Science.gov

Sample records for 96-well polycarbonate-based microfluidic

  1. 96-Well Polycarbonate-Based Microfluidic Titer Plate for High-Throughput Purification of DNA and RNA

    PubMed Central

    Witek, Małgorzata A.; Hupert, Mateusz L.; Park, Daniel S.-W.; Fears, Kirby; Murphy, Michael C.; Soper, Steven A.

    2008-01-01

    We report a simple and effective method for the high-throughput purification of a variety of nucleic acids (NAs) from whole cell lysates or whole blood using a photactivated polycarbonate solid-phase reversible immobilization (PPC-SPRI) microfluidic chip. High-throughput operation was achieved by placing 96 purification beds, each containing an array of 3800 20 µm diameter posts, on a single 3″ × 5″ polycarbonate (PC) wafer fabricated by hot embossing. All beds were interconnected through a common microfluidic network that permitted parallel access through the use of a vacuum and syringe pump for delivery of immobilization buffer (IB) and effluent. The PPC-SPRI purification was accomplished by condensation of NAs onto a UV-modified PC surface in the presence of the IB comprised of polyethylene glycol, NaCl, and ethanol with a composition dependent on the length of the NAs to be isolated and the identity of the sample matrix. The performance of the device was validated by quantification of the recovered material following PCR (for DNA) or RT-PCR (for RNA). The extraction bed load capacity of NAs was 206 ± 93 ng for gDNA and 165 ± 81 ng for TRNA from Escherichia coli. Plate-to-plate variability was found to be 35 ± 10%. The purification process was fast (>30 min) and easy to automate, and the low cost of wafer fabrication makes it appropriate for single-use applications. PMID:18355091

  2. Microfluidic cartridges preloaded with nanoliter plugs of reagents: an alternative to 96-well plates for screening

    PubMed Central

    Chen, Delai L; Ismagilov, Rustem F

    2006-01-01

    In traditional screening with 96-well plates, microliters of substrates are consumed for each reaction. Further miniaturization is limited by the special equipment and techniques required to dispense nanoliter volumes of fluid. Plug-based microfluidics confines reagents in nanoliter plugs (droplets surrounded by fluorinated carrier fluid), and uses simple pumps to control the flow of plugs. By using cartridges pre-loaded with nanoliter plugs of reagents, only two pumps and a merging junction are needed to set up a screen. Screening with preloaded cartridges uses only nanoliters of substrate per reaction, and requires no microfabrication. The low cost and simplicity of this method has the potential of replacing 96-well and other multi-well plates, and has been applied to enzymatic assays, protein crystallization and optimization of organic reactions. PMID:16677848

  3. A simple 96 well microfluidic chip combined with visual and densitometry detection for resource-poor point of care testing.

    PubMed

    Yang, Minghui; Sun, Steven; Kostov, Yordan; Rasooly, Avraham

    2011-03-31

    There is a well-recognized need for low cost biodetection technologies for resource-poor settings with minimal medical infrastructure. Lab-on-a-chip (LOC) technology has the ability to perform biological assays in such settings. The aim of this work is to develop a low cost, high-throughput detection system for the analysis of 96 samples simultaneously outside the laboratory setting. To achieve this aim, several biosensing elements were combined: a syringe operated ELISA lab-on-a-chip (ELISA-LOC) which integrates fluid delivery system into a miniature 96-well plate; a simplified non-enzymatic reporter and detection approach using a gold nanoparticle-antibody conjugate as a secondary antibody and silver enhancement of the visual signal; and Carbon nanotubes (CNT) to increase primary antibody immobilization and improve assay sensitivity. Combined, these elements obviate the need for an ELISA washer, electrical power for operation and a sophisticated detector. We demonstrate the use of the device for detection of Staphylococcal enterotoxin B, a major foodborne toxin using three modes of detection, visual detection, CCD camera and document scanner. With visual detection or using a document scanner to measure the signal, the limit of detection (LOD) was 0.5ng/ml. In addition to visual detection, for precise quantitation of signal using densitometry and a CCD camera, the LOD was 0.1ng/ml for the CCD analysis and 0.5 ng/ml for the document scanner. The observed sensitivity is in the same range as laboratory-based ELISA testing. The point of care device can analyze 96 samples simultaneously, permitting high throughput diagnostics in the field and in resource poor areas without ready access to laboratory facilities or electricity.

  4. Electrothermal micromixing in 96 well plate

    NASA Astrophysics Data System (ADS)

    Kauffmann, Paul; Loire, Sophie; Mezic, Igor

    2011-11-01

    Diagnostic and pharmacology processes could be greatly accelerated by appropriate mixing. Here electrothermal flows are explored to provide mixing of conductive physiological solutions (=1.6 S/m) in a 96 well plate. Three interdigitated electrodes provide an electric field (< 15Vpp, 1MHz) beneath each well. Polarization and conduction phenomenon of the fluid in a well will be first modeled numerically and compared to an electrical circuit model. Due to high conductivity and permittivity of the fluid, the impedance of the array of filled wells collapse dramatically (96 wells: R = 1Ohm, C=250nF). The power supply challenges accordingly raised by arrays of electrothermal micromixers will be then analyzed. The efficiency of different methods of mixing in those wells will be also compared: the addition of low frequency signal leading to AC electro-osmotic perturbations, a blinking vortices method. The experimental results will be compared to simulations.

  5. An automated 96-well-plate loader for FACScan.

    PubMed

    Illges, H

    1999-01-01

    Staining multiple samples for data acquisition with a flow cytometer is done in 96-well plates to save time and make large data assessment in one working day possible. However, the inability of the FACScan to take up the samples from 96-well plates is a major drawback. In order to avoid the individual transfer of samples to tubes, we have developed a system, which allows using the FACScan with 96-well plates. The machine consists of a programmable control module and a loader which moves the 96-well plate in 3 axis well by well along the sample collector. The machine is equipped with a wash buffer tank to avoid cross contamination of samples and a shaking option to avoid sedimentation of cells during acquisition. The machine can be further developed into a full automatic loader if connected to the FACS Station. In 24 hours about 7,000 samples with 10,000 cells each can be acquired.

  6. 96-well electroporation method for transfection of mammalian central neurons.

    PubMed

    Buchser, William J; Pardinas, Jose R; Shi, Yan; Bixby, John L; Lemmon, Vance P

    2006-11-01

    Manipulating gene expression in primary neurons has been a goal for many scientists for over 20 years. Vertebrate central nervous system neurons are classically difficult to transfect. Most lipid reagents are inefficient and toxic to the cells, and time-consuming methods such as viral infections are often required to obtain better efficiencies. We have developed an efficient method for the transfection of cerebellar granule neurons and hippocampal neurons with standard plasmid vectors. Using 96-well electroporation plates, square-wave pulses can introduce 96 different plasmids into neurons in a single step. The procedure results in greater than 20% transfection efficiencies and requires only simple solutions of nominal cost. In addition to enabling the rapid optimization of experimental protocols with multiple parameters, this procedure enables the use of high content screening methods to characterize neuronal phenotypes.

  7. 96-Well electroporation method for transfection of mammalian central neurons

    PubMed Central

    Buchser, William J.; Pardinas, Jose R.; Shi, Yan; Bixby, John L.; Lemmon, Vance P.

    2008-01-01

    Manipulating gene expression in primary neurons has been a goal for many scientists for over 20 years. Vertebrate central nervous system neurons are classically difficult to transfect. Most lipid reagents are inefficient and toxic to the cells, and time-consuming methods such as viral infections are often required to obtain better efficiencies. We have developed an efficient method for the transfection of cerebellar granule neurons and hippocampal neurons with standard plasmid vectors. Using 96-well electroporation plates, square-wave pulses can introduce 96 different plasmids into neurons in a single step. The procedure results in greater than 20% transfection efficiencies and requires only simple solutions of nominal cost. In addition to enabling the rapid optimization of experimental protocols with multiple parameters, this procedure enables the use of high content screening methods to characterize neuronal phenotypes. PMID:17140120

  8. A Novel 96well-formatted Micro-gap Plate Enabling Drug Response Profiling on Primary Tumour Samples

    NASA Astrophysics Data System (ADS)

    Ma, Wei-Yuan; Hsiung, Lo-Chang; Wang, Chen-Ho; Chiang, Chi-Ling; Lin, Ching-Hung; Huang, Chiun-Sheng; Wo, Andrew M.

    2015-04-01

    Drug-based treatments are the most widely used interventions for cancer management. Personalized drug response profiling remains inherently challenging with low cell count harvested from tumour sample. We present a 96well-formatted microfluidic plate with built-in micro-gap that preserves up to 99.2% of cells during multiple assay/wash operation and only 9,000 cells needed for a single reagent test (i.e. 1,000 cells per test spot x 3 selected concentration x triplication), enabling drug screening and compatibility with conventional automated workstations. Results with MCF7 and MDA-MB-231 cell lines showed that no statistical significance was found in dose-response between the device and conventional 96-well plate control. Primary tumour samples from breast cancer patients tested in the device also showed good IC50 prediction. With drug screening of primary cancer cells must consider a wide range of scenarios, e.g. suspended/attached cell types and rare/abundant cell availability, the device enables high throughput screening even for suspended cells with low cell count since the signature microfluidic cell-trapping feature ensures cell preservation in a multiple solution exchange protocol.

  9. HIGHLY SENSITIVE ASSAY FOR ANTICHOLINESTERASE COMPOUNDS USING 96 WELL PLATE FORMAT

    EPA Science Inventory

    The rapid and sensitive detection of organophosphate insecticides using a 96 well plate format is reported. Several features of this assay make it attractive for development as a laboratory-based or field screening assay. Acetylcholinesterase (AChE) was stabilized in a gelati...

  10. HIGHLY SENSITIVE ASSAY FOR ANTICHOLINESTERASE COMPOUNDS USING 96 WELL PLATE FORMAT

    EPA Science Inventory

    The rapid and sensitive detection of organophosphate insecticides using a 96 well plate format is reported. Several features of this assay make it attractive for development as a laboratory-based or field screening assay. Acetylcholinesterase (AChE) was stabilized in a gelati...

  11. 96-Well plate assays for measuring collagenase activity using (3)H-acetylated collagen.

    PubMed

    Koshy, P J; Rowan, A D; Life, P F; Cawston, T E

    1999-11-15

    We describe two alternative assays for measuring collagenolytic activity using (3)H-acetylated collagen. Both assays have been developed for the 96-well plate format and measure the amount of radiolabeled collagen fragments released into the supernatant from an insoluble (3)H-acetylated collagen fibril preparation. The first method separates digested solubilized fragments from the intact fibril by sedimentation of the undigested collagen by centrifugation. The second method achieves this separation by filtration of the supernatant through the membrane of a 96-well filtration plate which retains the undigested collagen fibril. Both methods give linear dose- and time-dependent responses of collagenase activity > or = 70% of total collagen lysis. In addition, both assays can be simply modified to measure tissue inhibitors of metalloproteinases (TIMPs) inhibitory activity, which is also linear between 20 and 75% of total collagen lysis with the amount of TIMP added.

  12. An improved 96-well turbidity assay for T4 lysozyme activity

    PubMed Central

    Toro, Tasha B.; Nguyen, Thao P.; Watt, Terry J.

    2015-01-01

    T4 lysozyme (T4L) is an important model system for investigating the relationship between protein structure and function. Despite being extensively studied, a reliable, quantitative activity assay for T4L has not been developed. Here, we present an improved T4L turbidity assay as well as an affinity-based T4L expression and purification protocol. This assay is designed for 96-well format and utilizes conditions amenable for both T4L and other lysozymes. This protocol enables easy, efficient, and quantitative characterization of T4L variants and allows comparison between different lysozymes. Our method: • Is applicable for all lysozymes, with enhanced sensitivity for T4 lysozyme compared to other 96-well plate turbidity assays; • Utilizes standardized conditions for comparing T4 lysozyme variants and other lysozymes; and • Incorporates a simplified expression and purification protocol for T4 lysozyme. PMID:26150996

  13. A 96-well plate assay for CYP4503A induction using cryopreserved human hepatocytes.

    PubMed

    Kamiguchi, Naomi; Aoyama, Eiji; Okuda, Teruaki; Moriwaki, Toshiya

    2010-11-01

    A reliable and practical CYP3A induction assay with cryopreserved human hepatocytes in a 96-well format was developed. Various 96-well plates with different basement membrane were evaluated using prototypical inducers, rifampicin, phenytoin, and carbamazepine. Thin-layer (TL) Matrigel was found to yield the highest basal and induced levels of CYP3A activity as determined by testosterone 6β-hydroxylation. Concentration-dependent CYP3A induction of rifampicin was reproducible with the EC(50) values of 0.36 ± 0.28 μM from four batches of human hepatocytes using the 96-well plate with TL Matrigel. The rank order of induction potency for nine inducers or noninducers at a concentration of 10 μM were well comparable among the multiple donors, by expressing the results as percentage of change compared with the positive control, 10 μM rifampicin. Cotreatment of avasimibe or efavirenz with 10 μM rifampicin was found to reduce CYP3A activities induced by rifampicin at a lower rate than treatment with rifampicin alone, whereas treatment with phenobarbital and carbamazepine had no effect. From a comparison of induced CYP3A activities and gene expression levels, there were compounds that would cause induction of CYP3A4 mRNA but not activity, presumably due to their inhibitory effect on CYP3A activity. The cotreatment assay of test compound with rifampicin allows us to exclude the false-negative results caused by the cytotoxicity and/or the mechanism-based inactivation, when the drug candidate's ability for CYP3A induction is evaluating the enzyme activity. This 96-well plate assay, which is robust, reproducible, and convenient, has demonstrated the paramount applicability to the early drug discovery stage.

  14. A high-throughput sample preparation method for cellular proteomics using 96-well filter plates.

    PubMed

    Switzar, Linda; van Angeren, Jordy; Pinkse, Martijn; Kool, Jeroen; Niessen, Wilfried M A

    2013-10-01

    A high-throughput sample preparation protocol based on the use of 96-well molecular weight cutoff (MWCO) filter plates was developed for shotgun proteomics of cell lysates. All sample preparation steps, including cell lysis, buffer exchange, protein denaturation, reduction, alkylation and proteolytic digestion are performed in a 96-well plate format, making the platform extremely well suited for processing large numbers of samples and directly compatible with functional assays for cellular proteomics. In addition, the usage of a single plate for all sample preparation steps following cell lysis reduces potential samples losses and allows for automation. The MWCO filter also enables sample concentration, thereby increasing the overall sensitivity, and implementation of washing steps involving organic solvents, for example, to remove cell membranes constituents. The optimized protocol allowed for higher throughput with improved sensitivity in terms of the number of identified cellular proteins when compared to an established protocol employing gel-filtration columns. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Stretch Injury of Human Induced Pluripotent Stem Cell Derived Neurons in a 96 Well Format

    PubMed Central

    Sherman, Sydney A.; Phillips, Jack K.; Costa, J. Tighe; Cho, Frances S.; Oungoulian, Sevan R.; Finan, John D.

    2016-01-01

    Traumatic brain injury (TBI) is a major cause of mortality and morbidity with limited therapeutic options. Traumatic axonal injury (TAI) is an important component of TBI pathology. It is difficult to reproduce TAI in animal models of closed head injury, but in vitro stretch injury models reproduce clinical TAI pathology. Existing in vitro models employ primary rodent neurons or human cancer cell line cells in low throughput formats. This in vitro neuronal stretch injury model employs human induced pluripotent stem cell-derived neurons (hiPSCNs) in a 96 well format. Silicone membranes were attached to 96 well plate tops to create stretchable, culture substrates. A custom-built device was designed and validated to apply repeatable, biofidelic strains and strain rates to these plates. A high content approach was used to measure injury in a hypothesis-free manner. These measurements are shown to provide a sensitive, dose-dependent, multi-modal description of the response to mechanical insult. hiPSCNs transition from healthy to injured phenotype at approximately 35% Lagrangian strain. Continued development of this model may create novel opportunities for drug discovery and exploration of the role of human genotype in TAI pathology. PMID:27671211

  16. High throughput preparation of fly genomic DNA in 96-well format using a paint-shaker.

    PubMed

    Lang, Michael; Nagy, Olga; Lang, Claus; Orgogozo, Virginie

    2015-01-01

    Sample homogenization is an essential step for genomic DNA extraction, with multiple downstream applications in Molecular Biology. Genotyping hundreds or thousands of samples requires an automation of this homogenization step, and high throughput homogenizer equipment currently costs 7000 euros or more. We present an apparatus for homogenization of individual Drosophila adult flies in 96-well micro-titer dishes, which was built from a small portable paint-shaker (F5 portable paint-shaker, Ushake). Single flies are disrupted in each well that contains extraction buffer and a 4-mm metal ball. Our apparatus can hold up to five 96-well micro-titer plates. Construction of the homogenizer apparatus takes about 3-4 days, and all equipment can be obtained from a home improvement store. The total material cost is approximately 700 euros including the paint-shaker. We tested the performance of our apparatus using the ZR-96 Quick-gDNA™ kit (Zymo Research) homogenization buffer and achieved nearly complete tissue homogenization after 15 minutes of shaking. PCR tests did not detect any cross contamination between samples of neighboring wells. We obtained on average 138 ng of genomic DNA per fly, and DNA quality was adequate for standard PCR applications. In principle, our tissue homogenizer can be used for isolation of DNA suitable for library production and high throughput genotyping by Multiplexed Shotgun Genotyping (MSG), as well as RNA isolation from single flies. The sample adapter can also hold and shake other items, such as centrifuge tubes (15-50 mL) or small bottles.

  17. High throughput preparation of fly genomic DNA in 96-well format using a paint-shaker

    PubMed Central

    Lang, Michael; Nagy, Olga; Lang, Claus; Orgogozo, Virginie

    2015-01-01

    Sample homogenization is an essential step for genomic DNA extraction, with multiple downstream applications in Molecular Biology. Genotyping hundreds or thousands of samples requires an automation of this homogenization step, and high throughput homogenizer equipment currently costs 7000 euros or more. We present an apparatus for homogenization of individual Drosophila adult flies in 96-well micro-titer dishes, which was built from a small portable paint-shaker (F5 portable paint-shaker, Ushake). Single flies are disrupted in each well that contains extraction buffer and a 4-mm metal ball. Our apparatus can hold up to five 96-well micro-titer plates. Construction of the homogenizer apparatus takes about 3–4 days, and all equipment can be obtained from a home improvement store. The total material cost is approximately 700 euros including the paint-shaker. We tested the performance of our apparatus using the ZR-96 Quick-gDNA™ kit (Zymo Research) homogenization buffer and achieved nearly complete tissue homogenization after 15 minutes of shaking. PCR tests did not detect any cross contamination between samples of neighboring wells. We obtained on average 138 ng of genomic DNA per fly, and DNA quality was adequate for standard PCR applications. In principle, our tissue homogenizer can be used for isolation of DNA suitable for library production and high throughput genotyping by Multiplexed Shotgun Genotyping (MSG), as well as RNA isolation from single flies. The sample adapter can also hold and shake other items, such as centrifuge tubes (15–50 mL) or small bottles. PMID:26818699

  18. Urine sample preparation in 96-well filter plates for quantitative clinical proteomics.

    PubMed

    Yu, Yanbao; Suh, Moo-Jin; Sikorski, Patricia; Kwon, Keehwan; Nelson, Karen E; Pieper, Rembert

    2014-06-03

    Urine is an important, noninvasively collected body fluid source for the diagnosis and prognosis of human diseases. Liquid chromatography mass spectrometry (LC-MS) based shotgun proteomics has evolved as a sensitive and informative technique to discover candidate disease biomarkers from urine specimens. Filter-aided sample preparation (FASP) generates peptide samples from protein mixtures of cell lysate or body fluid origin. Here, we describe a FASP method adapted to 96-well filter plates, named 96FASP. Soluble urine concentrates containing ~10 μg of total protein were processed by 96FASP and LC-MS resulting in 700-900 protein identifications at a 1% false discovery rate (FDR). The experimental repeatability, as assessed by label-free quantification and Pearson correlation analysis for shared proteins among replicates, was high (R ≥ 0.97). Application to urinary pellet lysates which is of particular interest in the context of urinary tract infection analysis was also demonstrated. On average, 1700 proteins (±398) were identified in five experiments. In a pilot study using 96FASP for analysis of eight soluble urine samples, we demonstrated that protein profiles of technical replicates invariably clustered; the protein profiles for distinct urine donors were very different from each other. Robust, highly parallel methods to generate peptide mixtures from urine and other body fluids are critical to increase cost-effectiveness in clinical proteomics projects. This 96FASP method has potential to become a gold standard for high-throughput quantitative clinical proteomics.

  19. A Microfabricated 96-Well 3D Assay Enabling High-Throughput Quantification of Cellular Invasion Capabilities.

    PubMed

    Hao, Rui; Wei, Yuanchen; Li, Chaobo; Chen, Feng; Chen, Deyong; Zhao, Xiaoting; Luan, Shaoliang; Fan, Beiyuan; Guo, Wei; Wang, Junbo; Chen, Jian

    2017-02-27

    This paper presents a 96-well microfabricated assay to study three-dimensional (3D) invasion of tumor cells. A 3D cluster of tumor cells was first generated within each well by seeding cells onto a micro-patterned surface consisting of a central fibronectin-coated area that promotes cellular attachment, surrounded by a poly ethylene glycol (PEG) coated area that is resistant to cellular attachment. Following the formation of the 3D cell clusters, a 3D collagen extracellular matrix was formed in each well by thermal-triggered gelation. Invasion of the tumor cells into the extracellular matrix was subsequently initiated and monitored. Two modes of cellular infiltration were observed: A549 cells invaded into the extracellular matrix following the surfaces previously coated with PEG molecules in a pseudo-2D manner, while H1299 cells invaded into the extracellular matrix in a truly 3D manner including multiple directions. Based on the processing of 2D microscopic images, a key parameter, namely, equivalent invasion distance (the area of invaded cells divided by the circumference of the initial cell cluster) was obtained to quantify migration capabilities of these two cell types. These results validate the feasibility of the proposed platform, which may function as a high-throughput 3D cellular invasion assay.

  20. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    PubMed

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  1. Thermodynamic equilibrium solubility measurements in simulated fluids by 96-well plate method in early drug discovery.

    PubMed

    Bharate, Sonali S; Vishwakarma, Ram A

    2015-04-01

    An early prediction of solubility in physiological media (PBS, SGF and SIF) is useful to predict qualitatively bioavailability and absorption of lead candidates. Despite of the availability of multiple solubility estimation methods, none of the reported method involves simplified fixed protocol for diverse set of compounds. Therefore, a simple and medium-throughput solubility estimation protocol is highly desirable during lead optimization stage. The present work introduces a rapid method for assessment of thermodynamic equilibrium solubility of compounds in aqueous media using 96-well microplate. The developed protocol is straightforward to set up and takes advantage of the sensitivity of UV spectroscopy. The compound, in stock solution in methanol, is introduced in microgram quantities into microplate wells followed by drying at an ambient temperature. Microplates were shaken upon addition of test media and the supernatant was analyzed by UV method. A plot of absorbance versus concentration of a sample provides saturation point, which is thermodynamic equilibrium solubility of a sample. The established protocol was validated using a large panel of commercially available drugs and with conventional miniaturized shake flask method (r(2)>0.84). Additionally, the statistically significant QSPR models were established using experimental solubility values of 52 compounds.

  2. A Microfabricated 96-Well 3D Assay Enabling High-Throughput Quantification of Cellular Invasion Capabilities

    PubMed Central

    Hao, Rui; Wei, Yuanchen; Li, Chaobo; Chen, Feng; Chen, Deyong; Zhao, Xiaoting; Luan, Shaoliang; Fan, Beiyuan; Guo, Wei; Wang, Junbo; Chen, Jian

    2017-01-01

    This paper presents a 96-well microfabricated assay to study three-dimensional (3D) invasion of tumor cells. A 3D cluster of tumor cells was first generated within each well by seeding cells onto a micro-patterned surface consisting of a central fibronectin-coated area that promotes cellular attachment, surrounded by a poly ethylene glycol (PEG) coated area that is resistant to cellular attachment. Following the formation of the 3D cell clusters, a 3D collagen extracellular matrix was formed in each well by thermal-triggered gelation. Invasion of the tumor cells into the extracellular matrix was subsequently initiated and monitored. Two modes of cellular infiltration were observed: A549 cells invaded into the extracellular matrix following the surfaces previously coated with PEG molecules in a pseudo-2D manner, while H1299 cells invaded into the extracellular matrix in a truly 3D manner including multiple directions. Based on the processing of 2D microscopic images, a key parameter, namely, equivalent invasion distance (the area of invaded cells divided by the circumference of the initial cell cluster) was obtained to quantify migration capabilities of these two cell types. These results validate the feasibility of the proposed platform, which may function as a high-throughput 3D cellular invasion assay. PMID:28240272

  3. Urine Sample Preparation in 96-Well Filter Plates for Quantitative Clinical Proteomics

    PubMed Central

    2015-01-01

    Urine is an important, noninvasively collected body fluid source for the diagnosis and prognosis of human diseases. Liquid chromatography mass spectrometry (LC-MS) based shotgun proteomics has evolved as a sensitive and informative technique to discover candidate disease biomarkers from urine specimens. Filter-aided sample preparation (FASP) generates peptide samples from protein mixtures of cell lysate or body fluid origin. Here, we describe a FASP method adapted to 96-well filter plates, named 96FASP. Soluble urine concentrates containing ∼10 μg of total protein were processed by 96FASP and LC-MS resulting in 700–900 protein identifications at a 1% false discovery rate (FDR). The experimental repeatability, as assessed by label-free quantification and Pearson correlation analysis for shared proteins among replicates, was high (R ≥ 0.97). Application to urinary pellet lysates which is of particular interest in the context of urinary tract infection analysis was also demonstrated. On average, 1700 proteins (±398) were identified in five experiments. In a pilot study using 96FASP for analysis of eight soluble urine samples, we demonstrated that protein profiles of technical replicates invariably clustered; the protein profiles for distinct urine donors were very different from each other. Robust, highly parallel methods to generate peptide mixtures from urine and other body fluids are critical to increase cost-effectiveness in clinical proteomics projects. This 96FASP method has potential to become a gold standard for high-throughput quantitative clinical proteomics. PMID:24797144

  4. Development of a rapid, 96-well alkaline based differential DNA extraction method for sexual assault evidence.

    PubMed

    Hudlow, William R; Buoncristiani, Martin R

    2012-01-01

    We present a rapid alkaline lysis procedure for the extraction of DNA from sexual assault evidence that generates purified sperm fraction extracts that yield STR typing results similar to those obtained from the traditional organic/dithiothreitol differential extraction. Specifically, a sodium hydroxide based differential extraction method has been developed in a single-tube format and further optimized in a 96-well format. The method yields purified extracts from a small sample set (≈ 2-6 swabs) in approximately 2h and from a larger sample set (up to 96 swabs) in approximately 4h. While conventional differential extraction methods require vigorous sample manipulation to remove the spermatozoa from the substrate, the method described here exploits the propensity of sperm to adhere to a substrate and does not require any manipulation of the substrate after it is sampled. For swabs, sample handling is minimized by employing a process where the tip of the swab, including the shaft, is transferred to the appropriate vessel eliminating the need for potentially hazardous scalpels to separate the swab material from the shaft. The absence of multiple handling steps allows the process to be semi-automated, however the procedure as described here does not require use of a robotic system. This method may provide forensic laboratories a cost-effective tool for the eradication of backlogs of sexual assault evidence, and more timely service to their client agencies. In addition, we have demonstrated that a modification of the procedure can be used to retrieve residual sperm-cell DNA from previously extracted swabs.

  5. UV Induced Degradation of Polycarbonate-Based Lens Materials and Implications for the Heath Care Field

    NASA Astrophysics Data System (ADS)

    Harkay, J. Russell; Henry, Jerry

    2007-04-01

    Experimental undergraduate research at Keene State College has utilized facilities in physics and chemistry and at Polyonics, a local firm to study the effects of mono- and polychromatic UV radiation from various sources, including a Deuterium lamp, a solarization unit, a monochromator, and natural sunlight to study the photodegradation of polycarbonate-based lens materials used to produce eyewear using spectrophotometry and FTIR analysis. Ophthalmologic literature indicates a correlation between exposure to the UVB band of sunlight and the onset of cataract formation and macular degeneration. It is well known that polycarbonate plastic ``yellows'' when exposed to intense sunlight and, particularly, UV light either via photo-Fries rearrangement or by a photo oxidative process, forming polyconjugated systems and is a concern primarily for cosmetic reasons. Our data indicates that the ``yellowing'' is an indication of a more sinister problem in the case of eyeglasses in that spectrophotometric comparison shows it is accompanied by an increase in transmissivity in the UVB band where the wearer expects and needs protection. FTIR results indicate a degradation of molecular stabilizers and the appearance of free radicals that indicate a breakdown of the resin's chemical structure. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NES07.B1.4

  6. UV-curable low surface energy fluorinated polycarbonate-based polyurethane dispersion.

    PubMed

    Hwang, Hyeon-Deuk; Kim, Hyun-Joong

    2011-10-15

    UV-curable low surface energy fluorinated polycarbonate-based polyurethane dispersions were synthesized by incorporating a hydroxy-terminated perfluoropolyether (PFPE) into the soft segment of polyurethane. The effects of the PFPE content on the UV-curing behavior, physical, surface, thermal properties and refractive index were investigated. The UV-curing behavior was analyzed by photo-differential scanning calorimetry. The surface free energy of the UV-cured film, which is related to the water or oil repellency, was calculated from contact angle measurements using the Lewis acid-base three liquids method. The surface free energy decreased significantly with increasing fluorine concentration because PFPE in the soft segment was tailored to the surface and produced a UV-cured film with a hydrophobic fluorine enriched surface, as confirmed by X-ray photoelectron spectroscopy. With increasing the fluorine content, the refractive indices of UV-cured films decreased. However, the UV-curing rate and final conversion was decreased with increasing contents of PFPE, which resulted in the decrease of the glass transition temperature (T(g)), crosslink density, tensile strength and surface hardness. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Ion transport in polycarbonate based solid polymer electrolytes: experimental and computational investigations.

    PubMed

    Sun, Bing; Mindemark, Jonas; Morozov, Evgeny V; Costa, Luciano T; Bergman, Martin; Johansson, Patrik; Fang, Yuan; Furó, István; Brandell, Daniel

    2016-04-14

    Among the alternative host materials for solid polymer electrolytes (SPEs), polycarbonates have recently shown promising functionality in all-solid-state lithium batteries from ambient to elevated temperatures. While the computational and experimental investigations of ion conduction in conventional polyethers have been extensive, the ion transport in polycarbonates has been much less studied. The present work investigates the ionic transport behavior in SPEs based on poly(trimethylene carbonate) (PTMC) and its co-polymer with ε-caprolactone (CL) via both experimental and computational approaches. FTIR spectra indicated a preferential local coordination between Li(+) and ester carbonyl oxygen atoms in the P(TMC20CL80) co-polymer SPE. Diffusion NMR revealed that the co-polymer SPE also displays higher ion mobilities than PTMC. For both systems, locally oriented polymer domains, a few hundred nanometers in size and with limited connections between them, were inferred from the NMR spin relaxation and diffusion data. Potentiostatic polarization experiments revealed notably higher cationic transference numbers in the polycarbonate based SPEs as compared to conventional polyether based SPEs. In addition, MD simulations provided atomic-scale insight into the structure-dynamics properties, including confirmation of a preferential Li(+)-carbonyl oxygen atom coordination, with a preference in coordination to the ester based monomers. A coupling of the Li-ion dynamics to the polymer chain dynamics was indicated by both simulations and experiments.

  8. UV Induced Degradation of Polycarbonate-Based Lens Materials and Implications for the Heath Care Field

    NASA Astrophysics Data System (ADS)

    Harkay, J. R.; Henry, Jerry

    2006-10-01

    Experimental research is being carried out at Keene State at the undergraduate level that utilizes facilities in both physics and chemistry to study the effects of mono- and polychromatic UV radiation from various sources, including a Deuterium lamp, a solarization unit (at Polyonics, a local industry), and the Sun, to study the photodegradation of polycarbonate-based lens materials used to produce eyewear. Literature in the field of optometry and ophthalmology indicates a correlation between exposure to the UVB band of natural sunlight and the onset of cataract formation, as well as other eye disorders. The public is usually advised that plastic eyeglass lenses will provide protection from this damaging radiation. It is well known that polycarbonate plastic ``yellows'' when exposed to intense sunlight and, particularly, UV light^1,2, either via photo-Fries rearrangement or by a photooxidative process, forming polyconjugated systems and is an industrial concern primarily for cosmetic reasons. We have preliminary data, however, that indicates that the yellowing'' is an indication of a more sinister problem in the case of eyeglasses in that it is accompanied by an increase in transmissivity in the UVB band where the wearer expects and needs protection. Our group includes a local optometrist who will share results with peers in his field. [1] A. Andrady, J. Polymer Sci., 42, 1991 [2] E. P. Gorelov, Inst. Khim. Fiz., Russian Federation

  9. Human tear analysis with miniaturized multiplex cytokine assay on "wall-less" 96-well plate.

    PubMed

    Le Guezennec, Xavier; Quah, Joanne; Tong, Louis; Kim, Namyong

    2015-01-01

    Tears are a particularly limited body fluid and commonly used in the diagnosis of patients who have ocular diseases. A popular method for analysis of ocular inflammation in tears uses Luminex® bead multiplex technology to generate valuable multiple cytokine profile outputs with 25-50 µl tear sample volume. We propose a method for measuring tear cytokines with 5 μl tear sample volume and 80% reduced Luminex reagents compared to previous protocols. Using human tears pooled from 1,000 participants, the DA-Bead-based method running at 5-20 µl volume, using manual pipetting, in conjunction with a magnetic Luminex cytokine (four-plex) panel assay in a 96-well format was performed and validated for tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-1β, and IL-6. Upon use of the DA-Bead method at the 5 μl volume with cytokine standards, the concentrations of each of the four cytokines were found to be linear over a range of 3.5-4 log pg/ml with an intra-assay coefficient of variation (CV) ≤5%, inter-assay %CV ≤10%, and accuracy within the 70-130% range. Upon use of a 5 µl healthy pooled tear sample, cytokine concentrations were detected with a precision intra-assay %CV ˂ 20% for IL-6, IFN-γ, or TNF-α or 30.37% with IL-1β. The inter-assay %CV with tears was ≤20.84% for all cytokines. Tear volumes run at 5 μl on DA-Bead produced a similar cytokine expression profile at a 1-month interval and were highly correlated with the larger 10 μl-based tear sample volume cytokine profile with R(2) = 0.98. DA-Bead assay is highly sensitive and reproducible and has a performance profile that is potentially suitable for use in standard clinical scenarios. Considering the use of as little as 5 µl of assay beads and 5 µl sample, this is also likely to reduce the assay cost significantly and ease diagnosis of patients with ocular diseases.

  10. Human tear analysis with miniaturized multiplex cytokine assay on “wall-less” 96-well plate

    PubMed Central

    Quah, Joanne; Tong, Louis; Kim, Namyong

    2015-01-01

    Purpose Tears are a particularly limited body fluid and commonly used in the diagnosis of patients who have ocular diseases. A popular method for analysis of ocular inflammation in tears uses Luminex® bead multiplex technology to generate valuable multiple cytokine profile outputs with 25–50 µl tear sample volume. We propose a method for measuring tear cytokines with 5 μl tear sample volume and 80% reduced Luminex reagents compared to previous protocols. Methods Using human tears pooled from 1,000 participants, the DA-Bead-based method running at 5–20 µl volume, using manual pipetting, in conjunction with a magnetic Luminex cytokine (four-plex) panel assay in a 96-well format was performed and validated for tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-1β, and IL-6. Results Upon use of the DA-Bead method at the 5 μl volume with cytokine standards, the concentrations of each of the four cytokines were found to be linear over a range of 3.5–4 log pg/ml with an intra-assay coefficient of variation (CV) ≤5%, inter-assay %CV ≤10%, and accuracy within the 70–130% range. Upon use of a 5 µl healthy pooled tear sample, cytokine concentrations were detected with a precision intra-assay %CV ˂ 20% for IL-6, IFN-γ, or TNF-α or 30.37% with IL-1β. The inter-assay %CV with tears was ≤20.84% for all cytokines. Tear volumes run at 5 μl on DA-Bead produced a similar cytokine expression profile at a 1-month interval and were highly correlated with the larger 10 μl–based tear sample volume cytokine profile with R2 = 0.98. Conclusions DA-Bead assay is highly sensitive and reproducible and has a performance profile that is potentially suitable for use in standard clinical scenarios. Considering the use of as little as 5 µl of assay beads and 5 µl sample, this is also likely to reduce the assay cost significantly and ease diagnosis of patients with ocular diseases. PMID:26539027

  11. MStern Blotting–High Throughput Polyvinylidene Fluoride (PVDF) Membrane-Based Proteomic Sample Preparation for 96-Well Plates*

    PubMed Central

    Berger, Sebastian T.; Ahmed, Saima; Muntel, Jan; Cuevas Polo, Nerea; Bachur, Richard; Kentsis, Alex; Steen, Judith; Steen, Hanno

    2015-01-01

    We describe a 96-well plate compatible membrane-based proteomic sample processing method, which enables the complete processing of 96 samples (or multiples thereof) within a single workday. This method uses a large-pore hydrophobic PVDF membrane that efficiently adsorbs proteins, resulting in fast liquid transfer through the membrane and significantly reduced sample processing times. Low liquid transfer speeds have prevented the useful 96-well plate implementation of FASP as a widely used membrane-based proteomic sample processing method. We validated our approach on whole-cell lysate and urine and cerebrospinal fluid as clinically relevant body fluids. Without compromising peptide and protein identification, our method uses a vacuum manifold and circumvents the need for digest desalting, making our processing method compatible with standard liquid handling robots. In summary, our new method maintains the strengths of FASP and simultaneously overcomes one of the major limitations of FASP without compromising protein identification and quantification. PMID:26223766

  12. Fluorescence-based liver microsomal assay for screening of pharmaceutical reactive metabolites using a glutathione conjugated 96-well plate.

    PubMed

    Ma, Xiang; Chan, Eric Chun Yong

    2010-01-01

    The purpose of our paper is to develop and validate a fluorescence-based mouse liver microsomal (MLM) assay in screening pharmaceutical reactive metabolites (RMs) using a glutathione (GSH)-conjugated 96-well plate. Poly(2-hydroxyethylmethacrylate) (pHEMA) polymeric membrane was coated on 96-well plates to provide a functional support for GSH conjugation. Oxidized GSH (GSSG) was conjugated on a cyanogen bromide (CNBr)-activated pHEMA surface. The conjugated GSH was regenerated after the reduction of GSSG using d,l-dithiothreitol (DTT). X-ray photoelectron spectroscopy, Ellman's, and fluorescence assays were applied to validate the chemistry and optimize the processes of GSH conjugation. The performance of the 96-well assay was further cross-validated using N-acetyl-p-benzo-quinone imine (NAPQI), a RM of acetaminophen (APAP), and the in vitro MLM assay of APAP. Finally, the developed method was applied to screen a batch of marketed drugs and chemicals on the formation of RMs. Our results indicated that optimum conditions were obtained for pHEMA loading, CNBr activation of pHEMA, and GSSG coupling and reduction. The detection limit of the assay for NAPQI was 500 nM with good specificity. In vitro MLM assay of APAP demonstrated a positive trapping index (TI) of 19.3%. The subsequent RM screening of a series of marketed drugs and chemical compounds resulted in a range of TI values (1.0-25.7%) that corroborated with their capacity in generating RMs. The differences of TI values are statistically significant between the compounds which are known to produce RMs and those that do not generate reactive intermediates. In conclusion, we successfully developed a fluorescence-based GSH-conjugated 96-well plate platform for the screening of RMs using MLM.

  13. Establishment and validation of a method for multi-dose irradiation of cells in 96-well microplates

    SciTech Connect

    Abatzoglou, Ioannis; Zois, Christos E.; Pouliliou, Stamatia

    2013-02-15

    Highlights: ► We established a method for multi-dose irradiation of cell cultures within a 96-well plate. ► Equations to adjust to preferable dose levels are produced and provided. ► Up to eight different dose levels can be tested in one microplate. ► This method results in fast and reliable estimation of radiation dose–response curves. -- Abstract: Microplates are useful tools in chemistry, biotechnology and molecular biology. In radiobiology research, these can be also applied to assess the effect of a certain radiation dose delivered to the whole microplate, to test radio-sensitivity, radio-sensitization or radio-protection. Whether different radiation doses can be accurately applied to a single 96-well plate to further facilitate and accelerated research by one hand and spare funds on the other, is a question dealt in the current paper. Following repeated ion-chamber, TLD and radiotherapy planning dosimetry we established a method for multi-dose irradiation of cell cultures within a 96-well plate, which allows an accurate delivery of desired doses in sequential columns of the microplate. Up to eight different dose levels can be tested in one microplate. This method results in fast and reliable estimation of radiation dose–response curves.

  14. Nitrotyrosine Density of Rabbit Urinary Bladder Muscle and Mucosa Measured via Western Blotting and 96-Well Plate Analysis.

    PubMed

    Fitzpatrick, Brittany; Schuler, Catherine; Leggett, Robert E; Levin, Robert M

    2012-01-01

    Purpose. Nitrotyrosine was quantitated in rabbit bladder muscle and mucosa using two analytical systems: Western blotting analyses and a 96-well plate quantitative analysis kit. Materials and Methods. Rabbit bladder muscle and mucosa were obtained from control rabbits. For the Western analysis, the samples were loaded into a SDS page gel and then transferred to a PVDF membrane. The optical density was measured using a Kodak Scanner. Using the 96-well plate, the samples and standards were loaded, incubated with primary and secondary antibody, washed and vacuumed with 10x wash buffer three times between each incubation period. Stop buffer was added to the plate and the results were quantified via the plate reader. Results. For both muscle and mucosa tissue, the optical density readings were linear with tissue concentration; the concentration of nitrotyrosine in the mucosa was significantly higher than in the muscle. However, whereas the Western blot analysis is based on relative optical densities, the 96-well plate kit provides a truly quantitative analysis. Discussion. Mucosa tissue displayed a higher density of nitrotyrosine than did detrusor muscle tissue. This may well be due to the significantly higher metabolic activity of the mucosa compared to the muscle.

  15. Toward Microbioreactor Arrays: A Slow-Responding Oxygen Sensor for Monitoring of Microbial Cultures in Standard 96-Well Plates.

    PubMed

    Glauche, Florian; John, Gernot T; Arain, Sarina; Knepper, Andreas; Neubauer, Antje; Goelling, Detlef; Lang, Christine; Violet, Norman; King, Rudibert; Neubauer, Peter

    2015-08-01

    In this study, a slow-responding chemo-optical sensor for dissolved oxygen (DO) integrated into a 96-well plate was developed. The slow response time ensures that the measured oxygen value does not change much during plate transport to the microplate reader. The sensor therefore permits at-line DO measurement of microbial cultures. Moreover, it eliminates the necessity of individual optical measurement systems for each culture plate, as many plates can be measured successively. Combined with the 96-well format, this increases the experimental throughput enormously. The novel sensor plate (Slow OxoPlate) consists of fluorophores suspended in a polymer matrix that were placed into u-bottom 96-well plates. Response time was measured using sodium sulfite, and a t90 value of 9.7 min was recorded. For application, DO values were then measured in Escherichia coli and Saccharomyces cerevisiae cultures grown under fed-batch-like conditions. Depending on the DO sensor's response time, different information on the oxygenation state of the culture plate was obtained: a fast sensor variant detects disturbance through sampling, whereas the slow sensor indicates oxygen limitation during incubation. A combination of the commercially available OxoPlate and the Slow OxoPlate enables operators of screening facilities to validate their cultivation procedures with regard to oxygen availability. © 2015 Society for Laboratory Automation and Screening.

  16. A 96-well screen filter plate for high-throughput biological sample preparation and LC-MS/MS analysis.

    PubMed

    Peng, Sean X; Cousineau, Martin; Juzwin, Stephen J; Ritchie, David M

    2006-01-01

    A novel 96-well screen filter plate (patent pending) has been invented to eliminate a time-consuming and labor-intensive step in preparation of in vivo study samples--to remove blood or plasma clots. These clots plug the pipet tips during a manual or automated sample-transfer step causing inaccurate pipetting or total pipetting failure. Traditionally, these blood and plasma clots are removed by picking them out manually one by one from each sample tube before any sample transfer can be made. This has significantly slowed the sample preparation process and has become a bottleneck for automated high-throughput sample preparation using robotic liquid handlers. Our novel screen filter plate was developed to solve this problem. The 96-well screen filter plate consists of 96 stainless steel wire-mesh screen tubes connected to the 96 openings of a top plate so that the screen filter plate can be readily inserted into a 96-well sample storage plate. Upon insertion, the blood and plasma clots are excluded from entering the screen tube while clear sample solutions flow freely into it. In this way, sample transfer can be easily completed by either manual or automated pipetting methods. In this report, three structurally diverse compounds were selected to evaluate and validate the use of the screen filter plate. The plasma samples of these compounds were transferred and processed in the presence and absence of the screen filter plate and then analyzed by LC-MS/MS methods. Our results showed a good agreement between the samples prepared with and without the screen filter plate, demonstrating the utility and efficiency of this novel device for preparation of blood and plasma samples. The device is simple, easy to use, and reusable. It can be employed for sample preparation of other biological fluids that contain floating particulates or aggregates.

  17. Ice-Cap: a method for growing Arabidopsis and tomato plants in 96-well plates for high-throughput genotyping.

    PubMed

    Su, Shih-Heng; Clark, Katie A; Gibbs, Nicole M; Bush, Susan M; Krysan, Patrick J

    2011-11-09

    It is becoming common for plant scientists to develop projects that require the genotyping of large numbers of plants. The first step in any genotyping project is to collect a tissue sample from each individual plant. The traditional approach to this task is to sample plants one-at-a-time. If one wishes to genotype hundreds or thousands of individuals, however, using this strategy results in a significant bottleneck in the genotyping pipeline. The Ice-Cap method that we describe here provides a high-throughput solution to this challenge by allowing one scientist to collect tissue from several thousand seedlings in a single day (1,2). This level of throughput is made possible by the fact that tissue is harvested from plants 96-at-a-time, rather than one-at-a-time. The Ice-Cap method provides an integrated platform for performing seedling growth, tissue harvest, and DNA extraction. The basis for Ice-Cap is the growth of seedlings in a stacked pair of 96-well plates. The wells of the upper plate contain plugs of agar growth media on which individual seedlings germinate. The roots grow down through the agar media, exit the upper plate through a hole, and pass into a lower plate containing water. To harvest tissue for DNA extraction, the water in the lower plate containing root tissue is rapidly frozen while the seedlings in the upper plate remain at room temperature. The upper plate is then peeled away from the lower plate, yielding one plate with 96 root tissue samples frozen in ice and one plate with 96 viable seedlings. The technique is named "Ice-Cap" because it uses ice to capture the root tissue. The 96-well plate containing the seedlings can then wrapped in foil and transferred to low temperature. This process suspends further growth of the seedlings, but does not affect their viability. Once genotype analysis has been completed, seedlings with the desired genotype can be transferred from the 96-well plate to soil for further propagation. We have demonstrated

  18. Streptomycetes in micro-cultures: growth, production of secondary metabolites, and storage and retrieval in the 96-well format.

    PubMed

    Minas, W; Bailey, J E; Duetz, W

    2000-12-01

    Mycelium-forming Streptomyces strains were grown in one milliliter liquid micro-cultures in square deep-well microtiter plates. Growth was evaluated with respect to biomass formation and production of secondary metabolites which were found to be very similar in the micro-cultures, bioreactor, and shake flask cultivations, respectively. Despite repetitive sampling and extensive growth on the walls of the wells, no cross contamination occurred. Furthermore, we successfully employed cold storage at -20 degrees C of spore suspensions (in the 96-well format), directly prepared from cultures grown on agar in the microtitre plate. Cultures were retrieved by replicating aliquots from the frozen spore suspensions.

  19. Protocol: high throughput silica-based purification of RNA from Arabidopsis seedlings in a 96-well format

    PubMed Central

    2011-01-01

    The increasing popularity of systems-based approaches to plant research has resulted in a demand for high throughput (HTP) methods to be developed. RNA extraction from multiple samples in an experiment is a significant bottleneck in performing systems-level genomic studies. Therefore we have established a high throughput method of RNA extraction from Arabidopsis thaliana to facilitate gene expression studies in this widely used plant model. We present optimised manual and automated protocols for the extraction of total RNA from 9-day-old Arabidopsis seedlings in a 96 well plate format using silica membrane-based methodology. Consistent and reproducible yields of high quality RNA are isolated averaging 8.9 μg total RNA per sample (~20 mg plant tissue). The purified RNA is suitable for subsequent qPCR analysis of the expression of over 500 genes in triplicate from each sample. Using the automated procedure, 192 samples (2 × 96 well plates) can easily be fully processed (samples homogenised, RNA purified and quantified) in less than half a day. Additionally we demonstrate that plant samples can be stored in RNAlater at -20°C (but not 4°C) for 10 months prior to extraction with no significant effect on RNA yield or quality. Additionally, disrupted samples can be stored in the lysis buffer at -20°C for at least 6 months prior to completion of the extraction procedure providing a flexible sampling and storage scheme to facilitate complex time series experiments. PMID:22136293

  20. Mass Spectrometric N-Glycan Analysis of Haptoglobin from Patient Serum Samples Using a 96-Well Plate Format.

    PubMed

    Zhu, Jianhui; Wu, Jing; Yin, Haidi; Marrero, Jorge; Lubman, David M

    2015-11-06

    Alterations in glycosylation of serum glycoproteins can provide unique and highly specific fingerprints of malignancy. Our previous mass spectrometric study revealed that the bifucosylation level of serum haptoglobin was distinctly increased in hepatocellular carcinoma (HCC) patients versus liver cirrhosis of all three major etiologies. We have thus developed a method for the analysis of large numbers of serum samples based on a 96-well plate platform for the evaluation of fucosylation changes of serum haptoglobin between HCC versus cirrhosis. Haptoglobin was isolated from the serum of individual patient samples based on an HPLC column immobilized with antihaptoglobin antibody via hydrazide immobilization chemistry. Only 10 μL of serum was required for glycan extraction and processing for MALDI-QIT mass spectrometry analysis using the 96-well plate format. The bifucosylation degrees of haptoglobin in individuals were calculated using a quantitative glycomics method. The MS data confirmed that the bifucosylated tetra-anntenary glycan was upregulated in HCC samples of all etiologies. This study provides a parallel method for processing glycan content for haptoglobin and evaluating detailed changes in glycan structures for a potentially large cohort of clinical serum samples.

  1. Performance evaluation of 3D polystyrene 96-well plates with human neural stem cells in a calcium assay.

    PubMed

    Lai, Yinzhi; Kisaalita, William S

    2012-08-01

    In this study, we have generated a high-throughput screening (HTS)-compatible 3D cell culture platform by chemically "welding" polystyrene scaffolds into standard 2D polystyrene 96-well plates. The variability of scaffolds was minimized by introducing automation into the fabrication process. The fabricated 3D cell culture plates were compared with several commercially available 3D cell culture platforms with light and scanning electron microscopy. Voltage-gated calcium channel functionality was used to access the Z' factors of all plates, including a 2D standard plate control. It was found that with the No-Wash Fluo-4 calcium assay and neural progenitor cells, all plates display acceptable Z' factors for use in HTS. The plates with "welded" polystyrene scaffolds have several advantages, such as being versatile and economical, and are ready to use off the shelf. These characteristics are especially desired in HTS preclinical drug discovery applications.

  2. Development and validation of a 96-well cellular assay for the discovery of ALDH1A1 inhibitors.

    PubMed

    Ming, Wenyu; Ma, Wenzhen; Chen, Lisa H; Volk, Catherine; Michael, Mervyn Dodson; Xu, Yanping; Zhang, Fang; Wang, Xiaojun

    2013-07-01

    Retinoic acid, the active metabolite of vitamin A, plays important roles in various physiological and pathological processes. The two-step production of retinoic acid from vitamin A (retinol) is catalyzed by alcohol dehydrogenases and aldehyde dehydrogenases, which are potential therapeutic targets for numerous diseases, such as obesity, diabetes, and cancer. Currently, the lack of a suitable high-throughput cellular assay hinders efforts to identify therapeutic small molecular inhibitors of aldehyde dehydrogenase, such as ALDH1A1. In this report, we utilized high-content imaging technology and a commercially available cell permeable ALDH substrate to develop a 96-well cellular ALDH1A1 assay. This assay has a robust and sensitive readout and is amenable to automation. With this cellular assay, we identified potent selective ALDH1A1 inhibitors to explore the role of retinoic acid production in various preclinical disease models.

  3. Rapid Determination of Ionization Constants (pK a) by UV Spectroscopy Using 96-Well Microtiter Plates.

    PubMed

    Martínez, Carlos H Ríos; Dardonville, Christophe

    2013-01-10

    We have developed a methodology that enables for the rapid measurement of ionization constants (pK a) of series of compounds by UV spectrophotometry. This protocol, which is straightforward to set up, takes advantage of the sensitivity of UV spectroscopy and the throughput enabled by the 96-well microplate (as opposed to the use of 1 cm quartz cuvette). The compounds, in stock solutions in DMSO, are dissolved in several aqueous buffer solutions directly in the microtiter plate, allowing the simultaneous determination of the UV spectra as a function of pH. Further treatment of the data provides the pK a values in a medium-throughput manner. The pK a values of 11 new antitrypanosomal dibasic compounds were determined using this methodology.

  4. Scalable 96-well Plate Based iPSC Culture and Production Using a Robotic Liquid Handling System

    PubMed Central

    Conway, Michael K.; Gerger, Michael J.; Balay, Erin E.; O'Connell, Rachel; Hanson, Seth; Daily, Neil J.; Wakatsuki, Tetsuro

    2015-01-01

    Continued advancement in pluripotent stem cell culture is closing the gap between bench and bedside for using these cells in regenerative medicine, drug discovery and safety testing. In order to produce stem cell derived biopharmaceutics and cells for tissue engineering and transplantation, a cost-effective cell-manufacturing technology is essential. Maintenance of pluripotency and stable performance of cells in downstream applications (e.g., cell differentiation) over time is paramount to large scale cell production. Yet that can be difficult to achieve especially if cells are cultured manually where the operator can introduce significant variability as well as be prohibitively expensive to scale-up. To enable high-throughput, large-scale stem cell production and remove operator influence novel stem cell culture protocols using a bench-top multi-channel liquid handling robot were developed that require minimal technician involvement or experience. With these protocols human induced pluripotent stem cells (iPSCs) were cultured in feeder-free conditions directly from a frozen stock and maintained in 96-well plates. Depending on cell line and desired scale-up rate, the operator can easily determine when to passage based on a series of images showing the optimal colony densities for splitting. Then the necessary reagents are prepared to perform a colony split to new plates without a centrifugation step. After 20 passages (~3 months), two iPSC lines maintained stable karyotypes, expressed stem cell markers, and differentiated into cardiomyocytes with high efficiency. The system can perform subsequent high-throughput screening of new differentiation protocols or genetic manipulation designed for 96-well plates. This technology will reduce the labor and technical burden to produce large numbers of identical stem cells for a myriad of applications. PMID:26068617

  5. Scalable 96-well Plate Based iPSC Culture and Production Using a Robotic Liquid Handling System.

    PubMed

    Conway, Michael K; Gerger, Michael J; Balay, Erin E; O'Connell, Rachel; Hanson, Seth; Daily, Neil J; Wakatsuki, Tetsuro

    2015-05-14

    Continued advancement in pluripotent stem cell culture is closing the gap between bench and bedside for using these cells in regenerative medicine, drug discovery and safety testing. In order to produce stem cell derived biopharmaceutics and cells for tissue engineering and transplantation, a cost-effective cell-manufacturing technology is essential. Maintenance of pluripotency and stable performance of cells in downstream applications (e.g., cell differentiation) over time is paramount to large scale cell production. Yet that can be difficult to achieve especially if cells are cultured manually where the operator can introduce significant variability as well as be prohibitively expensive to scale-up. To enable high-throughput, large-scale stem cell production and remove operator influence novel stem cell culture protocols using a bench-top multi-channel liquid handling robot were developed that require minimal technician involvement or experience. With these protocols human induced pluripotent stem cells (iPSCs) were cultured in feeder-free conditions directly from a frozen stock and maintained in 96-well plates. Depending on cell line and desired scale-up rate, the operator can easily determine when to passage based on a series of images showing the optimal colony densities for splitting. Then the necessary reagents are prepared to perform a colony split to new plates without a centrifugation step. After 20 passages (~3 months), two iPSC lines maintained stable karyotypes, expressed stem cell markers, and differentiated into cardiomyocytes with high efficiency. The system can perform subsequent high-throughput screening of new differentiation protocols or genetic manipulation designed for 96-well plates. This technology will reduce the labor and technical burden to produce large numbers of identical stem cells for a myriad of applications.

  6. Development of a novel bead-based 96-well filtration plate competitive immunoassay for the detection of Gentamycin.

    PubMed

    Ho, Tien Yu Jessica; Chan, Chia-Chung; Chan, KinGho; Wang, Yu Chieh; Lin, Jing-Tang; Chang, Cheng-Ming; Chen, Chien-Sheng

    2013-11-15

    We developed a sensitive, simple, inexpensive and rapid bead-based immunoassay platform, composed of liposomal nanovesicle amplification system, Gentamycin sulfate beads and 96-well filtration plates. In the beginning of the assay, Gentamycin sulfate beads, Gentamycin sulfate and Gentamycin specific antibody were incubated in a bottom-sealed 96-well filtration plate. After incubation, washing was done by running washing buffer through the unsealed filtration plate with only gravity and the antibody-Gentamycin bead complexes were retained in the plate. Fluorescent dye-loaded protein G-liposomal nanovesicles were then added to specifically bind to antibodies on the retained beads. After washing unbound nanovesicles, millions of fluorescent dye molecules were released by adding a detergent solution to lyse liposomal nanovesicles. The limit of detection (LOD) of this novel detection platform in TBS and in skim milk were 52.65 ng/mL and 14.16 ng/mL, which are both sufficient for detecting the 200 ng/mL Codex maximum residual level (MRL). The dynamic ranges were both from each of their LODs to 100 μg/mL. The 50% inhibition concentrations (IC50) in TBS and skim milk were 199.66 ng/mL and 360.81 ng/mL, respectively. We also demonstrated the good specificity of this platform by comparing detection results between pure Gentamycin solution and a mixture solution of 6 different antibiotics including Gentamycin in skim milk. The entire assay with 60 samples was conducted within 2h. In sum, this novel biosensing platform not only fulfilled most benefits of magnetic bead-based assays, but also was inexpensive and convenient by replacing the magnetic separation with filtration plate separation.

  7. 96-Well Plate Colorimetric Assay for K(sub i) Determination of (plusmn)-2-Benzylsuccinic Acid, an Inhibitor of Carboxypeptidase A

    ERIC Educational Resources Information Center

    Wentland, Mark P.; Raza, Shaan; Yingtong Gao

    2004-01-01

    An appropriate assay to determine the inhibition potency of carboxypeptidase A (CPA) in 96-well format to illustrate how high throughput screening is used in modern drug discovery to identify bioactive molecules is developed. Efforts in developing a colorimetric 96-well plate assay for determination of the K(sub i) for inhibition of CPA by…

  8. 96-Well Plate Colorimetric Assay for K(sub i) Determination of (plusmn)-2-Benzylsuccinic Acid, an Inhibitor of Carboxypeptidase A

    ERIC Educational Resources Information Center

    Wentland, Mark P.; Raza, Shaan; Yingtong Gao

    2004-01-01

    An appropriate assay to determine the inhibition potency of carboxypeptidase A (CPA) in 96-well format to illustrate how high throughput screening is used in modern drug discovery to identify bioactive molecules is developed. Efforts in developing a colorimetric 96-well plate assay for determination of the K(sub i) for inhibition of CPA by…

  9. Facile preparation of a photoactivatable surface on a 96-well plate: a versatile and multiplex cell migration assay platform.

    PubMed

    Kamimura, Masao; Scheideler, Olivia; Shimizu, Yoshihisa; Yamamoto, Shota; Yamaguchi, Kazuo; Nakanishi, Jun

    2015-06-07

    Cell migration is an essential cellular activity in various physiological and pathological processes, such as wound healing and cancer metastasis. Therefore, in vitro cell migration assays are important not only for fundamental biological studies but also for evaluating potential drugs that control cell migration activity in medical applications. In this regard, robust control over cell migrating microenvironments is critical for reliable and quantitative analysis as cell migration is highly dependent upon the microenvironments. Here, we developed a facile method for making a commercial glass-bottom 96-well plate photoactivatable for cell adhesion, aiming to develop a versatile and multiplex cell migration assay platform. Cationic poly-d-lysine was adsorbed to the anionic glass surface via electrostatic interactions and, subsequently, functionalized with poly(ethylene glycol) (PEG) bearing a photocleavable reactive group. The initial PEGylated surface is non-cell-adhesive. However, upon near-ultraviolet (UV) irradiation, the photorelease of PEG switches the surface from non-biofouling to cell-adhesive. With this platform, we assayed cell migration in the following procedure: (1) create cell-attaching regions of precise geometries by controlled photoirradiation, (2) seed cells to allow them to attach selectively to the irradiated regions, (3) expose UV light to the remaining PEGylated regions to extend the cell-adhesive area, (4) analyse cell migration using microscopy. Surface modification of the glass surface was characterized by ζ-potential and contact angle measurements. The PEGylated surface showed cell-resistivity and became cell-adhesive upon releasing PEG by near-UV irradiation. The method was applied for parallelly evaluating the effect of model drugs on the migration of epithelial MDCK cells in the multiplexed platform. The dose-response relationship for cytochalasin D treatment on cell migration behavior was successfully evaluated with high

  10. A study of the fluorescence measurement using a 96-well microplate by a remodelled parallel luminescent measuring system.

    PubMed

    Kumae, T

    1999-01-01

    To develop an index to measure alveolar macrophage activity, the fluorescent technique for detection of calcium flux was paid special attention. In this study, a parallel luminescence measuring system was remodelled for fluorescence measurement using a 96-well microplate. The fluorescence indicators widely used to measure cytosolic free calcium ion concentration require excitation at ultraviolet (UV) wavelengths. Instruments to produce UV wavelengths are expensive compared to those used to produce visible wavelengths, and UV wavelengths are potentially injurious to cells. To avoid these problems, Fluo 3 (excitation wavelength in the visible range) was used as the fluorescent dye for detecting calcium ions. The parallel luminometer was remodelled successfully for fluorescent measurement as assessed by the results obtained from the measurements of a common fluorescent dye, fluorescein. Concentrations of free calcium ions were measured using Fluo 3 at 37 degrees C to consider the measurement of calcium flux in living cells. Although a linear relationship between concentrations of free calcium ions and fluorescence were observed, a diminution of fluorescence over time was also observed. To measure calcium flux in living cells, further instrumental and experimental improvements are thus needed. Copyright 1999 John Wiley & Sons, Ltd.

  11. High-Throughput Lipolysis in 96-Well Plates for Rapid Screening of Lipid-Based Drug Delivery Systems.

    PubMed

    Mosgaard, Mette D; Sassene, Philip J; Mu, Huiling; Rades, Thomas; Müllertz, Anette

    2017-04-01

    The high-throughput in vitro intestinal lipolysis model (HTP) applicable for rapid and low-scale screening of lipid-based drug delivery systems (LbDDSs) was optimized and adjusted as to be conducted in 96-well plates (HTP-96). Three different LbDDSs (I-III) loaded with danazol or cinnarizine were used as model systems. The distributions of cinnarizine and danazol in the aqueous and precipitated digestion phases generated during lipolysis in HTP-96 were compared with previously published data obtained from HTP. The final HTP-96 setup resulted in the same rank order as the original HTP model with regard to solubilization in the aqueous phase during digestion: LbDDS III > LbDDS II > LbDDS I for danazol and LbDDS III ≈ LbDDS II ≈ LbDDS I for cinnarizine. HTP-96 is a useful model for fast performance assessment of LbDDS in a small scale. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. CometChip: a high-throughput 96-well platform for measuring DNA damage in microarrayed human cells.

    PubMed

    Ge, Jing; Prasongtanakij, Somsak; Wood, David K; Weingeist, David M; Fessler, Jessica; Navasummrit, Panida; Ruchirawat, Mathuros; Engelward, Bevin P

    2014-10-18

    DNA damaging agents can promote aging, disease and cancer and they are ubiquitous in the environment and produced within human cells as normal cellular metabolites. Ironically, at high doses DNA damaging agents are also used to treat cancer. The ability to quantify DNA damage responses is thus critical in the public health, pharmaceutical and clinical domains. Here, we describe a novel platform that exploits microfabrication techniques to pattern cells in a fixed microarray. The 'CometChip' is based upon the well-established single cell gel electrophoresis assay (a.k.a. the comet assay), which estimates the level of DNA damage by evaluating the extent of DNA migration through a matrix in an electrical field. The type of damage measured by this assay includes abasic sites, crosslinks, and strand breaks. Instead of being randomly dispersed in agarose in the traditional assay, cells are captured into an agarose microwell array by gravity. The platform also expands from the size of a standard microscope slide to a 96-well format, enabling parallel processing. Here we describe the protocols of using the chip to evaluate DNA damage caused by known genotoxic agents and the cellular repair response followed after exposure. Through the integration of biological and engineering principles, this method potentiates robust and sensitive measurements of DNA damage in human cells and provides the necessary throughput for genotoxicity testing, drug development, epidemiological studies and clinical assays.

  13. The BUME method: a novel automated chloroform-free 96-well total lipid extraction method for blood plasma[S

    PubMed Central

    Löfgren, Lars; Ståhlman, Marcus; Forsberg, Gun-Britt; Saarinen, Sinikka; Nilsson, Ralf; Hansson, Göran I.

    2012-01-01

    Lipid extraction from biological samples is a critical and often tedious preanalytical step in lipid research. Primarily on the basis of automation criteria, we have developed the BUME method, a novel chloroform-free total lipid extraction method for blood plasma compatible with standard 96-well robots. In only 60 min, 96 samples can be automatically extracted with lipid profiles of commonly analyzed lipid classes almost identically and with absolute recoveries similar or better to what is obtained using the chloroform-based reference method. Lipid recoveries were linear from 10–100 µl plasma for all investigated lipids using the developed extraction protocol. The BUME protocol includes an initial one-phase extraction of plasma into 300 µl butanol:methanol (BUME) mixture (3:1) followed by two-phase extraction into 300 µl heptane:ethyl acetate (3:1) using 300 µl 1% acetic acid as buffer. The lipids investigated included the most abundant plasma lipid classes (e.g., cholesterol ester, free cholesterol, triacylglycerol, phosphatidylcholine, and sphingomyelin) as well as less abundant but biologically important lipid classes, including ceramide, diacylglycerol, and lyso-phospholipids. This novel method has been successfully implemented in our laboratory and is now used daily. We conclude that the fully automated, high-throughput BUME method can replace chloroform-based methods, saving both human and environmental resources. PMID:22645248

  14. Rapid depletion of dissolved oxygen in 96-well microtiter plate Staphylococcus epidermidis biofilm assays promotes biofilm development and is influenced by inoculum cell concentration.

    PubMed

    Cotter, John J; O'Gara, James P; Casey, Eoin

    2009-08-01

    Biofilm-related research using 96-well microtiter plates involves static incubation of plates indiscriminate of environmental conditions, making oxygen availability an important variable which has not been considered to date. By directly measuring dissolved oxygen concentration over time we report here that dissolved oxygen is rapidly consumed in Staphylococcus epidermidis biofilm cultures grown in 96-well plates irrespective of the oxygen concentration in the gaseous environment in which the plates are incubated. These data indicate that depletion of dissolved oxygen during growth of bacterial biofilm cultures in 96-well plates may significantly influence biofilm production. Furthermore higher inoculum cell concentrations are associated with more rapid consumption of dissolved oxygen and higher levels of S. epidermidis biofilm production. Our data reveal that oxygen depletion during bacterial growth in 96-well plates may significantly influence biofilm production and should be considered in the interpretation of experimental data using this biofilm model.

  15. Equilibrium drug solubility measurements in 96-well plates reveal similar drug solubilities in phosphate buffer pH 6.8 and human intestinal fluid.

    PubMed

    Heikkilä, Tiina; Karjalainen, Milja; Ojala, Krista; Partola, Kirsi; Lammert, Frank; Augustijns, Patrick; Urtti, Arto; Yliperttula, Marjo; Peltonen, Leena; Hirvonen, Jouni

    2011-02-28

    This study was conducted to develop a high throughput screening (HTS) method for the assessment of equilibrium solubility of drugs. Solid-state compounds were precipitated from methanol in 96-well plates, in order to eliminate the effect of co-solvent. Solubility of twenty model drugs was analyzed in water and aqueous solutions (pH 1.2 and 6.8) in 96-well plates and in shake-flasks (UV detection). The results obtained with the 96-well plate method correlated well (R(2)=0.93) between the shake-flask and 96-well plates over the wide concentration scale of 0.002-169.2mg/ml. Thereafter, the solubility tests in 96-well plates were performed using fasted state human intestinal fluid (HIF) from duodenum of healthy volunteers. The values of solubility were similar in phosphate buffer solution (pH 6.8) and HIF over the solubility range of 10(2)-10(5)μg/ml. The new 96-well plate method is useful for the screening of equilibrium drug solubility during the drug discovery process and it also allows the use of human intestinal fluid in solubility screening.

  16. Assessment of a 96-Well Plate Assay of Quantitative Drug Susceptibility Testing for Mycobacterium Tuberculosis Complex in China

    PubMed Central

    Xia, Hui; Zheng, Yang; Zhao, Bing; van den Hof, Susan; Cobelens, Frank; Zhao, YanLin

    2017-01-01

    Objective To evaluate the performance of the Sensitire MYCOTB MIC Plate (MYCOTB) which could measure the twelve anti-tuberculosis drugs susceptibility on one 96-wells plate. Methods A total of 140 MDR-TB strains and 60 non-MDR strains were sub-cultured and 193 strains were finally tested for drug resistance using MYCOTB and agar proportion method (APM) and another 7 strains failed of subculture. The drugs included ofloxacin (Ofx), moxifloxacin (Mfx), rifampin (RFP), amikacin (Am), rifabutin (Rfb), para-aminosalicylic acid (PAS), ethionamide (Eth), isoniazid (INH), kanamycin (Km), ethambutol (EMB), streptomycin (Sm), and cycloserine(Cs). The categorical agreement, conditional agreement, sensitivity and specificity of MYCOTB were assessed in comparison with APM. For strains with inconsistent results between MYCOTB and APM, the drug resistance related gene fragments were amplified and sequenced: gyrA for Ofx and Mfx; rpoB for RFP and Rfb; embB for EMB; rpsl for Sm; katG and the promoter region of inhA for INH, ethA and the promoter region of inhA for Eth. The sequence results were compared with results of MYCOTB and APM to analyze the consistency between sequence results and MYCOTB or APM. Results The categorical agreement between two methods for each drug ranged from 88.6% to 100%. It was the lowest for INH (88.6%). The sensitivity and specificity of MYCOTB ranged from 71.4% to 100% and 84.3% to 100%, respectively. The sensitivity was lowest for Cs(71.4%), EMB at 10μg/ml (80.0%) and INH at 10.0μg/ml (84.6%). The specificity was lowest for Rfb (84.3%). Overall discordance between the two phenotypic methods was observed for 96 strains, of which 63 (65.6%) were found susceptible with APM and resistant with MYCOTB and the remaining 33(34.4%) strains were resistant by APM and susceptible with MYCOTB. 34/52 (65.4%) sequenced APM susceptible and MYCOTB resistant(APM-S/MYCOTB-R) strains had mutations or insertions in the amplified regions. 20/30 (66.7%) sequenced APM

  17. Suspended microfluidics.

    PubMed

    Casavant, Benjamin P; Berthier, Erwin; Theberge, Ashleigh B; Berthier, Jean; Montanez-Sauri, Sara I; Bischel, Lauren L; Brakke, Kenneth; Hedman, Curtis J; Bushman, Wade; Keller, Nancy P; Beebe, David J

    2013-06-18

    Although the field of microfluidics has made significant progress in bringing new tools to address biological questions, the accessibility and adoption of microfluidics within the life sciences are still limited. Open microfluidic systems have the potential to lower the barriers to adoption, but the absence of robust design rules has hindered their use. Here, we present an open microfluidic platform, suspended microfluidics, that uses surface tension to fill and maintain a fluid in microscale structures devoid of a ceiling and floor. We developed a simple and ubiquitous model predicting fluid flow in suspended microfluidic systems and show that it encompasses many known capillary phenomena. Suspended microfluidics was used to create arrays of collagen membranes, mico Dots (μDots), in a horizontal plane separating two fluidic chambers, demonstrating a transwell platform able to discern collective or individual cellular invasion. Further, we demonstrated that μDots can also be used as a simple multiplexed 3D cellular growth platform. Using the μDot array, we probed the combined effects of soluble factors and matrix components, finding that laminin mitigates the growth suppression properties of the matrix metalloproteinase inhibitor GM6001. Based on the same fluidic principles, we created a suspended microfluidic metabolite extraction platform using a multilayer biphasic system that leverages the accessibility of open microchannels to retrieve steroids and other metabolites readily from cell culture. Suspended microfluidics brings the high degree of fluidic control and unique functionality of closed microfluidics into the highly accessible and robust platform of open microfluidics.

  18. Suspended microfluidics

    PubMed Central

    Casavant, Benjamin P.; Berthier, Erwin; Theberge, Ashleigh B.; Berthier, Jean; Montanez-Sauri, Sara I.; Bischel, Lauren L.; Brakke, Kenneth; Hedman, Curtis J.; Bushman, Wade; Keller, Nancy P.; Beebe, David J.

    2013-01-01

    Although the field of microfluidics has made significant progress in bringing new tools to address biological questions, the accessibility and adoption of microfluidics within the life sciences are still limited. Open microfluidic systems have the potential to lower the barriers to adoption, but the absence of robust design rules has hindered their use. Here, we present an open microfluidic platform, suspended microfluidics, that uses surface tension to fill and maintain a fluid in microscale structures devoid of a ceiling and floor. We developed a simple and ubiquitous model predicting fluid flow in suspended microfluidic systems and show that it encompasses many known capillary phenomena. Suspended microfluidics was used to create arrays of collagen membranes, mico Dots (μDots), in a horizontal plane separating two fluidic chambers, demonstrating a transwell platform able to discern collective or individual cellular invasion. Further, we demonstrated that μDots can also be used as a simple multiplexed 3D cellular growth platform. Using the μDot array, we probed the combined effects of soluble factors and matrix components, finding that laminin mitigates the growth suppression properties of the matrix metalloproteinase inhibitor GM6001. Based on the same fluidic principles, we created a suspended microfluidic metabolite extraction platform using a multilayer biphasic system that leverages the accessibility of open microchannels to retrieve steroids and other metabolites readily from cell culture. Suspended microfluidics brings the high degree of fluidic control and unique functionality of closed microfluidics into the highly accessible and robust platform of open microfluidics. PMID:23729815

  19. Microfluidic electronics.

    PubMed

    Cheng, Shi; Wu, Zhigang

    2012-08-21

    Microfluidics, a field that has been well-established for several decades, has seen extensive applications in the areas of biology, chemistry, and medicine. However, it might be very hard to imagine how such soft microfluidic devices would be used in other areas, such as electronics, in which stiff, solid metals, insulators, and semiconductors have previously dominated. Very recently, things have radically changed. Taking advantage of native properties of microfluidics, advances in microfluidics-based electronics have shown great potential in numerous new appealing applications, e.g. bio-inspired devices, body-worn healthcare and medical sensing systems, and ergonomic units, in which conventional rigid, bulky electronics are facing insurmountable obstacles to fulfil the demand on comfortable user experience. Not only would the birth of microfluidic electronics contribute to both the microfluidics and electronics fields, but it may also shape the future of our daily life. Nevertheless, microfluidic electronics are still at a very early stage, and significant efforts in research and development are needed to advance this emerging field. The intention of this article is to review recent research outcomes in the field of microfluidic electronics, and address current technical challenges and issues. The outlook of future development in microfluidic electronic devices and systems, as well as new fabrication techniques, is also discussed. Moreover, the authors would like to inspire both the microfluidics and electronics communities to further exploit this newly-established field.

  20. A new approach to the application of solid phase extraction disks with LC-MS/MS for the analysis of drugs on a 96-well plate format.

    PubMed

    Cudjoe, Erasmus; Pawliszyn, Janusz

    2009-11-01

    A new 96-well disk solid phase extraction sample preparation technique which does not involve vacuum pumps integrated with liquid chromatographic tandem mass spectrometric (LC-MS/MS) was developed for high throughput determination of benzodiazepines (nordiazepam, diazepam, lorazepam and oxazepam). In addition, the method completely allows the re-use of the SPE disk membranes for subsequent analyses after re-conditioning. The method utilizes a robotic autosampler for parallel extractions in a 96-well plate format. Results have been presented for independent extractions from three matrices; phosphate buffer solution, urine, and plasma. Factors affecting data reproducibility, extraction kinetics, sample throughput, and reliability of the system were investigated and optimized. A total time required per sample was 0.94 min using 96-well format. Method reproducibility was < or =9% relative standard deviation for all three matrices. Limits of detection and quantitation recorded were respectively in the range 0.02-0.15 and 0.2-2.0 ng/mL with linearity ranging from 0.2 to 500 ng/mL for all matrices.

  1. A rubber transfer gasket to improve the throughput of liquid-liquid extraction in 96-well plates: application to vitamin D testing.

    PubMed

    Hoofnagle, Andrew N; Laha, Thomas J; Donaldson, Thomas F

    2010-06-01

    The unmitigated rise in demand for the assessment of vitamin D status has taxed the ability of clinical mass spectrometry laboratories to preserve turn-around times. We aimed to improve the throughput of liquid-liquid extraction of plasma/serum for the assay of 25-hydroxy vitamin D. We designed and fabricated a flexible rubber gasket that seals two 96-well plates together to quantitatively transfer the contents of one plate to another. Using the transfer gasket and a dry-ice acetone bath to freeze the aqueous infranatant, we developed a novel liquid-liquid extraction workflow in a 96-well plate format. We applied the technology to the mass spectrometric quantification of 25-hydroxy vitamin D. Cross-contamination between wells was < or = 0.13%. The interassay imprecision over 132 days of clinical implementation was less than 10%. The method compared favorably to a standard liquid-liquid extraction in glass tubes (Deming slope=1.018, S(x|y)=0.022). The accuracy of the assay was 102-105% as assessed with the recently released control materials from NIST. The development of a plate-sealing gasket permits the liquid-liquid extraction of clinical specimens in a moderate-throughput workflow and the reliable assay of vitamin D status. In the future, the gasket may also prove useful in other sample preparation techniques for HPLC or mass spectrometry. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates.

    PubMed

    Maioli, Vincent; Chennell, George; Sparks, Hugh; Lana, Tobia; Kumar, Sunil; Carling, David; Sardini, Alessandro; Dunsby, Chris

    2016-11-25

    Light sheet fluorescence microscopy has previously been demonstrated on a commercially available inverted fluorescence microscope frame using the method of oblique plane microscopy (OPM). In this paper, OPM is adapted to allow time-lapse 3-D imaging of 3-D biological cultures in commercially available glass-bottomed 96-well plates using a stage-scanning OPM approach (ssOPM). Time-lapse 3-D imaging of multicellular spheroids expressing a glucose Förster resonance energy transfer (FRET) biosensor is demonstrated in 16 fields of view with image acquisition at 10 minute intervals. As a proof-of-principle, the ssOPM system is also used to acquire a dose response curve with the concentration of glucose in the culture medium being varied across 42 wells of a 96-well plate with the whole acquisition taking 9 min. The 3-D image data enable the FRET ratio to be measured as a function of distance from the surface of the spheroid. Overall, the results demonstrate the capability of the OPM system to measure spatio-temporal changes in FRET ratio in 3-D in multicellular spheroids over time in a multi-well plate format.

  3. 96-well plate-to-plate gravity fluorous solid-phase extraction (F-SPE) for solution-phase library purification.

    PubMed

    Zhang, Wei; Lu, Yimin

    2007-01-01

    Large particle size (125_210 microm) fluorous silica gel bonded with a -SiCH2CH2C8F17 stationary phase has been employed for gravity-driven fluorous solid-phase extraction (F-SPE) on two types of 96-well plates. A 1 or 0.75 g portion of fluorous silica is packed to each well of the 3.5-mL Ex-Blok and the 2.2-mL deep-well filtration plates, respectively. Up to 50 mg of reaction mixture is loaded and then eluted with a fluorophobic solvent (DMSO, DMF, or 85:15 DMF-H2O). Products collected in 96-well receiving plates are directly concentrated on a GeneVac vacuum centrifuge. This simple and highly efficient plate-to-plate F-SPE technique has been demonstrated in the purification of four 96-compound libraries produced by scavenging reactions with 1-(perfluoroctyl)propyl isatoic anhydride (F-IA), amide coupling reactions with 2-chloro-4,6-bis[(perfluorooctyl)propyloxy]-1,3,5-triazine (F-CDMT) or 2,4-dichloro-6-(perfluorooctyl)propyloxy-1,3,5-triazine (F-DCT), and Mitsunobu reactions with fluorous diethyl azodicarboxylate (F-DEAD) and triphenylphosphine (F-TPP). Approximately 80% of products in each library have greater than 85% purity after F-SPE without conducting chromatography.

  4. Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates

    PubMed Central

    Maioli, Vincent; Chennell, George; Sparks, Hugh; Lana, Tobia; Kumar, Sunil; Carling, David; Sardini, Alessandro; Dunsby, Chris

    2016-01-01

    Light sheet fluorescence microscopy has previously been demonstrated on a commercially available inverted fluorescence microscope frame using the method of oblique plane microscopy (OPM). In this paper, OPM is adapted to allow time-lapse 3-D imaging of 3-D biological cultures in commercially available glass-bottomed 96-well plates using a stage-scanning OPM approach (ssOPM). Time-lapse 3-D imaging of multicellular spheroids expressing a glucose Förster resonance energy transfer (FRET) biosensor is demonstrated in 16 fields of view with image acquisition at 10 minute intervals. As a proof-of-principle, the ssOPM system is also used to acquire a dose response curve with the concentration of glucose in the culture medium being varied across 42 wells of a 96-well plate with the whole acquisition taking 9 min. The 3-D image data enable the FRET ratio to be measured as a function of distance from the surface of the spheroid. Overall, the results demonstrate the capability of the OPM system to measure spatio-temporal changes in FRET ratio in 3-D in multicellular spheroids over time in a multi-well plate format. PMID:27886235

  5. Higher throughput bioanalysis by automation of a protein precipitation assay using a 96-well format with detection by LC-MS/MS.

    PubMed

    Watt, A P; Morrison, D; Locker, K L; Evans, D C

    2000-03-01

    Generic methodology for the automated preparation and analysis of drug levels in plasma samples within a drug discovery environment was achieved through the redesign of a protein precipitation assay to a microtiter (96-well) plate format and the application of robotic liquid handling for performance of all transfer and pipetting steps. Validation studies revealed that the application of robotics to sample preparation, in general, maintained the analytical accuracy and precision compared with preparing samples manually. The use of rapid gradient LC-MS/MS for analysis coupled with flow diversion of the solvent front allowed the introduction of protein-precipitated samples into the mass spectrometer without the necessity for source cleaning. The problem inherent in automatically pipetting plasma, caused by fibrinogen clots, was overcome by storing samples at -80 degrees C and thus precluding clot formation. The resulting methodology allowed sample preparation for a 96-well plate designed to accommodate 54 unknowns, duplicate 12-point calibration curves, and 6 sets of quality controls at three levels in approximately 2 h. This approach allowed an increase in throughput of sample preparation and analysis to >400 samples per day per LC-MS/MS instrument with minimal manual intervention. Overall, substantial time savings were realized, demonstrating that automation is an increasingly essential tool in a drug discovery bioanalytical environment.

  6. High-throughput 96-well solvent mediated sonic blending synthesis and on-plate solid/solution stability characterization of pharmaceutical cocrystals.

    PubMed

    Luu, Van; Jona, Janan; Stanton, Mary K; Peterson, Matthew L; Morrison, Henry G; Nagapudi, Karthik; Tan, Helming

    2013-01-30

    A 96-well high-throughput cocrystal screening workflow has been developed consisting of solvent-mediated sonic blending synthesis and on-plate solid/solution stability characterization by XRPD. A strategy of cocrystallization screening in selected blend solvents including water mixtures is proposed to not only manipulate solubility of the cocrystal components but also differentiate physical stability of the cocrystal products. Caffeine-oxalic acid and theophylline-oxalic acid cocrystals were prepared and evaluated in relation to saturation levels of the cocrystal components and stability of the cocrystal products in anhydrous and hydrous solvents. AMG 517 was screened with a number of coformers, and solid/solution stability of the resulting cocrystals on the 96-well plate was investigated. A stability trend was observed and confirmed that cocrystals comprised of lower aqueous solubility coformers tended to be more stable in water. Furthermore, cocrystals which could be isolated under hydrous solvent blending condition exhibited superior physical stability to those which could only be obtained under anhydrous condition. This integrated HTS workflow provides an efficient route in an API-sparing approach to screen and identify cocrystal candidates with proper solubility and solid/solution stability properties.

  7. Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates

    NASA Astrophysics Data System (ADS)

    Maioli, Vincent; Chennell, George; Sparks, Hugh; Lana, Tobia; Kumar, Sunil; Carling, David; Sardini, Alessandro; Dunsby, Chris

    2016-11-01

    Light sheet fluorescence microscopy has previously been demonstrated on a commercially available inverted fluorescence microscope frame using the method of oblique plane microscopy (OPM). In this paper, OPM is adapted to allow time-lapse 3-D imaging of 3-D biological cultures in commercially available glass-bottomed 96-well plates using a stage-scanning OPM approach (ssOPM). Time-lapse 3-D imaging of multicellular spheroids expressing a glucose Förster resonance energy transfer (FRET) biosensor is demonstrated in 16 fields of view with image acquisition at 10 minute intervals. As a proof-of-principle, the ssOPM system is also used to acquire a dose response curve with the concentration of glucose in the culture medium being varied across 42 wells of a 96-well plate with the whole acquisition taking 9 min. The 3-D image data enable the FRET ratio to be measured as a function of distance from the surface of the spheroid. Overall, the results demonstrate the capability of the OPM system to measure spatio-temporal changes in FRET ratio in 3-D in multicellular spheroids over time in a multi-well plate format.

  8. Development of cystic embryoid bodies with visceral yolk-sac-like structures from mouse embryonic stem cells using low-adherence 96-well plate.

    PubMed

    Yasuda, Emiko; Seki, Yuji; Higuchi, Takatoshi; Nakashima, Fumio; Noda, Tomozumi; Kurosawa, Hiroshi

    2009-04-01

    Cystic embryoid bodies with visceral yolk-sac-like structure (cystic EB-Vs) are used as a model for the study of early extraembryonic tissue formation containing visceral endoderm-like derivatives. In this study, we optimized the cell density of embryonic stem (ES) cells for developing cystic EB-Vs in a low-adherence 96-well plate. When ES cells were seeded at a density of 4000 cells/well, the cystic EB-Vs were most efficiently developed from ES cells via forming multicellular spherical aggregates called embryoid bodies (EBs). The suspension culture in the low-adherence plate was preferable for developing EBs into cystic EB-Vs rather than the attachment culture in the plate coated with 0.1% gelatin. The seeding cell density of 4000 cells/well was always superior to 1000 cells/well in the efficiency of cystic EB-V development. Because the high-cell density culture generally raises the limitation of oxygen and nutrient supplies, we investigated the effects of low-oxygen and low-nutrient conditions on the development of cystic EB-Vs. It was found that low oxygen tension was not a factor for promoting the development of cystic EB-Vs. It was suggested that a low-nutrient medium is preferred for developing cystic EB-Vs rather than a sufficient-nutrient medium. In conclusion, the suspension culture in the low-adherence 96-well plate seeded with 4000 ES cells/well was optimum for developing cystic EB-Vs. The low-nutrient condition may be one of the factors for promoting the development of cystic EB-Vs.

  9. High-throughput determination of fudosteine in human plasma by liquid chromatography-tandem mass spectrometry, following protein precipitation in the 96-well plate format.

    PubMed

    Wen, Jun; Wu, Yiwen; Zhang, Linli; Qi, Yunpeng; Fan, Guorong; Wu, Yutian; Li, Zhen

    2008-05-01

    A 96-well protein precipitation, liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and fully validated for the determination of fudosteine in human plasma. After protein precipitation of the plasma samples (50 microL) by the methanol (150 microL) containing the internal standard (IS), erdosteine, the 96-well plate was vortexed for 5 min and centrifuged for 15 min. The 100 microL supernatant and 100 microL mobile phase were added to another plate and mixed and then the mixture was directly injected into the LC-MS/MS system in the negative ionization mode. The separation was performed on a XB-CN column for 3.0 min per sample using an eluent of methanol-water (60:40, v/v) containing 0.005% formic acid. Multiple reaction monitoring (MRM) using the precursor-product ion transitions m/z 178-->91 and m/z 284-->91 was performed to quantify fudosteine and erdosteine, respectively. The method was sensitive with a lower limit of quantification (LLOQ) of 0.02 microg mL(-1), with good linearity (r>0.999) over the linear range of 0.02-10 microg mL(-1). The within- and between-run precision was less than 5.5% and accuracy ranged from 94.2 to 106.7% for quality control (QC) samples at three concentrations of 0.05, 1 and 8 microg mL(-1). The method was employed in the clinical pharmacokinetic study of fudosteine formulation product after oral administration to healthy volunteers.

  10. A high-throughput approach for the determination of pesticide residues in cucumber samples using solid-phase microextraction on 96-well plate.

    PubMed

    Bagheri, Habib; Es'haghi, Ali; Es-haghi, Ali; Mesbahi, Noushin

    2012-08-31

    A high-throughput solid-phase microextraction (SPME) on 96-well plate together with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of some selected pesticides in cucumber samples. Pieces with the length of 1.0 cm of silicon tubing were precisely prepared and then coated on the end part of stainless steel wires. The prepared fibers were positioned in a home-made polytetrafluoroethylene (PTFE)-based constructed ninety-six holes block to have the possibility of simultaneous immersion of the SPME fibers into the center of individual wells. Pesticides such as diazinon, penconazol, tebuconazol, bitertanol, malathion, phosalone and chlorpyrifos-methyl were selected for their highly application in cucumber field. The performances of the SPME fibers, such as intra and inter-fibers reproducibility, were evaluated and the results showed a good similarity in extraction yields. A volume of 1 mL of the aquatic supernatant of the cucumber samples was transferred into the 96-well plate and the array of SPME fibers was applied for the extraction of the selected pesticides. The important parameters influencing the whole extraction process including, organic solvent percent, salt addition, dilution factor, stirring rate and extraction time were optimized. The inter- and intra-day RSD% were found to be less than 15.4%. Limits of detection (LOD) and limits of quantification (LOQ) were below 60 and 180 μg kg(-1), respectively. The coefficient of determination was satisfactory (r(2)>0.99) for all the studied analytes. The developed method was successfully applied to the monitoring of several samples gathered from local markets.

  11. Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF) with silver colloids in 96-well plates: Application to ultra fast and sensitive immunoassays, High Throughput Screening and drug discovery.

    PubMed

    Aslan, Kadir; Holley, Patrick; Geddes, Chris D

    2006-05-30

    Fluorescence detection is the basis of most assays used in drug discovery and High Throughput Screening (HTS) today. In all of these assays, assay rapidity and sensitivity is a primary concern, the sensitivity determined by both the quantum yield of the fluorophores and efficiency of the detection system, while rapidity is determined by the physical and biophysical parameters of temperature, concentration, assay bioaffinity, etc. In this paper we describe a platform technology that promises to fundamentally address these two physical constraints of sensitivity and rapidity. By combining the use of Metal-Enhanced Fluorescence (MEF), a near-field effect that can significantly enhance fluorescence signatures, with low power microwave heating, we can significantly increase the sensitivity of surface assays as well as >95% kinetically complete the assay within a few seconds. In addition, the metallic nanostructures used to facilitate MEF appear to be preferentially heated as compared to the surface assay fluid, advantageously localizing the MEF and heating around the nanostructures. To demonstrate proof of principle, a 96-well plate has been functionalized with silver nanostructures, and a model protein avidin-biotin assay studied. In our findings, a greater than 5-fold fluorescence enhancement coupled with a approximately 90-fold increase in assay kinetics was observed, but with no assay washing steps needed due to the silver-enhanced evanescent field mode of excitation. These findings promise to strongly facilitate high throughput fluorescence-based processes, such as in biology, drug discovery and general compound screening.

  12. Induction of apoptosis by intracellular potassium ion depletion: using the fluorescent dye PBFI in a 96-well plate method in cultured lung cancer cells.

    PubMed

    Andersson, B; Janson, V; Behnam-Motlagh, P; Henriksson, R; Grankvist, K

    2006-09-01

    Depletion of intracellular potassium ions (K+) is necessary for cells to shrink, activate caspases and induce DNA fragmentation, events which are features of apoptosis. Here we describe a 96-well plate method using the cell permeable form of K+ binding benzofuran isophtalate (PBFI-AM) to measure intracellular K+ content in relation to untreated control. Cultured human pulmonary mesothelioma cells (P31) and small-cell lung cancer cells (U1690) were treated with K+ flux modulators in order to deprive the cells of intracellular K+. The combination of K+ influx inhibition with 10 micromol/L bumetanide plus 10 micromol/L ouabain and K+ efflux stimulation with 3 mg/L amphotericin B or 5 micromol/L nigericin efficiently reduced the intracellular K+ content after 3 h. Manipulation of K+ fluxes with subsequent intracellular K+ depletion induced apoptosis of lung cancer cells, as detected by caspase-3 activity after 3 h K+ depletion followed by 24 h proliferation and TUNEL positive staining after 48 h proliferation. We concluded that the PBFI-AM assay was a useful tool to determine intracellular K+ content in relation to untreated control, and that intracellular K+ depletion of lung cancer cells by clinically used drugs of relevant concentrations induced apoptosis. These findings may lead to novel therapeutic strategies in the treatment of lung cancer.

  13. Soluble penicillin-binding protein 2a: beta-lactam binding and inhibition by non-beta-lactams using a 96-well format.

    PubMed

    Toney, J H; Hammond, G G; Leiting, B; Pryor, K D; Wu, J K; Cuca, G C; Pompliano, D L

    1998-01-01

    High level methicillin resistance in Staphylococcus aureus is dependent upon the acquisition of the mecA gene encoding penicillin-binding protein 2a (PBP2a). PBP2a is a member of a family of peptidoglycan biosynthetic enzymes involved in assembly of the cell wall in bacteria and is poorly inactivated by beta-lactam antibiotics. We describe a 96-well-filter binding assay using recombinant, soluble PBP2a which allows for kinetic measurement of penicillin binding. The deacylation rate constant for the PBP2a-penicillin G covalent complex was found to be 5.7 +/- 1.0 x 10(-5) s-1 at 30 degrees C (half-life of approximately 200 min). For the PBP2a acylation reaction, the value of K(m) (penicillin G) = 0.5 +/- 0.1 mM and kcat = 1 x 10(-3) s-1, which yields a second-order rate constant (kcat/K(m)) for inactivation of 2.0 M-1 s-1. Using this assay, several non-beta-lactam inhibitors including Cibacron blue have been found which exhibit IC50 values between 10 and 30 microM. The binding affinities of several carbapenems and beta-lactams correlated well between the filter binding assay described in this report and an electrophoretic assay for PBP2a using membranes prepared form methicillin-resistant S. aureus.

  14. Simplified method for determination of clarithromycin in human plasma using protein precipitation in a 96-well format and liquid chromatography-tandem mass spectrometry.

    PubMed

    Shin, Jaekyu; Pauly, Daniel F; Johnson, Julie A; Frye, Reginald F

    2008-08-01

    A simplified method to determine clarithromycin concentrations in human plasma using protein precipitation in a 96-well plate and liquid chromatography-tandem mass spectrometry was developed and validated. Plasma proteins were precipitated with acetonitrile and roxithromycin was used as the internal standard. After vortex mixing and centrifugation, the supernatants were directly injected onto a Phenomenex Luna Phenyl-Hexyl column (50 mm x 2.0 mm ID, 3 microm). The mobile phase consisted of water and methanol (30:70, v/v) containing 0.1% formic acid and 5mM ammonium acetate. The flow rate was 0.22 mL/min and the total run time (injection to injection) was less than 3 min. Detection of the analytes was achieved using positive ion electrospray tandem mass spectrometry in selected reaction monitoring (SRM) mode. The linear standard curve ranged from 100 to 5000 ng/mL and the precision and accuracy (inter- and intra-run) were within 7.9% and 4.9%, respectively. The method was successfully used to determine clarithromycin concentrations in human plasma samples obtained from healthy subjects who were given clarithromycin 500 mg for 3 days. The method is rapid, simple, precise and directly applicable to clarithromycin pharmacokinetic studies.

  15. A Quantitative High-Throughput 96-well plate Fluorescence Assay for Mechanism-Based Inactivators of Cytochromes P450 Exemplified using CYP2B6

    PubMed Central

    Kenaan, Cesar; Zhang, Haoming; Hollenberg, Paul F.

    2010-01-01

    Mechanism-based inactivators such as bergamottin are useful chemical tools for identifying the roles of specific active-site amino acid residues in the reactions catalyzed by the cytochromes P450 (CYPs or P450s) that are responsible for the metabolism of a wide variety of drugs and endogenous substrates. In clinical settings mechanism-based inactivation of P450s involved in xenobiotic metabolism has the potential to lead to adverse drug-drug interactions and assays to identify and characterize drug candidates as P450 inactivators are important in drug discovery and development. Here we present a quantitative high-throughput protocol for investigating cytochrome P450 mechanism-based inactivators using the example of CYP2B6 and bergamottin to illustrate the finer points of this protocol. This protocol details the adaptation of a 7-ethoxytrifluoromethyl coumarin (7-EFC) O-deethylation fluorescence activity assay to a 96-well microtiter plate format and uses a plate-reader to detect the fluorescence of the product. Compared to previous methods, this protocol requires less P450 and takes significantly less time while greatly increasing throughput. The protocol as written takes approximately two hours to complete. The principles and procedures outlined in this protocol can be easily adapted to other inactivators, P450 isoforms, substrates and plate-readers. PMID:20885377

  16. High-Throughput Determination of Sodium Danshensu in Beagle Dogs by the LCMS/MS Method, Employing Liquid-Liquid Extraction Based on 96-Well Format Plates.

    PubMed

    Jiang, Jingjing; Zhao, Xin; Li, Xiuxiu; Wu, Shengyuan; Yu, Shidan; Lou, Yuefen; Fan, Guorong

    2017-04-25

    Sodium Danshensu (sodium d-(+)-β-(3,4-dihydroxyphenyl) lactate), one of the water-soluble ingredients in Salvia miltiorrhiza, exhibits potent relaxation of the coronary artery and anticoagulation effection. A high-throughput, rapid, and sensitive method combining liquid chromatography with electrospray ionization tandem mass spectrometry to determine the sodium danshensu in beagle dog plasma was developed and validated, using gallic acid as an internal standard (IS). Acidified plasma samples were extracted using 96-well liquid-liquid extraction, and were eluted on a CNW Athena C18 column (3 μm, 2.1 × 100 mm) by using a gradient mobile phase system of methanol and water (containing 0.2% formic acid). The mass spectrometric detection was achieved using negative ion electrospray ionization mode and monitoring the precursor→production combinations of m/z 197→135 for sodium danshensu and 169→125 for IS, in multiple reaction monitoring modes. Good linearity was achieved, and the linear range was 10-1000 ng/mL (R² > 0.996) with a quantification limit of 10 ng/mL for sodium danshensu in beagle dog plasma. The intra- and inter-day precision (RSD) ranged from 2.1% to 9.0%. The accuracy (RE) was between -8.6% and 5.7% at all quality control levels. The validated method was successfully applied to the pharmacokinetics study of sodium danshensu in beagle dog plasma after intravenous injection and oral administration of sodium danshensu.

  17. Development and validation of a method for fipronil residue determination in ovine plasma using 96-well plate solid-phase extraction and gas chromatography-tandem mass spectrometry.

    PubMed

    Bichon, E; Richard, C A; Le Bizec, B

    2008-08-01

    Fipronil, a phenylpyrazole insecticide introduced for pest control on a broad range of crops, undergoes a reinforcement of the regulation within the European Union (2007/52/EC directive) due to its potential effects on environment and human health. In order to assess the plasmatic concentrations of fipronil residues (sulfone, sulfide, fipronil, desulfinyl and amide) in ovine, a methodology based on gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) was developed and validated according to the European standard (2002/657/EC). The proposed method allows a large number of samples to be treated concurrently (n=80) using a reduced sample amounts (0.2 mL), and consents to reach a level of quantification of 0.1 pg microL(-1). The sample preparation consisted of a single solid-phase extraction (SPE) purification on a 96-well plate filled with a styrene-divinyl-benzene phase. Linearity was demonstrated all along the investigated range of concentrations, i.e. from 0.25 to 2000 pg microL(-1), with coefficient of determination (R(2)) from 0.977 to 0.994, depending on target analytes. Calculated decision limit (CCalpha) and detection capability (CCbeta) for fipronil, sulfone and sulphide were in the range 0.05-0.16 and 0.28-0.73 pg microL(-1) respectively.

  18. Characterization of multiple platelet activation pathways in patients with bleeding as a high-throughput screening option: use of 96-well Optimul assay

    PubMed Central

    Lordkipanidzé, Marie; Lowe, Gillian C.; Kirkby, Nicholas S.; Chan, Melissa V.; Lundberg, Martina H.; Morgan, Neil V.; Bem, Danai; Nisar, Shaista P.; Leo, Vincenzo C.; Jones, Matthew L.; Mundell, Stuart J.; Daly, Martina E.; Mumford, Andrew D.; Warner, Timothy D.; Watson, Steve P.; Watson, Steve P.; Mumford, Andrew D.; Mundell, Stuart J.; Gissen, Paul; Daly, Martina E.; Lester, Will; Clark, Justin; Williams, Mike; Motwani, Jayashree; Marshall, Dianne; Nyatanga, Priscilla; Mann, Pat; Kirwan, Julie; Wilde, Jonathan; Dunkley, Tracey; Greenway, April; Makris, Michael; Pavord, Sue; Dattani, Rashesh; Grimley, Gerry Dolan Charlotte; Stokley, Simone; Astwood, Emma; Chang, Cherry; Foros, Merri; Trower, Linda; Thachil, Jecko; Hay, Charlie; Pike, Gill; Will, Andrew; Grainger, John; Foulkes, Matt; Fareh, Mona; Talks, Kate; Biss, Tina; Kesteven, Patrick; Hanley, John; Vowles, Julie; Basey, Lesley; Barnes, Michelle; Collins, Peter; Rayment, Rachel; Alikhan, Raza; Morris, Ana Guerrero Rebecca; Mansell, Dianne; Toh, Cheng Hock; Martlew, Vanessa; Murphy, Elaine; Lachmann, Robin; Rose, Peter; Chapman, Oliver; Lokare, Anand; Marshall, Kathryn; Khan, Naseem; Keeling, David; Giangrande, Paul; Austin, Steve; Bevan, David; Alamelu, Jayanthi

    2014-01-01

    Up to 1% of the population have mild bleeding disorders, but these remain poorly characterized, particularly with regard to the roles of platelets. We have compared the usefulness of Optimul, a 96-well plate-based assay of 7 distinct pathways of platelet activation to characterize inherited platelet defects in comparison with light transmission aggregometry (LTA). Using Optimul and LTA, concentration-response curves were generated for arachidonic acid, ADP, collagen, epinephrine, Thrombin receptor activating-peptide, U46619, and ristocetin in samples from (1) healthy volunteers (n = 50), (2) healthy volunteers treated with antiplatelet agents in vitro (n = 10), and (3) patients with bleeding of unknown origin (n = 65). The assays gave concordant results in 82% of cases (κ = 0.62, P < .0001). Normal platelet function results were particularly predictive (sensitivity, 94%; negative predictive value, 91%), whereas a positive result was not always substantiated by LTA (specificity, 67%; positive predictive value, 77%). The Optimul assay was significantly more sensitive at characterizing defects in the thromboxane pathway, which presented with normal responses with LTA. The Optimul assay is sensitive to mild platelet defects, could be used as a rapid screening assay in patients presenting with bleeding symptoms, and detects changes in platelet function more readily than LTA. This trial was registered at www.isrctn.org as #ISRCTN 77951167. PMID:24408324

  19. A semi-automated 96-well protein precipitation method for the determination of montelukast in human plasma using high performance liquid chromatography/fluorescence detection.

    PubMed

    Kitchen, Chester J; Wang, Amy Q; Musson, Donald G; Yang, Amy Y; Fisher, Alison L

    2003-03-26

    A simple, semi-automated, protein precipitation assay for the determination of montelukast (SINGULAIR, MK-0476) in human plasma has been developed. Montelukast is a potent and selective antagonist of the cysteinyl leukotriene receptor used for the treatment of asthma. A Packard MultiPROBE II EX is used to transfer 300 microl of plasma from sample, standard, and QC sample tubes to a microtiter plate (96-well). After addition of the internal standard by a repeating pipettor, a Tomtec QUADRA 96 adds 400 microl of acetonitrile to all plasma sample wells, simultaneously, in the microtiter plate. The Tomtec is also used to transfer the acetonitrile supernatant from the plasma protein precipitation step, batchwise, to another microtiter plate for analysis by HPLC with fluorescence detection. This assay has been validated and implemented for a clinical study of over 1300 plasma samples and is comparable to manual assays in the LLOQ (lower limit of quantitation, 3 ng/ml) and in stability. This is the first semi-automated protein precipitation assay published for the analysis of montelukast in human plasma and it results in significant time savings over the manual methods, both in sample preparation and in HPLC run time.

  20. Characterization of multiple platelet activation pathways in patients with bleeding as a high-throughput screening option: use of 96-well Optimul assay.

    PubMed

    Lordkipanidzé, Marie; Lowe, Gillian C; Kirkby, Nicholas S; Chan, Melissa V; Lundberg, Martina H; Morgan, Neil V; Bem, Danai; Nisar, Shaista P; Leo, Vincenzo C; Jones, Matthew L; Mundell, Stuart J; Daly, Martina E; Mumford, Andrew D; Warner, Timothy D; Watson, Steve P

    2014-02-20

    Up to 1% of the population have mild bleeding disorders, but these remain poorly characterized, particularly with regard to the roles of platelets. We have compared the usefulness of Optimul, a 96-well plate-based assay of 7 distinct pathways of platelet activation to characterize inherited platelet defects in comparison with light transmission aggregometry (LTA). Using Optimul and LTA, concentration-response curves were generated for arachidonic acid, ADP, collagen, epinephrine, Thrombin receptor activating-peptide, U46619, and ristocetin in samples from (1) healthy volunteers (n = 50), (2) healthy volunteers treated with antiplatelet agents in vitro (n = 10), and (3) patients with bleeding of unknown origin (n = 65). The assays gave concordant results in 82% of cases (κ = 0.62, P < .0001). Normal platelet function results were particularly predictive (sensitivity, 94%; negative predictive value, 91%), whereas a positive result was not always substantiated by LTA (specificity, 67%; positive predictive value, 77%). The Optimul assay was significantly more sensitive at characterizing defects in the thromboxane pathway, which presented with normal responses with LTA. The Optimul assay is sensitive to mild platelet defects, could be used as a rapid screening assay in patients presenting with bleeding symptoms, and detects changes in platelet function more readily than LTA. This trial was registered at www.isrctn.org as #ISRCTN 77951167.

  1. Evaluation of drug load and polymer by using a 96-well plate vacuum dry system for amorphous solid dispersion drug delivery.

    PubMed

    Chiang, Po-Chang; Ran, Yingqing; Chou, Kang-Jye; Cui, Yong; Sambrone, Amy; Chan, Connie; Hart, Ryan

    2012-06-01

    It is well recognized that poor dissolution rate and solubility of drug candidates are key limiting factors for oral bioavailability. While numerous technologies have been developed to enhance solubility of the drug candidates, poor water solubility continuously remains a challenge for drug delivery. Among those technologies, amorphous solid dispersions (SD) have been successfully employed to enhance both dissolution rate and solubility of poorly water-soluble drugs. This research reports a high-throughput screening technology developed by utilizing a 96-well plate system to identify optimal drug load and polymer using a solvent casting approach. A minimal amount of drug was required to evaluate optimal drug load in three different polymers with respect to solubility improvement and solid-state stability of the amorphous drug-polymer system. Validation of this method was demonstrated with three marketed drugs as well as with one internal compound. Scale up of the internal compound SD by spray drying further confirmed the validity of this method, and its quality was comparable to a larger scale process. Here, we demonstrate that our system is highly efficient, cost-effective, and robust to evaluate the feasibility of spray drying technology to produce amorphous solid dispersions.

  2. Quantum dot immunoassays in renewable surface column and 96-well plate formats for the fluorescence detection of Botulinum neurotoxin using high-affinity antibodies

    SciTech Connect

    Warner, Marvin G.; Grate, Jay W.; Tyler, Abby J.; Ozanich, Richard M.; Miller, Keith D.; Lou, Jianlong; Marks, James D.; Bruckner-Lea, Cindy J.

    2009-09-01

    A fluorescence sandwich immunoassay using high affinity antibodies and quantum dot (QD) reporters has been developed for detection of botulinum toxin serotype A (BoNT/A). For the development of the assay, a nontoxic recombinant fragment of the holotoxin (BoNT/A-HC-fragment) has been used as a structurally valid simulant for the full toxin molecule. The antibodies used, AR4 and RAZ1, bind to nonoverlapping epitopes present on both the full toxin and on the recombinant fragment. In one format, the immunoassay is carried out in a 96-well plate with detection in a standard plate reader. Detection down to 31 pM of the BoNT/Hc-fragment was demonstrated with a total incubation time of 3 hours, using AR4 as the capture antibody and QD-coupled RAZ1 as the reporter. In a second format, the AR4 capture antibody was coupled to Sepharose beads, and the immunochemical reactions were carried out in microcentrifuge tubes with an incubation time of 1 hour. These beads were subsequently captured and concentrated in a rotating rod “renewable surface” flow cell as part of a sequential injection fluidic system. This flow cell was equipped with a fiber optic system for fluorescence measurements. In PBS buffer solution matrix, the BoNT/A-HC-fragment was detected to concentrations as low as 5 pM using the fluidic measurement approach.

  3. Optical microfluidics

    SciTech Connect

    Kotz, K.T.; Noble, K.A.; Faris, G.W.

    2004-09-27

    We present a method for the control of small droplets based on the thermal Marangoni effect using laser heating. With this approach, droplets covering five orders of magnitude in volume ({approx}1.7 {mu}L to 14 pL), immersed in decanol, were moved on an unmodified polystyrene surface, with speeds of up to 3 mm/s. When two droplets were brought into contact, they spontaneously fused and rapidly mixed in less than 33 ms. This optically addressed microfluidic approach has many advantages for microfluidic transport, including exceptional reconfigurability, low intersample contamination, large volume range, extremely simple substrates, no electrical connections, and ready scaling to large arrays.

  4. A high-throughput protein refolding screen in 96-well format combined with design of experiments to optimize the refolding conditions.

    PubMed

    Dechavanne, Vincent; Barrillat, Nicolas; Borlat, Frederic; Hermant, Aurélie; Magnenat, Laurent; Paquet, Mikael; Antonsson, Bruno; Chevalet, Laurent

    2011-02-01

    Production of correctly folded and biologically active proteins in Escherichiacoli can be a challenging process. Frequently, proteins are recovered as insoluble inclusion bodies and need to be denatured and refolded into the correct structure. To address this, a refolding screening process based on a 96-well assay format supported by design of experiments (DOE) was developed for identification of optimal refolding conditions. After a first generic screen of 96 different refolding conditions the parameters that produced the best yield were further explored in a focused DOE-based screen. The refolding efficiency and the quality of the refolded protein were analyzed by RP-HPLC and SDS-PAGE. The results were analyzed by the DOE software to identify the optimal concentrations of the critical additives. The optimal refolding conditions suggested by DOE were verified in medium-scale refolding tests, which confirmed the reliability of the predictions. Finally, the refolded protein was purified and its biological activity was tested in vitro. The screen was applied for the refolding of Interleukin 17F (IL-17F), stromal-cell-derived factor-1 (SDF-1α/CXCL12), B cell-attracting chemokine 1 (BCA-1/CXCL13), granulocyte macrophage colony stimulating factor (GM-CSF) and the complement factor C5a. This procedure identified refolding conditions for all the tested proteins. For the proteins where refolding conditions were already available, the optimized conditions identified in the screening process increased the yields between 50% and 100%. Thus, the method described herein is a useful tool to determine the feasibility of refolding and to identify high-yield scalable refolding conditions optimized for each individual protein.

  5. Method development for the quantitation of ABT-578 in rabbit artery tissue by 96-well liquid-liquid extraction and liquid chromatography/tandem mass spectrometric detection.

    PubMed

    Ji, Qin C; Zhang, Jun; Rodila, Ramona; Watson, Pamela; El-Shourbagy, Tawakol

    2004-01-01

    Quantitative determination of drug concentrations in tissue samples can provide critical information for drug metabolism, kinetics, and toxicity evaluations. For analysis of tissue samples using liquid chromatography/tandem mass spectrometric (LC/MS/MS) detection, homogenization is a critical step in achieving good assay performance. Assay performance can be closely evaluated by spiking the drug directly into tissue samples prior to homogenization. It is especially important to include this assay evaluation for the analysis of artery tissue samples because artery tissue is very elastic, making it quite a challenge to develop an effective procedure for homogenization. An LC/MS/MS assay in 96-well format using liquid-liquid extraction was developed for analyzing ABT-578 in rabbit artery samples. Tissue quality control samples were prepared by spiking ABT-578 stock solutions directly into the tissue before homogenization. The usage of the tissue control samples gives a thorough evaluation of the sample preparation process that includes both homogenization and sample extraction. A 20% blood in saline solution was used as a homogenization solution. Calibration standards were made by spiking ABT-578 into rabbit whole blood. Blood quality control samples were also prepared by spiking ABT-578 into rabbit whole blood. These blood QC samples were used to confirm the validity of the calibration curve. A lower limit of quantitation of 0.050 ng/mL was achieved. The linear dynamic range of blood standards was from 0.050-30.3 ng/mL with the correlation coefficient (r) ranging from 0.9969-0.9996. Overall %CV was between 1.3 and 7.0%, and analytical recovery was between 98.2 and 105.8% for blood QC samples. The %CVs for tissue QC samples were between 6.7 and 13.0%, and analytical recovery after correction was between 93.5 and 114.3%.

  6. Phospholipid removal combined with a semi-automated 96-well SPE application for determination of budesonide in human plasma with LC-MS/MS.

    PubMed

    Nilsson, Karin; Andersson, Maria; Beck, Olof

    2014-11-01

    A semi-automated method for quantification of budesonide in human plasma was developed, validated, and applied for high-volume analysis of samples in connection with a pharmacokinetic study. Protein and phospholipid removal was performed using an Ostro 96-well filter plate and subsequently combined with C18 solid-phase extraction on a Hamilton Microlab STARlet automation robot. The final extracts were evaporated to dryness and redissolved in 20% acetonitrile/water. The procedure used budesonide-d8 as internal standard and gave a 3.5-fold concentration of plasma to extract. The final extracts (5 μL injected) were analyzed with selected reaction monitoring liquid chromatography-tandem mass spectrometry (LC-MS/MS) using electrospray ionization in positive mode. The chromatography system used a 100 mm ACQUITY BEH UPLC column and a gradient system consisting of aqueous 0.1% formic acid and acetonitrile as organic modifier. Phospholipid removal was found to be needed during method development in order to reduce ion suppression effects from matrix and to increase method sensitivity. The measuring range was 50-5000 pg/mL with and LOD 24 pg/mL. Calibration response showed good linearity (correlation coefficients<0.99) over the measuring range. The absolute recovery over the sample preparation procedure was estimated to 67%. Total imprecision was <9% at three levels and accuracy was between 98.9 and 103%. The method was successfully applied for analysis of 864 study samples in a short time. The quality control samples at concentration levels 200 and 2000 pg/mL gave a total imprecision of 7.4% and 4.2%, respectively, (n=95).

  7. A 96-well single-pot liquid-liquid extraction, hydrophilic interaction liquid chromatography-mass spectrometry method for the determination of muraglitazar in human plasma.

    PubMed

    Xue, Y-J; Liu, Jane; Unger, Steve

    2006-06-07

    A single-pot liquid-liquid extraction (LLE) with hydrophilic interaction liquid chromatography/tandem mass spectrometry (HILIC/MS/MS) method has been developed and validated for the determination of muraglitazar, a hydrophobic diabetes drug, in human plasma. To 0.050 ml of each plasma sample in a 96-well plate, the internal standard solution in acetonitrile and toluene were added to extract the compound of interest. The plate was vortexed, followed by centrifugation. The organic layer was then directly injected into an LC/MS/MS system. Chromatographic separation was achieved isocratically on a Thermohypersil_Keystone, Hypersil silica column (3 mmx50 mm, 3 microm). The mobile phase contained 85% of methyl t-butyl ether and 15% of 90/10 (v/v) acetonitrile/water with 0.3% trifluoroacetic acid. Post-column mobile phase of 50/50 (v/v) acetonitrile/water containing 0.1% formic acid was added. Detection was by positive ion electrospray tandem mass spectrometry on a Sciex API 4000. The standard curve, ranged from 1 to 1000 ng/ml, was fitted to a 1/x weighted quadratic regression model. This single-pot LLE approach effectively eliminated time-consuming organic layer transfer, dry-down, and sample reconstitution steps, which are essential for a conventional liquid-liquid extraction procedure. The modified mobile phase was more compatible with the direct injection of the commonly used extraction solvents in LLE. Furthermore, the modified mobile phase improved the retention of muraglitazar, a hydrophobic compound, on the normal phase silica column. The validation results demonstrated that this method was rugged and suitable for analyzing muraglitazar in human plasma. In comparison with a revised-phase LC/MS/MS method, this single-pot LLE, HILIC/MS/MS method improved the detection sensitivity by more than four-fold based upon the LLOQ signal to noise ratio. This approach may be applied to other hydrophobic compounds with proper modification of the mobile phase compositions.

  8. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2017-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  9. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey (Inventor)

    2015-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  10. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2016-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  11. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2017-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  12. Microfluidic waves

    PubMed Central

    Utz, Marcel; Begley, Matthew R.; Haj-Hariri, Hossein

    2012-01-01

    The propagation of pressure waves in fluidic channels with elastic covers is discussed in view of applications to flow control in microfluidic devices. A theory is presented which describes pressure waves in the fluid that are coupled to bending waves in the elastic cover. At low frequencies, the lateral bending of the cover dominates over longitudinal bending, leading to propagating, non-dispersive longitudinal pressure waves in the channel. The theory addresses effects due to both the finite viscosity and compressibility of the fluid. The coupled waves propagate without dispersion, as long as the wave length is larger than the channel width. It is shown that in channels of typical microfluidic dimensions, wave velocities in the range of a few 10 m s−1 result if the channels are covered by films of a compliant material such as PDMS. The application of this principle to design microfluidic band pass filters based on standing waves is discussed. Characteristic frequencies in the range of a few kHz are readily achieved with quality factors above 30. PMID:21966667

  13. Microfluidic interconnects

    DOEpatents

    Benett, William J.; Krulevitch, Peter A.

    2001-01-01

    A miniature connector for introducing microliter quantities of solutions into microfabricated fluidic devices. The fluidic connector, for example, joins standard high pressure liquid chromatography (HPLC) tubing to 1 mm diameter holes in silicon or glass, enabling ml-sized volumes of sample solutions to be merged with .mu.l-sized devices. The connector has many features, including ease of connect and disconnect; a small footprint which enables numerous connectors to be located in a small area; low dead volume; helium leak-tight; and tubing does not twist during connection. Thus the connector enables easy and effective change of microfluidic devices and introduction of different solutions in the devices.

  14. Microfluidic electrochemical reactors

    SciTech Connect

    Nuzzo, Ralph G; Mitrovski, Svetlana M

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  15. Thermoosmotic microfluidics.

    PubMed

    Yang, Mingcheng; Ripoll, Marisol

    2016-10-19

    Microchannels with asymmetrically ratcheted walls are here shown to behave as effective and versatile microfluidic pumps if locally heated. When the boundary walls have different temperatures, the confined liquid experiences a temperature gradient along the sawtooth edges, which can induce a thermoosmotic flow. A mesoscale molecular simulation approach is here employed to investigate the flows which are contrasted using an analytical approach. Microchannels can be composed by one or two ratcheted walls which can be straight or cylindrical. Varying the channel geometry can not only change the overall fluid flux, but also vary the flow patters from shear to capillary type, or even to extensional type flows. This scheme does not require multiphase fluids or any movable channel parts, although they are possible to be implemented. The proposed principle is then very versatile to locally manipulate complex fluids, and a promising tool to recover waste heat, to facilitate cooling of microchips, and to manufacture portable lab-on-a-chip devices.

  16. Microfluidic interconnects

    DOEpatents

    Benett, William J.; Krulevitch, Peter A.

    2001-01-01

    A miniature connector for introducing microliter quantities of solutions into microfabricated fluidic devices, and which incorporates a molded ring or seal set into a ferrule cartridge, with or without a compression screw. The fluidic connector, for example, joins standard high pressure liquid chromatography (HPLC) tubing to 1 mm diameter holes in silicon or glass, enabling ml-sized volumes of sample solutions to be merged with .mu.l-sized devices. The connector has many features, including ease of connect and disconnect; a small footprint which enables numerous connectors to be located in a small area; low dead volume; helium leak-tight; and tubing does not twist during connection. Thus the connector enables easy and effective change of microfluidic devices and introduction of different solutions in the devices.

  17. Microfluidic sieve valves

    DOEpatents

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L

    2015-01-13

    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  18. Tunable Microfluidic Microlasers

    DTIC Science & Technology

    2011-09-01

    particularly convenient material for microfluidic experiments with LC. Figure 7: A droplet of E7 nematic liquid crystal on a PDMS...AFRL-AFOSR-UK-TR-2011-0039 TUNABLE MICROFLUIDIC MICROLASERS Francesco Simoni Universita Politecnica delle Marche...DATES COVERED (From – To) 15 June 2010 – 15 June 2011 4. TITLE AND SUBTITLE TUNABLE MICROFLUIDIC MICROLASERS 5a. CONTRACT NUMBER FA8655

  19. A prototypic microfluidic platform generating stepwise concentration gradients for real-time study of cell apoptosis.

    PubMed

    Dai, Wen; Zheng, Yizhe; Luo, Kathy Qian; Wu, Hongkai

    2010-04-16

    This work describes the development of a prototypic microfluidic platform for the generation of stepwise concentration gradients of drugs. A sensitive apoptotic analysis method is integrated into this microfluidic system for studying apoptosis of HeLa cells under the influence of anticancer drug, etoposide, with various concentrations in parallel; it measures the yellow fluorescent proteincyan fluorescent protein fluorescence resonance energy transfer (FRET) signal that responds to the activation of caspase-3, an indicator of cell apoptosis. Sets of microfluidic valves on the chip generate stepwise concentration gradient of etoposide in various cell-culture microchambers. The FRET signals from multiple chambers are simultaneously monitored under a fluorescent microscope for long-time observation and the on-chip results are compared with those from 96-well plate study and the methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. The microfluidic platform shows several advantages including high-throughput capacity, low drug consumption, and high sensitivity.

  20. Quantitative analysis of simvastatin and its beta-hydroxy acid in human plasma using automated liquid-liquid extraction based on 96-well plate format and liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhang, Nanyan; Yang, Amy; Rogers, John Douglas; Zhao, Jamie J

    2004-01-27

    An assay based on automated liquid-liquid extraction (LLE) and liquid chromatography-tandem mass spectrometry (LC/MS/MS) has been developed and validated for the quantitative analysis of simvastatin (SV) and its beta-hydroxy acid (SVA) in human plasma. A Packard MultiProbe II workstation was used to convert human plasma samples collected following administration of simvastatin and quality control (QC) samples from individual tubes into 96-well plate format. The workstation was also used to prepare calibration standards and spike internal standards. A Tomtec Quadra 96-channel liquid handling workstation was used to perform LLE based on 96-well plates including adding solvents, separating organic from aqueous layer and reconstitution. SV and SVA were separated through a Kromasil C18 column (50 mm x 2 mm i.d., 5 microm) and detected by tandem mass spectrometry with a TurboIonspray interface. Stable isotope-labeled SV and SVA, 13CD(3)-SV and 13 CD(3)-SVA, were used as the internal standards for SV and SVA, respectively. The automated procedures reduced the overall analytical time (96 samples) to 1/3 of that of manual LLE. Most importantly, an analyst spent only a fraction of time on the 96-well LLE. A limit of quantitation of 50 pg/ml was achieved for both SV and SVA. The interconversion between SV and SVA during the 96-well LLE was found to be negligible. The assay showed very good reproducibility, with intra- and inter-assay precision (%R.S.D.) of less than 7.5%, and accuracy of 98.7-102.3% of nominal values for both analytes. By using this method, sample throughput should be enhanced at least three-fold compared to that of the manual procedure.

  1. Comparison of turbulent-flow chromatography with automated solid-phase extraction in 96-well plates and liquid-liquid extraction used as plasma sample preparation techniques for liquid chromatography-tandem mass spectrometry.

    PubMed

    Zimmer, D; Pickard, V; Czembor, W; Müller, C

    1999-08-27

    Turbulent flow chromatography (TFC) combined with the high selectivity and sensitivity of tandem mass spectrometry (MS-MS) is a new technique for the fast direct analysis of drugs from crude plasma. TFC in the 96-well plate format reduces significantly the time required for sample clean-up in the laboratory. For example, for 100 samples the workload for a technician is reduced from about 8 h by a manual liquid-liquid extraction (LLE) assay to about 1 h in the case of TFC. Sample clean-up and analysis are performed on-line on the same column. Similar chromatographic performance and validation results were achieved using HTLC Turbo-C18 columns (Cohesive Technologies) and Oasis HLB extraction columns (Waters). One 96-well plate with 96 plasma samples is analyzed within 5.25 h, corresponding to 3.3 min per sample. Compared to this LLE and analysis of 96 samples takes about 16 h. Two structurally different and highly protein bound compounds, drug A and drug B, were analyzed under identical TFC conditions and the assays were fully validated for the application to toxicokinetics studies (compliant with Good Laboratory Practices-GLP). The limit of quantitation was 1.00 microg/l and the linear working range covered three orders of magnitude for both drugs. In the case of drug A the quality of analysis by TFC was similar to the reference LLE assay and slightly better than automated solid-phase extraction in 96-well plates. The accuracy was -3.1 to 6.7% and the precision was 3.1 to 6.8% in the case of drug A determined for dog plasma by TFC-MS-MS. For drug B the accuracy was -3.7 to 3.5% and the precision was 1.6 to 5.4% for rat plasma, which is even slightly better than what was achieved with the validated protein precipitation assay.

  2. A Pitfall of the 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay due to evaporation in wells on the edge of a 96 well plate.

    PubMed

    Patel, Manish I; Tuckerman, Rodney; Dong, Qihan

    2005-06-01

    The 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) calorimetric assay is replacing the traditional 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay as a fast, one-step assay of cell viability. We have observed that evaporation of the outer wells of a 96 well plate increases the absorbancy by 52% compared to the inner wells. Filling the outer 2 rows of wells with media and replacement of the media prior to addition of the MTS reagent will, however, correct this inaccuracy.

  3. Integrated Microfluidic Reactors.

    PubMed

    Lin, Wei-Yu; Wang, Yanju; Wang, Shutao; Tseng, Hsian-Rong

    2009-12-01

    Microfluidic reactors exhibit intrinsic advantages of reduced chemical consumption, safety, high surface-area-to-volume ratios, and improved control over mass and heat transfer superior to the macroscopic reaction setting. In contract to a continuous-flow microfluidic system composed of only a microchannel network, an integrated microfluidic system represents a scalable integration of a microchannel network with functional microfluidic modules, thus enabling the execution and automation of complicated chemical reactions in a single device. In this review, we summarize recent progresses on the development of integrated microfluidics-based chemical reactors for (i) parallel screening of in situ click chemistry libraries, (ii) multistep synthesis of radiolabeled imaging probes for positron emission tomography (PET), (iii) sequential preparation of individually addressable conducting polymer nanowire (CPNW), and (iv) solid-phase synthesis of DNA oligonucleotides. These proof-of-principle demonstrations validate the feasibility and set a solid foundation for exploring a broad application of the integrated microfluidic system.

  4. Commercialization of microfluidic devices.

    PubMed

    Volpatti, Lisa R; Yetisen, Ali K

    2014-07-01

    Microfluidic devices offer automation and high-throughput screening, and operate at low volumes of consumables. Although microfluidics has the potential to reduce turnaround times and costs for analytical devices, particularly in medical, veterinary, and environmental sciences, this enabling technology has had limited diffusion into consumer products. This article analyzes the microfluidics market, identifies issues, and highlights successful commercialization strategies. Addressing niche markets and establishing compatibility with existing workflows will accelerate market penetration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Microfluidics for manipulating cells.

    PubMed

    Mu, Xuan; Zheng, Wenfu; Sun, Jiashu; Zhang, Wei; Jiang, Xingyu

    2013-01-14

    Microfluidics, a toolbox comprising methods for precise manipulation of fluids at small length scales (micrometers to millimeters), has become useful for manipulating cells. Its uses range from dynamic management of cellular interactions to high-throughput screening of cells, and to precise analysis of chemical contents in single cells. Microfluidics demonstrates a completely new perspective and an excellent practical way to manipulate cells for solving various needs in biology and medicine. This review introduces and comments on recent achievements and challenges of using microfluidics to manipulate and analyze cells. It is believed that microfluidics will assume an even greater role in the mechanistic understanding of cell biology and, eventually, in clinical applications.

  6. Micro-fluidic interconnect

    DOEpatents

    Okandan, Murat; Galambos, Paul C.; Benavides, Gilbert L.; Hetherington, Dale L.

    2006-02-28

    An apparatus for simultaneously aligning and interconnecting microfluidic ports is presented. Such interconnections are required to utilize microfluidic devices fabricated in Micro-Electromechanical-Systems (MEMS) technologies, that have multiple fluidic access ports (e.g. 100 micron diameter) within a small footprint, (e.g. 3 mm.times.6 mm). Fanout of the small ports of a microfluidic device to a larger diameter (e.g. 500 microns) facilitates packaging and interconnection of the microfluidic device to printed wiring boards, electronics packages, fluidic manifolds etc.

  7. Development of a microfluidic device for detection of pathogens in oral samples using upconverting phosphor technology (UPT).

    PubMed

    Abrams, William R; Barber, Cheryl A; McCann, Kurt; Tong, Gary; Chen, Zongyuan; Mauk, Michael G; Wang, Jing; Volkov, Alex; Bourdelle, Pete; Corstjens, Paul L A M; Zuiderwijk, Michel; Kardos, Keith; Li, Shang; Tanke, Hans J; Sam Niedbala, R; Malamud, Daniel; Bau, Haim

    2007-03-01

    Confirmatory detection of diseases, such as HIV and HIV-associated pathogens in a rapid point-of-care (POC) diagnostic remains a goal for disease control, prevention, and therapy. If a sample could be analyzed onsite with a verified result, the individual could be counseled immediately and appropriate therapy initiated. Our group is focused on developing a microfluidic "lab-on-a-chip" that will simultaneously identify antigens, antibodies, RNA, and DNA using a single oral sample. The approach has been to design individual modules for each assay that uses similar components (e.g., valves, heaters, metering chambers, mixers) installed on a polycarbonate base with a common reporter system. Assay miniaturization reduces the overall analysis time, increases accuracy by simultaneously identifying multiple targets, and enhances detector sensitivity by upconverting phosphor technology (UPT). Our microfluidic approach employs four interrelated components: (1) sample acquisition-OraSure UPlink collectors that pick-up and release bacteria, soluble analytes, and viruses from an oral sample; (2) microfluidic processing-movement of microliter volumes of analyte, target analyte extraction and amplification; (3) detection of analytes using UPT particles in a lateral flow system; and (4) software for processing the results. Ultimately, the oral-based microscale diagnostic system will detect viruses and bacteria, associated pathogen antigens and nucleic acids, and antibodies to these pathogens.

  8. Liquid chromatography/tandem mass spectrometric bioanalysis using normal-phase columns with aqueous/organic mobile phases - a novel approach of eliminating evaporation and reconstitution steps in 96-well SPE.

    PubMed

    Naidong, Weng; Shou, Wilson Z; Addison, Thomas; Maleki, Saber; Jiang, Xiangyu

    2002-01-01

    Bioanalytical methods using automated 96-well solid-phase extraction (SPE) and liquid chromatography with electrospray tandem mass spectrometry (LC/MS/MS) are widely used in the pharmaceutical industry. SPE methods typically require manual steps of drying of the eluates and reconstituting of the analytes with a suitable injection solvent possessing elution strength weaker than the mobile phase. In this study, we demonstrated a novel approach of eliminating these two steps in 96-well SPE by using normal-phase LC/MS/MS methods with low aqueous/high organic mobile phases, which consisted of 70-95% organic solvent, 5-30% water, and small amount of volatile acid or buffer. While the commonly used SPE elution solvents (i.e. acetonitrile and methanol) have stronger elution strength than a mobile phase on reversed-phase chromatography, they are weaker elution solvents than a mobile phase for normal-phase LC/MS/MS and therefore can be injected directly. Analytical methods for a range of polar pharmaceutical compounds, namely, omeprazole, metoprolol, fexofenadine, pseudoephedrine as well as rifampin and its metabolite 25-desacetyl-rifampin, in biological fluids, were developed and optimized based on the foregoing principles. As a result of the time saving, a batch of 96 samples could be processed in one hour. These bioanalytical LC/MS/MS methods were validated according to "Guidance for Industry - Bioanalytical Method Validation" recommended by the Food and Drug Administration (FDA) of the United States.

  9. β-Cyclodextrin enhanced on-line organic solvent field-amplified sample stacking in capillary zone electrophoresis for analysis of ambroxol in human plasma, following liquid-liquid extraction in the 96-well format.

    PubMed

    Li, Ji; Bi, Youwei; Wang, Li; Sun, Fanlu; Chen, Zhao; Xu, Guili; Fan, Guorong

    2012-07-01

    A field-amplified sample stacking (FASS) and capillary zone electrophoresis (CZE) method is described for the quantification of ambroxol hydrochloride in human plasma, following liquid-liquid extraction in the 96-well format. The separation was carried out at 25 °C in a 31.2 cm × 75 μm fused-silica capillary with an applied voltage of 15 kV. The background electrolyte (BGE) was composed of 6.25 mM borate-25 mM phosphate (pH 3.0) and 1mM β-cyclodextrin. The detection wavelength was 210 nm. Clean-up and preconcentration of plasma biosamples were developed by 96-well format liquid-liquid extraction (LLE). In this study, FASS in combination with β-cyclodextrin enhanced the sensitivity about 60-70 fold in total. The method was suitably validated with respect to stability, specificity, linearity, lower limit of quantitation, accuracy, precision, extraction recovery and robustness. The calibration graph was linear for ambroxol hydrochloride from 2 to 500 ng/ml. The lower limit of quantification was 2 ng/ml. The intra- and inter-day precisions of lowest limit of quantification (LLOQ) were 9.61 and 11.80%, respectively. The method developed was successfully applied to the evaluation of clinical pharmacokinetic study of ambroxol hydrochloride tablet after oral administration to 12 healthy volunteers. Copyright © 2012. Published by Elsevier B.V.

  10. Detecting and Trapping of a Single C. elegans Worm in a Microfluidic Chip for Automated Microplate Dispensing.

    PubMed

    Desta, Israel T; Al-Sharif, Abdelrazak; AlGharibeh, Nour; Mustafa, Nahal; Orozaliev, Ajymurat; Giakoumidis, Nikolaos; Gunsalus, Kristin C; Song, Yong-Ak

    2017-08-01

    Microfluidic devices offer new technical possibilities for a precise manipulation of Caenorhabditis elegans due to the comparable length scale. C. elegans is a small, free-living nematode worm that is a popular model system for genetic, genomic, and high-throughput experimental studies of animal development and neurobiology. In this paper, we demonstrate a microfluidic system in polydimethylsiloxane (PDMS) for dispensing of a single C. elegans worm into a 96-well plate. It consists of two PDMS layers, a flow and a control layer. Using five microfluidic pneumatic valves in the control layer, a single worm is trapped upon optical detection with a pair of optical fibers integrated perpendicular to the constriction channel and then dispensed into a microplate well with a dispensing tip attached to a robotic handling system. Due to its simple design and facile fabrication, we expect that our microfluidic chip can be expanded to a multiplexed dispensation system of C. elegans worms for high-throughput drug screening.

  11. Microfluidics and Coagulation Biology

    PubMed Central

    Colace, Thomas V.; Tormoen, Garth W.

    2014-01-01

    The study of blood ex vivo can occur in closed or open systems, with or without flow. Microfluidic devices facilitate measurements of platelet function, coagulation biology, cellular biorheology, adhesion dynamics, pharmacology, and clinical diagnostics. An experimental session can accommodate 100s to 1000s of unique clotting events. Using microfluidics, thrombotic events can be studied on defined surfaces of biopolymers, matrix proteins, and tissue factor under constant flow rate or constant pressure drop conditions. Distinct shear rates can be created on a device with a single perfusion pump. Microfluidic devices facilitated the determination of intraluminal thrombus permeability and the discovery that platelet contractility can be activated by a sudden decrease in flow. Microfluidics are ideal for multicolor imaging of platelets, fibrin, and phosphatidylserine and provide a human blood analog to the mouse injury models. Overall, microfluidic advances offer many opportunities for research, drug testing under relevant hemodynamic conditions, and clinical diagnostics. PMID:23642241

  12. Unconventional microfluidics: expanding the discipline.

    PubMed

    Nawaz, Ahmad Ahsan; Mao, Xiaole; Stratton, Zackary S; Huang, Tony Jun

    2013-04-21

    Since its inception, the discipline of microfluidics has been harnessed for innovations in the biomedicine/chemistry fields-and to great effect. This success has had the natural side-effect of stereotyping microfluidics as a platform for medical diagnostics and miniaturized lab processes. But microfluidics has more to offer. And very recently, some researchers have successfully applied microfluidics to fields outside its traditional domains. In this Focus article, we highlight notable examples of such "unconventional" microfluidics applications (e.g., robotics, electronics). It is our hope that these early successes in unconventional microfluidics prompt further creativity, and inspire readers to expand the microfluidics discipline.

  13. Unconventional microfluidics: expanding the discipline

    PubMed Central

    Nawaz, Ahmad Ahsan; Mao, Xiaole; Stratton, Zackary S.; Huang, Tony Jun

    2014-01-01

    Since its inception, the discipline of microfluidics has been harnessed for innovations in the biomedicine/chemistry fields—and to great effect. This success has had the natural side-effect of stereotyping microfluidics as a platform for medical diagnostics and miniaturized lab processes. But microfluidics has more to offer. And very recently, some researchers have successfully applied microfluidics to fields outside its traditional domains. In this Focus article, we highlight notable examples of such “unconventional” microfluidics applications (e.g., robotics, electronics). It is our hope that these early successes in unconventional microfluidics prompt further creativity, and inspire readers to expand the microfluidics discipline. PMID:23478651

  14. Two new techniques for sample preparation in bioanalysis: microextraction in packed sorbent (MEPS) and use of a bonded monolith as sorbent for sample preparation in polypropylene tips for 96-well plates.

    PubMed

    Blomberg, Lars G

    2009-02-01

    Analytical methods providing high throughput are required for the ever increasing number of samples in bioanalysis. Currently, the method of choice in bioanalysis is LC-MS-MS. This method is quite rapid and thereby the focus has been directed to sample preparation as being a bottleneck in total analysis systems. It has become necessary to develop sample preparation techniques to a new improved level. This development has been based on a systematic and scientific approach. The key factors in this development have been miniaturization, integration, and automation of the techniques. This review provides a short overview of recent developments. Special emphasis is on two techniques: microextraction in packed syringe (MEPS) and use of a monolithic acrylamide plug as sorbent in polypropylene tips primarily intended for use with 96-well plate systems.

  15. A simple 96-well liquid-liquid extraction with a mixture of acetonitrile and methyl t-butyl ether for the determination of a drug in human plasma by high-performance liquid chromatography with tandem mass spectrometry.

    PubMed

    Xue, Y-J; Pursley, Janice; Arnold, Mark E

    2004-02-04

    A simple 96-well plate liquid-liquid extraction (LLE), liquid chromatography/tandem mass spectrometry (LC/MS/MS) method has been developed and validated for the determination of a basic drug candidate in human plasma. Against the wisdom of conventional approaches, an aqueous/organic miscible solvent, acetonitrile, was used for liquid-liquid extraction along with methyl t-butyl ether. The use of acetonitrile effectively eliminated the formation of the irregular emulsion between aqueous/organic interfaces and modulated the polarity of the extraction solvents to achieve the desired recovery. This approach, which solved the emulsion problem, permitted the method to be automated using standard 96-well plate technology. A practical application was demonstrated through the use of this technique in the measurement of a novel drug in human plasma samples by LC/MS/MS. Chromatographic separation was achieved isocratically on a Phenomenox C18(2) Luna column (2 mm x 50 mm, 5 microm). The mobile phase contained 60% of 0.1% formic acid and 40% acetonitrile. Detection was by positive ion electrospray tandem mass spectrometry. The standard curve, which ranged from 1.22 to 979ng/ml, was fitted to a 1/x2 weighted quadratic regression model. The validation results show that this method was very rugged and had excellent precision and accuracy. The actual sample analysis results further demonstrated that this extraction procedure is well suited for real life applications. It is expected that with some modifications, this approach can be applied for the extraction of similar compounds from various biological fluids.

  16. A 96-well single-pot protein precipitation, liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the determination of muraglitazar, a novel diabetes drug, in human plasma.

    PubMed

    Xue, Y-J; Liu, Jane; Pursley, Janice; Unger, Steve

    2006-02-02

    A 96-well single-pot protein precipitation, liquid chromatography/tandem mass spectrometry (LC/MS/MS) method has been developed and validated for the determination of muraglitazar, a PPAR alpha/gamma dual agonist, in human plasma. The internal standard, a chemical analogue, was dissolved in acetonitrile containing 0.1% formic acid. The solvent system was also served as a protein precipitation reagent. Human plasma samples (0.1 mL) and the internal standard solution (0.3 mL) were added to a 96-well plate. The plate was vortexed for 1 min and centrifuged for 5 min. Then the supernatant layers were directly injected into the LC/MS/MS system. The chromatographic separation was achieved isocratically on a Phenomenox C18(2) Luna column (2 mm x 50 mm, 5 microm). The mobile phase contained 20/80 (v/v) of water and acetonitrile containing 0.1% formic acid. Detection was by positive ion electrospray tandem mass spectrometry on a Sciex API 3000. The standard curve, which ranged from 1 to 1000 ng/mL, was fitted to a 1/x weighted quadratic regression model. This single-pot approach effectively eliminated three time consuming sample preparation steps: sample transfer, dry-down, and reconstitution before the injection, while it preserved all the benefits of the traditional protein precipitation. By properly adjusting the autosampler needle offset level, only the supernatant was injected, without disturbing the precipitated proteins in the bottom. As a result, the quality of chromatography and column life were not compromised. After more than 600 injections, there was only slightly increase of column back-pressure. The validation results demonstrated that this method was rugged and provide satisfactory precision and accuracy. The method has been successfully applied to analyze human plasma samples in support of a first-in-man study. This method has also been validated in monkey and mouse plasma for the determination of muraglitazar.

  17. High-throughput sample preparation for the quantitation of acephate, methamidophos, omethoate, dimethoate, ethylenethiourea, and propylenethiourea in human urine using 96-well-plate automated extraction and high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Jayatilaka, Nayana K; Angela Montesano, M; Whitehead, Ralph D; Schloth, Sara J; Needham, Larry L; Barr, Dana Boyd

    2011-07-01

    Acephate, methamidophos, o-methoate, and dimethoate are organophosphorus pesticides, and ethylenethiouria and propylenethiourea are two metabolites from the bisdithiocarbamate fungicide family. They are some of the most widely used pesticides and fungicides in agriculture both domestically and abroad. The existing high-performance liquid chromatography (HPLC)-tandem mass spectrometry (MS/MS) method for the measurement of these compounds in human urine was improved by using a 96-well plate format sample preparation; the use of HPLC-MS/MS was comparable with a concentration range of 0.125 to 50 ng/ml. Deuterium-labeled acephate, ethylenethiouria, and methamidophos were used as internal standards. The sample preparation procedure, in the 96-well format with a 0.8-ml urine sample size, uses lyophilization of samples, followed by extraction with dichloromethane. The analytes were chromatographed on a Zorbax SB-C3 (4.6 × 150 mm, 5.0-μm) column with gradient elution by using 0.1% formic acid in aqueous solution (solvent A) and 0.1% formic acid in methanol (solvent B) mobile phase at a flow rate of 1 ml/min. Quantitative analysis was performed by atmospheric pressure chemical ionization source in positive ion mode using multiple-reaction monitoring of the precursor-to-product ion pairs for the analytes on a TSQ Quantum Ultra HPLC-MS/MS. Repeated analyses of urine samples spiked with high (15 ng/ml), medium (5 ng/ml), and low (1 ng/ml) concentrations of the analytes gave relative SDs of <13%. The limits of detection were in the range of 0.004-0.01 ng/ml. The method also has high accuracy, high precision, and excellent extraction recovery. Furthermore, the improved sample preparation method decreased the cost and labor required while effectively doubling the analytic throughput with minimal matrix effect.

  18. Applying microfluidics to electrophysiology.

    PubMed

    Eddington, David T

    2007-01-01

    Microfluidics can be integrated with standard electrophysiology techniques to allow new experimental modalities. Specifically, the motivation for the microfluidic brain slice device is discussed including how the device docks to standard perfusion chambers and the technique of passive pumping which is used to deliver boluses of neuromodulators to the brain slice. By simplifying the device design, we are able to achieve a practical solution to the current unmet electrophysiology need of applying multiple neuromodulators across multiple regions of the brain slice. This is achieved by substituting the standard coverglass substrate of the perfusion chamber with a thin microfluidic device bonded to the coverglass substrate. This was then attached to the perfusion chamber and small holes connect the open-well of the perfusion chamber to the microfluidic channels buried within the microfluidic substrate. These microfluidic channels are interfaced with ports drilled into the edge of the perfusion chamber to access and deliver stimulants. This project represents how the field of microfluidics is transitioning away from proof-of concept device demonstrations and into practical solutions for unmet experimental and clinical needs.

  19. Applying Microfluidics to Electrophysiology

    PubMed Central

    Eddington, David T.

    2007-01-01

    Microfluidics can be integrated with standard electrophysiology techniques to allow new experimental modalities. Specifically, the motivation for the microfluidic brain slice device is discussed including how the device docks to standard perfusion chambers and the technique of passive pumping which is used to deliver boluses of neuromodulators to the brain slice. By simplifying the device design, we are able to achieve a practical solution to the current unmet electrophysiology need of applying multiple neuromodulators across multiple regions of the brain slice. This is achieved by substituting the standard coverglass substrate of the perfusion chamber with a thin microfluidic device bonded to the coverglass substrate. This was then attached to the perfusion chamber and small holes connect the open-well of the perfusion chamber to the microfluidic channels buried within the microfluidic substrate. These microfluidic channels are interfaced with ports drilled into the edge of the perfusion chamber to access and deliver stimulants. This project represents how the field of microfluidics is transitioning away from proof-of concept device demonstrations and into practical solutions for unmet experimental and clinical needs. PMID:18989410

  20. Microfluidics and microbial engineering.

    PubMed

    Kou, Songzi; Cheng, Danhui; Sun, Fei; Hsing, I-Ming

    2016-02-07

    The combination of microbial engineering and microfluidics is synergistic in nature. For example, microfluidics is benefiting from the outcome of microbial engineering and many reported point-of-care microfluidic devices employ engineered microbes as functional parts for the microsystems. In addition, microbial engineering is facilitated by various microfluidic techniques, due to their inherent strength in high-throughput screening and miniaturization. In this review article, we firstly examine the applications of engineered microbes for toxicity detection, biosensing, and motion generation in microfluidic platforms. Secondly, we look into how microfluidic technologies facilitate the upstream and downstream processes of microbial engineering, including DNA recombination, transformation, target microbe selection, mutant characterization, and microbial function analysis. Thirdly, we highlight an emerging concept in microbial engineering, namely, microbial consortium engineering, where the behavior of a multicultural microbial community rather than that of a single cell/species is delineated. Integrating the disciplines of microfluidics and microbial engineering opens up many new opportunities, for example in diagnostics, engineering of microbial motors, development of portable devices for genetics, high throughput characterization of genetic mutants, isolation and identification of rare/unculturable microbial species, single-cell analysis with high spatio-temporal resolution, and exploration of natural microbial communities.

  1. Nanomaterials meet microfluidics.

    PubMed

    Pumera, Martin

    2011-05-28

    Nanomaterials and lab-on-a-chip platforms have undergone enormous development during the past decade. Here, we present an overview of how microfluidics benefited from the use of nanomaterials for the enhanced separation and detection of analytes. We also discuss how nanomaterials benefit from microfluidics in terms of synthesis and in terms of the simulation of environments for nanomotors and nanorobots. In our opinion, the "marriage" of nanomaterials and microfluidics is highly beneficial and is expected to solve vital challenges in related fields. © The Royal Society of Chemistry 2011

  2. Cell manipulation in microfluidics.

    PubMed

    Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu

    2013-06-01

    Recent advances in the lab-on-a-chip field in association with nano/microfluidics have been made for new applications and functionalities to the fields of molecular biology, genetic analysis and proteomics, enabling the expansion of the cell biology field. Specifically, microfluidics has provided promising tools for enhancing cell biological research, since it has the ability to precisely control the cellular environment, to easily mimic heterogeneous cellular environment by multiplexing, and to analyze sub-cellular information by high-contents screening assays at the single-cell level. Various cell manipulation techniques in microfluidics have been developed in accordance with specific objectives and applications. In this review, we examine the latest achievements of cell manipulation techniques in microfluidics by categorizing externally applied forces for manipulation: (i) optical, (ii) magnetic, (iii) electrical, (iv) mechanical and (v) other manipulations. We furthermore focus on history where the manipulation techniques originate and also discuss future perspectives with key examples where available.

  3. Microfluidic chemical reaction circuits

    SciTech Connect

    Lee, Chung-cheng; Sui, Guodong; Elizarov, Arkadij; Kolb, Hartmuth C; Huang, Jiang; Heath, James R; Phelps, Michael E; Quake, Stephen R; Tseng, Hsian-rong; Wyatt, Paul; Daridon, Antoine

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  4. Microfluidic multiplexing in bioanalyses.

    PubMed

    Araz, M Kursad; Tentori, Augusto M; Herr, Amy E

    2013-10-01

    The importance of biological assays spans from clinical diagnostics to environmental monitoring. Simultaneous detection of multiple analytes enhances the efficacy of bioassays by providing more data per assay under standardized conditions. Nevertheless, simultaneous handling and assaying of multiple samples, targets, and experimental conditions can be laborious, reagent consuming, and time intensive. Given these demands, microfluidic platforms have emerged over the past two decades as well-suited approaches for multiplexed assays. Microfluidic design supports integration of assay steps and reproducible sample manipulation across large sets of conditions--all relevant to multiplexed assays. Taken together, reduced reagent consumption, faster assay times, and potential for automation stemming from microfluidic assay design are attractive and needed multiplexed assay performance attributes. This review highlights recent advances in multiplexed bioanalyses benefitting from microfluidic integration.

  5. Microfluidics: reframing biological enquiry.

    PubMed

    Duncombe, Todd A; Tentori, Augusto M; Herr, Amy E

    2015-09-01

    The underlying physical properties of microfluidic tools have led to new biological insights through the development of microsystems that can manipulate, mimic and measure biology at a resolution that has not been possible with macroscale tools. Microsystems readily handle sub-microlitre volumes, precisely route predictable laminar fluid flows and match both perturbations and measurements to the length scales and timescales of biological systems. The advent of fabrication techniques that do not require highly specialized engineering facilities is fuelling the broad dissemination of microfluidic systems and their adaptation to specific biological questions. We describe how our understanding of molecular and cell biology is being and will continue to be advanced by precision microfluidic approaches and posit that microfluidic tools - in conjunction with advanced imaging, bioinformatics and molecular biology approaches - will transform biology into a precision science.

  6. Microfluidics in inorganic chemistry.

    PubMed

    Abou-Hassan, Ali; Sandre, Olivier; Cabuil, Valérie

    2010-08-23

    The application of microfluidics in chemistry has gained significant importance in the recent years. Miniaturized chemistry platforms provide controlled fluid transport, rapid chemical reactions, and cost-saving advantages over conventional reactors. The advantages of microfluidics have been clearly established in the field of analytical and bioanalytical sciences and in the field of organic synthesis. It is less true in the field of inorganic chemistry and materials science; however in inorganic chemistry it has mostly been used for the separation and selective extraction of metal ions. Microfluidics has been used in materials science mainly for the improvement of nanoparticle synthesis, namely metal, metal oxide, and semiconductor nanoparticles. Microfluidic devices can also be used for the formulation of more advanced and sophisticated inorganic materials or hybrids.

  7. Automated 96-well solid phase extraction and hydrophilic interaction liquid chromatography-tandem mass spectrometric method for the analysis of cetirizine (ZYRTEC) in human plasma--with emphasis on method ruggedness.

    PubMed

    Song, Qi; Junga, Heiko; Tang, Yong; Li, Austin C; Addison, Tom; McCort-Tipton, Melanie; Beato, Brian; Naidong, Weng

    2005-01-05

    A high-throughput bioanalytical method based on automated sample transfer, automated solid phase extraction, and hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) analysis, has been developed for the determination of cetirizine, a selective H(1)-receptor antagonist. Deuterated cetirizine (cetirizine-d(8)) was synthesized as described and was used as the internal standard. Samples were transferred into 96-well plates using an automated sample handling system. Automated solid phase extraction was carried out using a 96-channel programmable liquid-handling workstation. Solid phase extraction 96-well plate on polymer sorbent (Strata X) was used to extract the analyte. The extracted samples were injected onto a Betasil silica column (50 x 3, 5 microm) using a mobile phase of acetonitrile-water-acetic acid-trifluroacetic acid (93:7:1:0.025, v/v/v/v) at a flow rate of 0.5 ml/min. The chromatographic run time is 2.0 min per injection, with retention time of cetirizine and cetirizine-d(8) both at 1.1 min. The system consisted of a Shimadzu HPLC system and a PE Sciex API 3000 or API 4000 tandem mass spectrometer with (+) ESI. The method has been validated over the concentration range of 1.00-1000 ng/ml cetirizine in human plasma, based on a 0.10-ml sample size. The inter-day precision and accuracy of the quality control (QC) samples demonstrated <3.0% relative standard deviation (R.S.D.) and <6.0% relative error (RE). Stability of cetirizine in stock solution, in plasma, and in reconstitution solution was established. The absolute extraction recovery was 85.8%, 84.5%, and 88.0% at 3, 40, and 800 ng/ml, respectively. The recovery for the internal standard was 84.1%. No adverse matrix effects were noticed for this assay. The automation of the sample preparation steps not only increased the analysis throughput, but also increased method ruggedness. The use of a stable isotope-labeled internal standard further improved the method ruggedness

  8. Development and application of a high-throughput sample cleanup process based on 96-well plate for simultaneous determination of 16 steroids in biological matrices using liquid chromatography-triple quadrupole mass spectrometry.

    PubMed

    Luo, Guanzhong; Li, Youxin; Bao, James J

    2016-02-01

    A novel high-throughput sample pretreatment system was developed by the integration of protein precipitation (PP), phospholipid removal (PPR), and hollow fiber liquid-phase microextraction (HF-LPME) into two simple 96-well plates and a matching 96-grid lid. With this system, 16 steroids were separated from biological matrices of plasma, milk, and urine and analyzed by liquid chromatography-triple quadrupole mass spectrometry. In the tandem sample cleanup process, the prepositive PP and PPR step preliminarily removed some of the interferences from the biological matrices. The following HF-LPME step kept the residual interference out of the hollow fiber and enriched the steroids in the hollow fiber to achieve high sensitivity. By a series of method optimizations, acetonitrile was chosen as the crash solvent for PP and PPR. A mixture of octanol and toluene (1:1 v/v) was used as the acceptor phase for HF-LPME. The extraction was conducted at 80 rpm for 50 min in a donor phase containing 1 mL 20% sodium chloride at 25 °C. Under these conditions, the limits of detection for the 16 steroids were 3.6-300.0 pg(.)mL(-1) in plasma, 3.0-270.0 pg·mL(-1) in milk, and 2.2-210.0 pg(.)mL(-1) in urine. The recoveries of the 16 steroids were 81.9-97.9% in plasma (relative standard deviation 1.0-8.0%), 80.6-97.7% in milk (relative standard deviation 0.8-5.4%), and 87.3-98.7% in urine (relative standard deviation 1.0-4.9%). Further, the integrated 96-well platform of PP, PPR, and HF-LPME enabled us to run this assay in an automatic and high-throughput fashion. The reliability of the method was further corroborated by evaluation of its applicability in plasma and urine samples from volunteers and fresh bovine milk from local dairy enterprises.

  9. Droplet Microfluidic System with On-Demand Trapping and Releasing of Droplet for Drug Screening Applications.

    PubMed

    Courtney, Matthew; Chen, Xiaoming; Chan, Sarah; Mohamed, Tarek; Rao, Praveen P N; Ren, Carolyn L

    2017-01-03

    96-Well plate has been the traditional method used for screening drug compounds libraries for potential bioactivity. Although this method has been proven successful in testing dose-response analysis, the microliter consumption of expensive reagents and hours of reaction and analysis time call for innovative methods for improvements. This work demonstrates a droplet microfluidic platform that has the potential to significantly reduce the reagent consumption and shorten the reaction and analysis time by utilizing nanoliter-sized droplets as a replacement of wells. This platform is evaluated by applying it to screen drug compounds that inhibit the tau-peptide aggregation, a phenomena related to Alzheimer's disease. In this platform, sample reagents are first dispersed into nanolitre-sized droplets by an immiscible carrier oil and then these droplets are trapped on-demand in the downstream of the microfluidic device. The relative decrease in fluorescence through drug inhibition is characterized using an inverted epifluorescence microscope. Finally, the trapped droplets are released on-demand after each test by manipulating the applied pressures to the channel network which allows continuous processing. The testing results agree well with that obtained from 96-well plates with much lower sample consumption (∼200 times lower than 96-well plate) and reduced reaction time due to increased surface volume ratio (2.5 min vs 2 h).

  10. Electro-Microfluidic Packaging

    SciTech Connect

    BENAVIDES, GILBERT L.; GALAMBOS, PAUL C.

    2002-06-01

    Electro-microfluidics is experiencing explosive growth in new product developments. There are many commercial applications for electro-microfluidic devices such as chemical sensors, biological sensors, and drop ejectors for both printing and chemical analysis. The number of silicon surface micromachined electro-microfluidic products is likely to increase. Manufacturing efficiency and integration of microfluidics with electronics will become important. Surface micromachined microfluidic devices are manufactured with the same tools as IC's (integrated circuits) and their fabrication can be incorporated into the IC fabrication process. In order to realize applications for devices must be developed. An Electro-Microfluidic Dual In-line Package (EMDIP{trademark}) was developed surface micromachined electro-microfluidic devices, a practical method for getting fluid into these to be a standard solution that allows for both the electrical and the fluidic connections needed to operate a great variety of electro-microfluidic devices. The EMDIP{trademark} includes a fan-out manifold that, on one side, mates directly with the 200 micron diameter Bosch etched holes found on the device, and, on the other side, mates to lager 1 mm diameter holes. To minimize cost the EMDIP{trademark} can be injection molded in a great variety of thermoplastics which also serve to optimize fluid compatibility. The EMDIP{trademark} plugs directly into a fluidic printed wiring board using a standard dual in-line package pattern for the electrical connections and having a grid of multiple 1 mm diameter fluidic connections to mate to the underside of the EMDIP{trademark}.

  11. Flock-based microfluidics.

    PubMed

    Hitzbleck, Martina; Lovchik, Robert D; Delamarche, Emmanuel

    2013-05-21

    Flock-based microfluidics are created by depositing hydrophilic microfibers on an adhesive-coated substrate using an electric field. This enables the fabrication of self-powered microfluidics from one or more different kinds of fibers that form 2D and 3D flowpaths, which can wick 40 microliters of liquid per square centimeter. With this approach, large areas of functional wicking materials can be produced at extremely low cost.

  12. MEMS in microfluidic channels.

    SciTech Connect

    Ashby, Carol Iris Hill; Okandan, Murat; Michalske, Terry A.; Sounart, Thomas L.; Matzke, Carolyn M.

    2004-03-01

    Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.

  13. Surface acoustic wave microfluidics

    PubMed Central

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S.; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2014-01-01

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering, and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting, and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next. PMID:23900527

  14. Surface acoustic wave microfluidics.

    PubMed

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2013-09-21

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next.

  15. Automation of in-tip solid-phase microextraction in 96-well format for the determination of a model drug compound in human plasma by liquid chromatography with tandem mass spectrometric detection.

    PubMed

    Xie, W; Mullett, W M; Miller-Stein, C M; Pawliszyn, J

    2009-02-01

    Studies using in-tip solid phase microextraction (in-tip SPME) in a 96-well plate format are conducted to investigate the feasibility of SPME automation. The sample preparation process, including extraction and desorption, was fully automated and coupled with currently commercially available automated liquid handling systems. Several process parameters including extraction time and speed, and desorption time were investigated. An LC-MS/MS method has been developed and validated to determine the levels of a drug compound (MK-0533) in human plasma that demonstrates the suitability of this new approach. The developed method has a lower limit of quantitation (LLOQ) of 5 ng/mL when 0.25 mL of human plasma is processed and is validated in the concentration range of 5-2, 000 ng/mL. The successful application of the assay in clinical sample analysis indicates that in-tip SPME can be easily automated and has great potential to be used for high throughput quantitative determination of drugs in pharmaceutical industry.

  16. A novel approach to the simultaneous extraction and non-targeted analysis of the small molecules metabolome and lipidome using 96-well solid phase extraction plates with column-switching technology.

    PubMed

    Li, Yubo; Zhang, Zhenzhu; Liu, Xinyu; Li, Aizhu; Hou, Zhiguo; Wang, Yuming; Zhang, Yanjun

    2015-08-28

    This study combines solid phase extraction (SPE) using 96-well plates with column-switching technology to construct a rapid and high-throughput method for the simultaneous extraction and non-targeted analysis of small molecules metabolome and lipidome based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. This study first investigated the columns and analytical conditions for small molecules metabolome and lipidome, separated by an HSS T3 and BEH C18 columns, respectively. Next, the loading capacity and actuation duration of SPE were further optimized. Subsequently, SPE and column switching were used together to rapidly and comprehensively analyze the biological samples. The experimental results showed that the new analytical procedure had good precision and maintained sample stability (RSD<15%). The method was then satisfactorily applied to more widely analyze the small molecules metabolome and lipidome to test the throughput. The resulting method represents a new analytical approach for biological samples, and a highly useful tool for researches in metabolomics and lipidomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Automated liquid-liquid extraction based on 96-well plate format in conjunction with ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) for the quantitation of methoxsalen in human plasma.

    PubMed

    Yadav, Manish; Contractor, Pritesh; Upadhyay, Vivek; Gupta, Ajay; Guttikar, Swati; Singhal, Puran; Goswami, Sailendra; Shrivastav, Pranav S

    2008-09-01

    A sensitive, specific and high throughput bioanalytical method using automated sample processing via 96-well plate liquid-liquid extraction and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) has been developed for the determination of methoxsalen in human plasma. Plasma samples with ketoconazole as internal standard (IS) were prepared by employing 0.2 mL human plasma in ethyl acetate:dichloromethane (80:20, v/v). The chromatographic separation was achieved on a Waters Acquity UPLC BEH C18 column using isocratic mobile phase, consisting of 10 mM ammonium formate and acetonitrile (60:40, v/v), at a flow rate of 0.5 mL/min. The linear dynamic range was established over the concentration range 1.1-213.1 ng/mL for methoxsalen. The method was rugged and rapid with a total run time of 1.5 min. It was successfully applied to a pivotal bioequivalence study in 12 healthy human subjects after oral administration of 10 mg extended release methoxsalen formulation under fasting condition.

  18. Hybrid microfluidic systems: combining a polymer microfluidic toolbox with biosensors

    NASA Astrophysics Data System (ADS)

    Gärtner, Claudia; Kirsch, Stefanie; Anton, Birgit; Becker, Holger

    2007-01-01

    In this paper we present polymer based microfluidic chips which contain functional elements (electrodes, biosensors) made out of a different material (metals, silicon, organic semiconductors). These hybrid microfluidic devices allow the integration of additional functionality other than the simple manipulation of liquids in the chip and have been developed as a reaction to the increasing requirement for functional integration in microfluidics.

  19. Punch card programmable microfluidics.

    PubMed

    Korir, George; Prakash, Manu

    2015-01-01

    Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external components has remained elusive. Combining the idea of punch card programming with arbitrary fluid control, here we describe a self-contained, hand-crank powered, multiplex and robust programmable microfluidic platform. A paper tape encodes information as a series of punched holes. A mechanical reader/actuator reads these paper tapes and correspondingly executes operations onto a microfluidic chip coupled to the platform in a plug-and-play fashion. Enabled by the complexity of codes that can be represented by a series of holes in punched paper tapes, we demonstrate independent control of 15 on-chip pumps with enhanced mixing, normally-closed valves and a novel on-demand impact-based droplet generator. We demonstrate robustness of operation by encoding a string of characters representing the word "PUNCHCARD MICROFLUIDICS" using the droplet generator. Multiplexing is demonstrated by implementing an example colorimetric water quality assays for pH, ammonia, nitrite and nitrate content in different water samples. With its portable and robust design, low cost and ease-of-use, we envision punch card programmable microfluidics will bring complex control of microfluidic chips into field-based applications in low-resource settings and in the hands of children around the world.

  20. Validation and application of a liquid chromatography-tandem mass spectrometric method for the determination of GDC-0834 and its metabolite in human plasma using semi-automated 96-well protein precipitation.

    PubMed

    Shin, Young G; Jones, Steve A; Murakami, Stan C; Liu, Lichuan; Wong, Harvey; Buonarati, Michael H; Hop, Cornelis E C A

    2012-11-01

    A liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the determination of GDC-0834 and its amide hydrolysis metabolite (M1) in human plasma to support clinical development. The method consisted of semi-automated 96-well protein precipitation extraction for sample preparation and LC-MS/MS analysis in positive ion mode using TurboIonSpray® for analysis. D6-GDC-0834 and D6-M1 metabolite were used as internal standards. A linear regression (weighted 1/concentration(2) ) was used to fit calibration curves over the concentration range of 1 - 500 ng/mL for both GDC-0834 and M1 metabolite. The accuracy (percentage bias) at the lower limit of quantitation (LLOQ) was 5.20 and 0.100% for GDC-0834 and M1 metabolite, respectively. The precision (CV) for samples at the LLOQ was 3.13-8.84 and 5.20-8.93% for GDC-0834 and M1 metabolite, respectively. For quality control samples at 3, 200 and 400 ng/mL, the between-run CV was ≤ 7.38% for GDC-0834 and ≤ 8.20% for M1 metabolite. Between run percentage bias ranged from -2.76 to 6.98% for GDC-0834 and from -6.73 to 2.21% for M1 metabolite. GDC-0834 and M1 metabolite were stable in human plasma for 31 days at -20 and -70°C. This method was successfully applied to support a GDC-0834 human pharmacokinetic-based study.

  1. Validation of a sensitive and automated 96-well solid-phase extraction liquid chromatography-tandem mass spectrometry method for the determination of desloratadine and 3-hydroxydesloratadine in human plasma.

    PubMed

    Yang, Liyu; Clement, Robert P; Kantesaria, Bhavna; Reyderman, Larisa; Beaudry, Francis; Grandmaison, Charles; Di Donato, Lorella; Masse, Robert; Rudewicz, Patrick J

    2003-07-25

    To support clinical development, a liquid chromatographic-tandem mass spectrometric (LC-MS-MS) method was developed and validated for the determination of desloratadine (descarboethoxyloratadine) and 3-OH desloratadine (3-hydroxydescarboethoxyloratadine) concentrations in human plasma. The method consisted of automated 96-well solid-phase extraction for sample preparation and liquid chromatography/turbo ionspray tandem mass spectrometry for analysis. [2H(4)]Desloratadine and [2H(4)]3-OH desloratadine were used as internal standards (I.S.). A quadratic regression (weighted 1/concentration(2)) gave the best fit for calibration curves over the concentration range of 25-10000 pg/ml for both desloratadine and 3-OH desloratadine. There was no interference from endogenous components in the blank plasma tested. The accuracy (%bias) at the lower limit of quantitation (LLOQ) was -12.8 and +3.4% for desloratadine and 3-OH desloratadine, respectively. The precision (%CV) for samples at the LLOQ was 15.1 and 10.9% for desloratadine and 3-OH desloratadine, respectively. For quality control samples at 75, 1000 and 7500 pg/ml, the between run %CV was

  2. Development, validation and application of a 96-well enzymatic assay based on LC-ESI-MS/MS quantification for the screening of selective inhibitors against Mycobacterium tuberculosis purine nucleoside phosphorylase.

    PubMed

    Cattaneo, Giulia; Ubiali, Daniela; Calleri, Enrica; Rabuffetti, Marco; Höfner, Georg C; Wanner, Klaus T; De Moraes, Marcela C; Martinelli, Leonardo K B; Santos, Diógenes Santiago; Speranza, Giovanna; Massolini, Gabriella

    2016-11-02

    Mycobacterium tuberculosis (Mtb) purine nucleoside phosphorylase (PNP, EC 2.4.2.1) has been identified as a target for the development of specific inhibitors with potential antimycobacterial activity. We hereby described the development and validation of a new 96-well LC-ESI-MS/MS method to assess the inhibition activity of nucleoside analogues towards MtbPNP and the human PNP (HsPNP). Enzyme activity was determined by monitoring the phosphorolysis of inosine (Ino) to hypoxanthine (Hpx). The enzymatic assay (v = 0.5 mL, enzyme<0.2 μg/well, T = 37 °C) was performed with an overall time of about 15 min/plate for sample processing and 2 min/sample for LC-MS analysis. Validation of the quantification method met the criteria of the CDER guidance of FDA. Kinetic parameters were in agreement with those reported in literature (HsPNP KM = 0.150 ± 0.020 mM vs 0.133 ± 0.015 mM; MtbPNP KM = 0.060 ± 0.009 mM vs 0.040 ± 0.003 mM for Ino), thus demonstrating the reliability of the newly developed enzymatic assay. Preliminary inhibition assays confirmed the effects reported for Acyclovir (Acv) and Formycin A (FA) against HsPNP and MtbPNP. The validated enzymatic assay was applied to the evaluation of a set of 8-halo-, 8-amino-, 8-O-alkyl-substituted purine ribonucleosides synthesized on purpose as potential inhibitors against MtbPNP. The assayed 8-substituted ribonucleosides did not exert a significant inhibitory effect against the tested enzymes up to 1 mM.

  3. Liquid metal enabled microfluidics.

    PubMed

    Khoshmanesh, Khashayar; Tang, Shi-Yang; Zhu, Jiu Yang; Schaefer, Samira; Mitchell, Arnan; Kalantar-Zadeh, Kourosh; Dickey, Michael D

    2017-03-14

    Several gallium-based liquid metal alloys are liquid at room temperature. As 'liquid', such alloys have a low viscosity and a high surface tension while as 'metal', they have high thermal and electrical conductivities, similar to mercury. However, unlike mercury, these liquid metal alloys have low toxicity and a negligible vapor pressure, rendering them much safer. In comparison to mercury, the distinguishing feature of these alloys is the rapid formation of a self-limiting atomically thin layer of gallium oxide over their surface when exposed to oxygen. This oxide layer changes many physical and chemical properties of gallium alloys, including their interfacial and rheological properties, which can be employed and modulated for various applications in microfluidics. Injecting liquid metal into microfluidic structures has been extensively used to pattern and encapsulate highly deformable and reconfigurable electronic devices including electrodes, sensors, antennas, and interconnects. Likewise, the unique features of liquid metals have been employed for fabricating miniaturized microfluidic components including pumps, valves, heaters, and electrodes. In this review, we discuss liquid metal enabled microfluidic components, and highlight their desirable attributes including simple fabrication, facile integration, stretchability, reconfigurability, and low power consumption, with promising applications for highly integrated microfluidic systems.

  4. Polycarbonate based three-phase nanocomposite dielectrics

    NASA Astrophysics Data System (ADS)

    Sain, P. K.; Goyal, R. K.; Prasad, Y. V. S. S.; Bhargava, A. K.

    2016-08-01

    Three-phase polycarbonate (PC) matrix nanocomposites are prepared using the solution method. One of the nanocomposite fillers is dielectric and the other is conducting. Lead zirconate titanate (PZT) is used as the dielectric filler. The conducting fillers, nano-Cu and multi-walled carbon nanotubes (MWCNTs), are used to make two different nanocomposites, MWCNT-PZT-PC and Cu-PZT-PC. The prepared nanocomposites are characterized using density measurement, x-ray diffractometry, scanning electron microscopy, energy dispersive x-ray spectroscopy, and differential scanning calorimetry. Percolation is absent in both three-phase nanocomposites within the study’s concentration window of conducting fillers. The dielectric properties of the nanocomposites are evaluated using a precision impedance analyser. The dielectric constant of the Cu-PZT-PC nanocomposite increases to 14 (a dissipation factor of 0.17), whereas in the case of the MWCNT-PZT-PC nanocomposite it increases to 8.5 (a dissipation factor of 0.002). The melting point of both nanocomposites decreases with respect to the control PC. The frequency (1 kHz to 1 MHz) and temperature (room temperature to 200 °C) dependence of the dielectric constant and dissipation factor are examined. For the Cu-PZT-PC nanocomposites, the dielectric constant decreases with increasing frequency, whereas in the case of the MWCNT-PZT-PC nanocomposites the dielectric constant is almost constant. The dielectric constant and dissipation factor exhibit a slight temperature dependence.

  5. Microfluidic Mixing: A Review

    PubMed Central

    Lee, Chia-Yen; Chang, Chin-Lung; Wang, Yao-Nan; Fu, Lung-Ming

    2011-01-01

    The aim of microfluidic mixing is to achieve a thorough and rapid mixing of multiple samples in microscale devices. In such devices, sample mixing is essentially achieved by enhancing the diffusion effect between the different species flows. Broadly speaking, microfluidic mixing schemes can be categorized as either “active”, where an external energy force is applied to perturb the sample species, or “passive”, where the contact area and contact time of the species samples are increased through specially-designed microchannel configurations. Many mixers have been proposed to facilitate this task over the past 10 years. Accordingly, this paper commences by providing a high level overview of the field of microfluidic mixing devices before describing some of the more significant proposals for active and passive mixers. PMID:21686184

  6. Microfluidic platforms for mechanobiology

    PubMed Central

    Polacheck, William J.; Li, Ran; Uzel, Sebastien G. M.

    2013-01-01

    Mechanotransduction has been a topic of considerable interest since early studies demonstrated a link between mechanical force and biological response. Until recently, studies of fundamental phenomena were based either on in vivo experiments with limited control or direct access, or on large-scale in vitro studies lacking many of the potentially important physiological factors. With the advent of microfluidics, many of the previous limitations of in vitro testing were eliminated or reduced through greater control or combined functionalities. At the same time, imaging capabilities were tremendously enhanced. In this review, we discuss how microfluidics has transformed the study of mechanotransduction. This is done in the context of the various cell types that exhibit force-induced responses and the new biological insights that have been elucidated. We also discuss new microfluidic studies that could produce even more realistic models of in vivo conditions by combining multiple stimuli or creating a more realistic microenvironment. PMID:23649165

  7. Punch Card Programmable Microfluidics

    PubMed Central

    Korir, George; Prakash, Manu

    2015-01-01

    Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external components has remained elusive. Combining the idea of punch card programming with arbitrary fluid control, here we describe a self-contained, hand-crank powered, multiplex and robust programmable microfluidic platform. A paper tape encodes information as a series of punched holes. A mechanical reader/actuator reads these paper tapes and correspondingly executes operations onto a microfluidic chip coupled to the platform in a plug-and-play fashion. Enabled by the complexity of codes that can be represented by a series of holes in punched paper tapes, we demonstrate independent control of 15 on-chip pumps with enhanced mixing, normally-closed valves and a novel on-demand impact-based droplet generator. We demonstrate robustness of operation by encoding a string of characters representing the word “PUNCHCARD MICROFLUIDICS” using the droplet generator. Multiplexing is demonstrated by implementing an example colorimetric water quality assays for pH, ammonia, nitrite and nitrate content in different water samples. With its portable and robust design, low cost and ease-of-use, we envision punch card programmable microfluidics will bring complex control of microfluidic chips into field-based applications in low-resource settings and in the hands of children around the world. PMID:25738834

  8. Microfluidic Flame Barrier

    NASA Technical Reports Server (NTRS)

    Mungas, Gregory S. (Inventor); Fisher, David J. (Inventor); Mungas, Christopher (Inventor)

    2013-01-01

    Propellants flow through specialized mechanical hardware that is designed for effective and safe ignition and sustained combustion of the propellants. By integrating a micro-fluidic porous media element between a propellant feed source and the combustion chamber, an effective and reliable propellant injector head may be implemented that is capable of withstanding transient combustion and detonation waves that commonly occur during an ignition event. The micro-fluidic porous media element is of specified porosity or porosity gradient selected to be appropriate for a given propellant. Additionally the propellant injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation.

  9. Microfluidic CARS cytometry

    PubMed Central

    Wang, Han-Wei; Bao, Ning; Le, Thuc T.; Lu, Chang; Cheng, Ji-Xin

    2009-01-01

    Coherent anti-stokes Raman scattering (CARS) flow cytometry was demonstrated by combining a laser-scanning CARS microscope with a polydimethylsiloxane (PDMS) based microfluidic device. Line-scanning across the hydrodynamically focused core stream was performed for detection of flowing objects. Parameters were optimized by utilizing polystyrene beads as flowing particles. Population measurements of adipocytes isolated from mouse fat tissues demonstrated the viability of microfluidic CARS cytometry for quantitation of adipocyte size distribution. CARS cytometry could be a new modality for quantitative analysis with vibrational selectivity. PMID:18542688

  10. Experimental Microfluidic System

    NASA Technical Reports Server (NTRS)

    Culbertson, Christopher; Gonda, Steve; Ramsey, John Michael

    2005-01-01

    The ultimate goal of this project is to integrate microfluidic devices with NASA's space bioreactor systems. In such a system, the microfluidic device would provide realtime feedback control of the bioreactor by monitoring pH, glucose, and lactate levels in the cell media; and would provide an analytical capability to the bioreactor in exterrestrial environments for monitoring bioengineered cell products and health changes in cells due to environmental stressors. Such integrated systems could be used as biosentinels both in space and on planet surfaces. The objective is to demonstrate the ability of microfabricated devices to repeatedly and reproducibly perform bead cytometry experiments in micro, lunar, martian, and hypergravity (1.8g).

  11. A digital microfluidic method for multiplexed cell-based apoptosis assays.

    PubMed

    Bogojevic, Dario; Chamberlain, M Dean; Barbulovic-Nad, Irena; Wheeler, Aaron R

    2012-02-07

    Digital microfluidics (DMF), a fluid-handling technique in which picolitre-microlitre droplets are manipulated electrostatically on an array of electrodes, has recently become popular for applications in chemistry and biology. DMF devices are reconfigurable, have no moving parts, and are compatible with conventional high-throughput screening infrastructure (e.g., multiwell plate readers). For these and other reasons, digital microfluidics has been touted as being a potentially useful new tool for applications in multiplexed screening. Here, we introduce the first digital microfluidic platform used to implement parallel-scale cell-based assays. A fluorogenic apoptosis assay for caspase-3 activity was chosen as a model system because of the popularity of apoptosis as a target for anti-cancer drug discovery research. Dose-response profiles of caspase-3 activity as a function of staurosporine concentration were generated using both the digital microfluidic method and conventional techniques (i.e., pipetting, aspiration, and 96-well plates.) As expected, the digital microfluidic method had a 33-fold reduction in reagent consumption relative to the conventional technique. Although both types of methods used the same detector (a benchtop multiwell plate reader), the data generated by the digital microfluidic method had lower detection limits and greater dynamic range because apoptotic cells were much less likely to de-laminate when exposed to droplet manipulation by DMF relative to pipetting/aspiration in multiwell plates. We propose that the techniques described here represent an important milestone in the development of digital microfluidics as a useful tool for parallel cell-based screening and other applications.

  12. Chemistry in Microfluidic Channels

    ERIC Educational Resources Information Center

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  13. Microfluidic blood filtration device.

    PubMed

    Maltezos, George; Lee, John; Rajagopal, Aditya; Scholten, Kee; Kartalov, Emil; Scherer, Axel

    2011-02-01

    Rapid decentralized biomedical diagnostics have become increasingly necessary in a medical environment of growing costs and mounting demands on healthcare personnel and infrastructure. Such diagnostics require low-cost novel devices that can operate at bedside or in doctor offices using small amounts of sample that can be extracted and processed on the spot. Thus, point-of-care sample preparation is an important component of the necessary diagnostic paradigm shift. We therefore introduce a microfluidic device which produces plasma from whole blood. The device is inexpensive, reliable, easy to fabricate, and requires only 3.5 kPa pressure to operate. The device is fully compatible with microfluidic diagnostic chips. The output 23-gauge microtube of the former can be directly plugged into the input ports of the latter allowing immediate applicability in practice as a sample-prep pre-stage to a variety of emergent microfluidic diagnostic devices. In addition, the shown approach of filter encapsulation in elastomer has principle importance as it is compatible with and applicable to microfluidic sample-prep integration with analytical stages within the same elastomeric chip. This can eventually lead to finger-prick blood tests in point-of-care settings.

  14. Chemistry in Microfluidic Channels

    ERIC Educational Resources Information Center

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  15. Magnetic digital microfluidics - a review.

    PubMed

    Zhang, Yi; Nguyen, Nam-Trung

    2017-03-14

    A digital microfluidic platform manipulates droplets on an open surface. Magnetic digital microfluidics utilizes magnetic forces for actuation and offers unique advantages compared to other digital microfluidic platforms. First, the magnetic particles used in magnetic digital microfluidics have multiple functions. In addition to serving as actuators, they also provide a functional solid substrate for molecule binding, which enables a wide range of applications in molecular diagnostics and immunodiagnostics. Second, magnetic digital microfluidics can be manually operated in a "power-free" manner, which allows for operation in low-resource environments for point-of-care diagnostics where even batteries are considered a luxury item. This review covers research areas related to magnetic digital microfluidics. This paper first summarizes the current development of magnetic digital microfluidics. Various methods of droplet manipulation using magnetic forces are discussed, ranging from conventional magnetic particle-based actuation to the recent development of ferrofluids and magnetic liquid marbles. This paper also discusses several new approaches that use magnetically controlled flexible substrates for droplet manipulation. In addition, we emphasize applications of magnetic digital microfluidics in biosensing and medical diagnostics, and identify the current limitations of magnetic digital microfluidics. We provide a perspective on possible solutions to close these gaps. Finally, the paper discusses the future improvement of magnetic digital microfluidics to explore potential new research directions.

  16. Oxygen control with microfluidics.

    PubMed

    Brennan, Martin D; Rexius-Hall, Megan L; Elgass, Laura Jane; Eddington, David T

    2014-11-21

    Cellular function and behavior are affected by the partial pressure of O2, or oxygen tension, in the microenvironment. The level of oxygenation is important, as it is a balance of oxygen availability and oxygen consumption that is necessary to maintain normoxia. Changes in oxygen tension, from above physiological oxygen tension (hyperoxia) to below physiological levels (hypoxia) or even complete absence of oxygen (anoxia), trigger potent biological responses. For instance, hypoxia has been shown to support the maintenance and promote proliferation of regenerative stem and progenitor cells. Paradoxically, hypoxia also contributes to the development of pathological conditions including systemic inflammatory response, tumorigenesis, and cardiovascular disease, such as ischemic heart disease and pulmonary hypertension. Current methods to study cellular behavior in low levels of oxygen tension include hypoxia workstations and hypoxia chambers. These culture systems do not provide oxygen gradients that are found in vivo or precise control at the microscale. Microfluidic platforms have been developed to overcome the inherent limits of these current methods, including lack of spatial control, slow equilibration, and unachievable or difficult coupling to live-cell microscopy. The various applications made possible by microfluidic systems are the topic of this review. In order to understand how the microscale can be leveraged for oxygen control of cells and tissues within microfluidic systems, some background understanding of diffusion, solubility, and transport at the microscale will be presented in addition to a discussion on the methods for measuring the oxygen tension in microfluidic channels. Finally the various methods for oxygen control within microfluidic platforms will be discussed including devices that rely on diffusion from liquid or gas, utilizing on-or-off-chip mixers, leveraging cellular oxygen uptake to deplete the oxygen, relying on chemical reactions in

  17. PREFACE: Nano- and microfluidics Nano- and microfluidics

    NASA Astrophysics Data System (ADS)

    Jacobs, Karin

    2011-05-01

    The field of nano- and microfluidics emerged at the end of the 1990s parallel to the demand for smaller and smaller containers and channels for chemical, biochemical and medical applications such as blood and DNS analysis [1], gene sequencing or proteomics [2, 3]. Since then, new journals and conferences have been launched and meanwhile, about two decades later, a variety of microfluidic applications are on the market. Briefly, 'the small flow becomes mainstream' [4]. Nevertheless, research in nano- and microfluidics is more than downsizing the spatial dimensions. For liquids on the nanoscale, surface and interface phenomena grow in importance and may even dominate the behavior in some systems. The studies collected in this special issue all concentrate on these type of systems and were part ot the priority programme SPP1164 'Nano- and Microfluidics' of the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG). The priority programme was initiated in 2002 by Hendrik Kuhlmann and myself and was launched in 2004. Friction between a moving liquid and a solid wall may, for instance, play an important role so that the usual assumption of a no-slip boundary condition is no longer valid. Likewise, the dynamic deformations of soft objects like polymers, vesicles or capsules in flow arise from the subtle interplay between the (visco-)elasticity of the object and the viscous stresses in the surrounding fluid and, potentially, the presence of structures confining the flow like channels. Consequently, new theories were developed ( see articles in this issue by Münch and Wagner, Falk and Mecke, Bonthuis et al, Finken et al, Almenar and Rauscher, Straube) and experiments were set up to unambiguously demonstrate deviations from bulk, or 'macro', behavior (see articles in this issue by Wolff et al, Vinogradova and Belyaev, Hahn et al, Seemann et al, Grüner and Huber, Müller-Buschbaum et al, Gutsche et al, Braunmüller et al, Laube et al, Brücker, Nottebrock et al

  18. Droplet microfluidics based microseparation systems.

    PubMed

    Xiao, Zhiliang; Niu, Menglei; Zhang, Bo

    2012-06-01

    Lab on a chip (LOC) technology is a promising miniaturization approach. The feature that it significantly reduced sample consumption makes great sense in analytical and bioanalytical chemistry. Since the start of LOC technology, much attention has been focused on continuous flow microfluidic systems. At the turn of the century, droplet microfluidics, which was also termed segmented flow microfluidics, was introduced. Droplet microfluidics employs two immiscible phases to form discrete droplets, which are ideal vessels with confined volume, restricted dispersion, limited cross-contamination, and high surface area. Due to these unique features, droplet microfluidics proves to be a versatile tool in microscale sample handling. This article reviews the utility of droplet microfluidics in microanalytical systems with an emphasize on separation science, including sample encapsulation at ultra-small volume, compartmentalization of separation bands, isolation of droplet contents, and related detection techniques.

  19. Microfluidic Chips for Semen Analysis

    PubMed Central

    Segerink, L.I.; Sprenkels, A.J.; Oosterhuis, G.J.E.; Vermes, I.; van den Berg, A.

    2012-01-01

    The gold standard of semen analysis is still an manual method, which is time-consuming, labour intensive and needs thorough quality control. Microfluidics can also offer advantages for this application. Therefore a first step in the development of a microfluidic chip has been made, which enables the man the semen analysis at home. In this article recent efforts to determine the concentration and motility using a microfluidic chip are summarized. PMID:27683417

  20. Microfluidic device, and related methods

    NASA Technical Reports Server (NTRS)

    Wong, Eric W. (Inventor)

    2010-01-01

    A method of making a microfluidic device is provided. The method features patterning a permeable wall on a substrate, and surrounding the permeable wall with a solid, non-permeable boundary structure to establish a microfluidic channel having a cross-sectional dimension less than 5,000 microns and a cross-sectional area at least partially filled with the permeable wall so that fluid flowing through the microfluidic channel at least partially passes through the permeable wall.

  1. Mammosphere culture of cancer stem cells in a microfluidic device

    NASA Astrophysics Data System (ADS)

    Saadin, Katayoon; White, Ian M.

    2012-03-01

    It is known that tumor-initiating cells with stem-like properties will form spherical colonies - termed mammospheres - when cultured in serum-free media on low-attachment substrates. Currently this assay is performed in commercially available 96-well trays with low-attachment surfaces. Here we report a novel microsystem that features on-chip mammosphere culture on low attachment surfaces. We have cultured mammospheres in this microsystem from well-studied human breast cancer cell lines. To enable the long-term culture of these unattached cells, we have integrated diffusion-based delivery columns that provide zero-convection delivery of reagents, such as fresh media, staining agents, or drugs. The multi-layer system consists of parallel cell-culture chambers on top of a low-attachment surface, connected vertically with a microfluidic reagent delivery layer. This design incorporates a reagent reservoir, which is necessary to reduce evaporation from the cell culture micro-chambers. The development of this microsystem will lead to the integration of mammosphere culture with other microfluidic functions, including circulating tumor cell recovery and high throughput drug screening. This will enable the cancer research community to achieve a much greater understanding of these tumor initiating cancer stem cells.

  2. Microfluidic perfusion culture of human induced pluripotent stem cells under fully defined culture conditions.

    PubMed

    Yoshimitsu, Ryosuke; Hattori, Koji; Sugiura, Shinji; Kondo, Yuki; Yamada, Rotaro; Tachikawa, Saoko; Satoh, Taku; Kurisaki, Akira; Ohnuma, Kiyoshi; Asashima, Makoto; Kanamori, Toshiyuki

    2014-05-01

    Human induced pluripotent stem cells (hiPSCs) are a promising cell source for drug screening. For this application, self-renewal or differentiation of the cells is required, and undefined factors in the culture conditions are not desirable. Microfluidic perfusion culture allows the production of small volume cultures with precisely controlled microenvironments, and is applicable to high-throughput cellular environment screening. Here, we developed a microfluidic perfusion culture system for hiPSCs that uses a microchamber array chip under defined extracellular matrix (ECM) and culture medium conditions. By screening various ECMs we determined that fibronectin and laminin are appropriate for microfluidic devices made out of the most popular material, polydimethylsiloxane (PDMS). We found that the growth rate of hiPSCs under pressure-driven perfusion culture conditions was higher than under static culture conditions in the microchamber array. We applied our new system to self-renewal and differentiation cultures of hiPSCs, and immunocytochemical analysis showed that the state of the hiPSCs was successfully controlled. The effects of three antitumor drugs on hiPSCs were comparable between microchamber array and 96-well plates. We believe that our system will be a platform technology for future large-scale screening of fully defined conditions for differentiation cultures on integrated microfluidic devices. © 2013 Wiley Periodicals, Inc.

  3. Microfluidic binary phase flow

    NASA Astrophysics Data System (ADS)

    Angelescu, Dan; Menetrier, Laure; Wong, Joyce; Tabeling, Patrick; Salamitou, Philippe

    2004-03-01

    We present a novel binary phase flow regime where the two phases differ substantially in both their wetting and viscous properties. Optical tracking particles are used in order to investigate the details of such multiphase flow inside capillary channels. We also describe microfluidic filters we have developed, capable of separating the two phases based on capillary pressure. The performance of the filters in separating oil-water emulsions is discussed. Binary phase flow has been previously used in microchannels in applications such as emulsion generation, enhancement of mixing and assembly of custom colloidal paticles. Such microfluidic systems are increasingly used in a number of applications spanning a diverse range of industries, such as biotech, pharmaceuticals and more recently the oil industry.

  4. Microfluidic channel fabrication method

    DOEpatents

    Arnold, Don W.; Schoeniger, Joseph S.; Cardinale, Gregory F.

    2001-01-01

    A new channel structure for microfluidic systems and process for fabricating this structure. In contrast to the conventional practice of fabricating fluid channels as trenches or grooves in a substrate, fluid channels are fabricated as thin walled raised structures on a substrate. Microfluidic devices produced in accordance with the invention are a hybrid assembly generally consisting of three layers: 1) a substrate that can or cannot be an electrical insulator; 2) a middle layer, that is an electrically conducting material and preferably silicon, forms the channel walls whose height defines the channel height, joined to and extending from the substrate; and 3) a top layer, joined to the top of the channels, that forms a cover for the channels. The channels can be defined by photolithographic techniques and are produced by etching away the material around the channel walls.

  5. Microfluidic colloid filtration

    NASA Astrophysics Data System (ADS)

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-03-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” - often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level.

  6. Microfluidic redox battery.

    PubMed

    Lee, Jin Wook; Goulet, Marc-Antoni; Kjeang, Erik

    2013-07-07

    A miniaturized microfluidic battery is proposed, which is the first membraneless redox battery demonstrated to date. This unique concept capitalizes on dual-pass flow-through porous electrodes combined with stratified, co-laminar flow to generate electrical power on-chip. The fluidic design is symmetric to allow for both charging and discharging operations in forward, reverse, and recirculation modes. The proof-of-concept device fabricated using low-cost materials integrated in a microfluidic chip is shown to produce competitive power levels when operated on a vanadium redox electrolyte. A complete charge/discharge cycle is performed to demonstrate its operation as a rechargeable battery, which is an important step towards providing sustainable power to lab-on-a-chip and microelectronic applications.

  7. Microfluidic bubble logic.

    PubMed

    Prakash, Manu; Gershenfeld, Neil

    2007-02-09

    We demonstrate universal computation in an all-fluidic two-phase microfluidic system. Nonlinearity is introduced into an otherwise linear, reversible, low-Reynolds number flow via bubble-to-bubble hydrodynamic interactions. A bubble traveling in a channel represents a bit, providing us with the capability to simultaneously transport materials and perform logical control operations. We demonstrate bubble logic AND/OR/NOT gates, a toggle flip-flop, a ripple counter, timing restoration, a ring oscillator, and an electro-bubble modulator. These show the nonlinearity, gain, bistability, synchronization, cascadability, feedback, and programmability required for scalable universal computation. With increasing complexity in large-scale microfluidic processors, bubble logic provides an on-chip process control mechanism integrating chemistry and computation.

  8. The Microfluidic Jukebox

    PubMed Central

    Tan, Say Hwa; Maes, Florine; Semin, Benoît; Vrignon, Jérémy; Baret, Jean-Christophe

    2014-01-01

    Music is a form of art interweaving people of all walks of life. Through subtle changes in frequencies, a succession of musical notes forms a melody which is capable of mesmerizing the minds of people. With the advances in technology, we are now able to generate music electronically without relying solely on physical instruments. Here, we demonstrate a musical interpretation of droplet-based microfluidics as a form of novel electronic musical instruments. Using the interplay of electric field and hydrodynamics in microfluidic devices, well controlled frequency patterns corresponding to musical tracks are generated in real time. This high-speed modulation of droplet frequency (and therefore of droplet sizes) may also provide solutions that reconciles high-throughput droplet production and the control of individual droplet at production which is needed for many biochemical or material synthesis applications. PMID:24781785

  9. The Microfluidic Jukebox

    NASA Astrophysics Data System (ADS)

    Tan, Say Hwa; Maes, Florine; Semin, Benoît; Vrignon, Jérémy; Baret, Jean-Christophe

    2014-04-01

    Music is a form of art interweaving people of all walks of life. Through subtle changes in frequencies, a succession of musical notes forms a melody which is capable of mesmerizing the minds of people. With the advances in technology, we are now able to generate music electronically without relying solely on physical instruments. Here, we demonstrate a musical interpretation of droplet-based microfluidics as a form of novel electronic musical instruments. Using the interplay of electric field and hydrodynamics in microfluidic devices, well controlled frequency patterns corresponding to musical tracks are generated in real time. This high-speed modulation of droplet frequency (and therefore of droplet sizes) may also provide solutions that reconciles high-throughput droplet production and the control of individual droplet at production which is needed for many biochemical or material synthesis applications.

  10. Animal microsurgery using microfluidics

    PubMed Central

    Stirman, Jeffrey N.; Harker, Bethany; Lu, Hang; Crane, Matthew M.

    2013-01-01

    Small multicellular genetic organisms form a central part of modern biological research. Using these small organisms provides significant advantages in genetic tractability, manipulation, lifespan and cost. Although the small size is generally advantageous, it can make procedures such as surgeries both time consuming and labor intensive. Over the past few years there have been dramatic improvements in microfluidic technologies that enable significant improvements in microsurgery and interrogation of small multicellular model organisms. PMID:24484877

  11. Microfluidic Biochip Design

    NASA Technical Reports Server (NTRS)

    Panzarella, Charles

    2004-01-01

    As humans prepare for the exploration of our solar system, there is a growing need for miniaturized medical and environmental diagnostic devices for use on spacecrafts, especially during long-duration space missions where size and power requirements are critical. In recent years, the biochip (or Lab-on-a- Chip) has emerged as a technology that might be able to satisfy this need. In generic terms, a biochip is a miniaturized microfluidic device analogous to the electronic microchip that ushered in the digital age. It consists of tiny microfluidic channels, pumps and valves that transport small amounts of sample fluids to biosensors that can perform a variety of tests on those fluids in near real time. It has the obvious advantages of being small, lightweight, requiring less sample fluids and reagents and being more sensitive and efficient than larger devices currently in use. Some of the desired space-based applications would be to provide smaller, more robust devices for analyzing blood, saliva and urine and for testing water and food supplies for the presence of harmful contaminants and microorganisms. Our group has undertaken the goal of adapting as well as improving upon current biochip technology for use in long-duration microgravity environments. In addition to developing computational models of the microfluidic channels, valves and pumps that form the basis of every biochip, we are also trying to identify potential problems that could arise in reduced gravity and develop solutions to these problems. One such problem is due to the prevalence of bubbly sample fluids in microgravity. A bubble trapped in a microfluidic channel could be detrimental to the operation of a biochip. Therefore, the process of bubble formation in microgravity needs to be studied, and a model of this process has been developed and used to understand how bubbles develop and move through biochip components. It is clear that some type of bubble filter would be necessary in Space, and

  12. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  13. High-pressure microfluidics

    NASA Astrophysics Data System (ADS)

    Hjort, K.

    2015-03-01

    When using appropriate materials and microfabrication techniques, with the small dimensions the mechanical stability of microstructured devices allows for processes at high pressures without loss in safety. The largest area of applications has been demonstrated in green chemistry and bioprocesses, where extraction, synthesis and analyses often excel at high densities and high temperatures. This is accessible through high pressures. Capillary chemistry has been used since long but, just like in low-pressure applications, there are several potential advantages in using microfluidic platforms, e.g., planar isothermal set-ups, large local variations in geometries, dense form factors, small dead volumes and precisely positioned microstructures for control of reactions, catalysis, mixing and separation. Other potential applications are in, e.g., microhydraulics, exploration, gas driven vehicles, and high-pressure science. From a review of the state-of-art and frontiers of high pressure microfluidics, the focus will be on different solutions demonstrated for microfluidic handling at high pressures and challenges that remain.

  14. Microfluidic serial dilution circuit.

    PubMed

    Paegel, Brian M; Grover, William H; Skelley, Alison M; Mathies, Richard A; Joyce, Gerald F

    2006-11-01

    In vitro evolution of RNA molecules requires a method for executing many consecutive serial dilutions. To solve this problem, a microfluidic circuit has been fabricated in a three-layer glass-PDMS-glass device. The 400-nL serial dilution circuit contains five integrated membrane valves: three two-way valves arranged in a loop to drive cyclic mixing of the diluent and carryover, and two bus valves to control fluidic access to the circuit through input and output channels. By varying the valve placement in the circuit, carryover fractions from 0.04 to 0.2 were obtained. Each dilution process, which is composed of a diluent flush cycle followed by a mixing cycle, is carried out with no pipeting, and a sample volume of 400 nL is sufficient for conducting an arbitrary number of serial dilutions. Mixing is precisely controlled by changing the cyclic pumping rate, with a minimum mixing time of 22 s. This microfluidic circuit is generally applicable for integrating automated serial dilution and sample preparation in almost any microfluidic architecture.

  15. Integrated microfluidic systems.

    PubMed

    Kaneda, Shohei; Fujii, Teruo

    2010-01-01

    Using unique physical phenomena at the microscale, such as laminar flow, mixing by diffusion, relative increase of the efficiency of heat exchange, surface tension and friction due to the increase of surface-to-volume ratio by downscaling, research in the field of microfluidic devices, aims at miniaturization of (bio)chemical apparatus for high-throughput analyses. Microchannel networks as core components of microfluidic devices are fabricated on various materials, such as silicon, glass, polymers, metals, etc., using microfabrication techniques adopted from the semiconductor industry and microelectromechanical systems (MEMS) technology, enabling integration of the components capable of performing various operations in microchannel networks. This chapter describes examples of diverse integrated microfluidic devices that incorporate functional components such as heaters for reaction temperature control, micropumps for liquid transportation, air vent structures for pneumatic manipulation of small volume droplets, optical fibers with aspherical lens structures for fluorescence detection, and electrochemical sensors for monitoring of glucose consumption during cell culture. The focus of this review is these integrated components and systems that realize useful functionalities for biochemical analyses.

  16. Integrated Microfluidic Systems

    NASA Astrophysics Data System (ADS)

    Kaneda, Shohei; Fujii, Teruo

    Using unique physical phenomena at the microscale, such as laminar flow, mixing by diffusion, relative increase of the efficiency of heat exchange, surface tension and friction due to the increase of surface-to-volume ratio by downscaling, research in the field of microfluidic devices, aims at miniaturization of (bio)chemical apparatus for high-throughput analyses. Microchannel networks as core components of microfluidic devices are fabricated on various materials, such as silicon, glass, polymers, metals, etc., using microfabrication techniques adopted from the semiconductor industry and microelectromechanical systems (MEMS) technology, enabling integration of the components capable of performing various operations in microchannel networks. This chapter describes examples of diverse integrated microfluidic devices that incorporate functional components such as heaters for reaction temperature control, micropumps for liquid transportation, air vent structures for pneumatic manipulation of small volume droplets, optical fibers with aspherical lens structures for fluorescence detection, and electrochemical sensors for monitoring of glucose consumption during cell culture. The focus of this review is these integrated components and systems that realize useful functionalities for biochemical analyses.

  17. Droplet based microfluidics.

    PubMed

    Seemann, Ralf; Brinkmann, Martin; Pfohl, Thomas; Herminghaus, Stephan

    2012-01-01

    Droplet based microfluidics is a rapidly growing interdisciplinary field of research combining soft matter physics, biochemistry and microsystems engineering. Its applications range from fast analytical systems or the synthesis of advanced materials to protein crystallization and biological assays for living cells. Precise control of droplet volumes and reliable manipulation of individual droplets such as coalescence, mixing of their contents, and sorting in combination with fast analysis tools allow us to perform chemical reactions inside the droplets under defined conditions. In this paper, we will review available drop generation and manipulation techniques. The main focus of this review is not to be comprehensive and explain all techniques in great detail but to identify and shed light on similarities and underlying physical principles. Since geometry and wetting properties of the microfluidic channels are crucial factors for droplet generation, we also briefly describe typical device fabrication methods in droplet based microfluidics. Examples of applications and reaction schemes which rely on the discussed manipulation techniques are also presented, such as the fabrication of special materials and biophysical experiments.

  18. Surface modification for enhancing antibody binding on polymer-based microfluidic device for enzyme-linked immunosorbent assay.

    PubMed

    Bai, Yunling; Koh, Chee Guan; Boreman, Megan; Juang, Yi-Je; Tang, I-Ching; Lee, L James; Yang, Shang-Tian

    2006-10-24

    A novel surface treatment method using poly(ethyleneimine) (PEI), an amine-bearing polymer, was developed to enhance antibody binding on the poly(methyl methacrylate) (PMMA) microfluidic immunoassay device. By treating the PMMA surface of the microchannel on the microfluidic device with PEI, 10 times more active antibodies can be bound to the microchannel surface as compared to those without treatment or treated with the small amine-bearing molecule, hexamethylenediamine (HMD). Consequently, PEI surface modification greatly improved the immunoassay performance of the microfluidic device, making it more sensitive and reliable in the detection of IgG. The improvement can be attributed to the spacer effect as well as the functional amine groups provided by the polymeric PEI molecules. Due to the smaller dimensions (140x125 microm) of the microchannel, the time required for antibody diffusion and adsorption onto the microchannel surface was reduced to only several minutes, which was 10 times faster than the similar process carried out in 96-well plates. The microchip also had a wider detection dynamic range, from 5 to 1000 ng/mL, as compared to that of the microtiter plate (from 2 to 100 ng/mL). With the PEI surface modification, PMMA-based microchips can be effectively used for enzyme linked immunosorbent assays (ELISA) with a similar detection limit, but much less reagent consumption and shorter assay time as compared to the conventional 96-well plate.

  19. A microfluidic cell culture array with various oxygen tensions.

    PubMed

    Peng, Chien-Chung; Liao, Wei-Hao; Chen, Ying-Hua; Wu, Chueh-Yu; Tung, Yi-Chung

    2013-08-21

    Oxygen tension plays an important role in regulating various cellular functions in both normal physiology and disease states. Therefore, drug testing using conventional in vitro cell models under normoxia often possesses limited prediction capability. A traditional method of setting an oxygen tension in a liquid medium is by saturating it with a gas mixture at the desired level of oxygen, which requires bulky gas cylinders, sophisticated control, and tedious interconnections. Moreover, only a single oxygen tension can be tested at the same time. In this paper, we develop a microfluidic cell culture array platform capable of performing cell culture and drug testing under various oxygen tensions simultaneously. The device is fabricated using an elastomeric material, polydimethylsiloxane (PDMS) and the well-developed multi-layer soft lithography (MSL) technique. The prototype device has 4 × 4 wells, arranged in the same dimensions as a conventional 96-well plate, for cell culture. The oxygen tensions are controlled by spatially confined oxygen scavenging chemical reactions underneath the wells using microfluidics. The platform takes advantage of microfluidic phenomena while exhibiting the combinatorial diversities achieved by microarrays. Importantly, the platform is compatible with existing cell incubators and high-throughput instruments (liquid handling systems and plate readers) for cost-effective setup and straightforward operation. Utilizing the developed platform, we successfully perform drug testing using an anti-cancer drug, triapazamine (TPZ), on adenocarcinomic human alveolar basal epithelial cell line (A549) under three oxygen tensions ranging from 1.4% to normoxia. The developed platform is promising to provide a more meaningful in vitro cell model for various biomedical applications while maintaining desired high throughput capabilities.

  20. Monolithic microfluidic concentrators and mixers

    DOEpatents

    Frechet, Jean M.; Svec, Frantisek; Yu, Cong; Rohr, Thomas

    2005-05-03

    Microfluidic devices comprising porous monolithic polymer for concentration, extraction or mixing of fluids. A method for in situ preparation of monolithic polymers by in situ initiated polymerization of polymer precursors within microchannels of a microfluidic device and their use for solid phase extraction (SPE), preconcentration, concentration and mixing.

  1. Combining microfluidics and electrochemical detection.

    PubMed

    Ferrigno, Rosaria; Pittet, Patrick; Stephan, Khaled; Léca-Bouvier, Béatrice; Galvan, Jean-Marc; Renaud, Louis; Morin, Pierre

    2009-01-01

    This paper describes two configurations that integrate electrochemical detection into microfluidic devices. The first configuration is a low-cost approach based on the use of PCB technology. This device was applied to electrochemiluminescence detection. The second configuration was used to carry out amperometric quantification of electroactive species using a serial dilution microfluidic system.

  2. Gel integration for microfluidic applications.

    PubMed

    Zhang, Xuanqi; Li, Lingjun; Luo, Chunxiong

    2016-05-21

    Molecular diffusive membranes or materials are important for biological applications in microfluidic systems. Hydrogels are typical materials that offer several advantages, such as free diffusion for small molecules, biocompatibility with most cells, temperature sensitivity, relatively low cost, and ease of production. With the development of microfluidic applications, hydrogels can be integrated into microfluidic systems by soft lithography, flow-solid processes or UV cure methods. Due to their special properties, hydrogels are widely used as fluid control modules, biochemical reaction modules or biological application modules in different applications. Although hydrogels have been used in microfluidic systems for more than ten years, many hydrogels' properties and integrated techniques have not been carefully elaborated. Here, we systematically review the physical properties of hydrogels, general methods for gel-microfluidics integration and applications of this field. Advanced topics and the outlook of hydrogel fabrication and applications are also discussed. We hope this review can help researchers choose suitable methods for their applications using hydrogels.

  3. Inertial microfluidic physics.

    PubMed

    Amini, Hamed; Lee, Wonhee; Di Carlo, Dino

    2014-08-07

    Microfluidics has experienced massive growth in the past two decades, and especially with advances in rapid prototyping researchers have explored a multitude of channel structures, fluid and particle mixtures, and integration with electrical and optical systems towards solving problems in healthcare, biological and chemical analysis, materials synthesis, and other emerging areas that can benefit from the scale, automation, or the unique physics of these systems. Inertial microfluidics, which relies on the unconventional use of fluid inertia in microfluidic platforms, is one of the emerging fields that make use of unique physical phenomena that are accessible in microscale patterned channels. Channel shapes that focus, concentrate, order, separate, transfer, and mix particles and fluids have been demonstrated, however physical underpinnings guiding these channel designs have been limited and much of the development has been based on experimentally-derived intuition. Here we aim to provide a deeper understanding of mechanisms and underlying physics in these systems which can lead to more effective and reliable designs with less iteration. To place the inertial effects into context we also discuss related fluid-induced forces present in particulate flows including forces due to non-Newtonian fluids, particle asymmetry, and particle deformability. We then highlight the inverse situation and describe the effect of the suspended particles acting on the fluid in a channel flow. Finally, we discuss the importance of structured channels, i.e. channels with boundary conditions that vary in the streamwise direction, and their potential as a means to achieve unprecedented three-dimensional control over fluid and particles in microchannels. Ultimately, we hope that an improved fundamental and quantitative understanding of inertial fluid dynamic effects can lead to unprecedented capabilities to program fluid and particle flow towards automation of biomedicine, materials

  4. A Deterministic Microfluidic Ratchet

    NASA Astrophysics Data System (ADS)

    Loutherback, Kevin; Puchalla, Jason; Austin, Robert; Sturm, James

    2009-03-01

    We present a deterministic microfluidic ratchet where the trajectory of particles in a certain size range is not reversed when the sign of the driving force is reversed. This ratcheting effect is produced by employing triangular rather than the conventionally circular posts in a post array that selectively displaces particles transported through the array. The underlying mechanism of this method is shown to to be an asymmetric fluid velocity distribution through the gap between triangular posts that results in different critical particle sizes depending on the direction of the flow.

  5. Microfluidic Cell Culture Device

    NASA Technical Reports Server (NTRS)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  6. Motion in microfluidic ratchets.

    PubMed

    Caballero, D; Katuri, J; Samitier, J; Sánchez, S

    2016-11-15

    The ubiquitous random motion of mesoscopic active particles, such as cells, can be "rectified" or directed by embedding the particles in systems containing local and periodic asymmetric cues. Incorporated on lab-on-a-chip devices, these microratchet-like structures can be used to self-propel fluids, transport particles, and direct cell motion in the absence of external power sources. In this Focus article we discuss recent advances in the use of ratchet-like geometries in microfluidics which could open new avenues in biomedicine for applications in diagnosis, cancer biology, and bioengineering.

  7. Microfluidics without microfabrication

    PubMed Central

    Lutz, Barry R.; Chen, Jian; Schwartz, Daniel T.

    2003-01-01

    Microfluidic devices create spatially defined, chemically controlled environments at microscopic dimensions. We demonstrate the formation and control of microscopic hydrodynamic and chemical environments by impinging a low-intensity acoustic oscillation on a cylindrical electrode. The interaction of small-amplitude (≤203 μm), low-frequency (≤515 Hz) fluid oscillations with a submillimeter cylinder creates four microscopic eddies that circulate adjacent to the cylinder. This steady flow is known as acoustic streaming. Because the steady circulation in the eddies has closed streamlines, reagent dosed from the electrode can escape the eddies only by slow molecular diffusion. As a result, reagent dosing rates of 10 nmol/s produce eddy concentrations as high as 8 mM, without a correspondingly large rise in bulk solution composition. Imaging Raman spectroscopy is used to visualize the eddy concentration distribution for various acoustic oscillation conditions, and point Raman spectra are used to quantify eddy compositions. These results, and corresponding numerical simulations, show that each eddy acts as a microchemical trap with size determined by acoustic frequency and the concentration tuned via reagent dosing rate and acoustic amplitude. Low-intensity acoustic streaming flows can serve as microfluidic elements without the need for microfabrication. PMID:12671076

  8. Microfluidic Biochip Design

    NASA Technical Reports Server (NTRS)

    Panzarella, Charles

    2004-01-01

    As humans prepare for the exploration of our solar system, there is a growing need for miniaturized medical and environmental diagnostic devices for use on spacecrafts, especially during long-duration space missions where size and power requirements are critical. In recent years, the biochip (or Lab-on-a-Chip) has emerged as a technology that might be able to satisfy this need. In generic terms, a biochip is a miniaturized microfluidic device analogous to the electronic microchip that ushered in the digital age. It consists of tiny microfluidic channels, pumps and valves that transport small amounts of sample fluids to biosensors that can perform a variety of tests on those fluids in near real time. It has the obvious advantages of being small, lightweight, requiring less sample fluids and reagents and being more sensitive and efficient than larger devices currently in use. Some of the desired space-based applications would be to provide smaller, more robust devices for analyzing blood, saliva and urine and for testing water and food supplies for the presence of harmful contaminants and microorganisms. Our group has undertaken the goal of adapting as well as improving upon current biochip technology for use in long-duration microgravity environments.

  9. Electro-Microfluidic Packaging

    NASA Astrophysics Data System (ADS)

    Benavides, G. L.; Galambos, P. C.

    2002-06-01

    There are many examples of electro-microfluidic products that require cost effective packaging solutions. Industry has responded to a demand for products such as drop ejectors, chemical sensors, and biological sensors. Drop ejectors have consumer applications such as ink jet printing and scientific applications such as patterning self-assembled monolayers or ejecting picoliters of expensive analytes/reagents for chemical analysis. Drop ejectors can be used to perform chemical analysis, combinatorial chemistry, drug manufacture, drug discovery, drug delivery, and DNA sequencing. Chemical and biological micro-sensors can sniff the ambient environment for traces of dangerous materials such as explosives, toxins, or pathogens. Other biological sensors can be used to improve world health by providing timely diagnostics and applying corrective measures to the human body. Electro-microfluidic packaging can easily represent over fifty percent of the product cost and, as with Integrated Circuits (IC), the industry should evolve to standard packaging solutions. Standard packaging schemes will minimize cost and bring products to market sooner.

  10. Forensic drug analysis and microfluidics.

    PubMed

    Al-Hetlani, Entesar

    2013-05-01

    The analysis of drugs of abuse in microfluidic devices has the potential to provide solutions to today's on-site analysis challenges. The use of such devices has not been limited to miniaturising conventional analytical methods used routinely in forensic laboratories; new and interesting approaches have been implemented in microfluidics and benefit from the ability to control minute amounts of liquids in the small channels. The microfluidic platforms developed so far have been used successfully to carry out single or multiple analytical processes and offer a great opportunity for new technologies for on-site drug testing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Bioanalysis in structured microfluidic systems.

    PubMed

    Ros, Alexandra; Hellmich, Wibke; Regtmeier, Jan; Duong, Thanh Tu; Anselmetti, Dario

    2006-07-01

    Microfluidic and lab-on-a-chip devices have attracted widespread interest in separation sciences and bioanalysis. Recent designs in microfluidic devices extend common separation concepts by exploiting new phenomena for molecular dynamics on a length scale of 10 mum and below, giving rise to novel manipulation tools and nonintuitive phenomena for microseparations. Here, we focus on three very recent developments for bioseparations based on tailored microfluidic systems: Single cell navigation, trapping and steering with subsequent on-chip lysis, protein separation and LIF detection (Section 3.1), then we report dielectrophoretic trapping and separation of large DNA fragments in structured microfluidic devices (Section 3.2). Finally, a paradoxial migration phenomenon based on thermal fluctuations, periodically arranged microchannels and a biased alternating current electric field is presented in Section 3.3.

  12. Emergence of microfluidic wearable technologies.

    PubMed

    Yeo, Joo Chuan; Kenry; Lim, Chwee Teck

    2016-10-18

    There has been an intense interest in the development of wearable technologies, arising from increasing demands in the areas of fitness and healthcare. While still at an early stage, incorporating microfluidics in wearable technologies has enormous potential, especially in healthcare applications. For example, current microfluidic fabrication techniques can be innovatively modified to fabricate microstructures and incorporate electrically conductive elements on soft, flexible and stretchable materials. In fact, by leverarging on such microfabrication and liquid manipulation techniques, the developed flexible microfluidic wearable technologies have enabled several biosensing applications, including in situ sweat metabolites analysis, vital signs monitoring, and gait analysis. As such, we anticipate further significant breakthroughs and potential uses of wearable microfluidics in active drug delivery patches, soft robotics sensing and control, and even implantable artificial organs in the near future.

  13. Microfluidic technology for molecular diagnostics.

    PubMed

    Robinson, Tom; Dittrich, Petra S

    2013-01-01

    Molecular diagnostics have helped to improve the lives of millions of patients worldwide by allowing clinicians to diagnose patients earlier as well as providing better ongoing therapies. Point-of-care (POC) testing can bring these laboratory-based techniques to the patient in a home setting or to remote settings in the developing world. However, despite substantial progress in the field, there still remain many challenges. Progress in molecular diagnostics has benefitted greatly from microfluidic technology. This chapter aims to summarise the more recent advances in microfluidic-based molecular diagnostics. Sections include an introduction to microfluidic technology, the challenges of molecular diagnostics, how microfluidic advances are working to solve these issues, some alternative design approaches, and detection within these systems.

  14. Rapid mask prototyping for microfluidics.

    PubMed

    Maisonneuve, B G C; Honegger, T; Cordeiro, J; Lecarme, O; Thiry, T; Fuard, D; Berton, K; Picard, E; Zelsmann, M; Peyrade, D

    2016-03-01

    With the rise of microfluidics for the past decade, there has come an ever more pressing need for a low-cost and rapid prototyping technology, especially for research and education purposes. In this article, we report a rapid prototyping process of chromed masks for various microfluidic applications. The process takes place out of a clean room, uses a commercially available video-projector, and can be completed in less than half an hour. We quantify the ranges of fields of view and of resolutions accessible through this video-projection system and report the fabrication of critical microfluidic components (junctions, straight channels, and curved channels). To exemplify the process, three common devices are produced using this method: a droplet generation device, a gradient generation device, and a neuro-engineering oriented device. The neuro-engineering oriented device is a compartmentalized microfluidic chip, and therefore, required the production and the precise alignment of two different masks.

  15. Towards printable open air microfluidics.

    SciTech Connect

    Collord, Andrew; Cook, Adam W.; Clem, Paul Gilbert; Fenton, Kyle Ross; Apblett, Christopher Alan; Branson, Eric D.

    2010-04-01

    We have demonstrated a novel microfluidic technique for aqueous media, which uses super-hydrophobic materials to create microfluidic channels that are open to the atmosphere. We have demonstrated the ability to perform traditional electrokinetic operations such as ionic separations and electrophoresis using these devices. The rate of evaporation was studied and found to increase with decreasing channel size, which places a limitation on the minimum size of channel that could be used for such a device.

  16. Passive microfluidic array card and reader

    SciTech Connect

    Dugan, Lawrence Christopher; Coleman, Matthew A

    2011-08-09

    A microfluidic array card and reader system for analyzing a sample. The microfluidic array card includes a sample loading section for loading the sample onto the microfluidic array card, a multiplicity of array windows, and a transport section or sections for transporting the sample from the sample loading section to the array windows. The microfluidic array card reader includes a housing, a receiving section for receiving the microfluidic array card, a viewing section, and a light source that directs light to the array window of the microfluidic array card and to the viewing section.

  17. Inertial focusing in microfluidics.

    PubMed

    Martel, Joseph M; Toner, Mehmet

    2014-07-11

    When Segré and Silberberg in 1961 witnessed particles in a laminar pipe flow congregating at an annulus in the pipe, scientists were perplexed and spent decades learning why such behavior occurred, finally understanding that it was caused by previously unknown forces on particles in an inertial flow. The advent of microfluidics opened a new realm of possibilities for inertial focusing in the processing of biological fluids and cellular suspensions and created a field that is now rapidly expanding. Over the past five years, inertial focusing has enabled high-throughput, simple, and precise manipulation of bodily fluids for a myriad of applications in point-of-care and clinical diagnostics. This review describes the theoretical developments that have made the field of inertial focusing what it is today and presents the key applications that will make inertial focusing a mainstream technology in the future.

  18. Enhanced Microfluidic Electromagnetic Measurements

    NASA Technical Reports Server (NTRS)

    Giovangrandi, Laurent (Inventor); Ricco, Antonio J. (Inventor); Kovacs, Gregory (Inventor)

    2015-01-01

    Techniques for enhanced microfluidic impedance spectroscopy include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. Flow in the channel is laminar. A dielectric constant of a fluid constituting either sheath flow is much less than a dielectric constant of the core fluid. Electrical impedance is measured in the channel between at least a first pair of electrodes. In some embodiments, enhanced optical measurements include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. An optical index of refraction of a fluid constituting either sheath flow is much less than an optical index of refraction of the core fluid. An optical property is measured in the channel.

  19. Inertial Focusing in Microfluidics

    PubMed Central

    Martel, Joseph M.; Toner, Mehmet

    2015-01-01

    When Segré and Silberberg in 1961 witnessed particles in a laminar pipe flow congregating at an annulus in the pipe, scientists were perplexed and spent decades learning why such behavior occurred, finally understanding that it was caused by previously unknown forces on particles in an inertial flow. The advent of microfluidics opened a new realm of possibilities for inertial focusing in the processing of biological fluids and cellular suspensions and created a field that is now rapidly expanding. Over the past five years, inertial focusing has enabled high-throughput, simple, and precise manipulation of bodily fluids for a myriad of applications in point-of-care and clinical diagnostics. This review describes the theoretical developments that have made the field of inertial focusing what it is today and presents the key applications that will make inertial focusing a mainstream technology in the future. PMID:24905880

  20. Microfluidic serial dilution ladder.

    PubMed

    Ahrar, Siavash; Hwang, Michelle; Duncan, Philip N; Hui, Elliot E

    2014-01-07

    Serial dilution is a fundamental procedure that is common to a large number of laboratory protocols. Automation of serial dilution is thus a valuable component for lab-on-a-chip systems. While a handful of different microfluidic strategies for serial dilution have been reported, approaches based on continuous flow mixing inherently consume larger amounts of sample volume and chip real estate. We employ valve-driven circulatory mixing to address these issues and also introduce a novel device structure to store each stage of the dilution process. The dilution strategy is based on sequentially mixing the rungs of a ladder structure. We demonstrate a 7-stage series of 1 : 1 dilutions with R(2) equal to 0.995 in an active device area of 1 cm(2).

  1. Electrodes for microfluidic applications

    DOEpatents

    Crocker, Robert W.; Harnett, Cindy K.; Rognlien, Judith L.

    2006-08-22

    An electrode device for high pressure applications. These electrodes, designed to withstand pressure of greater than 10,000 psi, are adapted for use in microfluidic devices that employ electrokinetic or electrophoretic flow. The electrode is composed, generally, of an outer electrically insulating tubular body having a porous ceramic frit material disposed in one end of the outer body. The pores of the porous ceramic material are filled with an ion conductive polymer resin. A conductive material situated on the upper surface of the porous ceramic frit material and, thus isolated from direct contact with the electrolyte, forms a gas diffusion electrode. A metal current collector, in contact with the gas diffusion electrode, provides connection to a voltage source.

  2. Microfluidic flow spectrometer

    NASA Astrophysics Data System (ADS)

    Vázquez-Vergara, Pamela; Torres Rojas, Aimee M.; Guevara-Pantoja, Pablo E.; Corvera Poiré, Eugenia; Caballero-Robledo, Gabriel A.

    2017-07-01

    We present a microfluidic device which allows one to study the dynamics of oscillatory flows for a frequency range between 1 and 300 Hz. The fluid in the microdevice could be Newtonian, viscoelastic, or even a biofluid, since the device is made of PMMA, which makes it biocompatible and free of elastomeric elements. Coupling a piezoelectric to a micropiston allows one to impose periodic movement to the fluid, with zero mean flow and amplitudes of up to 20~μ m, within the microchannels in which the dynamics is studied. The use of a fast camera coupled to a microscope allows one to study the dynamics of 1~μ m tracer particles and interfaces at an image acquisition rate as fast as 5000 frames per second. The fabrication of the device is easy and cost-effective, since it is based on the use of a micromilling machine. The dynamics of a Newtonian fluid is studied as a proof of principle.

  3. Interplay between materials and microfluidics

    NASA Astrophysics Data System (ADS)

    Hou, Xu; Zhang, Yu Shrike; Santiago, Grissel Trujillo-De; Alvarez, Mario Moisés; Ribas, João; Jonas, Steven J.; Weiss, Paul S.; Andrews, Anne M.; Aizenberg, Joanna; Khademhosseini, Ali

    2017-04-01

    Developments in the field of microfluidics have triggered technological revolutions in many disciplines, including chemical synthesis, electronics, diagnostics, single-cell analysis, micro- and nanofabrication, and pharmaceutics. In many of these areas, rapid growth is driven by the increasing synergy between fundamental materials development and new microfluidic capabilities. In this Review, we critically evaluate both how recent advances in materials fabrication have expanded the frontiers of microfluidic platforms and how the improved microfluidic capabilities are, in turn, furthering materials design. We discuss how various inorganic and organic materials enable the fabrication of systems with advanced mechanical, optical, chemical, electrical and biointerfacial properties — in particular, when these materials are combined into new hybrids and modular configurations. The increasing sophistication of microfluidic techniques has also expanded the range of resources available for the fabrication of new materials, including particles and fibres with specific functionalities, 3D (bio)printed composites and organoids. Together, these advances lead to complex, multifunctional systems, which have many interesting potential applications, especially in the biomedical and bioengineering domains. Future exploration of the interactions between materials science and microfluidics will continue to enrich the diversity of applications across engineering as well as the physical and biomedical sciences.

  4. Fabrication and optimisation of a fused filament 3D-printed microfluidic platform

    NASA Astrophysics Data System (ADS)

    Tothill, A. M.; Partridge, M.; James, S. W.; Tatam, R. P.

    2017-03-01

    A 3D-printed microfluidic device was designed and manufactured using a low cost (2000) consumer grade fusion deposition modelling (FDM) 3D printer. FDM printers are not typically used, or are capable, of producing the fine detailed structures required for microfluidic fabrication. However, in this work, the optical transparency of the device was improved through manufacture optimisation to such a point that optical colorimetric assays can be performed in a 50 µl device. A colorimetric enzymatic cascade assay was optimised using glucose oxidase and horseradish peroxidase for the oxidative coupling of aminoantipyrine and chromotropic acid to produce a blue quinoneimine dye with a broad absorbance peaking at 590 nm for the quantification of glucose in solution. For comparison the assay was run in standard 96 well plates with a commercial plate reader. The results show the accurate and reproducible quantification of 0–10 mM glucose solution using a 3D-printed microfluidic optical device with performance comparable to that of a plate reader assay.

  5. A tetra-layer microfluidic system for peptide affinity screening through integrated sample injection.

    PubMed

    Wang, Weizhi; Huang, Yanyan; Jin, Yulong; Liu, Guoquan; Chen, Yi; Ma, Huimin; Zhao, Rui

    2013-05-21

    A novel integrated microfluidic system was designed and fabricated for affinity peptide screening with in situ detection. A tetra-layer microfluidic hybrid chip containing two top eccentric diffluent layers, an inter-layer and a bottom screening layer, was developed as the core device of the system. The eccentric diffluent layers were ingeniously invented for the vertical sample delivery from 2 top-inlets into 12 bottom-inlets, which eliminated the use of excessive accessories and complicated pipelines currently used in other systems. By using six pH gradient generators, the magnetic bead-based screening in 36 parallel chambers was simultaneously carried out under 6 different pH conditions from 5.4 to 8.2. This allowed simultaneous screening of 6 compounds and each under 6 different pH conditions. The fabricated chip system was applied to screening of affinity peptides towards β-endorphin antibody. The affinities of the peptide ligands to the antibody were assessed by on-chip confocal detection. The results from the screening study using this system indicated that the pentapeptide with the sequence of YGGFL had the highest affinity towards β-endorphin antibody at pH 7.1, which was further confirmed by the ELISA assay using a 96-well plate format. This microfluidic screening system is automatic, low-cost and reusable for not only peptide screening but also other bioactive compounds screening towards target molecules.

  6. Rapid Microfluidic Assay for the Detection of Botulinum Neurotoxin in Animal Sera

    PubMed Central

    Babrak, Lmar; Lin, Alice; Stanker, Larry H.; McGarvey, Jeffery; Hnasko, Robert

    2016-01-01

    Potent Botulinum neurotoxins (BoNTs) represent a threat to public health and safety. Botulism is a disease caused by BoNT intoxication that results in muscle paralysis that can be fatal. Sensitive assays capable of detecting BoNTs from different substrates and settings are essential to limit foodborne contamination and morbidity. In this report, we describe a rapid 96-well microfluidic double sandwich immunoassay for the sensitive detection of BoNT-A from animal sera. This BoNT microfluidic assay requires only 5 μL of serum, provides results in 75 min using a standard fluorescence microplate reader and generates minimal hazardous waste. The assay has a <30 pg·mL−1 limit of detection (LOD) of BoNT-A from spiked human serum. This sensitive microfluidic BoNT-A assay offers a fast and simplified workflow suitable for the detection of BoNT-A from serum samples of limited volume in most laboratory settings. PMID:26742073

  7. Parallel imaging microfluidic cytometer.

    PubMed

    Ehrlich, Daniel J; McKenna, Brian K; Evans, James G; Belkina, Anna C; Denis, Gerald V; Sherr, David H; Cheung, Man Ching

    2011-01-01

    By adding an additional degree of freedom from multichannel flow, the parallel microfluidic cytometer (PMC) combines some of the best features of fluorescence-activated flow cytometry (FCM) and microscope-based high-content screening (HCS). The PMC (i) lends itself to fast processing of large numbers of samples, (ii) adds a 1D imaging capability for intracellular localization assays (HCS), (iii) has a high rare-cell sensitivity, and (iv) has an unusual capability for time-synchronized sampling. An inability to practically handle large sample numbers has restricted applications of conventional flow cytometers and microscopes in combinatorial cell assays, network biology, and drug discovery. The PMC promises to relieve a bottleneck in these previously constrained applications. The PMC may also be a powerful tool for finding rare primary cells in the clinic. The multichannel architecture of current PMC prototypes allows 384 unique samples for a cell-based screen to be read out in ∼6-10 min, about 30 times the speed of most current FCM systems. In 1D intracellular imaging, the PMC can obtain protein localization using HCS marker strategies at many times for the sample throughput of charge-coupled device (CCD)-based microscopes or CCD-based single-channel flow cytometers. The PMC also permits the signal integration time to be varied over a larger range than is practical in conventional flow cytometers. The signal-to-noise advantages are useful, for example, in counting rare positive cells in the most difficult early stages of genome-wide screening. We review the status of parallel microfluidic cytometry and discuss some of the directions the new technology may take.

  8. Digital Microfluidics Sample Analyzer

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G.; Srinivasan, Vijay; Eckhardt, Allen; Paik, Philip Y.; Sudarsan, Arjun; Shenderov, Alex; Hua, Zhishan; Pamula, Vamsee K.

    2010-01-01

    Three innovations address the needs of the medical world with regard to microfluidic manipulation and testing of physiological samples in ways that can benefit point-of-care needs for patients such as premature infants, for which drawing of blood for continuous tests can be life-threatening in their own right, and for expedited results. A chip with sample injection elements, reservoirs (and waste), droplet formation structures, fluidic pathways, mixing areas, and optical detection sites, was fabricated to test the various components of the microfluidic platform, both individually and in integrated fashion. The droplet control system permits a user to control droplet microactuator system functions, such as droplet operations and detector operations. Also, the programming system allows a user to develop software routines for controlling droplet microactuator system functions, such as droplet operations and detector operations. A chip is incorporated into the system with a controller, a detector, input and output devices, and software. A novel filler fluid formulation is used for the transport of droplets with high protein concentrations. Novel assemblies for detection of photons from an on-chip droplet are present, as well as novel systems for conducting various assays, such as immunoassays and PCR (polymerase chain reaction). The lab-on-a-chip (a.k.a., lab-on-a-printed-circuit board) processes physiological samples and comprises a system for automated, multi-analyte measurements using sub-microliter samples of human serum. The invention also relates to a diagnostic chip and system including the chip that performs many of the routine operations of a central labbased chemistry analyzer, integrating, for example, colorimetric assays (e.g., for proteins), chemiluminescence/fluorescence assays (e.g., for enzymes, electrolytes, and gases), and/or conductometric assays (e.g., for hematocrit on plasma and whole blood) on a single chip platform.

  9. Digital Microfluidics for Immunoprecipitation.

    PubMed

    Seale, Brendon; Lam, Charis; Rackus, Darius G; Chamberlain, M Dean; Liu, Chang; Wheeler, Aaron R

    2016-10-04

    Immunoprecipitation (IP) is a common method for isolating a targeted protein from a complex sample such as blood, serum, or cell lysate. In particular, IP is often used as the primary means of target purification for the analysis by mass spectrometry of novel biologically derived pharmaceuticals, with particular utility for the identification of molecules bound to a protein target. Unfortunately, IP is a labor-intensive technique, is difficult to perform in parallel, and has limited options for automation. Furthermore, the technique is typically limited to large sample volumes, making the application of IP cleanup to precious samples nearly impossible. In recognition of these challenges, we introduce a method for performing microscale IP using magnetic particles and digital microfluidics (DMF-IP). The new method allows for 80% recovery of model proteins from approximately microliter volumes of serum in a sample-to-answer run time of approximately 25 min. Uniquely, analytes are eluted from these small samples in a format compatible with direct analysis by mass spectrometry. To extend the technique to be useful for large samples, we also developed a macro-to-microscale interface called preconcentration using liquid intake by paper (P-CLIP). This technique allows for efficient analysis of samples >100× larger than are typically processed on microfluidic devices. As described herein, DMF-IP and P-CLIP-DMF-IP are rapid, automated, and multiplexed methods that have the potential to reduce the time and effort required for IP sample preparations with applications in the fields of pharmacy, biomarker discovery, and protein biology.

  10. Parallel electromembrane extraction in the 96-well format.

    PubMed

    Eibak, Lars Erik Eng; Rasmussen, Knut Einar; Oiestad, Elisabeth Leere; Pedersen-Bjergaard, Stig; Gjelstad, Astrid

    2014-05-30

    The repeatability and extraction recoveries of parallel electromembrane extraction (Pa-EME) was thoroughly investigated in the present project. Amitriptyline, fluoxetine, and haloperidol were isolated from eight samples of pure water, undiluted human plasma, and undiluted human urine, respectively; in total 24 samples were processed in parallel. The repeatability was found to be independent of the different sample matrices (pure water samples, human plasma, and water) processed in parallel, although the respective samples contained different matrix components. In another experiment seven of the 24 wells were perforated. Even though the perforation caused the total current level in the Pa-EME setup to increase, the intact circuits were unaffected by the collapse in seven of the circuits. In another approach, exhaustive extraction of amitriptyline, fluoxetine, and haloperidol was demonstrated from pure water samples. Amitriptyline and haloperidol were also isolated exhaustively from undiluted human plasma samples; the extraction recovery of fluoxetine from undiluted human plasma was 81%. Finally, the sample throughput was increased with the Pa-EME configuration. The extraction recoveries were investigated by processing 1, 8, 68, or 96 samples in parallel in 10min; neither the extraction recoveries nor the repeatability was affected by the total numbers of samples. Eventually, the Pa-EME was combined with ultra performance liquid chromatography (UPLC) to combine high-throughput sample preparation with high-throughput analytical instrumentation. The aim of the present investigation was to demonstrate the potential of electromembrane extraction as a high throughput sample preparation platform; and hopefully to increase the interest for EME in the bioanalytical field to solve exisiting and novel analytical challenges.

  11. Recent Progress of Microfluidics in Translational Applications.

    PubMed

    Liu, Zongbin; Han, Xin; Qin, Lidong

    2016-04-20

    Microfluidics, featuring microfabricated structures, is a technology for manipulating fluids at the micrometer scale. The small dimension and flexibility of microfluidic systems are ideal for mimicking molecular and cellular microenvironment, and show great potential in translational research and development. Here, the recent progress of microfluidics in biological and biomedical applications, including molecular analysis, cellular analysis, and chip-based material delivery and biomimetic design is presented. The potential future developments in the translational microfluidics field are also discussed.

  12. Recent Progress of Microfluidics in Translational Applications

    PubMed Central

    Liu, Zongbin; Han, Xin

    2016-01-01

    Microfluidics, featuring microfabricated structures, is a technology for manipulating fluids at the micrometer scale. The small dimension and flexibility of microfluidic systems are ideal for mimicking molecular and cellular microenvironment, and show great potential in translational research and development. Here, the recent progress of microfluidics in biological and biomedical applications, including molecular analysis, cellular analysis, and chip-based material delivery and biomimetic design is presented. The potential future developments in the translational microfluidics field are also discussed. PMID:27091777

  13. Machine vision for digital microfluidics.

    PubMed

    Shin, Yong-Jun; Lee, Jeong-Bong

    2010-01-01

    Machine vision is widely used in an industrial environment today. It can perform various tasks, such as inspecting and controlling production processes, that may require humanlike intelligence. The importance of imaging technology for biological research or medical diagnosis is greater than ever. For example, fluorescent reporter imaging enables scientists to study the dynamics of gene networks with high spatial and temporal resolution. Such high-throughput imaging is increasingly demanding the use of machine vision for real-time analysis and control. Digital microfluidics is a relatively new technology with expectations of becoming a true lab-on-a-chip platform. Utilizing digital microfluidics, only small amounts of biological samples are required and the experimental procedures can be automatically controlled. There is a strong need for the development of a digital microfluidics system integrated with machine vision for innovative biological research today. In this paper, we show how machine vision can be applied to digital microfluidics by demonstrating two applications: machine vision-based measurement of the kinetics of biomolecular interactions and machine vision-based droplet motion control. It is expected that digital microfluidics-based machine vision system will add intelligence and automation to high-throughput biological imaging in the future.

  14. Machine vision for digital microfluidics

    NASA Astrophysics Data System (ADS)

    Shin, Yong-Jun; Lee, Jeong-Bong

    2010-01-01

    Machine vision is widely used in an industrial environment today. It can perform various tasks, such as inspecting and controlling production processes, that may require humanlike intelligence. The importance of imaging technology for biological research or medical diagnosis is greater than ever. For example, fluorescent reporter imaging enables scientists to study the dynamics of gene networks with high spatial and temporal resolution. Such high-throughput imaging is increasingly demanding the use of machine vision for real-time analysis and control. Digital microfluidics is a relatively new technology with expectations of becoming a true lab-on-a-chip platform. Utilizing digital microfluidics, only small amounts of biological samples are required and the experimental procedures can be automatically controlled. There is a strong need for the development of a digital microfluidics system integrated with machine vision for innovative biological research today. In this paper, we show how machine vision can be applied to digital microfluidics by demonstrating two applications: machine vision-based measurement of the kinetics of biomolecular interactions and machine vision-based droplet motion control. It is expected that digital microfluidics-based machine vision system will add intelligence and automation to high-throughput biological imaging in the future.

  15. Microfluidic photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Cho, Sung Hwan; Godin, Jessica; Chen, Chun Hao; Tsai, Frank S.; Lo, Yu-Hwa

    2008-11-01

    We report on the development of an inexpensive, portable lab-on-a-chip flow cytometer system in which microfluidics, photonics, and acoustics are integrated together to work synergistically. The system relies on fluid-filled twodimensional on-chip photonic components such as lenses, apertures, and slab waveguides to allow for illumination laser beam shaping, light scattering and fluorescence signal detection. Both scattered and fluorescent lights are detected by photodetectors after being collected and guided by the on-chip optics components (e.g. lenses and waveguides). The detected light signal is imported and amplified in real time and triggers the piezoelectric actuator so that the targeted samples are directed into desired reservoir for subsequent advanced analysis. The real-time, closed-loop control system is developed with field-programmable-gate-array (FPGA) implementation. The system enables high-throughput (1- 10kHz operation), high reliability and low-powered (<1mW) fluorescence activated cell sorting (FACS) on a chip. The microfabricated flow cytometer can potentially be used as a portable, inexpensive point-of-care device in resource poor environments.

  16. Mixing in Microfluidic Systems

    NASA Astrophysics Data System (ADS)

    Beskok, A.

    Flow and species transport in micro-scales experience laminar, even Stokes flow conditions. In absence of turbulence, species mixing becomes diffusion dominated, and requires very long mixing length scales (l m ). This creates significant challenges in the design of Lab-on-a-chip (LOC) devices, where mixing of macromolecules and biological species with very low mass diffusivities are often desired. The objectives of this chapter are to introduce concepts relevant to mixing enhancement in microfluidic systems, and guide readers in the design of new mixers via numerical simulations. A distinguishing feature is the identification of flow kinematics that enhance mixing, followed with systematic characterization of mixing as a function of the Schmidt number at fixed kinematic conditions. In this chapter, we briefly review the routes to achieve chaotic advection in Stokes flow, and then illustrate the characteri-zation of a continuous flow chaotic stirrer via appropriate numerical tools, including the Poincaré section, finite time Lyapunov exponent, and mixing index.

  17. Vibration Induced Microfluidic Atomization

    NASA Astrophysics Data System (ADS)

    Yeo, Leslie; Qi, Aisha; Friend, James

    2008-11-01

    We demonstrate rapid generation of micron aerosol droplets in a microfluidic device in which a fluid drop is exposed to surface vibration as it sits atop a piezoelectric substrate. Little, however, is understood about the processes by which these droplets form due to the complex hydrodynamic processes that occur across widely varying length and time scales. Through experiments, scaling theory and numerical modelling, we elucidate the interfacial destabilization mechanisms that lead to droplet formation. Droplets form due to the axisymmetric break-up of cylindrical liquid jets ejected as a consequence of interfacial destabilization. Their 10 μm size correlates with the jet radius and the instability wavelength, both determined from a viscous-capillary dominant force balance and confirmed through a numerical solution. With the exception of drops that spread into thin films with thicknesses on the order of the boundary layer dimension, the free surface is always observed to vibrate at the capillary-viscous resonance frequency despite the surface vibration frequency being several orders larger. This is contrary to common assumptions used in deriving subharmonic models resulting in a Mathieu equation, which has commonly led to spurious predictions in the droplet size.

  18. Microfluidic Compartmentalized Directed Evolution

    PubMed Central

    Paegel, Brian M.; Joyce, Gerald F.

    2010-01-01

    Summary Directed evolution studies often make use of water-in-oil compartments, which conventionally are prepared by bulk emulsification, a crude process that generates non-uniform droplets and can damage biochemical reagents. A microfluidic emulsification circuit was devised that generates uniform water-in-oil droplets (21.9 ± 0.8 μm radius) with high throughput (107–108 droplets per hour). The circuit contains a radial array of aqueous flow nozzles that intersect a surrounding oil flow channel. This device was used to evolve RNA enzymes with RNA ligase activity, selecting enzymes that could resist inhibition by neomycin. Each molecule in the population had the opportunity to undergo 108-fold selective amplification within its respective compartment. Then the progeny RNAs were harvested and used to seed new compartments. During five rounds of this procedure, the enzymes acquired mutations that conferred resistance to neomycin and caused some enzymes to become dependent on neomycin for optimal activity. PMID:20659684

  19. Microfluidic stretchable RF electronics.

    PubMed

    Cheng, Shi; Wu, Zhigang

    2010-12-07

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  20. Microfluidic reflow pumps.

    PubMed

    Haslam, Bryan; Tsai, Long-Fang; Anderson, Ryan R; Kim, Seunghyun; Hu, Weisheng; Nordin, Gregory P

    2015-07-01

    A new microfluidic pump, termed a reflow pump, is designed to operate with a sub-μl sample volume and transport it back and forth between two pneumatically actuated reservoirs through a flow channel typically containing one or more sensor surfaces. The ultimate motivation is to efficiently use the small sample volume in conjunction with convection to maximize analyte flux to the sensor surface(s) in order to minimize sensor response time. In this paper, we focus on the operational properties of the pumps themselves (rather than the sensor surfaces), and demonstrate both two-layer and three-layer polydimethylsiloxane reflow pumps. For the three-layer pump, we examine the effects of reservoir actuation pressure and actuation period, and demonstrate average volumetric flow rates as high as 500 μl/min. We also show that the two-layer design can pump up to 93% of the sample volume during each half period and demonstrate integration of a reflow pump with a single-chip microcantilever array to measure maximum flow rate.

  1. Microfluidic tools toward industrial biotechnology.

    PubMed

    Oliveira, Aline F; Pessoa, Amanda C S N; Bastos, Reinaldo G; de la Torre, Lucimara G

    2016-11-01

    Microfluidics is a technology that operates with small amounts of fluids and makes possible the investigation of cells, enzymes, and biomolecules and encapsulation of biocatalysts in a greater variety of conditions than permitted using conventional methods. This review discusses technological possibilities that can be applied in the field of industrial biotechnology, presenting the principal definitions and fundamental aspects of microfluidic parameters to better understand advanced approaches. Specifically, concentration gradient generators, droplet-based microfluidics, and microbioreactors are explored as useful tools that can contribute to industrial biotechnology. These tools present potential applications, inclusive as commercial platforms to optimizing in bioprocesses development as screening cells, encapsulating biocatalysts, and determining critical kinetic parameters. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1372-1389, 2016. © 2016 American Institute of Chemical Engineers.

  2. Imaging Liquids Using Microfluidic Cells

    SciTech Connect

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li

    2013-05-10

    Chemistry occurring in the liquid and liquid surface is important in many applications. Chemical imaging of liquids using vacuum based analytical techniques is challenging due to the difficulty in working with liquids with high volatility. Recent development in microfluidics enabled and increased our capabilities to study liquid in situ using surface sensitive techniques such as electron microscopy and spectroscopy. Due to its small size, low cost, and flexibility in design, liquid cells based on microfluidics have been increasingly used in studying and imaging complex phenomena involving liquids. This paper presents a review of microfluidic cells that were developed to adapt to electron microscopes and various spectrometers for in situ chemical analysis and imaging of liquids. The following topics will be covered including cell designs, fabrication techniques, unique technical features for vacuum compatible cells, and imaging with electron microscopy and spectroscopy. Challenges are summarized and recommendations for future development priority are proposed.

  3. Designing Colloidal Molecules with Microfluidics

    PubMed Central

    Shen, Bingqing; Ricouvier, Joshua; Malloggi, Florent

    2016-01-01

    The creation of new colloidal materials involves the design of functional building blocks. Here, a microfluidic method for designing building blocks one by one, at high throughput, with a broad range of shapes is introduced. The method exploits a coupling between hydrodynamic interactions and depletion forces that controls the configurational dynamics of droplet clusters traveling in microfluidic channels. Droplet clusters can be solidified in situ with UV. By varying the flow parameters, clusters are prescribed a given size, geometry, chemical and/or magnetic heterogeneities enabling local bonding. Compact structures (chains, triangles, diamonds, tetrahedrons,...) and noncompact structures, such as crosses and T, difficult to obtain with current techniques are produced. Size dispersions are small (2%) and throughputs are high (30 000 h−1). The work opens a new pathway, based on microfluidics, for designing colloidal building blocks with a potential to enable the creation of new materials. PMID:27840804

  4. A microfluidic device for the batch adsorption of a protein on adsorbent particles.

    PubMed

    Rho, Hoon Suk; Hanke, Alexander Thomas; Ottens, Marcel; Gardeniers, Han

    2017-10-07

    A microfluidic platform or "microfluidic batch adsorption device" is presented, which performs two sets of 9 parallel protein incubations with/without adsorbent particles to achieve an adsorption isotherm of a protein in a single experiment. The stepwise concentration gradient of a target protein was created by the integration of microvalves into the device. The nanoliter-scale reactor (41 nl) allows about 5000 times reduction of sample consumption and fast analysis compared with a conventional 96 well plate. The integration of two sets of parallel reactors as reference reactors and adsorption reactors, respectively, in a single microfluidic format has many advantages, such as the exclusion of the influence of undesired experimental fluctuations, and the possibility of real-time tracing of adsorption processes. We performed batch adsorption of albumin-fluorescein isothiocyanate conjugate (FITC-BSA) on polymeric particles (Source 15Q) to obtain an adsorption isotherm. The obtained on-chip parameters maximum adsorption amount (Qmax) and adsorption constant (Keq) were 0.33 ± 0.03 ng per particle and 0.97 ± 0.22 L g(-1), respectively, which are in good agreement with off-chip values (Qmax = 0.34 ± 0.01 ng per particle and Keq = 0.81 ± 0.10 L g(-1)). On-chip adsorption isotherms of FITC-BSA at various concentrations of sodium chloride (NaCl) were measured to evaluate the effect of this salt on the adsorption capability of Source 15Q. The microfluidic device serves as a new analytical tool, useful in biotechnological and industrial applications, where the adsorption behavior of (bio)molecules on commercial adsorbent particles plays critical roles, such as protein separation and purification, detection of analytes and biomarkers, and solid-phase immunoassays.

  5. Applications of microfluidics in quantitative biology.

    PubMed

    Bai, Yang; Gao, Meng; Wen, Lingling; He, Caiyun; Chen, Yuan; Liu, Chenli; Fu, Xiongfei; Huang, Shuqiang

    2017-10-04

    Quantitative biology is dedicated to taking advantage of quantitative reasoning and advanced engineering technologies to make biology more predictable. Microfluidics, as an emerging technique, provides new approaches to precisely control fluidic conditions on small scales and collect data in high-throughput and quantitative manners. In this review, we present the relevant applications of microfluidics to quantitative biology based on two major categories (channel-based microfluidics and droplet-based microfluidics), and their typical features. We also envision some other microfluidic techniques that may not be employed in quantitative biology right now, but have great potential in the near future. This article is protected by copyright. All rights reserved.

  6. Rapid prototyping of glass microfluidic chips

    NASA Astrophysics Data System (ADS)

    Kotz, Frederik; Plewa, Klaus; Bauer, Werner; Hanemann, Thomas; Waldbaur, Ansgar; Wilhelm, Elisabeth; Neumann, Christiane; Rapp, Bastian E.

    2015-03-01

    In academia the rapid and flexible creation of microfluidic chips is of great importance for microfluidic research. Besides polymers glass is a very important material especially when high chemical and temperature resistance are required. However, glass structuring is a very hazardous process which is not accessible to most members of the microfluidic community. We therefore sought a new method for the rapid and simple creation of transparent microfluidic glass chips by structuring and sintering amorphous silica suspensions. The whole process from a digital mask layout to a microstructured glass sheet can be done within two days. In this paper we show the applicability of this process to fabricate capillary driven microfluidic systems.

  7. Fluid control in microfluidic devices using a fluid conveyance extension and an absorbent microfluidic flow modulator.

    PubMed

    Yuen, Po Ki

    2013-05-07

    This article presents a simple method for controlling fluid in microfluidic devices without the need for valves or pumps. A fluid conveyance extension is fluidly coupled to the enclosed outlet chamber of a microfluidic device. After a fluid is introduced into the microfluidic device and saturates the fluid conveyance extension, a fluid flow in the microfluidic device is generated by contacting an absorbent microfluidic flow modulator with the fluid conveyance extension to absorb the fluid from the fluid conveyance extension through capillary action. Since the fluid in the microfluidic device is fluidly coupled with the fluid conveyance extension and the fluid conveyance extension is fluidly coupled with the absorbent microfluidic flow modulator, the absorption rate of the absorbent microfluidic flow modulator, which is the rate at which the absorbent microfluidic flow modulator absorbs fluid, matches the fluid flow rate in the microfluidic device. Thus, the fluid flow rate in the microfluidic device is set by the absorption rate of the absorbent microfluidic flow modulator. Sheath flow and fluid switching applications are demonstrated using this simple fluid control method without the need for valves or pumps. Also, the ability to control the fluid flow rate in the microfluidic device is demonstrated using absorbent microfluidic flow modulators with various absorbent characteristics and dimensions.

  8. Discrete Boltzmann equation for microfluidics.

    PubMed

    Li, Baoming; Kwok, Daniel Y

    2003-03-28

    We propose a discrete Boltzmann model for microfluidics based on the Boltzmann equation with external forces using a single relaxation time collision model. Considering the electrostatic interactions in microfluidics systems, we introduce an equilibrium distribution function that differs from the Maxwell-Boltzmann distribution by an exponential factor to represent the action of an external force field. A statistical mechanical approach is applied to derive the equivalent external acceleration force exerting on the lattice particles based on a mean-field approximation, resulting from the electro-static potential energy and intermolecular potential energy between fluid-fluid and fluid-substrate interactions.

  9. Microfluidic device for drug delivery

    NASA Technical Reports Server (NTRS)

    Beebe, David J. (Inventor); MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Mensing, Glennys A. (Inventor)

    2010-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  10. Microfluidic devices for droplet injection

    NASA Astrophysics Data System (ADS)

    Aubrecht, Donald; Akartuna, Ilke; Weitz, David

    2012-02-01

    As picoliter-scale reaction vessels, microfluidic water-in-oil emulsions have found application for high-throughput, large-sample number analyses. Often, the biological or chemical system under investigation needs to be encapsulated into droplets to prevent cross contamination prior to the introduction of reaction reagents. Previous techniques of picoinjection or droplet synchronization and merging enable the addition of reagents to individual droplets, but present limitations on what can be added to each droplet. We present microfluidic devices that couple the strengths of picoinjection and droplet merging, allowing us to selectively add precise volume to our droplet reactions.

  11. Integrated microfluidic probe station

    NASA Astrophysics Data System (ADS)

    Perrault, C. M.; Qasaimeh, M. A.; Brastaviceanu, T.; Anderson, K.; Kabakibo, Y.; Juncker, D.

    2010-11-01

    The microfluidic probe (MFP) consists of a flat, blunt tip with two apertures for the injection and reaspiration of a microjet into a solution—thus hydrodynamically confining the microjet—and is operated atop an inverted microscope that enables live imaging. By scanning across a surface, the microjet can be used for surface processing with the capability of both depositing and removing material; as it operates under immersed conditions, sensitive biological materials and living cells can be processed. During scanning, the MFP is kept immobile and centered over the objective of the inverted microscope, a few micrometers above a substrate that is displaced by moving the microscope stage and that is flushed continuously with the microjet. For consistent and reproducible surface processing, the gap between the MFP and the substrate, the MFP's alignment, the scanning speed, the injection and aspiration flow rates, and the image capture need all to be controlled and synchronized. Here, we present an automated MFP station that integrates all of these functionalities and automates the key operational parameters. A custom software program is used to control an independent motorized Z stage for adjusting the gap, a motorized microscope stage for scanning the substrate, up to 16 syringe pumps for injecting and aspirating fluids, and an inverted fluorescence microscope equipped with a charge-coupled device camera. The parallelism between the MFP and the substrate is adjusted using manual goniometer at the beginning of the experiment. The alignment of the injection and aspiration apertures along the scanning axis is performed using a newly designed MFP screw holder. We illustrate the integrated MFP station by the programmed, automated patterning of fluorescently labeled biotin on a streptavidin-coated surface.

  12. Integrated microfluidic probe station.

    PubMed

    Perrault, C M; Qasaimeh, M A; Brastaviceanu, T; Anderson, K; Kabakibo, Y; Juncker, D

    2010-11-01

    The microfluidic probe (MFP) consists of a flat, blunt tip with two apertures for the injection and reaspiration of a microjet into a solution--thus hydrodynamically confining the microjet--and is operated atop an inverted microscope that enables live imaging. By scanning across a surface, the microjet can be used for surface processing with the capability of both depositing and removing material; as it operates under immersed conditions, sensitive biological materials and living cells can be processed. During scanning, the MFP is kept immobile and centered over the objective of the inverted microscope, a few micrometers above a substrate that is displaced by moving the microscope stage and that is flushed continuously with the microjet. For consistent and reproducible surface processing, the gap between the MFP and the substrate, the MFP's alignment, the scanning speed, the injection and aspiration flow rates, and the image capture need all to be controlled and synchronized. Here, we present an automated MFP station that integrates all of these functionalities and automates the key operational parameters. A custom software program is used to control an independent motorized Z stage for adjusting the gap, a motorized microscope stage for scanning the substrate, up to 16 syringe pumps for injecting and aspirating fluids, and an inverted fluorescence microscope equipped with a charge-coupled device camera. The parallelism between the MFP and the substrate is adjusted using manual goniometer at the beginning of the experiment. The alignment of the injection and aspiration apertures along the scanning axis is performed using a newly designed MFP screw holder. We illustrate the integrated MFP station by the programmed, automated patterning of fluorescently labeled biotin on a streptavidin-coated surface.

  13. Design and fabrication of polymer-based microfluidic platforms for BioMEMS applications

    NASA Astrophysics Data System (ADS)

    Lai, Siyi

    The goal of this study is to design and fabricate polymer microfluidic devices for BioMEMS applications. The emphasis is on the design of microfluidic functions and the development of a new packaging technique. A microfluidic platform was designed on a compact disk (CD) for medical diagnostics, which includes functions such as pumping, valving, sample/reagent loading, mixing, metering, and separation. The fluid propulsion was based on the centrifugal force. A passive capillary valve, which is based on a pressure barrier that develops when the cross-section of the capillary expands abruptly, was used to control the fluid flow. Micromixing was achieved by impinging mixing and bend-induced vortices. Integration of these microfluidic functions was applied in a two-point calibration system for medical diagnostics and a cascade micromixer for protein reconstitution. A specific application was for enzyme-linked immunosorbent assays (ELISA). It has been demonstrated successfully to realize the necessary microfluidic functions for the ELISA process on a CD. The preliminary analysis of rat IgG from hybridoma culture showed that the microchip-based ELISA has the same detection range as the conventional method on the 96-well microtiter plate, and has advantages such as less reagent consumption and shorter assay time over the conventional one. A new resin-gas injection technique was developed for bonding and surface modification of polymer microfluidic devices. This method can easily bond biochips with complex flow patterns. By adding surface modification agents, the interfacial free energy of the substrate with water can be controlled. Local modification of the channel surface can also be achieved through sequential resin-gas injection in conjunction with the masking technique. For application, this technique was used to form a layer of dry monolithic stationary hydrogel on the walls of a microchannel, serving as a sieving material for electrophoresis separation of DNA

  14. Bioinspired multicompartmental microfibers from microfluidics.

    PubMed

    Cheng, Yao; Zheng, Fuyin; Lu, Jie; Shang, Luoran; Xie, Zhuoying; Zhao, Yuanjin; Chen, Yongping; Gu, Zhongze

    2014-08-13

    Bioinspired multicompartmental microfibers are generated by novel capillary microfluidics. The resultant microfibers possess multicompartment body-and-shell compositions with specifically designed geometries. Potential use of these microfibers for tissue-engineering applications is demonstrated by creating multifunctional fibers with a spatially controlled encapsulation of cells.

  15. Microfluidic-integrated DNA nanobiosensors.

    PubMed

    Ansari, M I Haque; Hassan, Shabir; Qurashi, Ahsanulhaq; Khanday, Firdous Ahmad

    2016-11-15

    Over the last few decades, an increased demand has emerged for integrating biosensors with microfluidic- and nanofluidic-based lab-on-chip (LOC) devices for point-of-care (POC) diagnostics, in the medical industry and environmental monitoring of pathogenic threat agents. Such a merger of microfluidics with biosensing technologies allows for the precise control of volumes, as low as one nanolitre and the integration of various types of bioassays on a single miniaturized platform. This integration offers several favorable advantages, such as low reagent consumption, automation of sample preparation, reduction in processing time, low cost analysis, minimal handling of hazardous materials, high detection accuracy, portability and disposability. This review provides a synopsis of the most recent developments in the microfluidic-integrated biosensing field by delineating the fundamental theory of microfluidics, fabrication techniques and a detailed account of the various transduction methods that are employed. Lastly, the review discusses state-of-the-art DNA biosensors with a focus on optical DNA biosensors.

  16. Fabrication of plastic microfluidic components

    NASA Astrophysics Data System (ADS)

    Martin, Peter M.; Matson, Dean W.; Bennett, Wendy D.; Hammerstrom, D. J.

    1998-09-01

    Plastic components have many advantages, including ease of fabrication, low cost, chemical inertness, lightweight, and disposability. We report on the fabrication of three plastics-based microfluidic components: a motherboard, a dialysis unit, and a metal sensor. Microchannels, headers, and interconnects were produced in thin sheets (>=50 microns) of polyimide, PMMA, polyethylene, and polycarbonate using a direct-write excimer laser micromachining system. Machined sheets were laminated by thermal and adhesive bonding to form leak-tight microfluidic components. The microfluidic motherboard borrowed the `functionality on a chip' concept from the electronics industry and was the heart of a complex microfluidic analytical device. The motherboard platform was designed to be tightly integrated and self-contained (i.e., liquid flows are all confined within machined microchannels), reducing the need for tubing with fluid distribution and connectivity. This concept greatly facilitated system integration and miniaturization. As fabricated, the motherboard consisted of three fluid reservoirs connected to micropumps by microchannels. The fluids could either be pumped independently or mixed in microchannels prior to being directed to exterior analytical components via outlet ports. The microdialysis device was intended to separate electrolytic solutes from low volume samples prior to mass spectrometric analysis. The device consisted of a dialysis membrane laminated between opposed serpentine microchannels containing the sample fluid and a buffer solution. The laminated metal sensor consisted of fluid reservoirs, micro-flow channels, micropumps, mixing channels, reaction channels, and detector circuitry.

  17. Active, Universal Particle Micromanipulators: CPUs for Microfluidics

    NASA Astrophysics Data System (ADS)

    Mezic, Igor; Bottausci, Frederic

    2007-11-01

    Current designs for Lab-on-a-Chip applications consist of a variety of separate microfluidic chambers and channels for functions such as concentration, separation, reaction and mixing of bioparticles in liquids. Here we advance an alternative concept, named μfCPU, the Microfluidic Central Processing Unit, where the key microfluidic operations are performed within a single enclosure, using software-based inputs rather than physical hardware changes, thus emulating the role of the Central Processing Unit in computers and cells in living organisms. We present an experimental embodiment of such a device and describe a variety of microfluidic manipulation tasks achieved in it by the use of a suite of electromotive and fluidic forces in a time-dependent way to produce on-demand functionality. We also discuss a new microfluidic devices architecture that utilizes μfCPU as the basic processing unit and uses centralized pumping instead of integrated microfluidic pumps.

  18. Microfluidic Approaches for Protein Crystal Structure Analysis.

    PubMed

    Maeki, Masatoshi; Yamaguchi, Hiroshi; Tokeshi, Manabu; Miyazaki, Masaya

    2016-01-01

    This review summarizes two microfluidic-based protein crystallization methods, protein crystallization behavior in the microfluidic devices, and their applications for X-ray crystal structure analysis. Microfluidic devices provide many advantages for protein crystallography; they require small sample volumes, provide high-throughput screening, and allow control of the protein crystallization. A droplet-based protein crystallization method is a useful technique for high-throughput screening and the formation of a single crystal without any complicated device fabrication process. Well-based microfluidic platforms also enable effective protein crystallization. This review also summarizes the protein crystal growth behavior in microfluidic devices as, is known from viewpoints of theoretical and experimental approaches. Finally, we introduce applications of microfluidic devices for on-chip crystal structure analysis.

  19. Ice matrix in reconfigurable microfluidic systems

    NASA Astrophysics Data System (ADS)

    Bossi, A. M.; Vareijka, M.; Piletska, E. V.; Turner, A. P. F.; Meglinski, I.; Piletsky, S. A.

    2013-07-01

    Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices.

  20. Microfluidic networks embedded in a printed circuit board

    NASA Astrophysics Data System (ADS)

    Dong, Liangwei; Hu, Yueli

    2017-07-01

    In order to improve the robustness of microfluidic networks in printed circuit board (PCB)-based microfluidic platforms, a new method was presented. A pattern in a PCB was formed using hollowed-out technology. Polydimethylsiloxane was partly filled in the hollowed-out fields after mounting an adhesive tape on the bottom of the PCB, and solidified in an oven. Then, microfluidic networks were built using soft lithography technology. Microfluidic transportation and dilution operations were demonstrated using the fabricated microfluidic platform. Results show that this method can embed microfluidic networks into a PCB, and microfluidic operations can be implemented in the microfluidic networks embedded into the PCB.

  1. Bio-microfluidics: biomaterials and biomimetic designs.

    PubMed

    Domachuk, Peter; Tsioris, Konstantinos; Omenetto, Fiorenzo G; Kaplan, David L

    2010-01-12

    Bio-microfluidics applies biomaterials and biologically inspired structural designs (biomimetics) to microfluidic devices. Microfluidics, the techniques for constraining fluids on the micrometer and sub-micrometer scale, offer applications ranging from lab-on-a-chip to optofluidics. Despite this wealth of applications, the design of typical microfluidic devices imparts relatively simple, laminar behavior on fluids and is realized using materials and techniques from silicon planar fabrication. On the other hand, highly complex microfluidic behavior is commonplace in nature, where fluids with nonlinear rheology flow through chaotic vasculature composed from a range of biopolymers. In this Review, the current state of bio-microfluidic materials, designs and applications are examined. Biopolymers enable bio-microfluidic devices with versatile functionalization chemistries, flexibility in fabrication, and biocompatibility in vitro and in vivo. Polymeric materials such as alginate, collagen, chitosan, and silk are being explored as bulk and film materials for bio-microfluidics. Hydrogels offer options for mechanically functional devices for microfluidic systems such as self-regulating valves, microlens arrays and drug release systems, vital for integrated bio-microfluidic devices. These devices including growth factor gradients to study cell responses, blood analysis, biomimetic capillary designs, and blood vessel tissue culture systems, as some recent examples of inroads in the field that should lead the way in a new generation of microfluidic devices for bio-related needs and applications. Perhaps one of the most intriguing directions for the future will be fully implantable microfluidic devices that will also integrate with existing vasculature and slowly degrade to fully recapitulate native tissue structure and function, yet serve critical interim functions, such as tissue maintenance, drug release, mechanical support, and cell delivery.

  2. A microfluidic D-subminiature connector.

    PubMed

    Scott, Adina; Au, Anthony K; Vinckenbosch, Elise; Folch, Albert

    2013-06-07

    Standardized, affordable, user-friendly world-to-chip interfaces represent one of the major barriers to the adoption of microfluidics. We present a connector system for plug-and-play interfacing of microfluidic devices to multiple input and output lines. The male connectors are based on existing standardized housings from electronics that are inexpensive and widely available. The female connectors are fabricated using familiar replica molding techniques that can easily be adopted by microfluidic developers.

  3. [Recent development of microfluidic diagnostic technologies].

    PubMed

    Li, Haifang; Zhang, Qianyun; Lin, Jin-Ming

    2011-04-01

    Microfluidic devices exhibit a great promising development in clinical diagnosis and disease screening due to their advantages of precise controlling of fluid flow, requirement of miniamount sample, rapid reaction speed and convenient integration. In this paper, the improvements of microfluidic diagnostic technologies in recent years are reviewed. The applications and developments of on-chip disease marker detection, microfluidic cell selection and cell drug metabolism, and diagnostic micro-devices are discussed.

  4. Advances in microfluidics for environmental analysis.

    PubMed

    Jokerst, Jana C; Emory, Jason M; Henry, Charles S

    2012-01-07

    During the past few years, a growing number of groups have recognized the utility of microfluidic devices for environmental analysis. Microfluidic devices offer a number of advantages and in many respects are ideally suited to environmental analyses. Challenges faced in environmental monitoring, including the ability to handle complex and highly variable sample matrices, lead to continued growth and research. Additionally, the need to operate for days to months in the field requires further development of robust, integrated microfluidic systems. This review examines recently published literature on the applications of microfluidic systems for environmental analysis and provides insight in the future direction of the field.

  5. Nanofluidic interfaces in microfluidic networks

    SciTech Connect

    Millet, Larry J.; Doktycz, Mitchel John; Retterer, Scott T.

    2015-09-24

    The integration of nano- and microfluidic technologies enables the construction of tunable interfaces to physical and biological systems across relevant length scales. The ability to perform chemical manipulations of miniscule sample volumes is greatly enhanced through these technologies and extends the ability to manipulate and sample the local fluidic environments at subcellular, cellular and community or tissue scales. Here we describe the development of a flexible surface micromachining process for the creation of nanofluidic channel arrays integrated within SU-8 microfluidic networks. The use of a semi-porous, silicon rich, silicon nitride structural layer allows rapid release of the sacrificial silicon dioxide during the nanochannel fabrication. Nanochannel openings that form the interface to biological samples are customized using focused ion beam milling. The compatibility of these interfaces with on-chip microbial culture is demonstrated.

  6. Self-assembly via microfluidics.

    PubMed

    Wang, Lei; Sánchez, Samuel

    2015-12-07

    The self-assembly of amphiphilic building blocks has attracted extensive interest in myriad fields in recent years, due to their great potential in the nanoscale design of functional hybrid materials. Microfluidic techniques provide an intriguing method to control kinetic aspects of the self-assembly of molecular amphiphiles by the facile adjustment of the hydrodynamics of the fluids. Up to now, there have been several reports about one-step direct self-assembly of different building blocks with versatile and multi-shape products without templates, which demonstrated the advantages of microfluidics. These assemblies with different morphologies have great applications in various areas such as cancer therapy, micromotor fabrication, and controlled drug delivery.

  7. Superhydrophobicity for antifouling microfluidic surfaces.

    PubMed

    Shirtcliffe, N J; Roach, P

    2013-01-01

    Fouling of surfaces is often problematic in microfluidic devices, particularly when using protein or -enzymatic solutions. Various coating methods have been investigated to reduce the tendency for protein molecules to adsorb, mostly relying on hydrophobic surface chemistry or the antifouling ability of -polyethylene glycol. Here we present the potential use of superhydrophobic surfaces to not only reduce the amount of surface contamination but also to induce self-cleaning under flow conditions. The methodology is presented in order to prepare superhydrophobic surface coatings having micro- and nanoscale feature dimensions, as well as a step-by-step guide to quantify adsorbed protein down to nanogram levels. The fabrication of these surfaces as coatings via silica sol-gel and copper nano-hair growth is presented, which can be applied within microfluidic devices manufactured from various materials.

  8. Droplet microfluidics for synthetic biology.

    PubMed

    Gach, Philip C; Iwai, Kosuke; Kim, Peter W; Hillson, Nathan J; Singh, Anup K

    2017-08-18

    Synthetic biology is an interdisciplinary field that aims to engineer biological systems for useful purposes. Organism engineering often requires the optimization of individual genes and/or entire biological pathways (consisting of multiple genes). Advances in DNA sequencing and synthesis have recently begun to enable the possibility of evaluating thousands of gene variants and hundreds of thousands of gene combinations. However, such large-scale optimization experiments remain cost-prohibitive to researchers following traditional molecular biology practices, which are frequently labor-intensive and suffer from poor reproducibility. Liquid handling robotics may reduce labor and improve reproducibility, but are themselves expensive and thus inaccessible to most researchers. Microfluidic platforms offer a lower entry price point alternative to robotics, and maintain high throughput and reproducibility while further reducing operating costs through diminished reagent volume requirements. Droplet microfluidics have shown exceptional promise for synthetic biology experiments, including DNA assembly, transformation/transfection, culturing, cell sorting, phenotypic assays, artificial cells and genetic circuits.

  9. Microfluidic hydrogels for tissue engineering.

    PubMed

    Huang, Guo You; Zhou, Li Hong; Zhang, Qian Cheng; Chen, Yong Mei; Sun, Wei; Xu, Feng; Lu, Tian Jian

    2011-03-01

    With advanced properties similar to the native extracellular matrix, hydrogels have found widespread applications in tissue engineering. Hydrogel-based cellular constructs have been successfully developed to engineer different tissues such as skin, cartilage and bladder. Whilst significant advances have been made, it is still challenging to fabricate large and complex functional tissues due mainly to the limited diffusion capability of hydrogels. The integration of microfluidic networks and hydrogels can greatly enhance mass transport in hydrogels and spatiotemporally control the chemical microenvironment of cells, mimicking the function of native microvessels. In this review, we present and discuss recent advances in the fabrication of microfluidic hydrogels from the viewpoint of tissue engineering. Further development of new hydrogels and microengineering technologies will have a great impact on tissue engineering.

  10. Microfluidic studies of carbon dioxide.

    PubMed

    Abolhasani, Milad; Günther, Axel; Kumacheva, Eugenia

    2014-07-28

    Carbon dioxide (CO2) sequestration, storage and recycling will greatly benefit from comprehensive studies of physical and chemical gas-liquid processes involving CO2. Over the past five years, microfluidics emerged as a valuable tool in CO2-related research, due to superior mass and heat transfer, reduced axial dispersion, well-defined gas-liquid interfacial areas and the ability to vary reagent concentrations in a high-throughput manner. This Minireview highlights recent progress in microfluidic studies of CO2-related processes, including dissolution of CO2 in physical solvents, CO2 reactions, the utilization of CO2 in materials science, and the use of supercritical CO2 as a "green" solvent.

  11. Microfluidic preparation of polymer nanospheres

    NASA Astrophysics Data System (ADS)

    Kucuk, Israfil; Edirisinghe, Mohan

    2014-12-01

    In this work, solid polymer nanospheres with their surface tailored for drug adhesion were prepared using a V-shaped microfluidic junction. The biocompatible polymer solutions were infused using two channels of the microfluidic junction which was also simultaneously fed with a volatile liquid, perfluorohexane using the other channel. The mechanism by which the nanospheres are generated is explained using high speed camera imaging. The polymer concentration (5-50 wt%) and flow rates of the feeds (50-300 µl min-1) were important parameters in controlling the nanosphere diameter. The diameter of the polymer nanospheres was found to be in the range of 80-920 nm with a polydispersity index of 11-19 %. The interior structure and surfaces of the nanospheres prepared were studied using advanced microscopy and showed the presence of fine pores and cracks on surface which can be used as drug entrapment locations.

  12. Nanofluidic interfaces in microfluidic networks

    DOE PAGES

    Millet, Larry J.; Doktycz, Mitchel John; Retterer, Scott T.

    2015-09-24

    The integration of nano- and microfluidic technologies enables the construction of tunable interfaces to physical and biological systems across relevant length scales. The ability to perform chemical manipulations of miniscule sample volumes is greatly enhanced through these technologies and extends the ability to manipulate and sample the local fluidic environments at subcellular, cellular and community or tissue scales. Here we describe the development of a flexible surface micromachining process for the creation of nanofluidic channel arrays integrated within SU-8 microfluidic networks. The use of a semi-porous, silicon rich, silicon nitride structural layer allows rapid release of the sacrificial silicon dioxidemore » during the nanochannel fabrication. Nanochannel openings that form the interface to biological samples are customized using focused ion beam milling. The compatibility of these interfaces with on-chip microbial culture is demonstrated.« less

  13. Integrating plasmonic diagnostics and microfluidics

    PubMed Central

    Niu, Lifang; Zhang, Nan; Liu, Hong; Zhou, Xiaodong; Knoll, Wolfgang

    2015-01-01

    Plasmonics is generally divided into two categories: surface plasmon resonance (SPR) of electromagnetic modes propagating along a (noble) metal/dielectric interface and localized SPRs (LSPRs) on nanoscopic metallic structures (particles, rods, shells, holes, etc.). Both optical transducer concepts can be combined with and integrated in microfluidic devices for biomolecular analyte detections, with the benefits of small foot-print for point-of-care detection, low-cost for one-time disposal, and ease of being integrated into an array format. The key technologies in such integration include the plasmonic chip, microfluidic channel fabrication, surface bio-functionalization, and selection of the detection scheme, which are selected according to the specifics of the targeting analytes. This paper demonstrates a few examples of the many versions of how to combine plasmonics and integrated microfluidics, using different plasmonic generation mechanisms for different analyte detections. One example is a DNA sensor array using a gold film as substrate and surface plasmon fluorescence spectroscopy and microscopy as the transduction method. This is then compared to grating-coupled SPR for poly(ethylene glycol) thiol interaction detected by angle interrogation, gold nanohole based LSPR chip for biotin-strepavidin detection by wavelength shift, and gold nanoholes/nanopillars for the detection of prostate specific antigen by quantum dot labels excited by the LSPR. Our experimental results exemplified that the plasmonic integrated microfluidics is a promising tool for understanding the biomolecular interactions and molecular recognition process as well as biosensing, especially for on-site or point-of-care diagnostics. PMID:26392832

  14. Integrating plasmonic diagnostics and microfluidics.

    PubMed

    Niu, Lifang; Zhang, Nan; Liu, Hong; Zhou, Xiaodong; Knoll, Wolfgang

    2015-09-01

    Plasmonics is generally divided into two categories: surface plasmon resonance (SPR) of electromagnetic modes propagating along a (noble) metal/dielectric interface and localized SPRs (LSPRs) on nanoscopic metallic structures (particles, rods, shells, holes, etc.). Both optical transducer concepts can be combined with and integrated in microfluidic devices for biomolecular analyte detections, with the benefits of small foot-print for point-of-care detection, low-cost for one-time disposal, and ease of being integrated into an array format. The key technologies in such integration include the plasmonic chip, microfluidic channel fabrication, surface bio-functionalization, and selection of the detection scheme, which are selected according to the specifics of the targeting analytes. This paper demonstrates a few examples of the many versions of how to combine plasmonics and integrated microfluidics, using different plasmonic generation mechanisms for different analyte detections. One example is a DNA sensor array using a gold film as substrate and surface plasmon fluorescence spectroscopy and microscopy as the transduction method. This is then compared to grating-coupled SPR for poly(ethylene glycol) thiol interaction detected by angle interrogation, gold nanohole based LSPR chip for biotin-strepavidin detection by wavelength shift, and gold nanoholes/nanopillars for the detection of prostate specific antigen by quantum dot labels excited by the LSPR. Our experimental results exemplified that the plasmonic integrated microfluidics is a promising tool for understanding the biomolecular interactions and molecular recognition process as well as biosensing, especially for on-site or point-of-care diagnostics.

  15. Acoustically-driven microfluidic systems

    SciTech Connect

    Wang, A W; Benett, W J; Tarte, L R

    2000-06-23

    We have demonstrated a non-contact method of concentrating and mixing particles in a plastic microfluidic chamber employing acoustic radiation pressure. A flaw cell package has also been designed that integrates liquid sample interconnects, electrical contacts and a removable sample chamber. Experiments were performed on 1, 3, 6, and 10 {micro}m polystyrene beads. Increased antibody binding to a solid-phase substrate was observed in the presence of acoustic mixing due to improve mass transport.

  16. Multidimensional bioseparation with modular microfluidics

    DOEpatents

    Chirica, Gabriela S.; Renzi, Ronald F.

    2013-08-27

    A multidimensional chemical separation and analysis system is described including a prototyping platform and modular microfluidic components capable of rapid and convenient assembly, alteration and disassembly of numerous candidate separation systems. Partial or total computer control of the separation system is possible. Single or multiple alternative processing trains can be tested, optimized and/or run in parallel. Examples related to the separation and analysis of human bodily fluids are given.

  17. Hydrogel discs for digital microfluidics

    PubMed Central

    Fiddes, Lindsey K.; Luk, Vivienne N.; Au, Sam H.; Ng, Alphonsus H. C.; Luk, Victoria; Kumacheva, Eugenia; Wheeler, Aaron R.

    2012-01-01

    Hydrogels are networks of hydrophilic polymer chains that are swollen with water, and they are useful for a wide range of applications because they provide stable niches for immobilizing proteins and cells. We report here the marriage of hydrogels with digital microfluidic devices. Until recently, digital microfluidics, a fluid handling technique in which discrete droplets are manipulated electromechanically on the surface of an array of electrodes, has been used only for homogeneous systems involving liquid reagents. Here, we demonstrate for the first time that the cylindrical hydrogel discs can be incorporated into digital microfluidic systems and that these discs can be systematically addressed by droplets of reagents. Droplet movement is observed to be unimpeded by interaction with the gel discs, and gel discs remain stationary when droplets pass through them. Analyte transport into gel discs is observed to be identical to diffusion in cases in which droplets are incubated with gels passively, but transport is enhanced when droplets are continually actuated through the gels. The system is useful for generating integrated enzymatic microreactors and for three-dimensional cell culture. This paper demonstrates a new combination of techniques for lab-on-a-chip systems which we propose will be useful for a wide range of applications. PMID:22662096

  18. Microfluidic reactors for diagnostics applications.

    PubMed

    McCalla, Stephanie E; Tripathi, Anubhav

    2011-08-15

    Diagnostic assays are an important part of health care, both in the clinic and in research laboratories. In addition to improving treatments and clinical outcomes, rapid and reliable diagnostics help track disease epidemiology, curb infectious outbreaks, and further the understanding of chronic illness. Disease markers such as antigens, RNA, and DNA are present at low concentrations in biological samples, such that the majority of diagnostic assays rely on an amplification reaction before detection is possible. Ideally, these amplification reactions would be sensitive, specific, inexpensive, rapid, integrated, and automated. Microfluidic technology currently in development offers many advantages over conventional benchtop reactions that help achieve these goals. The small reaction volumes and energy consumption make reactions cheaper and more efficient in a microfluidic reactor. Additionally, the channel architecture could be designed to perform multiple tests or experimental steps on one integrated, automated platform. This review explores the current research on microfluidic reactors designed to aid diagnostic applications, covering a broad spectrum of amplification techniques and designs.

  19. Continuous Flow Microfluidic Bioparticle Concentrator.

    PubMed

    Martel, Joseph M; Smith, Kyle C; Dlamini, Mcolisi; Pletcher, Kendall; Yang, Jennifer; Karabacak, Murat; Haber, Daniel A; Kapur, Ravi; Toner, Mehmet

    2015-06-10

    Innovative microfluidic technology has enabled massively parallelized and extremely efficient biological and clinical assays. Many biological applications developed and executed with traditional bulk processing techniques have been translated and streamlined through microfluidic processing with the notable exception of sample volume reduction or centrifugation, one of the most widely utilized processes in the biological sciences. We utilize the high-speed phenomenon known as inertial focusing combined with hydraulic resistance controlled multiplexed micro-siphoning allowing for the continuous concentration of suspended cells into pre-determined volumes up to more than 400 times smaller than the input with a yield routinely above 95% at a throughput of 240 ml/hour. Highlighted applications are presented for how the technology can be successfully used for live animal imaging studies, in a system to increase the efficient use of small clinical samples, and finally, as a means of macro-to-micro interfacing allowing large samples to be directly coupled to a variety of powerful microfluidic technologies.

  20. Continuous Flow Microfluidic Bioparticle Concentrator

    PubMed Central

    Martel, Joseph M.; Smith, Kyle C.; Dlamini, Mcolisi; Pletcher, Kendall; Yang, Jennifer; Karabacak, Murat; Haber, Daniel A.; Kapur, Ravi; Toner, Mehmet

    2015-01-01

    Innovative microfluidic technology has enabled massively parallelized and extremely efficient biological and clinical assays. Many biological applications developed and executed with traditional bulk processing techniques have been translated and streamlined through microfluidic processing with the notable exception of sample volume reduction or centrifugation, one of the most widely utilized processes in the biological sciences. We utilize the high-speed phenomenon known as inertial focusing combined with hydraulic resistance controlled multiplexed micro-siphoning allowing for the continuous concentration of suspended cells into pre-determined volumes up to more than 400 times smaller than the input with a yield routinely above 95% at a throughput of 240 ml/hour. Highlighted applications are presented for how the technology can be successfully used for live animal imaging studies, in a system to increase the efficient use of small clinical samples, and finally, as a means of macro-to-micro interfacing allowing large samples to be directly coupled to a variety of powerful microfluidic technologies. PMID:26061253

  1. Clogging in a microfluidic hourglass

    NASA Astrophysics Data System (ADS)

    Marin, Alvaro; Rossi, Massimiliano; Kähler, Christian J.

    2014-11-01

    One of the main disadvantages of microfluidic devices is their tendency to clog when a high density of particles or droplets is forced through them. The same problem is often encountered in classical granular flows in silos and hourglasses. It is well-known that hourglasses work optimally when the particle-to-neck ratio is within certain ratio without interruption (Zuriguel et al., Phys. Rev. E, 2003), while arching occurs for particle-to-neck ratios above d / D ~ 2 . Microfluidic devices normally work in geometries in which d / D > 10 , in which the arching probability is negligible. Clogging is nonetheless possible, but mainly due to the accumulation of particles at the walls (Wyss et al., Phys. Rev. E, 2006). On the other hand, clogging by arching in systems with d / D ~ O (1) are expected to have radically different physics and statistics, due to collective behavior and hydrodynamic interactions. To study these regimes, we study microfluidic devices with a bottleneck of squared crossed section and side length D through which we force polystyrene particles with diameters from d / D ~ 1 to 0 . 25 at packing fractions ranging from 10% up to 50%. Our results show that clogging of such systems have more in common with granular flows in hourglasses than expected.

  2. Whole-Teflon microfluidic chips

    PubMed Central

    Ren, Kangning; Dai, Wen; Zhou, Jianhua; Su, Jing; Wu, Hongkai

    2011-01-01

    Although microfluidics has shown exciting potential, its broad applications are significantly limited by drawbacks of the materials used to make them. In this work, we present a convenient strategy for fabricating whole-Teflon microfluidic chips with integrated valves that show outstanding inertness to various chemicals and extreme resistance against all solvents. Compared with other microfluidic materials [e.g., poly(dimethylsiloxane) (PDMS)] the whole-Teflon chip has a few more advantages, such as no absorption of small molecules, little adsorption of biomolecules onto channel walls, and no leaching of residue molecules from the material bulk into the solution in the channel. Various biological cells have been cultured in the whole-Teflon channel. Adherent cells can attach to the channel bottom, spread, and proliferate well in the channels (with similar proliferation rate to the cells in PDMS channels with the same dimensions). The moderately good gas permeability of the Teflon materials makes it suitable to culture cells inside the microchannels for a long time. PMID:21536918

  3. Continuous Flow Microfluidic Bioparticle Concentrator

    NASA Astrophysics Data System (ADS)

    Martel, Joseph M.; Smith, Kyle C.; Dlamini, Mcolisi; Pletcher, Kendall; Yang, Jennifer; Karabacak, Murat; Haber, Daniel A.; Kapur, Ravi; Toner, Mehmet

    2015-06-01

    Innovative microfluidic technology has enabled massively parallelized and extremely efficient biological and clinical assays. Many biological applications developed and executed with traditional bulk processing techniques have been translated and streamlined through microfluidic processing with the notable exception of sample volume reduction or centrifugation, one of the most widely utilized processes in the biological sciences. We utilize the high-speed phenomenon known as inertial focusing combined with hydraulic resistance controlled multiplexed micro-siphoning allowing for the continuous concentration of suspended cells into pre-determined volumes up to more than 400 times smaller than the input with a yield routinely above 95% at a throughput of 240 ml/hour. Highlighted applications are presented for how the technology can be successfully used for live animal imaging studies, in a system to increase the efficient use of small clinical samples, and finally, as a means of macro-to-micro interfacing allowing large samples to be directly coupled to a variety of powerful microfluidic technologies.

  4. Whole-Teflon microfluidic chips.

    PubMed

    Ren, Kangning; Dai, Wen; Zhou, Jianhua; Su, Jing; Wu, Hongkai

    2011-05-17

    Although microfluidics has shown exciting potential, its broad applications are significantly limited by drawbacks of the materials used to make them. In this work, we present a convenient strategy for fabricating whole-Teflon microfluidic chips with integrated valves that show outstanding inertness to various chemicals and extreme resistance against all solvents. Compared with other microfluidic materials [e.g., poly(dimethylsiloxane) (PDMS)] the whole-Teflon chip has a few more advantages, such as no absorption of small molecules, little adsorption of biomolecules onto channel walls, and no leaching of residue molecules from the material bulk into the solution in the channel. Various biological cells have been cultured in the whole-Teflon channel. Adherent cells can attach to the channel bottom, spread, and proliferate well in the channels (with similar proliferation rate to the cells in PDMS channels with the same dimensions). The moderately good gas permeability of the Teflon materials makes it suitable to culture cells inside the microchannels for a long time.

  5. An integrated sample-in-answer-out microfluidic chip for rapid human identification by STR analysis.

    PubMed

    Le Roux, Delphine; Root, Brian E; Hickey, Jeffrey A; Scott, Orion N; Tsuei, Anchi; Li, Jingyi; Saul, David J; Chassagne, Luc; Landers, James P; de Mazancourt, Philippe

    2014-11-21

    A fully integrated microfluidic chip for human identification by short tandem repeat (STR) analysis that includes a unique enzymatic liquid preparation of the DNA, microliter non-contact PCR, and a polymer that allows a high-resolution separation within a compact microchip footprint has been developed. A heat-activated enzyme that digests biological materials is employed to generate the target yield of DNA from a buccal swab or FTA paper. The microfluidic architecture meters an aliquot of the liberated DNA and mixes it with the PCR reagents prior to non-contact IR-mediated PCR amplification. The products of PCR amplification are mixed with a sizing standard (ladder) and the 18-plex STR amplicons are separated in an effective length (Leff) of just 7 cm. The development, optimization and integration of each of these processes within the microfluidic chip are described. The device is able to generate genetic profiles in approximately 2 hours that match the profiles from the conventional processes performed using separate conventional instruments. Analysis is performed on a single plastic microchip with a size similar to that of a 96-well plate and only a few mm thick with no pretreatment of any of the functional domains. This is significant advancement in terms of ease of fabrication over glass microdevices or polymeric systems assembled from multiple components. Consequently, this fully integrated sample-in-answer-out microchip is an important step toward generation of a rapid micro-total analysis system for point-of-collection human identification based on genetic analysis.

  6. Microfluidics-integrated time-lapse imaging for analysis of cellular dynamics.

    PubMed

    Albrecht, Dirk R; Underhill, Gregory H; Resnikoff, Joshua; Mendelson, Avital; Bhatia, Sangeeta N; Shah, Jagesh V

    2010-06-01

    An understanding of the mechanisms regulating cellular responses has recently been augmented by innovations enabling the observation of phenotypes at high spatio-temporal resolution. Technologies such as microfluidics have sought to expand the throughput of these methods, although assimilation with advanced imaging strategies has been limited. Here, we describe the pairing of high resolution time-lapse imaging with microfluidic multiplexing for the analysis of cellular dynamics, utilizing a design selected for facile fabrication and operation, and integration with microscopy instrumentation. This modular, medium-throughput platform enables the long-term imaging of living cells at high numerical aperture (via oil immersion) by using a conserved 96-well, approximately 6 x 5 mm(2) imaging area with a variable input/output channel design chosen for the number of cell types and microenvironments under investigation. In the validation of this system, we examined fundamental features of cell cycle progression, including mitotic kinetics and spindle orientation dynamics, through the high-resolution parallel analysis of model cell lines subjected to anti-mitotic agents. We additionally explored the self-renewal kinetics of mouse embryonic stem cells, and demonstrate the ability to dynamically assess and manipulate stem cell proliferation, detect rare cell events, and measure extended time-scale correlations. We achieved an experimental throughput of >900 cells/experiment, each observed at >40x magnification for up to 120 h. Overall, these studies illustrate the capacity to probe cellular functions and yield dynamic information in time and space through the integration of a simple, modular, microfluidics-based imaging platform.

  7. Implementation of microfluidic sandwich ELISA for superior detection of plant pathogens.

    PubMed

    Thaitrong, Numrin; Charlermroj, Ratthaphol; Himananto, Orawan; Seepiban, Channarong; Karoonuthaisiri, Nitsara

    2013-01-01

    Rapid and economical screening of plant pathogens is a high-priority need in the seed industry. Crop quality control and disease surveillance demand early and accurate detection in addition to robustness, scalability, and cost efficiency typically required for selective breeding and certification programs. Compared to conventional bench-top detection techniques routinely employed, a microfluidic-based approach offers unique benefits to address these needs simultaneously. To our knowledge, this work reports the first attempt to perform microfluidic sandwich ELISA for Acidovorax citrulli (Ac), watermelon silver mottle virus (WSMoV), and melon yellow spot virus (MYSV) screening. The immunoassay occurs on the surface of a reaction chamber represented by a microfluidic channel. The capillary force within the microchannel draws a reagent into the reaction chamber as well as facilitates assay incubation. Because the underlying pad automatically absorbs excess fluid, the only operation required is sequential loading of buffers/reagents. Buffer selection, antibody concentrations, and sample loading scheme were optimized for each pathogen. Assay optimization reveals that the 20-folds lower sample volume demanded by the microchannel structure outweighs the 2- to 4-folds higher antibody concentrations required, resulting in overall 5-10 folds of reagent savings. In addition to cutting the assay time by more than 50%, the new platform offers 65% cost savings from less reagent consumption and labor cost. Our study also shows 12.5-, 2-, and 4-fold improvement in assay sensitivity for Ac, WSMoV, and MYSV, respectively. Practical feasibility is demonstrated using 19 real plant samples. Given a standard 96-well plate format, the developed assay is compatible with commercial fluorescent plate readers and readily amendable to robotic liquid handling systems for completely hand-free assay automation.

  8. Materials for microfluidic chip fabrication.

    PubMed

    Ren, Kangning; Zhou, Jianhua; Wu, Hongkai

    2013-11-19

    Through manipulating fluids using microfabricated channel and chamber structures, microfluidics is a powerful tool to realize high sensitive, high speed, high throughput, and low cost analysis. In addition, the method can establish a well-controlled microenivroment for manipulating fluids and particles. It also has rapid growing implementations in both sophisticated chemical/biological analysis and low-cost point-of-care assays. Some unique phenomena emerge at the micrometer scale. For example, reactions are completed in a shorter amount of time as the travel distances of mass and heat are relatively small; the flows are usually laminar; and the capillary effect becomes dominant owing to large surface-to-volume ratios. In the meantime, the surface properties of the device material are greatly amplified, which can lead to either unique functions or problems that we would not encounter at the macroscale. Also, each material inherently corresponds with specific microfabrication strategies and certain native properties of the device. Therefore, the material for making the device plays a dominating role in microfluidic technologies. In this Account, we address the evolution of materials used for fabricating microfluidic chips, and discuss the application-oriented pros and cons of different materials. This Account generally follows the order of the materials introduced to microfluidics. Glass and silicon, the first generation microfluidic device materials, are perfect for capillary electrophoresis and solvent-involved applications but expensive for microfabriaction. Elastomers enable low-cost rapid prototyping and high density integration of valves on chip, allowing complicated and parallel fluid manipulation and in-channel cell culture. Plastics, as competitive alternatives to elastomers, are also rapid and inexpensive to microfabricate. Their broad variety provides flexible choices for different needs. For example, some thermosets support in-situ fabrication of

  9. Principles, Techniques, and Applications of Tissue Microfluidics

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called "tissue microfluidics" because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets.

  10. Microfluidic tools for cell biological research

    PubMed Central

    Velve-Casquillas, Guilhem; Le Berre, Maël; Piel, Matthieu; Tran, Phong T.

    2010-01-01

    Summary Microfluidic technology is creating powerful tools for cell biologists to control the complete cellular microenvironment, leading to new questions and new discoveries. We review here the basic concepts and methodologies in designing microfluidic devices, and their diverse cell biological applications. PMID:21152269

  11. Opportunities for microfluidic technologies in synthetic biology

    PubMed Central

    Gulati, Shelly; Rouilly, Vincent; Niu, Xize; Chappell, James; Kitney, Richard I.; Edel, Joshua B.; Freemont, Paul S.; deMello, Andrew J.

    2009-01-01

    We introduce microfluidics technologies as a key foundational technology for synthetic biology experimentation. Recent advances in the field of microfluidics are reviewed and the potential of such a technological platform to support the rapid development of synthetic biology solutions is discussed. PMID:19474079

  12. Modular microfluidic system for biological sample preparation

    DOEpatents

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  13. Microfluidic opportunities in the field of nutrition

    PubMed Central

    Li, Sixing; Kiehne, Justin; Sinoway, Lawrence I.; Cameron, Craig E.

    2013-01-01

    Nutrition has always been closely related to human health, which is a constant motivational force driving research in a variety of disciplines. Over the years, the rapidly emerging field of microfluidics has been pushing forward the healthcare industry with the development of microfluidic-based, point-of-care (POC) diagnostic devices. Though a great deal of work has been done in developing microfluidic platforms for disease diagnoses, potential microfluidic applications in the field of nutrition remain largely unexplored. In this Focus article, we would like to investigate the potential chances for microfluidics in the field of nutrition. We will first highlight some of the recent advances in microfluidic blood analysis systems that have the capacity to detect biomarkers of nutrition. Then we will examine existing examples of microfluidic devices for the detection of specific biomarkers of nutrition or nutrient content in food. Finally, we will discuss the challenges in this field and provide some insight into the future of applied microfluidics in nutrition. PMID:24056522

  14. Smartphone quantifies Salmonella from paper microfluidics.

    PubMed

    Park, Tu San; Li, Wenyue; McCracken, Katherine E; Yoon, Jeong-Yeol

    2013-12-21

    Smartphone-based optical detection is a potentially easy-to-use, handheld, true point-of-care diagnostic tool for the early and rapid detection of pathogens. Paper microfluidics is a low-cost, field-deployable, and easy-to-use alternative to conventional microfluidic devices. Most paper-based microfluidic assays typically utilize dyes or enzyme-substrate binding, while bacterial detection on paper microfluidics is rare. We demonstrate a novel application of smartphone-based detection of Salmonella on paper microfluidics. Each paper microfluidic channel was pre-loaded with anti-Salmonella Typhimurium and anti-Escherichia coli conjugated submicroparticles. Dipping the paper microfluidic device into the Salmonella solutions led to the antibody-conjugated particles that were still confined within the paper fibers to immunoagglutinate. The extent of immunoagglutination was quantified by evaluating Mie scattering from the digital images taken at an optimized angle and distance with a smartphone. A smartphone application was designed and programmed to allow the user to position the smartphone at an optimized angle and distance from the paper microfluidic device, and a simple image processing algorithm was implemented to calculate and display the bacterial concentration on the smartphone. The detection limit was single-cell-level and the total assay time was less than one minute.

  15. Principles, Techniques, and Applications of Tissue Microfluidics

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called tissue microfluidics because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets. The proposed principles represent a paradigm shift in microfluidic technology in three important ways: Microfluidic devices are to be directly integrated with, onto, or around tissue samples, in contrast to the conventional method of off-chip sample extraction followed by sample insertion in microfluidic devices. Architectural and operational principles of microfluidic devices are to be subordinated to suit specific tissue structure and needs, in contrast to the conventional method of building devices according to fluidic function alone and without regard to tissue structure. Sample acquisition from tissue is to be performed on-chip and is to be integrated with the diagnostic measurement within the same device, in contrast to the conventional method of off-chip sample prep and

  16. New materials for microfluidics in biology.

    PubMed

    Ren, Kangning; Chen, Yin; Wu, Hongkai

    2014-02-01

    With its continuous progress, microfluidics has become a key enabling technology in biological research. During the past few years, the major growth of microfluidics shifted to the introduction of new materials in making microfluidic chips, primarily driven by the demand of versatile strategies to interface microfluidics with biological cell studies. Although polydimethylsiloxane is still used as primary frame material, hydrogels have been increasingly employed in cell-culture related applications. Moreover, plastics and paper are attracting more attention in commercial device fabrication. Aiming to reflect this trend, current review focuses on the progress of microfluidic chip materials over the time span of January 2011 through June 2013, and provides critical discussion of the resulting major new tools in biological research.

  17. Recent developments in microfluidics for cell studies.

    PubMed

    Xiong, Bin; Ren, Kangning; Shu, Yiwei; Chen, Yin; Shen, Bo; Wu, Hongkai

    2014-08-20

    As a technique for precisely manipulating fluid at the micrometer scale, the field of microfluidics has experienced an explosive growth over the past two decades, particularly owing to the advances in device design and fabrication. With the inherent advantages associated with its scale of operation, and its flexibility in being incorporated with other microscale techniques for manipulation and detection, microfluidics has become a major enabling technology, which has introduced new paradigms in various fields involving biological cells. A microfluidic device is able to realize functions that are not easily imaginable in conventional biological analysis, such as highly parallel, sophisticated high-throughput analysis, single-cell analysis in a well-defined manner, and tissue engineering with the capability of manipulation at the single-cell level. Major advancements in microfluidic device fabrication and the growing trend of implementing microfluidics in cell studies are presented, with a focus on biological research and clinical diagnostics.

  18. Microfluidic desalination techniques and their potential applications.

    PubMed

    Roelofs, S H; van den Berg, A; Odijk, M

    2015-09-07

    In this review we discuss recent developments in the emerging research field of miniaturized desalination. Traditionally desalination is performed to convert salt water into potable water and research is focused on improving performance of large-scale desalination plants. Microfluidic desalination offers several new opportunities in comparison to macro-scale desalination, such as providing a platform to increase fundamental knowledge of ion transport on the nano- and microfluidic scale and new microfluidic sample preparation methods. This approach has also lead to the development of new desalination techniques, based on micro/nanofluidic ion-transport phenomena, which are potential candidates for up-scaling to (portable) drinking water devices. This review assesses microfluidic desalination techniques on their applications and is meant to contribute to further implementation of microfluidic desalination techniques in the lab-on-chip community.

  19. Microfluidics: a new cosset for neurobiology.

    PubMed

    Wang, Jinyi; Ren, Li; Li, Li; Liu, Wenming; Zhou, Jing; Yu, Wenhao; Tong, Denwen; Chen, Shulin

    2009-03-07

    Recently, microfluidic systems have shown great potential in the study of molecular and cellular biology. With its excellent properties, such as miniaturization, integration and automation, to name just a few, microfluidics creates new opportunities for the spatial and temporal control of cell growth and environmental stimuli in vitro. In the field of neuroscience, microfluidic devices offer precise control of the microenvironment surrounding individual cells, and the delivery of biochemical or physical cues to neural networks or single neurons. The intent of this review is to outline recent advances in microfluidic-based applications in neurobiology, with emphasis on neuron culture, neuron manipulation, neural stem cell differentiation, neuropharmacology, neuroelectrophysiology, and neuron biosensors. It also aims to stimulate development of microfluidic-based applications in neurobiology by involving scientists from various disciplines, especially neurobiology and microtechnology.

  20. Electrorheological fluid and its applications in microfluidics.

    PubMed

    Wang, Limu; Gong, Xiuqing; Wen, Weijia

    2011-01-01

    Microfluidics is a low-cost technique for fast-diagnosis and microsynthesis. Within a decade it might become the foundation of point-of-care and lab-on-a-chip applications. With microfluidic chips, high-throughput sample screening and information processing are made possible. The picoliter droplet runs in microfluidic chips are ideal miniaturized vessels for microdetection and microsynthesis. Meanwhile, individual manipulation of microdroplets remains a challenge: the shortcomings in automatic, reliable, and scalable methods for logic control prevent further integration of microfluidic applications. The giant electrorheological fluid (GERF), which is a kind of "smart" colloid, has tunable viscosity under the influence of external electric field. Therefore, GERF is introduced as the active controlling medium, with real-time response in on-chip fluid control. This review article introduces the working principles and fabrication methods of different types of electrorheological fluid, and extensively describes the strategies of GERF-assisted microfluidic controlling schemes.

  1. Microfluidics for food, agriculture and biosystems industries.

    PubMed

    Neethirajan, Suresh; Kobayashi, Isao; Nakajima, Mitsutoshi; Wu, Dan; Nandagopal, Saravanan; Lin, Francis

    2011-05-07

    Microfluidics, a rapidly emerging enabling technology has the potential to revolutionize food, agriculture and biosystems industries. Examples of potential applications of microfluidics in food industry include nano-particle encapsulation of fish oil, monitoring pathogens and toxins in food and water supplies, micro-nano-filtration for improving food quality, detection of antibiotics in dairy food products, and generation of novel food structures. In addition, microfluidics enables applications in agriculture and animal sciences such as nutrients monitoring and plant cells sorting for improving crop quality and production, effective delivery of biopesticides, simplified in vitro fertilization for animal breeding, animal health monitoring, vaccination and therapeutics. Lastly, microfluidics provides new approaches for bioenergy research. This paper synthesizes information of selected microfluidics-based applications for food, agriculture and biosystems industries.

  2. Manipulation of microfluidic droplets by electrorheological fluid.

    PubMed

    Zhang, Menying; Gong, Xiuqing; Wen, Weijia

    2009-09-01

    Microfluidics, especially droplet microfluidics, attracts more and more researchers from diverse fields, because it requires fewer materials and less time, produces less waste and has the potential of highly integrated and computer-controlled reaction processes for chemistry and biology. Electrorheological fluid, especially giant electrorheological fluid (GERF), which is considered as a kind of smart material, has been applied to the microfluidic systems to achieve active and precise control of fluid by electrical signal. In this review article, we will introduce recent results of microfluidic droplet manipulation, GERF and some pertinent achievements by introducing GERF into microfluidic system: digital generation, manipulation of "smart droplets" and droplet manipulation by GERF. Once it is combined with real-time detection, integrated chip with multiple functions can be realized.

  3. Cytotoxicity studies of CdSeS/ZnS quantum dots on cell culture in microfluidic system

    NASA Astrophysics Data System (ADS)

    Haczyk, Maja; Grabowska-Jadach, Ilona; Drozd, Marcin; Pietrzak, Mariusz; Malinowska, ElŻbieta; Brzózka, Zbigniew

    2014-08-01

    Quantum dots (QDs) semi-conducting nanocrystals have found numerous applications in many fields of science. Nowadays one can observe a growing perspective to use them in biomedicine. Thanks to QDs unique fluorescence properties (narrow emission spectra, high extinction coefficients, high quantum yields, photostability) and possibility to form conjugates with bioactive molecules, they can become a chance for better cancer cells imaging in cancer therapy. Therefore there is a need for better understanding of biological interactions between QDs and cancer cells in vitro. For this purpose we performed cytotoxicity tests of CdSeS/ZnS quantum dots stabilized with mercaptopropionic acid (MPA) ligand, on human lung cancer cell line (A549) in vitro in macro- (96-well plate) and micro-scale (a specially designed and fabricated microfluidic device). The results obtained demonstrated a little extent of cytotoxic effect of selected solutions of QDs to A549 cells.

  4. Voltammetry on microfluidic chip platforms

    PubMed

    Wang; Polsky; Tian; Chatrathi

    2000-11-01

    Microfluidic chip devices are shown to be attractive platforms for performing microscale voltammetric analysis and for integrating voltammetric procedures with on-chip chemical reactions and fluid manipulations. Linear-sweep, square-wave, and adsorptive-stripping voltammograms are recorded while electrokinetically "pumping" the sample through the microchannels. The adaptation of voltammetric techniques to microfluidic chip operation requires an assessment of the effect of relevant experimental variables, particularly the high voltage used for driving the electroosmotic flow, upon the background current, potential window, and size or potential of the voltammetric signal. The exact potential window of the chip detector is dependent upon the driving voltage. Manipulation of the electroosmotic flow opens the door to hydrodynamic modulation (stopped-flow) and reversed-flow operations. The modulated analyte velocity permits compensation of the microchip voltammetric background. Reversal of the driving voltage polarity offers extended residence times in the detector compartment. Rapid square-wave voltammetry/flow injection operation allows a detection limit of 2 x 10(-12) mol (i.e., 2 pmol) of 2,4,6-trinitrotoluene (TNT) in connection with 47 nL of injected sample. The ability of integrating chemical reactions with voltammetric detection is demonstrated for adsorptive stripping measurements of trace nickel using the nickel-dimethylglyoxime model system. The voltammetric response is characterized using catechol, hydrazine, TNT, and nickel as test species. The ability to perform on-chip voltammertic protocols in advantageous over nanovial voltammetric operations that lack a liquid-handling capability. Coupling the versatility of microfluidic chips with the rich information content of voltammetry thus opens an array of future opportunities.

  5. Surface-micromachined microfluidic devices

    DOEpatents

    Galambos, Paul C.; Okandan, Murat; Montague, Stephen; Smith, James H.; Paul, Phillip H.; Krygowski, Thomas W.; Allen, James J.; Nichols, Christopher A.; Jakubczak, II, Jerome F.

    2003-01-01

    Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators.

  6. Microfluidics and the life sciences.

    PubMed

    Becker, Holger; Gärtner, Claudia

    2012-01-01

    The field of microfluidics, often also referred to as "Lab-on-a-Chip" has made significant progress in the last 15 years and is an essential tool in the development of new products and protocols in the life sciences. This article provides a broad overview on the developments on the academic as well as the commercial side. Fabrication technologies for polymer-based devices are presented and a strategy for the development of complex integrated devices is discussed, together with an example on the use of these devices in pathogen detection.

  7. Active droplet generation in microfluidics.

    PubMed

    Chong, Zhuang Zhi; Tan, Say Hwa; Gañán-Calvo, Alfonso M; Tor, Shu Beng; Loh, Ngiap Hiang; Nguyen, Nam-Trung

    2016-01-07

    The reliable generation of micron-sized droplets is an important process for various applications in droplet-based microfluidics. The generated droplets work as a self-contained reaction platform in droplet-based lab-on-a-chip systems. With the maturity of this platform technology, sophisticated and delicate control of the droplet generation process is needed to address increasingly complex applications. This review presents the state of the art of active droplet generation concepts, which are categorized according to the nature of the induced energy. At the liquid/liquid interface, an energy imbalance leads to instability and droplet breakup.

  8. Magneto-Hydrodynamics Based Microfluidics

    PubMed Central

    Qian, Shizhi; Bau, Haim H.

    2009-01-01

    In microfluidic devices, it is necessary to propel samples and reagents from one part of the device to another, stir fluids, and detect the presence of chemical and biological targets. Given the small size of these devices, the above tasks are far from trivial. Magnetohydrodynamics (MHD) offers an elegant means to control fluid flow in microdevices without a need for mechanical components. In this paper, we review the theory of MHD for low conductivity fluids and describe various applications of MHD such as fluid pumping, flow control in fluidic networks, fluid stirring and mixing, circular liquid chromatography, thermal reactors, and microcoolers. PMID:20046890

  9. Microfluidic Applications of Soft Lithography

    SciTech Connect

    Rose, K A; Krulevitch, P; Hamilton, J

    2001-04-10

    The soft lithography fabrication technique was applied to three microfluidic devices. The method was used to create an original micropump design and retrofit to existing designs for a DNA manipulation device and a counter biological warfare sample preparation device. Each device presented unique and original challenges to the soft lithography application. AI1 design constraints of the retrofit devices were satisfied using PDMS devices created through variation of soft lithography methods. The micropump utilized the versatility of PDMS, creating design options not available with other materials. In all cases, the rapid processing of soft lithography reduced the fabrication time, creating faster turnaround for design modifications.

  10. Laser Ablation of Polymer Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Killeen, Kevin

    2004-03-01

    Microfluidic technology is ideal for processing precious samples of limited volumes. Some of the most important classes of biological samples are both high in sample complexity and low in concentration. Combining the elements of sample pre-concentration, chemical separation and high sensitivity detection with chemical identification is essential for realizing a functional microfluidic based analysis system. Direct write UV laser ablation has been used to rapidly fabricate microfluidic devices capable of high performance liquid chromatography (HPLC)-MS. These chip-LC/MS devices use bio-compatible, solvent resistant and flexible polymer materials such as polyimide. A novel microfluidic to rotary valve interface enables, leak free, high pressure fluid switching between multiple ports of the microfluidic chip-LC/MS device. Electrospray tips with outer dimension of 50 um and inner of 15 um are formed by ablating the polymer material concentrically around a multilayer laminated channel structure. Biological samples of digested proteins were used to evaluate the performance of these microfluidic devices. Liquid chromatography separation and similar sample pretreatments have been performed using polymeric microfluidic devices with on-chip separation channels. Mass spectrometry was performed using an Agilent Technologies 1100 series ion trap mass spectrometer. Low fmol amounts of protein samples were positively and routinely identified by searching the MS/MS spectral data against protein databases. The sensitivity and separation performance of the chip-LC devices has been found to be comparable to state of the art nano-electrospray systems.

  11. Polycarbonate-Based Blends for Optical Non-linear Applications

    NASA Astrophysics Data System (ADS)

    Stanculescu, F.; Stanculescu, A.

    2016-02-01

    This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.

  12. Microfluidics and cancer: are we there yet?

    PubMed

    Zhang, Zhuo; Nagrath, Sunitha

    2013-08-01

    More than two decades ago, microfluidics began to show its impact in biological research. Since then, the field of microfluidics has evolving rapidly. Cancer is one of the leading causes of death worldwide. Microfluidics holds great promise in cancer diagnosis and also serves as an emerging tool for understanding cancer biology. Microfluidics can be valuable for cancer investigation due to its high sensitivity, high throughput, less material-consumption, low cost, and enhanced spatio-temporal control. The physical laws on microscale offer an advantage enabling the control of physics, biology, chemistry and physiology at cellular level. Furthermore, microfluidic based platforms are portable and can be easily designed for point-of-care diagnostics. Developing and applying the state of the art microfluidic technologies to address the unmet challenges in cancer can expand the horizons of not only fundamental biology but also the management of disease and patient care. Despite the various microfluidic technologies available in the field, few have been tested clinically, which can be attributed to the various challenges existing in bridging the gap between the emerging technology and real world applications. We present a review of role of microfluidics in cancer research, including the history, recent advances and future directions to explore where the field stand currently in addressing complex clinical challenges and future of it. This review identifies four critical areas in cancer research, in which microfluidics can change the current paradigm. These include cancer cell isolation, molecular diagnostics, tumor biology and high-throughput screening for therapeutics. In addition, some of our lab's current research is presented in the corresponding sections.

  13. Phonons in active microfluidic crystals

    NASA Astrophysics Data System (ADS)

    Tsang, Alan Cheng Hou; Kanso, Eva

    2016-11-01

    One-dimensional crystals of driven particles confined in quasi two-dimensional microfluidic channels have been shown to exhibit propagating sound waves in the form of 'phonons', including both transverse and longitudinal normal modes. Here, we focus on one-dimensional crystals of motile particles in uniform external flows. We study the propagation of phonons in the context of an idealized model that accounts for hydrodynamic interactions among the motile particles. We obtain a closed-form analytical expression for the dispersion relation of the phonons. In the moving frame of reference of the crystals, the traveling directions of the phonons depend on the intensity of the external flow, and are exactly opposite for the transverse and longitudinal modes. We further investigate the stability of the phonons and show that the longitudinal mode is linearly stable, whereas the transverse mode is subject to an instability arising from the activity and orientation dynamics of the motile particles. These findings are important for understanding the propagation of disturbances and instabilities in confined motile particles, and could generate practical insights into the transport of motile cells in microfluidic devices.

  14. All-aqueous multiphase microfluidics

    PubMed Central

    Song, Yang; Sauret, Alban; Cheung Shum, Ho

    2013-01-01

    Immiscible aqueous phases, formed by dissolving incompatible solutes in water, have been used in green chemical synthesis, molecular extraction and mimicking of cellular cytoplasm. Recently, a microfluidic approach has been introduced to generate all-aqueous emulsions and jets based on these immiscible aqueous phases; due to their biocompatibility, these all-aqueous structures have shown great promises as templates for fabricating biomaterials. The physico-chemical nature of interfaces between two immiscible aqueous phases leads to unique interfacial properties, such as an ultra-low interfacial tension. Strategies to manipulate components and direct their assembly at these interfaces needs to be explored. In this paper, we review progress on the topic over the past few years, with a focus on the fabrication and stabilization of all-aqueous structures in a multiphase microfluidic platform. We also discuss future efforts needed from the perspectives of fluidic physics, materials engineering, and biology for fulfilling potential applications ranging from materials fabrication to biomedical engineering. PMID:24454609

  15. Microfluidic approaches to malaria detection.

    PubMed

    Gascoyne, Peter; Satayavivad, Jutamaad; Ruchirawat, Mathuros

    2004-02-01

    Microfluidic systems are under development to address a variety of medical problems. Key advantages of micrototal analysis systems based on microfluidic technology are the promise of small size and the integration of sample handling and measurement functions within a single, automated device having low mass-production costs. Here, we review the spectrum of methods currently used to detect malaria, consider their advantages and disadvantages, and discuss their adaptability towards integration into small, automated micro total analysis systems. Molecular amplification methods emerge as leading candidates for chip-based systems because they offer extremely high sensitivity, the ability to recognize malaria species and strain, and they will be adaptable to the detection of new genotypic signatures that will emerge from current genomic-based research of the disease. Current approaches to the development of chip-based molecular amplification are considered with special emphasis on flow-through PCR, and we present for the first time the method of malaria specimen preparation by dielectrophoretic field-flow-fractionation. Although many challenges must be addressed to realize a micrototal analysis system for malaria diagnosis, it is concluded that the potential benefits of the approach are well worth pursuing.

  16. Enzymatic Reactions in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Ristenpart, W. D.; Wan, J.; Stone, H. A.

    2008-11-01

    We establish simple scaling laws for enzymatic reactions in microfluidic devices, and we demonstrate that kinetic parameters obtained conventionally using multiple stop-flow experiments may instead be extracted from a single microfluidic experiment. Introduction of an enzyme and substrate species in different arms of a Y-shaped channel allows the two species to diffuse across the parallel streamlines and to begin reacting. Measurements of the product concentration versus distance down the channel provide information about the kinetics of the reaction. In the limit where the enzyme is much larger (and thus less diffusive) than the substrate, we show that near the entrance the total amount of product (P) formed varies as a power law in the distance x down the channel. For reactions that follow standard Michaelis-Menten kinetics, the power law takes the form P˜(Vmax/Km) x^5/2, where Vmax and Km are the maximum reaction rate and Michaelis constant respectively. If a large excess of substrate is used, then Km is identified by measuring Vmax far downstream where the different species are completely mixed by diffusion. Numerical simulations and experiments using the bioluminescent reaction between luciferase and ATP as a model system are both shown to accord with the model. We discuss the implications for significant savings in the amount of time and enzyme required for determination of kinetic parameters.

  17. Inertial microfluidics for flow cytometry

    NASA Astrophysics Data System (ADS)

    Di Carlo, Dino

    2010-08-01

    Inertial components of the Navier-Stokes equations are usually not considered in microfluidic flows but have recently been shown to be of great practical use for continuous manipulation of particles and cells. After introducing the physical basis of the counter-intuitive self focusing of particles in a single inlet flow, I will discuss our current best focusing systems, and I will present results on using inertial focusing to create an extreme throughput flow cytometer for blood analysis. This system is an imaging cytometer implementation that can image 1 million focused blood cells per second, with the capability to increase to 20 million cells per second with appropriate wide-field of view imaging systems. The microfluidic device consists of 256 parallel high-aspect ratio microchannels in each of which two streams of focused cells assemble. These cells also form regular trains in the direction of flow such that cell coincidence is a rare occurrence, far below Poisson statistics suggest. Controlled inertially focused streams of particles are poised to provide next-generation filter-less filters and simplified flow cytometry instruments which ultimately may aid in water treatment environmental cleanup and cost-effective medical diagnostics.

  18. Surface-Micromachined Microfluidic Devices

    DOEpatents

    Galambos, Paul C.; Okandan, Murat; Montague, Stephen; Smith, James H.; Paul, Phillip H.; Krygowski, Thomas W.; Allen, James J.; Nichols, Christopher A.; Jakubczak, II, Jerome F.

    2004-09-28

    Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators. Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators.

  19. High-Voltage CMOS Controller for Microfluidics.

    PubMed

    Khorasani, M; Behnam, M; van den Berg, L; Backhouse, C J; Elliott, D G

    2009-04-01

    A high-voltage microfluidic controller designed using DALSA semiconductor's 0.8-mum low-voltage/high-voltage complementary metal-oxide semiconductor/double diffused metal-oxide semiconductor process is presented. The chip's four high-voltage output drivers can switch 300 V, and the dc-dc boost converter can generate up to 68 V using external passive components. This integrated circuit represents an advancement in microfluidic technology when used in conjunction with a charge coupling device (CCD)-based optical system and a glass microfluidic channel, enabling a portable and cost-efficient platform for genetic analysis.

  20. [Application of microfluidic-chip in biomedicine].

    PubMed

    Bi, Ying-Nan; Zhang, Hui-Jing

    2006-01-01

    As a novel analytical technology, the research of Micro total analysis systems (micro-TAS) has been spreading rapidly. micro-TAS has been widely used to perform chemical and biochemical analysis. Microfluidic-based analytical system as micro-TAS's manily direction develops very fast in terms of it's reaction speed, reagent consumption, miniaturization, cost, and automation. After having proven the value of microfluidics for genetic, proteomic and cytomics analysis, this article also anticipates the development tendency of this technology in the biology medicine domain. It has demonstrated that a truly, easy-to-handle Microfluidic-based analytical device will be emerged in the future.

  1. Nanoembossing of thermoplastic polymers for microfluidic applications

    NASA Astrophysics Data System (ADS)

    Studer, V.; Pépin, A.; Chen, Y.

    2002-05-01

    We present a method for the fabrication of plastic microfluidic devices based on nanoembossing and thermal bonding. By nanoembossing of thermoplastic polymer pellets, both microfluidic deep channels and high resolution features can be formed using a silicon mold fabricated by electron beam lithography and reactive ion etching. By thermal bonding with another plastic sheet, the fabricated microfluidic devices can be sealed without clogging. Observation of pressure driven and electrokinetic flows through high density pillar arrays indicates the feasibility of nanofluidic analysis using plastic devices.

  2. Analogy among microfluidics, micromechanics, and microelectronics.

    PubMed

    Li, Sheng-Shian; Cheng, Chao-Min

    2013-10-07

    We wish to illuminate the analogous link between microfluidic-based devices, and the already established pairing of micromechanics and microelectronics to create a triangular/three-way scientific relationship as a means of interlinking familial disciplines and accomplishing two primary goals: (1) to facilitate the modeling of multidisciplinary domains; and, (2) to enable us to co-simulate the entire system within a compact circuit simulator (e.g., Cadence or SPICE). A microfluidic channel-like structure embedded in a micro-electro-mechanical resonator via our proposed CMOS-MEMS technology is used to illustrate the connections among microfluidics, micromechanics, and microelectronics.

  3. Microfluidic Tools for Protein Crystallography

    NASA Astrophysics Data System (ADS)

    Abdallah, Bahige G.

    X-ray crystallography is the most widely used method to determine the structure of proteins, providing an understanding of their functions in all aspects of life to advance applications in fields such as drug development and renewable energy. New techniques, namely serial femtosecond crystallography (SFX), have unlocked the ability to unravel the structures of complex proteins with vital biological functions. A key step and major bottleneck of structure determination is protein crystallization, which is very arduous due to the complexity of proteins and their natural environments. Furthermore, crystal characteristics govern data quality, thus need to be optimized to attain the most accurate reconstruction of the protein structure. Crystal size is one such characteristic in which narrowed distributions with a small modal size can significantly reduce the amount of protein needed for SFX. A novel microfluidic sorting platform was developed to isolate viable ~200 nm -- ~600 nm photosystem I (PSI) membrane protein crystals from ~200 nm -- ~20 ?m crystal samples using dielectrophoresis, as confirmed by fluorescence microscopy, second-order nonlinear imaging of chiral crystals (SONICC), and dynamic light scattering. The platform was scaled-up to rapidly provide 100s of microliters of sorted crystals necessary for SFX, in which similar crystal size distributions were attained. Transmission electron microscopy was used to view the PSI crystal lattice, which remained well-ordered postsorting, and SFX diffraction data was obtained, confirming a high-quality, viable crystal sample. Simulations indicated sorted samples provided accurate, complete SFX datasets with 3500-fold less protein than unsorted samples. Microfluidic devices were also developed for versatile, rapid protein crystallization screening using nanovolumes of sample. Concentration gradients of protein and precipitant were generated to crystallize PSI, phycocyanin, and lysozyme using modified counterdiffusion

  4. Microfluidics for single-cell genetic analysis.

    PubMed

    Thompson, A M; Paguirigan, A L; Kreutz, J E; Radich, J P; Chiu, D T

    2014-09-07

    The ability to correlate single-cell genetic information to cellular phenotypes will provide the kind of detailed insight into human physiology and disease pathways that is not possible to infer from bulk cell analysis. Microfluidic technologies are attractive for single-cell manipulation due to precise handling and low risk of contamination. Additionally, microfluidic single-cell techniques can allow for high-throughput and detailed genetic analyses that increase accuracy and decrease reagent cost compared to bulk techniques. Incorporating these microfluidic platforms into research and clinical laboratory workflows can fill an unmet need in biology, delivering the highly accurate, highly informative data necessary to develop new therapies and monitor patient outcomes. In this perspective, we describe the current and potential future uses of microfluidics at all stages of single-cell genetic analysis, including cell enrichment and capture, single-cell compartmentalization and manipulation, and detection and analyses.

  5. Replaceable Microfluidic Cartridges for a PCR Biosensor

    NASA Technical Reports Server (NTRS)

    Francis, Kevin; Sullivan, Ron

    2005-01-01

    The figure depicts a replaceable microfluidic cartridge that is a component of a miniature biosensor that detects target deoxyribonucleic acid (DNA) sequences. The biosensor utilizes (1) polymerase chain reactions (PCRs) to multiply the amount of DNA to be detected, (2) fluorogenic polynucleotide probe chemicals for labeling the target DNA sequences, and (3) a high-sensitivity epifluorescence-detection optoelectronic subsystem. Microfluidics is a relatively new field of device development in which one applies techniques for fabricating microelectromechanical systems (MEMS) to miniature systems for containing and/or moving fluids. Typically, microfluidic devices are microfabricated, variously, from silicon or polymers. The development of microfluidic devices for applications that involve PCR and fluorescence-based detection of PCR products poses special challenges

  6. Overview of the microfluidic diagnostics commercial landscape.

    PubMed

    Kim, Lily

    2013-01-01

    Since its birth in the late 1980s, the field of microfluidics has continued to mature, with a growing number of companies pursuing diagnostic applications. In 2009 the worldwide in vitro diagnostics market was estimated at >$40 billion USD, and microfluidic diagnostics are poised to reap a significant part of this market across a range of areas including laboratory diagnostics, point-of-care diagnostics, cancer diagnostics, and others. The potential economic advantages of microfluidics are numerous and compelling: lower reagent and/or sample volumes, lower equipment costs, improved portability, increased automation, and increased measurement speed. All of these factors may help put more information in the hands of doctors and patients sooner, enabling earlier disease detection and more tailored, effective treatments. This chapter reviews the microfluidic diagnostics commercial landscape and discusses potential commercialization challenges and opportunities.

  7. Microfluidic microarray systems and methods thereof

    DOEpatents

    West, Jay A. A. [Castro Valley, CA; Hukari, Kyle W [San Ramon, CA; Hux, Gary A [Tracy, CA

    2009-04-28

    Disclosed are systems that include a manifold in fluid communication with a microfluidic chip having a microarray, an illuminator, and a detector in optical communication with the microarray. Methods for using these systems for biological detection are also disclosed.

  8. Macroporous materials: microfluidic fabrication, functionalization and applications.

    PubMed

    Wang, Bingjie; Prinsen, Pepijn; Wang, Huizhi; Bai, Zhishan; Wang, Hualin; Luque, Rafael; Xuan, Jin

    2017-02-06

    This article provides an up-to-date highly comprehensive overview (594 references) on the state of the art of the synthesis and design of macroporous materials using microfluidics and their applications in different fields.

  9. Microfluidic organs-on-chips.

    PubMed

    Bhatia, Sangeeta N; Ingber, Donald E

    2014-08-01

    An organ-on-a-chip is a microfluidic cell culture device created with microchip manufacturing methods that contains continuously perfused chambers inhabited by living cells arranged to simulate tissue- and organ-level physiology. By recapitulating the multicellular architectures, tissue-tissue interfaces, physicochemical microenvironments and vascular perfusion of the body, these devices produce levels of tissue and organ functionality not possible with conventional 2D or 3D culture systems. They also enable high-resolution, real-time imaging and in vitro analysis of biochemical, genetic and metabolic activities of living cells in a functional tissue and organ context. This technology has great potential to advance the study of tissue development, organ physiology and disease etiology. In the context of drug discovery and development, it should be especially valuable for the study of molecular mechanisms of action, prioritization of lead candidates, toxicity testing and biomarker identification.

  10. Microfluidic control of axonal guidance

    NASA Astrophysics Data System (ADS)

    Gu, Ling; Black, Bryan; Ordonez, Simon; Mondal, Argha; Jain, Ankur; Mohanty, Samarendra

    2014-10-01

    The precision of axonal pathfinding and the accurate formation of functional neural circuitry are crucial for an organism during development as well as during adult central and peripheral nerve regeneration. While chemical cues are believed to be primarily responsible for axonal pathfinding, we hypothesize that forces due to localized fluid flow may directly affect neuronal guidance during early organ development. Here, we report direct evidence of fluid flow influencing axonal migration, producing turning angles of up to 90°. Microfluidic flow simulations indicate that an axon may experience significant bending force due to cross-flow, which may contribute to the observed axonal turning. This method of flow-based guidance was successfully used to fasciculate one advancing axon onto another, showcasing the potential of this technique to be used for the formation of in vitro neuronal circuits.

  11. Bistable diverter valve in microfluidics

    NASA Astrophysics Data System (ADS)

    Tesař, V.; Bandalusena, H. C. H.

    2011-05-01

    Bistable diverter valves are useful for a large number of no-moving-part flow control applications, and there is a considerable interest in using them also in microfluidics, especially for handling small pressure-driven flows. However, with decreasing Reynolds number, the Coanda effect—on which the flow diverting effect depends—becomes less effective. Authors performed a study, involving flow visualisation, PIV experiments, measurements of the flow rates, and numerical flowfield computations, aimed at clarifying behaviour of a typical fluidic valve at low Reynolds numbers. A typical fluidic valve originally developed for high Re operation was demonstrated to be useful, though with progressively limited efficiency, down to surprisingly low Re values as small as Re = 800. Also observed was a previously not reported discontinuation in the otherwise monotonic decrease in performance at Re between 1,500 and 2,000.

  12. Solution landscapes in nematic microfluidics

    NASA Astrophysics Data System (ADS)

    Crespo, M.; Majumdar, A.; Ramos, A. M.; Griffiths, I. M.

    2017-08-01

    We study the static equilibria of a simplified Leslie-Ericksen model for a unidirectional uniaxial nematic flow in a prototype microfluidic channel, as a function of the pressure gradient G and inverse anchoring strength, B. We numerically find multiple static equilibria for admissible pairs (G , B) and classify them according to their winding numbers and stability. The case G = 0 is analytically tractable and we numerically study how the solution landscape is transformed as G increases. We study the one-dimensional dynamical model, the sensitivity of the dynamic solutions to initial conditions and the rate of change of G and B. We provide a physically interesting example of how the time delay between the applications of G and B can determine the selection of the final steady state.

  13. Microfluidic Sample Preparation for Immunoassays

    SciTech Connect

    Visuri, S; Benett, W; Bettencourt, K; Chang, J; Fisher, K; Hamilton, J; Krulevitch, P; Park, C; Stockton, C; Tarte, L; Wang, A; Wilson, T

    2001-08-09

    Researchers at Lawrence Livermore National Laboratory are developing means to collect and identify fluid-based biological pathogens in the forms of proteins, viruses, and bacteria. to support detection instruments, they are developing a flexible fluidic sample preparation unit. The overall goal of this Microfluidic Module is to input a fluid sample, containing background particulates and potentially target compounds, and deliver a processed sample for detection. They are developing techniques for sample purification, mixing, and filtration that would be useful to many applications including immunologic and nucleic acid assays. Many of these fluidic functions are accomplished with acoustic radiation pressure or dielectrophoresis. They are integrating these technologies into packaged systems with pumps and valves to control fluid flow through the fluidic circuit.

  14. Predicting Droplet Formation on Centrifugal Microfluidic Platforms

    NASA Astrophysics Data System (ADS)

    Moebius, Jacob Alfred

    Centrifugal microfluidics is a widely known research tool for biological sample and water quality analysis. Currently, the standard equipment used for such diagnostic applications include slow, bulky machines controlled by multiple operators. These machines can be condensed into a smaller, faster benchtop sample-to-answer system. Sample processing is an important step taken to extract, isolate, and convert biological factors, such as nucleic acids or proteins, from a raw sample to an analyzable solution. Volume definition is one such step. The focus of this thesis is the development of a model predicting monodispersed droplet formation and the application of droplets as a technique for volume definition. First, a background of droplet microfluidic platforms is presented, along with current biological analysis technologies and the advantages of integrating such technologies onto microfluidic platforms. Second, background and theories of centrifugal microfluidics is given, followed by theories relevant to droplet emulsions. Third, fabrication techniques for centrifugal microfluidic designs are discussed. Finally, the development of a model for predicting droplet formation on the centrifugal microfluidic platform are presented for the rest of the thesis. Predicting droplet formation analytically based on the volumetric flow rates of the continuous and dispersed phases, the ratios of these two flow rates, and the interfacial tension between the continuous and dispersed phases presented many challenges, which will be discussed in this work. Experimental validation was completed using continuous phase solutions of different interfacial tensions. To conclude, prospective applications are discussed with expected challenges.

  15. Microfluidic Devices in Advanced Caenorhabditis elegans Research.

    PubMed

    Muthaiyan Shanmugam, Muniesh; Subhra Santra, Tuhin

    2016-08-02

    The study of model organisms is very important in view of their potential for application to human therapeutic uses. One such model organism is the nematode worm, Caenorhabditis elegans. As a nematode, C. elegans have ~65% similarity with human disease genes and, therefore, studies on C. elegans can be translated to human, as well as, C. elegans can be used in the study of different types of parasitic worms that infect other living organisms. In the past decade, many efforts have been undertaken to establish interdisciplinary research collaborations between biologists, physicists and engineers in order to develop microfluidic devices to study the biology of C. elegans. Microfluidic devices with the power to manipulate and detect bio-samples, regents or biomolecules in micro-scale environments can well fulfill the requirement to handle worms under proper laboratory conditions, thereby significantly increasing research productivity and knowledge. The recent development of different kinds of microfluidic devices with ultra-high throughput platforms has enabled researchers to carry out worm population studies. Microfluidic devices primarily comprises of chambers, channels and valves, wherein worms can be cultured, immobilized, imaged, etc. Microfluidic devices have been adapted to study various worm behaviors, including that deepen our understanding of neuromuscular connectivity and functions. This review will provide a clear account of the vital involvement of microfluidic devices in worm biology.

  16. 3D printed microfluidics for biological applications.

    PubMed

    Ho, Chee Meng Benjamin; Ng, Sum Huan; Li, King Ho Holden; Yoon, Yong-Jin

    2015-01-01

    The term "Lab-on-a-Chip," is synonymous with describing microfluidic devices with biomedical applications. Even though microfluidics have been developing rapidly over the past decade, the uptake rate in biological research has been slow. This could be due to the tedious process of fabricating a chip and the absence of a "killer application" that would outperform existing traditional methods. In recent years, three dimensional (3D) printing has been drawing much interest from the research community. It has the ability to make complex structures with high resolution. Moreover, the fast building time and ease of learning has simplified the fabrication process of microfluidic devices to a single step. This could possibly aid the field of microfluidics in finding its "killer application" that will lead to its acceptance by researchers, especially in the biomedical field. In this paper, a review is carried out of how 3D printing helps to improve the fabrication of microfluidic devices, the 3D printing technologies currently used for fabrication and the future of 3D printing in the field of microfluidics.

  17. Finger-Powered Electro-Digital-Microfluidics.

    PubMed

    Peng, Cheng; Ju, Y Sungtaek

    2017-01-01

    Portable microfluidic devices are promising for point-of-care (POC) diagnosis and bio- and environmental surveillance in resource-constrained or non-laboratory environments. Lateral-flow devices, some built off paper or strings, have been widely developed but the fixed layouts of their underlying wicking/microchannel structures limit their flexibility and present challenges in implementing multistep reactions. Digital microfluidics can circumvent these difficulties by addressing discrete droplets individually. Existing approaches to digital microfluidics, however, often require bulky power supplies/batteries and high voltage circuits. We present a scheme to drive digital microfluidic devices by converting mechanical energy of human fingers to electrical energy using an array of piezoelectric elements. We describe the integration our scheme into two promising digital microfluidics platforms: one based on the electro-wetting-on-dielectric (EWOD) phenomenon and the other on the electrophoretic control of droplet (EPD). Basic operations of droplet manipulations, such as droplet transport, merging and splitting, are demonstrated using the finger-powered digital-microfluidics.

  18. Microfluidic dielectrophoretic sorter using gel vertical electrodes

    PubMed Central

    Luo, Jason; Nelson, Edward L.; Li, G. P.; Bachman, Mark

    2014-01-01

    We report the development and results of a two-step method for sorting cells and small particles in a microfluidic device. This approach uses a single microfluidic channel that has (1) a microfabricated sieve which efficiently focuses particles into a thin stream, followed by (2) a dielectrophoresis (DEP) section consisting of electrodes along the channel walls for efficient continuous sorting based on dielectric properties of the particles. For our demonstration, the device was constructed of polydimethylsiloxane, bonded to a glass surface, and conductive agarose gel electrodes. Gold traces were used to make electrical connections to the conductive gel. The device had several novel features that aided performance of the sorting. These included a sieving structure that performed continuous displacement of particles into a single stream within the microfluidic channel (improving the performance of downstream DEP, and avoiding the need for additional focusing flow inlets), and DEP electrodes that were the full height of the microfluidic walls (“vertical electrodes”), allowing for improved formation and control of electric field gradients in the microfluidic device. The device was used to sort polymer particles and HeLa cells, demonstrating that this unique combination provides improved capability for continuous DEP sorting of particles in a microfluidic device. PMID:24926390

  19. Acoustic Microfluidics for Bioanalytical Application

    NASA Astrophysics Data System (ADS)

    Lopez, Gabriel

    2013-03-01

    This talk will present new methods the use of ultrasonic standing waves in microfluidic systems to manipulate microparticles for the purpose of bioassays and bioseparations. We have recently developed multi-node acoustic focusing flow cells that can position particles into many parallel flow streams and have demonstrated the potential of such flow cells in the development of high throughput, parallel flow cytometers. These experiments show the potential for the creation of high throughput flow cytometers in applications requiring high flow rates and rapid detection of rare cells. This talk will also present the development of elastomeric capture microparticles and their use in acoustophoretic separations. We have developed simple methods to form elastomeric particles that are surface functionalized with biomolecular recognition reagents. These compressible particles exhibit negative acoustic contrast in ultrasound when suspended in aqueous media, blood serum or diluted blood. These particles can be continuously separated from cells by flowing them through a microfluidic device that uses an ultrasonic standing wave to align the blood cells, which exhibit positive acoustic contrast, at a node in the acoustic pressure distribution while aligning the negative acoustic contrast elastomeric particles at the antinodes. Laminar flow of the separated particles to downstream collection ports allows for collection of the separated negative contrast particles and cells. Separated elastomeric particles were analyzed via flow cytometry to demonstrate nanomolar detection for prostate specific antigen in aqueous buffer and picomolar detection for IgG in plasma and diluted blood samples. This approach has potential applications in the development of rapid assays that detect the presence of low concentrations of biomarkers (including biomolecules and cells) in a number of biological sample types. We acknowledge support through the NSF Research Triangle MRSEC.

  20. Microfluidic microwell and microcapillary biochips

    NASA Astrophysics Data System (ADS)

    Minot, Michael J.; Stowe, David W.; Detarando, Michael A.; Krans, Joseph A.; Kass, Jason L.

    2006-02-01

    Utilizing nanotechnology, proprietary chemistry, and microfluidics, innovative firms are developing biochips and instrument systems that enable high-speed automated biomedical sequencing. Incom Inc. presents development results on five novel biochip technologies based on FiberOptic MicroSlide and microcapillary technology. FiberOptic MicroSlides are fiber optic interrogated (FOI) biochips made up of millions of fused optical fibers, and are uniquely suited as a platform for microarray applications. FiberOptic MicroSlides (henceforth referred to as "MicroSlides" or "slides" in this paper) act as a 'zero thickness substrate' transmitting optical signals from top to bottom without spreading, so that fluorescent or luminescent activity on the surface or within a well can be directly coupled to a CCD device without additional optics. In contrast to bulk optics, the slides are compact and have excellent light-gathering power. They are an alternative to conventional microscope slides for applications involving moderate-resolution bottom viewing (inverted microscopy). The surface of the MicroSlides can be etched or patterned with a permanent polymer to form microwell arrays, or microfluidic structures suitable for genomic and proteomic analysis, cell migration studies and other applications. Low-cost microcapillary array plates have also been developed. These plates act as microscopic test tubes, which enable picoliter reactions to be detected, counted and analyzed. Progress in developing large area (300 mm X 300 mm) arrays with up to 100 million capillaries, and diameter / length aspect ratios up to 10,000: 1 is presented. Results demonstrate negligible optical cross talk between capillaries, resulting in improved signal-to-noise ratios while minimizing false hits.

  1. Real-time, continuous detection of maltose using bioluminescence resonance energy transfer (BRET) on a microfluidic system.

    PubMed

    Le, Nam Cao Hoai; Gel, Murat; Zhu, Yonggang; Dacres, Helen; Anderson, Alisha; Trowell, Stephen C

    2014-12-15

    We have previously shown that a genetically encoded bioluminescent resonance energy transfer (BRET) biosensor, comprising maltose binding protein (MBP) flanked by a green fluorescent protein (GFP(2)) at the N-terminus and a variant of Renilla luciferase (RLuc2) at the C-terminus, has superior sensitivity and limits of detection for maltose, compared with an equivalent fluorescent resonance energy transfer (FRET) biosensor. Here, we demonstrate that the same MBP biosensor can be combined with a microfluidic system for detection of maltose in water or beer. Using the BRET-based biosensor, maltose in water was detected on a microfluidic chip, either following a pre-incubation step or in real-time with similar sensitivity and dynamic range to those obtained using a commercial 96-well plate luminometer. The half-maximal effective concentrations (EC50) were 2.4×10(-7)M and 1.3×10(-7) M for maltose detected in pre-incubated and real-time reactions, respectively. To demonstrate real-time detection of maltose in a complex medium, we used it to estimate maltose concentration in a commercial beer sample in a real-time, continuous flow format. Our system demonstrates a promising approach to in-line monitoring for applications such as food and beverage processing.

  2. Multiphase flows with digital and traditional microfluidics

    NASA Astrophysics Data System (ADS)

    Nilsson, Michael A.

    Multi-phase fluid systems are an important concept in fluid mechanics, seen every day in how fluids interact with solids, gases, and other fluids in many industrial, medical, agricultural, and other regimes. In this thesis, the development of a two-dimensional digital microfluidic device is presented, followed by the development of a two-phase microfluidic diagnostic tool designed to simulate sandstone geometries in oil reservoirs. In both instances, it is possible to take advantage of the physics involved in multiphase flows to affect positive outcomes in both. In order to make an effective droplet-based digital microfluidic device, one must be able to precisely control a number of key processes including droplet positioning, motion, coalescence, mixing, and sorting. For planar or open microfluidic devices, many of these processes have yet to be demonstrated. A suitable platform for an open system is a superhydrophobic surface, as suface characteristics are critical. Great efforts have been spent over the last decade developing hydrophobic surfaces exhibiting very large contact angles with water, and which allow for high droplet mobility. We demonstrate that sanding Teflon can produce superhydrophobic surfaces with advancing contact angles of up to 151° and contact angle hysteresis of less than 4°. We use these surfaces to characterize droplet coalescence, mixing, motion, deflection, positioning, and sorting. This research culminates with the presentation of two digital microfluidic devices: a droplet reactor/analyzer and a droplet sorter. As global energy usage increases, maximizing oil recovery from known reserves becomes a crucial multiphase challenge in order to meet the rising demand. This thesis presents the development of a microfluidic sandstone platform capable of quickly and inexpensively testing the performance of fluids with different rheological properties on the recovery of oil. Specifically, these microfluidic devices are utilized to examine how

  3. High-throughput, semi-automated determination of a cyclooxygenase II inhibitor in human plasma and urine using solid-phase extraction in the 96-well format and high-performance liquid chromatography with post-column photochemical derivatization-fluorescence detection.

    PubMed

    Matthews, C Z; Woolf, E J; Lin, L; Fang, W; Hsieh, J; Ha, S; Simpson, R; Matuszewski, B K

    2001-02-25

    Compound I, 5-chloro-3-(4-methanesulfonylphenyl)-6'-methyl-[2,3']bipyridinyl, has been found to be a specific inhibitor of the enzyme cyclooxygenase II (COX II). The anti-inflammatory properties of this compound are currently being investigated. HPLC assays for the determination of this analyte in human plasma and human urine have been developed. Isolation of I and the internal standard (II) was achieved by solid-phase extraction (SPE) in the 96-well format. A C8 SPE plate was used for the extraction of the drug from human plasma (recovery >90%) while a mixed-mode (C8/Cation) SPE plate was used to isolate the analytes from human urine (recovery approximately 71%). The analyte and internal standard were chromatographed on a Keystone Scientific Prism-RP guard column (20 x 4.6 mm) connected to a Prism-RP analytical column (150 x 4.6 mm), using a mobile phase consisting of 45% acetonitrile in 10 mM acetate buffer (pH = 4); the analytes eluted at retention times of 5.2 and 6.9 min for I and II, respectively. Compounds I and II were found to form highly fluorescent products after exposure to UV light (254 nm). Thus, the analytes were detected by fluorescence (lambda(ex) = 260 nm, lambda(em) =375 nm) following post-column photochemical derivatization. Eight point calibration curves over the concentration range of 5-500 ng/ml for human plasma and human urine yielded a linear response (R2>0.99) when a 1/y weighted linear regression model was employed. Based on the replicate analyses (n = 5) of spiked standards, the within-day precision for both assays was better than 7% C.V. at all points on the calibration curve; within-day accuracy was within 5% of nominal at all standard concentrations. The between-run precision and accuracy of the assays, as calculated from the results of the analysis of quality control samples, was better than 8% C.V. and within 8% of nominal. I was found to be stable in human plasma and urine for at least 8 and 2 months, respectively. In addition, the

  4. Rapid microfluidic thermal cycler for nucleic acid amplification

    DOEpatents

    Beer, Neil Reginald; Vafai, Kambiz

    2015-10-27

    A system for thermal cycling a material to be thermal cycled including a microfluidic heat exchanger; a porous medium in the microfluidic heat exchanger; a microfluidic thermal cycling chamber containing the material to be thermal cycled, the microfluidic thermal cycling chamber operatively connected to the microfluidic heat exchanger; a working fluid at first temperature; a first system for transmitting the working fluid at first temperature to the microfluidic heat exchanger; a working fluid at a second temperature, a second system for transmitting the working fluid at second temperature to the microfluidic heat exchanger; a pump for flowing the working fluid at the first temperature from the first system to the microfluidic heat exchanger and through the porous medium; and flowing the working fluid at the second temperature from the second system to the heat exchanger and through the porous medium.

  5. Complex Microfluidic Systems Architectures and Applications to Micropower Generation

    DTIC Science & Technology

    2010-07-07

    Complex Microfluidic Systems Architectures and Applications to Micropower Generation” AFOSR grant FA9550-08-1-0345 Integrated Fluidics, Santa...reliability of components and the size of the system built up from such components. We advanced a novel microfluidic concept, named µfCPU, the Microfluidic ...Central Processing Unit, where the key microfluidic operations are performed within a single enclosure, using active, software-based inputs rather

  6. Microfluidic devices with thick-film electrochemical detection

    DOEpatents

    Wang, Joseph; Tian, Baomin; Sahlin, Eskil

    2005-04-12

    An apparatus for conducting a microfluidic process and analysis, including at least one elongated microfluidic channel, fluidic transport means for transport of fluids through the microfluidic channel, and at least one thick-film electrode in fluidic connection with the outlet end of the microfluidic channel. The present invention includes an integrated on-chip combination reaction, separation and thick-film electrochemical detection microsystem, for use in detection of a wide range of analytes, and methods for the use thereof.

  7. [Research Progress of Application of Microfluidics Techniques in Cryopreservation].

    PubMed

    Zhou, Nanfeng; Yang, Yun; Zhou, Xinli

    2015-06-01

    Microfluidics technology may be an effective method to solve some problems in cryopreservation. This review presents the research progress of microfluidics technology in the field of cell membrane transport properties, cryoprotectant addition and washout and the vitrification for cryopreservation of biological materials. Existing problems of microfluidics technology in the application of cryopreservation are summarized and future research directions are indicated as well.

  8. Microfluidic Dynamic Interfacial Tensiometry (μDIT).

    PubMed

    Brosseau, Quentin; Vrignon, Jérémy; Baret, Jean-Christophe

    2014-05-07

    We designed, developed and characterized a microfluidic method for the measurement of surfactant adsorption kinetics via interfacial tensiometry on a microfluidic chip. The principle of the measurement is based on the deformability of droplets as a response to hydrodynamic forcing through a series of microfluidic expansions. We focus our analysis on one perfluoro surfactant molecule of practical interest for droplet-based microfluidic applications. We show that although the adsorption kinetics is much faster than the kinetics of the corresponding pendant drop experiment, our droplet-based microfluidic system has a sufficient time resolution to obtain quantitative measurement at the sub-second time-scale on nanoliter droplet volumes, leading to both a gain by a factor of ∼10 in time resolution and a downscaling of the measurement volumes by a factor of ∼1000 compared to standard techniques. Our approach provides new insight into the adsorption of surfactant molecules at liquid-liquid interfaces in a confined environment, relevant to emulsification, encapsulation and foaming, and the ability to measure adsorption and desorption rate constants.

  9. Next-generation integrated microfluidic circuits.

    PubMed

    Mosadegh, Bobak; Bersano-Begey, Tommaso; Park, Joong Yull; Burns, Mark A; Takayama, Shuichi

    2011-09-07

    This mini-review provides a brief overview of recent devices that use networks of elastomeric valves to minimize or eliminate the need for interconnections between microfluidic chips and external instruction lines that send flow control signals. Conventional microfluidic control mechanisms convey instruction signals in a parallel manner such that the number of instruction lines must increase as the number of independently operated valves increases. The devices described here circumvent this "tyranny of microfluidic interconnects" by the serial encoding of information to enable instruction of an arbitrary number of independent valves with a set number of control lines, or by the microfluidic circuit-embedded encoding of instructions to eliminate control lines altogether. Because the parallel instruction chips are the most historical and straightforward to design, they are still the most commonly used approach today. As requirements for instruction complexity, chip-to-chip communication, and real-time on-chip feedback flow control arise, the next generation of integrated microfluidic circuits will need to incorporate these latest interconnect flow control approaches.

  10. Microfluidic devices for cell cultivation and proliferation

    PubMed Central

    Tehranirokh, Masoomeh; Kouzani, Abbas Z.; Francis, Paul S.; Kanwar, Jagat R.

    2013-01-01

    Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell culture in microperfusion systems to deliver continuous nutrient supplies for long term cell culture. It offers many opportunities to mimic the cell-cell and cell-extracellular matrix interactions of tissues by creating gradient concentrations of biochemical signals such as growth factors, chemokines, and hormones. Other applications of cell cultivation in microfluidic systems include high resolution cell patterning on a modified substrate with adhesive patterns and the reconstruction of complicated tissue architectures. In this review, recent advances in microfluidic platforms for cell culturing and proliferation, for both simple monolayer (2D) cell seeding processes and 3D configurations as accurate models of in vivo conditions, are examined. PMID:24273628

  11. Polymer-based platform for microfluidic systems

    DOEpatents

    Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Maghribi, Mariam [Livermore, CA; Hamilton, Julie [Tracy, CA; Rose, Klint [Boston, MA; Wang, Amy W [Oakland, CA

    2009-10-13

    A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.

  12. Alternative Energy: A New Frontier for Microfluidics

    NASA Astrophysics Data System (ADS)

    Buie, Cullen

    2011-03-01

    Microfuidics is classified as the physics of fluid manipulation at sub-mm length scales. Typically, microfluidic techniques benefit from small sample volumes, low power consumption, and increased surface-to-volume ratio. Because of their high surface to volume ratio, microfluidic systems often utilize surface phenomena such as wettability (i.e. droplet microfluidics) and surface charge (i.e. electrokinetics) for actuation. To date, most applications of microfluidics are in medicine or biology with the purpose of creating ``lab on a chip'' devices. However, the scale of microfluidics is favorable for other engineering problems as well. In this talk we will discuss how phenomena typically applied to lab on a chip devices can be used to enhance energy systems. Specifically, we explore electric field driven fluid and particle flows such as electrophoresis, electroosmosis, and dielectrophoresis. We will show how these phenomena can solve a diverse array of problems, from water management in fuel cells to the selection of microorganisms for bio-energy applications.

  13. Mechanically activated artificial cell by using microfluidics

    NASA Astrophysics Data System (ADS)

    Ho, Kenneth K. Y.; Lee, Lap Man; Liu, Allen P.

    2016-09-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology.

  14. Mechanically activated artificial cell by using microfluidics

    PubMed Central

    Ho, Kenneth K. Y.; Lee, Lap Man; Liu, Allen P.

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology. PMID:27610921

  15. Microfluidic CODES: a scalable multiplexed electronic sensor for orthogonal detection of particles in microfluidic channels.

    PubMed

    Liu, Ruxiu; Wang, Ningquan; Kamili, Farhan; Sarioglu, A Fatih

    2016-04-21

    Numerous biophysical and biochemical assays rely on spatial manipulation of particles/cells as they are processed on lab-on-a-chip devices. Analysis of spatially distributed particles on these devices typically requires microscopy negating the cost and size advantages of microfluidic assays. In this paper, we introduce a scalable electronic sensor technology, called microfluidic CODES, that utilizes resistive pulse sensing to orthogonally detect particles in multiple microfluidic channels from a single electrical output. Combining the techniques from telecommunications and microfluidics, we route three coplanar electrodes on a glass substrate to create multiple Coulter counters producing distinct orthogonal digital codes when they detect particles. We specifically design a digital code set using the mathematical principles of Code Division Multiple Access (CDMA) telecommunication networks and can decode signals from different microfluidic channels with >90% accuracy through computation even if these signals overlap. As a proof of principle, we use this technology to detect human ovarian cancer cells in four different microfluidic channels fabricated using soft lithography. Microfluidic CODES offers a simple, all-electronic interface that is well suited to create integrated, low-cost lab-on-a-chip devices for cell- or particle-based assays in resource-limited settings.

  16. Rapid wasted-free microfluidic fabrication based on ink-jet approach for microfluidic sensing applications

    NASA Astrophysics Data System (ADS)

    Jarujareet, Ungkarn; Amarit, Rattasart; Sumriddetchkajorn, Sarun

    2016-11-01

    Realizing that current microfluidic chip fabrication techniques are time consuming and labor intensive as well as always have material leftover after chip fabrication, this research work proposes an innovative approach for rapid microfluidic chip production. The key idea relies on a combination of a widely-used inkjet printing method and a heat-based polymer curing technique with an electronic-mechanical control, thus eliminating the need of masking and molds compared to typical microfluidic fabrication processes. In addition, as the appropriate amount of polymer is utilized during printing, there is much less amount of material wasted. Our inkjet-based microfluidic printer can print out the desired microfluidic chip pattern directly onto a heated glass surface, where the printed polymer is suddenly cured. Our proof-of-concept demonstration for widely-used single-flow channel, Y-junction, and T-junction microfluidic chips shows that the whole microfluidic chip fabrication process requires only 3 steps with a fabrication time of 6 minutes.

  17. Surfactant adsorption kinetics in microfluidics

    PubMed Central

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore–surfactant interactions. PMID:27688765

  18. Microfluidic mixing using contactless dielectrophoresis.

    PubMed

    Salmanzadeh, Alireza; Shafiee, Hadi; Davalos, Rafael V; Stremler, Mark A

    2011-09-01

    The first experimental evidence of mixing enhancement in a microfluidic system using contactless dielectrophoresis (cDEP) is presented in this work. Pressure-driven flow of deionized water containing 0.5 μm beads was mixed in various chamber geometries by imposing a dielectrophoresis (DEP) force on the beads. In cDEP the electrodes are not in direct contact with the fluid sample but are instead capacitively coupled to the mixing chamber through thin dielectric barriers, which eliminates many of the problems encountered with standard DEP. Four system designs with rectangular and circular mixing chambers were fabricated in PDMS. Mixing tests were conducted for flow rates from 0.005 to 1 mL/h subject to an alternating current signal range of 0-300 V at 100-600 kHz. When the time scales of the bulk fluid motion and the DEP motion were commensurate, rapid mixing was observed. The rectangular mixing chambers were found to be more efficient than the circular chambers. This approach shows potential for mixing low diffusivity biological samples, which is a very challenging problem in laminar flows at small scales.

  19. Surfactant adsorption kinetics in microfluidics.

    PubMed

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe

    2016-10-11

    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than [Formula: see text] to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning-here through ion exchange-unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore-surfactant interactions.

  20. Droplet Microfluidics for Virus Discovery

    NASA Astrophysics Data System (ADS)

    Rotem, Assaf; Cockrell, Shelley; Guo, Mira; Pipas, James; Weitz, David

    2012-02-01

    The ability to detect, isolate, and characterize an infectious agent is important for diagnosing and curing infectious diseases. Detecting new viral diseases is a challenge because the number of virus particles is often low and/or localized to a small subset of cells. Even if a new virus is detected, it is difficult to isolate it from clinical or environmental samples where multiple viruses are present each with very different properties. Isolation is crucial for whole genome sequencing because reconstructing a genome from fragments of many different genomes is practically impossible. We present a Droplet Microfluidics platform that can detect, isolate and sequence single viral genomes from complex samples containing mixtures of many viruses. We use metagenomic information about the sample of mixed viruses to select a short genomic sequence whose genome we are interested in characterizing. We then encapsulate single virions from the same sample in picoliter volume droplets and screen for successful PCR amplification of the sequence of interest. The selected drops are pooled and their contents sequenced to reconstruct the genome of interest. This method provides a general tool for detecting, isolating and sequencing genetic elements in clinical and environmental samples.

  1. Surfactant adsorption kinetics in microfluidics

    NASA Astrophysics Data System (ADS)

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe

    2016-10-01

    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore-surfactant interactions.

  2. Microfluidic Flow Injection Analysis with Thermal Lens Microscopic Detection for Determination of NGAL

    NASA Astrophysics Data System (ADS)

    Radovanović, Tatjana; Liu, Mingqiang; Likar, Polona; Klemenc, Matjaž; Franko, Mladen

    2015-06-01

    A combined microfluidic flow injection analysis-thermal lens microscopy (FIA-TLM) system was applied for determination of neutrophil gelatinase-associated lipocalin (NGAL)—a biomarker of acute kidney injury. NGAL was determined following a commercial ELISA assay and transfer of the resulting solution into the FIA-TLM system with a 100 m deep microchannel. At an excitation power of 100 mW, the FIA-TLM provided about seven times lower limits of detection (1.5 pg as compared to a conventional ELISA test, and a sample throughput of six samples per minute, which compares favorably with sample throughput of the microtiter plate reader, which reads 96 wells in about 30 min. Comparison of results for NGAL in plasma samples from healthy individuals and for NGAL dynamics in patients undergoing coronary angiography measured with transmission mode spectrometry on a microtiter plate reader and with FIA-TLM showed good agreement. In addition to improved LOD, the high sensitivity of FIA-TLM offers possibilities of a further reduction of the total reaction time of the NGAL ELISA test by sacrificing some of the sensitivity while reducing the duration of individual incubation steps.

  3. Thermophoresis of DNA determined by microfluidic fluorescence.

    PubMed

    Duhr, S; Arduini, S; Braun, D

    2004-11-01

    We describe a microfluidic all-optical technique to measure the thermophoresis of molecules. Within micrometer-thick chambers, we heat aqueous solutions with a micrometer-sized focus of infrared light. The temperature increase of about 1 K is monitored with temperature-sensitive fluorescent dyes. We test the approach in measuring the thermophoresis of DNA. We image the concentration of DNA in a second fluorescence-color channel. DNA is depleted away from the heated spot. The profile of depletion is fitted by the thermophoretic theory to reveal the Soret coefficient. We evaluate the method with numerical 3D calculations of temperature profiles, drift, convection and thermophoretic depletion using finite element methods. The approach opens new ways to monitor thermophoresis at the single molecule level, near boundaries and in complex mixtures. The flexible microfluidic setting is a good step towards microfluidic applications of thermophoresis in biotechnology.

  4. MEMS and microfluidics for diagnostics devices.

    PubMed

    Rosen, Y; Gurman, P

    2010-06-01

    There are conditions in clinical medicine demanding critical therapeutic decisions. These conditions necessitate accuracy, rapidity, accessibility, cost-effectiveness and mobility. New technologies have been developed in order to address these challenges. Microfluidics and Micro Electro-Mechanical Systems are two of such technologies. Microfluidics, a discipline that involves processing fluids at the microscale in etched microchannels, is being used to build lab- on-a-chip systems to run chemical and biological assays. These systems are being transformed into handheld devices designed to be used at remote settings or at the bedside. MEMS are microscale electromechanical elements integrated in lab chip systems or used as individual components. MEMS based sensors represents a highly developed field with successful commercialized products currently being incorporated into vitro,ex vivo and in vivo devices. In the present paper several examples of microfluidic devices and MEMS sensors are introduced together with some current examples of commercialized products. Future challenges and trends will be discussed.

  5. Droplet microfluidics in (bio)chemical analysis.

    PubMed

    Basova, Evgenia Yu; Foret, Frantisek

    2015-01-07

    Droplet microfluidics may soon change the paradigm of performing chemical analyses and related instrumentation. It can improve not only the analysis scale, possibility for sensitivity improvement, and reduced consumption of chemical and biological reagents, but also the speed of performing a variety of unit operations. At present, microfluidic platforms can reproducibly generate monodisperse droplet populations at kHz or higher rates with droplet sizes suitable for high-throughput experiments, single-cell detection or even single molecule analysis. In addition to being used as microreactors with volume in the micro- to femtoliter range, droplet based systems have also been used to directly synthesize particles and encapsulate biological entities for biomedicine and biotechnology applications. This minireview summarizes various droplet microfluidics operations and applications for (bio)chemical assays described in the literature during the past few years.

  6. A self-triggered picoinjector in microfluidics

    NASA Astrophysics Data System (ADS)

    Yang, Yiming; Liu, Songsheng; Jia, Chunping; Mao, Hongju; Jin, Qinghui; Zhao, Jianlong; Zhou, Hongbo

    2016-12-01

    Droplet-based microfluidics has recently emerged as a potential platform for studies of single-cell, directed evolution, and genetic sequencing. In droplet-based microfluidics, adding reagents into drops is one of the most important functions. In this paper, we develop a new self-triggered picoinjector to add controlled volumes of reagent into droplets at kilohertz rates. In the picoinjector, the reagent injecting is triggered by the coming droplet itself, without needing a droplet detection module. Meanwhile, the dosing volume can be precisely controlled. These features make the system more practical and reliable. We expect the new picoinjector will find important applications of droplet-based microfluidics in automated biological assay, directed evolution, enzyme assay, and so on.

  7. Molecular Imaging Probe Development using Microfluidics

    PubMed Central

    Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Wu, Anna M.; Tomlinson, James S.; Shen, Clifton K.-F.

    2012-01-01

    In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional systems. Numerous chemical reactions have been successfully performed in micro-reactors and the results convincingly demonstrate with great benefits to aid synthetic procedures, such as purer products, higher yields, shorter reaction times compared to the corresponding batch/macroscale reactions, and more benign reaction conditions. Several ‘proof-of-principle’ examples of molecular imaging probe syntheses using microfluidics, along with basics of device architecture and operation, and their potential limitations are discussed here. PMID:22977436

  8. Microfluidics for miniaturized laboratories on a chip.

    PubMed

    Franke, Thomas A; Wixforth, Achim

    2008-10-24

    Microfluidic systems promise solutions for high throughput and highly specific analysis for biology, medicine and chemistry while consuming only tiny amounts of reactants and space. On these lab-on-a-chip platforms often multiple physical effects such as electrokinetic, acoustic or capillary phenomena from various disciplines are exploited to gain the optimal functionality. The fluidics on these small length scales differ significantly from our experience of the macroscopic world. In this Review we survey some of the approaches and techniques to handle minute amounts of fluid volumes in microfluidic systems with special focus on surface acoustic wave driven fluidics, a technique developed in our laboratory. Here, we outline the basics of this technique and demonstrate, for example, how acoustic mixing and fluid actuation is realized. Furthermore we discuss the interplay of different physical effects in microfluidic systems and illustrate their usefulness for several applications.

  9. Biocompatible "click" wafer bonding for microfluidic devices.

    PubMed

    Saharil, Farizah; Carlborg, Carl Fredrik; Haraldsson, Tommy; van der Wijngaart, Wouter

    2012-09-07

    We introduce a novel dry wafer bonding concept designed for permanent attachment of micromolded polymer structures to surface functionalized silicon substrates. The method, designed for simultaneous fabrication of many lab-on-chip devices, utilizes a chemically reactive polymer microfluidic structure, which rapidly bonds to a functionalized substrate via"click" chemistry reactions. The microfluidic structure consists of an off-stoichiometry thiol-ene (OSTE) polymer with a very high density of surface bound thiol groups and the substrate is a silicon wafer that has been functionalized with common bio-linker molecules. We demonstrate here void free, and low temperature (< 37 °C) bonding of a batch of OSTE microfluidic layers to a silane functionalized silicon wafer.

  10. Optical detection strategies for centrifugal microfluidic platforms

    NASA Astrophysics Data System (ADS)

    King, Damien; O'Sullivan, Mary; Ducrée, Jens

    2014-01-01

    Centrifugal microfluidic systems have become one of the principal platforms for implementing bioanalytical assays, most notably for biomedical point-of-care diagnostics. These so-called 'lab-on-a-disc' systems primarily utilise the rotationally controlled centrifugal field in combination with capillary forces to automate a range of laboratory unit operations (LUOs) for sample preparation, such as metering, aliquoting, mixing and extraction for biofluids as well as sorting, isolation and counting of bioparticles. These centrifugal microfluidic LUOs have been regularly surveyed in the literature. However, even though absolutely essential to provide true sample-to-answer functionality of lab-on-a-disc platforms, systematic examination of associated, often optical, read-out technologies has been so far neglected. This review focusses on the history and state-of-the-art of optical read-out strategies for centrifugal microfluidic platforms, arising (commercial) application potential and future opportunities.

  11. Microfluidic systems for single DNA dynamics

    PubMed Central

    Mai, Danielle J.; Brockman, Christopher

    2012-01-01

    Recent advances in microfluidics have enabled the molecular-level study of polymer dynamics using single DNA chains. Single polymer studies based on fluorescence microscopy allow for the direct observation of non-equilibrium polymer conformations and dynamical phenomena such as diffusion, relaxation, and molecular stretching pathways in flow. Microfluidic devices have enabled the precise control of model flow fields to study the non-equilibrium dynamics of soft materials, with device geometries including curved channels, cross-slots, and microfabricated obstacles and structures. This review explores recent microfluidic systems that have advanced the study of single polymer dynamics, while identifying new directions in the field that will further elucidate the relationship between polymer microstructure and bulk rheological properties. PMID:23139700

  12. Packaging of electro-microfluidic devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Watson, Robert D.

    2002-01-01

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  13. Packaging of electro-microfluidic devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.

    2003-04-15

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  14. 3D-printed microfluidic automation.

    PubMed

    Au, Anthony K; Bhattacharjee, Nirveek; Horowitz, Lisa F; Chang, Tim C; Folch, Albert

    2015-04-21

    Microfluidic automation - the automated routing, dispensing, mixing, and/or separation of fluids through microchannels - generally remains a slowly-spreading technology because device fabrication requires sophisticated facilities and the technology's use demands expert operators. Integrating microfluidic automation in devices has involved specialized multi-layering and bonding approaches. Stereolithography is an assembly-free, 3D-printing technique that is emerging as an efficient alternative for rapid prototyping of biomedical devices. Here we describe fluidic valves and pumps that can be stereolithographically printed in optically-clear, biocompatible plastic and integrated within microfluidic devices at low cost. User-friendly fluid automation devices can be printed and used by non-engineers as replacement for costly robotic pipettors or tedious manual pipetting. Engineers can manipulate the designs as digital modules into new devices of expanded functionality. Printing these devices only requires the digital file and electronic access to a printer.

  15. Microfluidics for research and applications in oncology.

    PubMed

    Chaudhuri, Parthiv Kant; Ebrahimi Warkiani, Majid; Jing, Tengyang; Kenry; Lim, Chwee Teck

    2016-01-21

    Cancer is currently one of the top non-communicable human diseases, and continual research and developmental efforts are being made to better understand and manage this disease. More recently, with the improved understanding in cancer biology as well as the advancements made in microtechnology and rapid prototyping, microfluidics is increasingly being explored and even validated for use in the detection, diagnosis and treatment of cancer. With inherent advantages such as small sample volume, high sensitivity and fast processing time, microfluidics is well-positioned to serve as a promising platform for applications in oncology. In this review, we look at the recent advances in the use of microfluidics, from basic research such as understanding cancer cell phenotypes as well as metastatic behaviors to applications such as the detection, diagnosis, prognosis and drug screening. We then conclude with a future outlook on this promising technology.

  16. Microfluidic serpentine antennas with designed mechanical tunability.

    PubMed

    Huang, YongAn; Wang, Yezhou; Xiao, Lin; Liu, Huimin; Dong, Wentao; Yin, Zhouping

    2014-11-07

    This paper describes the design and characterization of microfluidic serpentine antennas with reversible stretchability and designed mechanical frequency modulation (FM). The microfluidic antennas are designed based on the Poisson's ratio of the elastomer in which the liquid alloy antenna is embedded, to controllably decrease, stabilize or increase its resonance frequency when being stretched. Finite element modelling was used in combination with experimental verification to investigate the effects of substrate dimensions and antenna aspect ratios on the FM sensitivity to uniaxial stretching. It could be designed within the range of -1.2 to 0.6 GHz per 100% stretch. When the aspect ratio of the serpentine antenna is between 1.0 and 1.5, the resonance frequency is stable under stretching, bending, and twisting. The presented microfluidic serpentine antenna design could be utilized in the field of wireless mobile communication for the design of wearable electronics, with a stable resonance frequency under dynamic applied strain up to 50%.

  17. 3D-Printed Microfluidic Automation

    PubMed Central

    Au, Anthony K.; Bhattacharjee, Nirveek; Horowitz, Lisa F.; Chang, Tim C.; Folch, Albert

    2015-01-01

    Microfluidic automation – the automated routing, dispensing, mixing, and/or separation of fluids through microchannels – generally remains a slowly-spreading technology because device fabrication requires sophisticated facilities and the technology’s use demands expert operators. Integrating microfluidic automation in devices has involved specialized multi-layering and bonding approaches. Stereolithography is an assembly-free, 3D-printing technique that is emerging as an efficient alternative for rapid prototyping of biomedical devices. Here we describe fluidic valves and pumps that can be stereolithographically printed in optically-clear, biocompatible plastic and integrated within microfluidic devices at low cost. User-friendly fluid automation devices can be printed and used by non-engineers as replacement for costly robotic pipettors or tedious manual pipetting. Engineers can manipulate the designs as digital modules into new devices of expanded functionality. Printing these devices only requires the digital file and electronic access to a printer. PMID:25738695

  18. A perspective on microfluidic biofuel cells

    PubMed Central

    Lee, Jin wook; Kjeang, Erik

    2010-01-01

    This review article presents how microfluidic technologies and biological materials are paired to assist in the development of low cost, green energy fuel cell systems. Miniaturized biological fuel cells, employing enzymes or microorganisms as biocatalysts in an environmentally benign configuration, can become an attractive candidate for small-scale power source applications such as biological sensors, implantable medical devices, and portable electronics. State-of-the-art biofuel cell technologies are reviewed with emphasis on microfabrication compatibility and microfluidic fuel cell designs. Integrated microfluidic biofuel cell prototypes are examined with comparisons of their performance achievements and fabrication methods. The technical challenges for further developments and the potential research opportunities for practical cell designs are discussed. PMID:21139699

  19. Electroporation of cells in microfluidic droplets.

    PubMed

    Zhan, Yihong; Wang, Jun; Bao, Ning; Lu, Chang

    2009-03-01

    Droplet-based microfluidics has raised a lot of interest recently due to its wide applications to screening biological/chemical assays with high throughput. Despite the advances on droplet-based assays involving cells, gene delivery methods that are compatible with the droplet platform have been lacking. In this report, we demonstrate a simple microfluidic device that encapsulates cells into aqueous droplets and then electroporates the encapsulated cells. The electroporation occurs when the cell-containing droplets (in oil) flow through a pair of microelectrodes with a constant voltage established in between. We investigate the parameters and characteristics of the electroporation. We demonstrate delivering enhanced green fluorescent protein (EGFP) plasmid into Chinese hamster ovary (CHO) cells. We envision the application of this technique to high-throughput functional genomics studies based on droplet microfluidics.

  20. Thermophoresis of DNA determined by microfluidic fluorescence

    NASA Astrophysics Data System (ADS)

    Duhr, S.; Arduini, S.; Braun, D.

    2004-11-01

    We describe a microfluidic all-optical technique to measure the thermophoresis of molecules. Within micrometer-thick chambers, we heat aqueous solutions with a micrometer-sized focus of infrared light. The temperature increase of about 1 K is monitored with temperature-sensitive fluorescent dyes. We test the approach in measuring the thermophoresis of DNA. We image the concentration of DNA in a second fluorescence-color channel. DNA is depleted away from the heated spot. The profile of depletion is fitted by the thermophoretic theory to reveal the Soret coefficient. We evaluate the method with numerical 3D calculations of temperature profiles, drift, convection and thermophoretic depletion using finite element methods. The approach opens new ways to monitor thermophoresis at the single molecule level, near boundaries and in complex mixtures. The flexible microfluidic setting is a good step towards microfluidic applications of thermophoresis in biotechnology.

  1. Microfluidic Pumps Containing Teflon [Trademark] AF Diaphragms

    NASA Technical Reports Server (NTRS)

    Willis, Peter; White, Victor; Grunthaner, Frank; Ikeda, Mike; Mathies, Richard A.

    2009-01-01

    Microfluidic pumps and valves based on pneumatically actuated diaphragms made of Teflon AF polymers are being developed for incorporation into laboratory-on-a-chip devices that must perform well over temperature ranges wider than those of prior diaphragm-based microfluidic pumps and valves. Other potential applications include implanted biomedical microfluidic devices, wherein the biocompatability of Teflon AF polymers would be highly advantageous. These pumps and valves have been demonstrated to function stably after cycling through temperatures from -125 to 120 C. These pumps and valves are intended to be successors to similar prior pumps and valves containing diaphragms made of polydimethylsiloxane (PDMS) [commonly known as silicone rubber]. The PDMS-containing valves ae designed to function stably only within the temperature range from 5 to 80 C. Undesirably, PDMS membranes are somwehat porous and retain water. PDMS is especially unsuitable for use at temperatures below 0 C because the formation of ice crystals increases porosity and introduces microshear.

  2. Microfluidic platforms for plant cells studies.

    PubMed

    Sanati Nezhad, A

    2014-09-07

    Conventional methods of plant cell analysis rely on growing plant cells in soil pots or agarose plates, followed by screening the plant phenotypes in traditional greenhouses and growth chambers. These methods are usually costly, need a large number of experiments, suffer from low spatial resolution and disorderly growth behavior of plant cells, with lack of ability to locally and accurately manipulate the plant cells. Microfluidic platforms take advantage of miniaturization for handling small volume of liquids and providing a closed environment, with the purpose of in vitro single cell analysis and characterizing cell response to external cues. These platforms have shown their ability for high-throughput cellular analysis with increased accuracy of experiments, reduced cost and experimental times, versatility in design, ability for large-scale and combinatorial screening, and integration with other miniaturized sensors. Despite extensive research on animal cells within microfluidic environments for high-throughput sorting, manipulation and phenotyping studies, the application of microfluidics for plant cells studies has not been accomplished yet. Novel devices such as RootChip, RootArray, TipChip, and PlantChip developed for plant cells analysis, with high spatial resolution on a micrometer scale mimicking the internal microenvironment of plant cells, offering preliminary results on the capability of microfluidics to conquer the constraints of conventional methods. These devices have been used to study different aspects of plant cell biology such as gene expression, cell biomechanics, cellular mechanism of growth, cell division, and cells fusion. This review emphasizes the advantages of current microfluidic systems for plant science studies, and discusses future prospects of microfluidic platforms for characterizing plant cells response to diverse external cues.

  3. Microfluidic fuel cells for energy generation.

    PubMed

    Safdar, M; Jänis, J; Sánchez, S

    2016-08-07

    Sustainable energy generation is of recent interest due to a growing energy demand across the globe and increasing environmental issues caused by conventional non-renewable means of power generation. In the context of microsystems, portable electronics and lab-on-a-chip based (bio)chemical sensors would essentially require fully integrated, reliable means of power generation. Microfluidic-based fuel cells can offer unique advantages compared to conventional fuel cells such as high surface area-to-volume ratio, ease of integration, cost effectiveness and portability. Here, we summarize recent developments which utilize the potential of microfluidic devices for energy generation.

  4. Microfluidic Assessment of Frying Oil Degradation.

    PubMed

    Liu, Mei; Xie, Shaorong; Ge, Ji; Xu, Zhensong; Wu, Zhizheng; Ru, Changhai; Luo, Jun; Sun, Yu

    2016-06-17

    Monitoring the quality of frying oil is important for the health of consumers. This paper reports a microfluidic technique for rapidly quantifying the degradation of frying oil. The microfluidic device generates monodispersed water-in-oil droplets and exploits viscosity and interfacial tension changes of frying oil samples over their frying/degradation process. The measured parameters were correlated to the total polar material percentage that is widely used in the food industry. The results reveal that the steady-state length of droplets can be used for unambiguously assessing frying oil quality degradation.

  5. Microfluidic Assessment of Frying Oil Degradation

    PubMed Central

    Liu, Mei; Xie, Shaorong; Ge, Ji; Xu, Zhensong; Wu, Zhizheng; Ru, Changhai; Luo, Jun; Sun, Yu

    2016-01-01

    Monitoring the quality of frying oil is important for the health of consumers. This paper reports a microfluidic technique for rapidly quantifying the degradation of frying oil. The microfluidic device generates monodispersed water-in-oil droplets and exploits viscosity and interfacial tension changes of frying oil samples over their frying/degradation process. The measured parameters were correlated to the total polar material percentage that is widely used in the food industry. The results reveal that the steady-state length of droplets can be used for unambiguously assessing frying oil quality degradation. PMID:27312884

  6. Rapid Protein Separations in Microfluidic Devices

    NASA Technical Reports Server (NTRS)

    Fan, Z. H.; Das, Champak; Xia, Zheng; Stoyanov, Alexander V.; Fredrickson, Carl K.

    2004-01-01

    This paper describes fabrication of glass and plastic microfluidic devices for protein separations. Although the long-term goal is to develop a microfluidic device for two-dimensional gel electrophoresis, this paper focuses on the first dimension-isoelectric focusing (IEF). A laser-induced fluorescence (LIF) imaging system has been built for imaging an entire channel in an IEF device. The whole-channel imaging eliminates the need to migrate focused protein bands, which is required if a single-point detector is used. Using the devices and the imaging system, we are able to perform IEF separations of proteins within minutes rather than hours in traditional bench-top instruments.

  7. Pulsed laser triggered high speed microfluidic switch

    NASA Astrophysics Data System (ADS)

    Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu

    2008-10-01

    We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.

  8. Integrated Microfluidic Gas Sensors for Water Monitoring

    NASA Technical Reports Server (NTRS)

    Zhu, L.; Sniadecki, N.; DeVoe, D. L.; Beamesderfer, M.; Semancik, S.; DeVoe, D. L.

    2003-01-01

    A silicon-based microhotplate tin oxide (SnO2) gas sensor integrated into a polymer-based microfluidic system for monitoring of contaminants in water systems is presented. This device is designed to sample a water source, control the sample vapor pressure within a microchannel using integrated resistive heaters, and direct the vapor past the integrated gas sensor for analysis. The sensor platform takes advantage of novel technology allowing direct integration of discrete silicon chips into a larger polymer microfluidic substrate, including seamless fluidic and electrical interconnects between the substrate and silicon chip.

  9. A method for fabricating microfluidic electrochemical reactors.

    PubMed

    Simms, Ryan; Dubinsky, Stanislav; Yudin, Andrei; Kumacheva, Eugenia

    2009-08-21

    We report an efficient method for the fabrication of microfluidic electrochemical reactors. The technique relies on soft lithography and micromolding in capillaries. Intrinsic to our method of fabrication is the capability of controlling the inter-electrode gap between 40 to 200 microm, and the ability to produce microchannels with complex geometries. The material selected to fabricate the reactor is resistant to most organic solvents, whereas its relative softness eliminates the need for additional sealants required by other methods for the fabrication of microfluidic electrochemical reactors.

  10. Microfluidic device for acoustic cell lysis

    SciTech Connect

    Branch, Darren W.; Cooley, Erika Jane; Smith, Gennifer Tanabe; James, Conrad D.; McClain, Jaime L.

    2015-08-04

    A microfluidic acoustic-based cell lysing device that can be integrated with on-chip nucleic acid extraction. Using a bulk acoustic wave (BAW) transducer array, acoustic waves can be coupled into microfluidic cartridges resulting in the lysis of cells contained therein by localized acoustic pressure. Cellular materials can then be extracted from the lysed cells. For example, nucleic acids can be extracted from the lysate using silica-based sol-gel filled microchannels, nucleic acid binding magnetic beads, or Nafion-coated electrodes. Integration of cell lysis and nucleic acid extraction on-chip enables a small, portable system that allows for rapid analysis in the field.

  11. Microfluidic Assessment of Frying Oil Degradation

    NASA Astrophysics Data System (ADS)

    Liu, Mei; Xie, Shaorong; Ge, Ji; Xu, Zhensong; Wu, Zhizheng; Ru, Changhai; Luo, Jun; Sun, Yu

    2016-06-01

    Monitoring the quality of frying oil is important for the health of consumers. This paper reports a microfluidic technique for rapidly quantifying the degradation of frying oil. The microfluidic device generates monodispersed water-in-oil droplets and exploits viscosity and interfacial tension changes of frying oil samples over their frying/degradation process. The measured parameters were correlated to the total polar material percentage that is widely used in the food industry. The results reveal that the steady-state length of droplets can be used for unambiguously assessing frying oil quality degradation.

  12. Fabrication and Testing of Microfluidic Optomechanical Oscillators

    PubMed Central

    Han, Kewen; Kim, Kyu Hyun; Kim, Junhwan; Lee, Wonsuk; Liu, Jing; Fan, Xudong; Carmon, Tal; Bahl, Gaurav

    2014-01-01

    Cavity optomechanics experiments that parametrically couple the phonon modes and photon modes have been investigated in various optical systems including microresonators. However, because of the increased acoustic radiative losses during direct liquid immersion of optomechanical devices, almost all published optomechanical experiments have been performed in solid phase. This paper discusses a recently introduced hollow microfluidic optomechanical resonator. Detailed methodology is provided to fabricate these ultra-high-Q microfluidic resonators, perform optomechanical testing, and measure radiation pressure-driven breathing mode and SBS-driven whispering gallery mode parametric vibrations. By confining liquids inside the capillary resonator, high mechanical- and optical- quality factors are simultaneously maintained. PMID:24962013

  13. Micro-Fluidic Device for Drug Delivery

    NASA Technical Reports Server (NTRS)

    Beebe, David J. (Inventor); MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Mensing, Glennys A. (Inventor)

    2014-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  14. Integrated Microfluidic Gas Sensors for Water Monitoring

    NASA Technical Reports Server (NTRS)

    Zhu, L.; Sniadecki, N.; DeVoe, D. L.; Beamesderfer, M.; Semancik, S.; DeVoe, D. L.

    2003-01-01

    A silicon-based microhotplate tin oxide (SnO2) gas sensor integrated into a polymer-based microfluidic system for monitoring of contaminants in water systems is presented. This device is designed to sample a water source, control the sample vapor pressure within a microchannel using integrated resistive heaters, and direct the vapor past the integrated gas sensor for analysis. The sensor platform takes advantage of novel technology allowing direct integration of discrete silicon chips into a larger polymer microfluidic substrate, including seamless fluidic and electrical interconnects between the substrate and silicon chip.

  15. Rapid Protein Separations in Microfluidic Devices

    NASA Technical Reports Server (NTRS)

    Fan, Z. H.; Das, Champak; Xia, Zheng; Stoyanov, Alexander V.; Fredrickson, Carl K.

    2004-01-01

    This paper describes fabrication of glass and plastic microfluidic devices for protein separations. Although the long-term goal is to develop a microfluidic device for two-dimensional gel electrophoresis, this paper focuses on the first dimension-isoelectric focusing (IEF). A laser-induced fluorescence (LIF) imaging system has been built for imaging an entire channel in an IEF device. The whole-channel imaging eliminates the need to migrate focused protein bands, which is required if a single-point detector is used. Using the devices and the imaging system, we are able to perform IEF separations of proteins within minutes rather than hours in traditional bench-top instruments.

  16. Self-propelled autonomous nanomotors meet microfluidics.

    PubMed

    Kherzi, Bahareh; Pumera, Martin

    2016-10-14

    Self-propelled autonomous nano/micromotors are in the forefront of current materials science and technology research. These small machines convert chemical energy from the environment into propulsion, and they can move autonomously in the environment and are capable of chemotaxis or magnetotaxis. They can be used for drug delivery, microsurgeries or environmental remediation. It is of immense interest from a future biomedical application point of view to understand the motion of the nano/micromotors in microfluidic channels. In this minireview, we review the progress on the use of nano/micromotors in microfluidic channels and lab-on-chip devices.

  17. Detection methods for centrifugal microfluidic platforms.

    PubMed

    Burger, Robert; Amato, Letizia; Boisen, Anja

    2016-02-15

    Centrifugal microfluidics has attracted much interest from academia as well as industry, since it potentially offers solutions for affordable, user-friendly and portable biosensing. A wide range of so-called fluidic unit operations, e.g. mixing, metering, liquid routing, and particle separation, have been developed and allow automation and integration of complex assay protocols in lab-on-a-disc systems. Besides liquid handling, the detection strategy for reading out the assay is crucial for developing a fully integrated system. In this review, we focus on biosensors and readout methods for the centrifugal microfluidics platform and cover optical as well as mechanical and electrical detection principles.

  18. Microfluidics and Raman microscopy: current applications and future challenges.

    PubMed

    Chrimes, Adam F; Khoshmanesh, Khashayar; Stoddart, Paul R; Mitchell, Arnan; Kalantar-Zadeh, Kourosh

    2013-07-07

    Raman microscopy systems are becoming increasingly widespread and accessible for characterising chemical species. Microfluidic systems are also progressively finding their way into real world applications. Therefore, it is anticipated that the integration of Raman systems with microfluidics will become increasingly attractive and practical. This review aims to provide an overview of Raman microscopy-microfluidics integrated systems for researchers who are actively interested in utilising these tools. The fundamental principles and application strengths of Raman microscopy are discussed in the context of microfluidics. Various configurations of microfluidics that incorporate Raman microscopy methods are presented, with applications highlighted. Data analysis methods are discussed, with a focus on assisting the interpretation of Raman-microfluidics data from complex samples. Finally, possible future directions of Raman-microfluidic systems are presented.

  19. Recent developments in microfluidics-based chemotaxis studies.

    PubMed

    Wu, Jiandong; Wu, Xun; Lin, Francis

    2013-07-07

    Microfluidic devices can better control cellular microenvironments compared to conventional cell migration assays. Over the past few years, microfluidics-based chemotaxis studies showed a rapid growth. New strategies were developed to explore cell migration in manipulated chemical gradients. In addition to expanding the use of microfluidic devices for a broader range of cell types, microfluidic devices were used to study cell migration and chemotaxis in complex environments. Furthermore, high-throughput microfluidic chemotaxis devices and integrated microfluidic chemotaxis systems were developed for medical and commercial applications. In this article, we review recent developments in microfluidics-based chemotaxis studies and discuss the new trends in this field observed over the past few years.

  20. Microfluidic flow counterbalanced capillary electrophoresis.

    PubMed

    Xia, Ling; Dutta, Debashis

    2013-04-07

    Flow counterbalanced capillary electrophoresis (FCCE) offers a powerful approach to realizing difficult charge based separations in compact microchip devices with application of relatively small electrical voltages. The need for dynamically controlling the pressure-gradient in the FCCE column however presents a significant challenge in implementing this technique on the microchip platform. In this article, we report the use of a simple on-chip pumping unit that allows precise introduction of a periodic pressure-driven backflow into a microfluidic separation channel enabling an FCCE analysis. The backflow in our device was produced by fabricating a shallow segment (0.5 μm deep) downstream of the analysis column (5 μm deep) and applying an electric field across it. A mismatch in the electroosmotic transport rate at the interface of this segment was shown to yield a pressure-gradient that could reverse the flow of the analyte bands without inverting the direction of the electric field. Although such a pressure-gradient also led to additional band broadening in the system, overall, the separation resolution of our device was observed to improve with an increasing number of back-and-forth sample passes through the analysis channel. For our current design, the corresponding improvement in the effective separation length was as much as 52% of the actual distance travelled by the chosen FITC-labeled amino acid samples. The reported device is well suited for further miniaturization of the FCCE method to the nanofluidic length scale which likely would improve its performance, and is easily integrable to other analytical procedures on the microchip platform for lab-on-a-chip applications.

  1. Development & Characterization of Multifunctional Microfluidic Materials

    NASA Astrophysics Data System (ADS)

    Ucar, Ahmet Burak

    The field of microfluidics has been mostly investigated for miniaturized lab on a chip devices for analytical and clinical applications. However, there is an emerging class of "smart" microfluidic materials, combining microfluidics with soft polymers to yield new functionalities. The best inspiration for such materials found in nature is skin, whose functions are maintained and controlled by a vascular "microfluidic" network. We report here the development and characterization of a few new classes of microfluidic materials. First, we introduced microfluidic materials that can change their stiffness on demand. These materials were based on an engineered microchannel network embedded into a matrix of polydimethylsiloxane (PDMS), whose channels were filled with a liquid photoresist (SU- 8). The elastomer filled with the photoresist was initially soft. The materials were shaped into a desired geometry and then exposed to UV-light. Once photocured, the material preserved the defined shape and it could be bent, twisted or stretched with a very high recoverable strain. As soon as the external force was removed the material returned back to its predefined shape. Thus, the polymerized SU-8 acted as the 'endoskeleton' of the microfluidic network, which drastically increased the composite's elastic and bending moduli. Second, we demonstrated a class of simple and versatile soft microfluidic materials that can be turned optically transparent or colored on demand. These materials were made in the form of flexible sheets containing a microchannel network embedded in PDMS, similar to the photocurable materials. However, this time the channels were filled with a glycerolwater mixture, whose refractive index was matched with that of the PDMS matrix. By pumping such dye solutions into the channel network and consecutively replacing the medium, we showed that we can control the material's color and light transmittance in the visible and near-infrared regions, which can be used for

  2. Inventions Utilizing Microfluidics and Colloidal Particles

    NASA Technical Reports Server (NTRS)

    Marr, David W.; Gong, Tieying; Oakey, John; Terray, Alexander V.; Wu, David T.

    2009-01-01

    Several related inventions pertain to families of devices that utilize microfluidics and/or colloidal particles to obtain useful physical effects. The families of devices can be summarized as follows: (1) Microfluidic pumps and/or valves wherein colloidal-size particles driven by electrical, magnetic, or optical fields serve as the principal moving parts that propel and/or direct the affected flows. (2) Devices that are similar to the aforementioned pumps and/or valves except that they are used to manipulate light instead of fluids. The colloidal particles in these devices are substantially constrained to move in a plane and are driven to spatially order them into arrays that function, variously, as waveguides, filters, or switches for optical signals. (3) Devices wherein the ultra-laminar nature of microfluidic flows is exploited to effect separation, sorting, or filtering of colloidal particles or biological cells in suspension. (4) Devices wherein a combination of confinement and applied electrical and/or optical fields forces the colloidal particles to become arranged into three-dimensional crystal lattices. Control of the colloidal crystalline structures could be exploited to control diffraction of light. (5) Microfluidic devices, incorporating fluid waveguides, wherein switching of flows among different paths would be accompanied by switching of optical signals.

  3. Microfluidics for Antibiotic Susceptibility and Toxicity Testing

    PubMed Central

    Dai, Jing; Hamon, Morgan; Jambovane, Sachin

    2016-01-01

    The recent emergence of antimicrobial resistance has become a major concern for worldwide policy makers as very few new antibiotics have been developed in the last twenty-five years. To prevent the death of millions of people worldwide, there is an urgent need for a cheap, fast and accurate set of tools and techniques that can help to discover and develop new antimicrobial drugs. In the past decade, microfluidic platforms have emerged as potential systems for conducting pharmacological studies. Recent studies have demonstrated that microfluidic platforms can perform rapid antibiotic susceptibility tests to evaluate antimicrobial drugs’ efficacy. In addition, the development of cell-on-a-chip and organ-on-a-chip platforms have enabled the early drug testing, providing more accurate insights into conventional cell cultures on the drug pharmacokinetics and toxicity, at the early and cheaper stage of drug development, i.e., prior to animal and human testing. In this review, we focus on the recent developments of microfluidic platforms for rapid antibiotics susceptibility testing, investigating bacterial persistence and non-growing but metabolically active (NGMA) bacteria, evaluating antibiotic effectiveness on biofilms and combinatorial effect of antibiotics, as well as microfluidic platforms that can be used for in vitro antibiotic toxicity testing. PMID:28952587

  4. Differential white cell count by centrifugal microfluidics.

    SciTech Connect

    Sommer, Gregory Jon; Tentori, Augusto M.; Schaff, Ulrich Y.

    2010-07-01

    We present a method for counting white blood cells that is uniquely compatible with centrifugation based microfluidics. Blood is deposited on top of one or more layers of density media within a microfluidic disk. Spinning the disk causes the cell populations within whole blood to settle through the media, reaching an equilibrium based on the density of each cell type. Separation and fluorescence measurement of cell types stained with a DNA dye is demonstrated using this technique. The integrated signal from bands of fluorescent microspheres is shown to be proportional to their initial concentration in suspension. Among the current generation of medical diagnostics are devices based on the principle of centrifuging a CD sized disk functionalized with microfluidics. These portable 'lab on a disk' devices are capable of conducting multiple assays directly from a blood sample, embodied by platforms developed by Gyros, Samsung, and Abaxis. [1,2] However, no centrifugal platform to date includes a differential white blood cell count, which is an important metric complimentary to diagnostic assays. Measuring the differential white blood cell count (the relative fraction of granulocytes, lymphocytes, and monocytes) is a standard medical diagnostic technique useful for identifying sepsis, leukemia, AIDS, radiation exposure, and a host of other conditions that affect the immune system. Several methods exist for measuring the relative white blood cell count including flow cytometry, electrical impedance, and visual identification from a stained drop of blood under a microscope. However, none of these methods is easily incorporated into a centrifugal microfluidic diagnostic platform.

  5. Development of a microfluidic immobilised enzyme reactor.

    PubMed

    Thomsen, Malene S; Pölt, Peter; Nidetzky, Bernd

    2007-06-28

    A microfluidic immobilised enzyme reactor consisting of a catalytically functionalised microstructure fabricated from silicone rubber material was used for steady-state kinetic characterisation of a thermophilic beta-glycosidase under pressure-driven flow conditions and continuous conversion of lactose by this enzyme at 80 degrees C.

  6. Wax-bonding 3D microfluidic chips.

    PubMed

    Gong, Xiuqing; Yi, Xin; Xiao, Kang; Li, Shunbo; Kodzius, Rimantas; Qin, Jianhua; Wen, Weijia

    2010-10-07

    We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes. The hot-melt adhesive wax can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate (PMMA) film, glass sheets, or metal plate. The bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by vacuating and venting the chip in a hot-water bath. To study the biocompatibility and applicability of the wax-based microfluidic chip, we tested the PCR compatibility with the chip materials first. Then we applied the wax-paper based microfluidic chip to HeLa cell electroporation (EP). Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein (GFP) recombinant Escherichia coli (E. coli) bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration.

  7. Microfluidic distillation chip for methanol concentration detection.

    PubMed

    Wang, Yao-Nan; Liu, Chan-Chiung; Yang, Ruey-Jen; Ju, Wei-Jhong; Fu, Lung-Ming

    2016-03-17

    An integrated microfluidic distillation system is proposed for separating a mixed ethanol-methanol-water solution into its constituent components. The microfluidic chip is fabricated using a CO2 laser system and comprises a serpentine channel, a boiling zone, a heating zone, and a cooled collection chamber filled with de-ionized (DI) water. In the proposed device, the ethanol-methanol-water solution is injected into the microfluidic chip and driven through the serpentine channel and into the collection chamber by means of a nitrogen carrier gas. Following the distillation process, the ethanol-methanol vapor flows into the collection chamber and condenses into the DI water. The resulting solution is removed from the collection tank and reacted with a mixed indicator. Finally, the methanol concentration is inversely derived from the absorbance measurements obtained using a spectrophotometer. The experimental results show the proposed microfluidic system achieves an average methanol distillation efficiency of 97%. The practicality of the proposed device is demonstrated by detecting the methanol concentrations of two commercial fruit wines. It is shown that the measured concentration values deviate by no more than 3% from those obtained using a conventional bench top system.

  8. Integrated Microfluidic Platform for Oral Diagnostics

    PubMed Central

    HERR, AMY E.; HATCH, ANSON V.; GIANNOBILE, WILLIAM V.; THROCKMORTON, DANIEL J.; TRAN, HUU M.; BRENNAN, JAMES S.; SINGH, ANUP K.

    2008-01-01

    While many point-of-care (POC) diagnostic methods have been developed for blood-borne analytes, development of saliva-based POC diagnostics is in its infancy. We have developed a portable microfluidic device for detection of potential biomarkers of periodontal disease in saliva. The device performs rapid microfluidic chip-based immunoassays (<3–10 min) with low sample volume requirements (10 μL) and appreciable sensitivity (nM–pM). Our microfluidic method facilitates hands-free saliva analysis by integrating sample pretreatment (filtering, enrichment, mixing) with electrophoretic immunoassays to quickly measure analyte concentrations in minimally pretreated saliva samples. The microfluidic chip has been integrated with miniaturized electronics, optical elements, such as diode lasers, fluid-handling components, and data acquisition software to develop a portable, self-contained device. The device and methods are being tested by detecting potential biomarkers in saliva samples from patients diagnosed with periodontal disease. Our microchip-based analysis can readily be extended to detection of biomarkers of other diseases, both oral and systemic, in saliva and other oral fluids. PMID:17435142

  9. The promise of microfluidic artificial lungs.

    PubMed

    Potkay, Joseph A

    2014-11-07

    Microfluidic or microchannel artificial lungs promise to enable a new class of truly portable, therapeutic artificial lungs through feature sizes and blood channel designs that closely mimic those found in their natural counterpart. These new artificial lungs could potentially: 1) have surface areas and priming volumes that are a fraction of current technologies thereby decreasing device size and reducing the foreign body response; 2) contain blood flow networks in which cells and platelets experience pressures, shear stresses, and branching angles that copy those in the human lung thereby improving biocompatibility; 3) operate efficiently with room air, eliminating the need for gas cylinders and complications associated with hyperoxemia; 4) exhibit biomimetic hydraulic resistances, enabling operation with natural pressures and eliminating the need for blood pumps; and, 5) provide increased gas exchange capacity enabling respiratory support for active patients. This manuscript reviews recent research efforts in microfluidic artificial lungs targeted at achieving the advantages above, investigates the ultimate performance and scaling limits of these devices using a proven mathematical model, and discusses the future challenges that must be overcome in order for microfluidic artificial lungs to be applied in the clinic. If all of these promising advantages are realized and the remaining challenges are met, microfluidic artificial lungs could revolutionize the field of pulmonary rehabilitation.

  10. Recent Advances in Magnetic Microfluidic Biosensors

    PubMed Central

    Giouroudi, Ioanna

    2017-01-01

    The development of portable biosening devices for the detection of biological entities such as biomolecules, pathogens, and cells has become extremely significant over the past years. Scientific research, driven by the promise for miniaturization and integration of complex laboratory equipment on inexpensive, reliable, and accurate devices, has successfully shifted several analytical and diagnostic methods to the submillimeter scale. The miniaturization process was made possible with the birth of microfluidics, a technology that could confine, manipulate, and mix very small volumes of liquids on devices integrated on standard silicon technology chips. Such devices are then directly translating the presence of these entities into an electronic signal that can be read out with a portable instrumentation. For the aforementioned tasks, the use of magnetic markers (magnetic particles—MPs—functionalized with ligands) in combination with the application of magnetic fields is being strongly investigated by research groups worldwide. The greatest merits of using magnetic fields are that they can be applied either externally or from integrated microconductors and they can be well-tuned by adjusting the applied current on the microconductors. Moreover, the magnetic markers can be manipulated inside microfluidic channels by high gradient magnetic fields that can in turn be detected by magnetic sensors. All the above make this technology an ideal candidate for the development of such microfluidic biosensors. In this review, focus is given only to very recent advances in biosensors that use microfluidics in combination with magnetic sensors and magnetic markers/nanoparticles. PMID:28684665

  11. Recent advances in microfluidic detection systems

    PubMed Central

    Baker, Christopher A; Duong, Cindy T; Grimley, Alix; Roper, Michael G

    2009-01-01

    There are numerous detection methods available for methods are being put to use for detection on these miniaturized systems, with the analyte of interest driving the choice of detection method. In this article, we summarize microfluidic 2 years. More focus is given to unconventional approaches to detection routes and novel strategies for performing high-sensitivity detection. PMID:20414455

  12. A microfluidic system for automatic cell culture

    NASA Astrophysics Data System (ADS)

    Huang, Chun-Wei; Lee, Gwo-Bin

    2007-07-01

    This study presents a new chip capable of automating the cell culture process by using microfluidic technology. This microfluidic cell culture system comprising microheaters, a micro temperature sensor, micropumps, microvalves, microchannels, a cell culture area and several reservoirs was fabricated by using micro-electro-mechanical-systems' fabrication processes. Traditional manual cell culture processes can be performed on this chip. A uni-directional pneumatic micropump was developed to transport the culture reagents and constraint the solutions to flow only in one direction, safeguarding the entire culture process from contamination. A new micro check valve was also used to prevent the culture solutions from flowing back into the microchannels. The microheaters and the micro temperature sensor were used to maintain a constant temperature during the cell culturing process. The pH value suitable for cell growth was also regulated during the cell culture process. A typical cell culturing process for human lung cancer cells (A549) was successfully performed to demonstrate the capability of the developed microfluidic system. This automatic cell culturing system can be eventually integrated with subsequent microfluidic modules for cell purification, collection, counting and lysis to form a cell-based micro-total-analysis system. Preliminary results have been presented in The Asia-Pacific Conference of Transducers and Micro-Nano Technology (APCOT), 25-28 June 2006

  13. Integrated microfluidic biochips for DNA microarray analysis.

    PubMed

    Liu, Robin Hui; Dill, Kilian; Fuji, H Sho; McShea, Andy

    2006-03-01

    A fully integrated and self-contained microfluidic biochip device has been developed to automate the fluidic handling steps required to perform a gene expression study of the human leukemia cell line (K-562). The device consists of a DNA microarray semiconductor chip with 12,000 features and a microfluidic cartridge that consists of microfluidic pumps, mixers, valves, fluid channels and reagent storage chambers. Microarray hybridization and subsequent fluidic handling and reactions (including a number of washing and labeling steps) were performed in this fully automated and miniature device before fluorescent image scanning of the microarray chip. Electrochemical micropumps were integrated in the cartridge to provide pumping of liquid solutions. A micromixing technique based on gas bubbling generated by electrochemical micropumps was developed. Low-cost check valves were implemented in the cartridge to prevent cross-talk of the stored reagents. A single-color transcriptional analysis of K-562 cells with a series of calibration controls (spiked-in controls) was performed to characterize this new platform with regard to sensitivity, specificity and dynamic range. The device detected sample RNAs with a concentration as low as 0.375 pM. Detection was quantitative over more than 3 orders of magnitude. Experiments also demonstrated that chip-to-chip variability was low, indicating that the integrated microfluidic devices eliminate manual fluidic handling steps that can be a significant source of variability in genomic analysis.

  14. Microfluidic enzymatic biosensing systems: A review.

    PubMed

    Mross, Stefan; Pierrat, Sebastien; Zimmermann, Tom; Kraft, Michael

    2015-08-15

    Microfluidic biosensing systems with enzyme-based detection have been extensively studied in the last years owing to features such as high specificity, a broad range of analytes and a high degree of automation. This review gives an overview of the most important factors associated with these systems. In the first part, frequently used immobilization protocols such as physisorption and covalent bonding and detection techniques such as amperometry and fluorescence measurements are discussed with respect to effort, lifetime and measurement range. The Michaelis-Menten model describing the kinetics of enzymatic reactions, the role of redox mediators and the limitations of the linear measurement range of enzymatic sensors are introduced. Several possibilities of extending the linear measurement range in microfluidic systems such as diffusion-limiting membranes and the flow injection setup are presented. Regarding the integration of enzymes into microfluidic systems during the fabrication process, the constraints imposed by the biomolecules due to the limited usage of high temperatures and solvents are addressed. In the second part, the most common forms of enzyme integration into microfluidic systems, i.e. in channels and on electrodes, on microparticles, on paper and thread and as injected enzyme solutions, are reviewed, focusing on fabrication, applications and performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Rare cell isolation and analysis in microfluidics

    PubMed Central

    Chen, Yuchao; Li, Peng; Huang, Po-Hsun; Xie, Yuliang; Mai, John D.; Wang, Lin; Nguyen, Nam-Trung; Huang, Tony Jun

    2014-01-01

    Rare cells are low-abundance cells in a much larger population of background cells. Conventional benchtop techniques have limited capabilities to isolate and analyze rare cells because of their generally low selectivity and significant sample loss. Recent rapid advances in microfluidics have been providing robust solutions to the challenges in the isolation and analysis of rare cells. In addition to the apparent performance enhancements resulting in higher efficiencies and sensitivity levels, microfluidics provides other advanced features such as simpler handling of small sample volumes and multiplexing capabilities for high-throughput processing. All of these advantages make microfluidics an excellent platform to deal with the transport, isolation, and analysis of rare cells. Various cellular biomarkers, including physical properties, dielectric properties, as well as immunoaffinities, have been explored for isolating rare cells. In this Focus article, we discuss the design considerations of representative microfluidic devices for rare cell isolation and analysis. Examples from recently published works are discussed to highlight the advantages and limitations of the different techniques. Various applications of these techniques are then introduced. Finally, a perspective on the development trends and promising research directions in this field are proposed. PMID:24406985

  16. Microfluidic/SERS Detection of Trace Explosives

    DTIC Science & Technology

    2008-12-01

    1 Microfluidic/SERS Detection of Trace Explosives Carl Meinhart ,a Brian Piorek,a Seung Joon Lee,b Martin Moskovitsb, Craig Cummingsc...SUPPLEMENTARY NOTES See also ADM002187. Proceedings of the Army Science Conference (26th) Held in Orlando, Florida on 1-4 December 2008, The original

  17. Discrete elements for 3D microfluidics

    PubMed Central

    Bhargava, Krisna C.; Thompson, Bryant; Malmstadt, Noah

    2014-01-01

    Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry. PMID:25246553

  18. Nucleic acid amplification using microfluidic systems.

    PubMed

    Chang, Chen-Min; Chang, Wen-Hsin; Wang, Chih-Hung; Wang, Jung-Hao; Mai, John D; Lee, Gwo-Bin

    2013-04-07

    In the post-human-genome-project era, the development of molecular diagnostic techniques has advanced the frontiers of biomedical research. Nucleic-acid-based technology (NAT) plays an especially important role in molecular diagnosis. However, most research and clinical protocols still rely on the manual analysis of individual samples by skilled technicians which is a time-consuming and labor-intensive process. Recently, with advances in microfluidic designs, integrated micro total-analysis-systems have emerged to overcome the limitations of traditional detection assays. These microfluidic systems have the capability to rapidly perform experiments in parallel and with a high-throughput which allows a NAT analysis to be completed in a few hours or even a few minutes. These features have a significant beneficial influence on many aspects of traditional biological or biochemical research and this new technology is promising for improving molecular diagnosis. Thus, in the foreseeable future, microfluidic systems developed for molecular diagnosis using NAT will become an important tool in clinical diagnosis. One of the critical issues for NAT is nucleic acid amplification. In this review article, recent advances in nucleic acid amplification techniques using microfluidic systems will be reviewed. Different approaches for fast amplification of nucleic acids for molecular diagnosis will be highlighted.

  19. Discrete elements for 3D microfluidics.

    PubMed

    Bhargava, Krisna C; Thompson, Bryant; Malmstadt, Noah

    2014-10-21

    Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry.

  20. Understanding cell passage through constricted microfluidic channels

    NASA Astrophysics Data System (ADS)

    Cartas-Ayala, Marco A.; Karnik, Rohit

    2012-11-01

    Recently, several microfluidic platforms have been proposed to characterize cells based on their behaviour during cell passage through constricted channels. Variables like transit time have been analyzed in disease states like sickle cell anemia, malaria and sepsis. Nevertheless, it is hard to make direct comparisons between different platforms and cell types. We present experimental results of the relationship between solid deformable particle properties, i.e. stiffness and relative particle size, and flow properties, i.e. particle's velocity. We measured the hydrodynamic variables during the flow of HL-60 cells, a white myeloid cell type, in narrow microfluidic square channels using a microfluidic differential manometer. We measured the flow force required to move cells of different sizes through microchannels and quantified friction forces opposing cell passage. We determined the non-dimensional parameters that influence the flow of cells and we used them to obtain a non dimensional expression that can be used to predict the forces needed to drive cells through microchannels. We found that the friction force needed to flow HL-60 through a microfluidic channel is the sum of two parts. The first part is a static friction force that is proportional to the force needed to keep the force compressed. The second part is a factor that is proportional to the cell velocity, hence a dynamic term, and slightly sensitive to the compressive force. We thank CONACYT (Mexican Science and Technology Council) for supporting this project, grant 205899.

  1. Integrated multifunctional microfluidics for automated proteome analyses.

    PubMed

    Osiri, John K; Shadpour, Hamed; Witek, Małgorzata A; Soper, Steven A

    2011-01-01

    Proteomics is a challenging field for realizing totally integrated microfluidic systems for complete proteome processing due to several considerations, including the sheer number of different protein types that exist within most proteomes, the large dynamic range associated with these various protein types, and the diverse chemical nature of the proteins comprising a typical proteome. For example, the human proteome is estimated to have >10(6) different components with a dynamic range of >10(10). The typical processing pipeline for proteomics involves the following steps: (1) selection and/or extraction of the particular proteins to be analyzed; (2) multidimensional separation; (3) proteolytic digestion of the protein sample; and (4) mass spectral identification of either intact proteins (top-down proteomics) or peptide fragments generated from proteolytic digestions (bottom-up proteomics). Although a number of intriguing microfluidic devices have been designed, fabricated and evaluated for carrying out the individual processing steps listed above, work toward building fully integrated microfluidic systems for protein analysis has yet to be realized. In this chapter, information will be provided on the nature of proteomic analysis in terms of the challenges associated with the sample type and the microfluidic devices that have been tested to carry out individual processing steps. These include devices such as those for multidimensional electrophoretic separations, solid-phase enzymatic digestions, and solid-phase extractions, all of which have used microfluidics as the functional platform for their implementation. This will be followed by an in-depth review of microfluidic systems, which are defined as units possessing two or more devices assembled into autonomous systems for proteome processing. In addition, information will be provided on the challenges involved in integrating processing steps into a functional system and the approaches adopted for device

  2. Digital microfluidic operations on micro-electrode dot array architecture.

    PubMed

    Wang, G; Teng, D; Fan, S-K

    2011-12-01

    As digital microfluidics-based biochips find more applications, their complexity is expected to increase significantly owing to the trend of multiple and concurrent assays on the chip. There is a pressing need to deliver a top-down design methodology that the biochip designer can leverage the same level of computer-aided design support as the semi-conductor industry now does. Moreover, as microelectronics fabrication technology is scaling up and integrated device performance is improving, it is expected that these microfluidic biochips will be integrated with microelectronic components in next-generation system-on-chip designs. This study presents the analysis and experiments of digital microfluidic operations on a novel electrowetting-on-dielectric-based 'micro-electrode dot array architecture' that fosters a development path for hierarchical top-down design approach for digital microfluidics. The proposed architecture allows dynamic configurations and activations of identical basic microfluidic unit called 'micro-electrode cells' to design microfluidic components, layouts, routing, microfluidic operations and applications of the biochip hierarchically. Fundamental microfluidic operations have been successfully performed by the architecture. In addition, this novel architecture demonstrates a number of advantages and flexibilities over the conventional digital microfluidics in performing advanced microfluidic operations.

  3. Microfluidic immunomagnetic cell separation from whole blood.

    PubMed

    Bhuvanendran Nair Gourikutty, Sajay; Chang, Chia-Pin; Puiu, Poenar Daniel

    2016-02-01

    Immunomagnetic-based separation has become a viable technique for the separation of cells and biomolecules. Here we report on the design and analysis of a simple and efficient microfluidic device for high throughput and high efficiency capture of cells tagged with magnetic particles. This is made possible by using a microfluidic chip integrated with customized arrays of permanent magnets capable of creating large magnetic field gradients, which determine the effective capturing of the tagged cells. This method is based on manipulating the cells which are under the influence of a combination of magnetic and fluid dynamic forces in a fluid under laminar flow through a microfluidic chip. A finite element analysis (FEA) model is developed to analyze the cell separation process and predict its behavior, which is validated subsequently by the experimental results. The magnetic field gradients created by various arrangements of magnetic arrays have been simulated using FEA and the influence of these field gradients on cell separation has been studied with the design of our microfluidic chip. The proof-of-concept for the proposed technique is demonstrated by capturing white blood cells (WBCs) from whole human blood. CD45-conjugated magnetic particles were added into whole blood samples to label WBCs and the mixture was flown through our microfluidic device to separate the labeled cells. After the separation process, the remaining WBCs in the elute were counted to determine the capture efficiency, and it was found that more than 99.9% WBCs have been successfully separated from whole blood. The proposed design can be used for positive selection as well as for negative enrichment of rare cells.

  4. Mixing in polymeric microfluidic devices.

    SciTech Connect

    Schunk, Peter Randall; Sun, Amy Cha-Tien; Davis, Robert H.; Brotherton, Christopher M. (University of Colorado at Boulder, Boulder, CO)

    2006-04-01

    This SAND report describes progress made during a Sandia National Laboratories sponsored graduate fellowship. The fellowship was funded through an LDRD proposal. The goal of this project is development and characterization of mixing strategies for polymeric microfluidic devices. The mixing strategies under investigation include electroosmotic flow focusing, hydrodynamic focusing, physical constrictions and porous polymer monoliths. For electroosmotic flow focusing, simulations were performed to determine the effect of electroosmotic flow in a microchannel with heterogeneous surface potential. The heterogeneous surface potential caused recirculations to form within the microchannel. These recirculations could then be used to restrict two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the mixing region surface potential to the average channel surface potential was made large in magnitude and negative in sign, and when the ratio of the characteristic convection time to the characteristic diffusion time was minimized. Based on these results, experiments were performed to evaluate the manipulation of surface potential using living-radical photopolymerization. The material chosen to manipulate typically exhibits a negative surface potential. Using living-radical surface grafting, a positive surface potential was produced using 2-(Dimethylamino)ethyl methacrylate and a neutral surface was produced using a poly(ethylene glycol) surface graft. Simulations investigating hydrodynamic focusing were also performed. For this technique, mixing is enhanced by using a tertiary fluid stream to constrict the two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the tertiary flow stream flow-rate to the mixing streams flow-rate was maximized. Also, like the electroosmotic focusing mixer, mixing was also maximized when the ratio of the characteristic convection time to the

  5. Microfluidics on liquid handling stations (μF-on-LHS): a new industry-compatible microfluidic platform

    NASA Astrophysics Data System (ADS)

    Kittelmann, Jörg; Radtke, Carsten P.; Waldbaur, Ansgar; Neumann, Christiane; Hubbuch, Jürgen; Rapp, Bastian E.

    2014-03-01

    Since the early days microfluidics as a scientific discipline has been an interdisciplinary research field with a wide scope of potential applications. Besides tailored assays for point-of-care (PoC) diagnostics, microfluidics has been an important tool for large-scale screening of reagents and building blocks in organic chemistry, pharmaceutics and medical engineering. Furthermore, numerous potential marketable products have been described over the years. However, especially in industrial applications, microfluidics is often considered only an alternative technology for fluid handling, a field which is industrially mostly dominated by large-scale numerically controlled fluid and liquid handling stations. Numerous noteworthy products have dominated this field in the last decade and have been inhibited the widespread application of microfluidics technology. However, automated liquid handling stations and microfluidics do not have to be considered as mutually exclusive approached. We have recently introduced a hybrid fluidic platform combining an industrially established liquid handling station and a generic microfluidic interfacing module that allows probing a microfluidic system (such as an essay or a synthesis array) using the instrumentation provided by the liquid handling station. We term this technology "Microfluidic on Liquid Handling Stations (μF-on-LHS)" - a classical "best of both worlds"- approach that allows combining the highly evolved, automated and industry-proven LHS systems with any type of microfluidic assay. In this paper we show, to the best of our knowledge, the first droplet microfluidics application on an industrial LHS using the μF-on-LHS concept.

  6. Manufacturing methods and applications of membranes in microfluidics.

    PubMed

    Chen, Xueye; Shen, Jienan; Hu, Zengliang; Huo, Xuyao

    2016-12-01

    Applications of membranes in microfluidics solved many thorny problems for analytical chemistry and bioscience, so that the use of membranes in microfluidics has been a topic of growing interest. Many different examples have been reported, demonstrating the versatile use of membranes. This work reviews a lot of applications of membranes in microfluidics. Membranes in microfluidics for applications including chemical reagents detection, gas detection, drug screening, cell, protein, microreactor, electrokinetical fluid, pump and valve and fluid transport control and so on, have been analyzed and discussed. In addition, the definition and basic concepts of membranes are summed up. And the methods of manufacturing membranes in microfluidics are discussed. This paper will provide a helpful reference to researchers who want to study applications of membranes in microfluidics.

  7. Microfluidics as a tool for C. elegans research.

    PubMed

    San-Miguel, Adriana; Lu, Hang

    2013-09-24

    Microfluidics has emerged as a set of powerful tools that have greatly advanced some areas of biological research, including research using C. elegans. The use of microfluidics has enabled many experiments that are otherwise impossible with conventional methods. Today there are many examples that demonstrate the main advantages of using microfluidics for C. elegans research, achieving precise environmental conditions and facilitating worm handling. Examples range from behavioral analysis under precise chemical or odor stimulation, locomotion studies in well-defined structural surroundings, and even long-term culture on chip. Moreover, microfluidics has enabled coupling worm handling and imaging thus facilitating genetic screens, optogenetic studies, and laser ablation experiments. In this article, we review some of the applications of microfluidics for C. elegans research and provide guides for the design, fabrication, and use of microfluidic devices for C. elegans research studies.

  8. Optical systems for integration with microfluidics

    NASA Astrophysics Data System (ADS)

    Godin, Jessica M.

    My thesis research has focused on means of integrating optical systems into microfluidic chips, specifically for the creation of lab-on-a-chip flow cytometers. The benefits of microfluidics are perhaps most often applied to biological assays, which frequently employ optical readout of fluorescence or light scatter. By integrating the optical system onto the microfluidic chip, we can facilitate chip interfacing while ensuring optical alignment to a tiny sample. Integrated optical systems also offer the ability to collect light from a localized area, allowing for the collection of true angular light scatter (which carries much information about cells) and can furthermore significantly improve the signal to noise ratio (SNR) relative to simple fiber or waveguide based approaches to integrated light collection. This work explores both the unique challenges and advantages encountered when creating optical systems integrated with mold-replicated microfluidic devices. The first contribution presented is the demonstration of fluid-filled lenses integrated alongside microfluidic channels using a slab waveguiding structure. The use of fluid represents an important tradeoff between lens power and Fresnel reflections. The creation of a slab waveguiding structure is critically important to control light losses when utilizing lens systems for light collection. The second contribution in this work is the demonstration of a microfluidic chip emplying a number of lenses to perform both localized excitation of the samples as well as light collection from localized areas defined by a specific angular range. Sample coefficients of variation (CVs) ranged from 9-16% for a single bead population, far exceeding previously-published CVs of 25-35%. The last contribution is an atypical approach to optical systems based on the unique advantages offered by microfabricated architectures, namely small sizes and close proximities to the sample. Using only custom-shaped total internal reflection

  9. Integrated microfluidic platforms for investigating neuronal networks

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Joon

    This dissertation describes the development and application of integrated microfluidics-based assay platforms to study neuronal activities in the nervous system in-vitro. The assay platforms were fabricated using soft lithography and micro/nano fabrication including microfluidics, surface patterning, and nanomaterial synthesis. The use of integrated microfluidics-based assay platform allows culturing and manipulating many types of neuronal tissues in precisely controlled microenvironment. Furthermore, they provide organized multi-cellular in-vitro model, long-term monitoring with live cell imaging, and compatibility with molecular biology techniques and electrophysiology experiment. In this dissertation, the integrated microfluidics-based assay platforms are developed for investigation of neuronal activities such as local protein synthesis, impairment of axonal transport by chemical/physical variants, growth cone path finding under chemical/physical cues, and synaptic transmission in neuronal circuit. Chapter 1 describes the motivation, objectives, and scope for developing in-vitro platform to study various neuronal activities. Chapter 2 introduces microfluidic culture platform for biochemical assay with large-scale neuronal tissues that are utilized as model system in neuroscience research. Chapter 3 focuses on the investigation of impaired axonal transport by beta-Amyloid and oxidative stress. The platform allows to control neuronal processes and to quantify mitochondrial movement in various regions of axons away from applied drugs. Chapter 4 demonstrates the development of microfluidics-based growth cone turning assay to elucidate the mechanism underlying axon guidance under soluble factors and shear flow. Using this platform, the behaviors of growth cone of mammalian neurons are verified under the gradient of inhibitory molecules and also shear flow in well-controlled manner. In Chapter 5, I combine in-vitro multicellular model with microfabricated MEA

  10. Microfluidic production of polymeric functional microparticles

    NASA Astrophysics Data System (ADS)

    Jiang, Kunqiang

    This dissertation focuses on applying droplet-based microfluidics to fabricate new classes of polymeric microparticles with customized properties for various applications. The integration of microfluidic techniques with microparticle engineering allows for unprecedented control over particle size, shape, and functional properties. Specifically, three types of microparticles are discussed here: (1) Magnetic and fluorescent chitosan hydrogel microparticles and their in-situ assembly into higher-order microstructures; (2) Polydimethylsiloxane (PDMS) microbeads with phosphorescent properties for oxygen sensing; (3) Macroporous microparticles as biological immunosensors. First, we describe a microfluidic approach to generate monodisperse chitosan hydrogel microparticles that can be further connected in-situ into higher-order microstructures. Microparticles of the biopolymer chitosan are created continuously by contacting an aqueous solution of chitosan at a microfluidic T-junction with a stream of hexadecane containing a nonionic detergent, followed by downstream crosslinking of the generated droplets by a ternary flow of glutaraldehyde. Functional properties of the microparticles can be easily varied by introducing payloads such as magnetic nanoparticles and/or fluorescent dyes into the chitosan solution. We then use these prepared microparticles as "building blocks" and assemble them into high ordered microstructures, i.e. microchains with controlled geometry and flexibility. Next, we describe a new approach to produce monodisperse microbeads of PDMS using microfluidics. Using a flow-focusing configuration, a PDMS precursor solution is dispersed into microdroplets within an aqueous continuous phase. These droplets are collected and thermally cured off-chip into soft, solid microbeads. In addition, our technique allows for direct integration of payloads, such as an oxygen-sensitive porphyrin dye, into the PDMS microbeads. We then show that the resulting dye

  11. Advanced combinational microfluidic multiplexer for fuel cell reactors

    NASA Astrophysics Data System (ADS)

    Lee, D. W.; Doh, I.; Kim, Y.; Cho, Y.-H.

    2013-12-01

    An advanced combinational microfluidic multiplexer capable to address multiple fluidic channels for fuel cell reactors is proposed. Using only 4 control lines and two different levels of control pressures, the proposed multiplexer addresses up to 19 fluidic channels, at least two times larger than the previous microfluidic multiplexers. The present multiplexer providing high control efficiency and simple structure for channel addressing would be used in the application areas of the integrated microfluidic systems such as fuel cell reactors and dynamic pressure generators.

  12. Rapid Multi-Locus Sequence Typing Using Microfluidic Biochips

    DTIC Science & Technology

    2010-05-12

    Rapid Multi-Locus Sequence Typing Using Microfluidic Biochips Timothy D. Read1,2*, Rosemary S. Turingan3, Christopher Cook1, Heidi Giese3, Ulrich...sequencing of 6–8 housekeeping loci to assign unique sequence types. In this work we adapted MLST to a rapid microfluidics platform in order to...enhance speed and reduce laboratory labor time. Methodology/Principal Findings: Using two integrated microfluidic devices, DNA was purified from 100

  13. Digital microfluidic processing of mammalian embryos for vitrification.

    PubMed

    Pyne, Derek G; Liu, Jun; Abdelgawad, Mohamed; Sun, Yu

    2014-01-01

    Cryopreservation is a key technology in biology and clinical practice. This paper presents a digital microfluidic device that automates sample preparation for mammalian embryo vitrification. Individual micro droplets manipulated on the microfluidic device were used as micro-vessels to transport a single mouse embryo through a complete vitrification procedure. Advantages of this approach, compared to manual operation and channel-based microfluidic vitrification, include automated operation, cryoprotectant concentration gradient generation, and feasibility of loading and retrieval of embryos.

  14. Elastomeric microfluidic diode and rectifier work with Newtonian fluids.

    PubMed

    Liu, John; Chen, Yan; Taylor, Clive R; Scherer, Axel; Kartalov, Emil P

    2009-12-01

    We report on two microfluidic elastomeric autoregulatory devices-a diode and a rectifier. They exhibit physically interesting and complex nonlinear behaviors (saturation, bias-dependent resistance, and rectification) with a Newtonian fluid. Due to their autoregulatory properties, they operate without active external control. As a result, they enable increased microfluidic device density and overall system miniaturization. The demonstrated diode and rectifier would also be useful components in future microfluidic logic circuitry.

  15. Virtual microfluidics for digital quantification and single-cell sequencing.

    PubMed

    Xu, Liyi; Brito, Ilana L; Alm, Eric J; Blainey, Paul C

    2016-09-01

    We have developed hydrogel-based virtual microfluidics as a simple and robust alternative to complex engineered microfluidic systems for the compartmentalization of nucleic acid amplification reactions. We applied in-gel digital multiple displacement amplification (dMDA) to purified DNA templates, cultured bacterial cells and human microbiome samples in the virtual microfluidics system, and demonstrated whole-genome sequencing of single-cell MDA products with excellent coverage uniformity and markedly reduced chimerism compared with products of liquid MDA reactions.

  16. Expanding imaging capabilities for microfluidics: applicability of darkfield internal reflection illumination (DIRI) to observations in microfluidics.

    PubMed

    Kawano, Yoshihiro; Otsuka, Chino; Sanzo, James; Higgins, Christopher; Nirei, Tatsuo; Schilling, Tobias; Ishikawa, Takuji

    2015-01-01

    Microfluidics is used increasingly for engineering and biomedical applications due to recent advances in microfabrication technologies. Visualization of bubbles, tracer particles, and cells in a microfluidic device is important for designing a device and analyzing results. However, with conventional methods, it is difficult to observe the channel geometry and such particles simultaneously. To overcome this limitation, we developed a Darkfield Internal Reflection Illumination (DIRI) system that improved the drawbacks of a conventional darkfield illuminator. This study was performed to investigate its utility in the field of microfluidics. The results showed that the developed system could clearly visualize both microbubbles and the channel wall by utilizing brightfield and DIRI illumination simultaneously. The methodology is useful not only for static phenomena, such as clogging, but also for dynamic phenomena, such as the detection of bubbles flowing in a channel. The system was also applied to simultaneous fluorescence and DIRI imaging. Fluorescent tracer beads and channel walls were observed clearly, which may be an advantage for future microparticle image velocimetry (μPIV) analysis, especially near a wall. Two types of cell stained with different colors, and the channel wall, can be recognized using the combined confocal and DIRI system. Whole-slide imaging was also conducted successfully using this system. The tiling function significantly expands the observing area of microfluidics. The developed system will be useful for a wide variety of engineering and biomedical applications for the growing field of microfluidics.

  17. Expanding Imaging Capabilities for Microfluidics: Applicability of Darkfield Internal Reflection Illumination (DIRI) to Observations in Microfluidics

    PubMed Central

    Kawano, Yoshihiro; Otsuka, Chino; Sanzo, James; Higgins, Christopher; Nirei, Tatsuo; Schilling, Tobias; Ishikawa, Takuji

    2015-01-01

    Microfluidics is used increasingly for engineering and biomedical applications due to recent advances in microfabrication technologies. Visualization of bubbles, tracer particles, and cells in a microfluidic device is important for designing a device and analyzing results. However, with conventional methods, it is difficult to observe the channel geometry and such particles simultaneously. To overcome this limitation, we developed a Darkfield Internal Reflection Illumination (DIRI) system that improved the drawbacks of a conventional darkfield illuminator. This study was performed to investigate its utility in the field of microfluidics. The results showed that the developed system could clearly visualize both microbubbles and the channel wall by utilizing brightfield and DIRI illumination simultaneously. The methodology is useful not only for static phenomena, such as clogging, but also for dynamic phenomena, such as the detection of bubbles flowing in a channel. The system was also applied to simultaneous fluorescence and DIRI imaging. Fluorescent tracer beads and channel walls were observed clearly, which may be an advantage for future microparticle image velocimetry (μPIV) analysis, especially near a wall. Two types of cell stained with different colors, and the channel wall, can be recognized using the combined confocal and DIRI system. Whole-slide imaging was also conducted successfully using this system. The tiling function significantly expands the observing area of microfluidics. The developed system will be useful for a wide variety of engineering and biomedical applications for the growing field of microfluidics. PMID:25748425

  18. A microfluidic gas damper for stabilizing gas pressure in portable microfluidic systems.

    PubMed

    Zhang, Xinjie; Zhu, Zhixian; Xiang, Nan; Ni, Zhonghua

    2016-09-01

    Pressure fluctuations, which invariably occur in microfluidic systems, usually result in the unstable fluid delivery in microfluidic channels. In this work, a novel microfluidic gas damper is proposed and applied for providing stable fluid-driving pressures. Then, a pressure-driven flow setup is constructed to investigate the gas damping characteristics of our damper. Since the pressure-driven flow setup functions as a resistor-capacitor low-pass filter, the damper significantly decreases the amplitude of the input pressures via self-regulating its pneumatic resistance. In addition, the gas volume and pressure frequency are found to have direct effects on the pressure fluctuations. The practical application of the gas damper is examined through a portable pressure-driven system, which consists of an air blower, a gas damper, and a centrifuge tube. By periodically pressing the air blower, precise flow rates with low throughput (∼9.64 μl min(-1)) and high throughput (∼1367.15 μl min(-1)) are successfully delivered. Future integration of our microfluidic gas damper with miniaturized pressure generators (e.g., peristaltic or pressure-driven micropumps) can fully exploit the potential of the gas damper for low-cost, portable microfluidics where stable pressures or flow rates are required.

  19. Soft tubular microfluidics for 2D and 3D applications.

    PubMed

    Xi, Wang; Kong, Fang; Yeo, Joo Chuan; Yu, Longteng; Sonam, Surabhi; Dao, Ming; Gong, Xiaobo; Lim, Chwee Teck

    2017-09-18

    Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs.

  20. Fundamentals and applications of inertial microfluidics: a review.

    PubMed

    Zhang, Jun; Yan, Sheng; Yuan, Dan; Alici, Gursel; Nguyen, Nam-Trung; Ebrahimi Warkiani, Majid; Li, Weihua

    2016-01-07

    In the last decade, inertial microfluidics has attracted significant attention and a wide variety of channel designs that focus, concentrate and separate particles and fluids have been demonstrated. In contrast to conventional microfluidic technologies, where fluid inertia is negligible and flow remains almost within the Stokes flow region with very low Reynolds number (Re ≪ 1), inertial microfluidics works in the intermediate Reynolds number range (~1 < Re < ~100) between Stokes and turbulent regimes. In this intermediate range, both inertia and fluid viscosity are finite and bring about several intriguing effects that form the basis of inertial microfluidics including (i) inertial migration and (ii) secondary flow. Due to the superior features of high-throughput, simplicity, precise manipulation and low cost, inertial microfluidics is a very promising candidate for cellular sample processing, especially for samples with low abundant targets. In this review, we first discuss the fundamental kinematics of particles in microchannels to familiarise readers with the mechanisms and underlying physics in inertial microfluidic systems. We then present a comprehensive review of recent developments and key applications of inertial microfluidic systems according to their microchannel structures. Finally, we discuss the perspective of employing fluid inertia in microfluidics for particle manipulation. Due to the superior benefits of inertial microfluidics, this promising technology will still be an attractive topic in the near future, with more novel designs and further applications in biology, medicine and industry on the horizon.

  1. Direct synthesis and integration of functional nanostructures in microfluidic devices.

    PubMed

    Kim, Jung; Li, Zhiyong; Park, Inkyu

    2011-06-07

    Integration of functional nanostructures within a microfluidic device can synergize the advantages of both unique properties of nanomaterials and diverse functionalities of microfluidics. In this paper, we report a novel and simple method for the in situ synthesis and integration of ZnO nanowires by controlled hydrothermal reaction within microfluidic devices. By modulating synthesis parameters such as the seed preparation, synthesis time, and heating locations, the morphology and location of synthesized nanowires can be easily controlled. The applications of such nanostructure-integrated microfluidics for particle trapping and chemiresistive pH sensing were demonstrated.

  2. Microfluidic-Based Robotic Sampling System for Radioactive Solutions

    SciTech Connect

    Jack D. Law; Julia L. Tripp; Tara E. Smith; Veronica J. Rutledge; Troy G. Garn; John Svoboda; Larry Macaluso

    2014-02-01

    A novel microfluidic based robotic sampling system has been developed for sampling and analysis of liquid solutions in nuclear processes. This system couples the use of a microfluidic sample chip with a robotic system designed to allow remote, automated sampling of process solutions in-cell and facilitates direct coupling of the microfluidic sample chip with analytical instrumentation. This system provides the capability for near real time analysis, reduces analytical waste, and minimizes the potential for personnel exposure associated with traditional sampling methods. A prototype sampling system was designed, built and tested. System testing demonstrated operability of the microfluidic based sample system and identified system modifications to optimize performance.

  3. Microfabrication and applications of opto-microfluidic sensors.

    PubMed

    Zhang, Daiying; Men, Liqiu; Chen, Qiying

    2011-01-01

    A review of research activities on opto-microfluidic sensors carried out by the research groups in Canada is presented. After a brief introduction of this exciting research field, detailed discussion is focused on different techniques for the fabrication of opto-microfluidic sensors, and various applications of these devices for bioanalysis, chemical detection, and optical measurement. Our current research on femtosecond laser microfabrication of optofluidic devices is introduced and some experimental results are elaborated. The research on opto-microfluidics provides highly sensitive opto-microfluidic sensors for practical applications with significant advantages of portability, efficiency, sensitivity, versatility, and low cost.

  4. Microfluidics at the crossroad with point-of-care diagnostics.

    PubMed

    Linder, Vincent

    2007-12-01

    Microfluidic devices have been long advertised as a key candidate to revolutionize point-of-care (POC) diagnostics. Recent advances in this field have addressed some of the most important issues, which limited the deployment of microfluidic devices outside of clinical laboratories. This contribution discusses important technical and economic constraints that microfluidic products must overcome to be adopted by healthcare systems. Two sets of technologies are described which comply with the constraints of the POC environment. As such, these technologies illustrate a possible route for the development of microfluidic devices, which could fulfil the needs of clinicians for disease staging and monitoring.

  5. Microfabrication and Applications of Opto-Microfluidic Sensors

    PubMed Central

    Zhang, Daiying; Men, Liqiu; Chen, Qiying

    2011-01-01

    A review of research activities on opto-microfluidic sensors carried out by the research groups in Canada is presented. After a brief introduction of this exciting research field, detailed discussion is focused on different techniques for the fabrication of opto-microfluidic sensors, and various applications of these devices for bioanalysis, chemical detection, and optical measurement. Our current research on femtosecond laser microfabrication of optofluidic devices is introduced and some experimental results are elaborated. The research on opto-microfluidics provides highly sensitive opto-microfluidic sensors for practical applications with significant advantages of portability, efficiency, sensitivity, versatility, and low cost. PMID:22163904

  6. Flexible packaging and integration of CMOS IC with elastomeric microfluidics

    NASA Astrophysics Data System (ADS)

    Zhang, Bowei; Dong, Quan; Korman, Can E.; Li, Zhenyu; Zaghloul, Mona E.

    2013-05-01

    We have demonstrated flexible packaging and integration of CMOS IC chips with PDMS microfluidics. Microfluidic channels are used to deliver both liquid samples and liquid metals to the CMOS die. The liquid metals are used to realize electrical interconnects to the CMOS chip. As a demonstration we integrated a CMOS magnetic sensor die and matched PDMS microfluidic channels in a flexible package. The packaged system is fully functional under 3cm bending radius. The flexible integration of CMOS ICs with microfluidics enables previously unavailable flexible CMOS electronic systems with fluidic manipulation capabilities, which hold great potential for wearable health monitoring, point-of-care diagnostics and environmental sensing.

  7. Fundamentals of microfluidic cell culture in controlled microenvironments†

    PubMed Central

    Young, Edmond W. K.; Beebe, David J.

    2010-01-01

    Microfluidics has the potential to revolutionize the way we approach cell biology research. The dimensions of microfluidic channels are well suited to the physical scale of biological cells, and the many advantages of microfluidics make it an attractive platform for new techniques in biology. One of the key benefits of microfluidics for basic biology is the ability to control parameters of the cell microenvironment at relevant length and time scales. Considerable progress has been made in the design and use of novel microfluidic devices for culturing cells and for subsequent treatment and analysis. With the recent pace of scientific discovery, it is becoming increasingly important to evaluate existing tools and techniques, and to synthesize fundamental concepts that would further improve the efficiency of biological research at the microscale. This tutorial review integrates fundamental principles from cell biology and local microenvironments with cell culture techniques and concepts in microfluidics. Culturing cells in microscale environments requires knowledge of multiple disciplines including physics, biochemistry, and engineering. We discuss basic concepts related to the physical and biochemical microenvironments of the cell, physicochemical properties of that microenvironment, cell culture techniques, and practical knowledge of microfluidic device design and operation. We also discuss the most recent advances in microfluidic cell culture and their implications on the future of the field. The goal is to guide new and interested researchers to the important areas and challenges facing the scientific community as we strive toward full integration of microfluidics with biology. PMID:20179823

  8. Microfluidic methods for non-viral gene delivery.

    PubMed

    Lai, Wing-Fu

    2015-01-01

    Microfluidics is a compelling technology that shows considerable promise in applications ranging from gene expression profiling to cell-based assays. Owing to its capacity to enable generation of single droplets and multiple droplet arrays with precisely controlled composition and a narrow size distribution, recently microfluidics has been exploited for delivery of genes. This article provides an overview of recent advances in microfluidic gene delivery, and speculates the prospects for further research. The objectives of this article are to illustrate the potential roles played by microfluidics in gene delivery research, and to shed new light on strategies to enhance the efficiency of gene therapy.

  9. Cell-based bioassays in microfluidic systems

    NASA Astrophysics Data System (ADS)

    Itle, Laura J.; Zguris, Jeanna C.; Pishko, Michael V.

    2004-12-01

    The development of cell-based bioassays for high throughput drug screening or the sensing of biotoxins is contingent on the development of whole cell sensors for specific changes in intracellular conditions and the integration of those systems into sample delivery devices. Here we show the feasibility of using a 5-(and-6)-carboxy SNARF-1, acetoxymethyl ester, acetate, a fluorescent dye capable of responding to changes in intracellular pH, as a detection method for the bacterial endotoxin, lipopolysaccharide. We used photolithography to entrap cells with this dye within poly(ethylene) glyocol diacrylate hydrogels in microfluidic channels. After 18 hours of exposure to lipopolysaccharide, we were able to see visible changes in the fluorescent pattern. This work shows the feasibility of using whole cell based biosensors within microfluidic networks to detect cellular changes in response to exogenous agents.

  10. Tuning Fluidic Resistance via Liquid Crystal Microfluidics

    PubMed Central

    Sengupta, Anupam

    2013-01-01

    Flow of molecularly ordered fluids, like liquid crystals, is inherently coupled with the average local orientation of the molecules, or the director. The anisotropic coupling—typically absent in isotropic fluids—bestows unique functionalities to the flowing matrix. In this work, we harness this anisotropy to pattern different pathways to tunable fluidic resistance within microfluidic devices. We use a nematic liquid crystalline material flowing in microchannels to demonstrate passive and active modulation of the flow resistance. While appropriate surface anchoring conditions—which imprint distinct fluidic resistances within microchannels under similar hydrodynamic parameters—act as passive cues, an external field, e.g., temperature, is used to actively modulate the flow resistance in the microfluidic device. We apply this simple concept to fabricate basic fluidic circuits, which can be hierarchically extended to create complex resistance networks, without any additional design or morphological patterning of the microchannels. PMID:24256819

  11. Microfluidics Expanding the Frontiers of Microbial Ecology

    PubMed Central

    Rusconi, Roberto; Garren, Melissa; Stocker, Roman

    2014-01-01

    The ability afforded by microfluidics to observe the behaviors of microbes in highly controlled and confined microenvironments, across scales from a single cell to mixed communities, has significantly contributed to expand the frontiers of microbial ecology over the last decade. Spatially and temporally varying distributions of organisms and chemical cues that mimic natural microbial habitats can now be established by exploiting physics at the micrometer scale and by incorporating structures with specific geometries and materials. Here we review applications of microfluidics that have resulted in highly insightful discoveries on fundamental aspects of microbial life, ranging from growth and sensing to cell-cell interactions and population dynamics. We anticipate that this flexible, multidisciplinary technology will continue to facilitate discoveries regarding the ecology of microorganisms and help uncover strategies to control phenomena such as biofilm formation and antibiotic resistance. PMID:24773019

  12. Microfluidic devices for terahertz spectroscopy of biomolecules.

    PubMed

    George, Paul A; Hui, Wallace; Rana, Farhan; Hawkins, Benjamin G; Smith, A Ezekiel; Kirby, Brian J

    2008-02-04

    We demonstrate microfluidic devices for terahertz spectroscopy of biomolecules in aqueous solutions. The devices are fabricated out of a plastic material that is both mechanically rigid and optically transparent with near-zero dispersion in the terahertz frequency range. Using a lowpower terahertz time-domain spectrometer, we experimentally measure the absorption spectra of the vibrational modes of bovine serum albumin from 0.5 - 2.5 THz and find good agreement with previously reported data obtained using large-volume solutions and a high-power free-electron laser. Our results demonstrate the feasibility of performing high sensitivity terahertz spectroscopy of biomolecules in aqueous solutions with detectable molecular quantities as small as 10 picomoles using microfluidic devices.

  13. Microfluidic manipulation with artificial/bioinspired cilia.

    PubMed

    den Toonder, Jaap M J; Onck, Patrick R

    2013-02-01

    A recent development, inspired by nature, is the use of 'artificial cilia' to create pumping and/or mixing in microfluidic devices. Cilia are small hairs that can be found in biology and are used for (fluid) actuation and sensing. Microscopic actuators resembling cilia, actuated to move under the influence of various stimuli such as electrostatic field, magnetic field, and even light, have been developed by a number of groups and shown to be capable of generating flow and mixing in microfluidic environments. The research on artificial cilia started about a decade ago and is rapidly expanding. In addition to being relevant for potential application in lab-on-a-chip devices, the work on artificial cilia forms a beautiful example of how a biological system can form the successful basis for both scientific research and technological applications. In this review, we will give an overview of the most important approaches in this exciting field. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Microfluidic Electroporation for Cellular Analysis and Delivery

    PubMed Central

    Geng, Tao

    2013-01-01

    Electroporation is a simple yet powerful technique for breaching cell membrane barrier. The applications of electroporation can be generally divided into two categories: the release of intracellular proteins, nucleic acids and other metabolites for analysis and the delivery of exogenous reagents such as genes, drugs and nanoparticles with therapeutic purposes or for cellular manipulation. In this review, we go over the basic physics associated with cell electroporation and highlight recent technological advances on microfluidic platforms for conducting electroporation. Within the context of its working mechanism, we summarize the accumulated knowledge on how the parameters of electroporation affect its performance for various tasks. We discuss various strategies and designs for conducting electroporation at microscale and then focus on analysis of intracellular contents and delivery of exogenous agents as two major applications of the technique. Finally, an outlook for future applications of microfluidic electroporation in increasingly diverse utilities is presented. PMID:23917998

  15. Optimization of monolithic columns for microfluidic devices

    NASA Astrophysics Data System (ADS)

    Pagaduan, Jayson V.; Yang, Weichun; Woolley, Adam T.

    2011-06-01

    Monolithic columns offer advantages as solid-phase extractors because they offer high surface area that can be tailored to a specific function, fast mass transport, and ease of fabrication. Porous glycidyl methacrylate-ethylene glycol dimethacrylate monoliths were polymerized in-situ in microfluidic devices, without pre-treatment of the poly(methyl methacrylate) channel surface. Cyclohexanol, 1-dodecanol and Tween 20 were used to control the pore size of the monoliths. The epoxy groups on the monolith surface can be utilized to immobilize target-specific probes such as antibodies, aptamers, or DNA for biomarker detection. Microfluidic devices integrated with solid-phase extractors should be useful for point-of-care diagnostics in detecting specific biomarkers from complex biological fluids.

  16. Stem cell niche engineering through droplet microfluidics.

    PubMed

    Allazetta, Simone; Lutolf, Matthias P

    2015-12-01

    Stem cells reside in complex niches in which their behaviour is tightly regulated by various biochemical and biophysical signals. In order to unveil some of the crucial stem cell-niche interactions and expedite the implementation of stem cells in clinical and pharmaceutical applications, in vitro methodologies are being developed to reconstruct key features of stem cell niches. Recently, droplet-based microfluidics has emerged as a promising strategy to build stem cell niche models in a miniaturized and highly precise fashion. This review highlights current advances in using droplet microfluidics in stem cell biology. We also discuss recent efforts in which microgel technology has been interfaced with high-throughput analyses to engender screening paradigms with an unparalleled potential for basic and applied biological studies.

  17. Living anionic polymerization using a microfluidic reactor

    SciTech Connect

    Iida, Kazunori; Chastek, Thomas Q.; Beers, Kathryn L.; Cavicchi, Kevin A.; Chun, Jaehun; Fasolka, Michael J.

    2009-02-01

    Living anionic polymerizations were conducted within aluminum-polyimide microfluidic devices. Polymerizations of styrene in cyclohexane were carried out at various conditions, including elevated temperature (60 °C) and high monomer concentration (42%, by volume). The reactions were safely maintained at a controlled temperature at all points in the reactor. Conducting these reactions in a batch reactor results in uncontrolled heat generation with potentially dangerous rises in pressure. Moreover, the microfluidic nature of these devices allows for flexible 2D designing of the flow channel. Four flow designs were examined (straight, periodically pinched, obtuse zigzag, and acute zigzag channels). The ability to use the channel pattern to increase the level of mixing throughout the reactor was evaluated. When moderately high molecular mass polymers with increased viscosity were made, the patterned channels produced polymers with narrower PDI, indicating that passive mixing arising from the channel design is improving the reaction conditions.

  18. Living anionic polymerization using a microfluidic reactor.

    PubMed

    Iida, Kazunori; Chastek, Thomas Q; Beers, Kathryn L; Cavicchi, Kevin A; Chun, Jaehun; Fasolka, Michael J

    2009-01-21

    Living anionic polymerizations were conducted within aluminum-polyimide microfluidic devices. Polymerizations of styrene in cyclohexane were carried out at various conditions, including elevated temperature (60 degrees C) and high monomer concentration (42%, by volume). The reactions were safely maintained at a controlled temperature at all points in the reactor. Conducting these reactions in a batch reactor results in uncontrolled heat generation with potentially dangerous rises in pressure. Moreover, the microfluidic nature of these devices allows for flexible 2D designing of the flow channel. Four flow designs were examined (straight, periodically pinched, obtuse zigzag, and acute zigzag channels). The ability to use the channel pattern to increase the level of mixing throughout the reactor was evaluated. When moderately high molecular mass polymers with increased viscosity were made, the patterned channels produced polymers with narrower PDI, indicating that passive mixing arising from the channel design is improving the reaction conditions.

  19. Magnetic Tethering of Microswimmers in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Chawan, Aschvin; Jana, Saikat; Ghosh, Suvojit; Jung, Sunghwan; Puri, Ishwar

    2013-03-01

    Exercising control over animal locomotion is well known in the macro world. In the micro-scale world, such methods require more sophistication. We magnetize Paramecium multimicronucleatum by internalization of magnetite nanoparticles coated with bovine serum albumin (BSA). This enables control of their motion in a microfluidic device using a magnetic field. Miniature permanent magnets embedded within the device are used to tether the magnetized organisms to specific locations along a micro-channel. Ciliary beatings of the microswimmer generate shear flows nearby. We apply this setup to enhance cross-stream mixing in a microfluidic device by supplementing molecular diffusion. The device is similar to an active micromixer but requires no external power sources or artificial actuators. We optically characterize the effectiveness of the mechanism in a variety of flow situations.

  20. Evaluation of Manufacturing Processes for Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Laura Jáuregui, Ana; Siller, Héctor R.; Rodriguez, Ciro A.; Elías-Zúñiga, Alex

    2009-11-01

    In this paper several micro-mechanical manufacturing technologies were studied in order to characterize their performance for making miniaturized geometries known as micro-channels, which are the main geometric features of micro-fluidic devices. The technologies used were Micro-End Milling, Wire Electro Discharge Machiningesol Sandblasting and Abrasive Water Jet. Their capabilities were compared with Lithography capabilities, which is the conventional process for micro-channel manufacturing. The evaluation consists in a comprehensive study of surface quality and topography, made with the help of advanced contact and non-contact devices over each prototype made by each technology. Also economical considerations have been taken into account in order to choose the most appropriate manufacturing process for the prototyping of micro-fluidic devices. The results show that Micro-End Milling process can compete with Lithography, in terms of achieving acceptable levels of product quality and economics.

  1. Microfluidic route to generation of celloidosomes

    NASA Astrophysics Data System (ADS)

    Gundabala, Venkata; Martinez-Escobar, Sergio; Marquez, Samantha; Marquez, Manuel; Fernandez-Nieves, Alberto; Microfluidics Team

    2013-03-01

    Here we present a microfluidic method to generate alginate particles with a liquid core and a shell with yeast cells encapsulated in it. This particular class of celloidosomes with cells embedded into the thin shell region at the surface, allows for easy access of oxygen to the cells improving their viability. The liquid core opens the possibility of encapsulating multiple types of cells into the core and the shell. The microfluidic method involving double emulsion technology employed here ensures robust control over the size of the particles and density of the encapsulated cells. The study has shown that the stability of the inner core is very much dependent on the viscosity of the oil used for collecting the emulsion.

  2. A Microfluidic Chip for ICPMS Sample Introduction

    PubMed Central

    Verboket, Pascal E.; Borovinskaya, Olga; Meyer, Nicole; Günther, Detlef; Dittrich, Petra S.

    2015-01-01

    This protocol discusses the fabrication and usage of a disposable low cost microfluidic chip as sample introduction system for inductively coupled plasma mass spectrometry (ICPMS). The chip produces monodisperse aqueous sample droplets in perfluorohexane (PFH). Size and frequency of the aqueous droplets can be varied in the range of 40 to 60 µm and from 90 to 7,000 Hz, respectively. The droplets are ejected from the chip with a second flow of PFH and remain intact during the ejection. A custom-built desolvation system removes the PFH and transports the droplets into the ICPMS. Here, very stable signals with a narrow intensity distribution can be measured, showing the monodispersity of the droplets. We show that the introduction system can be used to quantitatively determine iron in single bovine red blood cells. In the future, the capabilities of the introduction device can easily be extended by the integration of additional microfluidic modules. PMID:25867751

  3. Research highlights: microfluidics meets big data.

    PubMed

    Tseng, Peter; Weaver, Westbrook M; Masaeli, Mahdokht; Owsley, Keegan; Di Carlo, Dino

    2014-03-07

    In this issue we highlight a collection of recent work in which microfluidic parallelization and automation have been employed to address the increasing need for large amounts of quantitative data concerning cellular function--from correlating microRNA levels to protein expression, increasing the throughput and reducing the noise when studying protein dynamics in single-cells, and understanding how signal dynamics encodes information. The painstaking dissection of cellular pathways one protein at a time appears to be coming to an end, leading to more rapid discoveries which will inevitably translate to better cellular control--in producing useful gene products and treating disease at the individual cell level. From these studies it is also clear that development of large scale mutant or fusion libraries, automation of microscopy, image analysis, and data extraction will be key components as microfluidics contributes its strengths to aid systems biology moving forward.

  4. Microfluidic Wheatstone bridge for rapid sample analysis.

    PubMed

    Tanyeri, Melikhan; Ranka, Mikhil; Sittipolkul, Natawan; Schroeder, Charles M

    2011-12-21

    We developed a microfluidic analogue of the classic Wheatstone bridge circuit for automated, real-time sampling of solutions in a flow-through device format. We demonstrate precise control of flow rate and flow direction in the "bridge" microchannel using an on-chip membrane valve, which functions as an integrated "variable resistor". We implement an automated feedback control mechanism in order to dynamically adjust valve opening, thereby manipulating the pressure drop across the bridge and precisely controlling fluid flow in the bridge channel. At a critical valve opening, the flow in the bridge channel can be completely stopped by balancing the flow resistances in the Wheatstone bridge device, which facilitates rapid, on-demand fluid sampling in the bridge channel. In this article, we present the underlying mechanism for device operation and report key design parameters that determine device performance. Overall, the microfluidic Wheatstone bridge represents a new and versatile method for on-chip flow control and sample manipulation.

  5. Microfluidic device for unidirectional axon growth

    NASA Astrophysics Data System (ADS)

    Malishev, E.; Pimashkin, A.; Gladkov, A.; Pigareva, Y.; Bukatin, A.; Kazantsev, V.; Mukhina, I.; Dubina, M.

    2015-11-01

    In order to better understand the communication and connectivity development of neuron networks, we designed microfluidic devices with several chambers for growing dissociated neuronal cultures from mice fetal hippocampus (E18). The chambers were connected with microchannels providing unidirectional axonal growth between “Source” and “Target” neural sub-networks. Experiments were performed in a hippocampal cultures plated in a poly-dimethylsiloxane (PDMS) microfluidic chip, aligned with a 60 microelectrode array (MEA). Axonal growth through microchannels was observed with brightfield, phase-contrast and fluorescence microscopy, and after 7 days in vitro electrical activity was recorded. Visual inspection and spike propagation analysis showed the predominant axonal growth in microchannels in a direction from “Source” to “Target”.

  6. Chemical control of Vorticella bioactuator using microfluidics.

    PubMed

    Nagai, Moeto; Ryu, Sangjin; Thorsen, Todd; Matsudaira, Paul; Fujita, Hiroyuki

    2010-06-21

    In this report, we demonstrate a microfluidic platform to control the stalk contraction and extension of Vorticella convallaria by changing concentration of Ca2+ with pneumatically-actuated elastomeric microvalves. Habitation, extraction and control of V. convallaria were carried out in a PDMS-based microfluidic device. By treating the cells with the permeant saponin, external actuation of cell-anchoring stalk between an extended and contracted state was achieved by cyclic exposure of the cells to a Ca2+ buffer (10(-6) M) and a rinse buffer containing EGTA as a chelation agent. When solutions were switched, the stalk contracted and extended responding to the ambient Ca2+ concentration change. The length of the stalk changed between 20 and 60 microm, resulting in a working distance of about 40 microm.

  7. 3D Printed Multimaterial Microfluidic Valve

    PubMed Central

    Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  8. Preparative Microfluidic Electrosynthesis of Drug Metabolites

    PubMed Central

    2013-01-01

    In vivo, a drug molecule undergoes its first chemical transformation within the liver via CYP450-catalyzed oxidation. The chemical outcome of the first pass hepatic oxidation is key information to any drug development process. Electrochemistry can be used to simulate CYP450 oxidation, yet it is often confined to the analytical scale, hampering product isolation and full characterization. In an effort to replicate hepatic oxidations, while retaining high throughput at the preparative scale, microfluidic technology and electrochemistry are combined in this study by using a microfluidic electrochemical cell. Several commercial drugs were subjected to continuous-flow electrolysis. They were chosen for their various chemical reactivity: their metabolites in vivo are generated via aromatic hydroxylation, alkyl oxidation, glutathione conjugation, or sulfoxidation. It is demonstrated that such metabolites can be synthesized by flow electrolysis at the 10 to 100 mg scale, and the purified products are fully characterized. PMID:24900614

  9. Microfluidic systems for electrochemical and biological studies

    SciTech Connect

    Ackler, H., LLNL

    1998-05-01

    Microfluidic devices with microelectrodes have the potential to enable studies of phenomena at size scales where behavior may be dominated by different mechanisms than at macroscales. Through our work developing microfluidic devices for dielectrophoretic separation and sensing of cells and particles, we have fabricated devices from which general or more specialized research devices may be derived. Fluid channels from 80 {micro}m wide X 20 {micro}m deep to 1 mm wide to 200 {micro}m deep have been fabricated in glass, with lithographically patterned electrodes from 10 to 80 {micro}m wide on one or both sides on the channels and over topographies tens of microns in heights. the devices are designed to easily interface to electronic and fluidic interconnect packages that permit reuse of devices, rather than one-time use, crude glue-based methods. Such devices may be useful for many applications of interest to the electrochemical and biological community.

  10. Microfluidics expanding the frontiers of microbial ecology.

    PubMed

    Rusconi, Roberto; Garren, Melissa; Stocker, Roman

    2014-01-01

    Microfluidics has significantly contributed to the expansion of the frontiers of microbial ecology over the past decade by allowing researchers to observe the behaviors of microbes in highly controlled microenvironments, across scales from a single cell to mixed communities. Spatially and temporally varying distributions of organisms and chemical cues that mimic natural microbial habitats can now be established by exploiting physics at the micrometer scale and by incorporating structures with specific geometries and materials. In this article, we review applications of microfluidics that have resulted in insightful discoveries on fundamental aspects of microbial life, ranging from growth and sensing to cell-cell interactions and population dynamics. We anticipate that this flexible multidisciplinary technology will continue to facilitate discoveries regarding the ecology of microorganisms and help uncover strategies to control microbial processes such as biofilm formation and antibiotic resistance.

  11. Optical trapping for complex fluid microfluidics

    NASA Astrophysics Data System (ADS)

    Vestad, Tor; Oakey, John; Marr, David W. M.

    2004-10-01

    Many proposed applications of microfluidics involve the manipulation of complex fluid mixtures such as blood or bacterial suspensions. To sort and handle the constituent particles within these suspensions, we have developed a miniaturized automated cell sorter using optical traps. This microfluidic cell sorter offers the potential to perform chip-top microbiology more rapidly and with less associated hardware and preparation time than other techniques currently available. To realize the potential of this technology in practical clinical and consumer lab-on-a-chip devices however, microscale control of not only particulates but also the fluid phase must be achieved. To address this, we have developed a mechanical fluid control scheme that integrates well with our optical separations approach. We demonstrate here a combined technique, one that employs both mechanical actuation and optical trapping for the precise control of complex suspensions. This approach enables both cell and particle separations as well as the subsequent fluid control required for the completion of complex analyses.

  12. Microfluidic rheology of non-Newtonian liquids.

    PubMed

    Girardo, Salvatore; Cingolani, Roberto; Pisignano, Dario

    2007-08-01

    We investigate the rheological properties of a non-Newtonian glass-former liquid within lithographically defined microchannels in the range of temperatures above the vitrification region. The non-Newtonian behavior of the fluid, as evidenced by rotational rheology, is well described by a power law dependence of the viscosity on the shear rate. Taking into account such non-Newtonian character in the equations for the microfluidic motion, we relate the penetration dynamics into capillaries with the liquid rheological properties. The temperature dependence of the viscosity, determined over 1 order of magnitude in the temperature range 286-333 K and for shear rates between 0.07 and 1 s-1, can be described by a Vogel-Fulcher-Tamman law, consistent with the fragile nature of the investigated compound. Microfluidics is a promising analytical approach for the investigation of the rheology of non-Newtonian fluids within confined microenvironments.

  13. Femtolitre chemistry assisted by microfluidic pen lithography.

    PubMed

    Carbonell, Carlos; Stylianou, Kyriakos C; Hernando, Jordi; Evangelio, Emi; Barnett, Sarah A; Nettikadan, Saju; Imaz, Inhar; Maspoch, Daniel

    2013-01-01

    Chemical reactions at ultrasmall volumes are becoming increasingly necessary to study biological processes, to synthesize homogenous nanostructures and to perform high-throughput assays and combinatorial screening. Here we show that a femtolitre reaction can be realized on a surface by handling and mixing femtolitre volumes of reagents using a microfluidic stylus. This method, named microfluidic pen lithography, allows mixing reagents in isolated femtolitre droplets that can be used as reactors to conduct independent reactions and crystallization processes. This strategy overcomes the high-throughput limitations of vesicles and micelles and obviates the usually costly step of fabricating microdevices and wells. We anticipate that this process enables performing distinct reactions (acid-base, enzymatic recognition and metal-organic framework synthesis), creating multiplexed nanoscale metal-organic framework arrays, and screening combinatorial reactions to evaluate the crystallization of novel peptide-based materials.

  14. Femtolitre chemistry assisted by microfluidic pen lithography

    PubMed Central

    Carbonell, Carlos; Stylianou, Kyriakos C.; Hernando, Jordi; Evangelio, Emi; Barnett, Sarah A.; Nettikadan, Saju; Imaz, Inhar; Maspoch, Daniel

    2013-01-01

    Chemical reactions at ultrasmall volumes are becoming increasingly necessary to study biological processes, to synthesize homogenous nanostructures and to perform high-throughput assays and combinatorial screening. Here we show that a femtolitre reaction can be realized on a surface by handling and mixing femtolitre volumes of reagents using a microfluidic stylus. This method, named microfluidic pen lithography, allows mixing reagents in isolated femtolitre droplets that can be used as reactors to conduct independent reactions and crystallization processes. This strategy overcomes the high-throughput limitations of vesicles and micelles and obviates the usually costly step of fabricating microdevices and wells. We anticipate that this process enables performing distinct reactions (acid-base, enzymatic recognition and metal-organic framework synthesis), creating multiplexed nanoscale metal-organic framework arrays, and screening combinatorial reactions to evaluate the crystallization of novel peptide-based materials. PMID:23863998

  15. Microfluidic PMMA interfaces for rectangular glass capillaries

    NASA Astrophysics Data System (ADS)

    Evander, Mikael; Tenje, Maria

    2014-02-01

    We present the design and fabrication of a polymeric capillary fluidic interface fabricated by micro-milling. The design enables the use of glass capillaries with any kind of cross-section in complex microfluidic setups. We demonstrate two different designs of the interface; a double-inlet interface for hydrodynamic focusing and a capillary interface with integrated pneumatic valves. Both capillary interfaces are presented together with examples of practical applications. This communication shows the design optimization and presents details of the fabrication process. The capillary interface opens up for the use of complex microfluidic systems in single-use glass capillaries. They also enable simple fabrication of glass/polymer hybrid devices that can be beneficial in many research fields where a pure polymer chip negatively affects the device's performance, e.g. acoustofluidics.

  16. A microfluidic chip for ICPMS sample introduction.

    PubMed

    Verboket, Pascal E; Borovinskaya, Olga; Meyer, Nicole; Günther, Detlef; Dittrich, Petra S

    2015-03-05

    This protocol discusses the fabrication and usage of a disposable low cost microfluidic chip as sample introduction system for inductively coupled plasma mass spectrometry (ICPMS). The chip produces monodisperse aqueous sample droplets in perfluorohexane (PFH). Size and frequency of the aqueous droplets can be varied in the range of 40 to 60 µm and from 90 to 7,000 Hz, respectively. The droplets are ejected from the chip with a second flow of PFH and remain intact during the ejection. A custom-built desolvation system removes the PFH and transports the droplets into the ICPMS. Here, very stable signals with a narrow intensity distribution can be measured, showing the monodispersity of the droplets. We show that the introduction system can be used to quantitatively determine iron in single bovine red blood cells. In the future, the capabilities of the introduction device can easily be extended by the integration of additional microfluidic modules.

  17. Picoinjection of Microfluidic Drops Without Metal Electrodes

    PubMed Central

    O'Donovan, Brian; Tran, Tuan; Sciambi, Adam; Abate, Adam

    2014-01-01

    Existing methods for picoinjecting reagents into microfluidic drops require metal electrodes integrated into the microfluidic chip. The integration of these electrodes adds cumbersome and error-prone steps to the device fabrication process. We have developed a technique that obviates the needs for metal electrodes during picoinjection. Instead, it uses the injection fluid itself as an electrode, since most biological reagents contain dissolved electrolytes and are conductive. By eliminating the electrodes, we reduce device fabrication time and complexity, and make the devices more robust. In addition, with our approach, the injection volume depends on the voltage applied to the picoinjection solution; this allows us to rapidly adjust the volume injected by modulating the applied voltage. We demonstrate that our technique is compatible with reagents incorporating common biological compounds, including buffers, enzymes, and nucleic acids. PMID:24797680

  18. Applications of microfluidics for neuronal studies.

    PubMed

    Gross, Pamela G; Kartalov, Emil P; Scherer, Axel; Weiner, Leslie P

    2007-01-31

    Microfabrication processes have changed the technology used in consumer goods, and have now advanced into applications in biology. Microfluidic platforms are microfabricated tools that are gaining popularity for studies of molecular and cellular biology. These platforms can allow precise control of the environment surrounding individual cells and they have been used to study physiologic and pharmacologic responses at the single-cell level. This article reviews microfluidic technology with emphasis on advances that could apply to the study of the nervous system, including architecture for isolation of axons, integrated electrophysiology, patterned physical and chemical substrate cues, and devices for the precisely controlled delivery of possible therapeutic agents such as trophic factors and drugs. The potential of these chips for the study of neurological diseases is also discussed.

  19. Bonding PMMA microfluidics using commercial microwave ovens

    NASA Astrophysics Data System (ADS)

    Toossi, A.; Moghadas, H.; Daneshmand, M.; Sameoto, D.

    2015-08-01

    In this paper, a novel low-cost, rapid substrate-bonding technique is successfully applied to polymethyl methacrylate (PMMA) microfluidics bonding for the first time. This technique uses a thin intermediate metallic microwave susceptor layer at the interface of the bonding site (microchannels) which produces localized heating required for bonding during microwave irradiation. The metallic susceptor pattern is designed using a multiphysics simulation model developed in ANSYS Multiphysics software (high-frequency structural simulation (HFSS) coupled with ANSYS-Thermal). In our experiments, the required microwave energy for bonding is delivered using a relatively inexpensive, widely accessible commercial microwave oven. Using this technique, simple PMMA microfluidics prototypes are successfully bonded and sealed in less than 35 seconds with a minimum measured bond strength of 1.375 MPa.

  20. Microfluidic technologies for studying synthetic circuits.

    PubMed

    Lin, Benjamin; Levchenko, Andre

    2012-08-01

    Advances in synthetic biology have augmented the available toolkit of biomolecular modules, allowing engineering and manipulation of signaling in a variety of organisms, ranging in complexity from single bacteria and eukaryotic cells to multi-cellular systems. The richness of synthetic circuit outputs can be dramatically enhanced by sophisticated environmental control systems designed to precisely pattern spatial-temporally heterogeneous environmental stimuli controlling these circuits. Moreover, the performance of the synthetic modules and 'blocks' needed to assemble more complicated networks requires more complete characterization as a function of arbitrarily complex environmental inputs. Microfluidic technologies are poised to meet these needs through a variety of innovative designs capitalizing on the unique benefits of manipulating fluids on the micro-scales and nano-scales. This review discusses the utility of microfluidics for the study of synthetic circuits and highlights recent work in the area.

  1. Fluid control structures in microfluidic devices

    NASA Technical Reports Server (NTRS)

    Mathies, Richard A. (Inventor); Grover, William H. (Inventor); Skelley, Alison (Inventor); Lagally, Eric (Inventor); Liu, Chung N. (Inventor)

    2008-01-01

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  2. Microfluidics apparatus and methods for use thereof

    SciTech Connect

    Peeters, John P.; Wiggins, Thomas; Ghosh, Madhushree; Bottomley, Lawrence A.; Seminara, Salvatore; Hu, Zhiyu; Seeley, Timothy; Kossek, Sebastian

    2005-08-09

    A microfluidics device includes a plurality of interaction cells and fluid control means including i) means for providing to the interaction cells a preparation fluid, and ii) means for providing to the interaction cells a sample fluid, wherein each interaction cell receives a different sample fluid. A plurality of microcantilevers may be disposed in each of the interaction cells, wherein each of the plurality of microcantilevers configured to deflect in response to an interaction involving a component of the sample fluid.

  3. Fluid control structures in microfluidic devices

    DOEpatents

    Mathies, Richard A.; Grover, William H.; Skelley, Alison; Lagally, Eric; Liu, Chung N.

    2017-05-09

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  4. Fluid control structures in microfluidic devices

    DOEpatents

    Mathies, Richard A.; Grover, William H.; Skelley, Alison; Lagally, Eric; Liu, Chung N.

    2008-11-04

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  5. Fluid delivery manifolds and microfluidic systems

    DOEpatents

    Renzi, Ronald F.; Sommer, Gregory J.; Singh, Anup K.; Hatch, Anson V.; Claudnic, Mark R.; Wang, Ying-Chih; Van de Vreugde, James L.

    2017-02-28

    Embodiments of fluid distribution manifolds, cartridges, and microfluidic systems are described herein. Fluid distribution manifolds may include an insert member and a manifold base and may define a substantially closed channel within the manifold when the insert member is press-fit into the base. Cartridges described herein may allow for simultaneous electrical and fluidic interconnection with an electrical multiplex board and may be held in place using magnetic attraction.

  6. Multiplexed microfluidic approach for nucleic acid enrichment

    SciTech Connect

    VanderNoot, Victoria A.; Langevin, Stanley Alan; Bent, Zachary; Renzi, Ronald F.; Ferko, Scott M.; Van De Vreugde, James L.; Lane, Todd; Patel, Kamlesh; Branda, Steven

    2016-04-26

    A system for enhancing a nucleic acid sample may include a one pump, a denaturing chamber; a microfluidic hydroxyapatite chromatography device configured for performing hydroxyapatite chromatography on the nucleic acid sample, a sample collector, and tubing connecting the pump with the denaturing chamber, the hydroxyapatite chromatography device and the sample collector such that the pump may be used to move the nucleic acid sample from the denaturing chamber to the hydroxyapatite chromatography device and then to the sample collector.

  7. Integrated Micro-Optics for Microfluidic Detection.

    PubMed

    Kazama, Yuto; Hibara, Akihide

    2016-01-01

    A method of embedding micro-optics into a microfluidic device was proposed and demonstrated. First, the usefulness of embedded right-angle prisms was demonstrated in microscope observation. Lateral-view microscopic observation of an aqueous dye flow in a 100-μm-sized microchannel was demonstrated. Then, the embedded right-angle prisms were utilized for multi-beam laser spectroscopy. Here, crossed-beam thermal lens detection of a liquid sample was applied to glucose detection.

  8. Formation of interconnections to microfluidic devices

    DOEpatents

    Matzke, Carolyn M [Los Lunas, NM; Ashby, Carol I. H. [Edgewood, NM; Griego, Leonardo [Tijeras, NM

    2003-07-29

    A method is disclosed to form external interconnections to a microfluidic device for coupling of a fluid or light or both into a microchannel of the device. This method can be used to form optical or fluidic interconnections to microchannels previously formed on a substrate, or to form both the interconnections and microchannels during the same process steps. The optical and fluidic interconnections are formed parallel to the plane of the substrate, and are fluid tight.

  9. A capillary valve for microfluidic systems.

    SciTech Connect

    Cummings, Eric B.; Kanouff, Michael P.; Rush, Brian M.

    2004-10-01

    Microfluidic systems are becoming increasingly complicated as the number of applications grows. The use of microfluidic systems for chemical and biological agent detection, for example, requires that a given sample be subjected to many process steps, which requires microvalves to control the position and transport of the sample. Each microfluidic application has its own specific valve requirements and this has precipitated the wide variety of valve designs reported in the literature. Each of these valve designs has its strengths and weaknesses. The strength of the valve design proposed here is its simplicity, which makes it easy to fabricate, easy to actuate, and easy to integrate with a microfluidic system. It can be applied to either gas phase or liquid phase systems. This novel design uses a secondary fluid to stop the flow of the primary fluid in the system. The secondary fluid must be chosen based on the type of flow that it must stop. A dielectric fluid must be used for a liquid phase flow driven by electroosmosis, and a liquid with a large surface tension should be used to stop a gas phase flow driven by a weak pressure differential. Experiments were carried out investigating certain critical functions of the design. These experiments verified that the secondary fluid can be reversibly moved between its 'valve opened' and 'valve closed' positions, where the secondary fluid remained as one contiguous piece during this transport process. The experiments also verified that when Fluorinert is used as the secondary fluid, the valve can break an electric circuit. It was found necessary to apply a hydrophobic coating to the microchannels to stop the primary fluid, an aqueous electrolyte, from wicking past the Fluorinert and short-circuiting the valve. A simple model was used to develop valve designs that could be closed using an electrokinetic pump, and re-opened by simply turning the pump off and allowing capillary forces to push the secondary fluid back into its

  10. Simple Check Valves for Microfluidic Devices

    NASA Technical Reports Server (NTRS)

    Willis, Peter A.; Greer, Harold F.; Smith, J. Anthony

    2010-01-01

    A simple design concept for check valves has been adopted for microfluidic devices that consist mostly of (1) deformable fluorocarbon polymer membranes sandwiched between (2) borosilicate float glass wafers into which channels, valve seats, and holes have been etched. The first microfluidic devices in which these check valves are intended to be used are micro-capillary electrophoresis (microCE) devices undergoing development for use on Mars in detecting compounds indicative of life. In this application, it will be necessary to store some liquid samples in reservoirs in the devices for subsequent laboratory analysis, and check valves are needed to prevent cross-contamination of the samples. The simple check-valve design concept is also applicable to other microfluidic devices and to fluidic devices in general. These check valves are simplified microscopic versions of conventional rubber- flap check valves that are parts of numerous industrial and consumer products. These check valves are fabricated, not as separate components, but as integral parts of microfluidic devices. A check valve according to this concept consists of suitably shaped portions of a deformable membrane and the two glass wafers between which the membrane is sandwiched (see figure). The valve flap is formed by making an approximately semicircular cut in the membrane. The flap is centered over a hole in the lower glass wafer, through which hole the liquid in question is intended to flow upward into a wider hole, channel, or reservoir in the upper glass wafer. The radius of the cut exceeds the radius of the hole by an amount large enough to prevent settling of the flap into the hole. As in a conventional rubber-flap check valve, back pressure in the liquid pushes the flap against the valve seat (in this case, the valve seat is the adjacent surface of the lower glass wafer), thereby forming a seal that prevents backflow.

  11. Note: Professional grade microfluidics fabricated simply

    NASA Astrophysics Data System (ADS)

    Mohammad, Anna; Davis, Mark; Aprelev, Alexey; Ferrone, Frank A.

    2016-10-01

    Microfluidics has found increasingly wide usage in the research and teaching laboratory, but setting up a facility for its production has typically required either significant capital expense or sacrifice of quality. We present an approach to produce devices, without a clean room, using LEDs and spin-coaters, and plasma bonded using a commercial microwave oven. Submicron features can be readily reproduced with good fidelity.

  12. Robust fluidic connections to freestanding microfluidic hydrogels

    PubMed Central

    Baer, Bradly B.; Larsen, Taylor S. H.

    2015-01-01

    Biomimetic scaffolds approaching physiological scale, whose size and large cellular load far exceed the limits of diffusion, require incorporation of a fluidic means to achieve adequate nutrient/metabolite exchange. This need has driven the extension of microfluidic technologies into the area of biomaterials. While construction of perfusable scaffolds is essentially a problem of microfluidic device fabrication, functional implementation of free-standing, thick-tissue constructs depends upon successful integration of external pumping mechanisms through optimized connective assemblies. However, a critical analysis to identify optimal materials/assembly components for hydrogel substrates has received little focus to date. This investigation addresses this issue directly by evaluating the efficacy of a range of adhesive and mechanical fluidic connection methods to gelatin hydrogel constructs based upon both mechanical property analysis and cell compatibility. Results identify a novel bioadhesive, comprised of two enzymatically modified gelatin compounds, for connecting tubing to hydrogel constructs that is both structurally robust and non-cytotoxic. Furthermore, outcomes from this study provide clear evidence that fluidic interconnect success varies with substrate composition (specifically hydrogel versus polydimethylsiloxane), highlighting not only the importance of selecting the appropriately tailored components for fluidic hydrogel systems but also that of encouraging ongoing, targeted exploration of this issue. The optimization of such interconnect systems will ultimately promote exciting scientific and therapeutic developments provided by microfluidic, cell-laden scaffolds. PMID:26045731

  13. Microfluidic Biosensing Systems Using Magnetic Nanoparticles

    PubMed Central

    Giouroudi, Ioanna; Keplinger, Franz

    2013-01-01

    In recent years, there has been rapidly growing interest in developing hand held, sensitive and cost-effective on-chip biosensing systems that directly translate the presence of certain bioanalytes (e.g., biomolecules, cells and viruses) into an electronic signal. The impressive and rapid progress in micro- and nanotechnology as well as in biotechnology enables the integration of a variety of analytical functions in a single chip. All necessary sample handling and analysis steps are then performed within the chip. Microfluidic systems for biomedical analysis usually consist of a set of units, which guarantees the manipulation, detection and recognition of bioanalytes in a reliable and flexible manner. Additionally, the use of magnetic fields for performing the aforementioned tasks has been steadily gaining interest. This is because magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the biosensing system. In combination with these applied magnetic fields, magnetic nanoparticles are utilized. Some of the merits of magnetic nanoparticles are the possibility of manipulating them inside microfluidic channels by utilizing high gradient magnetic fields, their detection by integrated magnetic microsensors, and their flexibility due to functionalization by means of surface modification and specific binding. Their multi-functionality is what makes them ideal candidates as the active component in miniaturized on-chip biosensing systems. In this review, focus will be given to the type of biosening systems that use microfluidics in combination with magnetoresistive sensors and detect the presence of bioanalyte tagged with magnetic nanoparticles. PMID:24022689

  14. Twisting microfluidics in a planetary centrifuge.

    PubMed

    Yasuda, Shoya; Hayakawa, Masayuki; Onoe, Hiroaki; Takinoue, Masahiro

    2017-03-15

    This paper reports a twisting microfluidic method utilising a centrifuge-based fluid extruding system in a planetary centrifuge which simultaneously generates an orbital rotation and an axial spin. In this method, fluid extrusion from a micro-scale capillary to an 'open-space' solution or air enables release of the fluid from the capillary-based microchannel, which physically means that there is a release of fluids from a confined low-Reynolds-number environment to an open non-low-Reynolds-number environment. As a result, the extruded fluids are separated from the axial spin of the capillary, and the difference in the angular rates of the axial spin between the capillary and the extruded fluids produces the 'twisting' of the fluid. In this study, we achieve control of the twist of highly viscous fluids, and we construct a simple physical model for the fluid twist. In addition, we demonstrate the formation of twisted hydrogel microstructures (stripe-patterned microbeads and multi-helical microfibres) with control over the stripe pattern and the helical pitch length. We believe that this method will enable the generation of more sophisticated microstructures which cannot easily be formed by usual channel-based microfluidic devices. This method can also provide advanced control of microfluids, as in the case of rapid mixing of highly viscous fluids. This method can contribute to a wide range of applications in materials science, biophysics, biomedical science, and microengineering in the future.

  15. Manufacturable plastic microfluidic valves using thermal actuation.

    PubMed

    Pitchaimani, Karthik; Sapp, Brian C; Winter, Adam; Gispanski, Austin; Nishida, Toshikazu; Hugh Fan, Z

    2009-11-07

    A low-cost, manufacturable, thermally actuated, plastic microfluidic valve has been developed. The valve contains an encapsulated, temperature-sensitive fluid, which expands, deflecting a thin elastomeric film into a fluidic channel to control fluid flow. The power input for thermal expansion of each microfluidic valve can be controlled using a printed circuit board (PCB)-based controller, which is suitable for mass production and large-scale integration. A plastic microfluidic device with such valves was fabricated using compression molding and thermal lamination. The operation of the valves was investigated by measuring a change in the microchannel's ionic conduction current mediated by the resistance variation corresponding to the deflection of the microvalve. Valve closing was also confirmed by the disappearance of fluorescence when a fluorescent solution was displaced in the valve region. Valve operation was characterized for heater power ranging from 36 mW to 80 mW. When the valve was actuating, the local channel temperature was 10 to 19 degrees C above the ambient temperature depending on the heater power used. Repetitive valve operations (up to 50 times) have been demonstrated with a flow resulting from a hydrostatic head. Valve operation was tested for a flow rate of 0.33-4.7 microL/min.

  16. Mixing in microfluidic devices and enhancement methods

    PubMed Central

    Ward, Kevin; Fan, Z Hugh

    2015-01-01

    Mixing in microfluidic devices presents a challenge due to laminar flows in microchannels, which result from low Reynolds numbers determined by the channel’s hydraulic diameter, flow velocity, and solution’s kinetic viscosity. To address this challenge, novel methods of mixing enhancement within microfluidic devices have been explored for a variety of applications. Passive mixing methods have been created, including those using ridges or slanted wells within the microchannels, as well as their variations with improved performance by varying geometry and patterns, by changing the properties of channel surfaces, and by optimization via simulations. In addition, active mixing methods including microstirrers, acoustic mixers, and flow pulsation have been investigated and integrated into microfluidic devices to enhance mixing in a more controllable manner. In general, passive mixers are easy to integrate, but difficult to control externally by users after fabrication. Active mixers usually take efforts to integrate within a device and they require external components (e.g. power sources) to operate. However, they can be controlled by users to a certain degree for tuned mixing. In this article, we provide a general overview of a number of passive and active mixers, discuss their advantages and disadvantages, and make suggestions on choosing a mixing method for a specific need as well as advocate possible integration of key elements of passive and active mixers to harness the advantages of both types. PMID:26549938

  17. Planar microcoil-based microfluidic NMR probes

    NASA Astrophysics Data System (ADS)

    Massin, C.; Vincent, F.; Homsy, A.; Ehrmann, K.; Boero, G.; Besse, P.-A.; Daridon, A.; Verpoorte, E.; de Rooij, N. F.; Popovic, R. S.

    2003-10-01

    Microfabricated small-volume NMR probes consisting of electroplated planar microcoils integrated on a glass substrate with etched microfluidic channels are fabricated and tested. 1H NMR spectra are acquired at 300 MHz with three different probes having observed sample volumes of respectively 30, 120, and 470 nL. The achieved sensitivity enables acquisition of an 1H spectrum of 160 μg sucrose in D 2O, corresponding to a proof-of-concept for on-chip NMR spectroscopy. Increase of mass-sensitivity with coil diameter reduction is demonstrated experimentally for planar microcoils. Models that enable quantitative prediction of the signal-to-noise ratio and of the influence of microfluidic channel geometry on spectral resolution are presented and successfully compared to the experimental data. The main factor presently limiting sensitivity for high-resolution applications is identified as being probe-induced static magnetic field distortions. Finally, based on the presented model and measured data, future performance of planar microcoil-based microfluidic NMR probes is extrapolated and discussed.

  18. Planar microcoil-based microfluidic NMR probes.

    PubMed

    Massin, C; Vincent, F; Homsy, A; Ehrmann, K; Boero, G; Besse, P-A; Daridon, A; Verpoorte, E; de Rooij, N F; Popovic, R S

    2003-10-01

    Microfabricated small-volume NMR probes consisting of electroplated planar microcoils integrated on a glass substrate with etched microfluidic channels are fabricated and tested. 1H NMR spectra are acquired at 300 MHz with three different probes having observed sample volumes of respectively 30, 120, and 470 nL. The achieved sensitivity enables acquisition of an 1H spectrum of 160 microg sucrose in D2O, corresponding to a proof-of-concept for on-chip NMR spectroscopy. Increase of mass-sensitivity with coil diameter reduction is demonstrated experimentally for planar microcoils. Models that enable quantitative prediction of the signal-to-noise ratio and of the influence of microfluidic channel geometry on spectral resolution are presented and successfully compared to the experimental data. The main factor presently limiting sensitivity for high-resolution applications is identified as being probe-induced static magnetic field distortions. Finally, based on the presented model and measured data, future performance of planar microcoil-based microfluidic NMR probes is extrapolated and discussed.

  19. Microfluidic Blood Cell Preparation: Now and Beyond

    PubMed Central

    Yu, Zeta Tak For; Yong, Koh Meng Aw; Fu, Jianping

    2014-01-01

    Blood plays an important role in homeostatic regulation with each of its cellular components having important therapeutic and diagnostic uses. Therefore, separation and sorting of blood cells has been of a great interest to clinicians and researchers. However, while conventional methods of processing blood have been successful in generating relatively pure fractions, they are time consuming, labor intensive, and are not optimal for processing small volume blood samples. In recent years, microfluidics has garnered great interest from clinicians and researchers as a powerful technology for separating blood into different cell fractions. As microfluidics involves fluid manipulation at the microscale level, it has the potential for achieving high-resolution separation and sorting of blood cells down to a single-cell level, with an added benefit of integrating physical and biological methods for blood cell separation and analysis on the same single chip platform. This paper will first review the conventional methods of processing and sorting blood cells, followed by a discussion on how microfluidics is emerging as an efficient tool to rapidly change the field of blood cell sorting for blood-based therapeutic and diagnostic applications. PMID:24515899

  20. Microfab-less Microfluidic Capillary Electrophoresis Devices

    PubMed Central

    Segato, Thiago P.; Bhakta, Samir A.; Gordon, Matthew; Carrilho, Emanuel; Willis, Peter A.; Jiao, Hong; Garcia, Carlos D.

    2013-01-01

    Compared to conventional bench-top instruments, microfluidic devices possess advantageous characteristics including great portability potential, reduced analysis time (minutes), and relatively inexpensive production, putting them on the forefront of modern analytical chemistry. Fabrication of these devices, however, often involves polymeric materials with less-than-ideal surface properties, specific instrumentation, and cumbersome fabrication procedures. In order to overcome such drawbacks, a new hybrid platform is proposed. The platform is centered on the use of 5 interconnecting microfluidic components that serve as the injector or reservoirs. These plastic units are interconnected using standard capillary tubing, enabling in-channel detection by a wide variety of standard techniques, including capacitively-coupled contactless conductivity detection (C4D). Due to the minimum impact on the separation efficiency, the plastic microfluidic components used for the experiments discussed herein were fabricated using an inexpensive engraving tool and standard Plexiglas. The presented approach (named 52-platform) offers a previously unseen versatility: enabling the assembly of the platform within minutes using capillary tubing that differs in length, diameter, or material. The advantages of the proposed design are demonstrated by performing the analysis of inorganic cations by capillary electrophoresis on soil samples from the Atacama Desert. PMID:23585815

  1. Microfluidics for High School Chemistry Students.

    PubMed

    Hemling, Melissa; Crooks, John A; Oliver, Piercen M; Brenner, Katie; Gilbertson, Jennifer; Lisensky, George C; Weibel, Douglas B

    2014-01-14

    We present a laboratory experiment that introduces high school chemistry students to microfluidics while teaching fundamental properties of acid-base chemistry. The procedure enables students to create microfluidic systems using nonspecialized equipment that is available in high school classrooms and reagents that are safe, inexpensive, and commercially available. The experiment is designed to ignite creativity and confidence about experimental design in a high school chemistry class. This experiment requires a computer program (e.g., PowerPoint), Shrinky Dink film, a readily available silicone polymer, weak acids, bases, and a colorimetric pH indicator. Over the span of five 45-min class periods, teams of students design and prepare devices in which two different pH solutions mix in a predictable way to create five different pH solutions. Initial device designs are instructive but rarely optimal. During two additional half-class periods, students have the opportunity to use their initial observations to redesign their microfluidic systems to optimize the outcome. The experiment exposes students to cutting-edge science and the design process, and solidifies introductory chemistry concepts including laminar flow, neutralization of weak acids-bases, and polymers.

  2. Logic control of microfluidics with smart colloid.

    PubMed

    Wang, Limu; Zhang, Mengying; Li, Jiaxing; Gong, Xiuqing; Wen, Weijia

    2010-11-07

    We report the successful realization of a microfluidic chip with switching and corresponding inverting functionalities. The chips are identical logic control components incorporating a type of smart colloid, giant electrorheological fluid (GERF), which possesses reversible characteristics via a liquid-solid phase transition under external electric field. Two pairs of electrodes embedded on the sides of two microfluidic channels serve as signal input and output, respectively. One, located in the GERF micro-channel is used to control the flow status of GERF, while another one in the ither micro-fluidic channel is used to detect the signal generated with a passing-by droplet (defined as a signal droplet). Switching of the GERF from the suspended state (off-state) to the flowing state (on-state) or vice versa in the micro-channel is controlled by the appearance of signal droplets whenever they pass through the detection electrode. The output on-off signals can be easily demonstrated, clearly matching with GERF flow status. Our results show that such a logic switch is also a logic IF gate, while its inverter functions as a NOT gate.

  3. Orientation-Based Control of Microfluidics

    PubMed Central

    Norouzi, Nazila; Bhakta, Heran C.; Grover, William H.

    2016-01-01

    Most microfluidic chips utilize off-chip hardware (syringe pumps, computer-controlled solenoid valves, pressure regulators, etc.) to control fluid flow on-chip. This expensive, bulky, and power-consuming hardware severely limits the utility of microfluidic instruments in resource-limited or point-of-care contexts, where the cost, size, and power consumption of the instrument must be limited. In this work, we present a technique for on-chip fluid control that requires no off-chip hardware. We accomplish this by using inert compounds to change the density of one fluid in the chip. If one fluid is made 2% more dense than a second fluid, when the fluids flow together under laminar flow the interface between the fluids quickly reorients to be orthogonal to Earth’s gravitational force. If the channel containing the fluids then splits into two channels, the amount of each fluid flowing into each channel is precisely determined by the angle of the channels relative to gravity. Thus, any fluid can be routed in any direction and mixed in any desired ratio on-chip simply by holding the chip at a certain angle. This approach allows for sophisticated control of on-chip fluids with no off-chip control hardware, significantly reducing the cost of microfluidic instruments in point-of-care or resource-limited settings. PMID:26950700

  4. A metering rotary nanopump for microfluidic systems

    PubMed Central

    Darby, Scott G.; Moore, Matthew R.; Friedlander, Troy A.; Schaffer, David K.; Reiserer, Ron S.; Wikswo, John P.

    2014-01-01

    We describe the design, fabrication, and testing of a microfabricated metering rotary nanopump for the purpose of driving fluid flow in microfluidic devices. The miniature peristaltic pump is composed of a set of microfluidic channels wrapped in a helix around a central cam shaft in which a non-cylindrical cam rotates. The cam compresses the helical channels to induce peristaltic flow as it is rotated. The polydimethylsiloxane (PDMS) nanopump design is able to produce intermittent delivery or removal of several nanoliters of fluid per revolution as well as consistent continuous flow rates ranging from as low as 15 nL/min to above 1.0 µL/min. At back pressures encountered in typical microfluidic devices, the pump acts as a high impedance flow source. The durability, biocompatibility, ease of integration with soft-lithographic fabrication, the use of a simple rotary motor instead of multiple synchronized pneumatic or mechanical actuators, and the absence of power consumption or fluidic conductance in the resting state all contribute to a compact pump with a low cost of fabrication and versatile implementation. This suggests that the pump design may be useful for a wide variety of biological experiments and point of care devices. PMID:20959938

  5. Microfluidics for High School Chemistry Students

    PubMed Central

    Hemling, Melissa; Crooks, John A.; Oliver, Piercen M.; Brenner, Katie; Gilbertson, Jennifer; Lisensky, George C.; Weibel, Douglas B.

    2014-01-01

    We present a laboratory experiment that introduces high school chemistry students to microfluidics while teaching fundamental properties of acid–base chemistry. The procedure enables students to create microfluidic systems using nonspecialized equipment that is available in high school classrooms and reagents that are safe, inexpensive, and commercially available. The experiment is designed to ignite creativity and confidence about experimental design in a high school chemistry class. This experiment requires a computer program (e.g., PowerPoint), Shrinky Dink film, a readily available silicone polymer, weak acids, bases, and a colorimetric pH indicator. Over the span of five 45-min class periods, teams of students design and prepare devices in which two different pH solutions mix in a predictable way to create five different pH solutions. Initial device designs are instructive but rarely optimal. During two additional half-class periods, students have the opportunity to use their initial observations to redesign their microfluidic systems to optimize the outcome. The experiment exposes students to cutting-edge science and the design process, and solidifies introductory chemistry concepts including laminar flow, neutralization of weak acids–bases, and polymers. PMID:25584013

  6. Mixing in microfluidic devices and enhancement methods.

    PubMed

    Ward, Kevin; Fan, Z Hugh

    2015-09-01

    Mixing in microfluidic devices presents a challenge due to laminar flows in microchannels, which result from low Reynolds numbers determined by the channel's hydraulic diameter, flow velocity, and solution's kinetic viscosity. To address this challenge, novel methods of mixing enhancement within microfluidic devices have been explored for a variety of applications. Passive mixing methods have been created, including those using ridges or slanted wells within the microchannels, as well as their variations with improved performance by varying geometry and patterns, by changing the properties of channel surfaces, and by optimization via simulations. In addition, active mixing methods including microstirrers, acoustic mixers, and flow pulsation have been investigated and integrated into microfluidic devices to enhance mixing in a more controllable manner. In general, passive mixers are easy to integrate, but difficult to control externally by users after fabrication. Active mixers usually take efforts to integrate within a device and they require external components (e.g. power sources) to operate. However, they can be controlled by users to a certain degree for tuned mixing. In this article, we provide a general overview of a number of passive and active mixers, discuss their advantages and disadvantages, and make suggestions on choosing a mixing method for a specific need as well as advocate possible integration of key elements of passive and active mixers to harness the advantages of both types.

  7. Mixing in microfluidic devices and enhancement methods

    NASA Astrophysics Data System (ADS)

    Ward, Kevin; Fan, Z. Hugh

    2015-09-01

    Mixing in microfluidic devices presents a challenge due to laminar flows in microchannels, which result from low Reynolds numbers determined by the channel’s hydraulic diameter, flow velocity, and solution’s kinetic viscosity. To address this challenge, novel methods of mixing enhancement within microfluidic devices have been explored for a variety of applications. Passive mixing methods have been created, including those using ridges or slanted wells within the microchannels, as well as their variations with improved performance by varying geometry and patterns, by changing the properties of channel surfaces, and by optimization via simulations. In addition, active mixing methods including microstirrers, acoustic mixers, and flow pulsation have been investigated and integrated into microfluidic devices to enhance mixing in a more controllable manner. In general, passive mixers are easy to integrate, but difficult to control externally by users after fabrication. Active mixers usually take efforts to integrate within a device and they require external components (e.g. power sources) to operate. However, they can be controlled by users to a certain degree for tuned mixing. In this article, we provide a general overview of a number of passive and active mixers, discuss their advantages and disadvantages, and make suggestions on choosing a mixing method for a specific need as well as advocate possible integration of key elements of passive and active mixers to harness the advantages of both types.

  8. Microfluidic extensional rheometry using stagnation point flow.

    PubMed

    Haward, S J

    2016-07-01

    Characterization of the extensional rheometry of fluids with complex microstructures is of great relevance to the optimization of a wide range of industrial applications and for understanding various natural processes, biological functions, and diseases. However, quantitative measurement of the extensional properties of complex fluids has proven elusive to researchers, particularly in the case of low viscosity, weakly elastic fluids. For some time, microfluidic platforms have been recognized as having the potential to fill this gap and various approaches have been proposed. This review begins with a general discussion of extensional viscosity and the requirements of an extensional rheometer, before various types of extensional rheometers (particularly those of microfluidic design) are critically discussed. A specific focus is placed on microfluidic stagnation point extensional flows generated by cross-slot type devices, for which some important developments have been reported during the last 10 years. Additional emphasis is placed on measurements made on relevant biological fluids. Finally, the operating limits of the cross-slot extensional rheometer (chiefly imposed by the onset of elastic and inertial flow instabilities) are discussed.

  9. Microfluidic pressure sensing using trapped air compression.

    PubMed

    Srivastava, Nimisha; Burns, Mark A

    2007-05-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid-air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d approximately 50 microm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700-100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions.

  10. Microfluidic biosensing systems using magnetic nanoparticles.

    PubMed

    Giouroudi, Ioanna; Keplinger, Franz

    2013-09-09

    In recent years, there has been rapidly growing interest in developing hand held, sensitive and cost-effective on-chip biosensing systems that directly translate the presence of certain bioanalytes (e.g., biomolecules, cells and viruses) into an electronic signal. The impressive and rapid progress in micro- and nanotechnology as well as in biotechnology enables the integration of a variety of analytical functions in a single chip. All necessary sample handling and analysis steps are then performed within the chip. Microfluidic systems for biomedical analysis usually consist of a set of units, which guarantees the manipulation, detection and recognition of bioanalytes in a reliable and flexible manner. Additionally, the use of magnetic fields for performing the aforementioned tasks has been steadily gaining interest. This is because magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the biosensing system. In combination with these applied magnetic fields, magnetic nanoparticles are utilized. Some of the merits of magnetic nanoparticles are the possibility of manipulating them inside microfluidic channels by utilizing high gradient magnetic fields, their detection by integrated magnetic microsensors, and their flexibility due to functionalization by means of surface modification and specific binding. Their multi-functionality is what makes them ideal candidates as the active component in miniaturized on-chip biosensing systems. In this review, focus will be given to the type of biosening systems that use microfluidics in combination with magnetoresistive sensors and detect the presence of bioanalyte tagged with magnetic nanoparticles.

  11. Microfab-less Microfluidic Capillary Electrophoresis Devices.

    PubMed

    Segato, Thiago P; Bhakta, Samir A; Gordon, Matthew; Carrilho, Emanuel; Willis, Peter A; Jiao, Hong; Garcia, Carlos D

    2013-04-07

    Compared to conventional bench-top instruments, microfluidic devices possess advantageous characteristics including great portability potential, reduced analysis time (minutes), and relatively inexpensive production, putting them on the forefront of modern analytical chemistry. Fabrication of these devices, however, often involves polymeric materials with less-than-ideal surface properties, specific instrumentation, and cumbersome fabrication procedures. In order to overcome such drawbacks, a new hybrid platform is proposed. The platform is centered on the use of 5 interconnecting microfluidic components that serve as the injector or reservoirs. These plastic units are interconnected using standard capillary tubing, enabling in-channel detection by a wide variety of standard techniques, including capacitively-coupled contactless conductivity detection (C(4)D). Due to the minimum impact on the separation efficiency, the plastic microfluidic components used for the experiments discussed herein were fabricated using an inexpensive engraving tool and standard Plexiglas. The presented approach (named 5(2)-platform) offers a previously unseen versatility: enabling the assembly of the platform within minutes using capillary tubing that differs in length, diameter, or material. The advantages of the proposed design are demonstrated by performing the analysis of inorganic cations by capillary electrophoresis on soil samples from the Atacama Desert.

  12. Microfluidic integration for automated targeted proteomic assays.

    PubMed

    Hughes, Alex J; Lin, Robert K C; Peehl, Donna M; Herr, Amy E

    2012-04-17

    A dearth of protein isoform-based clinical diagnostics currently hinders advances in personalized medicine. A well-organized protein biomarker validation process that includes facile measurement of protein isoforms would accelerate development of effective protein-based diagnostics. Toward scalable protein isoform analysis, we introduce a microfluidic "single-channel, multistage" immunoblotting strategy. The multistep assay performs all immunoblotting steps: separation, immobilization of resolved proteins, antibody probing of immobilized proteins, and all interim wash steps. Programmable, low-dispersion electrophoretic transport obviates the need for pumps and valves. A three-dimensional bulk photoreactive hydrogel eliminates manual blotting. In addition to simplified operation and interfacing, directed electrophoretic transport through our 3D nanoporous reactive hydrogel yields superior performance over the state-of-the-art in enhanced capture efficiency (on par with membrane electroblotting) and sparing consumption of reagents (ca. 1 ng antibody), as supported by empirical and by scaling analyses. We apply our fully integrated microfluidic assay to protein measurements of endogenous prostate specific antigen isoforms in (i) minimally processed human prostate cancer cell lysate (1.1 pg limit of detection) and (ii) crude sera from metastatic prostate cancer patients. The single-instrument functionality establishes a scalable microfluidic framework for high-throughput targeted proteomics, as is relevant to personalized medicine through robust protein biomarker verification, systematic characterization of new antibody probes for functional proteomics, and, more broadly, to characterization of human biospecimen repositories.

  13. Microfluidic extensional rheometry using stagnation point flow

    PubMed Central

    2016-01-01

    Characterization of the extensional rheometry of fluids with complex microstructures is of great relevance to the optimization of a wide range of industrial applications and for understanding various natural processes, biological functions, and diseases. However, quantitative measurement of the extensional properties of complex fluids has proven elusive to researchers, particularly in the case of low viscosity, weakly elastic fluids. For some time, microfluidic platforms have been recognized as having the potential to fill this gap and various approaches have been proposed. This review begins with a general discussion of extensional viscosity and the requirements of an extensional rheometer, before various types of extensional rheometers (particularly those of microfluidic design) are critically discussed. A specific focus is placed on microfluidic stagnation point extensional flows generated by cross-slot type devices, for which some important developments have been reported during the last 10 years. Additional emphasis is placed on measurements made on relevant biological fluids. Finally, the operating limits of the cross-slot extensional rheometer (chiefly imposed by the onset of elastic and inertial flow instabilities) are discussed. PMID:27099647

  14. A metering rotary nanopump for microfluidic systems.

    PubMed

    Darby, Scott G; Moore, Matthew R; Friedlander, Troy A; Schaffer, David K; Reiserer, Ron S; Wikswo, John P; Seale, Kevin T

    2010-12-07

    We describe the design, fabrication, and testing of a microfabricated metering rotary nanopump for the purpose of driving fluid flow in microfluidic devices. The miniature peristaltic pump is composed of a set of microfluidic channels wrapped in a helix around a central camshaft in which a non-cylindrical cam rotates. The cam compresses the helical channels to induce peristaltic flow as it is rotated. The polydimethylsiloxane (PDMS) nanopump design is able to produce intermittent delivery or removal of several nanolitres of fluid per revolution as well as consistent continuous flow rates ranging from as low as 15 nL min(-1) to above 1.0 µL min(-1). At back pressures encountered in typical microfluidic devices, the pump acts as a high impedance flow source. The durability, biocompatibility, ease of integration with soft-lithographic fabrication, the use of a simple rotary motor instead of multiple synchronized pneumatic or mechanical actuators, and the absence of power consumption or fluidic conductance in the resting state all contribute to a compact pump with a low cost of fabrication and versatile implementation. This suggests that the pump design may be useful for a wide variety of biological experiments and point of care devices.

  15. Graphene-based microfluidics for serial crystallography.

    PubMed

    Sui, Shuo; Wang, Yuxi; Kolewe, Kristopher W; Srajer, Vukica; Henning, Robert; Schiffman, Jessica D; Dimitrakopoulos, Christos; Perry, Sarah L

    2016-08-02

    Microfluidic strategies to enable the growth and subsequent serial crystallographic analysis of micro-crystals have the potential to facilitate both structural characterization and dynamic structural studies of protein targets that have been resistant to single-crystal strategies. However, adapting microfluidic crystallization platforms for micro-crystallography requires a dramatic decrease in the overall device thickness. We report a robust strategy for the straightforward incorporation of single-layer graphene into ultra-thin microfluidic devices. This architecture allows for a total material thickness of only ∼1 μm, facilitating on-chip X-ray diffraction analysis while creating a sample environment that is stable against significant water loss over several weeks. We demonstrate excellent signal-to-noise in our X-ray diffraction measurements using a 1.5 μs polychromatic X-ray exposure, and validate our approach via on-chip structure determination using hen egg white lysozyme (HEWL) as a model system. Although this work is focused on the use of graphene for protein crystallography, we anticipate that this technology should find utility in a wide range of both X-ray and other lab on a chip applications.

  16. Surface micromachining of polydimethylsiloxane for microfluidics applications.

    PubMed

    Hill, Staci; Qian, Weiyi; Chen, Weiqiang; Fu, Jianping

    2016-09-01

    Polydimethylsiloxane (PDMS) elastomer has emerged as one of the most frequently applied materials in microfluidics. However, precise and large-scale surface micromachining of PDMS remains challenging, limiting applications of PDMS for microfluidic structures with high-resolution features. Herein, surface patterning of PDMS was achieved using a simple yet effective method combining direct photolithography followed by reactive-ion etching (RIE). This method incorporated a unique step of using oxygen plasma to activate PDMS surfaces to a hydrophilic state, thereby enabling improved adhesion of photoresist on top of PDMS surfaces for subsequent photolithography. RIE was applied to transfer patterns from photoresist to underlying PDMS thin films. Systematic experiments were conducted in the present work to characterize PDMS etch rate and etch selectivity of PDMS to photoresist as a function of various RIE parameters, including pressure, RF power, and gas flow rate and composition. We further compared two common RIE systems with and without bias power and employed inductively coupled plasma and capacitively coupled plasma sources, respectively, in terms of their PDMS etching performances. The RIE-based PDMS surface micromachining technique is compatible with conventional Si-based surface and bulk micromachining techniques, thus opening promising opportunities for generating hybrid microfluidic devices with novel functionalities.

  17. Microfluidics in flow cytometry and related techniques.

    PubMed

    Béné, M C

    2017-05-01

    Technological advances in laboratory automation are now well understood and applied as they considerably improved the speed and robustness of haematological laboratory data, in the companion fields of blood analyzers and flow cytometry. Still rather confidential is the field of microfluidics, mostly confined so far to academic settings and research laboratories. The literature in the field of microfluidics is growing and applications in hematology range from cell counting to flow cytometry, cell sorting, or ex vivo testing. A literature search allows to identify many innovative solutions developed to master the specific physics of fluid movements in microchips. Miniaturization also dwells on findings that have emerged from different areas such as electronics and nanoengineering. This review proposes an overview of the major principles guiding developments in microfluidics and describes a necessarily limited and nonexhaustive series of specific applications. Readers are strongly encouraged to consult the documents referred to in the references section to learn more about this world knocking at our door and possibly liable to revolutionize our profession of hematology biologists in a not so far future. © 2017 John Wiley & Sons Ltd.

  18. A Microfluidic Platform for Interfacial Electrophoretic Deposition

    NASA Astrophysics Data System (ADS)

    Joung, Young Soo; Moran, Jeffrey; Jones, Andrew; Bailey, Eric; Buie, Cullen

    2014-11-01

    Composite membranes of hydrogel and carbon nanotubes (CNTs) are fabricated using electrophoretic deposition (EPD) at the interface of two immiscible liquids in microfluidic channels. Microfluidic channels, which have two parallel electrodes at the walls, are used to create electric fields across the interface of oil and water continuously supplied into the channels. Depending on the Reynolds (Re) and Weber (We) numbers of oil and water, we observe different formations of the interface. Once we find the optimal Re and We to create a planar interface in the channel, we apply an electric field across the interface for EPD of CNTs and/or silver (Ag) nanorods dispersed in water. During EPD, particles migrate to the oil/water interface, where cross-linking of polymers is induced to form composite hydrogel membranes. Properties of the composite hydrogel films are controlled by electric fields, CNT concentrations, and both Re and We numbers, allowing for continuous production. This fabrication method is effective to create composite polymer membranes placed in microfluidic devices with tunable electrical, mechanical, and biological properties. Potential applications include fabrication of doped hydrogels for drug delivery, conductive hydrogels for biological sensing, and electron permeable membranes for water splitting and osmotic power generation.

  19. Microfluidic pressure sensing using trapped air compression

    PubMed Central

    Srivastava, Nimisha; Burns, Mark A.

    2010-01-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid–air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d ~ 50 μm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700–100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions. PMID:17476384

  20. Wearable tactile sensor based on flexible microfluidics.

    PubMed

    Yeo, Joo Chuan; Yu, Jiahao; Koh, Zhao Ming; Wang, Zhiping; Lim, Chwee Teck

    2016-08-16

    In this work, we develop a liquid-based thin film microfluidic tactile sensor of high flexibility, robustness and sensitivity. The microfluidic elastomeric structure comprises a pressure sensitive region and parallel arcs that interface with screen-printed electrodes. The microfluidic sensor is functionalized with a highly conductive metallic liquid, eutectic gallium indium (eGaIn). Microdeformation on the pressure sensor results in fluid displacement which corresponds to a change in electrical resistance. By emulating parallel electrical circuitry in our microchannel design, we reduced the overall electrical resistance of the sensor, therefore enhancing its device sensitivity. Correspondingly, we report a device workable within a range of 4 to 100 kPa and sensitivity of up to 0.05 kPa(-1). We further demonstrate its robustness in withstanding >2500 repeated loading and unloading cycles. Finally, as a proof of concept, we demonstrate that the sensors may be multiplexed to detect forces at multiple regions of the hand. In particular, our sensors registered unique electronic signatures in object grasping, which could provide better assessment of finger dexterity.