

    PubMed

    Chen, Chia-Yuan; Cheng, Chao-Min

    2014-06-01

    The objective of this study is to enlarge the impact of microfluidics on the pharmaceutical industry by highlighting the reported scientific work on the synergistic relationship between zebrafish and microfluidics, and furthering that effort to shed light on how microfluidics can facilitate the use of zebrafish as a gene screening tool. Zebrafish is ranked the third most important animal model after rats and mice, according to a National Institutes of Health (NIH) announcement in 2003. It has become a staple for scientists to examine and subsequently begin to unravel the mystery of human diseases, and is increasingly used in toxicological studies for new drug development. The unique characteristics that this tiny fish possesses, including rapid growth rate, prodigious numbers of offspring, and eggs that develop outside the body, make it an invaluable genetic tool. Evidently, these advantages can be broadened with the addition of a properly designed microfluidic circuit. By means of the presented illustrations and demonstrated applications, the goal is to spark interest in the development of more novel microfluidic platform designs that can leverage the attributes of zebrafish and quickly come to commercial fruition.

  19. Pneumatic oscillator circuits for timing and control of integrated microfluidics.

    PubMed

    Duncan, Philip N; Nguyen, Transon V; Hui, Elliot E

    2013-11-01

    Frequency references are fundamental to most digital systems, providing the basis for process synchronization, timing of outputs, and waveform synthesis. Recently, there has been growing interest in digital logic systems that are constructed out of microfluidics rather than electronics, as a possible means toward fully integrated laboratory-on-a-chip systems that do not require any external control apparatus. However, the full realization of this goal has not been possible due to the lack of on-chip frequency references, thus requiring timing signals to be provided from off-chip. Although microfluidic oscillators have been demonstrated, there have been no reported efforts to characterize, model, or optimize timing accuracy, which is the fundamental metric of a clock. Here, we report pneumatic ring oscillator circuits built from microfluidic valves and channels. Further, we present a compressible-flow analysis that differs fundamentally from conventional circuit theory, and we show the utility of this physically based model for the optimization of oscillator stability. Finally, we leverage microfluidic clocks to demonstrate circuits for the generation of phase-shifted waveforms, self-driving peristaltic pumps, and frequency division. Thus, pneumatic oscillators can serve as on-chip frequency references for microfluidic digital logic circuits. On-chip clocks and pumps both constitute critical building blocks on the path toward achieving autonomous laboratory-on-a-chip devices.

  20. Parameter screening in microfluidics based hydrodynamic single-cell trapping.

    PubMed

    Deng, B; Li, X F; Chen, D Y; You, L D; Wang, J B; Chen, J

    2014-01-01

    Microfluidic cell-based arraying technology is widely used in the field of single-cell analysis. However, among developed devices, there is a compromise between cellular loading efficiencies and trapped cell densities, which deserves further analysis and optimization. To address this issue, the cell trapping efficiency of a microfluidic device with two parallel micro channels interconnected with cellular trapping sites was studied in this paper. By regulating channel inlet and outlet status, the microfluidic trapping structure can mimic key functioning units of previously reported devices. Numerical simulations were used to model this cellular trapping structure, quantifying the effects of channel on/off status and trapping structure geometries on the cellular trapping efficiency. Furthermore, the microfluidic device was fabricated based on conventional microfabrication and the cellular trapping efficiency was quantified in experiments. Experimental results showed that, besides geometry parameters, cellular travelling velocities and sizes also affected the single-cell trapping efficiency. By fine tuning parameters, more than 95% of trapping sites were taken by individual cells. This study may lay foundation in further studies of single-cell positioning in microfluidics and push forward the study of single-cell analysis.