Science.gov

Sample records for 99-technetium sestamibi scanning

  1. Role of microvascular density in nonlocalizing parathyroid sestamibi scans.

    PubMed

    Peters, Glenn; Kulbersh, Brian; Mantle, Belinda; Bell, Walter; Grizzle, William; Rosenthal, Eben

    2007-12-01

    Sestamibi scans for localization of abnormal parathyroid glands in patients with hyperparathyroidism are widely used at many institutions. Minimally invasive parathyroid surgery demands accurate preoperative localization imaging; however, nonlocalizing sestamibi scans occur in 15% of patients with primary hyperparathyroidism. It remains unknown why some sestamibi scans fail to localize. We hypothesize that an increase in microvascular density (MVD) within an adenoma will result in rapid tracer washout and a subsequent nonlocalizing scan. This study investigates the role of MVD in sestamibi localization. Retrospective chart review with immunohistochemical staining and data analysis. Medical records of 83 patients who had a sestamibi scan for evaluation of primary hyperparathyroidism and underwent initial parathyroidectomy from 2000 to 2002 were retrospectively reviewed. Patients' age, sex, preoperative imaging results, operative procedure, gland weight, and histologic findings were collected. Immunohistochemistry was performed to assess MVD. Of the 75 preoperative sestamibi scans used, 51 patients had a localizing scan, and 24 were nonlocalizing. Localizing sestamibi scans for primary hyperparathyroidism demonstrated a sensitivity of 94% and specificity of 85%. By identifying multiglandular hyperplasia, nonlocalizing sestamibi scans produced a sensitivity of 83%. The localizing group had a greater percentage of solitary adenomas (94%) compared with the nonlocalizing group (15.6%) (P < .001). The mean gland weight for the nonlocalizing group was less than 398 g compared with the localizing groupweight of 1,113 g (P < .001). The mean MVD for localizing scan group was 229 vessels per high-power field,and the mean for the nonlocalizing scans was 213 vessels per high-power field (P = .2). MVD does not predict whether sestamibi scans are localizing or nonlocalizing.

  2. Hyperparathyroidism but a negative sestamibi scan: a clinical dilemma.

    PubMed

    Slitt, Gavin T; Lavery, Hugh; Morgan, Anthony; Bernstein, Bruce; Slavin, James; Karimeddini, Mozaferiddin K; Kozol, Robert A

    2005-11-01

    The outcomes of patients with biochemically confirmed hyperparathyroidism but a negative Tc-99 Sestamibi scan are unclear. We examined the outcomes and quality of life of patients having surgery and those who had medical therapy. Patients having a diagnosis of hyperparathyroidism with confirmed elevated calcium and parathormone levels, yet negative sestamibi scans were identified. The RAND SF-36 Health Survey was administered via mail to these patients. The patient's charts were then reviewed to verify treatments and to determine outcomes. Ninety-five patients fitting the criteria were identified. Twenty patients completed all aspects of the study. Ten of the respondents had undergone parathyroidectomy, and 10 had not. The surgical patients scored more favorably in all 8 of the measured parameters than patients treated medically. The differences in 3 domains, physical functioning, pain, and social functioning, were statistically significant. Our findings suggest that surgical therapy confers a better quality of life and is superior to medical therapy in the treatment of primary hyperparathyroidism, even in patients having a negative sestamibi scan.

  3. Bone metastasis on Tc99-m sestamibi myocardial perfusion scan

    PubMed Central

    Hatemi, Lachin; Jabi, Feraas

    2015-01-01

    A 75-year-old woman presented to our department for a stress myocardial perfusion imaging study with Tc99m-sestamibi. Incidental focal uptake, found in the left upper anterior chest, was initially felt to be located in the left breast. After additional single-photon CT imaging was performed the same day, extracardiac foci within the ribs, spine, and left lung (worrisome for active metastases) were shown to be present, with the initial focus located within a left rib rather than a breast. A review of previous radiographic and nuclear imaging studies confirmed metastatic disease from recurrent follicular thyroid cancer. Atypical focal extracardiac activity must be closely scrutinized for the possibility of malignancy, as Tc99m-sestamibi (in addition to being myocardium-avid) is tumor-avid. PMID:27190553

  4. Sestamibi and FDG-PET scans to support diagnosis of jaw osteonecrosis.

    PubMed

    Catalano, Lucio; Del Vecchio, Silvana; Petruzziello, Fara; Fonti, Rosa; Salvatore, Barbara; Martorelli, Carmen; Califano, Catello; Caparrotti, Giuseppe; Segreto, Sabrina; Pace, Leonardo; Rotoli, Bruno

    2007-06-01

    Osteonecrosis of the maxillary or mandibular bone is an infrequent but often severe event occurring in patients who undergo prolonged treatment with bisphosphonates. Histology is in some cases mandatory to differentiate it from neoplastic osteolysis, but a biopsy can further contribute to bone damage. Functional imaging obtained by a tracer that shows oncotropic properties, such as Tc99m-sestamibi, in comparison to a non-tumor-specific substance such as FDG-PET, can support the differential diagnosis, thus avoiding invasive procedures. Four patients affected by multiple myeloma and jaw osteonecrosis were prospectively evaluated by sestamibi and FDG-PET scans. Local diagnosis was performed by clinical, radiological and, in some cases, histological evaluations. Each patient was studied by Tc99m-sestamibi, performed by planar anterior and posterior whole-body scans and SPECT of the head and neck, and by PET/CT. Two nuclear medicine physicians, unaware of the final diagnosis, reviewed the images. No sestamibi uptake was evident in the four patients with jaw osteonecrosis, while FDG-PET/CT showed focal uptake in all of them. Our study suggests that the combined use of sestamibi scintigraphy and FDG-PET/CT could support the clinical diagnosis of oral osteonecrosis avoiding the risks of a surgical biopsy. Studies on higher number of patients are necessary to validate these preliminary observations.

  5. Influence of a negative sestamibi scan on the decision for parathyroid operation by the endocrinologist and surgeon.

    PubMed

    Wu, Susana; Hwang, Stephanie S; Haigh, Philip I

    2017-01-01

    It has been observed that negative sestamibi scans may impact practice patterns in patients with primary hyperparathyroidism. However, there are no published data on the issue. The objective was to elucidate the influence of negative sestamibi scans on referrals by endocrinologists for parathyroidectomy and surgeon decision-making. All patients with primary hyperparathyroidism were identified within a region-wide health care system over a 2-year period. Data, including age, calcium, parathyroid hormone, renal function, bone density, and sestamibi scan results, were collected from the electronic medical record of all patients. The electronic referral system was used to track consultations with endocrinologists and surgeons. Multivariable logistic regression analysis was done to model factors involved in endocrinologist recommendations (referral or no referral to operation) and surgeon recommendations (parathyroidectomy or no parathyroidectomy). A total of 539 patients with primary hyperparathyroidism were identified, and 452 were seen by endocrinologists. Of these, 260 patients had sestamibi scans done (120 negative and 140 positive), and 201 (77%) patients were referred to surgeons. Compared with positive sestamibi scans, negative sestamibi scans were independently associated with no referral to surgeons, after adjusting for presence of classic symptoms, age, fitness for operation, calcium, parathyroid hormone, glomerular filtration rate, and bone density (odds ratio = 0.36; 95% confidence interval 0.18-0.73). Surgeons saw an additional 54 patients referred from nonendocrinologists or primary care physicians and sestamibi scans were completed. Surgeons recommended parathyroidectomy in 236 of the 255 patients. Negative sestamibi scans were independently associated with no recommendation for operation (odds ratio = 0.32; 95% confidence interval 0.11-0.91). Surgeons initially scheduled and completed parathyroidectomies in 211/255 patients. Cure rate after

  6. The cost-effectiveness of additional preoperative ultrasonography or sestamibi-SPECT in patients with primary hyperparathyroidism and negative findings on sestamibi scans.

    PubMed

    Ruda, James M; Stack, Brendan C; Hollenbeak, Christopher S

    2006-01-01

    To determine whether the use of additional preoperative imaging was cost-effective compared with bilateral neck exploration (BNE) for the treatment of primary hyperparathyroidism in patients with negative findings on scans with technetium Tc 99m sestamibi. We performed a cost-effectiveness analysis. The decision whether to proceed to BNE or obtain additional preoperative imaging using ultrasonography (US) or single-photon emission computed tomography with technetium Tc 99m sestamibi (SPECT) was modeled using decision analysis. We obtained probabilities of cure, detection of pathologic glands, and the correct side of the neck from recent literature. Expected cost, cure rate, and the incremental cost per cured case using the preoperative imaging strategies compared with BNE. The US strategy dominated the SPECT and BNE strategies, with a lower expected cost (USD $6030 vs USD $7131 and $8384, respectively) and a greater expected cure rate (99.42% vs 99.26% and 97.69%, respectively). Threshold analysis suggests that the preoperative imaging strategies continued to dominate unless the cost of BNE was less than USD $5400 or the cost of unilateral neck exploration exceeded USD $6500. The US strategy dominated SPECT as a preoperative imaging strategy if the cost of SPECT exceeded $12 or the cost of a US test was less than $1300. For the treatment of primary hyerparathyroidism in the patient with negative findings on technetium Tc 99m sestamibi scans, a strategy that uses additional preoperative US imaging appears to be cost-effective compared with SPECT or BNE.

  7. The cost-effectiveness of sestamibi scanning compared to bilateral neck exploration for the treatment of primary hyperparathyroidism.

    PubMed

    Ruda, James; Stack, Brendan C; Hollenbeak, Christopher S

    2004-08-01

    This article presents a cost-effectiveness analysis to determine whether preoperative imaging with Tc99m-sestamibi for detection and treatment of solitary adenomas associated with primary hyperparathyroidism is cost-effective compared with routine bilateral neck exploration.

  8. (99m)Technetium Sestamibi-(123)Iodine Scintigraphy Is More Accurate Than (99m)Technetium Sestamibi Alone before Surgery for Primary Hyperparathyroidism.

    PubMed

    Ryhänen, Eeva M; Schildt, Jukka; Heiskanen, Ilkka; Väisänen, Mika; Ahonen, Aapo; Löyttyniemi, Eliisa; Schalin-Jäntti, Camilla; Välimäki, Matti J

    2015-01-01

    Objectives. Studies comparing outcome of single-(99m)Tc-methoxyisobutylisonitrile ((99m)Tc-sestamibi) and dual-tracer (99m)Tc-sestamibi scintigraphy in combination with (123)I before primary surgery of primary hyperparathyroidism (PHPT) are scarce. Methods. We compared (99m)Tc-sestamibi/(123)I and (99m)Tc-sestamibi in a single-centre retrospective series of 269 PHPT patients. The results were related to laboratory, surgical and histological findings. Results. (99m)Tc-sestamibi/(123)I and (99m)Tc-sestamibi were positive in 206 (76.6%) and 111 (41.3%) of 269 patients, respectively (P < 0.001). Accuracies for (99m)Tc-sestamibi/(123)I and (99m)Tc-sestamibi were 63.4% and 34.9%, respectively (96% CI, P < 0.001). Prevalence of multiglandular disease was 15.2%. In multiglandular disease, (99m)Tc-sestamibi/(123)I and (99m)Tc-sestamibi revealed 43.8 and 22.1% of pathological glands, respectively (P < 0.001). Cure rate was similar for patients with (191/206; 92.7%) and without (59 of 63; 93.7%) a positive (99m)Tc-sestamibi/(123)I finding. Duration of targeted surgery (one or two quadrants) was 21 and 15 minutes shorter than bilateral neck exploration, respectively (both P < 0.001). Higher serum calcium (P = 0.014) and PTH (P = 0.055) concentrations and larger tumours (P < 0.001) characterized the 206 patients with a positive preoperative scan who were cured by removal of a single adenoma. Conclusions. (99m)Tc-sestamibi/(123)I scintigraphy is more accurate than (99m)Tc-sestamibi before surgery of PHPT. However, outcome of surgery is not determined by scintigraphy alone.

  9. 99mTechnetium Sestamibi-123Iodine Scintigraphy Is More Accurate Than 99mTechnetium Sestamibi Alone before Surgery for Primary Hyperparathyroidism

    PubMed Central

    Ryhänen, Eeva M.; Schildt, Jukka; Heiskanen, Ilkka; Väisänen, Mika; Ahonen, Aapo; Löyttyniemi, Eliisa; Schalin-Jäntti, Camilla; Välimäki, Matti J.

    2015-01-01

    Objectives. Studies comparing outcome of single-99mTc-methoxyisobutylisonitrile (99mTc-sestamibi) and dual-tracer 99mTc-sestamibi scintigraphy in combination with 123I before primary surgery of primary hyperparathyroidism (PHPT) are scarce. Methods. We compared 99mTc-sestamibi/123I and 99mTc-sestamibi in a single-centre retrospective series of 269 PHPT patients. The results were related to laboratory, surgical and histological findings. Results. 99mTc-sestamibi/123I and 99mTc-sestamibi were positive in 206 (76.6%) and 111 (41.3%) of 269 patients, respectively (P < 0.001). Accuracies for 99mTc-sestamibi/123I and 99mTc-sestamibi were 63.4% and 34.9%, respectively (96% CI, P < 0.001). Prevalence of multiglandular disease was 15.2%. In multiglandular disease, 99mTc-sestamibi/123I and 99mTc-sestamibi revealed 43.8 and 22.1% of pathological glands, respectively (P < 0.001). Cure rate was similar for patients with (191/206; 92.7%) and without (59 of 63; 93.7%) a positive 99mTc-sestamibi/123I finding. Duration of targeted surgery (one or two quadrants) was 21 and 15 minutes shorter than bilateral neck exploration, respectively (both P < 0.001). Higher serum calcium (P = 0.014) and PTH (P = 0.055) concentrations and larger tumours (P < 0.001) characterized the 206 patients with a positive preoperative scan who were cured by removal of a single adenoma. Conclusions. 99mTc-sestamibi/123I scintigraphy is more accurate than 99mTc-sestamibi before surgery of PHPT. However, outcome of surgery is not determined by scintigraphy alone. PMID:25722888

  10. Treatment with oral biphosphonates can increase the sensitivity of sestamibi radionuclide imaging in patients with primary hyperparathyroidism.

    PubMed

    Makras, P; Kaltsas, G A; Athanasoulis, T; Papadogias, D; Zografos, G N; Kontogeorgos, G; Borboli, N; Piaditis, G

    2005-01-01

    The sensitivity of 99mTc-sestamibi scan in detecting parathyroid disease in primary hyperparathyroidism (PHP) is almost 90%, and therefore facilitates successful parathyroidectomy. To enhance the diagnostic accuracy of the procedure, we repeated imaging with 99mTc-sestamibi in 15 patients with PHP and an initially negative (11 patients) or weakly positive (four patients) 99mTc-sestamibi scan after the administration of 10 mg of oral alendronate for 2 months. Serum calcium, phosphate and parathormone (PTH) measurements were obtained at presentation and after 1 and 2 months' treatment with alendronate. Eight patients with an initially negative 99mTc-sestamibi scan demonstrated at least one area of uptake in the repeated scan. Six of these patients underwent surgery and obtained a biochemical cure; a single adenoma was found in four and hyperplasia in the remaining two. In all four patients with an initially weakly positive 99mTc-sestamibi scan, the repeated scan demonstrated enhanced uptake and also revealed further areas of uptake. Two of these patients underwent surgery with a biochemical cure; an adenoma was found in one and hyperplasia in another. Compared with baseline there was a significant increase in PTH but not in calcium or phosphate levels during treatment with alendronate. We suggest that, in patients with PHP and a negative or weakly positive initial 99mTc-sestamibi scan, administration of oral alendronate may be associated with a positive repeated 99mTc-sestamibi scan and can thus enhance the sensitivity of the procedure.

  11. Exanthema after a stress Tc-99m sestamibi study: continue with a rest sestamibi study?

    PubMed

    Hesse, Birger; Vinberg, Niels; Mosbech, Holger

    2011-05-01

      A mild allergic reaction assumed to be caused by injection of Tc-99m sestamibi for a stress myocardial perfusion imaging (MPI) is presented. We want to discuss the risk involved in completing the MPI with another sestamibi injection, and the precautions and possible treatment in case of a further reaction.   A patient experienced a maculo-papular exanthema, i.e. a mild, probably allergic, adverse event (AE) after a stress MPI including administration of a dose of Tc-99m sestamibi. A rest MPI was needed to decide whether coronary bypass surgery should be performed. After prophylactic treatment with antihistamine and corticosteroid, an uneventful rest MPI was performed.   International recommendations or guidelines related to treatment of AEs after nuclear medicine studies do not exist. Serious AEs in nuclear medicine are very rare, but anaphylactic reactions have been reported and may be life threatening. If repeated administration of the radio-pharmaceutical must be given, the prophylactic and therapeutic interventions should follow general international guidelines for allergic reactions. © 2011 The Authors. Clinical Physiology and Functional Imaging © 2011 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  12. Tc-99m sestamibi bone marrow scintigraphy in Gaucher disease.

    PubMed

    Aharoni, Dvora; Krausz, Yodphat; Elstein, Deborah; Hadas-Halpern, Irith; Zimran, Ari

    2002-07-01

    No imaging technique has been found to be adequate to assess the severity and extent of bone involvement in patients with Gaucher disease. Marrow involvement, as determined by Tc-99m sulfur colloid, correlated well with the clinical and radiologic changes of the skeleton, but a normal pattern was found in the early stages of the disease. Subsequently, Tc-99m sestamibi (MIBI) has been suggested for direct visualization of glycolipid deposits in the bone marrow. This study was initiated as a pilot using MIBI to detect various forms of bone disease in patients with Gaucher disease of varying severity. Eleven patients (9 men; median age, 39.9; age range, 21 to 61 years) were evaluated. The clinical severity of disease was scored at presentation, and four patients with moderate to severe disease were treated with enzyme replacement therapy. Each patient underwent a radiographic skeletal survey, bone densitometry, and MIBI scintigraphy. The scan included static images of the lower limbs, with a whole-body scan acquired between the early and late acquisition. Tracer uptake in the bone marrow was graded and correlated with clinical and objective variables. All but one patient had increased MIBI uptake in the bone marrow. No correlation was noted between MIBI uptake and severity score, radiographic changes, densitometry z score, or treatment status. MIBI scanning is a sensitive technique for detecting bone marrow deposits in Gaucher disease, but it is inadequate for early identification of patients at high risk for skeletal complications or for the follow-up of patients treated with enzyme replacement.

  13. Is sestamibi-guided parathyroidectomy really cost-effective?

    PubMed

    Greene, A K; Mowschenson, P; Hodin, R A

    1999-12-01

    Sestamibi-guided limited neck explorations are an alternative to the standard bilateral neck exploration for patients with primary hyperparathyroidism. A recently published meta-analysis by Denham and Norman (JACS vol.186, 1998) suggested that a sestamibi-directed approach offers a cost benefit because it decreases operative and recovery room times, hospital stay, and the number of frozen sections needed. We reviewed 41 bilateral neck explorations for primary hyperparathyroidism and compared our results with those reported by the meta-analysis to determine whether a sestamibi-directed approach is cost effective. Operative and recovery room times averaged 60.3 +/- 19.3 and 45 minutes, respectively. Forty six percent of the patients were treated as outpatients, and 1.21 +/- 0.57 frozen sections were obtained per case. Our standard bilateral exploration cost 47% less than the bilateral approach and 17% less than the sestamibi-directed operation calculated in the meta-analysis. There were no cases of nerve injury or permanent hypocalcemia, 98% of patients were cured, and 61% of patients did not require narcotics postoperatively. Sestamibi-guided parathyroidectomy may not offer any advantage over the standard bilateral exploration. In our experience, a bilateral neck exploration can be performed on an outpatient basis and at low cost, with a high success rate and minimal morbidity. Most patients do not require narcotics, and the cosmetic results are excellent.

  14. Comparison of single-photon emission computed tomographic (SPECT) myocardial perfusion imaging with thallium-201 and technetium-99m sestamibi in dogs.

    PubMed

    Leon, A R; Eisner, R L; Martin, S E; Schmarkey, L S; Aaron, A M; Boyers, A S; Burnham, K M; Oh, D J; Patterson, R E

    1992-12-01

    The purpose of the present study was to compare single-photon emission computed tomographic (SPECT) myocardial images of technetium-99m (Tc-99m) sestamibi and thallium-201 (Tl-201) isotopes in the same dog undergoing partial coronary occlusion during pharmacologic vasodilation. To date, no controlled study has been reported comparing SPECT Tc-99m sestamibi with SPECT Tl-201 imaging during stress with anatomic and physiologic standards. Mongrel dogs were anesthetized with chloralose and instrumented to record left anterior descending coronary blood flow and aortic pressure. Partial coronary occlusion with a hydraulic cuff reduced coronary vascular conductance, which is equal to the coronary blood flow normalized to aortic pressure during peak vasodilation with intravenous adenosine. Each dog received 5 mCi of Tl-201, then 30 mCi of Tc-99m sestamibi during partial coronary occlusion at peak vasodilation. Tomographic myocardial imaging was performed in a 180 degrees anterior arc scan for 33.5 min, first with Tl-201, and later, without moving the dog, for 33.5 min with Tc-99m sestamibi. Postmortem staining defined the region underperfused because of its dependence on the artery that was partially occluded. In seven dogs with moderate reduction in coronary blood flow, coronary vascular conductance decreased with partial coronary occlusion (47 +/- 12%) during Tl-201 imaging and (47 +/- 8%, p = NS) during Tc-99m sestamibi imaging. The underperfused region was 23.9 +/- 6.4% of total left ventricular mass. Counts in the defects were 39% higher (0.86 +/- 0.08 of normal counts) for Tc-99m sestamibi than for Tl-201 (0.64 +/- 0.09 of normal counts, p < 0.001), and the defect on SPECT Tc-99m sestamibi images occupied only a fraction (0.37 +/- 0.30) of the area of the defect on the Tl-201 images of the same dog. Bull's-eye displays constructed from the pathologic slices showed that the Tl-201 defect size was closer to the underperfused region of the left ventricular mass

  15. Radioguided surgery of parathyroid adenomas and recurrent thyroid cancer using the "low sestamibi dose" protocol.

    PubMed

    Rubello, Domenico; Fig, Lorraine M; Casara, Dario; Piotto, Andrea; Boni, Giuseppe; Pelizzo, Maria R; Shapiro, Brahm; Sandrucci, Sergio; Gross, Milton D; Mariani, Giuliano

    2006-06-01

    The aim of this study was to establish the clinical efficacy of the "low sestamibi dose" (LSD) protocol to perform thyroid and parathyroid radioguided surgery in a large series of patients homogeneously studied and operated on by the same surgeon. The LSD protocol was initially developed in our center to cure primary hyperparathyroid (PHPT) patients with a high likelihood of a solitary parathyroid adenoma (PA) by minimally invasive radioguided surgery (MIRS). Since then, the same protocol has been applied to differentiated thyroid cancer (DTC) patients with 131I-negative, but sestamibi-positive, locoregional recurrent disease in order to obtain radical radioguided extirpation of tumoral lesions at reoperation. We reviewed the clinical charts of 453 consecutive patients referred at the surgical department at Padova University (Padova, Italy) to investigate a PHPT or a DTC recurrence: 336 patients (74.2%) met the inclusion criteria for radioguided surgery, and these patients were analyzed for the aim of this study. There were 298 patients affected by PHPT with a high likelihood of a solitary sestamibipositive PA and 38 DTC patients affected by 131I-negative, but sestamibi-positive, locoregional recurrence. All patients underwent a preoperative imaging work-up, including sestamibi scintigraphy (doubletracer subtraction scan in PHPT patients and single-tracer, wash-out scan in DTC patients) and high-resolution neck ultrasonography (US). The LSD protocol we developed consists of the intravenous injection of a very low (1 mCi) sestamibi dose in the operating theater just 10 minutes before commencing intervention for the purpose of radioguided surgery only. At variance with the traditional "high (20-25 mCi) sestamibi dose (HSD)" protocol in which imaging and radioguided surgery are obtained in the same day, in the LSD protocol, imaging and radioguided surgery are performed in different days. The LSD protocol allows some advantages over the HSD protocol: (1) more time for

  16. Tc-99m sestamibi parathyroid gland scintigraphy: added value of Tc-99m pertechnetate thyroid imaging for increasing interpretation confidence and avoiding additional testing.

    PubMed

    Powell, Daniel K; Nwoke, Franklin; Goldfarb, Richard C; Ongseng, Fukiat

    2013-01-01

    To evaluate the benefit of adding a pertechnetate parathyroid scan (dual-isotope imaging) in the interpretation of sestamibi dual-phase parathyroid scintigraphy. One hundred and sixteen dual Tc-99m sestamibi (MIBI) and Tc-99m pertechnetate subtraction parathyroid studies, performed between January 2000 and February 2006, were retrospectively reviewed. Dual-phase technetium sestamibi examinations were initially interpreted, with blinding to the technetium pertechnetate findings. Subsequently, technetium pertechnetate scan findings were added, and changes in interpretation were recorded. By adding Tc-99m pertechnetate imaging, the interpretation of 17 scans (17/116=14.6%) was substantially altered. This included 5 scans (4%) that changed from negative to positive and 9 scans (8%) that changed from equivocal to positive, excluding ectopic tissue and directing minimally invasive surgery, without the need for further imaging, such as ultrasound, in 12% of cases. One examination changed from positive to negative. In addition, 2 scans changed from equivocal to negative, necessitating further preoperative imaging for the evaluation of additional pathology such as thyroid nodules and lymph nodes and the consideration of hyperplasia. Among the remaining 99 patients, Tc-99m pertechnetate scans may also have contributed to the diagnosis in the 66 positive Tc-99m MIBI scans by increasing confidence in the interpretation and obviating additional imaging. Ten cases remained equivocal. By adding Tc-99m pertechnetate imaging, scan interpretation was changed in 14.6% of cases, and interpretation confidence was enhanced in all but 10 remaining equivocal cases. The addition of a dual-isotope subtraction also eliminated the need for additional testing, such as ultrasound, in 12% of our cases. Increased confidence in interpretation that comes with dual-isotope subtraction may come at the cost of slight lengthening of imaging time but likely simplifies preoperative localization and

  17. Tc-99m SPECT sestamibi for the measurement of infarct size.

    PubMed

    Gibbons, Raymond J

    2011-01-01

    There are a variety of approaches to assess the efficacy of reperfusion therapy, and myocardial protection, in acute myocardial infarction. This review summarizes the available evidence validating the use of technetium-99m sestamibi single-photon emission computed tomography (SPECT) for this purpose. Multiple lines of evidence have validated its clinical utility. SPECT sestamibi infarct size has been used as an endpoint in multiple randomized clinical trials. A smaller number of clinical trials have used both early and later imaging with SPECT sestamibi to assess myocardium at risk and myocardial salvage. SPECT sestamibi has a number of limitations which must be recognized. Nevertheless, SPECT sestamibi infarct size is a well-validated measurement with a long track record of performance as an endpoint in multicenter, randomized clinical trials.

  18. SCAN+

    SciTech Connect

    Kenneth Krebs, John Svoboda

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determine the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.

  19. Quantitative analysis of planar technetium-99m-sestamibi myocardial perfusion images using modified background subtraction

    SciTech Connect

    Koster, K.; Wackers, F.J.; Mattera, J.A.; Fetterman, R.C. )

    1990-08-01

    Standard interpolative background subtraction, as used for thallium-201 ({sup 201}Tl), may create artifacts when applied to planar technetium-99m-Sestamibi ({sup 99m}Tc-Sestamibi) images, apparently because of the oversubtraction of relatively high extra-cardiac activity. A modified background subtraction algorithm was developed and compared to standard background subtraction in 16 patients who had both exercise-delayed {sup 201}Tl and exercise-rest {sup 99m}Tc-Sestamibi imaging. Furthermore, a new normal data base was generated. Normal {sup 99m}Tc-Sestamibi distribution was slightly different compared to {sup 201}Tl. Using standard background subtraction, mean defect reversibility was significantly underestimated by {sup 99m}Tc-Sestamibi compared to {sup 201}Tl (2.8 +/- 4.9 versus -1.8 +/- 8.4, p less than 0.05). Using the modified background subtraction, mean defect reversibility on {sup 201}Tl and {sup 99m}Tc-Sestamibi images was comparable (2.8 +/- 4.9 versus 1.7 +/- 5.2, p = NS). We conclude, that for quantification of {sup 99m}Tc-Sestamibi images a new normal data base, as well as a modification of the interpolative background subtraction method should be employed to obtain quantitative results comparable to those with {sup 201}Tl.

  20. Optimal reproducibility of gated sestamibi and thallium myocardial perfusion study left ventricular ejection fractions obtained on a solid-state CZT cardiac camera requires operator input.

    PubMed

    Cherk, Martin H; Ky, Jason; Yap, Kenneth S K; Campbell, Patrina; McGrath, Catherine; Bailey, Michael; Kalff, Victor

    2012-08-01

    To evaluate the reproducibility of serial re-acquisitions of gated Tl-201 and Tc-99m sestamibi left ventricular ejection fraction (LVEF) measurements obtained on a new generation solid-state cardiac camera system during myocardial perfusion imaging and the importance of manual operator optimization of left ventricular wall tracking. Resting blinded automated (auto) and manual operator optimized (opt) LVEF measurements were measured using ECT toolbox (ECT) and Cedars-Sinai QGS software in two separate cohorts of 55 Tc-99m sestamibi (MIBI) and 50 thallium (Tl-201) myocardial perfusion studies (MPS) acquired in both supine and prone positions on a cadmium zinc telluride (CZT) solid-state camera system. Resting supine and prone automated LVEF measurements were similarly obtained in a further separate cohort of 52 gated cardiac blood pool scans (GCBPS) for validation of methodology and comparison. Appropriate use of Bland-Altman, chi-squared and Levene's equality of variance tests was used to analyse the resultant data comparisons. For all radiotracer and software combinations, manual checking and optimization of valve planes (+/- centre radius with ECT software) resulted in significant improvement in MPS LVEF reproducibility that approached that of planar GCBPS. No difference was demonstrated between optimized MIBI/Tl-201 QGS and planar GCBPS LVEF reproducibility (P = .17 and P = .48, respectively). ECT required significantly more manual optimization compared to QGS software in both supine and prone positions independent of radiotracer used (P < .02). Reproducibility of gated sestamibi and Tl-201 LVEF measurements obtained during myocardial perfusion imaging with ECT toolbox or QGS software packages using a new generation solid-state cardiac camera with improved image quality approaches that of planar GCBPS however requires visual quality control and operator optimization of left ventricular wall tracking for best results. Using this superior cardiac technology, Tl-201

  1. Technetium 99m sestamibi in the assessment of chronic coronary artery disease.

    PubMed

    Berman, D S; Kiat, H; Van Train, K; Garcia, E; Friedman, J; Maddahi, J

    1991-07-01

    Extensive work has already been performed with regard to both planar and single photon emission computed (SPECT) technetium 99m sestamibi studies. Before widespread application of optimized acquisition and processing methods, clinical results between 99mTc sestamibi and thallium 201 were remarkably similar. It is anticipated that as techniques for 99mTc sestamibi planar and SPECT imaging become optimized, improvements in sensitivity and specificity for detection of coronary artery disease, over those observed with 201TI, might be forthcoming. This expectation is based on the improved image quality inherent in the use of the 99mTc agent with its higher count rate and higher energy. This improvement in image quality may be a principal reason for laboratories to switch from 201TI to 99mTc sestamibi imaging. It is anticipated that, with improved imaging characteristics, it will be easier for the average community hospital to obtain higher quality planar or SPECT imaging using 99mTc sestamibi rather than 201TI. In addition to improved image quality, the characteristics of 99mTc sestamibi allow gated planar or SPECT perfusion images to be obtained. It has been suggested that stress-gated SPECT sestamibi studies may provide all the information contained in a stress-rest nongated 99mTc sestamibi study, thereby potentially increasing patient throughput, a major concern with SPECT. Throughput can also be increased by using dual-isotope approaches with rest 201TI and stress technetium sestamibi acquisitions, employing either separate or simultaneous imaging with which the entire study can be accomplished in less than 2 hours. With simultaneous dual-isotope acquisition, camera time can be reduced by 50%. Finally, 99mTc sestamibi offers the advantage of the ability to perform first-pass exercise ventricular function and SPECT myocardial perfusion studies with a single injection of tracer. Regarding the assessment of myocardial viability, results to date suggest a very high

  2. Pulmonary uptake of sestamibi on early post-stress images: angiographic relationships, incidence and kinetics.

    PubMed

    Hurwitz, G A; Fox, S P; Driedger, A A; Willems, C; Powe, J E

    1993-01-01

    Early post-stress imaging with 99Tcm-sestamibi has the potential to reveal ancillary markers of severe coronary artery disease. Lung/myocardial ratios of sestamibi were assessed after pharmacologic, exercise or combined stress, and these were compared with historical controls who were stressed similarly, but imaged with 201Tl. Forty initial patients had planar imaging and correlating angiograms; pulmonary uptake for sestamibi related to severe coronary artery stenoses when measured on immediate images, started at 4 min post-stress (P = 0.04), but had a poor relationship to angiographic findings when measured on delayed clinical images. Of 180 subsequent studies, increased pulmonary uptake of sestamibi was seen more frequently (incidence = 34%) in those with abnormal tomograms compared to those with normal tomograms (incidence = 13%, P < 0.01), but appeared less frequently than on abnormal 201Tl studies (incidence = 60%). With sequential imaging for 5 min after injection, pulmonary uptake showed a greater fall with time on sestamibi studies than on matched 201Tl studies. No consistent differences were seen among the stress modalities. As an ancillary sign of haemodynamically severe disease, increased pulmonary uptake can be seen after various stress modalities, but may be more difficult to apply with sestamibi than with thallium imaging.

  3. Technetium-99m sestamibi myocardial imaging: Same-day rest-stress studies and dipyridamole

    SciTech Connect

    Taillefer, R. )

    1990-10-16

    Unlike thallium-201, technetium-99m (Tc-99m) sestamibi does not redistribute in the myocardium after injection. Thus, 2 separate injections, 1 at rest and the other at stress (or after dipyridamole), are required to differentiate ischemia from scar. From a physical viewpoint, a 24-hour interval between the 2 injections is preferable for detection of coronary artery disease (CAD) with Tc-99m sestamibi imaging. However, same-day studies are more convenient in clinical practice. Results of studies using different Tc-99m sestamibi injection protocols are presented with emphasis on the advantages of a rest-stress injection sequence with a low dose at rest (7 mCi) followed 2 hours later by a higher dose at stress (25 mCi). A prospective study was conducted in a patient population with proven CAD using same-day studies to compare a rest-stress (7 and 25 mCi, respectively) to a stress-rest (7 and 25 mCi) Tc-99m sestamibi injection sequence. There was an agreement in 87.3% of the analyzed segments between the 2 protocols. However, the largest discordance for type of defect applied to 7.4% of the segments judged ischemic in the rest-stress protocol, which were called scars on stress-rest. This study showed that a rest-stress sequence is preferable when using a same-day protocol with a short time interval (less than 2 hours) between the 2 Tc-99m sestamibi injections because the rest image performed initially represents a true rest study, which is not necessarily the case with the stress-rest sequence. Preliminary studies were performed to evaluate dipyridamole with Tc-99m sestamibi imaging in normal subjects and in patients with CAD. These studies showed that treadmill and dipyridamole Tc-99m sestamibi imaging are comparable and the results are similar to those obtained with thallium-201.

  4. Pre- and postoperative evaluation of renal function in patients with staghorn calculi utilizing quantitative renal scanning.

    PubMed

    Stage, K H; Lewis, S

    1981-01-01

    Differential quantitative renal scans using 99-technetium diethylene triaminepentaacetic acid (DTPA) or 131I Hippuran were obtained properatively on 12 patients with unilateral or bilateral staghorn calculi. Of the 14 renal units studied, 12 kidneys underwent anatrophic nephrolithotomy, pyelolithotomy, or a combination of both techniques; 2 patients underwent nephrectomy based on poor function of the affected side preoperatively. Postoperative follow-up scans were obtained on the 12 kidneys undergoing stone cleanout. Seven of 12 kidneys (58 per cent) studied pre- and postoperatively showed moderate to significant improvement in per cent contribution to total renal function. Seven of 10 kidneys (70 per cent) studied pre- and postoperatively showed improvement in glomerular filtration rate or effective renal plasma flow. The scans revelaed no dramatic difference in postoperative functional loss between pyelolithotomy and anatrophic nephrolithotomy. The computerizewd quantitative renal scan helps in selection of surgical technique and objective postoperative assessment of surgical results.

  5. Left-ventricular dyssynchrony evaluated by Tl-201 gated SPECT myocardial perfusion imaging: a comparison with Tc-99m sestamibi.

    PubMed

    Chen, Chien-Cheng; Huang, Wen-Sheng; Hung, Guang-Uei; Chen, Wan-Chen; Kao, Chia-Hung; Chen, Ji

    2013-03-01

    Phase analysis of gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) has been validated as a reliable tool to assess left-ventricular (LV) mechanical dyssynchrony. The initial results were all confirmed from studies using technetium-99m (Tc-99m) sestamibi or tetrofosmin as the radiotracers. The purpose of this study was to evaluate the feasibility of phase analysis in thallium-201 (Tl-201) gated SPECT MPI. Seventeen patients referred from a cardiology clinic for evaluation of coronary artery disease were studied. All patients underwent both Tl-201 and Tc-99m sestamibi gated SPECT MPI within 1 week. An additional 34 patients with Tl-201 gated SPECT and 22 patients with Tc-99m sestamibi gated SPECT, who had a low likelihood of coronary artery disease, normal LV function, and normal perfusion on MPI, were used as normal controls. LV dyssynchrony parameters, including phase standard deviation (PSD) and phase histogram bandwidth (PHB), were measured using a standard phase analysis tool and compared between Tl-201 and Tc-99m sestamibi images. The LV dyssynchrony parameters correlated well (r=0.93 for PSD and r=0.84 for PHB) between Tl-201 and Tc-99m sestamibi images. The dyssynchrony parameters of Tl-201 were significantly larger than those of Tc-99m sestamibi (PSD: 24.5±12.0 vs. 17.4±9.7, P<0.001; PHB: 74.7±35.5 vs. 50.6±25.0, P<0.001). In comparison with normal controls, Tl-201 and Tc-99m sestamibi images showed concordant results. LV dyssynchrony parameters correlated well between Tl-201 and Tc-99m sestamibi images, even though the values were significantly larger for Tl-201 than for Tc-99m sestamibi. Tl-201 images showed results similar to those of Tc-99m sestamibi in the diagnosis of LV dyssynchrony.

  6. Prognostic importance of scintigraphic left ventricular cavity dilation during intravenous dipyridamole technetium-99m sestamibi myocardial tomographic imaging in predicting coronary events.

    PubMed

    McClellan, J R; Travin, M I; Herman, S D; Baron, J I; Golub, R J; Gallagher, J J; Waters, D; Heller, G V

    1997-03-01

    Left ventricular (LV) cavity dilation during stress myocardial perfusion imaging has been associated with multivessel disease, and may be an independent prognostic marker in addition to perfusion defects. The present study examines the predictive value for future cardiac events of transient or fixed LV dilation during dipyridamole technetium-99m (Tc-99m) sestamibi single-photon emission computed tomography (SPECT) imaging. The study included 512 consecutive patients who underwent SPECT imaging with Tc-99m sestamibi after dipyridamole infusion. Transient LV dilation was seen in 70 patients (14%) and 74 had fixed cavity dilation (14%); cavity size was normal in 368 patients (72%). Each perfusion scan was classified as normal or abnormal, and if abnormal, defects were categorized as transient or fixed, and as small, medium, or large (depending upon the number of abnormal vascular territories). Events during a mean follow-up of 12.8 +/- 6.8 months were tabulated by direct review of hospital charts and death certificates. The cardiac event rate (cardiac death or nonfatal infarction) was 1.9% in patients with normal cavity size, 11.4% with transient LV dilation, and 13.5% with fixed LV dilation (p < 0.01). Compared with patients with normal cavity size, those with transient LV dilation were more likely to sustain a myocardial infarction (p < 0.01) and those with fixed dilation more frequently suffered cardiac death (p < 0.01) and hospitalization for heart failure (p < 0.01). The group with the highest risk had both a large perfusion defect and cavity dilation. By Cox proportional hazard regression analysis, both transient and fixed LV dilation were strong independent predictors of cardiac events. Transient or fixed LV dilation are commonly seen during dipyridamole Tc-99m sestamibi SPECT imaging (14% incidence for each) and are useful predictors of cardiac events.

  7. Molybdenum-99/technetium-99m management: race against time.

    PubMed

    Ahmad, Mushtaq

    2011-11-01

    Molybdenum-99 is a parent of diagnostic nuclear medicine. It decays to technetium-99m, which used in over 30 million investigations per year around the world. Supplies of Tc-99m remained fragile in the last few years, which may occur again in the short and long term. Few suggestions have been registered in this letter to cope inadequate supply of the most wanted radionuclide for patient care.

  8. Detection of P-glycoprotein activity in endotoxemic rats by 99mTc-sestamibi imaging.

    PubMed

    Wang, Jing-Hung; Scollard, Deborah A; Teng, Shirley; Reilly, Raymond M; Piquette-Miller, Micheline

    2005-09-01

    (99m)Tc-sestamibi is a widely used radiopharmaceutical agent for myocardial and oncologic imaging. Because of its unique role as a P-glycoprotein (Pgp)-specific substrate, this compound can be used to examine Pgp functional activity in vitro and in vivo under pathologic conditions. Our objective was to use (99m)Tc-sestamibi as a tool to investigate whether systemic inflammation induced by Escherichia coli lipopolysaccharide (LPS) would affect in vivo Pgp function in the brain, heart, liver, and kidneys of rats. Moreover, we also wanted to examine LPS-mediated effects in the placenta of pregnant rats because of the limited amount of in vivo data on this tissue. Rats were injected intraperitoneally with LPS or an equal volume of saline as controls. After certain time periods (6 or 24 h), animals were administered 20 MBq of (99m)Tc-sestamibi intravenously, and then images were taken at 0.5, 1, 2, and 3 h. Tissues of rats were excised for (99m)Tc-sestamibi biodistribution analysis by gamma-counting and messenger RNA (mRNA) analysis by reverse transcription-polymerase chain reaction. Western blot analysis with antibody C-219 was used to detect Pgp levels. LPS treatment for 6 h caused a significant downregulation of mdr1a mRNA levels in the brain, heart, and liver, whereas 24 h of LPS treatment significantly reduced mdr1a mRNA levels only in the liver. A significant downregulation of mdr1a mRNA was seen in the brain, heart, and liver within 6 h after LPS administration. Imaging and biodistribution studies demonstrated a higher accumulation of (99m)Tc-sestamibi in the brain, heart, and liver of LPS-treated rats. In the brain, LPS-imposed downregulation of mdr1a mRNA levels was transient, with significant suppression at 4, 6, and 12 h, and the levels recovered to nearly normal by 24 h. This time-dependent downregulation of mRNA correlated with protein levels determined by Western blot analysis. Biodistribution studies of pregnant rats demonstrated a 3.5-fold

  9. Assessment of digital ischaemia and evaluation of response to therapy by 99mTc sestamibi limb scintigraphy after local cooling of the hands in patients with vasospastic Raynaud's syndrome.

    PubMed

    Sarikaya, Ali; Ege, Turan; Firat, Mehmet Fatih; Duran, Enver

    2004-02-01

    Cold induced arteriolar constriction in patients with vasospastic Raynaud's syndrome (VRS) produces temporary digital ischaemia. The aim of this study was to ascertain whether 99mTc sestamibi scintigraphy is useful in the diagnosis and the monitoring of treatment in VRS. Fifteen patients with VRS and 20 matched normal controls underwent examination. Twelve patients with VRS received therapy. For each patient, one hand was immersed in iced water for 30s while the other hand served as a control. Ten minutes after cooling, 99mTc sestamibi was injected and imaging was performed 60min later. The per cent decrease of the perfusion (%DP) was calculated by semiquantitative analysis to determine the severity of hypoperfusion. In all patients with VRS, moderate or marked hypoperfusion were seen in 99mTc sestamibi images after exposure to the iced water, while there was minimal or mild hypoperfusion in the control groups. Values for %DP were 46.86 +/- 19.04 and 7.85 +/- 4.53 for the VRS group and normal subjects, respectively. The difference between both groups was statistically significant (P = 0.0000). In 12 treated patients with VRS, pre-treatment and post-treatment %DP values were 51.16 +/- 18.42 and 33.58 +/- 17.83, respectively, and a significant difference was seen between both values (P = 0.001). However, there was still a statistically significant difference between control subjects and post-therapy values (7.85 +/- 4.53 vs. 33.58 +/- 17.83, P = 0.0000). The +/- 95% confidence interval of DP for control subjects was 5.7-10% (chi-squared, P = 0.000). When a DP of 10% was used as a cut-off point, sensitivity, specificity and diagnostic accuracy were 100%, 70% and 83%, respectively, for the 99mTc sestamibi scan. There was also a strong correlation between %DP and the duration of the disease (r = 0.80, P = 0.0003). The results of this study indicate that a 99mTc sestamibi scan is a valuable imaging method for the determination of digital ischaemia in vasospastic Raynaud

  10. Comparison of Tc-99m maraciclatide and Tc-99m sestamibi molecular breast imaging in patients with suspected breast cancer.

    PubMed

    O'Connor, Michael K; Morrow, Melissa M B; Hunt, Katie N; Boughey, Judy C; Wahner-Roedler, Dietlind L; Conners, Amy Lynn; Rhodes, Deborah J; Hruska, Carrie B

    2017-12-01

    Molecular breast imaging (MBI) performed with (99m)Tc sestamibi has been shown to be a valuable technique for the detection of breast cancer. Alternative radiotracers such as (99m)Tc maraciclatide may offer improved uptake in breast lesions. The purpose of this study was to compare relative performance of (99m)Tc sestamibi and (99m)Tc maraciclatide in patients with suspected breast cancer, using a high-resolution dedicated gamma camera for MBI. Women with breast lesions suspicious for malignancy were recruited to undergo two MBI examinations-one with (99m)Tc sestamibi and one with (99m)Tc maraciclatide. A radiologist interpreted MBI studies in a randomized, blinded fashion to assign an assessment score (1-5) and measured lesion size. Lesion-to-background (L/B) ratio was measured with region-of-interest analysis. Among 39 analyzable patients, 21 malignant tumors were identified in 21 patients. Eighteen of 21 tumors (86%) were seen on (99m)Tc sestamibi MBI and 19 of 21 (90%) were seen on (99m)Tc maraciclatide MBI (p = 1). Tumor extent measured with both radiopharmaceuticals correlated strongly with pathologic size ((99m)Tc sestamibi, r = 0.84; (99m)Tc maraciclatide, r = 0.81). The L/B ratio in detected breast cancers was similar for the two radiopharmaceuticals: 1.55 ± 0.36 (mean ± S.D.) for (99m)Tc sestamibi and 1.62 ± 0.37 (mean ± S.D.) for (99m)Tc maraciclatide (p = 0.53). No correlation was found between the L/B ratio and molecular subtype for (99m)Tc sestamibi (r s  = 0.12, p = 0.63) or (99m)Tc maraciclatide (r s  = -0.12, p = 0.64). Of 20 benign lesions, 10 (50%) were seen on (99m)Tc sestamibi and 9 of 20 (45%) were seen on (99m)Tc maraciclatide images (p = 0.1). The average L/B ratio for benign lesions was 1.34 ±0.40 (mean ±S.D.) for (99m)Tc sestamibi and 1.41 ±0.52 (mean ±S.D.) for (99m)Tc maraciclatide (p = 0.75). Overall diagnostic performance was similar for both radiopharmaceuticals

  11. Multiple endocrine neoplasia type 1 with anterior mediastinal parathyroid adenoma: successful localization using Tc-99m sestamibi SPECT/CT

    PubMed Central

    Park, Hye Lim; Kim, Sung Hoon; Lee, Sohee

    2016-01-01

    The most common manifestation of multiple endocrine neoplasia type 1 (MEN1) is hyperparathyroidism. Treatment of hyperparathyroidism in MEN patients is surgical removal of the parathyroid glands, however ectopic parathyroid gland is challenging for treatment. A 51-year-old female, the eldest of 3 MEN1 sisters, had hyperparathyroidism with ectopic parathyroid adenoma in the mediastinal para-aortic region, which was detected by technetium-99m (Tc-99m) sestamibi scintigraphy and single-photon emission computed tomography/computed tomography (SPECT/CT). She underwent total parathyroidectomy with video-assisted thoracoscopic surgery on an anterior mediastinal mass. Anterior mediastinal parathyroid adenoma in MEN1 patients is rare. Precise localization of an ectopic parathyroid gland with Tc-99m sestamibi SPECT/CT can lead to successful treatment of hyperparathyroidism. This is the first reported case in the literature of mediastinal parathyroid adenoma in MEN1 patient visualized by Tc-99m sestamibi SPECT/CT. PMID:27904855

  12. Factors influencing the uptake of 99mTc-sestamibi in breast tissue on molecular breast imaging.

    PubMed

    O'Connor, Michael K; Hruska, Carrie B; Tran, Thuy D; Swanson, Tiffinee; Conners, Amy Lynn; Jones, Katie; Rhodes, Deborah J

    2015-03-01

    The purpose of this study was to evaluate the impact of changes to a patient's prandial status, metabolic status (rest vs. exercise), and peripheral blood flow (via caffeine or warming) on the uptake of (99m)Tc-sestamibi in breast tissue. A total of 154 subjects participated in 1 of 4 study groups that evaluated the effects of 4 types of intervention on the uptake of (99m)Tc-sestamibi in breast tissue (effect of fasting, light exercise, caffeine, and peripheral warming). Molecular breast imaging was performed before and after each intervention. Count density was assessed in counts/cm(2)/MBq from the mediolateral oblique view in all studies. Uptake of (99m)Tc-sestamibi in breast tissue increased by approximately 25% from 6.6 counts/cm(2)/MBq in the fed state to 8.3 counts/cm(2)/MBq with fasting. Peripheral warming also resulted in an approximately 20% increase in count density from 9.1 to 10.9 counts/cm(2)/MBq. Conversely, exercise caused a 35% drop in count density relative to the resting state. Uptake did not seem to be influenced by caffeine and did not correlate with a patient's height, weight, or breast thickness. There was only a weak correlation between breast activity and body surface area. The combined effects of fasting and warming resulted in an approximately 50% increased uptake of (99m)Tc-sestamibi in breast tissue relative to that observed in a reference group to whom no preparatory instructions had been given. Optimal patient preparation before administration of (99m)Tc-sestamibi should permit a corresponding reduction in either acquisition time or required dose of (99m)Tc-sestamibi. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  13. An alternative method for rapid preparation of 99Tcm-sestamibi.

    PubMed

    Wilson, M E; Hung, J C; Gibbons, R J

    1993-07-01

    The availability of 99Tcm-sestamibi is limited, especially in emergency cases due to the time-consuming preparation procedure that requires a 10-min boiling water bath and a 30-min radiochemical purity (RCP) analysis. These two restrictions have been surmounted by the combined use of a microwave oven heating method and a minipaper chromatography system. However, use of the microwave oven heating method presents some potential problems: (1) technical error in setting the microwave oven heating time and power setting; (2) ejection of the rubber septum if the vial is not evacuated; (3) breakage of the vial during the microwave heating process; (4) inconsistent and inhomogeneous microwave heating; (5) reevaluation process required for use of a different type of microwave oven. Although a 1-min boiling water bath time is sufficient to provide an acceptable RCP for 99Tcm-sestamibi, additional time is required to heat the water to a boiling state. An instant hot water machine was evaluated for possible replacement of the microwave heating method. Three millilitres of 5500 MBq (150 mCi) 99Tcm was added to a Cardiolite kit and then placed in a 150-ml insulated beaker filled with hot water (86.2 +/- 1.9 degrees C, n = 45) from an instant hot water machine. A minipaper chromatography system was used to determine the RCP of samples after 1, 1.5, 2, 3, 4 and 5 min incubation periods. Our results show that 2 min was the shortest incubation time that yielded an acceptable RCP of 94.7 +/- 0.4% (n = 60) over the 24 h evaluation time. The use of an instant hot water machine not only avoids those problems associated with the microwave heating method, but also provides a rapid, efficient and relatively simple option for preparation of 99Tcm-sestamibi.

  14. Technetium-99m sestamibi in chronic coronary artery disease: The European experience

    SciTech Connect

    Sochor, H. )

    1990-10-16

    Since the introduction of technetium-99m methoxy-isobutyl isonitrile (Tc-99m sestamibi) in Europe, there has been a growing interest in its use. Several European multicenter trials have been conducted to evaluate this new agent in relation to the traditional perfusion marker thallium-201, and other studies are in progress to understand the use of this perfusion marker for the diagnosis of coronary disease, for use in conjunction with pharmacologic vasodilation, for use in the assessment of ventricular function and wall motion and for the assessment of interventions.

  15. International prospective evaluation of scintimammography with (99m)technetium sestamibi.

    PubMed

    Sampalis, Fotini S; Denis, Ronald; Picard, Daniel; Fleiszer, David; Martin, Ginette; Nassif, Edgard; Sampalis, John S

    2003-06-01

    The purpose of this study is to evaluate the efficacy of scintimammography with (99m)Technetium-Sestamibi for the diagnosis of breast cancer. This was a multicenter prospective cohort clinical trial. A total of 1,734 women were enrolled of whom 1,243 had complete data upon study completion. The mean +/- standard error age of the patients is 56 +/-12 years (with a range of 19 to 94). Mammographic results were classified by the Breast Imaging Reporting and Data System (BIRADS) as 199 (16%) BIRADS 5, 149 (12%) BIRADS 4, 199 (16%) BIRADS 3, and 696 (56%) BIRADS 2 or 1. Scintimammography was positive for 322 (26%) of the patients and negative for 921 (76%). Histopathology showed malignancy for 201 (16%) of the patients. Sensitivity and specificity of scintimammography was estimated 93% and 87% respectively. A positive predictive value (PPV) of 58% with a negative predictive value of 98% were calculated. The present study suggests that scintimammography with (99m)Technetium-Sestamibi is highly accurate for the detection of breast cancer.

  16. Thrombolytic therapy for myocardial infarction: Assessment of efficacy by myocardial perfusion imaging with technetium-99m sestamibi

    SciTech Connect

    Wackers, F.J. )

    1990-10-16

    Technetium-99m (Tc-99m) sestamibi has been used to evaluate the efficacy of thrombolytic therapy. Improved image quality due to the higher photon energy of Tc-99m and the increased allowable doses of this radiopharmaceutical along with its lack of redistribution makes Tc-99m sestamibi an acceptable imaging agent for such studies. This imaging agent was used for serial quantitative planar and tomographic imaging to assess the initial risk area of infarction, its change over time and the relation to infarct-related artery patency in patients with a first acute myocardial infarction. Twenty-three of 30 patients were treated with recombinant tissue-type plasminogen activator (rt-PA) within 4 hours after onset of acute chest pain. Seven patients were treated in the conventional manner and did not receive thrombolytic therapy. The initial area at risk varied greatly both in patients treated with rt-PA and in those who received conventional therapy. Patients with successful thrombolysis and patient infarct arteries had a significantly greater reduction of Tc-99m sestamibi defect size than patients who had persistent coronary occlusion. Serial imaging with Tc-99m sestamibi could find important application in future clinical research evaluating the efficacy of new thrombolytic agents. Direct measurements of the amount of hypoperfused myocardium before and after thrombolysis could provide rapid and unequivocal results using fewer patients and avoiding the use of mortality as an end point. This approach has not yet been widely tested in the clinical arena.

  17. The role of preoperative ultrasonography, computed tomography, and sestamibi scintigraphy localization in secondary hyperparathyroidism

    PubMed Central

    Lee, Jae Bok; Kim, Woo Young

    2015-01-01

    Purpose The role of preoperative localization studies is controversial in surgery of secondary hyperparathyroidism (sHPT). The aim of study was to evaluate the accuracy of preoperative ultrasonography (USG), CT, and 99mTc sestamibi scintigraphy (MIBI) in localizing enlarged parathyroid glands and to find the impact of correct localization in successful parathyroidectomy. Methods We compared operative findings with the preoperative localization of ultrasonography, computerized tomography and sestamibi scintigraphy in 109 patients with sHPT and identified well-visualized locations of abnormal parathyroid glands by evaluating the sensitivity of each imaging study with regard to typical locations of glands. We investigated the effect of preoperative imaging localization on the surgical outcomes by measuring the intraoperative parathyroid hormone (ioPTH) decrement for positive or negative imaging localization. Results USG (91.5%) had the highest sensitivity and MIBI (56.1%) had the lowest among 3 modalities. The sensitivity of combined USG and CT (95.0%) was the highest among combined 2 modalities. The combination of all 3 modalities (95.4%) had the highest sensitivity among the combinations of modalities. The reduction of ioPTH in patients with positive imaging localization (86.6%) was greater than negative imaging localization (84.2%), with no significant difference (P = 0.586). The recurrence or persistence of sHPT was not correlated with preoperative imaging localization (19 patients in negative, 16 in positive; P = 0.14). Conclusion Preoperative imaging localization contributed to surgical success but not to surgical outcomes. The combination of ioPTH measurement with imaging localization might be valuable for better surgical results in sHPT. PMID:26665124

  18. Measurement of left ventricular ejection fraction using gated 99mTc-sestamibi myocardial planar images: Comparison to contrast ventriculography

    SciTech Connect

    Parker, D.A.; Lloret, R.L.; Barilla, F.; Douthat, L.; Gheorghiade, M. )

    1991-01-01

    Using the new myocardial perfusion agent 99mTc-sestamibi and multigated acquisition on a nuclear medicine gamma camera, the left ventricular ejection fraction (LVEF) was derived in 13 patients with coronary artery disease (CAD). Cross-sectional activity profiles were used to measure the left ventricle from end-diastolic and end-systolic images. Several different geometric methods were then utilized to derive ejection fractions from the nuclear data. Comparison of the resultant ejection fractions to those obtained from contrast ventriculography showed significant correlation for all geometric methods (P less than 0.01, Sy X x = 6.2 to 9.6). The authors conclude that in patients with CAD one or more of these simple geometric methods can provide a useful estimate of the LVEF when performing 99mTc-sestamibi multigated myocardial perfusion imaging.

  19. 99mTc sestamibi myocardial perfusion scintigraphy with the novel use of metamizol for the detection of perfusion reversibility.

    PubMed

    Ergün, Eser Lay; Caglar, Meltem; Bozkurt, Murat Fani; Ergün, Hakan

    2008-08-01

    This study aims to investigate whether induction with metamizol, an analgesic-antipyretic drug having spasmolitic activity, could be used to increase the detectability of ischemic/jeopardized myocardium during MPS (myocardial perfusion scintigraphy). Metamizol-enhanced rest MPS (45 min after administration of 1 g metamizol orally, 740 MBq (99m)Tc sestamibi was injected, MPS was acquired 45 min later) was performed in 21 patients who had perfusion defects on their previous stress-rest (99m)Tc sestamibi MPS. Blood pressure was monitored at 15-min intervals. Stress, rest, metamizol-rest MPS images were interpreted on the model of 20 segments using a visual uptake score (VUS; 0 = normal, 1 = mild, 2 = moderate, 3 = significant decreases, 4 = no uptake). (99m)Tc sestamibi uptake ratios (MIBI-UR; mean counts in the region of the perfusion defect/mean counts in the region of the normal-perfused wall) were obtained on each MPS and compared with each other. Average MIBI-UR in each scintigraphic examination was calculated. MPS were compared with coronary angiography results. VUS and MIBI-UR results showed that metamizol-rest MPS displayed the defect reversibility better than rest MPS. Of the 14 segments with fixed perfusion defects on stress-rest MPS, 8 showed improvement of perfusion after metamizol induction. In 33 segments, lesion reversibility was better delineated on metamizol-rest MPS. Metamizol-induced sestamibi uptake was significantly higher (p < 0.001) than stress/baseline rest examinations as calculated by the MIBI-UR. Blood pressure remained unaltered. Coronary angiography results were in concordance with metamizol induced MPS. Metamizol-enhanced rest MPS increases detectability of ischemic/viable myocardium during MPS. Metamizol should be discontinued like nitrates before stress MPS since it may mask the visualization of ischemic perfusion defects.

  20. Assessment of transient left ventricular dilation ratio via 2-day dipyridamole Tc-99m sestamibi nongated myocardial perfusion imaging.

    PubMed

    Kakhki, Vahid Reza Dabbagh; Sadeghi, Ramin; Zakavi, Seyed Rasoul

    2007-07-01

    The definition of an abnormal transient ischemic dilation (TID) ratio may be different according to stress type, type of isotope, and imaging protocols. The aim of this study was to derive the normal threshold and assessment of the TID ratio via 2-day dipyridamole stress/rest technetium 99m sestamibi myocardial perfusion single photon emission computed tomography (MPS). We performed 2-day dipyridamole stress/rest Tc-99m sestamibi MPS in 665 patients. The TID ratio was calculated automatically with the Emory Cardiac Toolbox. The upper limit of normal (1.19) for the TID ratio was derived from 131 patients with a low (<5%) likelihood of coronary artery disease as mean + 2 SDs. Patients with complete or partial reversible defects or multivessel-type or left anterior descending artery (LAD) territory perfusion abnormalities had higher TID ratios than the other patients. These patients had a higher frequency of an abnormal TID ratio (>1.19) as well. Binary logistic regression analysis showed that ischemia and LAD territory perfusion abnormality were independent predictors of an abnormal TID ratio. The threshold for an abnormal TID ratio via 2-day post-dipyridamole stress/rest Tc-99m sestamibi MPS was greater than 1.19. By use of this protocol, TID is not uncommon and it is related to a greater amount of ischemic burden as well as multivessel-type or LAD territory perfusion abnormality.

  1. Comparative value of 99mTc-sestamibi scintimammography and sonography in the diagnostic workup of breast masses.

    PubMed

    Klaus, A J; Klingensmith, W C; Parker, S H; Stavros, A T; Sutherland, J D; Aldrete, K D

    2000-06-01

    This study was conducted to assess the relative roles of 99mTc-sestamibi scintimammography and sonography in the evaluation of breast lesions that are indeterminate or suspicious on mammography or clinical examination. Twenty-five patients with 33 biopsy-proven breast lesions underwent both scintimammography and sonography. Lesions were categorized as benign or requiring biopsy on the basis of the absence or presence of a focus of increased activity on scintimammography and the shape, orientation, and echogenicity of the lesion on sonography. Sensitivity and specificity in detecting breast cancer were 92% and 95%, respectively, for scintimammography and 100% and 48%, respectively, for sonography. The higher specificity of scintimammography was statistically significant (p < 0.01). Although the overall accuracy of 99mTc-sestamibi scintimammography in the diagnosis of breast cancer was high, it has several disadvantages in comparison with sonography. Scintimammography has a slightly higher false-negative rate for breast cancer, is unable to reveal cysts, is more expensive, takes longer to perform, and involves ionizing radiation. For these reasons, scintimammography with 99mTc-sestamibi is unlikely to either replace sonography or be frequently used in addition to sonography.

  2. A Multimodal Imaging Protocol, (123)I/(99)Tc-Sestamibi, SPECT, and SPECT/CT, in Primary Hyperparathyroidism Adds Limited Benefit for Preoperative Localization.

    PubMed

    Lee, Grace S; McKenzie, Travis J; Mullan, Brian P; Farley, David R; Thompson, Geoffrey B; Richards, Melanie L

    2016-03-01

    Focused parathyroidectomy in primary hyperparathyroidism (1°HPT) is possible with accurate preoperative localization and intraoperative PTH monitoring (IOPTH). The added benefit of multimodal imaging techniques for operative success is unknown. Patients with 1°HPT, who underwent parathyroidectomy in 2012-2014 at a single institution, were retrospectively reviewed. Only the patients who underwent the standardized multimodal imaging workup consisting of (123)I/(99)Tc-sestamibi subtraction scintigraphy, SPECT, and SPECT/CT were assessed. Of 360 patients who were identified, a curative operation was performed in 96%, using pre-operative imaging and IOPTH. Imaging analysis showed that (123)I/(99)Tc-sestamibi had a sensitivity of 86% (95% CI 82-90%), positive predictive value (PPV) 93%, and accuracy 81%, based on correct lateralization. SPECT had a sensitivity of 77% (95% CI 72-82%), PPV 92% and accuracy 72%. SPECT/CT had a sensitivity of 75% (95% CI 70-80%), PPV of 94%, and accuracy 71%. There were 3 of 45 (7%) patients with negative sestamibi imaging that had an accurate SPECT and SPECT/CT. Of 312 patients (87%) with positive uptake on sestamibi (93% true positive, 7% false positive), concordant findings were present in 86% SPECT and 84% SPECT/CT. In cases where imaging modalities were discordant, but at least one method was true-positive, (123)I/(99)Tc-sestamibi was significantly better than both SPECT and SPECT/CT (p < 0.001). The inclusion of SPECT and SPECT/CT in 1°HPT imaging protocol increases patient cost up to 2.4-fold. (123)I/(99)Tc-sestamibi subtraction imaging is highly sensitive for preoperative localization in 1°HPT. SPECT and SPECT/CT are commonly concordant with (123)I/(99)Tc-sestamibi and rarely increase the sensitivity. Routine inclusion of multimodality imaging technique adds minimal clinical benefit but increases cost to patient in high-volume setting.

  3. The presence of sodium nitrate in generator eluate decreases the radiochemical purity of 99mTc-sestamibi.

    PubMed

    Métayé, Thierry; Rosenberg, Thierry; Guilhot, Joëlle; Bouin-Pineau, Marie-Hélène; Perdrisot, Rémy

    2012-09-01

    A high radiochemical purity (RCP) is recommended for radiopharmaceutical compounds used in the clinical practice of nuclear medicine. However, some preparations of (99m)Tc-sestamibi contain excess impurities (>6%). To understand the origin of these impurities, we investigated the effect of sodium nitrate on the RCP of sestamibi preparations by testing eluates from 3 commercially available (99m)Tc generators. The sestamibi kits (Stamicis) were reconstituted with (99m)Tc eluate from nitrate-containing wet-column (NCWC), nitrate-free wet-column (NFWC), and nitrate-free dry-column (NFDC) generators. Sodium nitrate was 0.05 mg/mL in eluates from the NCWC generators. The RCP was determined using aluminum oxide sheets as the stationary phase and absolute ethanol as the mobile phase. Succimer, tetrofosmin, oxidronate, exametazine, albumin nanocolloid, and soluble albumin were also tested for their RCP values with eluates from the 3 different (99m)Tc generators. The RCP assessment of (99m)Tc-sestamibi was performed on 127 Stamicis preparations. Significantly lower RCP values were found for Stamicis kits prepared with the NCWC generator than for Stamicis prepared with the NFWC (P < 0.0001) and NFDC (P < 0.0001) generators. The number of Stamicis preparations with an RCP under 94% was greater with the NCWC generator (32 of 53 kits) than with the NFDC (2 of 51 kits) or NFWC (0 of 23 kits) generator. Furthermore, the addition of a 0.05 mg/mL concentration of nitrate in NFWC generator eluates significantly decreased the RCP of the Stamicis preparation. In the absence of nitrate in (99m)Tc eluate, no difference was observed between the RCP values of Stamicis kits prepared with the NFWC and NFDC generators. The (99m)Tc impurities generated by nitrates did not modify the quality of myocardial imaging (normal heart-to-lung ratio, 2.2), probably because these impurities are not in the heart field of view. No other tested (99m)Tc-radiopharmaceutical interfered with nitrates. We

  4. Stress/injection protocols for myocardial scintigraphy with 99Tcm-sestamibi compared with 201Tl: implications of early post-stress kinetics.

    PubMed

    Hurwitz, G A; Blais, M; Powe, J E; Champagne, C L

    1996-05-01

    Stress/injection protocols developed for myocardial perfusion imaging with 201Tl may not be optimal for 99Tcm-sestamibi (MIBI), an agent with lower myocardial extraction and higher abdominal uptake; prolongation of exercise after radiotracer injection might improve these relative drawbacks of MIBI. We compared the kinetics of MIBI and 201Tl by acquiring dynamic planar images for 5-7 min after a bolus injection (n = 180 studies) with stress performed by supine bicycle exercise alone, intravenous dipyridamole or combined stress. Routine or prolonged protocols involved continuation of exercise for 1 or 2.5 min respectively after tracer appearance in the heart. Subsequently, the perfusion images obtained were categorized as normal or showing significant defects. Myocardial uptake of MIBI, normalized for injected dose, body weight and camera sensitivity, was only 40% of that for 201Tl; there were no differences based on test mode or scan result for either perfusion tracer. During the second minute after injection, the cavity/myocardial ratios, an index of blood pool activity, were elevated with MIBI by 25% when compared with 201Tl (P < 0.001). During the third minute, cavity activity was again higher with MIBI, but only in those subjects with abnormal scans. The prolonged exercise phase did not prevent progressive accumulation in the abdomen, but did allow cavity levels to decline before termination of exercise. The prolonged protocol may ensure that myocardial uptake of MIBI is completed during peak blood flow, and therefore is recommended for stress with exercise or with dipyridamole and exercise in combination.

  5. Evaluation of molecular breast imaging in women undergoing myocardial perfusion imaging with Tc-99m sestamibi.

    PubMed

    Hruska, Carrie B; Rhodes, Deborah J; Collins, Douglas A; Tortorelli, Cindy L; Askew, J Wells; O'Connor, Michael K

    2012-07-01

    Our objective was to explore the potential benefits of molecular breast imaging (MBI) as a screening technique in women undergoing stress myocardial perfusion studies. MBI was offered to women receiving Tc-99m sestamibi injection for myocardial perfusion stress testing. During the required waiting period after stress isotope injection, MBI was performed using a dedicated breast imaging gamma camera system. MBI examinations were interpreted by breast radiologists, with review of a recent mammogram in cases with positive MBI. Of 322 women enrolled, 313 completed MBI, comprising 5 with known breast cancer, 2 with known high-risk benign breast lesions, and 306 who were asymptomatic for breast disease with a recent negative mammogram. Analysis was limited to the 306 patients with no known breast disease. MBI was positive in 22 of 306, giving a recall rate of 7.2% (95% confidence interval [CI] 4.8-10.6]. MBI detected 4 new cancers, resulting in a supplemental diagnostic yield of 13.1/1000 women screened (95% CI 5.1-33.2). The number of cancers diagnosed per abnormal MBI examinations (PPV(1)) was 18% (4 of 22) (95% CI 7.3-38.5), and the number diagnosed per MBI-prompted biopsies (PPV(3)) was 44% (4 of 9) (95% CI 18.9-73.3). The addition of MBI to clinically indicated stress myocardial perfusion imaging studies in women results in a high diagnostic yield of newly detected breast cancers while generating a low rate of additional unnecessary workup.

  6. Improved SPECT reconstruction of Tc-99m sestamibi distribution in breast tissue

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Feiglin, David H.; Gagne, George M.; Huda, Walter; Tillapough-Fay, Gwen M.; Hellwig, Bradford J.; Thomas, Deaver F.

    1998-06-01

    This paper describes a new image reconstruction method to reduce the presence of image artifacts in scintimammography. SPECT data are mathematically modified prior to conventional image processing, followed by an inverse transform, which permits the tomographic visualization of low signals in the presence of large background intensities observed in scintimammography. Images of Tc-99m sestamibi distribution were obtained in a modeled `breast tissue', with a high activity in the `myocardium' as compared to the `breast tissue' (i.e. 20:1). Image reconstruction with the modified algorithm were qualitatively correct and demonstrated the regions of enhanced uptake (lesions) with no evidence of artifacts from the background counts in the heart. Comparison with MRI demonstrated that the hot regions were properly located and correlated with the MRI data. In contrast, a standard (i.e. Filtered Back Projection) reconstruction resulted in streak artifacts in place of `breast tissue' which rendered them clinically useless. This new approach to scintimammography offers the prospect of significantly reducing image artifacts and improving imaging accuracy.

  7. Cell injury after ischemia and reperfusion in the porcine kidney evaluated by radiolabelled microspheres, sestamibi, and lactadherin

    PubMed Central

    2013-01-01

    Background The purpose of the present study was to quantify renal cell injury after ischemia and reperfusion in a pig model using 99mTc-lactadherin as a marker of apoptosis and 99mTc-sestamibi as a marker of mitochondrial dysfunction. Methods Thirty-four pigs were randomized into unilateral renal warm ischemia of 120 (WI120) or 240 min (WI240). The glomerular filtration rate (GFR) was calculated by renal clearance of 51Cr-ethylenediaminetetraacetic acid, and apoptosis was quantified by immunohistochemical detection of caspase-3. After 240 min of reperfusion, intravenous 99mTc-lactadherin or 99mTc-sestamibi was injected simultaneously with 153Gd microspheres into the aorta. Ex-vivo static planar images of the kidneys were acquired for determination of the differential renal function of tracer distribution using a gamma camera. Results In WI120, there was no significant difference in the uptake of microspheres in the ischemic and contralateral normal kidney indicating adequate perfusion (uptake in ischemic kidney relative to the sum of uptake in both kidneys; 46% ± 12% and 51% ± 5%). In WI240, the uptake of microspheres was severely reduced in both groups (17% ± 11% and 27% ± 17%). GFR was severely reduced in the post ischemic kidney in both groups. In both groups, the uptake of lactadherin was reduced (41% ± 8%, 17% ± 13%) but not different from the uptake of 153Gd microspheres. Caspase-3-positive cell profiles were increased in the post-ischemic kidneys (p < 0.001) and increased as the length of ischemia increased (p = 0.003). In both WI120 and WI240, the amount of 99mTc-sestamibi in the ischemic kidney was significantly lower than the amount of 153Gd microspheres (40 ± 5 versus 51 ± 5 and 20 ± 11 versus 27 ± 17; p < 0.05). Conclusions In an established pig model with unilateral renal warm ischemia, we found significantly reduced 99mTc-sestamibi uptake relative to perfusion in the kidneys exposed to

  8. Pituitary Prolactinoma Imaged by 99mTc-Sestamibi SPECT/CT in a Multiple Endocrine Neoplasia Type 1 Patient.

    PubMed

    Pan, Yu; Lv, Jing; Guo, Rui; Pan, Mengyi; Zhang, Yifan

    2016-06-01

    A 35-year-old woman who had undergone bilateral inferior parathyroidectomy for primary hyperparathyroidism was referred to our hospital to evaluate the cause of irregular menses, galactorrhea, and paroxysmal headache. Multiple endocrine neoplasia type 1 was then suspected for the high levels of plasma prolactin, parathyroid hormone, serum calcium, insulin, and related symptoms. A Tc-sestamibi SPECT/CT acquired to evaluate parathyroid glands unexpectedly revealed an increased accumulation in the pituitary gland, which was further confirmed by enhanced magnetic resonance imaging as a pituitary microadenoma. Bromocriptine treatment gradually reduced the prolactin level.

  9. Biodistribution of TC-99m sestamibi in rats utilizing whole-body autoradiography

    SciTech Connect

    Combs, M.J.; Croft, B.Y.; Arora, J.

    1994-05-01

    Current biodistribution models for Tc-99m sestamibi (MIBI) rely on gross imaging methods via Anger camera or at best, excision of animal tissue and counting tissue samples. These methods do not allow for detection of intra-organ inhomogeneities and small accumulations of activity are often treated as nonspecific background. The goal of this work was to examine the biodistribution of MIBI using whole-body autoradiography to obtain very detailed activity distribution information. Four anesthetized albino rats (300 g {plus_minus}10 g ) were injected into a dorsal metatarsal vein with an average of 333 MBq MIBI. One rat each was sacrificed at 5, 20, 60 and 180 minutes post-injection. Animals were embedded, frozen and slices (50-100 {mu}m thick) were obtained using a PMV-2250 macro-cryo-microtome and autoradiographs were made of slices. Cardiac uptake remained consistently high at all time points. All muscular areas exhibited uptake, including the diaphragm and GI tract wells. Significant MIBI uptake was observed in many different glands, including the submaxillary, suprarenal, thymus, lacrimal, harderian and thyroid. Pancreatic uptake was observed at each time. MIBI cleared from the liver and spleen quickly, with significant activity in the bowel at 5 minutes. High small bowel content activity was observed at all time points. The contents of the distal stomach and colon accumulated activity in all but the 5 minute studies. Clearance from the kidneys occurred between 1 and 3 hours, although kidney activity remained similar to the heart at 3 hours. Bladder activity was observed as early as 20 minutes, with the highest at the 3 hour time point. Very slight testicular uptake was observed in the epidydmis and wall of the scrotal sac. Although these autoradiographs confirm existing kinetics, they provide a unique, high-resolution record of previously unknown MIBI deposition areas such as the pancreas and GI tract lining.

  10. Tc-99m sestamibi uptake in small cell lung cancer: A predictor of response to chemotherapy

    SciTech Connect

    Bom, H.S.; Kim, Y.C.; Song, H.C.

    1996-05-01

    Patients(pts) with small cell lung cancer(SCLC) often fail to respond to chemotherapy due to multi-drug resistance(MDR). Tc-99m sestamibi (MIBI) was reported to be a suitable transport substrate of P-glycoprotein, a cytoplasmic membrane protein encoded by the MDR gene. The purpose of this study was to evaluate whether or not the degree of MIBI uptake in SCLC or its retention on delayed imaging correlated with response to chemotherapy. 19 pts (M:F=13:6, mean age 60.2 {plus_minus} 10.9) with biopsy-proven SCLC had MIBI SPECT 3 to 7 days before starting chemotherapy. Imaging was acquired 1 and 4 hours after injection of 740MBq MIBI using single head rotating gamma camera. Tumor-to-normal lung uptake ratio(T/NL) was measured. Per cent retention(%R) was measured as: %R = (T/NL at 4 hour {divided_by} T/NL at 1 hour) X 100. All patients received VAP chemotherapy (VP-16 100mg/m{sup 2}, adriamycin 40mg/m{sup 2}, cisplatin 25mg/m{sup 2}) every 4 weeks for at least 3 times. Response to chemotherapy was grouped as complete remission(CR), partial remission (PR), and no remission(NR) according to the change of tumor size on chest X-ray and computed tomographic images. Differences in T/NL and %R among the 3 groups were analyzed using ANOVA. These preliminary data indicate that SCLC with a higher MIBI uptake is more likely to respond to chemotherapy than that with a lower uptake. However, there was no significant correlation between the MIBI retention and the response to chemotherapy.

  11. Infarct size measured by single photon emission computed tomographic imaging with (99m)Tc-sestamibi: A measure of the efficacy of therapy in acute myocardial infarction.

    PubMed

    Gibbons, R J; Miller, T D; Christian, T F

    Use of mortality as an end point in randomized trials of reperfusion therapy requires increasingly large sample sizes to test advances compared with existing therapy, which is already highly effective. There has been a growing interest in infarct size measurements by (99m)Tc-sestamibi SPECT (single photon emission computed tomographic) imaging as a surrogate end point. We reviewed the reports published in English regarding infarct size measurements by (99m)Tc-sestamibi. Four separate lines of published evidence support the validity of SPECT imaging with (99m)Tc-sestamibi for determination of infarct size. This end point has been used in a total of 7 randomized trials-1 single center and 6 multicenter. The end point compares favorably with left ventricular function and infarct size measurements with the use of other radiopharmaceuticals. The most important limitation of this approach is the absence thus far of a randomized trial that has shown a corresponding decrease in mortality in association with a therapy that reduces infarct size. SPECT imaging with (99m)Tc-sestamibi is the best available measurement tool for infarct size. It has already served as an end point in early pilot studies to evaluate potential efficacy and in dose-ranging studies. It has the potential to serve as a surrogate end point to uncover advantages of new therapies that may be equivalent to existing therapies with respect to early mortality.

  12. Adsorption of 99mTc-Sestamibi onto Plastic Syringes: Evaluation of Factors Affecting the Degree of Adsorption and Their Impact on Clinical Studies*

    PubMed Central

    Swanson, Tiffinee N.; Troung, Duong T.; Paulsen, Andrew; Hruska, Carrie B.; O’Connor, Michael K.

    2014-01-01

    The purpose of this study was to document the extent of adhesion of 99mTc-sestamibi to syringes in patient procedures, determine factors that influence the degree of adhesion, and evaluate alternatives to our current practice that would either result in a more reproducible degree of adhesion or, ideally, eliminate adhesion. Methods The extent of adhesion was documented in 216 patient procedures and evaluated in detail in an additional 73 patient procedures. We evaluated the nature of the adhesion and its possible causes, including the location of adhesion in injection sets, the effect of syringe type, and the effect of prerinsing of syringes with various solutions of nonradiolabeled sestamibi and 99mTc-sestamibi. The extent of adhesion was reevaluated in 50 procedures performed using the syringe type that demonstrated the lowest adhesion rate. Results The degree of adhesion of 99mTc-sestamibi to the injection set was found to be 20.1% ± 8.0%, with a range (10th–90th percentiles) of 9%–31%. The primary cause of adhesion appeared to be the lubricant used inside the syringe barrel. Evaluation of 6 different syringe types identified a brand with a lower adhesion rate. Reevaluation in patient procedures using this brand showed a 5.2% ± 2.5% degree of adhesion, with a range (10th–90th percentiles) of 2.5%–7.7%. Conclusion Selection of the appropriate type of syringe can significantly reduce the magnitude and variability of residual 99mTc-sestamibi activity. With more reproducible residual activities, we have been able to achieve an approximately 20% reduction in the dispensed dose of 99mTc-sestamibi used in clinical procedures and a more consistent injected dose with less interpatient variation. The frequent changes in syringe design by manufacturers require that a quality control program for monitoring of residual activity be incorporated into clinical practice. This program has allowed us to maintain image quality and achieve more consistent injected patient

  13. Immobilization of 99-technetium (VII) by Fe(II)-goethite and limited reoxidation.

    PubMed

    Um, Wooyong; Chang, Hyun-Shik; Icenhower, Jonathan P; Lukens, Wayne W; Serne, R Jeffrey; Qafoku, Nikolla P; Westsik, Joseph H; Buck, Edgar C; Smith, Steven C

    2011-06-01

    During the nuclear waste vitrification process volatilized (99)Tc will be trapped by melter off-gas scrubbers and then washed out into caustic solutions, and plans are currently being contemplated for the disposal of such secondary waste. Solutions containing pertechnetate [(99)Tc(VII)O(4)(-)] were mixed with precipitating goethite and dissolved Fe(II) to determine if an iron (oxy)hydroxide-based waste form can reduce Tc(VII) and isolate Tc(IV) from oxygen. The results of these experiments demonstrate that Fe(II) with goethite efficiently catalyzes the reduction of technetium in deionized water and complex solutions that mimic the chemical composition of caustic waste scrubber media. Identification of the phases, goethite + magnetite, was performed using XRD, SEM and TEM methods. Analyses of the Tc-bearing solid products by XAFS indicate that all of the Tc(VII) was reduced to Tc(IV) and that the latter is incorporated into goethite or magnetite as octahedral Tc(IV). Batch dissolution experiments, conducted under ambient oxidizing conditions for more than 180 days, demonstrated a very limited release of Tc to solution (2-7 μg Tc/g solid). Incorporation of Tc(IV) into the goethite lattice thus provides significant advantages for limiting reoxidation and curtailing release of Tc disposed in nuclear waste repositories.

  14. Future of low specific activity molybdenum-99/technetium-99m generator.

    PubMed

    Mushtaq, A

    2012-10-01

    In last few years, the shortage of molybdenum-99 (99Mo) was felt in the developed and developing countries hospitals, where diagnostic nuclear medicine is practiced. To overcome the shortage of 99Mo various routes of its production by accelerators and reactors generating low and high specific activity products have been planned. High specific activity 99Mo obtained by fission of uranium-235 (235U) has completely dominated in the manufacturing of technetium-99m (99mTc) generators in last 3-4 decades, but due to proliferation and dirty bomb, issues non fission routes of 99Mo production are emphasized. Future of low specific activity 99Mo is discussed.

  15. Feasibility study of accelerator based production of molybdenum-99/technetium-99m

    NASA Astrophysics Data System (ADS)

    Tchelidze, Lali

    Stability of supply in the medical radioisotope market is now of overriding importance. One of the most commonly used radioisotopes is 99mTc, which is produced from 99Mo decay. 99Mo has been produced in nuclear reactors before, however these reactors are aging and have been not reliable lately and there is a great need to find an alternative for the production. In the current project, photo-neutron production of 99Mo/ 99mTc was investigated. An electron linear accelerator at the Idaho Accelerator Center was used to study the feasibility of 99mTc production using bremsstrahlung photon beams from the accelerator. The kinematic recoil process that occurs with every photo nuclear reaction was exploited. With the emission of a neutron in a photo nuclear reaction, the parent nucleus recoils in order to conserve momentum. This recoil can be used to separate 99Mo from 100Mo, at which point one has a very pure and very high specific activity source of 99Mo. We verified the photo-neutron production rates for 99Mo. Also, the kinematic recoil process was modeled and separation efficiencies were measured experimentally. We concluded that it is feasible to produce high 99Mo activities, however nano-particles of molybdenum have to be used and a clean nano-particle separation method has to be achieved.

  16. Half-time Tc-99m sestamibi imaging with a direct conversion molecular breast imaging system

    PubMed Central

    2014-01-01

    Background In an effort to reduce necessary acquisition time to perform molecular breast imaging (MBI), we compared diagnostic performance of MBI performed with standard 10-min-per-view acquisitions and half-time 5-min-per-view acquisitions, with and without wide beam reconstruction (WBR) processing. Methods Eighty-two bilateral, two-view MBI studies were reviewed. Studies were performed with 300 MBq Tc-99 m sestamibi and a direct conversion molecular breast imaging (DC-MBI) system. Acquisitions were 10 min-per-view; the first half of each was extracted to create 5-min-per-view datasets, and WBR processing was applied. The 10-min-, 5-min-, and 5-min-per-view WBR studies were independently interpreted in a randomized, blinded fashion by two radiologists. Assessments of 1 to 5 were assigned; 4 and 5 were considered test positive. Background parenchymal uptake, lesion type, distribution of non-mass lesions, lesion intensity, and image quality were described. Results Considering detection of all malignant and benign lesions, 5 min-per-view MBI had lower sensitivity (mean of 70% vs. 85% (p ≤ 0.04) for two readers) and lower area under curve (AUC) (mean of 92.7 vs. 99.6, p ≤ 0.01) but had similar specificity (p = 1.0). WBR processing did not alter sensitivity, specificity, or AUC obtained at 5 min-per-view. Overall agreement in final assessment between 5-min-per-view and 10-min-per-view acquisition types was near perfect (κ = 0.82 to 0.89); however, fair to moderate agreement was observed for assessment category 3 (probably benign) (κ = 0.24 to 0.48). Of 33 malignant lesions, 6 (18%) were changed from assessment of 4 or 5 with 10-min-per-view MBI to assessment of 3 with 5-min-per-view MBI. Image quality of 5-min-per-view studies was reduced compared to 10-min-per-view studies for both readers (3.24 vs. 3.98, p < 0.0001 and 3.60 vs. 3.91, p < 0.0001). WBR processing improved image quality for one reader (3.85 vs. 3.24, p < 0

  17. Half-time Tc-99m sestamibi imaging with a direct conversion molecular breast imaging system.

    PubMed

    Hruska, Carrie B; Conners, Amy Lynn; Jones, Katie N; Weinmann, Amanda L; Lingineni, Ravi K; Carter, Rickey E; Rhodes, Deborah J; O'Connor, Michael K

    2014-01-15

    In an effort to reduce necessary acquisition time to perform molecular breast imaging (MBI), we compared diagnostic performance of MBI performed with standard 10-min-per-view acquisitions and half-time 5-min-per-view acquisitions, with and without wide beam reconstruction (WBR) processing. Eighty-two bilateral, two-view MBI studies were reviewed. Studies were performed with 300 MBq Tc-99 m sestamibi and a direct conversion molecular breast imaging (DC-MBI) system. Acquisitions were 10 min-per-view; the first half of each was extracted to create 5-min-per-view datasets, and WBR processing was applied.The 10-min-, 5-min-, and 5-min-per-view WBR studies were independently interpreted in a randomized, blinded fashion by two radiologists. Assessments of 1 to 5 were assigned; 4 and 5 were considered test positive. Background parenchymal uptake, lesion type, distribution of non-mass lesions, lesion intensity, and image quality were described. Considering detection of all malignant and benign lesions, 5 min-per-view MBI had lower sensitivity (mean of 70% vs. 85% (p ≤ 0.04) for two readers) and lower area under curve (AUC) (mean of 92.7 vs. 99.6, p ≤ 0.01) but had similar specificity (p = 1.0). WBR processing did not alter sensitivity, specificity, or AUC obtained at 5 min-per-view.Overall agreement in final assessment between 5-min-per-view and 10-min-per-view acquisition types was near perfect (κ = 0.82 to 0.89); however, fair to moderate agreement was observed for assessment category 3 (probably benign) (κ = 0.24 to 0.48). Of 33 malignant lesions, 6 (18%) were changed from assessment of 4 or 5 with 10-min-per-view MBI to assessment of 3 with 5-min-per-view MBI. Image quality of 5-min-per-view studies was reduced compared to 10-min-per-view studies for both readers (3.24 vs. 3.98, p < 0.0001 and 3.60 vs. 3.91, p < 0.0001). WBR processing improved image quality for one reader (3.85 vs. 3.24, p < 0.0001). Although similar

  18. Assessment of tissue viability after frostbite injury by technetium-99m-sestamibi scintigraphy in an experimental rabbit model.

    PubMed

    Sarikaya, I; Aygit, A C; Candan, L; Sarikaya, A; Türkyilmaz, M; Berkarda, S

    2000-01-01

    Frostbite causes injury to the tissue by direct ice-crystal formation at the cellular level with cellular dehydration and microvascular occlusion. Muscle that initially appears viable on reperfusion may subsequently become necrotic because of microcirculatory collapse. Since muscle is a sensitive tissue in frostbite injury, we used technetium-99m-sestamibi limb scintigraphy to assess tissue viability in an experimental rabbit model. Twelve rabbits were used for this investigation. The right hind limb of the rabbits was immersed to the ankle joint in a container filled with 90% ethanol at -25 degrees C for 10 min. Frostbitten limbs were allowed to thaw in air at room temperature. Imaging and pathological examination of the affected limbs were performed 2 h, 24 h, 48 h and 72 h after freezing. In 2-h images, initial hypoperfusion was seen that corresponded to circulatory collapse. In 24-h images, there was hyperperfusion (so-called period of temporary reperfusion), corresponding to circulatory restoration. In 48-h images, a second hypoperfusion corresponded to viable but ischaemic tissue. In 72-h images, there was non-perfusion of the limb that correlated with the pathologically determined diagnosis of necrosis. All scintigraphic patterns correlated with pathological findings. We suggest that these scintigraphic patterns in soft tissue may be helpful in distinguishing between frank infarction and reversible ischemia and therefore may be useful in selecting early therapeutic or surgical interventions to salvage bone and soft tissue. Further studies are needed to show the usefulness of 99mTc sestamibi scintigraphy in clinical frostbite cases.

  19. Tl-201 and Tc-99m-Sestamibi SPECT for brain tumor detection: Comparison using MRI coregistration

    SciTech Connect

    Darcourt, J.; Itti, L.; Chang, L.

    1994-05-01

    Tl-201 (Tl) brain SPECT has been validated for the differential diagnosis of high versus low grade gliomas and recurrence versus radiation necrosis. We compared this technique to Tc-99m-Sestamibi (MIBI) SPECT in 9 patients (pts) with brain tumors using MRI coregistration. Pts were injected with 4 mCi of Tl and brain SPECT was performed using a dedicated brain system. This was immediately following by an injection of 20 mCi of MIBI and a brain SPECT using the same camera and with the pt in the same position. Four pts were studied for the diagnosis of radiation necrosis vs. tumor recurrence (2 had biopsy proven recurrence); 5 pts were studied for primary tumor evaluation: 2 meningiomas, 1 oligodendroglioma, 1 low-grade astrocytoma, 1 cysticercosis. Coregistration was performed for every pt by 3D surface fitting of the inner skull MIBI contour to the MRI brain surface extracted automatically. ROIs were drawn on the MRI and applied to the coregistered MIBI and Tl images for tumor to non-tumor ratios T/NT calculations. There was a tight correlation between MIBI and Tl T/NT (r-0.96) and a 1.5 threshold separated radiation necrosis from recurrence and low from high grade primary tumors. Therefore, the data already available on Tl brain tumor imaging can be used with MIBI SPECT with the advantage of a better image quality (2.5 to 4 times more counts).

  20. Assessment of cardiac function using myocardial perfusion imaging technique on SPECT with 99mTc sestamibi

    NASA Astrophysics Data System (ADS)

    Gani, M. R. A.; Nazir, F.; Pawiro, S. A.; Soejoko, D. S.

    2016-03-01

    Suspicion on coronary heart disease can be confirmed by observing the function of left ventricle cardiac muscle with Myocardial Perfusion Imaging techniques. The function perfusion itself is indicated by the uptake of radiopharmaceutical tracer. The 31 patients were studied undergoing the MPI examination on Gatot Soebroto Hospital using 99mTc-sestamibi radiopharmaceutical with stress and rest conditions. Stress was stimulated by physical exercise or pharmacological agent. After two hours, the patient did rest condition on the same day. The difference of uptake percentage between stress and rest conditions will be used to determine the malfunction of perfusion due to ischemic or infarct. Degradation of cardiac function was determined based on the image-based assessment of five segments of left ventricle cardiac. As a result, 8 (25.8%) patients had normal myocardial perfusion and 11 (35.5%) patients suspected for having partial ischemia. Total ischemia occurred to 8 (25.8%) patients with reversible and irreversible ischemia and the remaining 4 (12.9%) patients for partial infarct with characteristic the percentage of perfusion ≤50%. It is concluded that MPI technique of image-based assessment on uptake percentage difference between stress and rest conditions can be employed to predict abnormal perfusion as complementary information to diagnose the cardiac function.

  1. Comparison of dobutamine and exercise using technetium-99m sestamibi imaging for the evaluation of coronary artery disease.

    PubMed

    Herman, S D; LaBresh, K A; Santos-Ocampo, C D; Garber, C E; Barbour, M M; Messinger, D E; Cloutier, D J; Ahlberg, A W; Heller, G V

    1994-01-15

    Studies using dobutamine thallium-201 myocardial perfusion imaging have suggested a high sensitivity and specificity for the detection of coronary artery disease. However, few data are available comparing dobutamine with exercise stress for the detection and localization of perfusion defects. This study compared the effects of dobutamine and exercise stress using technetium-99m sestamibi single-photon emission computed tomographic imaging in the same patients in a prospective crossover trial. Twenty-four patients with a high likelihood of coronary artery disease underwent tomographic myocardial imaging at rest, after symptom-limited treadmill exercise, and after intravenous dobutamine (maximum 30 micrograms/kg/min). Tomograms of the left ventricle were divided into 20 segments and were interpreted without knowledge of patient identity or stress protocol. Dobutamine was well tolerated by all patients. Segment-by-segment concordance between exercise and dobutamine images was highly significant (kappa = 0.56, p < 0.0001). Global first-order agreement (normal vs abnormal) between exercise and dobutamine studies was 96% (kappa = 0.65, p = 0.02); global second-order agreement (normal vs fixed vs ischemic defect) was 88% (kappa = 0.45, p = 0.02). Regional first- and second-order agreement were 96 and 93%, respectively (p < 0.001 for both). Twenty patients underwent coronary angiography. Comparisons between exercise and angiography and between dobutamine and angiography were similar for both global agreement (95 vs 100%, p = NS) and regional agreement (77 vs 72%, p = NS).(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Nuclear Scans

    MedlinePlus

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  3. Effect of reconstruction algorithms on the accuracy of 99mTc sestamibi SPECT/CT parathyroid imaging

    PubMed Central

    Nichols, Kenneth J; Tronco, Gene G; Palestro, Christopher J

    2015-01-01

    The superiority of SPECT/CT over SPECT for 99mTc-sestamibi parathyroid imaging often is assumed to be due to improved lesion localization provided by the anatomic component (computed tomography) of the examination. It also is possible that this superiority may be related to the algorithms used for SPECT data reconstruction. The objective of this investigation was to determine the effect of SPECT reconstruction algorithms on the accuracy of MIBI SPECT/CT parathyroid imaging. We retrospectively analyzed preoperative MIBI SPECT/CT parathyroid imaging studies performed on 106 patients. SPECT data were reconstructed by filtered back projection (FBP) and by iterative reconstruction with corrections for collimator resolution recovery and attenuation (IRC). Two experienced readers independently graded lesion detection certainty on a 5-point scale without knowledge of each other’s readings, reconstruction methods, other test results or final diagnoses. All patients had surgical confirmation of the final diagnosis, including disease limited to the neck, and location and weight of excised lesion(s). There were 135 parathyroid lesions among the 106 patients. For FBP SPECT/CT and IRC SPECT/CT sensitivity was 76% and 90% (p = 0.003), specificity was 87% and 87% (p = 0.90), and accuracy was 83% and 88% (p = 0.04), respectively. Inter-rater agreement was significantly higher for IRC than for FBP (kappa = 0.76, “good agreement”, versus kappa = 0.58, “moderate agreement”, p < 0.0001). We conclude that the improved accuracy of MIBI SPECT/CT compared to MIBI SPECT for preoperative parathyroid lesion localization is due in part to the use of IRC for SPECT data reconstruction. PMID:25973340

  4. Financial and clinical implications of low-energy CT combined with 99m Technetium-sestamibi SPECT for primary hyperparathyroidism.

    PubMed

    Pata, Giacomo; Casella, Claudio; Magri, Gian Carlo; Lucchini, Silvia; Panarotto, Maria Beatrice; Crea, Nicola; Giubbini, Raffaele; Salerni, Bruno

    2011-09-01

    (99m)Technetium-sestamibi hybrid SPECT/CT has been favored over conventional SPECT in preoperative evaluation of primary hyperparathyroidism (PHPT) patients. However, the financial implications of CT-image acquisition have never before been published. This prompted us to perform a cost analysis of the aforementioned nuclear procedures. A total of 55 PHPT patients operated on between 2004 and 2009 were studied. Overall, 27 patients underwent SPECT and 28 SPECT/CT. Localization results, as well as diagnostic and clinical cost variations between SPECT and SPECT/CT patients, were compared. SPECT/CT revealed higher sensitivity than SPECT (96.7 vs 79.3%; P = .011), as well as higher specificity (96.4 vs 82.4%; P = .037) and positive predictive value (PPV) (96.7 vs 83%; P = .038) for correctly identifying the neck-side affected by PHPT. Likewise, SPECT/CT disclosed higher sensitivity (86.7 vs 61.1%; P < .0001), specificity (97.4 vs 90%; P = .022), and PPV (86.7 vs 65.7%; P = .0001) for correct neck-quadrant identification. The mean operative time decreased from 62 min following SPECT to 36 min following SPECT/CT (P < .0001), yielding a mean surgical expense saving of 109.9 /patient (updated at 2009/2010 billing database). SPECT/CT actually ensures a mean expenditure reduction of 98.7 /patient (95% CI: 47.96 -149.42 ), diagnostic costs variation amounting to 11.2 /procedure. SPECT/CT ensures better focus for the surgical exploration, shortens surgical times, and eventually cuts costs when used for localization of parathyroid adenomas.

  5. Dobutamine stress echocardiography versus quantitative technetium-99m sestamibi SPECT for detecting residual stenosis and multivessel disease after myocardial infarction

    PubMed Central

    Lancellotti, P; Benoit, T; Rigo, P; Pierard, L

    2001-01-01

    OBJECTIVE—To compare the relative accuracy of dobutamine stress echocardiography (DSE) and quantitative technetium-99m sestamibi single photon emission computed tomography (mibi SPECT) for detecting infarct related artery stenosis and multivessel disease early after acute myocardial infarction.
DESIGN—Prospective study.
SETTING—University hospital.
METHODS—75 patients underwent simultaneous DSE and mibi SPECT at (mean (SD)) 5 (2) days after a first acute myocardial infarct. Quantitative coronary angiography was performed in all patients after imaging studies.
RESULTS—Significant stenosis (> 50%) of the infarct related artery was detected in 69 patients. Residual ischaemia was identified by DSE in 55 patients and by quantitative mibi SPECT in 49. The sensitivity of DSE and mibi SPECT for detecting significant infarct related artery stenosis was 78% and 70%, respectively, with a specificity of 83% for both tests. The combination of DSE and mibi SPECT did not change the specificity (83%) but increased the sensitivity to 94%. Mibi SPECT was more sensitive than DSE for detecting mild stenosis (73% v 9%; p = 0.008). The sensitivity of DSE for detecting moderate or severe stenosis was greater than mibi SPECT (97% v 74%; p = 0.007). Wall motion abnormalities with DSE and transient perfusion defects with mibi SPECT outside the infarction zone were sensitive (80% v 67%; NS) and highly specific (95% v 93%; NS) for multivessel disease.
CONCLUSIONS—DSE and mibi SPECT have equivalent accuracy for detecting residual infarct related artery stenosis of ⩾ 50% and multivessel disease early after acute myocardial infarction. DSE is more predictive of moderate or severe infarct related artery stenosis. Combined imaging only improves the detection of mild stenosis.


Keywords: myocardial infarction; dobutamine echocardiography; single photon emission computed tomography; SPECT; myocardial ischaemia PMID:11602542

  6. [Use of a gamma probe for intraoperative localization of parathyroid adenomas with Tc-99m-tetrofosmin and Tc-99m-sestamibi].

    PubMed

    Gallowitsch, H J; Fellinger, J; Kresnik, E; Mikosch, P; Pipam, W; Unterweger, O F; Lind, P

    1997-01-01

    Especially ectopic adenomas may be problematic in intraoperative localization despite preoperative imaging resulting in a longer operating time and more extensive surgical preparation. The aim of our study was to evaluate the possibility of intraoperative scintimetric detection of parathyroid adenomas with cationic, Tc-99m labelled tracers for its usefulness in ectopic adenomas. 12 women with biochemically confirmed hyperparathyroidism were included in our study. After injection of 370 MBq Tc-99m Tetrofosmin respectively Sestamibi, preoperative scintigraphy (double phase study and SPECT) was performed and T/NT ratios were evaluated for early, delayed and SPECT images. Surgery was performed using a hand-held gamma probe after preoperative injection of 555-925 MBq Tc-99m Tetrofosmin or Sestamibi. Count rates (cts/10 sec) were measured and used for calculating in situ- and ex situ-T/NT ratios. In 9 out of 12 patients, adenoma could be detected on static images. Three cases could only be detected with SPECT. 11 of 12 parathyroid adenomas could be confirmed intraoperatively. Intraoperative localization of parathyroid adenoma with Tc-99m-labelled cationic complexes and a gamma probe is possible and may be useful in case of ectopic adenoma by influencing surgical approach and operating time.

  7. Relation of gender to physician use of test results and to the prognostic value of stress technetium 99m sestamibi myocardial single-photon emission computed tomography scintigraphy.

    PubMed

    Travin, M I; Duca, M D; Kline, G M; Herman, S D; Demus, D D; Heller, G V

    1997-07-01

    We analyzed potential gender differences in the use and prognostic value of stress technetium 99m sestamibi tomography, image results, and cardiac event rates over a period of 15 +/- 8 months in 1226 men and 1151 women. Men had more abnormal tomographic images, but referral for catheterization and revascularization similarly increased in relation to the number of defects. Men and women with abnormal images had similar event rates, 19.6% and 18.2%, respectively, although men more often had myocardial infarction or cardiac death (7.6% vs 4.1 %, p < 0.05), whereas women had an increased likelihood of unstable angina or congestive heart failure (11.5% vs 7.6%, p < 0.05). Normal images predicted a low yearly rate of myocardial infarction or death: 1.7% for men and 0.8% for women. Image findings, particularly defect extent, were independent predictors of events in both groups. Thus, after stress Tc-99m sestamibi single-photon emission computed tomography perfusion imaging, there was no gender bias in referral for invasive procedures, and for both men and women image findings were strongly associated with prognostic outcome.

  8. CT Scans

    MedlinePlus

    ... cross-sectional pictures of your body. Doctors use CT scans to look for Broken bones Cancers Blood clots Signs of heart disease Internal bleeding During a CT scan, you lie still on a table. The table ...

  9. Comparison of 99mTc-sestamibi and 11C-methionine PET/CT in the localization of parathyroid adenomas in primary hyperparathyroidism.

    PubMed

    Martínez-Rodríguez, I; Martínez-Amador, N; de Arcocha-Torres, M; Quirce, R; Ortega-Nava, F; Ibáñez-Bravo, S; Lavado-Pérez, C; Bravo-Ferrer, Z; Carril, J M

    2014-01-01

    To evaluate the usefulness of (11)C-methionine PET/CT (MET) in the localization of the parathyroid adenomas and to compare the results with those obtained with the conventional technique in double-phase (99m)Tc-sestamibi scintigraphy (MIBI). We evaluated the optimal timing to acquire MET images. A prospective study that included 14 patients (mean age: 65.5 ± 9.7 years) with primary hyperparathyroidism (PH) who underwent surgery was performed. Mean serum iPTH was 215.8 ± 108 pg/mL and serum calcium 10.8 ± 0.9 mg/dL. MIBI (planar and SPECT) was obtained 10 min and 2-3h after injection of 740 MBq (20 mCi) of (99m)Tc-sestamibi. MET was obtained 10 min and 40 min after injection of 740 MBq (20 mCi) of (11)C-methionine. MIBI and MET images were visually evaluated and compared. A score for 10 min and 40 min MET images from 0 (no abnormal uptake) to 3 (intense uptake) was assigned. MIBI and MET were positive and concordant in 11/14 patients and in 10 of them the parathyroid adenoma was correctly localized. In 3/14 MIBI was positive and MET negative (MIBI correctly localized the parathyroid adenoma in 2 of them). According to the timing of MET imaging acquisition, the 10 min and 40 min acquisition showed the same score in 10 patients, it was higher at 10 min acquisition in 3 and in 1 the parathyroid adenoma was only detected at 40 min acquisition. MIBI remains the technique of choice for the localization of parathyroid adenomas in patients with PH. MET may play a complementary role in selected patients. Delayed acquisition should be included in the MET protocol when the early acquisition is negative. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  10. Renal scan

    MedlinePlus

    ... and urinate often to help remove the radioactive material from the body. How to Prepare for the Test Tell your health care provider if you take ... drink additional fluids before the scan. How the Test will ... into the vein. However, you will not feel the radioactive material. The scanning table may be hard and cold. ...

  11. Thyroid scan

    MedlinePlus

    ... rays given off by the radioactive material. A computer displays images of the thyroid gland. Other scans ... It is an even gray color on the computer image without darker or lighter areas. What Abnormal ...

  12. Gallium scan

    MedlinePlus

    ... material called gallium and is a type of nuclear medicine exam. A related test is gallium scan ... Brown ML, Forstrom LA, et al. Society of nuclear medicine procedure guideline for gallium scintigraphy in inflammation. ...

  13. Liver scan

    MedlinePlus

    ... cirrhosis or hepatitis ) Superior vena cava obstruction Splenic infarction (tissue death) Tumors Risks Radiation from any scan ... Hepatitis Liver cancer - hepatocellular carcinoma Liver disease Splenic infarction SVC obstruction Review Date 1/18/2015 Updated ...

  14. Thallium-201 is comparable to technetium-99m-sestamibi for estimating cardiac function in patients with abnormal myocardial perfusion imaging.

    PubMed

    Wu, Ming-Che; Tsai, Cheng-Ting; Lin, Hui-Chun; Sun, Fang-Ju; Lin, Ku-Hung

    2015-11-01

    We analyzed the left-ventricular functional data obtained by cardiac-gated single-photon emission computed tomography myocardial perfusion imaging (MPI) with thallium-201 (Tl-201) and technetium-99m-sestamibi (MIBI) protocols in different groups of patients, and compared the data between Tl-201 and MIBI. Two hundred and seventy-two patients undergoing dipyridamole stress/redistribution Tl-201 MPI and 563 patients undergoing 1-day rest/dipyridamole stress MIBI MPI were included. Higher mean stress ejection fraction (EF), rest EF, and change in EF (ΔEF) were noticed in the normal MPI groups by both Tl-201 and MIBI protocols. Higher mean EF was observed in the females with normal MPI results despite their higher mean age. Comparisons between the Tl-201 and MIBI groups suggested a significant difference in all functional parameters, except for the rest end diastolic volume/end systolic volume and ΔEF between groups with negative MPI results. For the positive MPI groups, there was no significant difference in all parameters, except for the change in end diastolic volume and change in end systolic volume after stress between both protocols. The Tl-201 provides comparable left-ventricular functional data to MIBI cardiac-gated single-photon emission computed tomography in patients with positive MPI results, and may therefore be undertaken routinely for incremental functional information that is especially valuable to this patient group. Copyright © 2015. Published by Elsevier Taiwan.

  15. Interrogation of multidrug resistance (MDR1) P-glycoprotein (ABCB1) expression in human pancreatic carcinoma cells: correlation of 99mTc-Sestamibi uptake with western blot analysis.

    PubMed

    Harpstrite, Scott E; Gu, Hannah; Natarajan, Radhika; Sharma, Vijay

    2014-10-01

    Histopathological studies indicate that ∼63% of pancreatic tumors express multidrug resistance (MDR1) P-glycoprotein (Pgp) and its polymorphic variants. However, Pgp expression detected at the mRNA or protein level does not always correlate with functional transport activity. Because Pgp transport activity is affected by specific mutations and the phosphorylation state of the protein, altered or less active forms of Pgp may also be detected by PCR or immunohistochemistry, which do not accurately reflect the status of tumor cell resistance. To interrogate the status of the functional expression of MDR1 Pgp in MiaPaCa-2 and PANC-1 cells, cellular transport studies using Tc-Sestamibi were performed and correlated with western blot analysis. Biochemical transport assays in human pancreatic carcinoma MiaPaCa-2 and PANC-1 cells, human epidermal carcinoma drug-sensitive KB-3-1 cells, and human breast carcinoma MCF-7 cells (negative controls), and human epidermal carcinoma drug-resistant KB-8-5 cells, human breast carcinoma stably transfected with Pgp MCF-7/MDR1Pgp cells, and liver carcinoma HepG2 cells (positive controls) were performed. Protein levels were determined using a monoclonal antibody C219. Tc-Sestamibi demonstrates accumulation in human pancreatic carcinoma MiaPaCa-2 and PANC-1 cells. Uptake profiles are not affected by treatment with LY335979, a Pgp inhibitor, and correlate with western blot analysis. These cellular transport studies indicate an absence of Pgp at a functional level in MiaPaCa-2 and PANC-1 cells. Because major pancreatic tumors originate from the pancreatic duct and Tc-Sestamibi undergoes a dominant hepatobiliary mode of excretion, it would not be a sensitive probe for imaging pancreatic adenocarcinomas. Following interrogation of the functional status of Pgp in other pancreatic carcinoma cells, chemotherapeutic drugs that are also MDR1 substrates could offer alternative therapeutics for treating pancreatic adenocarcinomas.

  16. Head CT scan

    MedlinePlus

    Brain CT; Cranial CT; CT scan - skull; CT scan - head; CT scan - orbits; CT scan - sinuses; Computed tomography - cranial; CAT scan - brain ... conditions: Birth (congenital) defect of the head or brain Brain infection Brain tumor Buildup of fluid inside ...

  17. Diagnostic accuracy of gated Tc-99m sestamibi stress myocardial perfusion SPECT with combined supine and prone acquisitions to detect coronary artery disease in obese and nonobese patients.

    PubMed

    Berman, Daniel S; Kang, Xingping; Nishina, Hidetaka; Slomka, Piotr J; Shaw, Leslee J; Hayes, Sean W; Cohen, Ishac; Friedman, John D; Gerlach, James; Germano, Guido

    2006-01-01

    The diagnostic value of gated myocardial perfusion single-photon emission computed tomography (MPS) with combined supine and prone acquisitions to detect coronary artery disease (CAD) in obese and nonobese patients has not been defined. We studied 1511 patients without prior myocardial infarction or coronary revascularization who either had coronary angiography within 3 months of MPS (n = 785) or had a low pretest likelihood of CAD (n = 726). All patients underwent rest thallium 201/gated exercise or adenosine stress technetium 99m sestamibi MPS in both the supine and prone positions. According to body mass index (BMI), patients were categorized as normal weight (BMI of 18.5-24.9 kg/m2), overweight (BMI of 25.0-29.9 kg/m2), or obese (BMI > or = 30.0 kg/m2). There were no significant differences in stress, fixed, or ischemic defects among patients in different weight categories. The sensitivity of MPS was 85%, 86%, and 89% for detecting patients with 50% or greater coronary stenosis and 89%, 91%, and 92% for detecting those with 70% or greater coronary stenosis in the normal-weight, overweight, and obese groups, respectively. Normalcy rates were nearly identical among the 3 weight groups (99%, 98%, and 99%, respectively). Multivariate logistic regression analysis further confirmed that BMI was a nonsignificant predictor for the detection of CAD. In a subset of 290 patients, automated quantitative MPS analysis confirmed that combined supine and prone MPS increased specificity (86%) in identifying CAD, without a significant reduction in sensitivity (83% for > or = 50% stenosis and 88% for > or = 70% stenosis). The findings of this study suggest that MPS performed with gating and combined supine and prone acquisitions without attenuation correction had a similar diagnostic accuracy for the detection of CAD in normal-weight, overweight, and obese patients.

  18. Relation between perfusion defects on stress technetium-99m sestamibi SPECT scintigraphy and the location of a subsequent acute myocardial infarction.

    PubMed

    Miller, G L; Herman, S D; Heller, G V; Kalla, S; Levin, W A; Stillwell, K M; Travin, M I

    1996-07-01

    Although the presence of perfusion defects on stress myocardial perfusion imaging has been shown to correlate with future cardiac events, including acute myocardial infarction (AMI), it is unknown whether the location of the AMI can be predicted. Therefore, for 25 patients who had an AMI following a stress technetium-99m sestamibi single-photon emission computed tomographic (SPECT) imaging study and whose infarct location could be determined, the territory of infarction was correlated with the location of previous myocardial perfusion defects. A SPECT perfusion defect had been present in 24 patients (96%). The AMI occurred in territories that showed a reversible defect in 14 patients (56%), whereas 3 infarctions (12%) were in territories that revealed a fixed defect, and 8 infarctions (32%) were in territories that had not shown a defect on prior SPECT imaging. Whereas the incidence of infarction in territories with a reversible defect was highest at 14 of 26 (54%), the incidence of infarction in territories with a fixed defect was 3 of 7 (43%), and in territories with no defect was 8 of 42 (19%) (p = 0.011). Neither the time interval between SPECT imaging and infarction, nor the perfusion defect severity, was related to the correlation between perfusion defect and infarct location. Thus, although AMI occurs most often at the site of previous perfusion defects, reversible or fixed, a substantial percentage occur in territories without a perfusion defect. These findings suggest that abnormalities on SPECT perfusion imaging, although they serve as markers of significant coronary disease and increase the likelihood of infarction, do not always predict the exact location of infarction.

  19. Parathyroid nuclear scan. A focused review on the technical and biological factors affecting its outcome.

    PubMed

    Kannan, Subramanian; Milas, Mira; Neumann, Donald; Parikh, Rikesh T; Siperstein, Alan; Licata, Angelo

    2014-01-01

    Technetium Parathyroid Scintigraphy (TS) is the most popular noninvasive localization procedure in patients with primary hyperparathyroidism (PHPT). Awareness of various factors involved in technetium uptake helps understand the outcome of TS. We utilize a case of changing TS scans in a patient to review the literature on the various biological and technical factors involved in technetium uptake by the abnormal parathyroid tissue. A 56 year female was diagnosed with PHPT and osteopenia. An initial scan using (99m)Tc-Tetrofosmin showed no definite areas of abnormal parathyroid tissue. Patient refused surgical exploration, was started on Bisphosponates and subsequently monitored. Five years later she suffered fracture of her right wrist. A repeat TS using (99m)Tc-Sestamibi revealed hypervascular parathyroid lesion in the right lower neck. She underwent successful removal of a right lower parathyroid adenoma. Technical factors like the type of Tc isotope used, imaging techniques and biological factors like biochemical parameters (calcium, vitamin D levels), adenoma size, content of oxyphilic cells, vascularity can affect the outcome of the scan. Clinicians should be aware of technical and biological factors that could result in negative scan in parathyroid nuclear scintigraphy.

  20. Arm CT scan

    MedlinePlus

    CAT scan - arm; Computed axial tomography scan - arm; Computed tomography scan - arm; CT scan - arm ... your provider should weigh this risk against the benefits of getting a correct diagnosis for a medical ...

  1. Efficacy of full-fat milk and diluted lemon juice in reducing infra-cardiac activity of (99m)Tc sestamibi during myocardial perfusion imaging.

    PubMed

    Purbhoo, Khushica; Vangu, Mboyo Di Tamba Willy

    2015-01-01

    When using (99m)Tc sestamibi for myocardial perfusion imaging, increased splanchnic activity creates a problem in the visual and quantitative interpretation of the inferior and infero-septal walls of the left ventricle. We sought to determine whether the administration of diluted lemon juice or full-fat milk would be effective in reducing interfering infra-cardiac activity and therefore result in an improvement in image quality. We compared the administration of full-fat milk and diluted lemon juice to a control group that had no intervention. The study was carried out prospectively. All patients referred to our institution for myocardial perfusion imaging from November 2009 to May 2012 were invited to be enrolled in the study. A total of 630 patients were randomised into three groups. Group 0 (G0), 246 patients, were given diluted lemon juice, group 1 (G1), 313 patients, were given full-fat milk, and group 2 (G2), 71 patients, had no intervention (control group). A routine two-day protocol was used and the patients were given the same intervention on both days. Raw data of both the stress and rest images were visually assessed for the presence of infra-cardiac activity, and quantitative grading of the relative intensity of myocardial activity to infra-cardiac activity was determined. The physicians were blinded to the intervention received and the data were reviewed simultaneously. The overall incidence of interfering infra-cardiac activity at stress was 84.1, 84.5 and 96.6% in G0, G1 and G2, respectively (p = 0.005). At rest it was 91.7, 90.1 and 100% in G0, G1 and G2, respectively (p = 0.0063). The visual and quantitative results favoured both milk and lemon juice in reducing the amount of interfering infra-cardiac activity versus no intervention. The administration of milk or lemon juice resulted in a significant decrease in the intensity of infra-cardiac activity compared to the control group. This reduction in intensity was even more significant in the milk

  2. Measurement of technetium-99m sestamibi signals in rats administered a mitochondrial uncoupler and in a rat model of heart failure.

    PubMed

    Kawamoto, Akira; Kato, Takao; Shioi, Tetsuo; Okuda, Junji; Kawashima, Tsuneaki; Tamaki, Yodo; Niizuma, Shinichiro; Tanada, Yohei; Takemura, Genzou; Narazaki, Michiko; Matsuda, Tetsuya; Kimura, Takeshi

    2015-01-01

    Many methods have been used to assess mitochondrial function. Technetium-99m sestamibi ((99m)Tc-MIBI), a lipophilic cation, is rapidly incorporated into myocardial cells by diffusion and mainly localizes to the mitochondria. The purpose of this study was to investigate whether measurement of (99m)Tc-MIBI signals in animal models could be used as a tool to quantify mitochondrial membrane potential at the organ level. We analyzed (99m)Tc-MIBI signals in Sprague-Dawley (SD) rat hearts perfused with carbonyl cyanide m-chlorophenylhydrazone (CCCP), a mitochondrial uncoupler known to reduce the mitochondrial membrane potential. (99m)Tc-MIBI signals could be used to detect changes in the mitochondrial membrane potential with sensitivity comparable to that obtained by two-photon laser microscopy with the cationic probe tetramethylrhodamine ethyl ester (TMRE). We also measured (99m)Tc-MIBI signals in the hearts of SD rats administered CCCP (4 mg/kg intraperitoneally) or vehicle. (99m)Tc-MIBI signals decreased in rat hearts administered CCCP, and the ATP content, as measured by (31)P magnetic resonance spectroscopy, decreased simultaneously. Next, we administered (99m)Tc-MIBI to Dahl salt-sensitive rats fed a high-salt diet, which leads to hypertension and heart failure. The (99m)Tc-MIBI signal per heart tissue weight was inversely correlated with heart weight, cardiac function, and the expression of atrial natriuretic factor, a marker of heart failure, and positively correlated with the accumulation of labeled fatty acid analog. The (99m)Tc-MIBI signal per liver tissue weight was lower than that per heart tissue weight. Measurement of (99m)Tc-MIBI signals can be an effective tool for semiquantitative investigation of cardiac mitochondrial membrane potential in the SD rat model by using a chemical to decrease the mitochondrial membrane potential. The (99m)Tc-MIBI signal per heart tissue weight was inversely correlated with the severity of heart failure in the Dahl rat model.

  3. Dynamic scan control in STEM: Spiral scans

    DOE PAGES

    Lupini, Andrew R.; Borisevich, Albina Y.; Kalinin, Sergei V.; ...

    2016-06-13

    Here, scanning transmission electron microscopy (STEM) has emerged as one of the foremost techniques to analyze materials at atomic resolution. However, two practical difficulties inherent to STEM imaging are: radiation damage imparted by the electron beam, which can potentially damage or otherwise modify the specimen and slow-scan image acquisition, which limits the ability to capture dynamic changes at high temporal resolution. Furthermore, due in part to scan flyback corrections, typical raster scan methods result in an uneven distribution of dose across the scanned area. A method to allow extremely fast scanning with a uniform residence time would enable imaging atmore » low electron doses, ameliorating radiation damage and at the same time permitting image acquisition at higher frame-rates while maintaining atomic resolution. The practical complication is that rastering the STEM probe at higher speeds causes significant image distortions. Non-square scan patterns provide a solution to this dilemma and can be tailored for low dose imaging conditions. Here, we develop a method for imaging with alternative scan patterns and investigate their performance at very high scan speeds. A general analysis for spiral scanning is presented here for the following spiral scan functions: Archimedean, Fermat, and constant linear velocity spirals, which were tested for STEM imaging. The quality of spiral scan STEM images is generally comparable with STEM images from conventional raster scans, and the dose uniformity can be improved.« less

  4. Reproducibility of area at risk assessment in acute myocardial infarction by T1- and T2-mapping sequences in cardiac magnetic resonance imaging in comparison to Tc99m-sestamibi SPECT.

    PubMed

    Langhans, Birgit; Nadjiri, Jonathan; Jähnichen, Christin; Kastrati, Adnan; Martinoff, Stefan; Hadamitzky, Martin

    2014-10-01

    Area at risk (AAR) is an important parameter for the assessment of the salvage area after revascularization in acute myocardial infarction (AMI). By combining AAR assessment by T2-weighted imaging and scar quantification by late gadolinium enhancement imaging cardiovascular magnetic resonance (CMR) offers a promising alternative to the "classical" modality of Tc99m-sestamibi single photon emission tomography (SPECT). Current T2 weighted sequences for edema imaging in CMR are limited by low contrast to noise ratios and motion artifacts. During the last years novel CMR imaging techniques for quantification of acute myocardial injury, particularly the T1-mapping and T2-mapping, have attracted rising attention. But no direct comparison between the different sequences in the setting of AMI or a validation against SPECT has been reported so far. We analyzed 14 patients undergoing primary coronary revascularization in AMI in whom both a pre-intervention Tc99m-sestamibi-SPECT and CMR imaging at a median of 3.4 (interquartile range 3.3-3.6) days after the acute event were performed. Size of AAR was measured by three different non-contrast CMR techniques on corresponding short axis slices: T2-weighted, fat-suppressed turbospin echo sequence (TSE), T2-mapping from T2-prepared balanced steady state free precession sequences (T2-MAP) and T1-mapping from modified look locker inversion recovery (MOLLI) sequences. For each CMR sequence, the AAR was quantified by appropriate methods (absolute values for mapping sequences, comparison with remote myocardium for other sequences) and correlated with Tc99m-sestamibi-SPECT. All measurements were performed on a 1.5 Tesla scanner. The size of the AAR assessed by CMR was 28.7 ± 20.9 % of left ventricular myocardial volume (%LV) for TSE, 45.8 ± 16.6 %LV for T2-MAP, and 40.1 ± 14.4 %LV for MOLLI. AAR assessed by SPECT measured 41.6 ± 20.7 %LV. Correlation analysis revealed best correlation with SPECT for T2-MAP at a T2-threshold of 60 ms

  5. Gallbladder radionuclide scan

    MedlinePlus

    Radionuclide - gallbladder; Gallbladder scan; Biliary scan; Cholescintigraphy; HIDA; Hepatobiliary nuclear imaging scan ... It will then flow with bile into the gallbladder and then the duodenum or small intestine. For ...

  6. A Novel Method for Molybdenum-99/Technetium-99m Recovery via Anodic Carbonate Dissolution of Irradiated Low-Enriched Uranium Metal Foil

    SciTech Connect

    Brown, Michael A.

    2015-01-21

    A new method is presented here for digesting irradiated low-enriched uranium foil targets in alkaline carbonate media to recover 99Mo. This method consists of the electrolytic dissolution of uranium foil in a sodium bicarbonate solution, followed by the precipitation of carbonate, base-insoluble fission products, activation products, and actinides with calcium oxide; most of the molybdenum, technetium, and iodine remain in solution. An electrochemical dissolver and mixing vessel were designed, fabricated, and tested for the processing of a full-sized irradiated foil under ambient pressure and elevated temperature. Over 92% of the fission-induced Mo-99 was recovered in a product solution that was compatible with an anion-exchange column for retaining molybdenum and iodine.

  7. RBC nuclear scan

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003835.htm RBC nuclear scan To use the sharing features on this page, please enable JavaScript. An RBC nuclear scan uses small amounts of radioactive material to ...

  8. Heart PET scan

    MedlinePlus

    Heart nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... Udelson JE, Dilsizian V, Bonow RO. Nuclear cardiology. In: Mann DL, ... A Textbook of Cardiovascular Medicine . 10th ed. Philadelphia, ...

  9. Abdominal CT scan

    MedlinePlus

    Computed tomography scan - abdomen; CT scan - abdomen; CT abdomen and pelvis ... 2016:chap 133. Radiologyinfo.org. Computed tomography (CT) - abdomen and pelvis. Updated June 16, 2016. www.radiologyinfo. ...

  10. Scanning mirror arrangement

    SciTech Connect

    Stetson, N.B.

    1982-08-31

    An image forming scanning mechanism without obturation in its optical path comprises first and second reflectors that are pivotally actuated about respective orthogonal axes. The scanning reflectors are positioned so that radiant energy in a first optical path from an object field impinges upon a vertical-scan reflector where it is directed to a horizontal-scan reflector and whereupon it is directed back onto the vertical-scan reflector from whence it is reflected along a second optical path in a different plane from the first optical path. The pivotal axes of the vertical-scan reflector and the horizontal-scan reflector are perpendicular to path of radiant energy reflected therefrom. A detector is positioned to receive radiant energy from elemental areas of an object field. The orthogonal disposition of the first and second pivotal axes provides a distortion free image signal from the detector that is comparable with the x-y scan pattern of conventional television display circuits.

  11. Bone density scan (image)

    MedlinePlus

    A bone density scan measures the density of bone in a person. The lower the density of a bone the ... and whether any preventative treatment is needed. A bone density scan has the advantage of being painless and ...

  12. Multipurpose binocular scanning apparatus

    NASA Technical Reports Server (NTRS)

    Chamberlain, F. R.; Parker, G. L.

    1969-01-01

    Optical gimballing apparatus directs narrow fields of view throughout solid angle approaching 4 pi steradians. Image rotation produced by scanning can be eliminated or altered by gear trains directly linked to the scanning drive assembly. It provides the basis for a binocular scanning capability.

  13. Rapid frequency scan EPR.

    PubMed

    Tseitlin, Mark; Rinard, George A; Quine, Richard W; Eaton, Sandra S; Eaton, Gareth R

    2011-08-01

    In rapid frequency scan EPR with triangular scans, sufficient time must be allowed to insure that the magnetization in the x, y plane decays to baseline at the end of the scan, which typically is about 5T(2) after the spins are excited. To permit relaxation of signals excited toward the extremes of the scan the total scan time required may be much longer than 5T(2). However, with periodic, saw-tooth excitation, the slow-scan EPR spectrum can be recovered by Fourier deconvolution of data recorded with a total scan period of 5T(2), even if some spins are excited later in the scan. This scan time is similar to polyphase excitation methods. The peak power required for either polyphase excitation or rapid frequency scans is substantially smaller than for pulsed EPR. The use of an arbitrary waveform generator (AWG) and cross loop resonator facilitated implementation of the rapid frequency scan experiments reported here. The use of constant continuous low B(1), periodic excitation waveform, and constant external magnetic field is similar to polyphase excitation, but could be implemented without the AWG that is required for polyphase excitation.

  14. Rapid Frequency Scan EPR

    PubMed Central

    Tseitlin, Mark; Rinard, George A.; Quine, Richard W.; Eaton, Sandra S.; Eaton, Gareth R.

    2011-01-01

    In rapid frequency scan EPR with triangular scans, sufficient time must be allowed to insure that the magnetization in the x,y plane decays to baseline at the end of the scan, which typically is about 5 T2 after the spins are excited. To permit relaxation of signals excited toward the extremes of the scan the total scan time required may be much longer than 5 T2. However, with periodic, saw-tooth excitation, the slow-scan EPR spectrum can be recovered by Fourier deconvolution of data recorded with a total scan period of 5 T2, even if some spins are excited later in the scan. This scan time is similar to polyphase excitation methods. The peak power required for either polyphase excitation or rapid frequency scans is substantially smaller than for pulsed EPR. The use of an arbitrary waveform generator (AWG) and cross loop resonator facilitated implementation of the rapid frequency scan experiments reported here. The use of constant continuous low B1, periodic excitation waveform, and constant external magnetic field is similar to polyphase excitation, but could be implemented without the AWG that is required for polyphase excitation. PMID:21664848

  15. Line-scanning, stage scanning confocal microscope

    NASA Astrophysics Data System (ADS)

    Carucci, John A.; Stevenson, Mary; Gareau, Daniel

    2016-03-01

    We created a line-scanning, stage scanning confocal microscope as part of a new procedure: video assisted micrographic surgery (VAMS). The need for rapid pathological assessment of the tissue on the surface of skin excisions very large since there are 3.5 million new skin cancers diagnosed annually in the United States. The new design presented here is a confocal microscope without any scanning optics. Instead, a line is focused in space and the sample, which is flattened, is physically translated such that the line scans across its face in a direction perpendicular to the line its self. The line is 6mm long and the stage is capable of scanning 50 mm, hence the field of view is quite large. The theoretical diffraction-limited resolution is 0.7um lateral and 3.7um axial. However, in this preliminary report, we present initial results that are a factor of 5-7 poorer in resolution. The results are encouraging because they demonstrate that the linear array detector measures sufficient signal from fluorescently labeled tissue and also demonstrate the large field of view achievable with VAMS.

  16. Radionucleotide scanning in osteomyelitis

    SciTech Connect

    Sachs, W.; Kanat, I.O.

    1986-07-01

    Radionucleotide bone scanning can be an excellent adjunct to the standard radiograph and clinical findings in the diagnosis of osteomyelitis. Bone scans have the ability to detect osteomyelitis far in advance of the standard radiograph. The sequential use of technetium and gallium has been useful in differentiating cellulitis and osteomyelitis. Serial scanning with technetium and gallium may be used to monitor the response of osteomyelitis to antibiotic therapy.

  17. Abscess scan - radioactive

    MedlinePlus

    ... procedures, or treatments, as they can interfere with test results: Gallium (Ga) scan within the past month Hemodialysis ... Not feeling well (malaise) Pain Often, other imaging tests such as an ultrasound or CT scan may be done first. Normal Results Normal findings would show no abnormal gathering of ...

  18. PET scan for breast cancer

    MedlinePlus

    ... CT scan. This combination scan is called a PET/CT. ... A PET scan is most often used when other tests, such as MRI scan or CT scan, DO NOT provide enough information. A breast PET scan is used only after a woman has ...

  19. Resonant scanning mechanism

    NASA Astrophysics Data System (ADS)

    Wallace, John; Newman, Mike; Gutierrez, Homero; Hoffman, Charlie; Quakenbush, Tim; Waldeck, Dan; Leone, Christopher; Ostaszewski, Miro

    2014-10-01

    Ball Aerospace & Technologies Corp. developed a Resonant Scanning Mechanism (RSM) capable of combining a 250- Hz resonant scan about one axis with a two-hertz triangular scan about the orthogonal axis. The RSM enables a rapid, high-density scan over a significant field of regard (FOR) while minimizing size, weight, and power requirements. The azimuth scan axis is bearing mounted allowing for 30° of mechanical travel, while the resonant elevation axis is flexure and spring mounted with five degrees of mechanical travel. Pointing-knowledge error during quiescent static pointing at room temperature across the full range is better than 100 μrad RMS per axis. The compact design of the RSM, roughly the size of a soda can, makes it an ideal mechanism for use on low-altitude aircraft and unmanned aerial vehicles. Unique aspects of the opto-mechanical design include i) resonant springs which allow for a high-frequency scan axis with low power consumption; and ii) an independent lower-frequency scan axis allowing for a wide FOR. The pointing control system operates each axis independently and employs i) a position loop for the azimuth axis; and ii) a unique combination of parallel frequency and amplitude control loops for the elevation axis. All control and pointing algorithms are hosted on a 200-MHz microcontroller with 516 KB of RAM on a compact 3"×4" digital controller, also of Ball design.

  20. Cardiac CT Scan

    MedlinePlus

    ... rate. Before the test, a contrast dye, often iodine, may be injected into a vein in your ... should not receive more CT scans than the number that clinical guidelines recommend. Another risk is that ...

  1. Nuclear Heart Scan

    MedlinePlus

    ... into your blood and travels to your heart. Nuclear heart scans use single photon emission computed tomography (SPECT) or cardiac positron emission tomography (PET) to detect the energy from the tracer to make pictures of your ...

  2. Cervical MRI scan

    MedlinePlus

    ... magnetic resonance imaging) scan uses energy from strong magnets to create pictures of the part of the ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  3. Leg MRI scan

    MedlinePlus

    ... resonance imaging) scan of the leg uses strong magnets to create pictures of the leg. This may ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  4. Arm MRI scan

    MedlinePlus

    ... arm MRI (magnetic resonance imaging) scan uses strong magnets to create pictures of the upper and lower ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  5. Photothermal imaging scanning microscopy

    DOEpatents

    Chinn, Diane; Stolz, Christopher J.; Wu, Zhouling; Huber, Robert; Weinzapfel, Carolyn

    2006-07-11

    Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

  6. Fiber-Scanned Microdisplays

    NASA Technical Reports Server (NTRS)

    Crossman-Bosworth, Janet; Seibel, Eric

    2010-01-01

    Helmet- and head-mounted display systems, denoted fiber-scanned microdisplays, have been proposed to provide information in an "augmented reality" format (meaning that the information would be optically overlaid on the user's field of view).

  7. Pediatric CT Scans

    Cancer.gov

    The Radiation Epidemiology Branch and collaborators have initiated a retrospective cohort study to evaluate the relationship between radiation exposure from CT scans conducted during childhood and adolescence and the subsequent development of cancer.

  8. Slow Scan Telemedicine

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Originally developed under contract for NASA by Ball Bros. Research Corporation for acquiring visual information from lunar and planetary spacecraft, system uses standard closed circuit camera connected to a device called a scan converter, which slows the stream of images to match an audio circuit, such as a telephone line. Transmitted to its destination, the image is reconverted by another scan converter and displayed on a monitor. In addition to assist scans, technique allows transmission of x-rays, nuclear scans, ultrasonic imagery, thermograms, electrocardiograms or live views of patient. Also allows conferencing and consultation among medical centers, general practitioners, specialists and disease control centers. Commercialized by Colorado Video, Inc., major employment is in business and industry for teleconferencing, cable TV news, transmission of scientific/engineering data, security, information retrieval, insurance claim adjustment, instructional programs, and remote viewing of advertising layouts, real estate, construction sites or products.

  9. The Scanning Optical Microscope.

    ERIC Educational Resources Information Center

    Sheppard, C. J. R.

    1978-01-01

    Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.

  10. Coronary Calcium Scan

    MedlinePlus

    ... Intramural Research Research Resources Research Meeting Summaries Technology ... complete. A coronary calcium scan uses a special scanner such as an electron beam CT or a multidetector CT (MDCT) machine. ...

  11. Multiple Reflector Scanning Antennas

    NASA Astrophysics Data System (ADS)

    Shen, Bing

    Narrow beamwidth antenna systems are important to remote sensing applications and point-to-point communication systems. In many applications the main beam of the antenna radiation pattern must be scannable over a region of space. Scanning by mechanically skewing the entire antenna assembly is difficult and in many situations is unacceptable. Performance during scan is, of course, also very important. Traditional reflector systems employing the well-focused paraboloidal -shaped main reflector accomplish scan by motion of a few feeds, or by phase steering a focal plane feed array. Such scanning systems can experience significant gain loss. Traditional reflecting systems with a spherical main reflector have low aperture efficiency and poor side lobe and cross polarization performance. This dissertation introduces a new approach to the design of scanning spherical reflector systems, in which the performance weaknesses of high cross polarization and high side lobe levels are avoided. Moreover, the low aperture utilization common in spherical reflectors is overcome. As an improvement to this new spherical main reflector configuration, a flat mirror reflector is introduced to minimize the mechanical difficulties to scan the main beam. In addition to the reflector system design, reflector antenna performance evaluation is also important. The temperature resolution issue important for earth observation radiometer antennas is studied, and a new method to evaluate and optimize such temperature resolution is introduced.

  12. Wide scanning spherical antenna

    NASA Technical Reports Server (NTRS)

    Shen, Bing (Inventor); Stutzman, Warren L. (Inventor)

    1995-01-01

    A novel method for calculating the surface shapes for subreflectors in a suboptic assembly of a tri-reflector spherical antenna system is introduced, modeled from a generalization of Galindo-Israel's method of solving partial differential equations to correct for spherical aberration and provide uniform feed to aperture mapping. In a first embodiment, the suboptic assembly moves as a single unit to achieve scan while the main reflector remains stationary. A feed horn is tilted during scan to maintain the illuminated area on the main spherical reflector fixed throughout the scan thereby eliminating the need to oversize the main spherical reflector. In an alternate embodiment, both the main spherical reflector and the suboptic assembly are fixed. A flat mirror is used to create a virtual image of the suboptic assembly. Scan is achieved by rotating the mirror about the spherical center of the main reflector. The feed horn is tilted during scan to maintain the illuminated area on the main spherical reflector fixed throughout the scan.

  13. Fixed defect on rest/stress Tc-99m sestamibi study underestimates myocardial ischemia: comparison with 24-hour thallium-201 study for short- and intermediate-term follow-up.

    PubMed

    Kong, Grace; Lichtenstein, Meir; Gunawardana, Dishan; Better, Nathan; Roysri, Krisana; Sivaratnam, Dinesh

    2008-03-01

    We assessed whether a same day rest/stress gated Tc-99m sestamibi (MIBI) SPECT myocardial study underestimates reversible ischemia in patients with fixed perfusion defects compared with a 24-hour thallium-201 (Tl-201) study. The short- and intermediate-term outcome with or without Tl-201 reversibility was assessed. Forty-nine consecutive patients with fixed MIBI defects received an additional Tl-201 study and were evaluated. Tl-201 was given to patients with a high clinical suspicion of underestimation of reversibility. Images were interpreted semiquantitatively by 3 nuclear medicine physicians using a 17-segment, 5-point model. A summed stress score (SSS) from stress MIBI images, a summed rest score (SRS) from Tl images, and a summed difference (SDS = SSS - SRS) score were calculated. SDS >3 indicated significant Tl-201 redistribution. Composite end points included acute myocardial infarction, unstable angina needing admission, cardiac death, or revascularization within 3 and 6 months. Fifteen of 49 patients showed no Tl-201 redistribution. Thirty-four of 49 (69%) patients had significant Tl-201 redistribution, and these patients had significantly higher cardiac events (CE) at 3 months (29% vs. 7%; P = 0.039), and higher at 6 months (32% vs. 7%; P = 0.027). These patients with CE had a larger amount of Tl-201 redistribution, mean SDS 8.6 vs. 5.3 (P = 0.047). Patients with significant Tl-201 redistribution had a lower left ventricular ejection fraction (mean 37%; P = 0.001). With short- and intermediate-term follow-up, our study shows a significant association towards fixed defects on the rest/stress MIBI study underestimating CE risk when compared with a delayed Tl-201 study, especially in patients with a large amount of Tl-201 redistribution. Hence, the addition of a Tl-201 study may be useful in the management of patients with large fixed MIBI defects, especially with a depressed left ventricular ejection fraction.

  14. Reversible ischemia in severe stress Tc-99m-Sestamibi perfusion defects: Assessment with gated tomographic polar map Fourier amplitude and amplitude/perfusion ratio images and correlation with resting images

    SciTech Connect

    Williams, K.A.; Taillon, L.A.

    1994-05-01

    Reversible ischemia in myocardial segments with severe hypoperfusion ({le}50% of normal activity) on stress Tc-99m-Sestamibi (MIBI) images was assessed with ECG-gated tomographic (GSPECT) indices of myocardial thickening, as reflected by an increase in regional count density during systole. GSPECT bullseye plots were generated for each of 8 frames acquired after stress MIBI injection in 39 patients with coronary artery disease and at least one severe perfusion defect on summed SPECT images. Using first harmonic Fourier amplitude (AMP) and AMP to perfusion ratio (APR) images, regional myocardial systolic thickening was assessed using a 5-segment model, scored 0 to 3, for absent, minimal, mildly reduced or normal thickening. These data were regionally compared with defect reversibility assessed using a separate-day or a preceding same-day resting MIBI injection images, in which these segments were scored from 0 to 3 for absent, minimal, partial or complete defect reversibility. Of 91 severe stress defects, 16 showed absent, 18 minimal, 43 partial, and 14 complete reversibility on resting images. Both AMP and APR scores were in statistically significant agreement (p=.0218 and .0006) with resting image reversibility grades, with 79% (p=.0324) and 86% (p=.0001) agreement on the presence of reversibility on resting imaging, respectively. AMP correctly identified 89% of the reversibility defects on rest images, while the APR identified 99% (p=.0248 vs. AMP). On analysis of segment scores, the AMP slightly underestimated the degree of rest image reversibility (p=.0235), while APR images indicated more reversibility thin did resting images (p=.0092). In conclusion, GSPECT MIBI bullseye Fourier AMP images correlate well with the pattern of reversibility on resting MIBI in severe stress perfusion defects. When indexed for the degree of hypoperfusion, the Fourier images depict a greater degree of defect reversibility than resting MIBI images.

  15. Significant association of female gender with lower degree of pathological 99mTc-sestamibi scintigraphy results as well as higher cardiac-related deaths free survival in elderly patients.

    PubMed

    Bucerius, Jan; Joe, Alexius Y; Herder, Ellen; Brockmann, Holger; Reinhardt, Michael J; Palmedo, Holger; Tiemann, Klaus; Biersack, Hans-Jürgen

    2010-12-01

    The aim of the present study was to assess the impact of female gender on the extent of myocardial perfusion defects as revealed by (99m)Tc-sestamibi myocardial perfusion scintigraphy (MPS) and on emerging cardiac events (CE) in patients aged ≥ 70 years. 86 patients aged ≥ 70 years with known or suspected CAD undergoing MPS (74.4 ± 3.2 years; women: n = 46; 53.5%) were included in this study. Semiquantitative analysis of MPS was performed and summed stress (SSS), summed difference (SDS), and summed rest scores (SRS) were calculated. Emerging CE comprised myocardial revascularization and -infarction and cardiac-related death. Multivariate regression analysis was performed to assess the independent prognostic impact of several patient related variables on MPS results. Kaplan-Meier- and log rank analyses were calculated for assessment of CE free survival as related to gender. Normal SSS (87.0% vs. 27.5%; p < 0.0001), SDS (80.4% vs. 27.5%; p < 0.0001), and SRS (97.8% vs. 82.5%; p = 0.023) were significantly more often found in women, whereas incidence of mildly and severely impaired SSS (6.5% vs. 35%; p = 0.001 and 2.2% vs. 25%; p = 0.002, respectively) and SDS (15.2% vs. 52.5%; p < 0.0001 and 2.2% vs. 17.5%; p = 0.023, respectively) were significantly higher in men. Multivariate logistic regression analysis revealed female gender as an independent predictor of normal SSS (odds ratio/OR: 17.6) and SDS (OR: 53.3). Female gender was associated with a significant higher cardiac-death free survival compared to male patients (p = 0.031). Female gender is independently associated with a significantly lower degree of pathological MPS results and a higher cardiac-death free survival in elderly patients.

  16. Femtosecond scanning tunneling microscope

    SciTech Connect

    Taylor, A.J.; Donati, G.P.; Rodriguez, G.; Gosnell, T.R.; Trugman, S.A.; Some, D.I.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). By combining scanning tunneling microscopy with ultrafast optical techniques we have developed a novel tool to probe phenomena on atomic time and length scales. We have built and characterized an ultrafast scanning tunneling microscope in terms of temporal resolution, sensitivity and dynamic range. Using a novel photoconductive low-temperature-grown GaAs tip, we have achieved a temporal resolution of 1.5 picoseconds and a spatial resolution of 10 nanometers. This scanning tunneling microscope has both cryogenic and ultra-high vacuum capabilities, enabling the study of a wide range of important scientific problems.

  17. Vector generator scan converter

    DOEpatents

    Moore, James M.; Leighton, James F.

    1990-01-01

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  18. Vector generator scan converter

    DOEpatents

    Moore, J.M.; Leighton, J.F.

    1988-02-05

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  19. Adaptive Optical Scanning Holography

    PubMed Central

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-01-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably. PMID:26916866

  20. Adaptive Optical Scanning Holography

    NASA Astrophysics Data System (ADS)

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-02-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably.

  1. Beam scanning binary logic

    NASA Astrophysics Data System (ADS)

    Itoh, Hideo; Mukai, Seiji; Watanabe, Masanobu; Mori, Masahiko; Yajima, Hiroyoshi

    1990-07-01

    A beam-scanning laser diode (BSLD) is presently applied to a novel optoelectronic logic operation, designated 'beam-scanning binary logic' (BSBL), that covers the implementation of both the basic logic gates and a spatial code encoder for photodetection, while allowing a greater reduction of the number of active devices than ordinary binary logic operations. BSBL executes multifunctional logic operations simultaneously. The data connections between logic gates in BSLD are flexible, due to the ability to electrically control both output power and laser-beam direction.

  2. Scanning computed confocal imager

    DOEpatents

    George, John S.

    2000-03-14

    There is provided a confocal imager comprising a light source emitting a light, with a light modulator in optical communication with the light source for varying the spatial and temporal pattern of the light. A beam splitter receives the scanned light and direct the scanned light onto a target and pass light reflected from the target to a video capturing device for receiving the reflected light and transferring a digital image of the reflected light to a computer for creating a virtual aperture and outputting the digital image. In a transmissive mode of operation the invention omits the beam splitter means and captures light passed through the target.

  3. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, Shimon; Chemla, Daniel S.; Ogletree, D. Frank; Botkin, David

    1995-01-01

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  4. CT Scans - Multiple Languages

    MedlinePlus

    ... Tomography) Scan - العربية (Arabic) Bilingual PDF Health Information Translations Chinese, Simplified (Mandarin dialect) (简体中文) Expand Section CT ( ... Chinese, Simplified (Mandarin dialect)) Bilingual PDF Health Information Translations Chinese, Traditional (Cantonese dialect) (繁體中文) Expand Section CT ( ...

  5. The Organizational Scan.

    ERIC Educational Resources Information Center

    Tosti, Donald; Jackson, Stephanie D.

    1997-01-01

    Performance technologists like quick, cheap analysis that is rigorous and comprehensive. This article presents the organization scan model which makes successful compromises between the technologist's obligation to be rigorous and comprehensive and the sponsor's obligation to save money and time. Includes "Societal Bottom Line: Measurable…

  6. ICV Echo Ultrasound Scan

    NASA Image and Video Library

    2012-12-31

    View of Integrated Cardiovascular (ICV) Echo Ultrasound Scan,in the Columbus module. ICV aims to quantify the extent,time course and clinical significance of cardiac atrophy (decrease in the size of the heart muscle) in space. Photo was taken during Expedition 34.

  7. Environmental Scanning Report, 1992.

    ERIC Educational Resources Information Center

    Yao, Min

    In response to the change in the provincial economy from natural-resource-based industries to service-oriented industries, Vancouver Community College (VCC) in British Columbia (BC) conducted an environmental scan of the social and economic trends in the college's service region that will most likely affect prospective students' educational and…

  8. Teaching the SCANS Competencies.

    ERIC Educational Resources Information Center

    Department of Labor, Washington, DC. Secretary's Commission on Achieving Necessary Skills.

    SCANS (the Secretary's Commission on Achieving Necessary Skills) provides definitions of the knowledge students and workers need for workplace success and methods for applying these principles in communities throughout the United States. This document contains six articles that give education and training practitioners practical suggestions for…

  9. SCANS: The Missing Link.

    ERIC Educational Resources Information Center

    Price-Machado, Donna

    Three specific classroom techniques for teaching vocational English as a Second Language to adults are discussed. They are three items on the SCANS (Secretary's Commission on Achieving Necessary Skills) list of "easy things" to do to integrate workplace basics into the classroom, designed to encourage a student-focused classroom. They…

  10. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  11. Bone scanning in clinical practice

    SciTech Connect

    Fogelman, I. )

    1987-01-01

    The topics covered in this book include the history of bone scanning, mechanisms of uptake of diphosphonate in bone, the normal bone scan, and the role of bone scanning in clinical practice. The aim of this book is to provide a source of reference relating to bone scan imaging for all those who are interested in the skeleton.

  12. Scanning thermal plumes

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Madding, R. P.; Green, T., III

    1975-01-01

    Over a three-year period 800 thermal line scans of power plant plumes were made by an airborne scanner, with ground truth measured concurrently at the plants. Computations using centered finite differences in the thermal scanning imagery show a lower bound in the horizontal temperature gradient in excess of 1.6 C/m. Gradients persist to 3 m below the surface. Vector plots of the velocity of thermal fronts are constructed by tracing the front motion in successive thermal images. A procedure is outlined for the two-point ground calibration of a thermal scanner from an equation describing the scanner signal and the voltage for two known temperatures. The modulation transfer function is then calculated by input of a thermal step function and application of digital time analysis techniques using Fast Fourier Transforms to the voltage output. Field calibration tests are discussed. Data accuracy is limited by the level of ground truth effort chosen.

  13. Scanning thermal plumes

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Madding, R. P.; Green, T., III

    1975-01-01

    Over a three-year period 800 thermal line scans of power plant plumes were made by an airborne scanner, with ground truth measured concurrently at the plants. Computations using centered finite differences in the thermal scanning imagery show a lower bound in the horizontal temperature gradient in excess of 1.6 C/m. Gradients persist to 3 m below the surface. Vector plots of the velocity of thermal fronts are constructed by tracing the front motion in successive thermal images. A procedure is outlined for the two-point ground calibration of a thermal scanner from an equation describing the scanner signal and the voltage for two known temperatures. The modulation transfer function is then calculated by input of a thermal step function and application of digital time analysis techniques using Fast Fourier Transforms to the voltage output. Field calibration tests are discussed. Data accuracy is limited by the level of ground truth effort chosen.

  14. The Scanning Photogrammetry

    NASA Astrophysics Data System (ADS)

    Ke, T.; Zhang, Z. X.; Huang, S.

    2012-07-01

    The paper proposes a new photogrammetry method, the scanning photogrammetry, to solve the problem that large targets can hardly be processed as a whole one in close-range photogrammetry. The method enlarges the view angle and intersection angle effectively by rotating camera in horizontal and vertical direction when photographing large targets. Meanwhile, it is a kind of multi-baseline photogrammetry which increases matching reliability and improves the quality and quantity of observations. Besides, in order to acquire images automatically, we develop the photograph scanner which ensures the efficiency and quality of photography. And the scanning photogrammetry system has been successfully used in deformation monitoring of Wumen Circumvallation in the Forbidden City. In the experiments, data is processed automatically by classical triangulation and self-calibration bundle adjustment. The result proves that the precision can meet with the deformation monitoring requirements and data processing efficiency accomplishes to engineering measurement applications.

  15. Photon scanning tunneling microscopy

    SciTech Connect

    Goudonnet, J.P.; Salomon, L.; De Fornel, F.; Chabrier, G. . Lab. de Physique du Solide); Warmack, R.J.; Ferrell, T.L. )

    1990-01-01

    The Photon Scanning Tunneling Microscopy (PSTM) is the photon analogue of the electron Scanning Tunneling Microscope (STM). It uses the evanescent field due to the total internal reflection of a light beam in a Total Internal Reflection (TIR) prism. The sample, mounted on the base of the prism, modulates the evanescent field. A sharpened optical fiber probes this field, and the collected light is processed to generate an image of the topography and the chemical composition of the surface. We give, in this paper, a description of the microscope and discuss the influence of several parameters such as -- polarization of light, angle of incidence, shape of the end of the fiber -- on the resolution. Images of various samples -- glass samples, teflon spheres -- are presented. 8 refs., 7 figs.

  16. Scanning holographic optical tweezers.

    PubMed

    Shaw, L A; Panas, Robert M; Spadaccini, C M; Hopkins, J B

    2017-08-01

    The aim of this Letter is to introduce a new optical tweezers approach, called scanning holographic optical tweezers (SHOT), which drastically increases the working area (WA) of the holographic-optical tweezers (HOT) approach, while maintaining tightly focused laser traps. A 12-fold increase in the WA is demonstrated. The SHOT approach achieves its utility by combining the large WA of the scanning optical tweezers (SOT) approach with the flexibility of the HOT approach for simultaneously moving differently structured optical traps in and out of the focal plane. This Letter also demonstrates a new heuristic control algorithm for combining the functionality of the SOT and HOT approaches to efficiently allocate the available laser power among a large number of traps. The proposed approach shows promise for substantially increasing the number of particles that can be handled simultaneously, which would enable optical tweezers additive fabrication technologies to rapidly assemble microgranular materials and structures in reasonable build times.

  17. Scanning micro-sclerometer

    DOEpatents

    Oliver, Warren C.; Blau, Peter J.

    1994-01-01

    A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch.

  18. Fly-scan ptychography

    DOE PAGES

    Huang, Xiaojing; Lauer, Kenneth; Clark, Jesse N.; ...

    2015-03-13

    We report an experimental ptychography measurement performed in fly-scan mode. With a visible-light laser source, we demonstrate a 5-fold reduction of data acquisition time. By including multiple mutually incoherent modes into the incident illumination, high quality images were successfully reconstructed from blurry diffraction patterns. Thus, this approach significantly increases the throughput of ptychography, especially for three-dimensional applications and the visualization of dynamic systems.

  19. Optical scanning holographic microscopy

    NASA Astrophysics Data System (ADS)

    Poon, Ting-Chung; Doh, Kyu B.; Schilling, Bradley W.; Wu, Ming H.; Shinoda, Kazunori K.; Suzuki, Yoshiji

    1995-03-01

    We first review a newly developed 3D imaging technique called optical scanning holography (OSH), and discuss recording and reconstruction of a point object using the principle of OSH. We then derive 3D holographic magnification, using three points configured as a 3D object. Finally, we demonstrated 3D imaging capability of OSH by holographically recording two planar objects at different depths and reconstructing the hologram digitally.

  20. Scanning drop sensor

    DOEpatents

    Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Shinde, Aniketa A.; Guevarra, Dan W.; Jones, Ryan J.; Marcin, Martin R.; Mitrovic, Slobodan

    2017-05-09

    Electrochemical or electrochemical and photochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  1. Scanning drop sensor

    DOEpatents

    Jin, Jian; Xiang, Chengxiang; Gregoire, John

    2017-05-09

    Electrochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  2. Fly-scan ptychography

    SciTech Connect

    Huang, Xiaojing; Lauer, Kenneth; Clark, Jesse N.; Xu, Weihe; Nazaretski, Evgeny; Harder, Ross; Robinson, Ian K.; Chu, Yong S.

    2015-03-13

    We report an experimental ptychography measurement performed in fly-scan mode. With a visible-light laser source, we demonstrate a 5-fold reduction of data acquisition time. By including multiple mutually incoherent modes into the incident illumination, high quality images were successfully reconstructed from blurry diffraction patterns. This approach significantly increases the throughput of ptychography, especially for three-dimensional applications and the visualization of dynamic systems.

  3. Scanning micro-sclerometer

    DOEpatents

    Oliver, W.C.; Blau, P.J.

    1994-11-01

    A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch. 2 figs.

  4. Underwater laser scanning system

    NASA Astrophysics Data System (ADS)

    Austin, Roswell W.; Duntley, Seibert Q.; Ensminger, Richard L.; Petzold, Theodore J.; Smith, Raymond C.

    1991-12-01

    A system is described that produces high quality images through turbid waters by means of time encoded reflected light transmitted by scattering. The system consists of a compact battery operated laser scanning unit that scans the underwater scene with the laser beam in a manner similar to a television raster. Light reflected from any object in the scene varies in accordance with the reflectance of the minute spot being illuminated. This time varying intensity (TVI) signal is transmitted through the water to a remote receiver by both scattered and unscattered light where the received signal may be stored and/or displayed. The underwater laser scanning unit can be moved freely about the field of interest by scuba diver or ROV, unencumbered by entangling umbilicals, and can send real-time images over distances of 15 to 20 attenuation lengths to observers in a shirt-sleeve environment for critical viewing on an image display monitor. This previously undescribed system was developed in the early 1970s for proof of concept tests and used technology that is now 18 or more years old. The physical principles and the experimental hardware are described and examples are given of images providing exquisite detail that were made in an experimental tank together with some images obtained in ocean trials.

  5. Scanning ultrafast electron microscopy.

    PubMed

    Yang, Ding-Shyue; Mohammed, Omar F; Zewail, Ahmed H

    2010-08-24

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability.

  6. Forensic Scanning Electron Microscope

    NASA Astrophysics Data System (ADS)

    Keeley, R. H.

    1983-03-01

    The scanning electron microscope equipped with an x-ray spectrometer is a versatile instrument which has many uses in the investigation of crime and preparation of scientific evidence for the courts. Major applications include microscopy and analysis of very small fragments of paint, glass and other materials which may link an individual with a scene of crime, identification of firearms residues and examination of questioned documents. Although simultaneous observation and chemical analysis of the sample is the most important feature of the instrument, other modes of operation such as cathodoluminescence spectrometry, backscattered electron imaging and direct x-ray excitation are also exploited. Marks on two bullets or cartridge cases can be compared directly by sequential scanning with a single beam or electronic linkage of two instruments. Particles of primer residue deposited on the skin and clothing when a gun is fired can be collected on adhesive tape and identified by their morphology and elemental composition. It is also possible to differentiate between the primer residues of different types of ammunition. Bullets may be identified from the small fragments left behind as they pass through the body tissues. In the examination of questioned documents the scanning electron microscope is used to establish the order in which two intersecting ink lines were written and to detect traces of chemical markers added to the security inks on official documents.

  7. Scanning ultrafast electron microscopy

    PubMed Central

    Yang, Ding-Shyue; Mohammed, Omar F.; Zewail, Ahmed H.

    2010-01-01

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability. PMID:20696933

  8. Scanning radiographic apparatus

    SciTech Connect

    Albert, R.D.

    1980-04-01

    Visual display of dental, medical or other radiographic images is realized with an x-ray tube in which an electron beam is scanned through an x-y raster pattern on a broad anode plate, the scanning being synchronized with the x-y sweep signals of a cathode ray tube display and the intensity signal for the display being derived from a small x-ray detector which receives x-rays that have passed through the subject to be imaged. Positioning and support of the detector are provided for by disposing the detector in a probe which may be attached to the x-ray tube at any of a plurality of different locations and by providing a plurality of such probes of different configuration in order to change focal length, to accommodate to different detector placements relative to the subject, to enhance patient comfort and to enable production of both periapical images and wider angle pantomographic images. High image definition with reduced radiation dosage is provided for by a lead glass collimator situated between the x-ray tube and subject and having a large number of spaced-apart minute radiation transmissive passages convergent on the position of the detector. Releasable mounting means enable changes of collimator in conjunction with changes of the probe to change focal length. A control circuit modifies the x-y sweep signals applied to the x-ray tube and modulates electron beam energy and current in order to correct for image distortions and other undesirable effects which can otherwise be present in a scanning x-ray system.

  9. Battery scanning system

    SciTech Connect

    Dieu, L.F.

    1984-11-20

    A battery scanning system which is capable of monitoring and displaying the voltage of each cell in a battery or upon command provides the cell voltage distribution by displaying the cell number and voltage value of highest and lowest cell. The system has a digital logic system, display, input switches for operator generated variables, an alarm, relays, relay selection gates, an optically coupled isolation amplifier, power source and an analog-digital converter. The optically coupled analog amplifier electrically isolates the system from the battery so that large voltage offsets will not adversely affect the automatic measuring of the cells.

  10. Real Scan Evolution.

    DTIC Science & Technology

    1982-02-01

    Computer Image Generation Visual Simulation Computer Graphics Al gortthm Geometric Model tng 1%ABSTRACT (C.tla. -mm. .00n ad N ue-e""V ONd Ofmi* OF 61"knsee...envtronments. modeled as a single valued el evatYo fnction of horizontal location. The objecttve of the development was to analyze the feasibility of a real...generator capable of creating complex Imagery .in real time? Is the solution amenable to efficient off-lne modeling of complex environments? The Real Scan

  11. Scanning Quantum Dot Microscopy

    NASA Astrophysics Data System (ADS)

    Wagner, Christian; Green, Matthew F. B.; Leinen, Philipp; Deilmann, Thorsten; Krüger, Peter; Rohlfing, Michael; Temirov, Ruslan; Tautz, F. Stefan

    2015-07-01

    We introduce a scanning probe technique that enables three-dimensional imaging of local electrostatic potential fields with subnanometer resolution. Registering single electron charging events of a molecular quantum dot attached to the tip of an atomic force microscope operated at 5 K, equipped with a qPlus tuning fork, we image the quadrupole field of a single molecule. To demonstrate quantitative measurements, we investigate the dipole field of a single metal adatom adsorbed on a metal surface. We show that because of its high sensitivity the technique can probe electrostatic potentials at large distances from their sources, which should allow for the imaging of samples with increased surface roughness.

  12. Controlled Scanning Probe Lithography

    NASA Astrophysics Data System (ADS)

    Ruskell, Todd G.; Sarid, Dror; Workman, Richard K.; Pyle, Jason L.

    1997-03-01

    A method for real-time monitoring of the quality and quantity of silicon oxide grown on silicon using conducting-tip scanning probe lithography has been developed. The sub-picoampere tip-sample currents measured during lithography in ambient conditions are shown to be proportional to the amount of silicon oxide being grown. In addition, we have demonstrated the ability to control the composition of the grown material by altering the lithographic environment. Silicon nitride growth is shown to result from lithography on silicon samples in an environment of annhydrous ammonia.

  13. Scans Solo: A One-Person Environmental Scanning Process.

    ERIC Educational Resources Information Center

    Clagett, Craig A.

    An effective environmental scan will improve the quality of community college planning and decision making by alerting institutional leaders to the challenges and opportunities in the environment. Scanning can be done in three ways: (1) establishing a scanning committee to gather and synthesize information to guide planning; (2) sponsoring a…

  14. Free motion scanning system

    DOEpatents

    Sword, Charles K.

    2000-01-01

    The present invention relates to an ultrasonic scanner system and method for the imaging of a part system, the scanner comprising: a probe assembly spaced apart from the surface of the part including at least two tracking signals for emitting radiation and a transmitter for emitting ultrasonic waves onto a surface in order to induce at least a portion of the waves to be reflected from the part, at least one detector for receiving the radiation wherein the detector is positioned to receive the radiation from the tracking signals, an analyzer for recognizing a three-dimensional location of the tracking signals based on the emitted radiation, a differential converter for generating an output signal representative of the waveform of the reflected waves, and a device such as a computer for relating said tracking signal location with the output signal and projecting an image of the resulting data. The scanner and method are particularly useful to acquire ultrasonic inspection data by scanning the probe over a complex part surface in an arbitrary scanning pattern.

  15. Ultrafast scanning tunneling microscopy

    SciTech Connect

    Botkin, D.A. |

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  16. Photon scanning tunneling microscopy

    SciTech Connect

    Reddick, R.C.; Warmack, R.J.; Chilcott, D.W.; Sharp, S.L.; Ferrell, T.L. Department of Physics and Astronomy, University of Tennessee, Knoxville, TN )

    1990-12-01

    An optical tunneling microscope is presented that operates in exactly the same way as the electron scanning tunneling microscope (ESTM). It takes advantage of evanescent fields generated by the total internal reflection (TIR) of light at the interface between materials of different optical densities. The photon scanning tunneling microscope (PSTM) employs an optically conducting probe tip to map spatial variations in the evanescent and scattered field intensity distributions adjacent to a sample surface, which forms or is placed on the TIR surface. These variations are due to the local topography, morphology, and optical activity of the surface and form the basis of imaging. Evanescent field theory is discussed and the evanescent field intensity as a function of surface-probe separation is calculated using several probe tip models. After a description of PSTM construction and operation, evanescent field intensity measurements are shown to agree with the model calculations. PSTM images of various sample surfaces demonstrate subwavelength resolution exceeding that of conventional optical microscopy, especially in the vertical dimension. Limitations and interpretation of PSTM images are discussed as well as the PSTMs applicability to other forms of surface analysis.

  17. Pulmonary ventilation/perfusion scan

    MedlinePlus

    ... JavaScript. A pulmonary ventilation/perfusion scan involves two nuclear scan tests to measure breathing (ventilation) and circulation ( ... In: Mettler FA, Guiberteau MJ, eds. Essentials of Nuclear Medicine Imaging . 6th ed. Philadelphia, PA: Elsevier Saunders; ...

  18. Rotational scanning atomic force microscopy.

    PubMed

    Ulčinas, A; Vaitekonis, Š

    2017-03-10

    A non-raster scanning technique for atomic force microscopy (AFM) imaging which combines rotational and translational motion is presented. The use of rotational motion for the fast scan axis allows us to significantly increase the scanning speed while imaging a large area (diameter > 30 μm). An image reconstruction algorithm and the factors influencing the resolution of the technique are discussed. The experimental results show the potential of the rotational scanning technique for high-throughput large area AFM investigation.

  19. Rotational scanning atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ulčinas, A.; Vaitekonis, Š.

    2017-03-01

    A non-raster scanning technique for atomic force microscopy (AFM) imaging which combines rotational and translational motion is presented. The use of rotational motion for the fast scan axis allows us to significantly increase the scanning speed while imaging a large area (diameter > 30 μm). An image reconstruction algorithm and the factors influencing the resolution of the technique are discussed. The experimental results show the potential of the rotational scanning technique for high-throughput large area AFM investigation.

  20. The Scanning Process: Getting Started.

    ERIC Educational Resources Information Center

    Renfro, William L.; Morrison, James L.

    1983-01-01

    Scanning the external environment will become more essential to colleges in the coming decade. Developing an environmental scanning system can identify important emerging issues that may constitute either threats or opportunities. The organizational features of a mature scanning process are described. (MLW)

  1. Telescopic horizon scanning.

    PubMed

    Koenderink, Jan

    2014-12-20

    The problem of "distortionless" viewing with terrestrial telescopic systems (mainly "binoculars") remains problematic. The so called "globe effect" is only partially counteracted in modern designs. Theories addressing the phenomenon have never reached definitive closure. In this paper, we show that exact distortionless viewing with terrestrial telescopic systems is not possible in general, but that it is in principle possible in-very frequent in battle field and marine applications-the case of horizon scanning. However, this involves cylindrical optical elements. For opto-electronic systems, a full solution is more readily feasible. The solution involves a novel interpretation of the relevant constraints and objectives. For final design decisions, it is not necessary to rely on a corpus of psychophysical (or ergonomic) data, although one has to decide whether the instrument is intended as an extension of the eye or as a "pictorial" device.

  2. Fetal cardiac scanning today.

    PubMed

    Allan, Lindsey

    2010-07-01

    The ability to examine the structure of the fetal heart in real-time started over 30 years ago now. The field has seen very great advances since then, both in terms of technical improvements in ultrasound equipment and in dissemination of operator skills. A great deal has been learnt about normal cardiac function in the human fetus throughout gestation and how it is affected by pathologies of pregnancy. There is increasing recognition of abnormal heart structure during routine obstetric scanning, allowing referral for specialist diagnosis and counselling. It is now possible to make accurate diagnosis of cardiac malformations as early as 12 weeks of gestation. Early diagnosis of a major cardiac malformation in the fetus can provide the parents with a comprehensive prognosis, enabling them to make the most informed choice about the management of the pregnancy.

  3. A scanning cavity microscope

    PubMed Central

    Mader, Matthias; Reichel, Jakob; Hänsch, Theodor W.; Hunger, David

    2015-01-01

    Imaging the optical properties of individual nanosystems beyond fluorescence can provide a wealth of information. However, the minute signals for absorption and dispersion are challenging to observe, and only specialized techniques requiring sophisticated noise rejection are available. Here we use signal enhancement in a high-finesse scanning optical microcavity to demonstrate ultra-sensitive imaging. Harnessing multiple interactions of probe light with a sample within an optical resonator, we achieve a 1,700-fold signal enhancement compared with diffraction-limited microscopy. We demonstrate quantitative imaging of the extinction cross-section of gold nanoparticles with a sensitivity less than 1 nm2; we show a method to improve the spatial resolution potentially below the diffraction limit by using higher order cavity modes, and we present measurements of the birefringence and extinction contrast of gold nanorods. The demonstrated simultaneous enhancement of absorptive and dispersive signals promises intriguing potential for optical studies of nanomaterials, molecules and biological nanosystems. PMID:26105690

  4. Scanning the periphery.

    PubMed

    Day, George S; Schoemaker, Paul J H

    2005-11-01

    Companies often face new rivals, technologies, regulations, and other environmental changes that seem to come out of left field. How can they see these changes sooner and capitalize on them? Such changes often begin as weak signals on what the authors call the periphery, or the blurry zone at the edge of an organization's vision. As with human peripheral vision, these signals are difficult to see and interpret but can be vital to success or survival. Unfortunately, most companies lack a systematic method for determining where on the periphery they should be looking, how to interpret the weak signals they see, and how to allocate limited scanning resources. This article provides such a method-a question-based framework for helping companies scan the periphery more efficiently and effectively. The framework divides questions into three categories: learning from the past (What have been our past blind spots? What instructive analogies do other industries offer? Who in the industry is skilled at picking up weak signals and acting on them?); evaluating the present (What important signals are we rationalizing away? What are our mavericks, outliers, complainers, and defectors telling us? What are our peripheral customers and competitors really thinking?); and envisioning the future (What future surprises could really hurt or help us? What emerging technologies could change the game? Is there an unthinkable scenario that might disrupt our business?). Answering these questions is a good first step toward anticipating problems or opportunities that may appear on the business horizon. The article concludes with a self-test that companies can use to assess their need and capability for peripheral vision.

  5. Earth observing scanning polarimeter

    NASA Technical Reports Server (NTRS)

    Travis, Larry

    1993-01-01

    Climate forcing by tropospheric aerosols is receiving increased attention because of the realization that the climate effects may be large, while our knowledge of global aerosol characteristics and temporal changes is very poor. Tropospheric aerosols cause a direct radiative forcing due simply to their scattering and absorption of solar radiation, as well as an indirect effect as cloud condensation nuclei which can modify the shortwave reflectivity of clouds. Sulfate aerosols tend to increase planetary albedo through both the direct and indirect effects; a cooling due to anthropogenic sulfate aerosols has been estimated of order 1 W/sq m, noting that this is similar in magnitude to the present anthropogenic greenhouse gas warming. Other aerosols, including those from biomass burning and wind-blown desert dust are also of potential climatic importance. At present, the only global monitoring of tropospheric aerosols is a NOAA operational product, aerosol optical thickness, obtained using channel-1 (0.58-0.68 mu m) radiances from the AVHRR. With this single channel radiance data, one must use an approach which is based on the inferred excess of reflected radiance owing to scattering by the aerosols over that expected from theoretical calculations. This approach is suited only for situations where the surface has a low albedo that is well known a priori. Thus, the NOAA operational product is restricted to coverage over the ocean at AVHRR scan angles well away from sun glint, and aerosol changes are subject to confusion with changes caused by either optically thin or subpixel clouds. Because optically thin aerosols have only a small effect on the radiance, accurate measurements for optical thickness less than 0.1 (which is a typical background level) are precluded. Moreover, some of the largest and most important aerosol changes are expected over land. The Earth Observing Scanning Polarimeter (EOSP) instrument, based upon design heritage and analysis techniques

  6. Differential scanning calorimetry.

    PubMed

    Spink, Charles H

    2008-01-01

    Differential scanning calorimetry (DSC) has emerged as a powerful experimental technique for determining thermodynamic properties of biomacromolecules. The ability to monitor unfolding or phase transitions in proteins, polynucleotides, and lipid assemblies has not only provided data on thermodynamic stability for these important molecules, but also made it possible to examine the details of unfolding processes and to analyze the characteristics of intermediate states involved in the melting of biopolymers. The recent improvements in DSC instrumentation and software have generated new opportunities for the study of the effects of structure and changes in environment on the behavior of proteins, nucleic acids, and lipids. This review presents some of the details of application of DSC to the examination of the unfolding of biomolecules. After a brief introduction to DSC instrumentation used for the study of thermal transitions, the methods for obtaining basic thermodynamic information from the DSC curve are presented. Then, using DNA unfolding as an example, methods for the analysis of the melting transition are presented that allow deconvolution of the DSC curves to determine more subtle characteristics of the intermediate states involved in unfolding. Two types of transitions are presented for analysis, the first example being the unfolding of two large synthetic polynucleotides, which display high cooperativity in the melting process. The second example shows the application of DSC for the study of the unfolding of a simple hairpin oligonucleotide. Details of the data analysis are presented in a simple spreadsheet format.

  7. GPR scan assessment

    NASA Astrophysics Data System (ADS)

    Abbas, Abbas M.; Salah, Hany; Massoud, Usama; Fouad, Mona; Abdel-Hafez, Mahmoud

    2015-06-01

    Mekaad Radwan monument is situated in the neighborhood of Bab Zuweila in the historical Cairo, Egypt. It was constructed at the middle XVII century (1635 AD). The building has a rectangle shape plan (13 × 6 m) with the longitudinal sides approximately WNW-ESE. It comprises three storages namely; the ground floor; the opened floor (RADWAN Bench) and the living floor with a total elevation of 15 m above the street level. The building suffers from severe deterioration phenomena with patterns of damage which have occurred over time. These deterioration and damages could be attributed to foundation problems, subsoil water and also to the earthquake that affected the entire Greater Cairo area in October 1992. Ground Penetrating Radar (GPR) scan was accomplished against the walls of the opened floor (RADWAN Bench) to evaluate the hazard impact on the walls textures and integrity. The results showed an anomalous feature through the southern wall of RADWAN Bench. A mathematical model has been simulated to confirm the obtained anomaly and the model response exhibited a good matching with the outlined anomaly.

  8. LANL Robotic Vessel Scanning

    SciTech Connect

    Webber, Nels W.

    2015-11-25

    Los Alamos National Laboratory in J-1 DARHT Operations Group uses 6ft spherical vessels to contain hazardous materials produced in a hydrodynamic experiment. These contaminated vessels must be analyzed by means of a worker entering the vessel to locate, measure, and document every penetration mark on the vessel. If the worker can be replaced by a highly automated robotic system with a high precision scanner, it will eliminate the risks to the worker and provide management with an accurate 3D model of the vessel presenting the existing damage with the flexibility to manipulate the model for better and more in-depth assessment.The project was successful in meeting the primary goal of installing an automated system which scanned a 6ft vessel with an elapsed time of 45 minutes. This robotic system reduces the total time for the original scope of work by 75 minutes and results in excellent data accumulation and transmission to the 3D model imaging program.

  9. Continuous scanning mode for ptychography

    SciTech Connect

    Clark, Jesse N.; Huang, Xiaojing; Harder, Ross; Robinson, Ian K.

    2014-10-15

    We outline how ptychographic imaging can be performed without the need for discrete scan positions. Through an idealized experiment, we demonstrate how a discrete-position scan regime can be replaced with a continuously scanned one with suitable modification of the reconstruction scheme based on coherent modes. The impact of this is that acquisition times can be reduced, significantly aiding ptychographic imaging with x rays, electrons, or visible light.

  10. Continuous scanning mode for ptychography

    SciTech Connect

    Clark, Jesse N.; Huang, Xiaojing; Harder, Ross J.; Robinson, Ian K.

    2014-10-15

    We outline how ptychographic imaging can be performed without the need for discrete scan positions. Through an idealized experiment, we demonstrate how a discrete-position scan regime can be replaced with a continuously scanned one with suitable modification of the reconstruction scheme based on coherent modes. Thus, the impact of this is that acquisition times can be reduced, significantly aiding ptychographic imaging with x rays, electrons, or visible light.

  11. Continuous scanning mode for ptychography

    SciTech Connect

    Clark, Jesse N.; Huang, Xiaojing; Harder, Ross J.; Robinson, Ian K.

    2014-01-01

    Here, we outline how ptychographic imaging can be performed without the need for discrete scan positions. Through an idealized experiment, we demonstrate how a discrete-position scan regime can be replaced with a continuously scanned one with suitable modification of the reconstruction scheme based on coherent modes. Furthermore, the impact of this is that acquisition times can be reduced, significantly aiding ptychographic imaging with x rays, electrons, or visible light.

  12. Lung Ventilation/Perfusion Scan

    MedlinePlus

    ... Scan Lung VQ Scan Related Topics Arrhythmia Cough Deep Vein Thrombosis Pulmonary Embolism Send a link to NHLBI to someone by ... this topic. Related reading Chest X Ray Cough Deep Vein Thrombosis Pulmonary Embolism Rate This Content: Updated: December 9, 2016 Twitter ...

  13. An interchangeable scanning Hall probe/scanning SQUID microscope

    SciTech Connect

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin; Chen, Tse-Jun; Wang, M. J.; Ling, D. C.; Chi, C. C.; Chen, Jeng-Chung

    2014-08-15

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10{sup −7} T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K.

  14. The value of brain scanning

    PubMed Central

    Riddoch, D.; Drolc, Z.

    1972-01-01

    Over a 3-year period, 667 brain scans were performed, of which the results in 632 have been analysed. Positive scans were found in 68% of 204 cerebral tumours. There was a high rate of detection of meningiomas and malignant gliomas. Scanning was less helpful in visualizing slowly growing gliomas, and those tumours situated in the mid-line or posterior fossa. Metastases occupied an intermediate position. Positive scans occurred in a proportion of patients following acute cerebro-vascular accidents, and in a few other miscellaneous disorders. Virtually all patients with transient cerebral ischaemia, migraine, epilepsy and presenile dementia had normal brain scans. The value and limitations of this investigation have been discussed. PMID:5076491

  15. Rapid-scan EPR imaging

    NASA Astrophysics Data System (ADS)

    Eaton, Sandra S.; Shi, Yilin; Woodcock, Lukas; Buchanan, Laura A.; McPeak, Joseph; Quine, Richard W.; Rinard, George A.; Epel, Boris; Halpern, Howard J.; Eaton, Gareth R.

    2017-07-01

    In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be oscillations on the trailing edge of the spectrum. These oscillations can be removed by mathematical deconvolution to recover the slow-scan absorption spectrum. In cases of inhomogeneous broadening, the oscillations may interfere destructively to the extent that they are not visible. The deconvolution can be used even when it is not required, so spectra can be obtained in which some portions of the spectrum are in the rapid-scan regime and some are not. The technology developed for rapid-scan EPR can be applied generally so long as spectra are obtained in the linear response region. The detection of the full spectrum in each scan, the ability to use higher microwave power without saturation, and the noise filtering inherent in coherent averaging results in substantial improvement in signal-to-noise relative to conventional continuous wave spectroscopy, which is particularly advantageous for low-frequency EPR imaging. This overview describes the principles of rapid-scan EPR and the hardware used to generate the spectra. Examples are provided of its application to imaging of nitroxide radicals, diradicals, and spin-trapped radicals at a Larmor frequency of ca. 250 MHz.

  16. Re-scan confocal microscopy: scanning twice for better resolution

    PubMed Central

    De Luca, Giulia M.R.; Breedijk, Ronald M.P.; Brandt, Rick A.J.; Zeelenberg, Christiaan H.C.; de Jong, Babette E.; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A.; Stallinga, Sjoerd; Manders, Erik M.M.

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required. PMID:24298422

  17. Circular Scan Streak Tube Development

    NASA Technical Reports Server (NTRS)

    Nevin, S.

    1980-01-01

    A streak tube having circular scan was designed, built and tested. Continuous circular scan, easily derived from out of phase sine waves applied to the conventional deflection plates, permits the timing of pulses traveling long baselines. At the tube's output a circular array of 720 elements is scanned to provide 30 to 40 picosecond resolution. Initial difficulties with electron bombarded silicon arrays were circumvented by using microchannel plates within the streak tube to provide the needed electronic amplification and digital sensitivity and coupling the 720 element arrays to the electron beam by means of a phosphor on a fiber optics. Two ceramic body tubes with S-20 photocathodes were tested and delivered.

  18. Radioisotope scanning of the lungs

    PubMed Central

    Bell, T. K.; Ferguson, R.; McIlrath, E. I.; Weaver, J. A.

    1968-01-01

    Lung scanning with macroaggregated albumin 131I was carried out in 128 patients. The technique appears to be without hazard. It is particularly useful in the detection of pulmonary embolism, but the pattern is non-specific and changes occur in other cardio-respiratory diseases. On the basis of these observations pulmonary scanning is regarded as a useful adjunct in the study of pulmonary embolism, but it cannot serve as a specific diagnostic procedure since similar patterns of scan may be found in many conditions. Images PMID:4230042

  19. 3D Scan Systems Integration

    DTIC Science & Technology

    2007-11-02

    AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 5 Feb 98 4. TITLE AND SUBTITLE 3D Scan Systems Integration REPORT TYPE AND DATES COVERED...2-89) Prescribed by ANSI Std. Z39-1 298-102 [ EDO QUALITY W3PECTEDI DLA-ARN Final Report for US Defense Logistics Agency on DDFG-T2/P3: 3D...SCAN SYSTEMS INTEGRATION Contract Number SPO100-95-D-1014 Contractor Ohio University Delivery Order # 0001 Delivery Order Title 3D Scan Systems

  20. Bone Densitometry (Bone Density Scan)

    MedlinePlus

    ... In some communities, a CT scan with special software can also be used to diagnose or monitor ... patient's bone mineral density. DEXA machines feature special software that compute and display the bone density measurements ...

  1. Studies in Scanning Probe Microscopy.

    DTIC Science & Technology

    2007-11-02

    refereed journals, as well as two books titled Scanning Force Microscopy, With Applications to Electric, Magnetic, and Atomic Forces published by Oxford University Press in 1991 and a revised edition in 1994.

  2. Retinal locus for scanning text.

    PubMed

    Timberlake, George T; Sharma, Manoj K; Grose, Susan A; Maino, Joseph H

    2006-01-01

    A method of mapping the retinal location of text during reading is described in which text position is plotted cumulatively on scanning laser ophthalmoscope retinal images. Retinal locations that contain text most often are the brightest in the cumulative plot, and locations that contain text least often are the darkest. In this way, the retinal area that most often contains text is determined. Text maps were plotted for eight control subjects without vision loss and eight subjects with central scotomas from macular degeneration. Control subjects' text maps showed that the fovea contained text most often. Text maps of five of the subjects with scotomas showed that they used the same peripheral retinal area to scan text and fixate. Text maps of the other three subjects with scotomas showed that they used separate areas to scan text and fixate. Retinal text maps may help evaluate rehabilitative strategies for training individuals with central scotomas to use a particular retinal area to scan text.

  3. Liver echinococcus - CT scan (image)

    MedlinePlus

    This upper abdominal CT scan shows multiple cysts in the liver, caused by dog tapeworm (echinococcus). Note the large circular cyst (seen on the left side of the screen) and multiple smaller cysts throughout ...

  4. Transverse section radionuclide scanning system

    DOEpatents

    Kuhl, David E.; Edwards, Roy Q.

    1976-01-01

    This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three-dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program.

  5. Lidar arc scan uncertainty reduction through scanning geometry optimization

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.

    2016-04-01

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.

  6. Deconvolution of sinusoidal rapid EPR scans.

    PubMed

    Tseitlin, Mark; Rinard, George A; Quine, Richard W; Eaton, Sandra S; Eaton, Gareth R

    2011-02-01

    In rapid scan EPR the magnetic field is scanned through the signal in a time that is short relative to electron spin relaxation times. Previously it was shown that the slow-scan lineshape could be recovered from triangular rapid scans by Fourier deconvolution. In this paper a general Fourier deconvolution method is described and demonstrated to recover the slow-scan lineshape from sinusoidal rapid scans. Since an analytical expression for the Fourier transform of the driving function for a sinusoidal scan was not readily apparent, a numerical method was developed to do the deconvolution. The slow scan EPR lineshapes recovered from rapid triangular and sinusoidal scans are in excellent agreement for lithium phthalocyanine, a trityl radical, and the nitroxyl radical, tempone. The availability of a method to deconvolute sinusoidal rapid scans makes it possible to scan faster than is feasible for triangular scans because of hardware limitations on triangular scans.

  7. Immersion ultrasonography: simultaneous A-scan and B-scan.

    PubMed

    Coleman, D J; Dallow, R L; Smith, M E

    1979-01-01

    In eyes with opaque media, ophthalmic ultrasound provides a unique source of information that can dramatically affect the course of patient management. In addition, when an ocular abnormality can be visualized, ultrasonography provides information that supplements and complements other diagnostic testing. It provides documentation and differentiation of abnormal states, such as vitreous hemorrhage and intraocular tumor, as well as differentiation of orbital tumors from inflammatory causes of exophthalmos. Additional capabilities of ultrasound are biometric determinations for calculation of intraocular lens implant powers and drug-effectiveness studies. Maximal information is derived from ultrasonography when A-scan and B-scan techniques are employed simultaneously. Flexibility of electronics, variable-frequency transducers, and the use of several different manual scanning patterns aid in detection and interpretation of results. The immersion system of ultrasonography provides these features optimally.

  8. Obstacles to Industrial Implementation of Scanning Systems

    Treesearch

    Anders Astrom; Olog Broman; John Graffman; Anders Gronlund; Armas Jappinene; Jari Luostarinen; Jan Nystrom; Daniel L. Schmoldt

    1998-01-01

    Initially the group discussed what is meant by scanning systems. An operational definition was adopted to consider scanning system in the current context to be nontraditional scanning. Where, traditional scanning is defined as scanning that has been industrially operational and relatively common for several years-a mature technology. For example,...

  9. Micromachined microscanners for optical scanning

    NASA Astrophysics Data System (ADS)

    Kiang, Meng-Hsiung; Solgaard, Olav; Muller, Richard S.; Lau, Kam Y.

    1997-04-01

    We present the design and fabrication of surface- micromachined electrostatic-comb driven microscanners that have high angular precision over a large scan angle. When used as resonant scanners, these mirrors have fast scan rates with very low operating power. We use polysilicon microhinges, which allow the micromirrors to be lifted out of the plane of the substrate after processing is completed, to create high-aspect-ratio optical surfaces with dimensions in the hundreds of micrometers s while taking advantage of the planar surface-micromachining processing technology. Microscanners that are capable of high-speed scanning over large scan angles with high precision have been fabricated. Application of these actuated micromirrors in laser barcode scanning and optical-fiber switches have been demonstrated. These single-mirror scanners can be combined to form more complicated microscanners such as a two-mirror, two-axis raster scanner that have a wide range of applications in areas such as medicine, displays, printing, data storage, and communications.

  10. Studies in scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Sarid, Dror

    1995-06-01

    The following is a final report on our work in the field of Scanning Probe Microscopy (SPM), which has been funded by the AFOSR under Contract #F49620-92-J-0164. The AFOSR funding was instrumental in the establishment of a multi-lab facility at the Optical Sciences Center, which performs research in SPM using two ultrahigh vacuum (UHV) STM facilities, and several Atomic Force Microscopy (AFM) facilities. The fabrication and characterization work performed in the SPM Laboratory is supplemented by infrared (IR) spectroscopy, high resolution transmission electron microscopy (HRTEM), and scanning electron microscopy (SEM), available in other departments on campus. The report covers the following areas: (1) GaAs and CdSe Structures, (2) Optical Interactions on a nm and nsec Scales, (3) Fullerenes on Gold, (4) Fullerenes on MoS2, (5) Fullerenes on Si, (6) SiC, (7) Nanotubes, (8) Scanning Force Microscopy, and (9) Biology.

  11. Security scanning at 94GHz

    NASA Astrophysics Data System (ADS)

    Anderton, Rupert N.; Appleby, Roger; Beale, John E.; Coward, Peter R.; Price, Sean

    2006-05-01

    It is well known that millimetre waves can pass through clothing. In short range applications such as in the scanning of people for security purposes, operating at W band can be an advantage. The size of the equipment is decreased when compared to operation at Ka band and the equipments have similar performance. In this paper a W band mechanically scanned imager designed for imaging weapons and contraband hidden under clothing is discussed. This imager is based on a modified folded conical scan technology previously reported. In this design an additional optical element is added to give a Cassegrain configuration in image space. This increases the effective focal length and enables improved sampling of the image and provides more space for the receivers. This imager is constructed from low cost materials such as polystyrene, polythene and printed circuit board materials. The trade off between image spatial resolution and thermal sensitivity is discussed.

  12. Footwear scanning systems and methods

    DOEpatents

    Fernandes, Justin L.; McMakin, Douglas L.; Sheen, David M.; Tedeschi, Jonathan R.

    2017-07-25

    Methods and apparatus for scanning articles, such as footwear, to provide information regarding the contents of the articles are described. According to one aspect, a footwear scanning system includes a platform configured to contact footwear to be scanned, an antenna array configured to transmit electromagnetic waves through the platform into the footwear and to receive electromagnetic waves from the footwear and the platform, a transceiver coupled with antennas of the antenna array and configured to apply electrical signals to at least one of the antennas to generate the transmitted electromagnetic waves and to receive electrical signals from at least another of the antennas corresponding to the electromagnetic waves received by the others of the antennas, and processing circuitry configured to process the received electrical signals from the transceiver to provide information regarding contents within the footwear.

  13. Scanning laser polarimetry - a review.

    PubMed

    Da Pozzo, Stefano; Marchesan, Roberta; Ravalico, Giuseppe

    2009-01-01

    Glaucoma is a leading cause of irreversible blindness worldwide. Retinal ganglion cells and their axons represent the selective target of the disease. When visual function is still intact on standard automated perimetry and optic disc appearance is suspicious, an early diagnosis may be supported by the identification of a retinal nerve fibre layer (RNFL) defect in the peripapillary area. At present days, computer-based, real-time imaging of the peripapillary RNFL is available through instruments of easy use and with high levels of accuracy and reproducibility. Scanning laser polarimetry is performed by a confocal scanning laser ophthalmoscope with an integrated polarimeter (GDx-VCC). There is a considerable amount of scientific evidence about the role of this imaging technique for glaucoma diagnosis. The aim of this review is to describe the principles of operation, the examination procedure, the clinical role, the results of main diagnostic studies and the future development of the software for the scanning laser polarimetry.

  14. Nanobits: customizable scanning probe tips

    NASA Astrophysics Data System (ADS)

    Rajendra Kumar, R. T.; Hassan, S. U.; Sardan Sukas, O.; Eichhorn, V.; Krohs, F.; Fatikow, S.; Boggild, P.

    2009-09-01

    We present here a proof-of-principle study of scanning probe tips defined by planar nanolithography and integrated with AFM probes using nanomanipulation. The so-called 'nanobits' are 2-4 µm long and 120-150 nm thin flakes of Si3N4 or SiO2, fabricated by electron beam lithography and standard silicon processing. Using a microgripper they were detached from an array and fixed to a standard pyramidal AFM probe or alternatively inserted into a tipless cantilever equipped with a narrow slit. The nanobit-enhanced probes were used for imaging of deep trenches, without visible deformation, wear or dislocation of the tips of the nanobit after several scans. This approach allows an unprecedented freedom in adapting the shape and size of scanning probe tips to the surface topology or to the specific application.

  15. Nanobits: customizable scanning probe tips.

    PubMed

    Rajendra Kumar, R T; Hassan, S U; Sardan Sukas, O; Eichhorn, V; Krohs, F; Fatikow, S; Boggild, P

    2009-09-30

    We present here a proof-of-principle study of scanning probe tips defined by planar nanolithography and integrated with AFM probes using nanomanipulation. The so-called 'nanobits' are 2-4 microm long and 120-150 nm thin flakes of Si(3)N(4) or SiO(2), fabricated by electron beam lithography and standard silicon processing. Using a microgripper they were detached from an array and fixed to a standard pyramidal AFM probe or alternatively inserted into a tipless cantilever equipped with a narrow slit. The nanobit-enhanced probes were used for imaging of deep trenches, without visible deformation, wear or dislocation of the tips of the nanobit after several scans. This approach allows an unprecedented freedom in adapting the shape and size of scanning probe tips to the surface topology or to the specific application.

  16. Scanning Terahertz Heterodyne Imaging Systems

    NASA Technical Reports Server (NTRS)

    Siegel, Peter; Dengler, Robert

    2007-01-01

    Scanning terahertz heterodyne imaging systems are now at an early stage of development. In a basic scanning terahertz heterodyne imaging system, (see Figure 1) two far-infrared lasers generate beams denoted the local-oscillator (LO) and signal that differ in frequency by an amount, denoted the intermediate frequency (IF), chosen to suit the application. The LO beam is sent directly to a mixer as one of two inputs. The signal beam is focused to a spot on or in the specimen. After transmission through or reflection from the specimen, the beams are focused to a spot on a terahertz mixer, which extracts the IF outputs. The specimen is mounted on a translation stage, by means of which the focal spot is scanned across the specimen to build up an image.

  17. The combination of scanning electron and scanning probe microscopy

    SciTech Connect

    Sapozhnikov, I. D.; Gorbenko, O. M. Felshtyn, M. L.; Golubok, A. O.

    2016-06-17

    We suggest the SPM module to combine SEM and SPM methods for studying surfaces. The module is based on the original mechanical moving and scanning system. The examples of studies of the steel surface microstructure in both SEM and SPM modes are presented.

  18. Conically scanned holographic lidar telescope

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary (Inventor)

    1993-01-01

    An optical scanning device utilizing a source of optical energy such as laser light backscattered from the earth's atmosphere or transmitted outward as in a lidar, a rotating holographic optical element having an axis of rotation perpendicular to the plane of its substrate, and having a stationary focus which may or may not be located on its axis of rotation, with the holographic optical element diffracting the source of optical energy at an angle to its rotation axis enabling a conical scanning area and a motor for supporting and rotating the rotating holographic optical element, is described.

  19. Digital laser scanning fundus camera.

    PubMed

    Plesch, A; Klingbeil, U; Bille, J

    1987-04-15

    Imaging and documentation of the human retina for clinical diagnostics are conventionally achieved by classical optical methods. We designed a digital laser scanning fundus camera. The optoelectronical instrument is based on scanning laser illumination of the retina and a modified video imaging procedure. It is coupled to a digital image buffer and a microcomputer for image storage and processing. Aside from its high sensitivity the LSF incorporates new ophthalmic imaging methods like polarization differential contrast. We give design considerations as well as a description of the instrument and its performance.

  20. Research With Scanning Tip Microscopy

    DTIC Science & Technology

    1991-12-31

    08ro P noiwe bae?041Le Research With Scanning Tip Microscopy AFOSR-89-0498 V AUTHOS)i Professor Dror Sarid 7. PFOUImNG 00ANIZATION NAMEIS) AND...forces and (b) surfaces. UNCLASS UNCLASS UNCLASS UL FINAL REPORT TO THE AFOSR ൱-, to J4ti. r Aat io Research in Scanning Tip Microscopy Dror Sarid Dtst...microscopy have been used to investigate (a) forces and (b) surfaces. a. Forces 1. Dror Sarid , Douglas lams, Volker Weissenberger, and L. Stephen Bell

  1. Scanning color optical tomography (SCOT)

    PubMed Central

    Hosseini, Poorya; Sung, Yongjin; Choi, Youngwoon; Lue, Niyom; Yaqoob, Zahid; So, Peter

    2015-01-01

    We have developed an interferometric optical microscope that provides three-dimensional refractive index map of a specimen by scanning the color of three illumination beams. Our design of the interferometer allows for simultaneous measurement of the scattered fields (both amplitude and phase) of such a complex input beam. By obviating the need for mechanical scanning of the illumination beam or detection objective lens; the proposed method can increase the speed of the optical tomography by orders of magnitude. We demonstrate our method using polystyrene beads of known refractive index value and live cells. PMID:26367632

  2. High precision prism scanning system

    NASA Astrophysics Data System (ADS)

    García-Torales, G.; Flores, J. L.; Muñoz, Roberto X.

    2007-03-01

    Risley prisms are commonly used in continuous scanning manner. Each prism is capable of rotating separately about a common axis at different speeds. Scanning patterns are determined by the ratios of the wedge angles, the speed and direction of rotation of both prisms. The use of this system is conceptually simple. However, mechanical action in most applications becomes a challenge often solved by the design of complex control algorithms. We propose an electronic servomotor system that controls incremental and continuous rotations of the prisms wedges by means of an auto-tuning PID control using a Adaline Neural Network Algorithm, NNA.

  3. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE PAGES

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; ...

    2016-04-13

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30% of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. As a result, large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less

  4. CT scans through metal scanning technique versus hardware composition.

    PubMed

    Haramati, N; Staron, R B; Mazel-Sperling, K; Freeman, K; Nickoloff, E L; Barax, C; Feldman, F

    1994-01-01

    Streak artifact on CT scans of metal containing areas has been a long standing problem. Although several artifact reducing methods have been used to improve image quality, most have been limited by requiring specialized equipment or lengthy complex calculations that are not automated. Others have shown that increasing the beam energy results in increased thickness of metal that may be imaged by CT without severe image degradation. We have studied the image quality of bone surrounding metal both with titanium and cobalt-chrome prostheses using various scanning techniques. In a double blind fashion, 28 radiology residents and attendings were surveyed as to the best technique for imaging bone detail surrounding metal. A series of images was arranged of an implanted titanium prosthesis, a cobalt-chrome prosthesis and a pelvis repaired with stainless steel pelvic reconstruction plates. Scans were performed using three techniques: 120 kVp, 170 mA, 2 s, 360 degrees rotation, 140 kVp, 140 mA, 3 s, 360 degrees rotation, 140 kVp, 140 mA, 4 s, 420 degrees rotation. Titanium was superior to cobalt-chrome (p < .0001 Wilcoxon Signed Rank Test). No advantage was noted for higher kVp or increased scan arc of 420 degrees compared to the standard 360 degrees. Titanium allows improved bone detail surround the metal than CT cobalt-chrome. We have found no advantage to using either high kVp or a 420 degrees scan arc to improve the image quality of bone surrounded by metal.

  5. Improvement of CAT scanned images

    NASA Technical Reports Server (NTRS)

    Roberts, E., Jr.

    1980-01-01

    Digital enhancement procedure improves definition of images. Tomogram is generated from large number of X-ray beams. Beams are collimated and small in diameter. Scanning device passes beams sequentially through human subject at many different angles. Battery of transducers opposite subject senses attenuated signals. Signals are transmitted to computer where they are used in construction of image on transverse plane through body.

  6. A CAT scan for cells

    SciTech Connect

    2009-01-01

    Recently, a team of scientists from Berkeley Lab, Stanford University, and the University of California, San Francisco used Berkeley Lab's National Center for X-ray Tomography to capture the changes that occur when Candida albicans is exposed to a new and promising antifungal therapy. http://newscenter.lbl.gov/feature-stories/2009/12/10/cat-scan-cells/

  7. Infrared Scanning For Electrical Maintenance

    NASA Astrophysics Data System (ADS)

    Eisenbath, Steven E.

    1983-03-01

    Given the technological age that we have now entered, the purpose of this paper is to relate how infrared scanning can be used for an electrical preventative maintenance program. An infrared scanner is able to produce an image because objects give off infrared radiation in relationship to their temperature. Most electrical problems will show up as an increase in temperature, thereby making the infrared scanner a useful preventative maintenance tool. Because of the sensitivity of most of the scanners, .1 to .2 of a degree, virtually all electrical problems can be pinpointed long before they become a costly failure. One of the early uses of infrared scanning was to check the power company's electrical distribution system. Most of this was performed via aircraft or truck mounted scanning devices which necessitated its semi-permanent mounting. With the advent of small hand held infrared imagers, along with more portability of the larger systems, infrared scanning has gained more popularity in checking electrical distribution systems. But the distribution systems are now a scaled down model, mainly the in-plant electrical systems. By in-plant, I mean any distribution of electricity; once it leaves the power company's grid. This can be in a hospital, retail outlet, warehouse or manufacturing facility.

  8. Environmental Scanning, Vancouver Community College.

    ERIC Educational Resources Information Center

    Yao, Min

    This 1994 environmental scanning report from Vancouver Community College (VCC) reviews the expected effects of the separation of VCC into a new Vancouver Community College and Langara College (LC). The report examines the projected service area student-intake capacity; student characteristics; population growth trends; other postsecondary…

  9. Improvement of CAT scanned images

    NASA Technical Reports Server (NTRS)

    Roberts, E., Jr.

    1980-01-01

    Digital enhancement procedure improves definition of images. Tomogram is generated from large number of X-ray beams. Beams are collimated and small in diameter. Scanning device passes beams sequentially through human subject at many different angles. Battery of transducers opposite subject senses attenuated signals. Signals are transmitted to computer where they are used in construction of image on transverse plane through body.

  10. Line-scanning laser ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Ferguson, R. Daniel; Ustun, Teoman E.; Bigelow, Chad E.; Iftimia, Nicusor V.; Webb, Robert H.

    2006-07-01

    Scanning laser ophthalmoscopy (SLO) is a powerful imaging tool with specialized applications limited to research and ophthalmology clinics due in part to instrument size, cost, and complexity. Conversely, low-cost retinal imaging devices have limited capabilities in screening, detection, and diagnosis of diseases. To fill the niche between these two, a hand-held, nonmydriatic line-scanning laser ophthalmoscope (LSLO) is designed, constructed, and tested on normal human subjects. The LSLO has only one moving part and uses a novel optical approach to produce wide-field confocal fundus images. Imaging modes include multiwavelength illumination and live stereoscopic imaging with a split aperture. Image processing and display functions are controlled with two stacked prototype compact printed circuit boards. With near shot-noise limited performance, the digital LSLO camera requires low illumination power (<500 µW) at near-infrared wavelengths. The line-scanning principle of operation is examined in comparison to SLO and other imaging modes. The line-scanning approach produces high-contrast confocal images with nearly the same performance as a flying-spot SLO. The LSLO may significantly enhance SLO utility for routine use by ophthalmologists, optometrists, general practitioners, and also emergency medical personnel and technicians in the field for retinal disease detection and other diverse applications.

  11. Scanning tunneling microscope nanoetching method

    DOEpatents

    Li, Yun-Zhong; Reifenberger, Ronald G.; Andres, Ronald P.

    1990-01-01

    A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.

  12. Thermal radiation scanning tunnelling microscopy.

    PubMed

    De Wilde, Yannick; Formanek, Florian; Carminati, Rémi; Gralak, Boris; Lemoine, Paul-Arthur; Joulain, Karl; Mulet, Jean-Philippe; Chen, Yong; Greffet, Jean-Jacques

    2006-12-07

    In standard near-field scanning optical microscopy (NSOM), a subwavelength probe acts as an optical 'stethoscope' to map the near field produced at the sample surface by external illumination. This technique has been applied using visible, infrared, terahertz and gigahertz radiation to illuminate the sample, providing a resolution well beyond the diffraction limit. NSOM is well suited to study surface waves such as surface plasmons or surface-phonon polaritons. Using an aperture NSOM with visible laser illumination, a near-field interference pattern around a corral structure has been observed, whose features were similar to the scanning tunnelling microscope image of the electronic waves in a quantum corral. Here we describe an infrared NSOM that operates without any external illumination: it is a near-field analogue of a night-vision camera, making use of the thermal infrared evanescent fields emitted by the surface, and behaves as an optical scanning tunnelling microscope. We therefore term this instrument a 'thermal radiation scanning tunnelling microscope' (TRSTM). We show the first TRSTM images of thermally excited surface plasmons, and demonstrate spatial coherence effects in near-field thermal emission.

  13. Phase multiplying electronic scanning array

    NASA Technical Reports Server (NTRS)

    Seaton, A. F.

    1969-01-01

    Scanning array was designed with properties of low RF loss and phase control. The array consists of a series of special waveguides, hybrids made up of two variable reactance branch arms for input signals, an edge slot for the difference port, and a sum arm for the unradiated signal.

  14. Scanning Quantum Cryogenic Atom Microscope

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.

    2017-03-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.

  15. Ultrasonic scanning of multilayer ceramic chip capacitors

    NASA Technical Reports Server (NTRS)

    Bradley, F. N.

    1981-01-01

    Ultrasonic scanning is compared to neutron radiography and scanning laser acoustic microscopy (SLAM). Data show that SLAM and ultrasonic scanning evaluations are in good agreement. There is poor agreement between N-ray and both ultrasonic techniques because N-ray is insensitive to all but the grossest delaminations. Statistical analysis show a good correlation between ultrasonic scanning and destructive physical analysis.

  16. Differential Multiphoton Laser Scanning Microscopy

    SciTech Connect

    Field, Jeffrey J.; Sheetz, Kraig E.; Chandler, Eric V.; Hoover, Erich E.; Young, Michael D.; Ding, Shi-you; Sylvester, Anne W.; Kleinfeld, David; Squier, Jeff A.

    2012-01-01

    Multifocal multiphoton laser scanning microscopy (mfMPLSM) in the biological and medical sciences has the potential to become a ubiquitous tool for obtaining high-resolution images at video rates. While current implementations of mfMPLSM achieve very high frame rates, they are limited in their applicability to essentially those biological samples that exhibit little or no scattering. In this paper, we report on a method for mfMPLSM in which whole-field detection with a single detector, rather than detection with a matrix of detectors, such as a charge-coupled device (CCD) camera, is implemented. This advance makes mfMPLSM fully compatible for use in imaging through scattering media. Further, we demonstrate that this method makes it possible to simultaneously obtain multiple images and view differences in excitation parameters in a single scan of the specimen.

  17. A spectrum scanning Stokes polarimeter

    NASA Astrophysics Data System (ADS)

    Baur, T. G.; House, L. L.; Hull, H. K.

    1980-02-01

    A photoelectric polarimeter for measuring line profiles in all four Stokes parameters has been built and operates on the SPO 40 cm coronagraph in a joint project with Sacramento Peak Observatory. A description of the optical and electronic systems and the calibration scheme is presented. Performance parameters determined from observations are also given. The polarimeter package consisting of a pair of KDP's, a quarter wave plate, and a polarizing beam splitter is located at the prime focus of the coronagraph. Modulation of the KDP's encodes polarization information into intensity signals that are electronically detected. The scanning of the spectrum, accomplished by rotating the grating, permits Stokes line profiles to be recorded on magnetic tape for processing. The instrument can be used to scan any line from 3900 to 7000 A with a spectral resolution of 0.01 A. Polarizations as small as 0.001% are detectable. The polarimeter and observing system are computer controlled.

  18. Vertically scanned laser sheet microscopy.

    PubMed

    Dong, Di; Arranz, Alicia; Zhu, Shouping; Yang, Yujie; Shi, Liangliang; Wang, Jun; Shen, Chen; Tian, Jie; Ripoll, Jorge

    2014-01-01

    Laser sheet microscopy is a widely used imaging technique for imaging the three-dimensional distribution of a fluorescence signal in fixed tissue or small organisms. In laser sheet microscopy, the stripe artifacts caused by high absorption or high scattering structures are very common, greatly affecting image quality. To solve this problem, we report here a two-step procedure which consists of continuously acquiring laser sheet images while vertically displacing the sample, and then using the variational stationary noise remover (VSNR) method to further reduce the remaining stripes. Images from a cleared murine colon acquired with a vertical scan are compared with common stitching procedures demonstrating that vertically scanned light sheet microscopy greatly improves the performance of current light sheet microscopy approaches without the need for complex changes to the imaging setup and allows imaging of elongated samples, extending the field of view in the vertical direction.

  19. Scanning Probe Microscopy Markup Language

    NASA Astrophysics Data System (ADS)

    Bolhuis, T.; Pasop, J. R.; Abelmann, L.; Lodder, J. C.

    2003-12-01

    The numerous, proprietary file formats for Scanning Probe Microscopy (SPM) have caused problems in the field of both off-line quantitative, data analysis and comparison, as well as long-term archiving of measurement results. Because of the eminent roll SPM's are playing in the multidisciplinary scientific world of today, an open, XML-based, standard SPM data format, called Scanning Probe Microscopy Markup Language (SPML) is proposed. XML (eXtensible Markup Language) has proven to be well applicable for standardized, structured, scientific data formats in many other disciplines. The structure of SPML will be explained briefly. The versatility of SPML as well as the possibilities of documenting, publishing, searching and exchanging SPM-data will be shown in examples. This paper gives an overview of the proposed data format, while the complete description can be found at http://spml.net.

  20. Scanned Laser Illuminator/Receiver

    DTIC Science & Technology

    1976-11-01

    matching high sensitivity, high resolution receiver. A CW- pumped Nd:YAG laser operated in a pulsed mode and providing a fan-shaped illumination beam...greatly improve the linearity of the scanner and to permit variable scan rate (non-resonant) operation. A cw- pumped NdiYAG laser is used as the...illustrate parallel development of the PIN diode /CCD sensor hybrid and the 100W laser . Al- though a detailed cost analysis for procurement of this large

  1. Scanning phononic lattices with ultrasound

    SciTech Connect

    Vines, R.E.; Wolfe, J.P.; Every, A.V.

    1999-11-01

    A method for probing the elastic properties of newly developed periodic structures using acoustic waves is introduced. Highly anisotropic transmission of surface acoustic waves is observed by continuously scanning the wave vector angle. Preliminary models of wave propagation through multilayers and two-dimensional lattices explain some of the experimental features, while other features can be attributed to the resonant excitation of interface waves. {copyright} {ital 1999} {ital The American Physical Society}

  2. Differential scanning calorimetry of coal

    NASA Technical Reports Server (NTRS)

    Gold, P. I.

    1978-01-01

    Differential scanning calorimetry studies performed during the first year of this project demonstrated the occurrence of exothermic reactions associated with the production of volatile matter in or near the plastic region. The temperature and magnitude of the exothermic peak were observed to be strongly affected by the heating rate, sample mass and, to a lesser extent, by sample particle size. Thermal properties also were found to be influenced by oxidation of the coal sample due to weathering effects.

  3. Cloud Top Scanning radiometer (CTS)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A scanning radiometer to be used for measuring cloud radiances in each of three spectral regions is described. Significant features incorporated in the Cloud Top Scanner design are: (1) flexibility and growth potential through use of easily replaceable modular detectors and filters; (2) full aperture, multilevel inflight calibration; (3) inherent channel registration through employment of a single shared field stop; and (4) radiometric sensitivity margin in a compact optical design through use of Honeywell developed (Hg,Cd)Te detectors and preamplifiers.

  4. Mechanically scanned deployable antenna study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The conceptual design of a Mechanically Scanned Deployable Antenna which is launched by the STS (Space Shuttle) to provide radiometric brightness temperature maps of the Earth and oceans at selected frequency bands in the frequency range of 1.4 GHz to 11 GHz is presented. Unlike previous scanning radiometric systems, multiple radiometers for each frequency are required in order to fill in the resolution cells across the swath created by the 15 meter diameter spin stabilized system. This multiple beam radiometric system is sometimes designated as a ""whiskbroom'' system in that it combines the techniques of the scanning and ""pushbroom'' type systems. The definition of the feed system including possible feed elements and location, determination of the fundamental reflector feed offset geometry including offset angles and f/D ratio, preliminary estimates of the beam efficiency of the feed reflector system, a summary of reflector mesh losses at the proposed radiometric frequency bands, an overall conceptual configuration design and preliminary structural and thermal analyses are included.

  5. Preoperative nuclear scans in patients with melanoma

    SciTech Connect

    Au, F.C.; Maier, W.P.; Malmud, L.S.; Goldman, L.I.; Clark, W.H. Jr.

    1984-05-15

    One hundred forty-one liver scans, 137 brain scans, and 112 bone scans were performed in 192 patients with clinical Stage 1 melanoma. One liver scan was interpreted as abnormal; liver biopsy of that patient showed no metastasis. There were 11 suggestive liver scans; three of the patients with suggestive liver scans had negative liver biopsies. The remaining eight patients were followed from 4 to 6 years and none of those patients developed clinical evidence of hepatic metastases. All of the brain scans were normal. Five patients had suggestive bone scans and none of those patients had manifested symptoms of osseous metastases with a follow-up of 2 to 4.5 years. This study demonstrates that the use of preoperative liver, brain and bone scan in the evaluation of patients with clinical Stage 1 melanoma is virtually unproductive.

  6. 47 CFR 15.121 - Scanning receivers and frequency converters used with scanning receivers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... converters used with scanning receivers. (a) Except as provided in paragraph (c) of this section, scanning... in paragraph (c) of this section, scanning receivers shall reject any signals from the Cellular.... (c) Scanning receivers and frequency converters designed or marketed for use with scanning...

  7. Scanning Miniature Microscopes without Lenses

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2009-01-01

    The figure schematically depicts some alternative designs of proposed compact, lightweight optoelectronic microscopes that would contain no lenses and would generate magnified video images of specimens. Microscopes of this type were described previously in Miniature Microscope Without Lenses (NPO - 20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43 and Reflective Variants of Miniature Microscope Without Lenses (NPO 20610), NASA Tech Briefs, Vol. 26, No. 9 (September 1999), page 6a. To recapitulate: In the design and construction of a microscope of this type, the focusing optics of a conventional microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. Elimination of focusing optics reduces the size and weight of the instrument and eliminates the need for the time-consuming focusing operation. The microscopes described in the cited prior articles contained two-dimensional CCDs registered with two-dimensional arrays of microchannels and, as such, were designed to produce full two-dimensional images, without need for scanning. The microscopes of the present proposal would contain one-dimensional (line image) CCDs registered with linear arrays of microchannels. In the operation of such a microscope, one would scan a specimen along a line perpendicular to the array axis (in other words, one would scan in pushbroom fashion). One could then synthesize a full two-dimensional image of the specimen from the line-image data acquired at one-pixel increments of position along the scan. In one of the proposed microscopes, a beam of unpolarized light for illuminating the specimen would enter from the side. This light would be reflected down onto the specimen by a nonpolarizing beam splitter attached to the microchannels at their lower ends. A portion of the light incident on the specimen would be reflected upward, through the beam splitter and along the microchannels, to form an image on the CCD. If the

  8. Scanning probe microscopy in catalysis.

    PubMed

    Yeung, King Lun; Yao, Nan

    2004-09-01

    This review discusses the recent progress in the application of scanning probe microscopy (SPM) in catalysis. SPM proves to be an invaluable technique for imaging catalytic surfaces and interfaces. Most SPM research is related to the structural and morphological transformation associated with catalyst preparation and use. Real-time SPM observation of surface dynamics including adsorption, diffusion and reaction, provides invaluable insights to the mechanism of catalysis. SPM is also used to shape and manipulate surfaces and surface processes. Fabrication of nanostructured catalysts, direct manipulation of adsorbed atoms and molecules and tip-mediated reactions are some examples of new SPM approach in catalyst research.

  9. High Resolution Scanning Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Miranda, Felix A. (Inventor)

    2000-01-01

    The present invention provides a High Resolution Scanning Reflectarray Antenna (HRSRA) for the purpose of tracking ground terminals and space craft communication applications. The present invention provides an alternative to using gimbaled parabolic dish antennas and direct radiating phased arrays. When compared to a gimbaled parabolic dish, the HRSRA offers the advantages of vibration free steering without incurring appreciable cost or prime power penalties. In addition, it offers full beam steering at a fraction of the cost of direct radiating arrays and is more efficient.

  10. Electronic imaging and scanning system

    NASA Technical Reports Server (NTRS)

    Jain, A.

    1977-01-01

    Frequency-variable illumination has been used previously to provide high resolution imaging in one dimension. The paper extends the results on this imaging by frequency scanning to derive the expression for a two-dimensional image. This is the Fourier transformation, with respect to the angle and frequency of illumination, of the electric field detected in the far-field region of the object. The case is considered of a rough object and it is shown that for roughness finer than the resolution of the imaging system, the image has a granular appearance corresponding to the classical speckle effect. Large scale phase perturbations lead to the elevation displacement effect.

  11. Aperture scanning Fourier ptychographic microscopy

    PubMed Central

    Ou, Xiaoze; Chung, Jaebum; Horstmeyer, Roarke; Yang, Changhuei

    2016-01-01

    Fourier ptychographic microscopy (FPM) is implemented through aperture scanning by an LCOS spatial light modulator at the back focal plane of the objective lens. This FPM configuration enables the capturing of the complex scattered field for a 3D sample both in the transmissive mode and the reflective mode. We further show that by combining with the compressive sensing theory, the reconstructed 2D complex scattered field can be used to recover the 3D sample scattering density. This implementation expands the scope of application for FPM and can be beneficial for areas such as tissue imaging and wafer inspection. PMID:27570705

  12. Breast ultrasound scans - surgeons' expectations.

    PubMed

    Bednarski, Piotr; Dobruch-Sobczak, Katarzyna; Chrapowicki, Eryk; Jakubowski, Wiesław

    2015-06-01

    Recent years have witnessed a dynamic development of mammary gland imaging techniques, particularly ultrasonography and magnetic resonance imaging. A challenge related to these studies is the increase in the precision of the anatomical assessment of breast, particularly for early detection of subclinical lesions, performance of ultrasound- guided biopsy procedures, and accurate preoperative location of pathological lesions so as to optimize the surgical treatment. Ultrasound imaging is a primary and baseline diagnostic procedure the patient with suspected pathological lesions within breast is referred to by the surgeon. Lesions visualized in ultrasound scans are classified according to the BI-RADS US assessment categories. The successive categories (2 through 6) encompass individual pathological lesions, estimating the risk of malignancy and provide guidelines for further diagnostic and therapeutic management. This article described the important aspects of ultrasonographic imaging of focal lesions within the breasts as significant from the standpoint of surgical treatment of patients falling within BI-RADS US categories 3, 4, 5, and 6. Attention is drawn to the importance of ultrasound scans in the assessment of axillary fossa lymph nodes before the decision regarding the surgical treatment.

  13. Schistosomiasis collection at NHM (SCAN)

    PubMed Central

    2012-01-01

    Background The Natural History Museum (NHM) is developing a repository for schistosomiasis-related material, the Schistosomiasis Collection at NHM (SCAN) as part of its existing Wolfson Wellcome Biomedical Laboratory (WWBL). This is timely because a major research and evaluation effort to understand control and move towards elimination of schistosomiasis in Africa has been initiated by the Schistosomiasis Consortium for Operational Research and Evaluation (SCORE), resulting in the collection of many important biological samples, including larval schistosomes and snails. SCAN will collaborate with a number of research groups and control teams and the repository will acquire samples relevant to both immediate and future research interest. The samples collected through ongoing research and field activities, WWBL’s existing collections, and other acquisitions will be maintained over the long term and made available to the global research community for approved research purposes. Goals include: · Consolidation of the existing NHM schistosome and snail collections and transfer of specimens into suitable long-term storage systems for DNA retrieval, · Long-term and stable storage of specimens collected as part of on going field programmes initially in Africa especially relating to the SCORE research programmes, · Provision of access to snail and schistosome collections for approved research activities. PMID:22943137

  14. Three-dimensional scanning confocal laser microscope

    DOEpatents

    Anderson, R. Rox; Webb, Robert H.; Rajadhyaksha, Milind

    1999-01-01

    A confocal microscope for generating an image of a sample includes a first scanning element for scanning a light beam along a first axis, and a second scanning element for scanning the light beam at a predetermined amplitude along a second axis perpendicular to the first axis. A third scanning element scans the light beam at a predetermined amplitude along a third axis perpendicular to an imaging plane defined by the first and second axes. The second and third scanning element are synchronized to scan at the same frequency. The second and third predetermined amplitudes are percentages of their maximum amplitudes. A selector determines the second and third predetermined amplitudes such that the sum of the percentages is equal to one-hundred percent.

  15. Defect scanning technology in the works

    Treesearch

    Philip A. Araman; R. Conners

    1994-01-01

    This article describes the defect scanning technology being developed by Virginia Tech and U.S. Forest Service scientists in Blacksburg, Virginia to scan full sized hardwood lumber at industrial speeds.

  16. Optical analysis of scanning microstereolithography systems

    NASA Astrophysics Data System (ADS)

    Deshmukh, Suhas P.; Dubey, Shashikant; Gandhi, P. S.

    2006-01-01

    Microstereolithography (MSL) is rapidly developing technique for micro-fabrication. Vector-by-vector scanning MSL has a potential to create true 3D micro-devices as compared to mostly planar (2D-2 1/2 D) devices fabricated by conventional MEMS techniques. Previous literature shows two different scanning methods:(1) Galvanomirror scanning, (2) Photoreactor tank scanning. Galvanomirror scanning technique has higher fabrication speed but poor resolution because of defocusing of laser spot on the resin surface. Photo-reactor tank scanning has higher resolution but produces a wavy structures and limited speed of fabrication. This paper proposes and develops an offaxis lens scanning technique for MSL and carries out optical analysis to compare its performance with the existing techniques mentioned above. The comparison clearly demonstrates improved performance with the proposed offaxis lens scanning technique.

  17. Rapid-scan EPR of immobilized nitroxides.

    PubMed

    Yu, Zhelin; Quine, Richard W; Rinard, George A; Tseitlin, Mark; Elajaili, Hanan; Kathirvelu, Velavan; Clouston, Laura J; Boratyński, Przemysław J; Rajca, Andrzej; Stein, Richard; Mchaourab, Hassane; Eaton, Sandra S; Eaton, Gareth R

    2014-10-01

    X-band electron paramagnetic resonance spectra of immobilized nitroxides were obtained by rapid scan at 293 K. Scan widths were 155 G with 13.4 kHz scan frequency for (14)N-perdeuterated tempone and for T4 lysozyme doubly spin labeled with an iodoacetamide spirocyclohexyl nitroxide and 100 G with 20.9 kHz scan frequency for (15)N-perdeuterated tempone. These wide scans were made possible by modifications to our rapid-scan driver, scan coils made of Litz wire, and the placement of highly conducting aluminum plates on the poles of a Bruker 10″ magnet to reduce resistive losses in the magnet pole faces. For the same data acquisition time, the signal-to-noise for the rapid-scan absorption spectra was about an order of magnitude higher than for continuous wave first-derivative spectra recorded with modulation amplitudes that do not broaden the lineshapes.

  18. Can Scans Predict Some Autism Cases?

    MedlinePlus

    ... Services. More Health News on Autism Spectrum Disorder MRI Scans Recent Health News Related MedlinePlus Health Topics Autism Spectrum Disorder MRI Scans About MedlinePlus Site Map FAQs Customer Support Get ...

  19. Three-dimensional scanning confocal laser microscope

    DOEpatents

    Anderson, R. Rox; Webb, Robert H.; Rajadhyaksha, Milind

    1999-01-01

    A confocal microscope for generating an image of a sample includes a first scanning element for scanning a light beam along a first axis, and a second scanning element for scanning the light beam at a predetermined amplitude along a second axis perpendicular to the first axis. A third scanning element scans the light beam at a predetermined amplitude along a third axis perpendicular to an imaging plane defined by the first and second axes. The second and third scanning element are synchronized to scan at the same frequency. The second and third predetermined amplitudes are percentages of their maximum amplitudes. A selector determines the second and third predetermined amplitudes such that the sum of the percentages is equal to one-hundred percent.

  20. Rapid-Scan EPR of Immobilized Nitroxides

    PubMed Central

    Yu, Zhelin; Quine, Richard W.; Rinard, George A.; Tseitlin, Mark; Elajaili, Hanan; Kathirvelu, Velavan; Clouston, Laura J.; Boratyński, Przemysław J.; Rajca, Andrzej; Stein, Richard; Mchaourab, Hassane; Eaton, Sandra S.; Eaton, Gareth R.

    2014-01-01

    X-band electron paramagnetic resonance spectra of immobilized nitroxides were obtained by rapid scan at 293 K. Scan widths were 155 G with 13.4 kHz scan frequency for 14N-perdeuterated tempone and for T4 lysozyme doubly spin labeled with an iodoacetamide spirocyclohexyl nitroxide and 100 G with 20.9 kHz scan frequency for 15N-perdeuterated tempone. These wide scans were made possible by modifications to our rapid-scan driver, scan coils made of Litz wire, and the placement of highly conducting aluminum plates on the poles of a Bruker 10" magnet to reduce resistive losses in the magnet pole faces. For the same data acquisition time, the signal-to-noise for the rapid-scan absorption spectra was about an order of magnitude higher than for continuous wave first-derivative spectra recorded with modulation amplitudes that do not broaden the lineshapes. PMID:25240151

  1. A collection of Schottky-scan notes

    SciTech Connect

    Sabersky, A.P.

    1980-10-01

    This paper is a republication of ISR-RF notes and performance reports on work done in 1974-1975. The original notes have been edited, corrected and, in most cases, shortened. Discussed in this note are the following topics: noise, errors and the Schottky scan; speeding up the Schottky scan; Schottky markers and fast Schottky scans; and some engineering aspects of the fast Schottky scan.

  2. Scan speed control for tapping mode SPM

    PubMed Central

    2012-01-01

    In order to increase the imaging speed of a scanning probe microscope in tapping mode, we propose to use a dynamic controller on 'parachuting' regions. Furthermore, we propose to use variable scan speed on 'upward step' regions, with the speed determined by the error signal of the closed-loop control. We offer line traces obtained on a calibration grating with 25-nm step height, using both standard scanning and our scanning method, as experimental evidence. PMID:22333220

  3. Suspension system for gimbal supported scanning payloads

    NASA Technical Reports Server (NTRS)

    Polites, Michael E. (Inventor)

    1995-01-01

    Gimballed scanning devices or instruments are the subject of this invention. Scanning is an important aspect of space science. To achieve a scan pattern some means must be provided which impart to the payload an oscillatory motion. Various forms of machines have been employed for controllably conferring on scanning instruments predetermined scan patterns. They include control moment gyroscopes, reaction wheels, torque motors, reaction control systems, and the like. But rotating unbalanced mass (RUM) devices are a new and efficient way to generate scans in gimballed payloads. RUM devices are superior to previous scanning apparatus, but they require power consuming and frequently complex auxiliary control systems to position and reposition the particular scan pattern relative to a target or a number of targets. Herein the control system is simplified. The most frequently employed method for achieving the various scan patterns is to gimbal the scanning device. Gimbals are suspended in such a way that they can be activated to generate the scan pattern. The suspension means described is for payloads supported in gimbals wherein the payload rotation is restricted by a flex pivot so that the payload oscillates, thereby moving in a scan pattern.

  4. Immobilization of DNA for scanning probe microscopy.

    PubMed Central

    Allison, D P; Bottomley, L A; Thundat, T; Brown, G M; Woychik, R P; Schrick, J J; Jacobson, K B; Warmack, R J

    1992-01-01

    Reproducible scanning tunneling microscope and atomic force microscope images of entire molecules of uncoated plasmid DNA chemically bound to surfaces are presented. The chemically mediated immobilization of DNA to surfaces and subsequent scanning tunneling microscope imaging of DNA molecules demonstrate that the problem of molecular instability to forces exerted by the probe tip, inherent with scanning probe microscopes, can be prevented. Images PMID:1438201

  5. Suspension system for gimbal supported scanning payloads

    NASA Astrophysics Data System (ADS)

    Polites, Michael E.

    1995-03-01

    Gimballed scanning devices or instruments are the subject of this invention. Scanning is an important aspect of space science. To achieve a scan pattern some means must be provided which impart to the payload an oscillatory motion. Various forms of machines have been employed for controllably conferring on scanning instruments predetermined scan patterns. They include control moment gyroscopes, reaction wheels, torque motors, reaction control systems, and the like. But rotating unbalanced mass (RUM) devices are a new and efficient way to generate scans in gimballed payloads. RUM devices are superior to previous scanning apparatus, but they require power consuming and frequently complex auxiliary control systems to position and reposition the particular scan pattern relative to a target or a number of targets. Herein the control system is simplified. The most frequently employed method for achieving the various scan patterns is to gimbal the scanning device. Gimbals are suspended in such a way that they can be activated to generate the scan pattern. The suspension means described is for payloads supported in gimbals wherein the payload rotation is restricted by a flex pivot so that the payload oscillates, thereby moving in a scan pattern.

  6. Mouse manipulation through single-switch scanning.

    PubMed

    Blackstien-Adler, Susie; Shein, Fraser; Quintal, Janet; Birch, Shae; Weiss, Patrice L Tamar

    2004-01-01

    Given the current extensive reliance on the graphical user interface, independent access to computer software requires that users be able to manipulate a pointing device of some type (e.g., mouse, trackball) or be able to emulate a mouse by some other means (e.g., scanning). The purpose of the present study was to identify one or more optimal single-switch scanning mouse emulation strategies. Four alternative scanning strategies (continuous Cartesian, discrete Cartesian, rotational, and hybrid quadrant/continuous Cartesian) were selected for testing based on current market availability as well as on theoretical considerations of their potential speed and accuracy. Each strategy was evaluated using a repeated measures study design by means of a test program that permitted mouse emulation via any one of four scanning strategies in a motivating environment; response speed and accuracy could be automatically recorded and considered in view of the motor, cognitive, and perceptual demands of each scanning strategy. Ten individuals whose disabilities required them to operate a computer via single-switch scanning participated in the study. Results indicated that Cartesian scanning was the preferred and most effective scanning strategy. There were no significant differences between results from the Continuous Cartesian and Discrete Cartesian scanning strategies. Rotational scanning was quite slow with respect to the other strategies, although it was equally accurate. Hybrid Quadrant scanning improved access time but at the cost of fewer correct selections. These results demonstrated the importance of testing and comparing alternate single-switch scanning strategies.

  7. South Carolina Course Alignment Project: Environmental Scan

    ERIC Educational Resources Information Center

    Educational Policy Improvement Center (NJ1), 2007

    2007-01-01

    An "environmental scan" is designed to identify key issues of policy and practice in an area of interest so that action can be taken. By definition, an environmental scan focuses upon areas of concern. However, the results of an environmental scan are not designed to be either an indictment or endorsement of the current way of doing…

  8. Optical scanning tests of complex CMOS microcircuits

    NASA Technical Reports Server (NTRS)

    Levy, M. E.; Erickson, J. J.

    1977-01-01

    The new test method was based on the use of a raster-scanned optical stimulus in combination with special electrical test procedures. The raster-scanned optical stimulus was provided by an optical spot scanner, an instrument that combines a scanning optical microscope with electronic instrumentation to process and display the electric photoresponse signal induced in a device that is being tested.

  9. Scanning laser polarimetry in glaucoma

    PubMed Central

    Dada, Tanuj; Sharma, Reetika; Angmo, Dewang; Sinha, Gautam; Bhartiya, Shibal; Mishra, Sanjay K; Panda, Anita; Sihota, Ramanjit

    2014-01-01

    Glaucoma is an acquired progressive optic neuropathy which is characterized by changes in the optic nerve head and retinal nerve fiber layer (RNFL). White-on-white perimetry is the gold standard for the diagnosis of glaucoma. However, it can detect defects in the visual field only after the loss of as many as 40% of the ganglion cells. Hence, the measurement of RNFL thickness has come up. Optical coherence tomography and scanning laser polarimetry (SLP) are the techniques that utilize the evaluation of RNFL for the evaluation of glaucoma. SLP provides RNFL thickness measurements based upon the birefringence of the retinal ganglion cell axons. We have reviewed the published literature on the use of SLP in glaucoma. This review elucidates the technological principles, recent developments and the role of SLP in the diagnosis and monitoring of glaucomatous optic neuropathy, in the light of scientific evidence so far. PMID:25494244

  10. Scanning laser polarimetry in glaucoma.

    PubMed

    Dada, Tanuj; Sharma, Reetika; Angmo, Dewang; Sinha, Gautam; Bhartiya, Shibal; Mishra, Sanjay K; Panda, Anita; Sihota, Ramanjit

    2014-11-01

    Glaucoma is an acquired progressive optic neuropathy which is characterized by changes in the optic nerve head and retinal nerve fiber layer (RNFL). White-on-white perimetry is the gold standard for the diagnosis of glaucoma. However, it can detect defects in the visual field only after the loss of as many as 40% of the ganglion cells. Hence, the measurement of RNFL thickness has come up. Optical coherence tomography and scanning laser polarimetry (SLP) are the techniques that utilize the evaluation of RNFL for the evaluation of glaucoma. SLP provides RNFL thickness measurements based upon the birefringence of the retinal ganglion cell axons. We have reviewed the published literature on the use of SLP in glaucoma. This review elucidates the technological principles, recent developments and the role of SLP in the diagnosis and monitoring of glaucomatous optic neuropathy, in the light of scientific evidence so far.

  11. Scanning Electrochemical Microscopy in Neuroscience

    NASA Astrophysics Data System (ADS)

    Schulte, Albert; Nebel, Michaela; Schuhmann, Wolfgang

    2010-07-01

    This article reviews recent work involving the application of scanning electrochemical microscopy (SECM) to the study of individual cultured living cells, with an emphasis on topographical and functional imaging of neuronal and secretory cells of the nervous and endocrine system. The basic principles of biological SECM and associated negative amperometric-feedback and generator/collector-mode SECM imaging are discussed, and successful use of the methodology for screening soft and fragile membranous objects is outlined. The drawbacks of the constant-height mode of probe movement and the benefits of the constant-distance mode of SECM operation are described. Finally, representative examples of constant-height and constant-distance mode SECM on a variety of live cells are highlighted to demonstrate the current status of single-cell SECM in general and of SECM in neuroscience in particular.

  12. Scanning ARM Cloud Radar Handbook

    SciTech Connect

    Widener, K; Bharadwaj, N; Johnson, K

    2012-06-18

    The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

  13. UAVSAR Active Electronically Scanned Array

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory, A.; Chamberlain, Neil F.; Zawadzki, Mark S.; Brown, Kyle M.; Fisher, Charles D.; Figueroa, Harry S.; Hamilton, Gary A.; Jones, Cathleen E.; Vorperian, Vatche; Grando, Maurio B.

    2011-01-01

    The Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR) is a pod-based, L-band (1.26 GHz), repeatpass, interferometric, synthetic aperture radar (InSAR) used for Earth science applications. Repeat-pass interferometric radar measurements from an airborne platform require an antenna that can be steered to maintain the same angle with respect to the flight track over a wide range of aircraft yaw angles. In order to be able to collect repeat-pass InSAR data over a wide range of wind conditions, UAVSAR employs an active electronically scanned array (AESA). During data collection, the UAVSAR flight software continuously reads the aircraft attitude state measured by the Embedded GPS/INS system (EGI) and electronically steers the beam so that it remains perpendicular to the flight track throughout the data collection

  14. Fast scanning mode and its realization in a scanning acoustic microscope

    SciTech Connect

    Ju Bingfeng; Bai Xiaolong; Chen Jian

    2012-03-15

    The scanning speed of the two-dimensional stage dominates the efficiency of mechanical scanning measurement systems. This paper focused on a detailed scanning time analysis of conventional raster and spiral scan modes and then proposed two fast alternative scanning modes. Performed on a self-developed scanning acoustic microscope (SAM), the measured images obtained by using the conventional scan mode and fast scan modes are compared. The total scanning time is reduced by 29% of the two proposed fast scan modes. It will offer a better solution for high speed scanning without sacrificing the system stability, and will not introduce additional difficulties to the configuration of scanning measurement systems. They can be easily applied to the mechanical scanning measuring systems with different driving actuators such as piezoelectric, linear motor, dc motor, and so on. The proposed fast raster and square spiral scan modes are realized in SAM, but not specially designed for it. Therefore, they have universal adaptability and can be applied to other scanning measurement systems with two-dimensional mechanical scanning stages, such as atomic force microscope or scanning tunneling microscope.

  15. Fast scanning mode and its realization in a scanning acoustic microscope.

    PubMed

    Ju, Bing-Feng; Bai, Xiaolong; Chen, Jian

    2012-03-01

    The scanning speed of the two-dimensional stage dominates the efficiency of mechanical scanning measurement systems. This paper focused on a detailed scanning time analysis of conventional raster and spiral scan modes and then proposed two fast alternative scanning modes. Performed on a self-developed scanning acoustic microscope (SAM), the measured images obtained by using the conventional scan mode and fast scan modes are compared. The total scanning time is reduced by 29% of the two proposed fast scan modes. It will offer a better solution for high speed scanning without sacrificing the system stability, and will not introduce additional difficulties to the configuration of scanning measurement systems. They can be easily applied to the mechanical scanning measuring systems with different driving actuators such as piezoelectric, linear motor, dc motor, and so on. The proposed fast raster and square spiral scan modes are realized in SAM, but not specially designed for it. Therefore, they have universal adaptability and can be applied to other scanning measurement systems with two-dimensional mechanical scanning stages, such as atomic force microscope or scanning tunneling microscope.

  16. Simultaneously scanning two connected tips in a scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Liao, Wan-Ting; Lobb, C. J.; Wellstood, F. C.; Dreyer, M.

    2017-06-01

    We have modified a dual-tip scanning tunneling microscope (STM) by electrically connecting the tips together with a short (3 mm) strip of flexible 25 μm thick Nb foil. For simultaneous topographic imaging with both tips, we moved each tip to within tunneling distance z of a surface and modulated one tip's z-piezo at 5 kHz and the other at 10 kHz. The resulting combined tunneling current has modulation at both frequencies which we detect using individual lock-in amplifiers. Each lock-in output is fed back to its corresponding tip's individual STM z-position controller to maintain a stable current in both junctions. During the tests at room temperature, simultaneous imaging was performed with both tips made of Pt-Ir on Au/mica and highly oriented pyrolytic graphite (HOPG) samples, where a small tip-to-tip mechanical coupling was observed. We describe the system's performance, show results from simultaneous imaging, and discuss the potential application of the system to imaging superconducting phase differences.

  17. Scanning Tunneling Optical Resonance Microscopy

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Wilt, Dave; Raffaelle, Ryne; Gennett, Tom; Tin, Padetha; Lau, Janice; Castro, Stephanie; Jenkins, Philip; Scheiman, Dave

    2003-01-01

    Scanning tunneling optical resonance microscopy (STORM) is a method, now undergoing development, for measuring optoelectronic properties of materials and devices on the nanoscale by means of a combination of (1) traditional scanning tunneling microscopy (STM) with (2) tunable laser spectroscopy. In STORM, an STM tip probing a semiconductor is illuminated with modulated light at a wavelength in the visible-to-near-infrared range and the resulting photoenhancement of the tunneling current is measured as a function of the illuminating wavelength. The photoenhancement of tunneling current occurs when the laser photon energy is sufficient to excite charge carriers into the conduction band of the semiconductor. Figure 1 schematically depicts a proposed STORM apparatus. The light for illuminating the semiconductor specimen at the STM would be generated by a ring laser that would be tunable across the wavelength range of interest. The laser beam would be chopped by an achromatic liquid-crystal modulator. A polarization-maintaining optical fiber would couple the light to the tip/sample junction of a commercial STM. An STM can be operated in one of two modes: constant height or constant current. A STORM apparatus would be operated in the constant-current mode, in which the height of the tip relative to the specimen would be varied in order to keep the tunneling current constant. In this mode, a feedback control circuit adjusts the voltage applied to a piezoelectric actuator in the STM that adjusts the height of the STM tip to keep the tunneling current constant. The exponential relationship between the tunneling current and tip-to-sample distance makes it relatively easy to implement this mode of operation. The choice of method by which the photoenhanced portion of the tunneling current would be measured depends on choice of the frequency at which the input illumination would be modulated (chopped). If the frequency of modulation were low enough (typically < 10 Hz) that the

  18. Advanced oxidation scanning probe lithography.

    PubMed

    Ryu, Yu K; Garcia, Ricardo

    2017-04-07

    Force microscopy enables a variety of approaches to manipulate and/or modify surfaces. Few of those methods have evolved into advanced probe-based lithographies. Oxidation scanning probe lithography (o-SPL) is the only lithography that enables the direct and resist-less nanoscale patterning of a large variety of materials, from metals to semiconductors; from self-assembled monolayers to biomolecules. Oxidation SPL has also been applied to develop sophisticated electronic and nanomechanical devices such as quantum dots, quantum point contacts, nanowire transistors or mechanical resonators. Here, we review the principles, instrumentation aspects and some device applications of o-SPL. Our focus is to provide a balanced view of the method that introduces the key steps in its evolution, provides some detailed explanations on its fundamentals and presents current trends and applications. To illustrate the capabilities and potential of o-SPL as an alternative lithography we have favored the most recent and updated contributions in nanopatterning and device fabrication.

  19. Scanning probe block copolymer lithography

    PubMed Central

    Chai, Jinan; Huo, Fengwei; Zheng, Zijian; Giam, Louise R.; Shim, Wooyoung; Mirkin, Chad A.

    2010-01-01

    Integration of individual nanoparticles into desired spatial arrangements over large areas is a prerequisite for exploiting their unique electrical, optical, and chemical properties. However, positioning single sub-10-nm nanoparticles in a specific location individually on a substrate remains challenging. Herein we have developed a unique approach, termed scanning probe block copolymer lithography, which enables one to control the growth and position of individual nanoparticles in situ. This technique relies on either dip-pen nanolithography (DPN) or polymer pen lithography (PPL) to transfer phase-separating block copolymer inks in the form of 100 or more nanometer features on an underlying substrate. Reduction of the metal ions via plasma results in the high-yield formation of single crystal nanoparticles per block copolymer feature. Because the size of each feature controls the number of metal atoms within it, the DPN or PPL step can be used to control precisely the size of each nanocrystal down to 4.8 ± 0.2 nm. PMID:21059942

  20. Advanced oxidation scanning probe lithography

    NASA Astrophysics Data System (ADS)

    Ryu, Yu K.; Garcia, Ricardo

    2017-04-01

    Force microscopy enables a variety of approaches to manipulate and/or modify surfaces. Few of those methods have evolved into advanced probe-based lithographies. Oxidation scanning probe lithography (o-SPL) is the only lithography that enables the direct and resist-less nanoscale patterning of a large variety of materials, from metals to semiconductors; from self-assembled monolayers to biomolecules. Oxidation SPL has also been applied to develop sophisticated electronic and nanomechanical devices such as quantum dots, quantum point contacts, nanowire transistors or mechanical resonators. Here, we review the principles, instrumentation aspects and some device applications of o-SPL. Our focus is to provide a balanced view of the method that introduces the key steps in its evolution, provides some detailed explanations on its fundamentals and presents current trends and applications. To illustrate the capabilities and potential of o-SPL as an alternative lithography we have favored the most recent and updated contributions in nanopatterning and device fabrication.

  1. A New First-Scan Method for Two-Scan Labeling Algorithms

    NASA Astrophysics Data System (ADS)

    He, Lifeng; Chao, Yuyan; Suzuki, Kenji

    This paper proposes a new first-scan method for two-scan labeling algorithms. In the first scan, our proposed method first scans every fourth image line, and processes the scan line and its two neighbor lines. Then, it processes the remaining lines from top to bottom one by one. Our method decreases the average number of times that must be checked to process a foreground pixel will; thus, the efficiency of labeling can be improved.

  2. Excitation-scanning hyperspectral imaging microscope.

    PubMed

    Favreau, Peter F; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F; Rich, Thomas C; Prabhat, Prashant; Leavesley, Silas J

    2014-04-01

    Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications.

  3. Excitation-scanning hyperspectral imaging microscope

    PubMed Central

    Favreau, Peter F.; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.

    2014-01-01

    Abstract. Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications. PMID:24727909

  4. Correlation-steered scanning for scanning probe microscopes to overcome thermal drift for ultra-long time scanning.

    PubMed

    Zhang, Liansheng; Long, Qian; Liu, Yongbin; Zhang, Jie; Feng, Zhihua

    2016-07-01

    The thermal effect is one of the most important factors that influence the accuracy of nanoscale measurement and the surface topography of samples in scanning probe microscopes (SPMs). We propose a method called correlation-steered scanning, which is capable of overcoming three-dimensional thermal drifts in real time for ultra-long time scanned images. The image is scanned band by band with overlapping parts between adjacent bands. The vertical drift can be considered as linear and can thus be eliminated together with the tilt of the sample by applying the flattening method. Each band is artificially divided into several blocks for conveniently calculating lateral drifts on the basis of the overlapping area of adjacent bands through digital image correlation. The calculated lateral drifts are compensated to steer the scanning of the subsequent blocks, thus ensuring that all bands are parallel to one another. Experimental results proved that images scanned by the proposed method exhibited less distortions than those obtained from the traditional raster scanning method. The nanoscale measurement results based on the image obtained by the proposed method also showed high accuracy, with an error of less than 1.5%. By scanning as many bands as needed, the correlation-steered scanning method can obtain a highly precise SPM image of an ultra-large area.

  5. Correcting nonlinear drift distortion of scanning probe and scanning transmission electron microscopies from image pairs with orthogonal scan directions.

    PubMed

    Ophus, Colin; Ciston, Jim; Nelson, Chris T

    2016-03-01

    Unwanted motion of the probe with respect to the sample is a ubiquitous problem in scanning probe and scanning transmission electron microscopies, causing both linear and nonlinear artifacts in experimental images. We have designed a procedure to correct these artifacts by using orthogonal scan pairs to align each measurement line-by-line along the slow scan direction, by fitting contrast variation along the lines. We demonstrate the accuracy of our algorithm on both synthetic and experimental data and provide an implementation of our method. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Correcting nonlinear drift distortion of scanning probe and scanning transmission electron microscopies from image pairs with orthogonal scan directions

    DOE PAGES

    Ophus, Colin; Ciston, Jim; Nelson, Chris T.

    2015-12-10

    Unwanted motion of the probe with respect to the sample is a ubiquitous problem in scanning probe and scanning transmission electron microscopies, causing both linear and nonlinear artifacts in experimental images. We have designed a procedure to correct these artifacts by using orthogonal scan pairs to align each measurement line-by-line along the slow scan direction, by fitting contrast variation along the lines. We demonstrate the accuracy of our algorithm on both synthetic and experimental data and provide an implementation of our method.

  7. Basis for optronic ScanSAR processing

    NASA Astrophysics Data System (ADS)

    Marchese, Linda; Bourqui, Pascal; Turgeon, Sandra; Harnish, Bernd; Suess, Martin; Châteauneuf, François; Bergeron, Alain

    2011-11-01

    ScanSAR is an important imaging mode of operation for SAR systems. It allows extended range coverage albeit at the expense of azimuth resolution. Compared to stripmap, ScanSAR is used more for large swath coverage for mapping and monitoring over a wide area. Applications are numerous and include boreal forest mapping, wetland mapping and soil moisture monitoring. The goal of the present work was thus to explore the possibility of processing ScanSAR data optronicaly. Tests were performed with artificially bursted ASAR stripmap data demonstrating that reconstruction of ScanSAR data using the optronic SAR processor is feasible. This paper describes specifically how the data control and handling of ScanSAR data is performed to make it compatible with the optronic processor that was otherwise specifically designed for stripmap processing. As well, the ScanSAR images generated optronicaly are presented.

  8. Image scanning microscopy with radially polarized light

    NASA Astrophysics Data System (ADS)

    Xiao, Yun; Zhang, Yunhai; Wei, Tongda; Huang, Wei; Shi, Yaqin

    2017-03-01

    In order to improve the resolution of image scanning microscopy, we present a method based on image scanning microscopy and radially polarized light. According to the theory of image scanning microscopy, we get the effective point spread function of image scanning microscopy with the longitudinal component of radially polarized light and a 1 AU detection area, and obtain imaging results of the analyzed samples using this method. Results show that the resolution can be enhanced by 7% compared with that in image scanning microscopy with circularly polarized light, and is 1.54-fold higher than that in confocal microscopy with a pinhole of 1 AU. Additionally, the peak intensity of ISM is 1.54-fold higher than that of a confocal microscopy with a pinhole of 1 AU. In conclusion, the combination of the image scanning microscopy and the radially polarized light could improve the resolution, and it could realize high-resolution and high SNR imaging at the same time.

  9. Background removal procedure for rapid scan EPR.

    PubMed

    Tseitlin, Mark; Czechowski, Tomasz; Quine, Richard W; Eaton, Sandra S; Eaton, Gareth R

    2009-01-01

    In rapid scan EPR the changing magnetic field creates a background signal with components at the scan frequency and its harmonics. The amplitude of the background signal increases with scan width and is more significant for weak EPR signals such as are obtained in the presence of magnetic field gradients. A procedure for distinguishing this background from the EPR signal is proposed, mathematically described, and tested for various experimental conditions.

  10. CT densities in delayed iodine hepatic scanning

    SciTech Connect

    Perkerson, R.B. Jr.; Erwin, B.C.; Baumgartner, B.R.; Phillips, V.M.; Torres, W.E.; Clements, J.L. Jr.; Gedgaudas-McClees, K.; Bernardino, M.E.

    1985-05-01

    Sixty patients underwent CT scanning of the liver prior to, immediately after, and four hours after intravenous administration of 60% meglumine diatrizoate. Twenty patients received a 50 ml bolus of contrast material, 20 received 100 ml, and 20 received 200 ml. In each group, delayed CT scanning safely raised the inherent density of the liver significantly. Thus, delayed scanning with doses presently used in abdominal and neurological CT examinations may be helpful in detecting hepatic lesions.

  11. Scanning Tip Microscopy With Applications To Biology

    NASA Astrophysics Data System (ADS)

    Sarid, Dror; Thall, Edmond H.; Iams, Douglas A.; Ingle, Jeffery T.; Henson, Tammy D.; Lee, Y. C.; Bell, L. Stephen

    1989-06-01

    Scanning tunneling microscopy and atomic force microscopy, denoted here scanning tip microscopy, are two powerful novel techniques for imaging surfaces with atomic resolution. We describe the underlying principles of these two techniques with special emphasis on an instrument developed in our laboratory that uses a laser diode to detect minute deflections of a tip as it raster scans the surface of a sample. Applications of these techniques to research in biology are assessed and their relative merits discussed.

  12. Radiogallium scan in P. carinii pneumonia

    SciTech Connect

    Parthasarathy, K.L.; Bakshi, S.P.; Bender, M.A.

    1982-02-01

    A gallium scan performed on a patient with fever of unknown origin (FUO) revealed an abnormal uptake of radiotracer in the lungs despite negative chest roentgenographic examination and other routine diagnostic studies. Subsequent lung biopsy results confirmed the presence of Pneumocystis (P.) carinii infection. A repeat gallium scan obtained following appropriate antibiotic therapy was essentially normal. The importance of radiogallium scanning in an immunosuppressed patient with FUO is emphasized.

  13. Scanning Tunneling Microscopy Studies of Quasicrystals

    NASA Astrophysics Data System (ADS)

    Becker, Russell S.; Kortan, A. Refik

    The following sections are included: * INTRODUCTION * EXPERIMENTAL * X-RAY DIFFRACTION * SCANNING TUNNELING MICROSCOPY * STRUCTURE MODELLING BASED ON STM * COMPARISON WITH MODELS BASED ON BULK STUDIES * CONCLUSION * REFERENCES

  14. Scanning Tunneling Microscope For Use In Vacuum

    NASA Technical Reports Server (NTRS)

    Abel, Phillip B.

    1993-01-01

    Scanning tunneling microscope with subangstrom resolution developed to study surface structures. Although instrument used in air, designed especially for use in vacuum. Scanning head is assembly of small, mostly rigid components made of low-outgassing materials. Includes coarse-positioning mechanical-translation stage, on which specimen mounted by use of standard mounting stub. Tunneling tip mounted on piezoelectric fine-positioning tube. Application of suitable voltages to electrodes on piezoelectric tube controls scan of tunneling tip across surface of specimen. Electronic subsystem generates scanning voltages and collects data.

  15. Scanning Tunneling Microscope For Use In Vacuum

    NASA Technical Reports Server (NTRS)

    Abel, Phillip B.

    1993-01-01

    Scanning tunneling microscope with subangstrom resolution developed to study surface structures. Although instrument used in air, designed especially for use in vacuum. Scanning head is assembly of small, mostly rigid components made of low-outgassing materials. Includes coarse-positioning mechanical-translation stage, on which specimen mounted by use of standard mounting stub. Tunneling tip mounted on piezoelectric fine-positioning tube. Application of suitable voltages to electrodes on piezoelectric tube controls scan of tunneling tip across surface of specimen. Electronic subsystem generates scanning voltages and collects data.

  16. Scanned probe microscope for biological applications

    NASA Astrophysics Data System (ADS)

    Baiburin, Vil B.; Konnov, Nikolai P.; Shcherbakov, Anatolyi A.; Malakhaeva, Alina N.; Zadnova, Svetlana P.; Volkov, Yuri P.

    1997-12-01

    In our biophysical laboratory has been developed a new scanned probe microscope (SPM) for biological application. The SPM allows to investigate a biological samples' surface by means of three different near field microscopes: scanning tunneling microscope (STM), atomic force microscope (AFM) and near field scanning optical microscope (NSOM). The SPM is very rigid and can be operated in ordinary laboratory without any vibration isolation. The scanning area of the microscope is about 10 by 10 micrometers. Some different biological objects were visualized by means of the SPM viz. bacteria (E. Coli, plague, cholera, staphylococcus), macromolecules (DNA, plague proteins) and phage (T2).

  17. Lung Perfusion Scanning in Hepatic Cirrhosis

    PubMed Central

    Stanley, N. N.; Ackrill, P.; Wood, J.

    1972-01-01

    Abnormal lung perfusion scans using radioactive particles were found in five out of six cases of hepatic cirrhosis with arterial hypoxaemia. None had clinical evidence of cardiopulmonary disease or signs of pulmonary embolism on arteriography. The scan defects are probably caused by a disorder of the pulmonary microvasculature, which may show regional variation in severity. ImagesFIG. 1FIG. 2 PMID:4645896

  18. Scanning System -- Technology Worth a Look

    Treesearch

    Philip A. Araman; Daniel L. Schmoldt; Richard W. Conners; D. Earl Kline

    1995-01-01

    In an effort to help automate the inspection for lumber defects, optical scanning systems are emerging as an alternative to the human eye. Although still in its infancy, scanning technology is being explored by machine companies and universities. This article was excerpted from "Machine Vision Systems for Grading and Processing Hardwood Lumber," by Philip...

  19. A Student-Built Scanning Tunneling Microscope

    ERIC Educational Resources Information Center

    Ekkens, Tom

    2015-01-01

    Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself.…

  20. Live ultrasound volume reconstruction using scout scanning

    NASA Astrophysics Data System (ADS)

    Meyer, Amelie; Lasso, Andras; Ungi, Tamas; Fichtinger, Gabor

    2015-03-01

    Ultrasound-guided interventions often necessitate scanning of deep-seated anatomical structures that may be hard to visualize. Visualization can be improved using reconstructed 3D ultrasound volumes. High-resolution 3D reconstruction of a large area during clinical interventions is challenging if the region of interest is unknown. We propose a two-stage scanning method allowing the user to perform quick low-resolution scouting followed by high-resolution live volume reconstruction. Scout scanning is accomplished by stacking 2D tracked ultrasound images into a low-resolution volume. Then, within a region of interest defined in the scout scan, live volume reconstruction can be performed by continuous scanning until sufficient image density is achieved. We implemented the workflow as a module of the open-source 3D Slicer application, within the SlicerIGT extension and building on the PLUS toolkit. Scout scanning is performed in a few seconds using 3 mm spacing to allow region of interest definition. Live reconstruction parameters are set to provide good image quality (0.5 mm spacing, hole filling enabled) and feedback is given during live scanning by regularly updated display of the reconstructed volume. Use of scout scanning may allow the physician to identify anatomical structures. Subsequent live volume reconstruction in a region of interest may assist in procedures such as targeting needle interventions or estimating brain shift during surgery.

  1. Implementing SCANS. Highlight Zone: Research @ Work.

    ERIC Educational Resources Information Center

    Packer, Arnold C.; Brainard, Scott

    Foremost among efforts over the last decade to improve the work-related skills required of all young people to meet the demands of American's workplaces was the Secretary's Commission on Achieving Necessary Skills Commission (SCANS). Integral to SCANS were its three-part foundation (basic skills, thinking skills, and personal qualities) and these…

  2. A Student-Built Scanning Tunneling Microscope

    ERIC Educational Resources Information Center

    Ekkens, Tom

    2015-01-01

    Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself.…

  3. Camera Systems Rapidly Scan Large Structures

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Needing a method to quickly scan large structures like an aircraft wing, Langley Research Center developed the line scanning thermography (LST) system. LST works in tandem with a moving infrared camera to capture how a material responds to changes in temperature. Princeton Junction, New Jersey-based MISTRAS Group Inc. now licenses the technology and uses it in power stations and industrial plants.

  4. Ultrasonic scanning for pallet part grading

    Treesearch

    Mohammed F. Kabir; Daniel L. Schmoldt; Mark E. Schafer; Philip A. Araman

    2000-01-01

    Sorting and grading of wooden pallet parts are key factors for pallet manufacturing quality and pallet durability. The feasibility of ultrasonic scanning for defect detection in pallet manufacturing is examined in this report. Scanning was conducted by two pressure-contact rolling transducers in a pitch-catch arrangement. Pallet part deckboards were fed through the...

  5. The phase-scanned commutated array network

    NASA Astrophysics Data System (ADS)

    Young, R.

    An array feed network has been developed to demonstrate the P-Scan principle incorporating separate elevation and azimuth antennas. The microwave lens, switches, phase shifters, and amplitude control are discussed, and beam formation is described. The increased scan of the system is addressed, and the results of tests on the system are discussed.

  6. Optical Scanning for Retrospective Conversion of Information.

    ERIC Educational Resources Information Center

    Hein, Morten

    1986-01-01

    This discussion of the use of optical scanning and computer formatting for retrospective conversion focuses on a series of applications known as Optical Scanning for Creation of Information Databases (OSCID). Prior research in this area and the usefulness of OSCID for creating low-priced machine-readable data representing older materials are…

  7. Torque-while-turnaround scan mirror assembly

    NASA Technical Reports Server (NTRS)

    Starkus, C. J.

    1977-01-01

    A scan mirror assembly which is part of a thematic mapper system is described with emphasis on mechanical aspects of the design. Features of the oscillating scan mirror mechanism include: a low level of structural vibration for the impact energies involved in mirror oscillation and return of energy lost during impact to the mirror by applying torque during the instant of impact.

  8. Adjustable Deflector For Ultrasonic C-Scan

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    1994-01-01

    Adjustable deflector increases versatility of ultrasonic C-scan system equipped with two-axis (x-y) translation stage. Enables system to scan along additional axis perpendicular (z axis) or tilted (z' axis) with respect to y axis. Modification of two-axis scanner is economical alternative to more-complicated scanner.

  9. The Scanning Process: Methods and Uses.

    ERIC Educational Resources Information Center

    Renfro, William L.; Morrison, James L.

    1983-01-01

    Developing a rational scanning process that reaches a balance between what is needed and what is possible within the limitations of an institution's resources is discussed. The different kinds of scanning, which kind to use at each stage of the process, and why are described. (MLW)

  10. The white blood cell scan in orthopedics

    SciTech Connect

    Propst-Proctor, S.L.; Dillingham, M.F.; McDougall, I.R.; Goodwin, D.

    1982-08-01

    A new nuclear scanning technique was found more specific for bone, joint, and soft tissue infections than any previously described scanning technique. The leukocyte scan, whereby a patient's own cells are labeled with a radioactive tagging agent (/sup 111/In oxine), can distinguish an active infectious process from other pain-inducing conditions. Ninety-seven /sup 111/In labeled autologous leukocyte scans were performed in 88 patients. The findings in 17 of 40 patients scanned for possible acute osteomyelitis, six of nine for suspected septic arthritis, and six for possible soft tissue infections, were positive. Subsequent clinical courses verified the infectious nature of these processes in all patients. Patients who had chronic osteomyelitis (14), bony metastases (four patients), heterotopic ossification (three), and degenerative arthritis (two) demonstrated negative findings. Of the seven patients scanned for acute long-bone fractures, one demonstrated positive findings. Nine scans demonstrated positive findings without determined causes. The leukocyte scan is a useful addition to the diagnostic tools of the orthopedic surgeon.

  11. Rotation of images by scan mirrors

    NASA Technical Reports Server (NTRS)

    Katzberg, Stephen J.

    1989-01-01

    An analysis is presented of the effects of scan mirrors on scene orientation or rotation for image forming systems. Some simple vector relationships are presented, which when combined with the anticipated application conditions, make it possible to easily assess image orientation effects resulting from scan mirrors. Examples are cited to demonstrate the application of the analysis.

  12. Getting a CAT Scan (For Kids)

    MedlinePlus Videos and Cool Tools

    ... dientes Video: Getting an X-ray Getting a CAT Scan (Video) KidsHealth > For Kids > Getting a CAT Scan (Video) Print A A A en español Obtención de una tomografía computada (video) CAT stands for "computerized axial tomography." Translated, that means ...

  13. CERES Spatial Extent and Scan Modes

    Atmospheric Science Data Center

    2017-08-09

    ... the images show top of atmosphere all sky longwave measurements. CERES ERBE-like instantaneous ES-8 and monthly ... to a Programmable Azimuth Plane Scan (PAPS) to collect measurements over the  Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS)  site. The Special-Scan image is an ...

  14. Full cycle rapid scan EPR deconvolution algorithm

    NASA Astrophysics Data System (ADS)

    Tseytlin, Mark

    2017-08-01

    Rapid scan electron paramagnetic resonance (RS EPR) is a continuous-wave (CW) method that combines narrowband excitation and broadband detection. Sinusoidal magnetic field scans that span the entire EPR spectrum cause electron spin excitations twice during the scan period. Periodic transient RS signals are digitized and time-averaged. Deconvolution of absorption spectrum from the measured full-cycle signal is an ill-posed problem that does not have a stable solution because the magnetic field passes the same EPR line twice per sinusoidal scan during up- and down-field passages. As a result, RS signals consist of two contributions that need to be separated and postprocessed individually. Deconvolution of either of the contributions is a well-posed problem that has a stable solution. The current version of the RS EPR algorithm solves the separation problem by cutting the full-scan signal into two half-period pieces. This imposes a constraint on the experiment; the EPR signal must completely decay by the end of each half-scan in order to not be truncated. The constraint limits the maximum scan frequency and, therefore, the RS signal-to-noise gain. Faster scans permit the use of higher excitation powers without saturating the spin system, translating into a higher EPR sensitivity. A stable, full-scan algorithm is described in this paper that does not require truncation of the periodic response. This algorithm utilizes the additive property of linear systems: the response to a sum of two inputs is equal the sum of responses to each of the inputs separately. Based on this property, the mathematical model for CW RS EPR can be replaced by that of a sum of two independent full-cycle pulsed field-modulated experiments. In each of these experiments, the excitation power equals to zero during either up- or down-field scan. The full-cycle algorithm permits approaching the upper theoretical scan frequency limit; the transient spin system response must decay within the scan

  15. AVIRIS scan drive design and performance

    NASA Technical Reports Server (NTRS)

    Miller, D. C.

    1987-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images the ground with an instantaneous field of view (IFOV) of 1 mrad. The IFOV is scanned 30 deg from left to right to provide the cross-track dimension of the image, while the aircraft's motion provides the along-track dimension. The scanning frequency is 12 Hz, with a scan efficiency of 70 percent. The scan mirror has an effective diameter of 5.7 in, and its positional accuracy is a small fraction of a milliradian of the nominal position-time profile. Described are the design and performance of the scan drive mechanism. Tradeoffs among various approaches are discussed, and the reasons given for the selection of the cam drive.

  16. Scanning tunneling microscope assembly, reactor, and system

    SciTech Connect

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  17. Optical scanning holography for stereoscopic display

    NASA Astrophysics Data System (ADS)

    Liu, Jung-Ping; Wen, Hsuan-Hsuan

    2016-10-01

    Optical Scanning Holography (OSH) is a scanning-type digital holographic recording technique. One of OSH's most important properties is that the OSH can record an incoherent hologram, which is free of speckle and thus is suitable for the applications of holographic display. The recording time of a scanning hologram is proportional to the sampling resolution. Hence the viewing angle as well as the resolution of a scanning hologram is limited for avoid too long recording. As a result, the viewing angle is not large enough for optical display. To solve this problem, we recorded two scanning holograms at different viewing angles. The two holograms are synthesized to a single stereoscopic hologram with two main viewing angles. In displaying, two views at the two main viewing angles are reconstructed. Because both views contain full-depth-resolved 3D scenes, the problem of accommodation conflict in conventional stereogram is avoided.

  18. Bone scan in metabolic bone diseases. Review.

    PubMed

    Abdelrazek, Saeid; Szumowski, Piotr; Rogowski, Franciszek; Kociura-Sawicka, Agnieszka; Mojsak, Małgorzata; Szorc, Małgorzata

    2012-08-25

    Metabolic bone disease encompasses a number of disorders that tend to present a generalized involvement of the whole skeleton. The disorders are mostly related to increased bone turnover and increased uptake of radiolabelled diphosphonate. Skeletal uptake of 99mTc-labelled diphosphonate depends primarily upon osteoblastic activity, and to a lesser extent, skeletal vascularity. A bone scan image therefore presents a functional display of total skeletal metabolism and has valuable role to play in the assessment of patients with metabolic bone disorders. However, the bone scan appearances in metabolic bone disease are often non-specific, and their recognition depends on increased tracer uptake throughout the whole skeleton. It is the presence of local lesions, as in metastatic disease, that makes a bone scan appearance obviously abnormal. In the early stages, there will be difficulty in evaluating the bone scans from many patients with metabolic bone disease. However, in the more severe cases scan appearances can be quite striking and virtually diagnostic.

  19. Means for Positioning and Repositioning Scanning Instruments

    NASA Technical Reports Server (NTRS)

    Polites, Michael E. (Inventor); Alhorn, Dean C. (Inventor)

    1996-01-01

    A method is presented for positioning a scanning instrument to point toward the center of the desired scan wherein the scan is achieved by rotating unbalanced masses (RUMs) rotating about fixed axes of rotation relative to and associated with the instrument, the RUMs being supported on drive shafts spaced from the center of the mass of the instrument and rotating 180 degrees out-of-phase with each other and in planes parallel to each other to achieve the scan. The elevation and cross-elevation angles of the instrument are sensed to determine any offset and offset time rate-of-change, and the magnitude and direction are converted to a RUM cycle angular velocity component to be superimposed on the nominal velocity of the RUMs. This RUM angular velocity component modulates the RUM angular velocity to cause the speed of the RUMs to increase and decrease during each revolution to drive the instrument toward the desired center of the scan.

  20. An Introduction to PunchScan

    NASA Astrophysics Data System (ADS)

    Popoveniuc, Stefan; Hosp, Ben

    PunchScan is a precinct-read optical-scan balloting system that allows voters to take their ballot with them after scanning. This does not violate the secret ballot principle because the ballots cannot be read without secret information held by the distributed authority in charge of the election. In fact, this election authority will publish the ballots for everyone to see, allowing voters whose ballots were incorrectly omitted to complain. PunchScan vote-counting is performed in private by the election authority - who uses their secret information to decode the ballots - but is verified in public by an auditor.In this paper we describe how and why PunchScan works. We have kept most of the description at an outline level so that it may be used as a straw model of a cryptographic voting system.

  1. 47 CFR 15.121 - Scanning receivers and frequency converters used with scanning receivers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Scanning receivers and frequency converters used with scanning receivers. 15.121 Section 15.121 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.121 Scanning receivers and...

  2. 47 CFR 15.121 - Scanning receivers and frequency converters used with scanning receivers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Scanning receivers and frequency converters used with scanning receivers. 15.121 Section 15.121 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.121 Scanning receivers and...

  3. Compact scanning lidar systems using holographic optics

    NASA Astrophysics Data System (ADS)

    Schwemmer, Geary K.; Wilkerson, Thomas D.; Guerra, David

    1998-08-01

    Two scanning lidar systems have been built using holographic optical elements (HOE) that function as a scanning telescope primary optic. One is a ground based lidar using a reflection HOE, and uses a frequency doubled Nd:YAG laser transmitter. The other system is an airborne/ground based system that uses a transmission HOE and operates at the 1064 nm fundamental of the Nd:YAG laser. Each HOE has a focal spot on the center- line, normal to the flat disk holding the hologram, and a field of view (FOV) that points approximately 45 degrees from the normal. Rotating the disk effects a conical scan of the FOV. In both systems, the same HOE is also used to collimate and steer the transmitted laser beam. The utility of using the HOEs to save weight and size in scanning lidars is evidenced by the atmospheric backscatter data collected with these systems. They also will lower the cost of commercial systems due to the low cost of replicating HOEs and the simplified mechanical scanning systems. Development of airborne scanning lidar altimeters and other lidars and passive instruments using holographic optics are underway, including the development of a one meter diameter, space qualified holographic scanning telescope for use in the ultraviolet.

  4. The bone scan in inflammatory osseous disease.

    PubMed

    Handmaker, H; Leonards, R

    1976-01-01

    The 99mTc-phosphate bone scan has become a sensitive, reliable, and safe method for evaluating the patient with suspected inflammatory disease of bone. The scan may become positive as early as the first 24 hr after the symptoms and 10-14 days before roentgenographic changes occur. It can be used to differentiate successfully a variety of diseases from osteomyelitis, and in conjunction with 67Ga-citrate scan has become a mainstay in the work-up of the patient with infectious disease. Applications of the bone scan to infectious diseases in pediatric practice are especially helpful, since these diseases are common problems in this age group. Increased experience with the 99mTc-phosphate bone scan has already defined several areas of "limitations" in evaluating inflammatory disease. "Cold" defects, negative scans in early stages of osteomyelitis, and "extended uptake" may all pose problems in interpretation, but careful correlation of the bone scan results with clinical history and physical findings, blood cultures, and roentgenography will significantly reduce these problems.

  5. A dynamic scanning method based on signal-statistics for scanning electron microscopy.

    PubMed

    Timischl, F

    2014-01-01

    A novel dynamic scanning method for noise reduction in scanning electron microscopy and related applications is presented. The scanning method dynamically adjusts the scanning speed of the electron beam depending on the statistical behavior of the detector signal and gives SEM images with uniform and predefined standard deviation, independent of the signal value itself. In the case of partially saturated images, the proposed method decreases image acquisition time without sacrificing image quality. The effectiveness of the proposed method is shown and compared to the conventional scanning method and median filtering using numerical simulations.

  6. [Vein Scanning Projection Instrument Based on Two-Dimensional Scanning Mirror].

    PubMed

    Meng, Ya; Wu, Zhichao; Xu, Changping; Qian, Yinbo

    2015-09-01

    With the development of science and technology, new medical equipments is toward the direction of intelligent and portable. In order to assist medical personnel to patients with blood, developing from previous devices, a new kind of vein locating projection instrument based on two-dimensional scanning mirror is put forward. It can scan and project vein image using a scanning mirror. The related algorithm is also be improved, make vein scan projection more practical. The system finally set up can perform well in vein scan projection.

  7. A microprocessor controlled pressure scanning system

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.

    1976-01-01

    A microprocessor-based controller and data logger for pressure scanning systems is described. The microcomputer positions and manages data from as many as four 48-port electro-mechanical pressure scanners. The maximum scanning rate is 80 pressure measurements per second (20 ports per second on each of four scanners). The system features on-line calibration, position-directed data storage, and once-per-scan display in engineering units of data from a selected port. The system is designed to be interfaced to a facility computer through a shared memory. System hardware and software are described. Factors affecting measurement error in this type of system are also discussed.

  8. Gigahertz-band electronically scanned antennas

    NASA Astrophysics Data System (ADS)

    Bei, Nikolai A.

    2000-12-01

    Foundation and principles of radio lenses construction of centimeter and millimeter wave ranges with controlled refracting index, combining the quality of phased array antennas with optical devices are stated. Possibilities of the electronically scanning with wide-angle sector and high gain are maintained. Construction principles of scanning antennas with controlled lenses, combining the quality of phased array antennas with optical devices, are stated. Possibilities of electronically scanning with broad angle sector and high gain are maintained. Some examples of construction of antennas millimeter range of waves are listed here.

  9. HEAO-A nominal scanning observation schedule

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Stone, R. L.

    1977-01-01

    The HEAO-A observatory, scheduled for launch in late June 1977, will spend most of its orbital lifetime in a scanning mode, spining from 0.03 to 0.1 rpm about an axis aligned with the sun. The dates of availability in the scan band are given for a list of 248 X-ray sources. Celestial maps of source locations and scan planes, and examples of the nighttime elevation of available sources are presented. This document is intended to aid ground-based observers in planning coordinated observations with HEAO-A.

  10. Scanning and georeferencing historical USGS quadrangles

    USGS Publications Warehouse

    Davis, Larry R.; Allord, G.J.

    2011-01-01

    The USGS Historical Quadrangle Scanning Project (HQSP) is scanning all scales and all editions of approximately 250,000 topographic maps published by the U.S. Geological Survey (USGS) since the inception of the topographic mapping program in 1884. This scanning will provide a comprehensive digital repository of USGS topographic maps, available to the public at no cost. This project serves the dual purpose of creating a master catalog and digital archive copies of the irreplaceable collection of topographic maps in the USGS Reston Map Library as well as making the maps available for viewing and downloading from the USGS Store and The National Map Viewer.

  11. Clinical applications of Genome Polymorphism Scans

    PubMed Central

    Weber, James L

    2006-01-01

    Applications of Genome Polymorphism Scans range from the relatively simple such as gender determination and confirmation of biological relationships, to the relatively complex such as determination of autozygosity and propagation of genetic information throughout pedigrees. Unlike nearly all other clinical DNA tests, the Scan is a universal test – it covers all people and all genes. In balance, I argue that the Genome Polymorphism Scan is the most powerful, affordable clinical DNA test available today. Reviewers: This article was reviewed by Scott Weiss (nominated by Neil Smalheiser), Roberta Pagon (nominated by Jerzy Jurka) and Val Sheffield (nominated by Neil Smalheiser). PMID:16756678

  12. Scanning-Pencil-Beam Radar Scatterometer

    NASA Technical Reports Server (NTRS)

    Long, David G.; Freilich, Michael H.; Leotta, Daniel F.; Noon, Don E.

    1992-01-01

    SCANSCAT conceptual scanning radar scatterometer placed in nearly polar orbit around Earth at altitude of 705 km aboard Spacecraft B of NASA's Earth Observing System. Measures radar backscattering from surface of ocean. Data processed on ground into normalized radar-backscattering cross sections, then processed into velocities of winds near surface of ocean by use of empirical mathematical model of relationship between normalized backscattering cross section, wind vector at scanned spot, and angle of incidence and azimuth angle of radar beam. Accuracy and coverage exceeds those of fan-beam scatterometer. Modified versions of scanning plan useful in laser inspection of surface finishes on machined parts.

  13. Scanning-Pencil-Beam Radar Scatterometer

    NASA Technical Reports Server (NTRS)

    Long, David G.; Freilich, Michael H.; Leotta, Daniel F.; Noon, Don E.

    1992-01-01

    SCANSCAT conceptual scanning radar scatterometer placed in nearly polar orbit around Earth at altitude of 705 km aboard Spacecraft B of NASA's Earth Observing System. Measures radar backscattering from surface of ocean. Data processed on ground into normalized radar-backscattering cross sections, then processed into velocities of winds near surface of ocean by use of empirical mathematical model of relationship between normalized backscattering cross section, wind vector at scanned spot, and angle of incidence and azimuth angle of radar beam. Accuracy and coverage exceeds those of fan-beam scatterometer. Modified versions of scanning plan useful in laser inspection of surface finishes on machined parts.

  14. Comparison of full-scan and half-scan for cone beam breast CT imaging

    NASA Astrophysics Data System (ADS)

    Chen, Lingyun; Shaw, Chris C.; Lai, Chao-jen; Altunbas, Mustafa C.; Wang, Tianpeng; Tu, Shu-ju; Liu, Xinming

    2006-03-01

    The half-scan cone beam technique, requiring a scan for 180° plus detector width only, can help achieve both shorter scan time as well as higher exposure in each individual projection image. This purpose of this paper is to investigate whether half-scan cone beam CT technique can provide acceptable images for clinical application. The half-scan cone beam reconstruction algorithm uses modified Parker's weighting function and reconstructs from slightly more than half of the projection views for full-scan, giving out promising results. A rotation phantom, stationary gantry bench top system was built to conduct experiments to evaluate half-scan cone beam breast CT technique. A post-mastectomy breast specimen, a stack of lunch meat slices embedded with various sizes of calcifications and a polycarbonate phantom inserted with glandular and adipose tissue equivalents are imaged and reconstructed for comparison study. A subset of full-scan projection images of a mastectomy specimen were extracted and used as the half-scan projection data for reconstruction. The results show half-scan reconstruction algorithm for cone beam breast CT images does not significantly degrade image quality when compared with the images of same or even half the radiation dose level. Our results are encouraging, emphasizing the potential advantages in the use of half-scan technique for cone beam breast imaging.

  15. New Microscope Scans Breast Tumors During Surgery

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_166925.html New Microscope Scans Breast Tumors During Surgery The instrument ... 2017 WEDNESDAY, June 28, 2017 (HealthDay News) -- A new microscope could help surgeons remove breast tumors completely, ...

  16. Getting a CAT Scan (For Kids)

    MedlinePlus

    ... axial tomography." Translated, that means a scanner takes computer pictures of what's going on inside your body. The scan itself is ... Policy Privacy Policy & Terms of Use Visit the Nemours Web ...

  17. Indium-111 leukocyte scanning and fracture healing

    SciTech Connect

    Mead, L.P.; Scott, A.C.; Bondurant, F.J.; Browner, B.D. )

    1990-01-01

    This study was undertaken to determine the specificity of indium-111 leukocyte scans for osteomyelitis when fractures are present. Midshaft tibial osteotomies were performed in 14 New Zealand white rabbits, seven of which were infected postoperatively with Staphylococcus aureus per Norden's protocol. All 14 rabbits were scanned following injection with 75 microCi of indium 111 at 72 h after osteotomy and at weekly intervals for 4 weeks. Before the rabbits were killed, the fracture sites were cultured to document the presence or absence of infection. The results of all infected osteotomy sites were positive, whereas no positive scans were found in the noninfected osteotomies. We concluded from this study that uncomplicated fracture healing does not result in a positive indium-111 leukocyte scan.

  18. Noncontact dimensional measurement system using holographic scanning

    NASA Astrophysics Data System (ADS)

    Sagan, Stephen F.; Rosso, Robert S.; Rowe, David M.

    1997-07-01

    Holographic scanning systems have been used for years in point-of-sale bar code scanners and other low resolution applications. These simple scanning systems could not successfully provide the accuracy and precision required to measure, inspect and control the production of today's high tech optical fibers, medical extrusions and electrical cables. A new class of instruments for the precision measurement of industrial processes has been created by the development of systems with a unique combination of holographic optical elements that can compensate for the wavelength drift in laser diodes, the application of proprietary post-processing algorithms, and the advancements in replication methods to fabricate low cost holographic scanning discs. These systems have improved upon the performance of traditional polygon mirror scanners. This paper presents the optical configuration and design features that have been incorporated into a holographic scanning inspection system that provides higher productivity, increased product quality and lower production costs for many manufacturers.

  19. ReachScan - an Exposure Assessment Model

    EPA Pesticide Factsheets

    ReachScan estimates surface water concentrations downstream from industrial sites to assess impacts on the aquatic environment and potential dose rates for humans exposed via ingestion of drinking water and fish.

  20. Intelligent Classification and Visualization of Network Scans

    SciTech Connect

    Chen, L; Muelder, C; Ma, K; Bartoletti, A

    2007-03-01

    Network scans are a common first step in a network intrusion attempt. In order to gain information about a potential network intrusion, it is beneficial to analyze these network scans. Statistical methods such as wavelet scalogram analysis have been used along with visualization techniques in previous methods. However, applying these statistical methods to reduce the data causes a substantial amount of data loss. This paper presents a study of using associative memory learning techniques to directly compare network scans in order to create a classification which can be used by itself or in conjunction with existing visualization techniques to better characterize the sources of these scans. This produces an integrated system of visual and intelligent analysis which is applicable to real world data.

  1. The design of laser scanning galvanometer system

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoling; Zhou, Bin; Xie, Weihao; Zhang, Yuangeng

    2015-02-01

    In this paper, we designed the laser scanning galvanometer system according to our requirements. Based on scanning range of our laser scanning galvanometer system, the design parameters of this system were optimized. During this work, we focused on the design of the f-θ field lens. An optical system of patent lens in the optical manual book, which had three glasses structure, was used in our designs. Combining the aberration theory, the aberration corrections and image quality evaluations were finished using Code V optical design software. An optimum f-θ field lens was designed, which had focal length of 434 mm, pupil diameter of 30 mm, scanning range of 160 mm × 160 mm, and half field angle of 18°×18°. At the last, we studied the influences of temperature changes on our system.

  2. C-scan ultrasonography in orbital diagnosis.

    PubMed Central

    Restori, M; Wright, J E

    1977-01-01

    A C-scan imaging facility has recently been added to the ultrasonic system in use at Moorfields Eye Hospital, London. The technique is explained and typical C-scans are presented to demonstrate the normal orbital fat and optic nerve, together with selected pathological conditions in the orbit. The C-scan facility permits imaging of the orbital contents in the coronal plane. This coronal plane imaging, together with high resolution and sensitivity, makes this a useful technique for demonstrating orbital lesions and it is hoped helps in the accurate measurement of the diameters of the optic nerve along its length. The problems associated with C-scanning are discussed. Images PMID:603781

  3. New form of scanning optical microscopy

    SciTech Connect

    Reddick, R.C.; Warmack, R.J.; Ferrell, T.L.

    1989-01-01

    The exponential decay of the evanescent field due to the total internal reflection (TIR) of a light beam in a prism is used to advantage in a new form of scanning optical microscope, the photon scanning tunneling microscope (PSTM). The PSTM is the photon analogue of the electron scanning tunneling microscope. The sample is placed on or forms the TIR surface and spatially modulates the evanescent field. Changes in intensity are monitored by a probe tip scanned over the surface, and the data are processed to generate an image of the sample. Subwavelength resolution in three dimensions is obtained because of the exponential nature of the evanescent field intensity. Images produced by a prototype instrument using 633-nm light and a 1-..mu..m probe tip are shown to have a lateral resolution of about 200 nm.

  4. Ocular Health (OH) Ultrasound 2 Scan

    NASA Image and Video Library

    2013-06-06

    Astronaut Karen Nyberg,Expedition 37 flight engineer, assisted by astronaut Chris Cassidy, performs an Ocular Health (OH) Ultrasound 2 scan in the Destiny laboratory of the International Space Station.

  5. System and Method for Scan Range Gating

    NASA Technical Reports Server (NTRS)

    Zuk, David M. (Inventor); Lindemann, Scott (Inventor)

    2017-01-01

    A system for scanning light to define a range gated signal includes a pulsed coherent light source that directs light into the atmosphere, a light gathering instrument that receives the light modified by atmospheric backscatter and transfers the light onto an image plane, a scanner that scans collimated light from the image plane to form a range gated signal from the light modified by atmospheric backscatter, a control circuit that coordinates timing of a scan rate of the scanner and a pulse rate of the pulsed coherent light source so that the range gated signal is formed according to a desired range gate, an optical device onto which an image of the range gated signal is scanned, and an interferometer to which the image of the range gated signal is directed by the optical device. The interferometer is configured to modify the image according to a desired analysis.

  6. Electron Beam Scanning in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Jongen, Yves; Herer, Arnold

    1996-05-01

    Scanned electron beams are used within many industries for applications such as sterilization of medical disposables, crosslinking of wire and cables insulating jackets, polymerization and degradation of resins and biomaterials, modification of semiconductors, coloration of gemstones and glasses, removal of oxides from coal plant flue gasses, and the curing of advanced composites and other molded forms. X-rays generated from scanned electron beams make yet other applications, such as food irradiation, viable. Typical accelerators for these applications range in beam energy from 0.5MeV to 10 MeV, with beam powers between 5 to 500kW and scanning widths between 20 and 300 cm. Since precise control of dose delivery is required in many of these applications, the integration of beam characteristics, product conveyance, and beam scanning mechanisms must be well understood and optimized. Fundamental issues and some case examples are presented.

  7. Nanoscale thermometry by scanning thermal microscopy

    NASA Astrophysics Data System (ADS)

    Menges, Fabian; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-07-01

    Measuring temperature is a central challenge in nanoscience and technology. Addressing this challenge, we report the development of a high-vacuum scanning thermal microscope and a method for non-equilibrium scanning probe thermometry. The microscope is built inside an electromagnetically shielded, temperature-stabilized laboratory and features nanoscopic spatial resolution at sub-nanoWatt heat flux sensitivity. The method is a dual signal-sensing technique inferring temperature by probing a total steady-state heat flux simultaneously to a temporally modulated heat flux signal between a self-heated scanning probe sensor and a sample. Contact-related artifacts, which so far limit the reliability of nanoscopic temperature measurements by scanning thermal microscopy, are minimized. We characterize the microscope's performance and demonstrate the benefits of the new thermometry approach by studying hot spots near lithographically defined constrictions in a self-heated metal interconnect.

  8. Breadboard linear array scan imager program

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The performance was evaluated of large scale integration photodiode arrays in a linear array scan imaging system breadboard for application to multispectral remote sensing of the earth's resources. Objectives, approach, implementation, and test results of the program are presented.

  9. Study of the Electrical Impedance Scanning

    DTIC Science & Technology

    2007-11-02

    exhibit conductive changes that cause an impedance variation between cancerous ant health tissues. Since there are very few commercial devices...contribute somehow in the evaluation of the parameters involved. Keywords – Electrical Transimpedance Scanning, Breast cancer I. INTRODUCTION The...Electrical Transimpedance Scanning (ETS) is a new technique, non-invasive, non-irradiant, used in the diagnosis of breast cancer . Combined with other

  10. Phased-Antenna-Array Conical Scanning

    NASA Technical Reports Server (NTRS)

    Lesh, J. R.

    1984-01-01

    Antenna pointing faster than mechanical scanning. Three antenna phased array connected to receiving signal-processing system through two phase-shifting networks. Two networks simultaneously steer phased array in two slightly-different beam directions; one for scanning, one for tracking. Technique has many uses in military and civilian radar, principally in tracking aircraft, balloonborne weather instruments, and other moving signal sources or reflectors.

  11. Enhanced effects with scanning force microscopy

    NASA Astrophysics Data System (ADS)

    Howells, S.; Chen, T.; Gallagher, M.; Yi, L.; Sarid, D.

    1991-05-01

    A general theory that describes the operation of scanning force microscopy in the contact force regime is presented. It is shown that force derivatives along the surface of a sample produce images that can be dramatically enhanced relative to those of surface topography. For scanning tunneling microscopy atomic force microscopy configurations, the spring constant of the cantilever and the force derivatives perpendicular to the surface of the sample determine the enhancement, respectively.

  12. Scanning fluorescent microthermal imaging apparatus and method

    DOEpatents

    Barton, Daniel L.; Tangyunyong, Paiboon

    1998-01-01

    A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC.

  13. Scanning fluorescent microthermal imaging apparatus and method

    DOEpatents

    Barton, D.L.; Tangyunyong, P.

    1998-01-06

    A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC. 1 fig.

  14. Scanning Optical Microscopy Applied To Fluorometry

    NASA Astrophysics Data System (ADS)

    Roblin, Gerard; Bernstein, Leon

    1987-08-01

    Scanning Optical Microscopy, able to reconstruct, pixel after pixel, low noise images with the expected microscope resolution, is especially suitable for quantitative microscopy. Use of a bright, monochromatic spot of light extends its field of application to fluo-rescence Microscopy. Description of a typical device is given and the problems encountered to realize the scan of the laser beam are discussed. Results relating to transmitted light images as well as to epifluorescence images and spectral analysis are shown.

  15. Infrared interferometer with a scanned aperture.

    PubMed

    Edwin, R P

    1975-08-01

    A Twyman-Green interferometer operating at a 3.39-microm wavelength has been built in which the collimator aperture was scanned by a laser beam. The scanning was produced by reflecting the laser beam from a mirror supported by four piezoelectric elements and oscillated about two orthogonal axes. The radiation transmitted by the interferometer was measured by a stationary detector of small area. The complete system offers a cheap and efficient alternative to conventional ir interferometers.

  16. Holographic Optical Elements as Scanning Lidar Telescopes

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2003-01-01

    We have investigated and developed the use of holographic optical elements (HOE) and holographic transmission gratings for scanning lidar telescopes. By rotating a flat HOE in its own plane with the focal spot on the rotation axis, a very simple and compact conical scanning telescope is possible. We developed and tested transmission and reflection HOES for use with the first three harmonics of Nd:YAG lasers, and designed, built, and tested two lidar systems based on this technology.

  17. Position-sensitive scanning fluorescence correlation spectroscopy.

    PubMed

    Skinner, Joseph P; Chen, Yan; Müller, Joachim D

    2005-08-01

    Fluorescence correlation spectroscopy (FCS) uses a stationary laser beam to illuminate a small sample volume and analyze the temporal behavior of the fluorescence fluctuations within the stationary observation volume. In contrast, scanning FCS (SFCS) collects the fluorescence signal from a moving observation volume by scanning the laser beam. The fluctuations now contain both temporal and spatial information about the sample. To access the spatial information we synchronize scanning and data acquisition. Synchronization allows us to evaluate correlations for every position along the scanned trajectory. We use a circular scan trajectory in this study. Because the scan radius is constant, the phase angle is sufficient to characterize the position of the beam. We introduce position-sensitive SFCS (PSFCS), where correlations are calculated as a function of lag time and phase. We present the theory of PSFCS and derive expressions for diffusion, diffusion in the presence of flow, and for immobilization. To test PSFCS we compare experimental data with theory. We determine the direction and speed of a flowing dye solution and the position of an immobilized particle. To demonstrate the feasibility of the technique for applications in living cells we present data of enhanced green fluorescent protein measured in the nucleus of COS cells.

  18. Feature Adaptive Sampling for Scanning Electron Microscopy

    PubMed Central

    Dahmen, Tim; Engstler, Michael; Pauly, Christoph; Trampert, Patrick; de Jonge, Niels; Mücklich, Frank; Slusallek, Philipp

    2016-01-01

    A new method for the image acquisition in scanning electron microscopy (SEM) was introduced. The method used adaptively increased pixel-dwell times to improve the signal-to-noise ratio (SNR) in areas of high detail. In areas of low detail, the electron dose was reduced on a per pixel basis, and a-posteriori image processing techniques were applied to remove the resulting noise. The technique was realized by scanning the sample twice. The first, quick scan used small pixel-dwell times to generate a first, noisy image using a low electron dose. This image was analyzed automatically, and a software algorithm generated a sparse pattern of regions of the image that require additional sampling. A second scan generated a sparse image of only these regions, but using a highly increased electron dose. By applying a selective low-pass filter and combining both datasets, a single image was generated. The resulting image exhibited a factor of ≈3 better SNR than an image acquired with uniform sampling on a Cartesian grid and the same total acquisition time. This result implies that the required electron dose (or acquisition time) for the adaptive scanning method is a factor of ten lower than for uniform scanning. PMID:27150131

  19. Galvanometer scanning technology for laser additive manufacturing

    NASA Astrophysics Data System (ADS)

    Luo, Xi; Li, Jin; Lucas, Mark

    2017-02-01

    A galvanometer laser beam scanning system is an essential element in many laser additive manufacturing (LAM) technologies including Stereolithography (SLA), Selective Laser Sintering (SLS) and Selective Laser Melting (SLM). Understanding the laser beam scanning techniques and recent innovations in this field will greatly benefit the 3D laser printing system integration and technology advance. One of the challenges to achieve high quality 3D printed parts is due to the non-uniform laser power density delivered on the materials caused by the acceleration and deceleration movements of the galvanometer at ends of the hatching and outlining patterns. One way to solve this problem is to modulate the laser power as the function of the scanning speed during the acceleration or deceleration periods. Another strategy is to maintain the constant scanning speed while accurately coordinating the laser on and off operation throughout the job. In this paper, we demonstrate the high speed, high accuracy and low drift digital scanning technology that incorporates both techniques to achieve uniform laser density with minimal additional process development. With the constant scanning speed method, the scanner not only delivers high quality and uniform results, but also a throughput increase of 23% on a typical LAM job, compared to that of the conventional control method that requires galvanometer acceleration and deceleration movements.

  20. Application of scanning sampling for studying coatings

    NASA Astrophysics Data System (ADS)

    Surmenko, Elena L.; Tuchin, Valery V.; Sokolova, Tatiana N.; Konyushin, Alexander V.; Chebotarevsky, Yury V.

    2005-04-01

    LIBS is one of the best methods of multilayer coatings studying. Special laser technique-scanning sampling-was developed for studying of different kinds of objects (technical and biomedical coatings). The scanning sampling is based on the scanning of analyzed object during the exposition time. The velocity of scanning is defined by the diameter of laser crater and pulse repetition rate. It allows to increase the volume part of a coating substance in a sample. Some special applications of LIBS and scanning sampling with Q-switched Nd:YAG-laser in the field of technics and biomedicine are described. The layer-by-layer elemental analysis of multilayer components was performed for finding-out the probable non-uniformity. That could appear the reason of wrong work of components. Special layer characteristic calculated as a ratio of spectral lines intensities for elements contained in different layers of a coating was defined for estimation non-uniformity. LIBS in investigation of dental tissues allows to define preliminary the nature of pathology. Scanning sampling used for such tissues as debris and odontolith, allows to find out the stage of lesion and to predict carious conditions.

  1. SCAN: A Scalable Model of Attentional Selection.

    PubMed

    Hudson, Patrick T.W.; van den Herik, H Jaap; Postma, Eric O.

    1997-08-01

    This paper describes the SCAN (Signal Channelling Attentional Network) model, a scalable neural network model for attentional scanning. The building block of SCAN is a gating lattice, a sparsely-connected neural network defined as a special case of the Ising lattice from statistical mechanics. The process of spatial selection through covert attention is interpreted as a biological solution to the problem of translation-invariant pattern processing. In SCAN, a sequence of pattern translations combines active selection with translation-invariant processing. Selected patterns are channelled through a gating network, formed by a hierarchical fractal structure of gating lattices, and mapped onto an output window. We show how the incorporation of an expectation-generating classifier network (e.g. Carpenter and Grossberg's ART network) into SCAN allows attentional selection to be driven by expectation. Simulation studies show the SCAN model to be capable of attending and identifying object patterns that are part of a realistically sized natural image. Copyright 1997 Elsevier Science Ltd.

  2. Radionuclide bone scanning of medullary chondrosarcoma

    SciTech Connect

    Hudson, T.M.; Chew, F.S.; Manaster, B.J.

    1982-12-01

    /sup 99m/Tc methylene diphosphonate bone scans of 18 medullary chondrosarcomas of bone were correlated with pathologic macrosections of the resected tumors. There was increased scan uptake by all 18 tumors, and the uptake in 15 scans corresponded accurately to the anatomic extent of the tumors. Only three scans displayed increased uptake beyond the true tumor margins; thus, the extended pattern of uptake beyond the true tumor extent is much less common in medullary chondrosarcomas than in many other primary bone tumors. Therefore, increased uptake beyond the apparent radiographic margin of the tumor suggests possible occult tumor spread. Pathologically, there was intense reactive new bone formation and hyperemia around the periphery of all 18 tumors, and there were foci of enchondral ossification, hyperemia, or calcification within the tumor itself in nearly every tumor. Three scans displayed less uptake in the center of the tumors than around their peripheries. One of these tumors was necrotic in the center, but the other two were pathologically no different from tumors that displayed homogeneous uptake on the scan.

  3. Radionuclide bone scanning of medullary chondrosarcoma

    SciTech Connect

    Hudson, T.M.; Chew, F.S.; Manaster, B.J.

    1982-12-01

    Technetium-99m methylene diphosphonate bone scans of 18 medullary chondrosarcomas of bone were correlated with pathologic macrosections of the resected tumors. There was increased scan intake by all 18 tumors, and the uptake in 15 scans corresponded accurately to the anatomic extent of the tumors. Only three scans displayed increased uptake beyond the true tumor margins; thus, the ''extended pattern of uptake'' beyond the true tumor extent is much less common in medullary chondrosarcomas than in many other primary bone tumors. Therefore, increased uptake beyond the apparent radiographic margin of the tumor suggests possible occult tumor spread. Pathologically, there was intense reactive new bone formation and hyperemia around the periphery of all 18 tumors, and there were foci of enchondral ossification, hyperemia, or calcification within the tumor itself in nearly every tumor. Three scans displayed less uptake in the center of the tumors than around their peripheries. One of these tumors was necrotic in the center, but the other two were pathologically no different from tumors that displayed homogenous uptake on the scan.

  4. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    PubMed Central

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.

    2017-01-01

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials. PMID:28272404

  5. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways.

    PubMed

    Sang, Xiahan; Lupini, Andrew R; Ding, Jilai; Kalinin, Sergei V; Jesse, Stephen; Unocic, Raymond R

    2017-03-08

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. "Archimedean" spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  6. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    NASA Astrophysics Data System (ADS)

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.

    2017-03-01

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  7. Linear mass scans in quadrupole ion traps using the inverse Mathieu q scan.

    PubMed

    Snyder, Dalton T; Pulliam, Christopher J; Cooks, R Graham

    2016-11-30

    Secular frequency scanning is a method of mass selectively scanning ions out of a quadrupole ion trap by linearly ramping the frequency of the resonance ejection signal through ion secular frequencies at constant rf amplitude and frequency. The method is electronically much simpler than resonance ejection but it requires a complex nonlinear calibration procedure to correlate mass-to-charge with time. A method of secular frequency scanning in quadrupole ion traps is described in which mass-to-charge is linear with time. This method, termed an "inverse Mathieu q scan", contrasts with linear frequency sweeping which requires a complex nonlinear mass calibration procedure. In the current method, mass scans are forced to be linear with time by scanning the frequency of the supplementary ac so that there is an inverse relationship between the ejected ion's Mathieu q parameter and time. In all cases, excellent mass spectral linearity is observed. The rf amplitude is shown to control both the scan range and the scan rate, whereas the ac amplitude and scan rate influence the mass resolution. The scan rate depends linearly on the rf amplitude, a unique feature of this scan. Although changes in either rf or ac amplitude affect the positions of peaks in time, they do not change the mass calibration procedure since this only requires a simple linear fit of m/z vs time. Space charge effects are shown to give rise to significant changes in resolution as well as to mass shifts. A method of secular frequency scanning which provides a linear mass scale has been demonstrated. The inverse Mathieu q scan offers a significant increase in mass range and power savings while maintaining access to linearity, paving the way for a mass spectrometer based completely on ac waveforms for ion isolation, ion activation, and ion ejection. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. The low specificity of postoperative perfusion lung scan defects.

    PubMed Central

    Walker, I; Aukland, P; Hirsh, J; Coates, G; Cockshott, P; Taylor, R; Hull, R

    1981-01-01

    Ventilation and perfusion lung scans were performed preoperatively and postoperatively in 169 patients and classified blindly according to preset criteria. Perfusion lung scan abnormalities were present in 25 (15%) of the preoperative scans and 42 (25%) of the postoperative scans; 16 (38%) of the 42 abnormal postoperative scans were identical to the preoperative scans. Perfusion defects indicating a "high probability" of pulmonary embolism (lobar or segmental defects) were present in 5 preoperative scans and 10 postoperative scans; the 10 postoperative scans were classified as showing "definite" (5), "possible" (1) or "no" (4) pulmonary embolism on the basis of the preoperative scan and the ventilation scan; none of the 10 patients had clinical evidence of pulmonary embolism. Venous thrombosis was present in 12 patients, including 4 of the patients whose lung scans showed definite pulmonary embolism. Thus, postoperative perfusion lung scan defects are potentially misleading even when large. PMID:7459778

  9. Scan path entropy and arrow plots: capturing scanning behavior of multiple observers

    PubMed Central

    Hooge, Ignace; Camps, Guido

    2013-01-01

    Designers of visual communication material want their material to attract and retain attention. In marketing research, heat maps, dwell time, and time to AOI first hit are often used as evaluation parameters. Here we present two additional measures (1) “scan path entropy” to quantify gaze guidance and (2) the “arrow plot” to visualize the average scan path. Both are based on string representations of scan paths. The latter also incorporates transition matrices and time required for 50% of the observers to first hit AOIs (T50). The new measures were tested in an eye tracking study (48 observers, 39 advertisements). Scan path entropy is a sensible measure for gaze guidance and the new visualization method reveals aspects of the average scan path and gives a better indication in what order global scanning takes place. PMID:24399993

  10. Geodetic Laser Scanning: Refractive Optics Offer Wide Variety of Scan Patterns

    NASA Astrophysics Data System (ADS)

    Carter, W. E.; Shrestha, R. L.; Slatton, C. K.; Shrestha, K. Y.; Cossio, T.

    2005-12-01

    Most commercial geodetic laser mapping instruments use reflective element scanners, often a single nutating or oscillating mirror, and sometimes dual axis units, to create a specific pattern of laser spots on the surface being mapped. The user may be able to set the scanning speed (scan lines per second) and field of coverage (range of scan angles), but the basic pattern of points sampled is fixed. Engineers developing scanners for a surprisingly diverse set of applications, ranging from bar code scanning, to compensating for image motion in astronomical telescopes, to scanning spectrometers, have increasingly turned to refractive scanners-most particularly to scanners that utilize "Risley prisms." Samuel Doty Risley (1845-1920), an ophthalmologist, invented an optometer that contained a pair of thin prisms that rotated in opposite directions about their optical axes to change the convergence of light rays from a single source. He used his optometer measure the visual acuity of patients eyes, as a function of distance. In this original application, both prisms were driven by a common gear assembly, which resulted in a nearly linear scan line. But if the prisms are driven independently in both direction and angular speed, a wide variety of scan patterns can be generated. The University of Florida is developing, a photon counting geodetic laser scanning instrument that will use a Risley prism scanner. The scanner, being built by Sigma Space Inc., will be capable of producing nearly linear scan lines (saw tooth pattern from moving platform), circular scans lines (helical pattern from a moving platform) and any number of rosette scan patterns that are particularly interesting for fixed ground based work. The flexibility provided by the scanner offers the possibility of using the same sensor for airborne and ground based geodetic laser scanning. Examples of the scanner patterns and the initial results from laboratory and early field tests will be presented.

  11. Contact-Free Scanning and Imaging with the Scanning Ion Conductance Microscope

    PubMed Central

    2014-01-01

    Scanning ion conductance microscopy (SICM) offers the ability to obtain very high-resolution topographical images of living cells. One of the great advantages of SICM lies in its ability to perform contact-free scanning. However, it is not yet clear when the requirements for this scan mode are met. We have used finite element modeling (FEM) to examine the conditions for contact-free scanning. Our findings provide a framework for understanding the contact-free mode of SICM and also extend previous findings with regard to SICM resolution. Finally, we demonstrate the importance of our findings for accurate biological imaging. PMID:24521282

  12. Applying RANSAC Algorithm for Fitting Scanning Strips from Airborne Laser Scanning

    NASA Astrophysics Data System (ADS)

    Błaszczak-Bąk, Wioleta; Janicka, Joanna; Sobieraj-Żłobińska, Anna

    2016-12-01

    During the development of the data acquired by airborne laser scanning the important issue is the fitting and georeferencing of ALS point clouds by means of the tie surfaces and the reference planes. The process of scanning strips adjustment is based on mutual integration of point clouds (scanning strips) and their adaptation to the reference planes. In simultaneous adjustment all strips are combined into one geometrically coherent block, to which the coordinates are given. In the process of determining discrepancies between scanning strips it is important to determine the correct size of the shifts (offsets). Authors propose to do this by using RANSAC algorithm.

  13. Effects of scanning orientation on outlier formation in 3D laser scanning of reflective surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yutao; Feng, Hsi-Yung

    2016-06-01

    Inspecting objects with reflective surfaces using 3D laser scanning is a demanded but challenging part inspection task due to undesirable specular reflections, which produce extensive outliers in the scanned point cloud. These outliers need to be removed in order to alleviate subsequent data processing issues. Many existing automatic outlier removal methods do not detect outliers according to the outlier formation properties. As a result, these methods only offer limited capabilities in removing extensive and complex outliers from scanning objects with reflective surfaces. This paper reports an empirical study which experimentally investigates the outlier formation characteristics in relation to the scanning orientation of the laser probe. The objective is to characterize the scanning orientation effects on outlier formation in order to facilitate the development of an effective outlier detection and removal method. Such an experimental investigation was hardly done before. It has been found in this work that scanning orientation can directly affect outlier extensity and occurrence in 3D laser scanning. A general guidance on proper scan path planning can then be provided with an aim to reduce the occurrence of outliers. Further, the observed dependency of outlier formation on scanning orientation can be exploited to facilitate effective and automatic outlier detection and removal.

  14. Scanning-time evaluation of Digimarc Barcode

    NASA Astrophysics Data System (ADS)

    Gerlach, Rebecca; Pinard, Dan; Weaver, Matt; Alattar, Adnan

    2015-03-01

    This paper presents a speed comparison between the use of Digimarc® Barcodes and the Universal Product Code (UPC) for customer checkout at point of sale (POS). The recently introduced Digimarc Barcode promises to increase the speed of scanning packaged goods at POS. When this increase is exploited by workforce optimization systems, the retail industry could potentially save billions of dollars. The Digimarc Barcode is based on Digimarc's watermarking technology, and it is imperceptible, very robust, and does not require any special ink, material, or printing processes. Using an image-based scanner, a checker can quickly scan consumer packaged goods (CPG) embedded with the Digimarc Barcode without the need to reorient the packages with respect to the scanner. Faster scanning of packages saves money and enhances customer satisfaction. It reduces the length of the queues at checkout, reduces the cost of cashier labor, and makes self-checkout more convenient. This paper quantifies the increase in POS scanning rates resulting from the use of the Digimarc Barcode versus the traditional UPC. It explains the testing methodology, describes the experimental setup, and analyzes the obtained results. It concludes that the Digimarc Barcode increases number of items per minute (IPM) scanned at least 50% over traditional UPC.

  15. About infrared scanning of photovoltaic solar plant

    NASA Astrophysics Data System (ADS)

    Kauppinen, T.; Panouillot, P.-E.; Siikanen, S.; Athanasakou, E.; Baltas, P.; Nikopoulous, B.

    2015-05-01

    The paper is discussing about infrared scanning of PV solar plants. It is important that the performance of each solar panel and cell is verified. One new possibility compared to traditional ground-based scanning (handheld camera) is the utilization of UAV (Unmanned Aerial Vehicle). In this paper results from a PV solar Plant in Western Greece are introduced. The nominal power of the solar plants were 0, 9 MW and 2 MW and they were scanned both by a ground-controlled drone and by handheld equipment. It is essential to know all the factors effecting to results and also the time of scanning is important. The results done from the drone and from ground-based scanning are compared; also results from various altitudes and time of day are discussed. The UAV (Unmanned Aerial Vehicle/RPAS (Remote Piloted Aircraft Systems) will give an excellent opportunity to monitor various targets which are impossible or difficult to access from the ground. Compared to fixed-wing and helicopter-based platforms it will give advantages but also this technology has limitations. One limitation is the weight of the equipment and the short operational range and short flight time. Also valid procedures must be created for different solutions in the future. The most important thing, as in all infrared thermography applications, is the proper interpretation of results.

  16. Negative appendectomy rate: influence of CT scans.

    PubMed

    McGory, Marcia L; Zingmond, David S; Nanayakkara, Darshani; Maggard, Melinda A; Ko, Clifford Y

    2005-10-01

    Negative appendectomy rate varies significantly depending on patient age and sex. However, the impact of computed tomography (CT) scans on the diagnosis of appendicitis is unknown. The goal of this study was to examine the negative appendectomy rate using a statewide database and analyze the association of receipt of CT scan. Using the California Inpatient File, all patients undergoing appendectomy in 1999-2000 were identified (n = 75,452). Demographic and clinical data were analyzed, including procedure approach (open vs laparoscopic) and appendicitis type (negative, simple, abscess, peritonitis). Patients with CT scans performed were identified to compare the negative appendectomy rate. For the entire cohort, appendicitis type was 59 per cent simple, 10 per cent with abscess, 18.7 per cent with peritonitis, and 9.3 per cent negative. Males had a lower rate of negative appendicitis than females (6.0% vs 13.4%, P < 0.0001). The use of CT scans was associated with an overall lower negative appendectomy rate for females, especially in the < 5 years and > 45 years age categories. Use of CT scans in males does not appear to be efficacious, as the negative appendectomy rates were similar across all age categories. In conclusion, use of CT was associated with lower rate of negative appendectomy, depending on patient age and sex.

  17. CT Scan of NASA Booster Nozzle

    SciTech Connect

    Schneberk, D; Perry, R; Thompson, R

    2004-07-27

    We scanned a Booster Nozzle for NASA with our 9 meV LINAC, AmSi panel scanner. Three scans were performed using different filtering schemes and different positions of the nozzle. The results of the scan presented here are taken from the scan which provided the best contrast and lowest noise of the three. Our inspection data shows a number of indications of voids in the outer coating of rubber/carbon. The voids are mostly on the side of the nozzle, but a few small voids are present at the ends of the nozzle. We saw no large voids in the adhesive layer between the Aluminum and the inner layer of carbon. This 3D inspection data did show some variation in the size of the adhesive layer, but none of the indications were larger than 3 pixels in extent (21 mils). We have developed a variety of contour estimation and extraction techniques for inspecting small spaces between layers. These tools might work directly on un-sectioned nozzles since the circular contours will fit with our tools a little better. Consequently, it would be useful to scan a full nozzle to ensure there are no untoward degradations in data quality, and to see if our tools would work to extract the adhesive layer.

  18. The need for environmental horizon scanning.

    PubMed

    Sutherland, William J; Woodroof, Harry J

    2009-10-01

    Policymakers and practitioners in most fields, including conservation and the environment, often make decisions based on insufficient evidence. One reason for this is that issues appear unexpectedly, when with hindsight, many of them were foreseeable. A solution to the problem of being insufficiently prepared is routine horizon scanning, which we describe as the systematic search for potential threats and opportunities that are currently poorly recognized. Researchers can then decide which issues might be most worthwhile to study. Practitioners can also use horizon scanning to ensure timely policy development and research procurement. Here, we suggest that horizon scanning is an underused tool that should become a standard element of environmental and conservation practice. We make recommendations for its incorporation into research, policy and practice. We argue that, as an ecological and conservation community, we are failing to provide timely advice owing to a weakness in identifying forthcoming issues. We outline possible horizon-scanning methods, and also make recommendations as to how horizon scanning could have a more central role in environmental and conservation practice.

  19. Simple Cassegrain scanning system for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Apt, J.; Goody, R.; Mertz, L.

    1980-01-01

    To meet the need for a reliable, fast imaging system capable of being taken rapidly on and off the telescope, a simple, inexpensive, and compact Cassegrain reimaging system for scanning IR images was constructed. Using commercially available components without requiring close mechanical tolerances, the design solves the problem of beam stability pointed out by Koornneef and van Overbeeke (1976). For the moving-iron galvanometer scanner, it is noted that at the imaging frequency of 0.5 Hz, hysteresis in image plane motion was found to be less than 0.2 arc sec for a 64-arc sec scan, and the deviation from linearity with a triangular wave input was found to be less than 0.3 arc sec. This system and a scanning secondary were used to image Venus at 11.5 microns, and compared with the scanning secondary, the reimaging system did not appear to contribute any additional noise, considerably improved mechanical reliability, and eliminated cross-scan motion

  20. Optical scanning system for laser velocimeter

    NASA Technical Reports Server (NTRS)

    Rhodes, D. B.

    1977-01-01

    An optical system was developed to provide fast incremental scanning of a backscattered laser velocimeter focus point over a 36-cm distance. The system is used to measure flow velocities at 16 positions along its optical axis and to scan these 16 positions up to 30 times a second. Dwell time at each location is approximately 2 milliseconds. Sample volumes typically are 0.2 mm in diameter by 1.4 cm in length. The optical scanning system consists of a wheel containing plane parallel quartz windows of various thicknesses. The laser velocimeter beams are imaged to a primary focus within the dead airspace of an optical cell. The beams emerging from the cell pass through the windows of the scanning wheel. The refraction of the beams passing through the windows causes an apparent shift of the focus within the optical cell and hence in the test zone. Light scattered from the secondary focus within the test zone is concurrently collected and reimaged through the same optical path which originally projected the primary focus. The reimaged backscattered light containing the velocity information is then collected and focused onto a photomultiplier detector system to complete the scanned laser velocimeter optical system.

  1. Gated Irradiation With Scanned Particle Beams

    SciTech Connect

    Bert, Christoph Gemmel, Alexander; Saito, Nami; Rietzel, Eike

    2009-03-15

    Purpose: To demonstrate mitigation of the interplay effects of scanned particle beams and residual target motion within a gating window by increased overlap of pencil beams. Methods and Materials: Lateral overlap was increased by increasing the pencil beam widths or by decreasing the distance between the pencil beams (scan grid). Longitudinal overlap was increased by reducing the distance between iso-range slices. For scanned carbon ion beams, simulation studies were performed and validated experimentally to determine the required parameters for different residual motion characteristics. The dose distributions were characterized by the maximal local deviations representing local over- and underdosage. Results: For residual lateral motion, the local deviations were <5% for 2, 4, and 7 mm residual motion within the gating window for a 2-mm scan grid and pencil beams of 10, 14, and 18 mm full width at half maximum, respectively. Decreasing the iso-range slice distance from 3 mm to 1 mm effectively mitigated {<=}10 mm water-equivalent range changes. Experimental data reproduced the simulation results. Conclusion: In charged particle therapy with a scanned beam, interplay effects between gated beam delivery and residual target motion can be decreased effectively by increasing the overlap between pencil beams laterally, as well as longitudinally.

  2. Eye safety for scanning laser projection systems.

    PubMed

    Frederiksen, Annette; Fiess, Reinhold; Stork, Wilhelm; Bogatscher, Siegwart; Heussner, Nico

    2012-05-31

    In the growing field of pico-projectors, laser-based scanning systems may be advantageous over DLP- or LCoS-based imagers due to their potential for miniaturization, enhanced optical efficiency and cost reduction. The high energy density of a combined laser beam can, however, be hazardous to the human eye. Laser projection systems must therefore be identified with the laser class, depending on their maximum optical output power. This power limits the brightness of the displayed image, which is of particular interest for mobile applications. Various approaches to classifying laser devices by their wavelength and output power are described within the standards for laser safety. It is found that actual safety regulations cannot be directly applied to scanning systems. A detailed analysis of the optical conditions in terms of a two-dimensional extended light source is appropriate for the consideration of laser scanner devices. In this article, alternative ways of applying laser standards for scanning systems are discussed. The dependencies of maximum luminous flux from scanning system parameters are reviewed. It is shown that the evaluation of retinal light exposure in terms of existing laser regulations leads to an overestimation of the hazardous potential. Advanced investigations are proposed to support the definition of suitable criteria for the classification of laser scanning projectors.

  3. [SLOT Scan imaging in teenagers with scoliosis].

    PubMed

    Situ, Weijun; Li, Yajun; Li, Zuohua; Hu, Zhongjun; He, Jian

    2009-07-01

    To explore the improvement effect of SLOT Scan technology (narrow seam exposure capture technology) and the radiography techniques on the quality of the scoliosis X-ray films in teenagers. The Sonialvision Safire II equipment of Shimadzu corporation and SLOT Scan were applied to take the radiography for 60 patients taller than 1.50 metres. All the data were collected through a continual exposure, and the images were sewn up through a seamless connection software. Cervical, thoracic, and lumbar and sacral segments could clearly present at the same time on one X-ray film by seamless splicing,and the quality of one time radiograph was as good as one film. As a new radiology technique, SLOT Scan can wipe off splitting artifact effectively and make the whole spine seamless present on one X-ray film. It helps the spinal surgeons to observe, calculate and measure accurately. It is useful to choose the operation mode and judge the curative effect.

  4. Scanning Gate Microscope for Cold Atomic Gases

    NASA Astrophysics Data System (ADS)

    Häusler, Samuel; Nakajima, Shuta; Lebrat, Martin; Husmann, Dominik; Krinner, Sebastian; Esslinger, Tilman; Brantut, Jean-Philippe

    2017-07-01

    We present a scanning probe microscopy technique for spatially resolving transport in cold atomic gases, in close analogy with scanning gate microscopy in semiconductor physics. The conductance of a quantum point contact connected to two atomic reservoirs is measured in the presence of a tightly focused laser beam acting as a local perturbation that can be precisely positioned in space. By scanning its position and recording the subsequent variations of conductance, we retrieve a high-resolution map of transport through a quantum point contact. We demonstrate a spatial resolution comparable to the extent of the transverse wave function of the atoms inside the channel and a position sensitivity below 10 nm. Our measurements agree well with an analytical model and ab initio numerical simulations, allowing us to identify a regime in transport where tunneling dominates over thermal effects. Our technique opens new perspectives for the high-resolution observation and manipulation of cold atomic gases.

  5. Holographic optical elements as scanning lidar telescopes

    NASA Astrophysics Data System (ADS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2006-09-01

    We have developed and investigated the use of holographic optical elements (HOEs) and holographic transmission gratings for scanning lidar telescopes. Rotating a flat HOE in its own plane with the focal spot on the rotation axis makes a very simple and compact conical scanning telescope. We developed transmission and reflection HOEs for use at the first three harmonic wavelengths of Nd:YAG lasers. The diffraction efficiency, diffraction angle, focal length, focal spot size and optical losses were measured for several HOEs and holographic gratings, and found to be suitable for use as lidar receiver telescopes, and in many cases could also serve as the final collimating and beam steering optic for the laser transmitter. Two lidar systems based on this technology have been designed, built, and successfully tested in atmospheric science applications. This technology will enable future spaceborne lidar missions by significantly lowering the size, weight, power requirement and cost of a large aperture, narrow field of view scanning telescope.

  6. A radiographic scanning technique for cores

    USGS Publications Warehouse

    Hill, G.W.; Dorsey, M.E.; Woods, J.C.; Miller, R.J.

    1979-01-01

    A radiographic scanning technique (RST) can produce single continuous radiographs of cores or core sections up to 1.5 m long and up to 30 cm wide. Changing a portable industrial X-ray unit from the normal still-shot mode to a scanning mode requires simple, inexpensive, easily constructed, and highly durable equipment. Additional components include a conveyor system, antiscatter cylinder-diaphragm, adjustable sample platform, developing tanks, and a contact printer. Complete cores, half cores, sample slabs or peels may be scanned. Converting the X-ray unit from one mode to another is easy and can be accomplished without the use of special tools. RST provides the investigator with a convenient, continuous, high quality radiograph, saves time and money, and decreases the number of times cores have to be handled. ?? 1979.

  7. Quantification of pilot workload via instrument scan

    NASA Technical Reports Server (NTRS)

    Tole, J. R.; Stephens, A. T.; Harris, R. L., Sr.; Ephrath, A.

    1982-01-01

    The use of visual scanning behavior as an indicator of pilot workload is described. The relationship between level of performance on a constant piloting task under simulated IFR conditions, the skill of the pilot the level of mental workload induced by an additional verbal task imposed on the basic control task, and visual scanning behavior is investigated. An increase in fixation dwell times, especially on the primary instrument with increased mental loading is indicated. Skilled subjects 'stared' less under increased loading than did novice pilots. Sequences of instrument fixations were also examined. The percentage occurrence of the subject's most used sequences decreased with increased task difficulty for novice subjects but not for highly skilled subjects. Entropy rate (bits/sec) of the sequence of fixations was also used to quantify the scan pattern. It consistently decreased for most subjects as the four loading levels used increased.

  8. A Student-Built Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Ekkens, Tom

    2015-12-01

    Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself. I wanted to give my students a deeper appreciation for the physics by having them build a simple scanning tunneling microscope. Initially, 15 hours of an upper-division laboratory class were devoted to building and operating the STM. As the build process was refined, the time commitment for this project has shrunk to nine hours. Using the method described in this paper, the project is now simple enough that it can be built and operated by students in the introductory class.

  9. Visual scanning behavior and pilot workload

    NASA Technical Reports Server (NTRS)

    Harris, R. L., Sr.; Tole, J. R.; Stephens, A. T.; Ephrath, A. R.

    1982-01-01

    This paper describes an experimental paradigm and a set of results which demonstrate a relationship between the level of performance on a skilled man-machine control task, the skill of the operator, the level of mental difficulty induced by an additional task imposed on the basic control task, and visual scanning performance. During a constant, simulated piloting task, visual scanning of instruments was found to vary with the difficulty of a verbal mental loading task. The average dwell time of each fixation on the pilot's primary instrument increased with the estimated skill level of the pilots, with novices being affected by the loading task much more than experts. The results suggest that visual scanning of instruments in a controlled task may be an indicator of both workload and skill.

  10. Effects of beam irregularity on uniform scanning

    NASA Astrophysics Data System (ADS)

    Kim, Chang Hyeuk; Jang, Sea duk; Yang, Tae-Keun

    2016-09-01

    An active scanning beam delivery method has many advantages in particle beam applications. For the beam is to be successfully delivered to the target volume by using the active scanning technique, the dose uniformity must be considered and should be at least 2.5% in the case of therapy application. During beam irradiation, many beam parameters affect the 2-dimensional uniformity at the target layer. A basic assumption in the beam irradiation planning stage is that the shape of the beam is symmetric and follows a Gaussian distribution. In this study, a pure Gaussian-shaped beam distribution was distorted by adding parasitic Gaussian distribution. An appropriate uniform scanning condition was deduced by using a quantitative analysis based on the gamma value of the distorted beam and 2-dimensional uniformities.

  11. Cancer imaging by scanned projection radiography.

    PubMed

    Cassel, D M; Young, S W; Brody, W R; Hall, A L

    1981-08-01

    We have evaluated scanned projection radiography (SPR) for the diagnosis of cancer. Four rabbits with V2 thigh carcinomas and nine patients with a variety of malignant neoplasms were studied with a GE CT/T 8800 scanner modified for SPR. Images were made before injection of intravenous contrast medium, and additional scans were taken after injection. Temporal subtraction was then performed on the digitized data. Rabbit thigh V2 carcinomas and human lung, liver, and extremity neoplasms were visualized. Contrast enhancement was phasic with early vessel demonstration and subsequent visualization of low density central areas of tumoral necrosis. Liver metastases appeared as poorly defined areas of low density. Because of the combination of high contrast sensitivity plus capability of imaging large tissue volumes on one scan, SPR may be valuable in cancer screening.

  12. Parallel line scanning ophthalmoscope for retinal imaging.

    PubMed

    Vienola, Kari V; Damodaran, Mathi; Braaf, Boy; Vermeer, Koenraad A; de Boer, Johannes F

    2015-11-15

    A parallel line scanning ophthalmoscope (PLSO) is presented using a digital micromirror device (DMD) for parallel confocal line imaging of the retina. The posterior part of the eye is illuminated using up to seven parallel lines, which were projected at 100 Hz. The DMD offers a high degree of parallelism in illuminating the retina compared to traditional scanning laser ophthalmoscope systems utilizing scanning mirrors. The system operated at the shot-noise limit with a signal-to-noise ratio of 28 for an optical power measured at the cornea of 100 μW. To demonstrate the imaging capabilities of the system, the macula and the optic nerve head of a healthy volunteer were imaged. Confocal images show good contrast and lateral resolution with a 10°×10° field of view.

  13. Conductivity map from scanning tunneling potentiometry

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Li, Xianqi; Chen, Yunmei; Durand, Corentin; Li, An-Ping; Zhang, X.-G.

    2016-08-01

    We present a novel method for extracting two-dimensional (2D) conductivity profiles from large electrochemical potential datasets acquired by scanning tunneling potentiometry of a 2D conductor. The method consists of a data preprocessing procedure to reduce/eliminate noise and a numerical conductivity reconstruction. The preprocessing procedure employs an inverse consistent image registration method to align the forward and backward scans of the same line for each image line followed by a total variation (TV) based image restoration method to obtain a (nearly) noise-free potential from the aligned scans. The preprocessed potential is then used for numerical conductivity reconstruction, based on a TV model solved by accelerated alternating direction method of multiplier. The method is demonstrated on a measurement of the grain boundary of a monolayer graphene, yielding a nearly 10:1 ratio for the grain boundary resistivity over bulk resistivity.

  14. Rotary-scanning optical resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Qi, Weizhi; Xi, Lei

    2016-10-01

    Optical resolution photoacoustic microscopy (ORPAM) is currently one of the fastest evolving photoacoustic imaging modalities. It has a comparable spatial resolution to pure optical microscopic techniques such as epifluorescence microscopy, confocal microscopy, and two-photon microscopy, but also owns a deeper penetration depth. In this paper, we report a rotary-scanning (RS)-ORPAM that utilizes a galvanometer scanner integrated with objective to achieve rotary laser scanning. A 15 MHz cylindrically focused ultrasonic transducer is mounted onto a motorized rotation stage to follow optical scanning traces synchronously. To minimize the loss of signal to noise ratio, the acoustic focus is precisely adjusted to reach confocal with optical focus. Black tapes and carbon fibers are firstly imaged to evaluate the performance of the system, and then in vivo imaging of vasculature networks inside the ears and brains of mice is demonstrated using this system.

  15. Dynamic CT scanning of spinal column trauma

    SciTech Connect

    Brown, B.M.; Brant-Zawadzki, M.; Cann, C.E.

    1982-12-01

    Dynamic sequential computed tomographic scanning with automatic table incrementation uses low milliampere-second technique to eliminate tube cooling delays between scanning slices and, thus, markedly shortens examination times. A total of 25 patients with spinal column trauma involving 28 levels were studied with dynamic scans and retrospectively reviewed. Dynamic studies were considerably faster than conventional spine examinations and yielded reliable diagnosis. Bone disruption and subluxation was accurately evaluated, and the use of intrathecal metrizamide in low doses allowed direct visualization of spinal cord or radicular compromise. Multiplanar image reformation was aided by the dynamic incrementation technique, since motion between slices (and the resulting misregistration artifact on image reformation) was minimized. A phantom was devised to test spatial resolution of computed tomography for objects 1-3 mm in size and disclosed minimal differences for dynamic and conventional computed tomographic techniques in resolving medium-to-high-contrast objects.

  16. Visual scanning behavior and pilot workload

    NASA Technical Reports Server (NTRS)

    Harris, R. L., Sr.; Tole, J. R.; Stephens, A. T.; Ephrath, A. R.

    1981-01-01

    An experimental paradigm and a set of results which demonstrate a relationship between the level of performance on a skilled man-machine control task, the skill of the operator, the level of mental difficulty induced by an additional task imposed on the basic control task, and visual scanning performance. During a constant, simulated piloting task, visual scanning of instruments was found to vary as a function of the level of difficulty of a verbal mental loading task. The average dwell time of each fixation on the pilot's primary instrument increased as a function of the estimated skill level of the pilots, with novices being affected by the loading task much more than the experts. The results suggest that visual scanning of instruments in a controlled task may be an indicator of both workload and skill.

  17. Enter Words and Pictures the Easy Way--Scan Them.

    ERIC Educational Resources Information Center

    Olivas, Jerry

    1989-01-01

    Discusses image scanning and optical character recognition. Describes how computer scanners work. Summarizes scan quality, scanning speed requirements, and hardware requirements for scanners. Surveys the range of scanners currently available. (MVL)

  18. SPECT (Single-Photon Emission Computerized Tomography) Scan

    MedlinePlus

    SPECT scan Overview By Mayo Clinic Staff A single-photon emission computerized tomography (SPECT) scan lets your doctor analyze the function of some of your internal organs. A SPECT scan is a type of nuclear imaging test, ...

  19. Tree height growth measurement with single-scan airborne, static terrestrial and mobile laser scanning.

    PubMed

    Lin, Yi; Hyyppä, Juha; Kukko, Antero; Jaakkola, Anttoni; Kaartinen, Harri

    2012-01-01

    This study explores the feasibility of applying single-scan airborne, static terrestrial and mobile laser scanning for improving the accuracy of tree height growth measurement. Specifically, compared to the traditional works on forest growth inventory with airborne laser scanning, two issues are regarded: "Can the new technique characterize the height growth for each individual tree?" and "Can this technique refine the minimum growth-discernable temporal interval further?" To solve these two puzzles, the sampling principles of the three laser scanning modes were first examined, and their error sources against the task of tree-top capturing were also analyzed. Next, the three-year growths of 58 Nordic maple trees (Crimson King) for test were intermittently surveyed with one type of laser scanning each time and then analyzed by statistics. The evaluations show that the height growth of each individual tree still cannot be reliably characterized even by single-scan terrestrial laser scanning, and statistical analysis is necessary in this scenario. After Gaussian regression, it is found that the minimum temporal interval with distinguishable tree height growths can be refined into one month based on terrestrial laser scanning, far better than the two years deduced in the previous works based on airborne laser scanning. The associated mean growth was detected to be about 0.12 m. Moreover, the parameter of tree height generally under-estimated by airborne and even mobile laser scanning can be relatively revised by means of introducing static terrestrial laser scanning data. Overall, the effectiveness of the proposed technique is primarily validated.

  20. Is complete umbilical cord scanning possible at the second-trimester ultrasound scan?

    PubMed

    Ugurlucan, Funda Gungor; Yuksel, Atil

    2014-10-01

    To evaluate the feasibility of umbilical cord scanning during the second-trimester sonographic examination, we looked at the method of scanning, the findings, and the time spent. Five hundred forty-nine singleton pregnancies were evaluated at 18-23 weeks' menstrual age with two-dimensional sonography (US). Color Doppler US was used when needed. The umbilical cord was traced from the fetal insertion site to the placental insertion site. Fetal and placental sites of insertion; number of vessels; presence of knots, cysts, tumors, nuchal cords, or placental anomalies; time spent for scanning; and the use of color Doppler US were noted. The mean maternal age was 33.1 ± 4.1 years, and the mean menstrual age of the fetuses during scanning was 20.4 ± 2.4 weeks. The mean time spent for umbilical cord scanning was 41.5 ± 46.7 seconds. In one case (0.2%), the umbilical cord could not be scanned completely. Color Doppler US was needed in 125 (22.8%) of the scans. Scan results were positive in 153 (27.9%) cases. We observed six cases (1.1%) of a single umbilical artery, two (0.4%) umbilical cord knots, one (0.2%) umbilical cord hernia, and 104 (18.9%) nuchal cords. We also documented 27 (5.0%) marginal insertions, four placenta previa totalis (0.7%), four placenta previa marginalis (0.7%), and eight velamentous insertions (1.5%). Umbilical cord US scanning is feasible during the second trimester of pregnancy, and complete scanning can be performed in the majority of the cases. Color Doppler analysis may aid scanning when needed. © 2014 Wiley Periodicals, Inc. J Clin Ultrasound, 2014. Copyright © 2014 Wiley Periodicals, Inc.

  1. Surface Studies by Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Seob

    The scanning probe microscopy reported here includes scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and atomic force microscopy (AFM). The scanning tunneling microscope is a novel tool which can reveal the atomic structure and electronic properties of surfaces using a probe with a sharp tip. An additional technique, atomic force microscopy has the potential to record geometric structures for both conducting and non -conducting materials. The first AFM designs utilized short range forces between a small stylus and a sample surface to produce high resolution images of defects and structural features of the surface. The current-voltage characteristics were also investigated during dynamic changes of the tunnel current and barrier height with an additional technology, tunneling spectroscopy. An advanced design for an AFM has been developed which utilizes a dielectric tunnel junction to retain the high sensitivity of tunnel current control over force ranges between 10^{-6} and 10 ^{-11}N. This AFM has been successfully applied to physical and biological samples. Scanning probe techniques have been developed and applied to a range of sample types including conductors, semi-conductors and non-conductors. Each technique utilizes the same electronics, computers, and imaging facilities. A fundamental problem of the atomic structure of graphite has existed since the inception of STM images. The experimental and theoretical hypotheses have been considered and a resolution of the problem has been developed as reported in this dissertation. Unprecedented resolving power, greater than 1A, has confirmed our hypothesis and has been correctly correlated with the structure of graphite surface. This dissertation also presents the results from studies of the surface structure of: MoS_2 , Cu, Au, Ag, Si, CdTe, HgTe, Fe_2 O_3, mica, gypsum, purple membranes with protein chains, and an organic photoconducting material, by scanning probe microscopes.

  2. Dexter: Data Extractor for scanned graphs

    NASA Astrophysics Data System (ADS)

    Demleitner, Markus

    2011-12-01

    The NASA Astrophysics Data System (ADS) now holds 1.3 million scanned pages, containing numerous plots and figures for which the original data sets are lost or inaccessible. The availability of scans of the figures can significantly ease the regeneration of the data sets. For this purpose, the ADS has developed Dexter, a Java applet that supports the user in this process. Dexter's basic functionality is to let the user manually digitize a plot by marking points and defining the coordinate transformation from the logical to the physical coordinate system. Advanced features include automatic identification of axes, tracing lines and finding points matching a template.

  3. MEMS scanning micromirror for optical coherence tomography.

    PubMed

    Strathman, Matthew; Liu, Yunbo; Keeler, Ethan G; Song, Mingli; Baran, Utku; Xi, Jiefeng; Sun, Ming-Ting; Wang, Ruikang; Li, Xingde; Lin, Lih Y

    2015-01-01

    This paper describes an endoscopic-inspired imaging system employing a micro-electromechanical system (MEMS) micromirror scanner to achieve beam scanning for optical coherence tomography (OCT) imaging. Miniaturization of a scanning mirror using MEMS technology can allow a fully functional imaging probe to be contained in a package sufficiently small for utilization in a working channel of a standard gastroesophageal endoscope. This work employs advanced image processing techniques to enhance the images acquired using the MEMS scanner to correct non-idealities in mirror performance. The experimental results demonstrate the effectiveness of the proposed technique.

  4. High resolution obtained by photoelectric scanning techniques.

    NASA Technical Reports Server (NTRS)

    Hall, J. S.

    1972-01-01

    Several applications of linear scanning of different types of objects are described; examples include double stars, satellites, the Red Spot of Jupiter and a landing site on the moon. This technique allows one to achieve a gain of about an order of magnitude in resolution over conventional photoelectric techniques; it is also effective in providing sufficient data for removing background effects and for the application of deconvolution procedures. Brief consideration is given to two-dimensional scanning, either at the telescope or of electronographic images in the laboratory. It is suggested that some of the techniques described should be given serious consideration for space applications.

  5. Frequency scanning microstrip antenna (S-band)

    NASA Astrophysics Data System (ADS)

    Jayachandran, M.; Gupta, S. C.

    1983-10-01

    A frequency-scanning microstrip antenna using microstrip radiating resonators is described. The resonators are cascade-coupled. The experimental results in the S-band are in good agreement with the theory, showing that it is possible to scan the main lobe at an angle of + or - 30 deg by variation of frequency of + or - 125 MHz, where 3-dB beam width is less than 30 deg. Directivity of 12.8 dB and gain of 8.5 dB were observed.

  6. Scanning and storage of electrophoretic records

    DOEpatents

    McKean, Ronald A.; Stiegman, Jeff

    1990-01-01

    An electrophoretic record that includes at least one gel separation is mounted for motion laterally of the separation record. A light source is positioned to illuminate at least a portion of the record, and a linear array camera is positioned to have a field of view of the illuminated portion of the record and orthogonal to the direction of record motion. The elements of the linear array are scanned at increments of motion of the record across the field of view to develop a series of signals corresponding to intensity of light at each element at each scan increment.

  7. Design Rules For Holographic Optical Scanning Elements

    NASA Astrophysics Data System (ADS)

    Herzig, H. P.; Dandliker, R.

    1987-10-01

    An analytical method for the design of holographic optical elements (HOE) for focussing laser scanners with minimum aberrations and optimum scan line definition is reported. It can be shown analytically, using second order (paraxial) approximation, that a circular motion of the HOE cannot generate a straight line in space without astigmatism of the focal spot. Accepting a slightly curved scan line, the astigmatism can be compensated. Experimental results for HOE with a wavelength shift between recording and reconstruction are demonstrated. The required aspherical wavefronts for the recording are realized with the help of computer generated holograms (CGH).

  8. Lens based adaptive optics scanning laser ophthalmoscope.

    PubMed

    Felberer, Franz; Kroisamer, Julia-Sophie; Hitzenberger, Christoph K; Pircher, Michael

    2012-07-30

    We present an alternative approach for an adaptive optics scanning laser ophthalmoscope (AO-SLO). In contrast to other commonly used AO-SLO instruments, the imaging optics consist of lenses. Images of the fovea region of 5 healthy volunteers are recorded. The system is capable to resolve human foveal cones in 3 out of 5 healthy volunteers. Additionally, we investigated the capability of the system to support larger scanning angles (up to 5°) on the retina. Finally, in order to demonstrate the performance of the instrument images of rod photoreceptors are presented.

  9. Trajectories of Multi-lined Spatial Scans

    NASA Astrophysics Data System (ADS)

    McCullough, P.

    2017-03-01

    We compare multi-lined (a.k.a. boustrophedonic) spatial scans with numerical simulations of the trajectories using a simple physical model for HST's motions. For scan rates less than or equal to 0.5 arc sec s-1, the simulated trajectories match the observed ones within 0.5 arc sec, i.e. sufficiently well for planning purposes. We provide IDL procedures for the simulator in the Appendix. We identify an overall unexplained drift, primarily in the UVIS detector X direction, throughout the one HST orbit during visit 1 of program 14878.

  10. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Schultz, Peter G.; Wei, Tao

    2003-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  11. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen

    2001-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  12. Thermally managed eclipse Z-scan.

    PubMed

    Gomes, A S L; Filho, E L; de Araújo, Cid B; Rativa, Diego; de Araujo, R E

    2007-02-19

    We report a new variation of the conventional Z-scan method to characterize the third-order optical nonlinearity of photonic materials. By exploiting the combination of the eclipse Z-scan with a thermal nonlinearity management technique, we demonstrate an improvement in sensitivity and flexibility of the method to simultaneously characterize the thermal and nonthermal nonlinearity of optical materials. The method is demonstrated by measuring the nonlinear refractive index in CS(2), SiO(2) and H(2)O, standard materials, and also in a biomaterial, the amino acid Tryptophan in water solution, using a femtosecond Ti-Sapphire laser operating at 76MHz repetition rate.

  13. The near-field scanning thermal microscope

    NASA Astrophysics Data System (ADS)

    Wischnath, Uli F.; Welker, Joachim; Munzel, Marco; Kittel, Achim

    2008-07-01

    We report on the design, characterization, and performance of a near-field scanning thermal microscope capable to detect thermal heat currents mediated by evanescent thermal electromagnetic fields close to the surface of a sample. The instrument operates in ultrahigh vacuum and retains its scanning tunneling microscope functionality, so that its miniature, micropipette-based thermocouple sensor can be positioned with high accuracy. Heat currents on the order of 10-7W are registered in z spectroscopy at distances from the sample ranging from 1 to about 30nm. In addition, the device provides detailed thermographic images of a sample's surface.

  14. The Scanning Optical Microscope: An Overview

    NASA Astrophysics Data System (ADS)

    Kino, G. S.; Corte, T. R.; Xiao, G. Q.

    1988-07-01

    In the last few years there has been a resurgence in research on optical microscopes. One reason stems from the invention of the acoustic microscope by Quate and Lemons,1 and the realization that some of the same principles could be applied to the optical microscope. The acoustic microscope has better transverse definition for the same wavelength than the standard optical microscope and at the same time has far better range definition. Consequently, Kompfner, who was involved with the work on the early acoustic microscope, decided to try out similar scanning microscope principles with optics, and started a group with Wilson and Sheppard to carry out such research at Oxford.2 Sometime earlier, Petran et a13 had invented the tandem scanning microscope which used many of the same principles. Now, in our laboratory at Stanford, these ideas on the tandem scanning microscope and the scanning optical microscope are converging. Another aspect of this work, which stems from the earlier experience with the acoustic microscope, involves measurement of both phase and amplitude of the optical beam. It is also possible to use scanned optical microscopy for other purposes. For instance, an optical beam can be used to excite electrons and holes in semiconductors, and the generated current can be measured. By scanning the optical beam over the semiconductor, an image can be obtained of the regions where there is strong or weak electron hole generation. This type of microscope is called OBIC (Optical Beam Induced Current). A second application involves fluorescent imaging of biological materials. Here we have the excellent range definition of a scanning optical microscope which eliminates unwanted glare from regions of the material where the beam is unfocused.3 A third application is focused on the heating effect of the light beam. With such a system, images can be obtained which are associated with changes in the thermal properties of a material, changes in recombination rates in

  15. MEMS scanning micromirror for optical coherence tomography

    PubMed Central

    Strathman, Matthew; Liu, Yunbo; Keeler, Ethan G.; Song, Mingli; Baran, Utku; Xi, Jiefeng; Sun, Ming-Ting; Wang, Ruikang; Li, Xingde; Lin, Lih Y.

    2014-01-01

    This paper describes an endoscopic-inspired imaging system employing a micro-electromechanical system (MEMS) micromirror scanner to achieve beam scanning for optical coherence tomography (OCT) imaging. Miniaturization of a scanning mirror using MEMS technology can allow a fully functional imaging probe to be contained in a package sufficiently small for utilization in a working channel of a standard gastroesophageal endoscope. This work employs advanced image processing techniques to enhance the images acquired using the MEMS scanner to correct non-idealities in mirror performance. The experimental results demonstrate the effectiveness of the proposed technique. PMID:25657887

  16. A pressure scanning Fabry-Perot magnetometer.

    NASA Technical Reports Server (NTRS)

    Fay, T. D.; Wyller, A. A.

    1971-01-01

    Description of an oscillating magnetic analyzer (KDP crystal plus Glan-Thompson prism) coupled to an echelle-interferometer spectrograph, and of single-slit magnetometer which by pressure variations can be made to scan the entire profiles of the circularly and linearly polarized Zeeman components. Freon gas is used as the scanner gas with wavelength displacements of 0.02 A per 0.1 in. Hg pressure change at the NaD lines. The available scan range is 15 A in the visual spectral region.

  17. The Scanning Theremin Microscope: A Model Scanning Probe Instrument for Hands-On Activities

    ERIC Educational Resources Information Center

    Quardokus, Rebecca C.; Wasio, Natalie A.; Kandel, S. Alex

    2014-01-01

    A model scanning probe microscope, designed using similar principles of operation to research instruments, is described. Proximity sensing is done using a capacitance probe, and a mechanical linkage is used to scan this probe across surfaces. The signal is transduced as an audio tone using a heterodyne detection circuit analogous to that used in…

  18. The Scanning Theremin Microscope: A Model Scanning Probe Instrument for Hands-On Activities

    ERIC Educational Resources Information Center

    Quardokus, Rebecca C.; Wasio, Natalie A.; Kandel, S. Alex

    2014-01-01

    A model scanning probe microscope, designed using similar principles of operation to research instruments, is described. Proximity sensing is done using a capacitance probe, and a mechanical linkage is used to scan this probe across surfaces. The signal is transduced as an audio tone using a heterodyne detection circuit analogous to that used in…

  19. Scan posture definition and hip girth measurement: the impact on clothing design and body scanning.

    PubMed

    Gill, Simeon; Parker, Christopher J

    2017-08-01

    Ergonomic measurement is central to product design and development; especially for body worn products and clothing. However, there is a large variation in measurement definitions, complicated by new body scanning technology that captures measurements in a posture different to traditional manual methods. Investigations of hip measurement definitions in current clothing measurement practices supports analysis of the effect of scan posture and hip measurement definition on the circumferences of the hip. Here, the hip girth is a key clothing measurement that is not defined in current body scanning measurement standards. Sixty-four participants were scanned in the standard scan posture of a [TC](2) body scanner, and also in a natural posture similar to that of traditional manual measurement collection. Results indicate that scan posture affects hip girth circumferences, and that some current clothing measurement practices may not define the largest lower body circumference. Recommendations are made concerning how the hip is defined in measurement practice and within body scanning for clothing product development. Practitioner Summary: The hip girth is an important measurement in garment design, yet its measurement protocol is not currently defined. We demonstrate that body posture during body scanning affects hip circumferences, and that current clothing measurement practices may not define the largest lower body circumference. This paper also provides future measurement practice recommendations.

  20. DepositScan, a Scanning Program to Measure Spray Deposition Distributions

    USDA-ARS?s Scientific Manuscript database

    DepositScan, a scanning program was developed to quickly measure spray deposit distributions on water sensitive papers or Kromekote cards which are widely used for determinations of pesticide spray deposition quality on target areas. The program is installed in a portable computer and works with a ...

  1. High-speed Lissajous-scan atomic force microscopy: Scan pattern planning and control design issues

    NASA Astrophysics Data System (ADS)

    Bazaei, A.; Yong, Yuen K.; Moheimani, S. O. Reza

    2012-06-01

    Tracking of triangular or sawtooth waveforms is a major difficulty for achieving high-speed operation in many scanning applications such as scanning probe microscopy. Such non-smooth waveforms contain high order harmonics of the scan frequency that can excite mechanical resonant modes of the positioning system, limiting the scan range and bandwidth. Hence, fast raster scanning often leads to image distortion. This paper proposes analysis and design methodologies for a nonlinear and smooth closed curve, known as Lissajous pattern, which allows much faster operations compared to the ordinary scan patterns. A simple closed-form measure is formulated for the image resolution of the Lissajous pattern. This enables us to systematically determine the scan parameters. Using internal model controllers (IMC), this non-raster scan method is implemented on a commercial atomic force microscope driven by a low resonance frequency positioning stage. To reduce the tracking errors due to actuator nonlinearities, higher order harmonic oscillators are included in the IMC controllers. This results in significant improvement compared to the traditional IMC method. It is shown that the proposed IMC controller achieves much better tracking performances compared to integral controllers when the noise rejection performances is a concern.

  2. High-speed Lissajous-scan atomic force microscopy: scan pattern planning and control design issues.

    PubMed

    Bazaei, A; Yong, Yuen K; Moheimani, S O Reza

    2012-06-01

    Tracking of triangular or sawtooth waveforms is a major difficulty for achieving high-speed operation in many scanning applications such as scanning probe microscopy. Such non-smooth waveforms contain high order harmonics of the scan frequency that can excite mechanical resonant modes of the positioning system, limiting the scan range and bandwidth. Hence, fast raster scanning often leads to image distortion. This paper proposes analysis and design methodologies for a nonlinear and smooth closed curve, known as Lissajous pattern, which allows much faster operations compared to the ordinary scan patterns. A simple closed-form measure is formulated for the image resolution of the Lissajous pattern. This enables us to systematically determine the scan parameters. Using internal model controllers (IMC), this non-raster scan method is implemented on a commercial atomic force microscope driven by a low resonance frequency positioning stage. To reduce the tracking errors due to actuator nonlinearities, higher order harmonic oscillators are included in the IMC controllers. This results in significant improvement compared to the traditional IMC method. It is shown that the proposed IMC controller achieves much better tracking performances compared to integral controllers when the noise rejection performances is a concern.

  3. Apparatus for controlling the scan width of a scanning laser beam

    DOEpatents

    Johnson, Gary W.

    1996-01-01

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board.

  4. Apparatus for controlling the scan width of a scanning laser beam

    DOEpatents

    Johnson, G.W.

    1996-10-22

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board. 8 figs.

  5. The scanning mechanism of eukaryotic translation initiation.

    PubMed

    Hinnebusch, Alan G

    2014-01-01

    In eukaryotes, the translation initiation codon is generally identified by the scanning mechanism, wherein every triplet in the messenger RNA leader is inspected for complementarity to the anticodon of methionyl initiator transfer RNA (Met-tRNAi). Binding of Met-tRNAi to the small (40S) ribosomal subunit, in a ternary complex (TC) with eIF2-GTP, is stimulated by eukaryotic initiation factor 1 (eIF1), eIF1A, eIF3, and eIF5, and the resulting preinitiation complex (PIC) joins the 5' end of mRNA preactivated by eIF4F and poly(A)-binding protein. RNA helicases remove secondary structures that impede ribosome attachment and subsequent scanning. Hydrolysis of eIF2-bound GTP is stimulated by eIF5 in the scanning PIC, but completion of the reaction is impeded at non-AUG triplets. Although eIF1 and eIF1A promote scanning, eIF1 and possibly the C-terminal tail of eIF1A must be displaced from the P decoding site to permit base-pairing between Met-tRNAi and the AUG codon, as well as to allow subsequent phosphate release from eIF2-GDP. A second GTPase, eIF5B, catalyzes the joining of the 60S subunit to produce an 80S initiation complex that is competent for elongation.

  6. Micromechanical cantilevers and scanning probe microscopes

    NASA Astrophysics Data System (ADS)

    Miller, Scott A.; Xu, Yang; MacDonald, Noel C.

    1995-09-01

    We have fabricated two microelectromechanical scanning tunneling microscopes (Micro- STMs) with 3D (xyz) actuators and integrated high aspects ratio tips. The reduction in the size of scanning probe microscopes allows for faster scanning speeds, array architectures, and massively parallel operation. The two Micro-STMs are fabricated from single crystal silicon using the high-aspect-ratio SCREAM process and are small enough to be used in array architectures. The torsional cantilever design used for out-of-plane (z) motion can be easily be adapted to scanning force microscopy. Typical atomic force microscope cantilevers have spring constants on the order of 0.01 - 10 N/m. To produce cantilevers with lower spring constants, ordinary thin film techniques would require longer (several mm) and thinner (sub- micrometers ) cantilevers. A mechanical analysis of torsional cantilevers reveals that high aspect ratio rectangular beams, such as the ones we fabricate, are easily twisted. By using the torsional design, we can achieve lower spring constants (10-1 - 10-7 N/m) without having to make a very thin film cantilever. We have demonstrated torsional cantilevers with spring constants on the order of 10-2 N/m. These cantilevers can be used as extremely sensitive force sensors for atomic force microscopy.

  7. Service Area Market Analysis: Environmental Scanning.

    ERIC Educational Resources Information Center

    Front Range Community Coll., Westminster, CO.

    This environmental scanning report presents, in brief, various key indicators: political climate, population demographics, secondary education, postsecondary education, welfare, unemployment, industry, labor, and general conclusions. General conclusions made in this report are as follows: higher education is expected to receive a slight increase…

  8. Autofocus method for scanning remote sensing cameras.

    PubMed

    Lv, Hengyi; Han, Chengshan; Xue, Xucheng; Hu, Changhong; Yao, Cheng

    2015-07-10

    Autofocus methods are conventionally based on capturing the same scene from a series of positions of the focal plane. As a result, it has been difficult to apply this technique to scanning remote sensing cameras where the scenes change continuously. In order to realize autofocus in scanning remote sensing cameras, a novel autofocus method is investigated in this paper. Instead of introducing additional mechanisms or optics, the overlapped pixels of the adjacent CCD sensors on the focal plane are employed. Two images, corresponding to the same scene on the ground, can be captured at different times. Further, one step of focusing is done during the time interval, so that the two images can be obtained at different focal plane positions. Subsequently, the direction of the next step of focusing is calculated based on the two images. The analysis shows that the method investigated operates without restriction of the time consumption of the algorithm and realizes a total projection for general focus measures and algorithms from digital still cameras to scanning remote sensing cameras. The experiment results show that the proposed method is applicable to the entire focus measure family, and the error ratio is, on average, no more than 0.2% and drops to 0% by reliability improvement, which is lower than that of prevalent approaches (12%). The proposed method is demonstrated to be effective and has potential in other scanning imaging applications.

  9. Lumber Scanning System for Surface Defect Detection

    Treesearch

    D. Earl Kline; Y. Jason Hou; Richard W. Conners; Daniel L. Schmoldt; Philip A. Araman

    1992-01-01

    This paper describes research aimed at developing a machine vision technology to drive automated processes in the hardwood forest products manufacturing industry. An industrial-scale machine vision system has been designed to scan variable-size hardwood lumber for detecting important features that influence the grade and value of lumber such as knots, holes, wane,...

  10. Vertically aligned nanostructure scanning probe microscope tips

    DOEpatents

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  11. Backscatter nephelometer to calibrate scanning lidar

    Treesearch

    Cyle E. Wold; Vladmir A. Kovalev; Wei Min Hao

    2008-01-01

    The general concept of an open-path backscatter nephelometer, its design, principles of calibration and the operational use are discussed. The research-grade instrument, which operates at the wavelength 355 nm, will be co-located with a scanning-lidar at measurement sites near wildfires, and used for the lidar calibration. Such a near-end calibration has significant...

  12. Internal log scanning: Research to reality

    Treesearch

    Daniel L. Schmoldt

    2000-01-01

    Improved log breakdown into lumber has been an active research topic since the 1960's. Demonstrated economic gains have driven the search for a cost-effective method to scan logs internally, from which it is assumed one can chose a better breakdown strategy. X-ray computed tomography (CT) has been widely accepted as the most promising internal imaging technique....

  13. Scanning Gamma Ray Densitometer System for Detonations.

    DTIC Science & Technology

    in loaded detonators and delays. The 317 KEV gamma rays from an Ir192 source were collimated into a beam of 0.002 by 0.100 inch. A scanning system...minus 3%. With Ir192 , density measurements on NOL-130 were reproduced to plus or minus 5%, and on RDX to plus or minus 16%. Based on gamma ray

  14. Computerized axial tomography: the normal EMI scan.

    PubMed Central

    Gawler, J; Bull, J D; Du Boulay, G H; Marshall, J

    1975-01-01

    Computerized axial tomography using the EMI scanner as a new method of using x-rays in diagnosis. The technique displays intracranial and orbital structures in the transverse plane. The appearances of normal EMI Scans are described and correlated with cerebral and orbital anatomy seen in transverse section. Images PMID:1081587

  15. Scanning force microscopy under aqueous solutions.

    PubMed

    Bustamante, C; Rivetti, C; Keller, D J

    1997-10-01

    Merely ten years after its invention, the scanning force microscope is becoming a powerful method to investigate the structure and dynamics of biological molecules under aqueous environments. From the visualization of transcription in real time to the mechanical manipulation of individual proteins, the advances made during the past year open up a vast number of exciting applications of this technique in biology.

  16. Radant - New method of electronic scanning

    NASA Astrophysics Data System (ADS)

    Chekroun, C.; Herrick, D.; Michel, Y. M.; Pauchard, R.; Vidal, P.

    1981-02-01

    The paper describes a novel electronic scanning process that differs from the conventional phased array process. Called Radant (from radome antennas), the process uses an electromagnetic lens such that the direction of the optical axis can be changed electronically. The principle of this process and a working model are described.

  17. Environmental Scanning: Assessing Local Business Training Needs.

    ERIC Educational Resources Information Center

    Clagett, Craig A.; Huntington, Robin B.

    Environmental scanning (ES) is a formal process of assessing trends and forecasting events which can influence an institution so that the potential challenges and opportunities can be effectively anticipated during strategic planning activities. The goal of ES is the implementation of proactive, anticipatory policies that will be robust under a…

  18. Rapid 2-axis scanning lidar prototype

    NASA Astrophysics Data System (ADS)

    Hartsell, Daryl; LaRocque, Paul E.; Tripp, Jeffrey

    2016-10-01

    The rapid 2-axis scanning lidar prototype was developed to demonstrate high-precision single-pixel linear-mode lidar performance. The lidar system is a combined integration of components from various commercial products allowing for future customization and performance enhancements. The intent of the prototype scanner is to demonstrate current stateof- the-art high-speed linear scanning technologies. The system consists of two pieces: the sensor head and control unit. The senor head can be installed up to 4 m from the control box and houses the lidar scanning components and a small RGB camera. The control unit houses the power supplies and ranging electronics necessary for operating the electronics housed inside the sensor head. This paper will discuss the benefits of a 2-axis scanning linear-mode lidar system, such as range performance and a userselectable FOV. Other features include real-time processing of 3D image frames consisting of up to 200,000 points per frame.

  19. CT scan of the brain (image)

    MedlinePlus

    ... CAT scan (computed tomography) is a much more sensitive imaging technique than x-ray, allowing high definition not only of the bony structures, but of the soft tissues. Clear images of organs such as the brain, muscles, joint structures, veins ...

  20. The Scanning Electron Microscope and the Archaeologist

    ERIC Educational Resources Information Center

    Ponting, Matthew

    2004-01-01

    Images from scanning electron microscopy are now quite common and they can be of great value in archaeology. Techniques such as secondary electron imaging, backscattered electron imaging and energy-dispersive x-ray analysis can reveal information such as the presence of weevils in grain in Roman Britain, the composition of Roman coins and the…

  1. Scanning the Infant Nursery Environment. Final Report.

    ERIC Educational Resources Information Center

    Johnston, Joan Evelyn

    This report describes the development and testing of a screening method designed to describe the Cornell Infant Nursery environment and infant activities in quantitative terms. The scanning procedure developed is basically a time-sampling way of collecting data on the normal operation of the nursery. Two long lists of variables (categories of…

  2. (Gene sequencing by scanning molecular exciton microscopy)

    SciTech Connect

    Not Available

    1991-01-01

    This report details progress made in setting up a laboratory for optical microscopy of genes. The apparatus including a fluorescence microscope, a scanning optical microscope, various spectrometers, and supporting computers is described. Results in developing photon and exciton tips, and in preparing samples are presented. (GHH)

  3. Chelsea Bank: SCANS and Workplace Knowledge.

    ERIC Educational Resources Information Center

    Mikulecky, Larry; And Others

    This study of student groups working with the Chelsea Bank computer simulation concentrates on the extent to which students are involved in activities related to the Secretary's Commission on Achieving Necessary Skills (SCANS) categories and to knowledge about work place practices. Studying students using the Chelsea Bank simulations offers the…

  4. Scanning electron microscopy study of Trichomonas gallinae.

    PubMed

    Tasca, Tiana; De Carli, Geraldo A

    2003-12-01

    A scanning electron microscopy (SEM) study of Trichomonas gallinae (Rivolta, 1878), provided more information about the morphology of this flagellated protozoan. SEM showed the morphological features of the trophozoites; the emergence of the anterior flagella, the structure of the undulating membrane, the position and shape of the pelta, axostyle and posterior flagellum. Of special interest were the pseudocyst forms.

  5. 2006 Environmental Scan. ACAATO Archive Document

    ERIC Educational Resources Information Center

    Colleges Ontario, 2006

    2006-01-01

    The Association of Colleges of Applied Arts and Technology of Ontario (ACAATO) is pleased to present this report. The 2006 Environmental Scan provides an aggregate synopsis of the key trends which will impact on Ontario's Colleges of Applied Arts and Technology in the future and will assist colleges in their advocacy and strategic planning…

  6. 2005 Environmental Scan. ACAATO Archive Document

    ERIC Educational Resources Information Center

    Colleges Ontario, 2005

    2005-01-01

    The Association of Colleges of Applied Arts and Technology of Ontario (ACAATO) is pleased to present this report. The 2005 Environmental Scan provides an aggregate synopsis of the key trends which will impact on Ontario's Colleges of Applied Arts and Technology in the future and will assist colleges in their advocacy and strategic planning…

  7. Pulmonary nodule, solitary - CT scan (image)

    MedlinePlus

    ... a single lesion (pulmonary nodule) in the right lung. This nodule is seen as the light circle in the upper portion of the dark area on the left side of the picture. A normal lung would look completely black in a CT scan.

  8. Near Field Scanning Optical Microscopy (NSOM)

    PubMed Central

    Betzig, E.; Lewis, A.; Harootunian, A.; Isaacson, M.; Kratschmer, E.

    1986-01-01

    A new method for high-resolution imaging, near-field scanning optical microscopy (NSOM), has been developed. The concepts governing this method are discussed, and the technical challenges encountered in constructing a working NSOM instrument are described. Two distinct methods are presented for the fabrication of well-characterized, highly reproducible, subwavelength apertures. A sample one-dimensional scan is provided and compared to the scanning electron micrograph of a test pattern. From this comparison, a resolution of > 1,500 Å (i.e., ≃λ/3.6) is determined, which represents a significant step towards our eventual goal of 500 Å resolution. Fluorescence has been observed through apertures smaller than 600 Å and signal-to-noise calculations show that fluorescent imaging should be feasible. The application of such imaging is then discussed in reference to specific biological problems. The NSOM method employs nonionizing visible radiation and can be used in air or aqueous environments for nondestructive visualization of functioning biological systems with a resolution comparable to that of scanning electron microscopy. ImagesFIGURE 4FIGURE 7FIGURE 9FIGURE 10 PMID:19431633

  9. Energy conservation, using remote thermal scanning

    NASA Technical Reports Server (NTRS)

    Bowman, R. L.; Jack, J. R.

    1978-01-01

    Airborne thermal infrared scans and thermal maps utilized in NASA's energy conservation program have proven to be efficient cost-effective method for identifying heat losses from building roofs and heating system distribution lines. Method employs commercially available equipment in highly developed way.

  10. Atypical Saccadic Scanning in Autistic Spectrum Disorder

    ERIC Educational Resources Information Center

    Benson, Valerie; Piper, Jenna; Fletcher-Watson, Sue

    2009-01-01

    Saccadic scanning was examined for typically developing (TD) adults and those with autistic spectrum disorder (ASD) during inspection of the "Repin" picture (Yarbus, A. (1967). "Eye movements and vision". New York: Plenum) under two different viewing instructions: (A) material instructions ("Estimate the material circumstances of the family"); and…

  11. Electronic SCAN (Selected Current Aerospace Notices)

    NASA Technical Reports Server (NTRS)

    Dunbar, Rick

    1993-01-01

    The on-line version of the NASA Selected Current Aerospace Notices (SCAN) is described and the three methods for electronic access on the Internet are listed. These are (1) File Transfer Protocol (FTP), (2) Gopher, and (3) LISTSERV. An electronic address and a brief description is given for each of them.

  12. Scanning and rotating micromirrors using thermal actuators

    NASA Astrophysics Data System (ADS)

    Butler, Jeffrey T.; Bright, Victor M.; Reid, J. Robert

    1997-07-01

    This paper reports on micromachined polysilicon scanning and rotating micromirrors and the development of a CMOS drive system. The micromirrors described in this research were developed at the Air Force Institute of Technology and fabricated using the DARPA-sponsored multi-user MEMS processes (MUMPs). The scanning micromirror is connected to the substrate using micro-hinges. This allows the mirror plate to rotate off the substrate surface and lock into a support mechanism. The angle between the scanning mirror and the substrate is modulated by driving the mirror with a thermal actuator array through a range of 20 degrees. For the rotating mirror, the mirror plate is attached to the substrate by three floating substrate hinges connected to a rotating base. Actuator arrays are also used to position the rotating mirror. A computer controlled electrical interface was developed which automates the positioning of both the scanning and rotating mirrors. The low operating voltages of the micromirror positioning mechanism makes the use of CMOS technology attractive; and the development of a digital interface allows for flexible operation of the devices. These designs are well suited for micro-optical applications such as optical scanners, corner cube reflectors, and optical couplers where electrical positioning of a mirror is desired.

  13. Scanning For Hotspots In Lamp Filaments

    NASA Technical Reports Server (NTRS)

    Powers, Charles E.; Van Sant, Tim; Leidecker, Henning

    1993-01-01

    Scanning photometer designed for use in investigation of failures of incandescent lamp filaments. Maps brightness as function of position along each filament to identify bright (hot) spots, occurring at notches and signifying incipient breaks or rewelds. Also used to measure nonuniformity in outputs of such linear devices as light-emitting diodes, and to measure diffraction patterns of lenses.

  14. Exabyte helical scan devices at Fermilab

    SciTech Connect

    Constanta-Fanourakis, P.; Kaczar, K.; Oleynik, G.; Petravick, D.; Votava, M.; White, V.; Hockney, G.; Bracker, S.; de Miranda, J.M.

    1989-05-01

    Exabyte 8mm helical scan storage devices are in use at Fermilab in a number of applications. These devices have the functionality of magnetic tape, but use media which is much more economical and much more dense than conventional 9 track tape. 6 refs., 3 figs.

  15. Project SCANS Integration. Formative Evaluation Report.

    ERIC Educational Resources Information Center

    Ryan, Ray D.; Pritz, Sandra G.

    Project SCANS (Secretary's Commission on Achieving Necessary Skills) Integration is a 5-year initiative to explore how well all high school instructors would be able to integrate competency-based instruction in designated work-related competencies into their courses and rate students' mastery of the competencies. Three teachers from each of 14…

  16. The Scanning Electron Microscope and the Archaeologist

    ERIC Educational Resources Information Center

    Ponting, Matthew

    2004-01-01

    Images from scanning electron microscopy are now quite common and they can be of great value in archaeology. Techniques such as secondary electron imaging, backscattered electron imaging and energy-dispersive x-ray analysis can reveal information such as the presence of weevils in grain in Roman Britain, the composition of Roman coins and the…

  17. Multiplatform Mobile Laser Scanning: Usability and Performance

    PubMed Central

    Kukko, Antero; Kaartinen, Harri; Hyyppä, Juha; Chen, Yuwei

    2012-01-01

    Mobile laser scanning is an emerging technology capable of capturing three-dimensional data from surrounding objects. With state-of-the-art sensors, the achieved point clouds capture object details with good accuracy and precision. Many of the applications involve civil engineering in urban areas, as well as traffic and other urban planning, all of which serve to make 3D city modeling probably the fastest growing market segment in this field. This article outlines multiplatform mobile laser scanning solutions such as vehicle- and trolley-operated urban area data acquisition, and boat-mounted equipment for fluvial environments. Moreover, we introduce a novel backpack version of mobile laser scanning equipment for surveying applications in the field of natural sciences where the requirements include precision and mobility in variable terrain conditions. In addition to presenting a technical description of the systems, we discuss the performance of the solutions in the light of various applications in the fields of urban mapping and modeling, fluvial geomorphology, snow-cover characterization, precision agriculture, and in monitoring the effects of climate change on permafrost landforms. The data performance of the mobile laser scanning approach is described by the results of an evaluation of the ROAMER on a permanent MLS test field. Furthermore, an in situ accuracy assessment using a field of spherical 3D targets for the newly-introduced Akhka backpack system is conducted and reported on.

  18. Energy conservation, using remote thermal scanning

    NASA Technical Reports Server (NTRS)

    Bowman, R. L.; Jack, J. R.

    1978-01-01

    Airborne thermal infrared scans and thermal maps utilized in NASA's energy conservation program have proven to be efficient cost-effective method for identifying heat losses from building roofs and heating system distribution lines. Method employs commercially available equipment in highly developed way.

  19. Visual scanning behavior and pilot workload

    NASA Technical Reports Server (NTRS)

    Tole, J. R.; Stephens, A. T.; Vivaudou, M.; Ephrath, A. R.; Young, L. R.

    1983-01-01

    Sophisticated man machine interaction often requires the human operator to perform a stereotyped scan of various instruments in order to monitor and/or control a system. For situations in which this type of stereotyped behavior exists, such as certain phases of instrument flight, scan pattern was shown to be altered by the imposition of simultaneous verbal tasks. A study designed to examine the relationship between pilot visual scan of instruments and mental workload is described. It was found that a verbal loading task of varying difficulty causes pilots to stare at the primary instrument as the difficulty increases and to shed looks at instruments of less importance. The verbal loading task also affected the rank ordering of scanning sequences. By examining the behavior of pilots with widely varying skill levels, it was suggested that these effects occur most strongly at lower skill levels and are less apparent at high skill levels. A graphical interpretation of the hypothetical relationship between skill, workload, and performance is introduced and modelling results are presented to support this interpretation.

  20. Using a "Battered" Text to Practise Scanning.

    ERIC Educational Resources Information Center

    Wajnryb, Ruth

    1991-01-01

    Describes an activity that can help refine and develop the skill of scanning, that is, reading a text to locate a particular piece of information. The activity involves analyzing two texts: the first is the original, and the second is a shortened, slightly inaccurate "battered" version of the first. (GLR)

  1. Interval scanning photomicrography of microbial cell populations.

    NASA Technical Reports Server (NTRS)

    Casida, L. E., Jr.

    1972-01-01

    A single reproducible area of the preparation in a fixed focal plane is photographically scanned at intervals during incubation. The procedure can be used for evaluating the aerobic or anaerobic growth of many microbial cells simultaneously within a population. In addition, the microscope is not restricted to the viewing of any one microculture preparation, since the slide cultures are incubated separately from the microscope.

  2. Projections of scan patterns on human retina

    NASA Technical Reports Server (NTRS)

    Kelly, D. H.; Crane, H. D.

    1972-01-01

    Fundus camera tracks eye movements by using camera optics with the aid of an inverted system. Camera provides a flying-spot circular scanning light source in the normal film plane and a broadband photodetector in position normally occupied by light source.

  3. Multi-channel scanning SQUID microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Su-Young

    I designed, fabricated, assembled, and tested an 8-channel high- Tc scanning SQUID system. I started by modifying an existing single-channel 77 K high-Tc scanning SQUID microscope into a multi-channel system with the goal of reducing the scanning time and improving the spatial resolution by increasing the signal-to-noise ratio S/N. I modified the window assembly, SQUID chip assembly, cold-finger, and vacuum connector. The main concerns for the multi-channel system design were to reduce interaction between channels, to optimize the use of the inside space of the dewar for more than 50 shielded wires, and to achieve good spatial resolution. In the completed system, I obtained the transfer function and the dynamic range (phimax ˜ 11phi0) for each SQUID. At 1kHz, the slew rate is about 3000 phi0/s. I also found that the white noise level varies from 5 muphi0/Hz1/2 to 20 muphi 0/Hz1/2 depending on the SQUID. A new data acquisition program was written that triggered on position and collects data from up to eight SQUIDS. To generate a single image from the multichannel system, I calibrated the tilt of the xy-stage and z-stage manually, rearranged the scanned data by cutting overlapping parts, and determined the applied field by multiplying by the mutual inductance matrix. I found that I could reduce scanning time and improve the image quality by doing so. In addition, I have analyzed and observed the effect of position noise on magnetic field images and used these results to find the position noise in my scanning SQUID microscope. My analysis reveals the relationship between spatial resolution and position noise and that my system was dominated by position noise under typical operating conditions. I found that the smaller the sensor-sample separation, the greater the effect of position noise is on the total effective magnetic field noise and on spatial resolution. By averaging several scans, I found that I could reduce position noise and that the spatial resolution can

  4. Scanning Ion Conductance Microscopy of Live Keratinocytes

    NASA Astrophysics Data System (ADS)

    Hegde, V.; Mason, A.; Saliev, T.; Smith, F. J. D.; McLean, W. H. I.; Campbell, P. A.

    2012-07-01

    Scanning ion conductance microscopy (SICM) is perhaps the least well known technique from the scanning probe microscopy (SPM) family of instruments. As with its more familiar counterpart, atomic force microscopy (AFM), the technique provides high-resolution topographic imaging, with the caveat that target structures must be immersed in a conducting solution so that a controllable ion current may be utilised as the basis for feedback. In operation, this non-contact characteristic of SICM makes it ideal for the study of delicate structures, such as live cells. Moreover, the intrinsic architecture of the instrument, incorporating as it does, a scanned micropipette, lends itself to combination approaches with complementary techniques such as patch-clamp electrophysiology: SICM therefore boasts the capability for both structural and functional imaging. For the present observations, an ICnano S system (Ionscope Ltd., Melbourn, UK) operating in 'hopping mode' was used, with the objective of assessing the instrument's utility for imaging live keratinocytes under physiological buffers. In scans employing cultured HaCaT cells (spontaneously immortalised, human keratinocytes), we compared the qualitative differences of live cells imaged with SICM and AFM, and also with their respective counterparts after chemical fixation in 4% paraformaldehyde. Characteristic surface microvilli were particularly prominent in live cell imaging by SICM. Moreover, time lapse SICM imaging on live cells revealed that changes in the pattern of microvilli could be tracked over time. By comparison, AFM imaging on live cells, even at very low contact forces (scanning speed, however, the intrinsic non-obtrusive nature of

  5. An implementation of dual energy CT scanning.

    PubMed

    Marshall, W; Hall, E; Doost-Hoseini, A; Alvarez, R; Macovski, A; Cassel, D

    1984-08-01

    We have described a prereconstruction method for dual energy (PREDECT) analysis of CT scans. In theory, this method can (a) eliminate beam hardening and produce an accuracy comparable with monoenergetic scans and (b) provide the effective atomic number and electron density of any voxel scanned. Our implementation proves these statements and eliminates some of the objectionable noise. We constructed a phantom with a cylindrical sleeve-like compartment containing known amounts of high atomic number material simulating a removable skull. Conventional scans, with and without this beam hardener, were done of a water bath containing tubes of high electron and high atomic number material. Dual energy scans were then done for PREDECT. To increase the effective separation of the low and high energy beams by using more appropriate tube filtration, we fabricated a beam filter changer containing erbium, tungsten, aluminum, and steel. We used erbium, tungsten, and steel at high energy and aluminum, steel, and erbium at low energy for data acquisition. The reconstructions were compared visually and numerically for noise levels with the original steel only filtration. We found a decrease in noise down to approximately one-half the prior level when erbium/aluminum or tungsten/aluminum replaced the steel/steel filter. Erbium and tungsten were equally effective. Steel/erbium and steel/aluminum also significantly reduced image noise. The noise in the photoelectric (P) and Compton (C) images is negatively correlated. At any pixel, if the noise is positive in the P image, it is most probably negative in the C. Using this fact, the noise was reduced by postreconstruction processing.

  6. A new scanning mode to improve scanning ion conductance microscopy imaging rate with pipette predicted movement.

    PubMed

    Zhuang, Jian; Jiao, Yangbohan; Mugabo, Vincent

    2017-10-01

    Scanning ion conductance microscopy (SICM) is a non-contact surface topography measurement technique that has been increasingly used for soft surfaces such as living biological samples. An approach-retract scanning (ARS) mode is widely used to avoid collision between the SICM probe (i.e., pipette) and an abrupt increase in sample profile. However, the redundant pipette trajectory in the ARS mode lengthens the scan time, thus reducing SICM efficiency and time resolution. To avoid this problem, a new scanning mode is discussed that adds horizontal movement at each measurement point to predict the upcoming sample topography via variation in ion current. The pipette then retracts in response to raised topography, while it raster scans flat or downhill topography. The feasibility was verified by finite element analysis and experimental tests on three kinds of soft samples: polydimethylsiloxane, mice cardiac fibroblasts, and breast cancer cells. The pixel detection frequency during imaging and the mean square error of the sample topography were compared for the two modes. The new scanning mode enhances the SICM imaging rate without loss of imaging quality or scanning stability, while it increases efficiency and time resolution. It thus has an improved performance for characterizing biological samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Validation of burst overlapping for ALOS-2 PALSAR-2 ScanSAR-ScanSAR interferometry

    NASA Astrophysics Data System (ADS)

    Natsuaki, Ryo; Motohka, Takeshi; Ohki, Masato; Watanabe, Manabu; Suzuki, Shinichi

    2016-10-01

    The Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) aboard the Advanced Land Observing Satellite- 2 (ALOS-2, "DAICHI-2") is the latest L-band spaceborne synthetic aperture radar (SAR). PALSAR-2 observes the world mainly with 10 m resolution / 70 km swath Stripmap mode and 25 m resolution / 350 km swath ScanSAR mode. The 3-m resolution Stripmap mode is mainly used upon Japan. 350 km ScanSAR observation could detect large scale deformation e.g., the Mw 7.8 Gorkha, Nepal earthquake and its aftershocks in 2015. ALOS-2 ScanSAR is the first one that supports ScanSAR-ScanSAR interferometry in L-band spaceborne SAR. However, because of the parameter setting error for the orbit estimation, ALOS-2 PALSAR-2 ScanSAR could achieve little number of interferometric pair until the software modification on February 8, 2015. That is, the burst overlap timing required for the interferometric analysis was insufficient and it depends on the observation date. In this paper, we report the investigation results of this case and discuss the current status of the ALOS-2 ScanSAR InSAR. Some archives achieved before February 8, 2015 can be used for interferometric analysis with after Feb. 8. However, most of them have no interferometric pair. We also report that the archives acquired after February 8, have enough burst overlapping.

  8. A two-axis water-immersible MEMS scanning mirror for scanning optical and acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Song; Huang, Chih-Hsien; Zou, Jun

    2016-03-01

    Fast scanning is highly desired for both ultrasound and photoacoustic microscopic imaging. Limited by water environment required for acoustic propagation, traditional mircoelectromechanical system (MEMS) scanning mirrors could not be widely used. In this paper, a new water-immersible scanning mirror microsystem has been designed, fabricated and tested. Polymer hinges were employed to achieve reliable under water performance. Two pairs of high strength neodymium magnet disc and three compact RF choke inductor were used to actuate mirror module. Experimental results show that the fast axis can reach a mechanical scanning angle of +/-15° at the resonance frequency of 350 Hz in air, and +/-12.5° at the resonance frequency of 240 Hz in water, respectively. The slow axis can reach a mechanical scanning angle of +/-15° at the resonance frequency of 20 Hz in air, and +/-12.5° at the resonance frequency of 13 Hz in water, respectively. The two scanning axes have very different resonance frequencies, which are suitable for raster scanning.

  9. Correcting scan-to-scan response variability for a radiochromic film-based reference dosimetry system

    SciTech Connect

    Lewis, David; Devic, Slobodan

    2015-10-15

    Purpose: In radiochromic film dosimetry systems, measurements are usually obtained from film images acquired on a CCD-based flatbed scanner. The authors investigated factors affecting scan-to-scan response variability leading to increased dose measurement uncertainty. Methods: The authors used flatbed document scanners to repetitively scan EBT3 radiochromic films exposed to doses 0–1000 cGy, together with three neutral density filters and three blue optical filters. Scanning was performed under two conditions: scanner lid closed and scanner lid opened/closed between scans. The authors also placed a scanner in a cold room at 9 °C and later in a room at 22 °C and scanned EBT3 films to explore temperature effects. Finally, the authors investigated the effect of altering the distance between the film and the scanner’s light source. Results: Using a measurement protocol to isolate the contribution of the CCD and electronic circuitry of the scanners, the authors found that the standard deviation of response measurements for the EBT3 film model was about 0.17% for one scanner and 0.09% for the second. When the lid of the first scanner was opened and closed between scans, the average scan-to-scan difference of responses increased from 0.12% to 0.27%. Increasing the sample temperature during scanning changed the RGB response values by about −0.17, −0.14, and −0.05%/°C, respectively. Reducing the film-to-light source distance increased the RBG response values about 1.1, 1.3, and 1.4%/mm, respectively. The authors observed that films and film samples were often not flat with some areas up to 8 mm away from the scanner’s glass window. Conclusions: In the absence of measures to deal with the response irregularities, each factor the authors investigated could lead to dose uncertainty >2%. Those factors related to the film-to-light source distance could be particularly impactful since the authors observed many instances where the curl of film samples had the

  10. An optical scan-calibration system in scanning near-field optical microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Yunliang; Zhang, Hao; Wang, Keyi

    2009-11-01

    Scanning Probe Microscopes(SPM) use piezoelectric actuators to generate the scans. But the nonlinearities inherent in the piezoelectric actuators limit the usefulness of the instruments in precision metrology. This paper describes a simple optical beam displacement sensor that is used to accurately measure the (x,y) position of a piezoelectric tube scanner used in Scanning Near-field Optical Microscope(SNOM). As the nonlinearities is too complex to make up a simple math model, this paper use the Artificial neural network to Calibrate the nonlinearities.

  11. Ultrafast CT scanning of an oak log for internal defects

    Treesearch

    Francis G. Wagner; Fred W. Taylor; Douglas S. Ladd; Charles W. McMillin; Fredrick L. Roder

    1989-01-01

    Detecting internal defects in sawlogs and veneer logs with computerized tomographic (CT) scanning is possible, but has been impractical due to the long scanning time required. This research investigated a new scanner able to acquire 34 cross-sectional log scans per second. This scanning rate translates to a linear log feed rate of 85 feet (25.91 m) per minute at one...

  12. Comparison of dimensional accuracy of digital dental models produced from scanned impressions and scanned stone casts

    NASA Astrophysics Data System (ADS)

    Subeihi, Haitham

    Introduction: Digital models of dental arches play a more and more important role in dentistry. A digital dental model can be generated by directly scanning intraoral structures, by scanning a conventional impression of oral structures or by scanning a stone cast poured from the conventional impression. An accurate digital scan model is a fundamental part for the fabrication of dental restorations. Aims: 1. To compare the dimensional accuracy of digital dental models produced by scanning of impressions versus scanning of stone casts. 2. To compare the dimensional accuracy of digital dental models produced by scanning of impressions made of three different materials (polyvinyl siloxane, polyether or vinyl polyether silicone). Methods and Materials: This laboratory study included taking addition silicone, polyether and vinyl polyether silicone impressions from an epoxy reference model that was created from an original typodont. Teeth number 28 and 30 on the typodont with a missing tooth number 29 were prepared for a metal-ceramic three-unit fixed dental prosthesis with tooth #29 being a pontic. After tooth preparation, an epoxy resin reference model was fabricated by duplicating the typodont quadrant that included the tooth preparations. From this reference model 12 polyvinyl siloxane impressions, 12 polyether impressions and 12 vinyl polyether silicone impressions were made. All 36 impressions were scanned before pouring them with dental stone. The 36 dental stone casts were, in turn, scanned to produce digital models. A reference digital model was made by scanning the reference model. Six groups of digital models were produced. Three groups were made by scanning of the impressions obtained with the three different materials, the other three groups involved the scanning of the dental casts that resulted from pouring the impressions made with the three different materials. Groups of digital models were compared using Root Mean

  13. Damage detection using scanning laser vibrometer

    NASA Astrophysics Data System (ADS)

    Chen, Shen-En; Venkatappa, Suhas; Petro, Samer H.; Gangarao, Hota V.

    1998-06-01

    A damage detection algorithm based on the principle of curvature changes has been developed at CFC-WVU. However, the algorithm requires accurate mode shapes with adequate spatial density. Existing contact sensors can not provide adequate spatial density without adding excessive mass. Hence, non-contact scanning techniques, such as scanning laser vibrometer (SLV) has adequate sensitivity and accuracy is yet to be proven. The applicability of SLV on large structures is also questionable. To assess the suitability of using SLV for damage detection, a beam specimen has been tested using an existing system. The results confirm that damage detection using vibration measurements from SLV is successful. Due to more spatial density, the SLV data is shown to be more sensitive than the contact sensor test.

  14. Command profile for Galileo scan platform control

    NASA Astrophysics Data System (ADS)

    Man, G. K.; Breckenridge, W. G.

    1981-08-01

    A recursive command profile is developed for the control of a two-degree-of-freedom scan platform mounted on a flexible structure. Perfect sensors and actuators are assumed for development and testing, and structural vibrations are minimized by actuator torque commands following a smooth torque-time profile. The integral of the smooth torque profile, the rate profile, is recursively generated by a piecewise constant second derivation, and the torque applied by the closk actuator is divided into three components. Results show that the smooth platform motion in response to the command profiles is what the Galileo control systems needs to avoid stator structural vibrations. Position, rate and acceleration profiles are also presented, and the resulting motion of the scan platform in response to command profiles is illustrated.

  15. Preliminary design study. Shuttle modular scanning spectroradiometer

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Fundamental concepts on which to base a detailed design for a Shuttle Modular Scanning Spectroradiometer were developed, and a preliminary design is presented. The recommended design features modularity and flexibility. It includes a 75-cm f/1.7-telescope assembly in an all-reflective Schmidt configuration, a solid state scan system (pushbroom) with high resolution over a 15 deg field of view, and ten detector channels covering the spectral range from 0.45 to 12.5 micrometers. It uses charge transfer device techniques to accommodate a large number of detector elements for earth observation measurements. Methods for in-flight radiometric calibration, for image motion compensation, and for data processing are described. Recommendations for ground support equipment are included, and interfaces with the shuttle orbiter vehicle are illustrated.

  16. Environmental scanning electron microscopy in cell biology.

    PubMed

    McGregor, J E; Staniewicz, L T L; Guthrie Neé Kirk, S E; Donald, A M

    2013-01-01

    Environmental scanning electron microscopy (ESEM) (1) is an imaging technique which allows hydrated, insulating samples to be imaged under an electron beam. The resolution afforded by this technique is higher than conventional optical microscopy but lower than conventional scanning electron microscopy (CSEM). The major advantage of the technique is the minimal sample preparation needed, making ESEM quick to use and the images less susceptible to the artifacts that the extensive sample preparation usually required for CSEM may introduce. Careful manipulation of both the humidity in the microscope chamber and the beam energy are nevertheless essential to prevent dehydration and beam damage artifacts. In some circumstances it is possible to image live cells in the ESEM (2).In the following sections we introduce the fundamental principles of ESEM imaging before presenting imaging protocols for plant epidermis, mammalian cells, and bacteria. In the first two cases samples are imaged using the secondary electron (topographic) signal, whereas a transmission technique is employed to image bacteria.

  17. Laser scanning system for object monitoring

    SciTech Connect

    McIntyre, Timothy James; Maxey, Lonnie Curtis; Chiaro, Jr; John, Peter

    2008-04-22

    A laser scanner is located in a fixed position to have line-of-sight access to key features of monitored objects. The scanner rapidly scans pre-programmed points corresponding to the positions of retroreflecting targets affixed to the key features of the objects. The scanner is capable of making highly detailed scans of any portion of the field of view, permitting the exact location and identity of targets to be confirmed. The security of an object is verified by determining that the cooperative target is still present and that its position has not changed. The retroreflecting targets also modulate the reflected light for purposes of returning additional information back to the location of the scanner.

  18. High-speed massively parallel scanning

    DOEpatents

    Decker, Derek E.

    2010-07-06

    A new technique for recording a series of images of a high-speed event (such as, but not limited to: ballistics, explosives, laser induced changes in materials, etc.) is presented. Such technique(s) makes use of a lenslet array to take image picture elements (pixels) and concentrate light from each pixel into a spot that is much smaller than the pixel. This array of spots illuminates a detector region (e.g., film, as one embodiment) which is scanned transverse to the light, creating tracks of exposed regions. Each track is a time history of the light intensity for a single pixel. By appropriately configuring the array of concentrated spots with respect to the scanning direction of the detection material, different tracks fit between pixels and sufficient lengths are possible which can be of interest in several high-speed imaging applications.

  19. Ga lung scan has come to stay.

    PubMed

    Gianfranco, R; Franco, S

    1984-09-01

    Present status of Ga lung scan in sarcoidosis is reviewed: accumulation of radionuclide in the lung fields seems better quantified by computer methods; low doses (1.5 mCi) may be enough in the centres using subjective scoring methods; Ga positivity shown on four-view segmental maps of each lung could be useful in guiding BAL or lung biopsy. Ga lung scan appears more sensitive than both Chest X-ray and ACE in evaluating the response to therapy and in foreseeing relapses. The comparison with BAL is difficult due to the difficulty of comparing BAL data from different laboratories. Anyway, Ga, ACE and BAL are markers of different phenomena and all help our understanding of the disease and should guide our interventions. Ga scoring during steroid therapy has a strong clinical meaning only when positive, while negativity could be due to drug-induced uptake suppression.

  20. Line-scan focal modulation microscopy

    NASA Astrophysics Data System (ADS)

    Pant, Shilpa; Li, Caixia; Gong, Zhiyuan; Chen, Nanguang

    2017-05-01

    We report the development of a line-scan focal modulation microscope (LSFMM) that is capable of high-speed image acquisition (>40 fps) with uncompromised optical sectioning capability. The improved background rejection and axial resolution of this imaging modality, enabled by focal modulation, are quantified with three-dimensional imaging data obtained from fluorescent beads. The signal-to-background ratio for the LSFMM system is one- to two-orders of magnitude higher than that for line-scanning confocal systems when imaging deep (up to 100 μm) into a turbid medium of optical properties similar to biological tissues. The imaging performance of LSFMM, in terms of both spatial and temporal resolutions, is further demonstrated with in vivo imaging experiments with live zebrafish larvae.

  1. Development of Scanning Ultrafast Electron Microscope Capability.

    SciTech Connect

    Collins, Kimberlee Chiyoko; Talin, Albert Alec; Chandler, David W.; Michael, Joseph R.

    2016-11-01

    Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratories based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.

  2. Macroscopic model of scanning force microscope

    DOEpatents

    Guerra-Vela, Claudio; Zypman, Fredy R.

    2004-10-05

    A macroscopic version of the Scanning Force Microscope is described. It consists of a cantilever under the influence of external forces, which mimic the tip-sample interactions. The use of this piece of equipment is threefold. First, it serves as direct way to understand the parts and functions of the Scanning Force Microscope, and thus it is effectively used as an instructional tool. Second, due to its large size, it allows for simple measurements of applied forces and parameters that define the state of motion of the system. This information, in turn, serves to compare the interaction forces with the reconstructed ones, which cannot be done directly with the standard microscopic set up. Third, it provides a kinematics method to non-destructively measure elastic constants of materials, such as Young's and shear modules, with special application for brittle materials.

  3. A spatial scan statistic for multinomial data.

    PubMed

    Jung, Inkyung; Kulldorff, Martin; Richard, Otukei John

    2010-08-15

    As a geographical cluster detection analysis tool, the spatial scan statistic has been developed for different types of data such as Bernoulli, Poisson, ordinal, exponential and normal. Another interesting data type is multinomial. For example, one may want to find clusters where the disease-type distribution is statistically significantly different from the rest of the study region when there are different types of disease. In this paper, we propose a spatial scan statistic for such data, which is useful for geographical cluster detection analysis for categorical data without any intrinsic order information. The proposed method is applied to meningitis data consisting of five different disease categories to identify areas with distinct disease-type patterns in two counties in the U.K. The performance of the method is evaluated through a simulation study.

  4. Renal scans in pregnant transplant patients

    SciTech Connect

    Goldstein, H.A.; Ziessman, H.A.; Fahey, F.H.; Collea, J.V.; Alijani, M.R.; Helfrich, G.B.

    1988-08-01

    This study demonstrates the normal technetium-99m diethylenetriaminepentaacetic acid ((/sup 99m/Tc)DTPA) renal scan in pregnant patients with transplanted kidneys. Five pregnant renal transplant patients had seven (/sup 99m/Tc)DTPA renal studies to assess allograft perfusion and function. All scans showed the uteroplacental complex. The bladder was always compressed and distorted. The transplanted kidney was frequently rotated to a more vertical position. In all patients allograft flow and function were maintained. There was calyceal retention on all studies and ureteral retention activity in three of five patients. Using the MIRD formalism, the total radiation absorbed dose to the fetus was calculated to be 271 mrad. This radiation exposure is well within NRCP limits for the fetus of radiation workers and an acceptable low risk in the management of these high risk obstetric patients.

  5. High-speed spatial scanning pyrometer

    NASA Technical Reports Server (NTRS)

    Cezairliyan, A.; Chang, R. F.; Foley, G. M.; Miller, A. P.

    1993-01-01

    A high-speed spatial scanning pyrometer has been designed and developed to measure spectral radiance temperatures at multiple target points along the length of a rapidly heating/cooling specimen in dynamic thermophysical experiments at high temperatures (above about 1800 K). The design, which is based on a self-scanning linear silicon array containing 1024 elements, enables the pyrometer to measure spectral radiance temperatures (nominally at 650 nm) at 1024 equally spaced points along a 25-mm target length. The elements of the array are sampled consecutively every 1 microsec, thereby permitting one cycle of measurements to be completed in approximately 1 msec. Procedures for calibration and temperature measurement as well as the characteristics and performance of the pyrometer are described. The details of sources and estimated magnitudes of possible errors are given. An example of measurements of radiance temperatures along the length of a tungsten rod, during its cooling following rapid resistive pulse heating, is presented.

  6. Theoretical simulation of scanning probe microscopy.

    PubMed

    Tsukada, Masaru

    2011-01-01

    Methods of theoretical simulation of scanning probe microscopy, including scanning tunneling microscopy (STM), atomic force microscopy(AFM) and Kelvin prove force microscopy (KPFM) have been reviewed with recent topics as case studies. For the case of the STM simulation, the importance of the tip electronic states is emphasized and some advanced formalism is presented based on the non-equilibrium Green's function theory beyond Bardeen's perturbation theory. For the simulation of AFM, we show examples of 3D-force map for AFM in water, and theoretical analyses for a nano-mechanical experiment on a protein molecule. An attempt to simulate KPFM images based on the electrostatic multi-pole interaction between a tip and a sample is also introduced.

  7. Optical advantages in retinal scanning displays

    NASA Astrophysics Data System (ADS)

    Urey, Hakan

    2000-06-01

    Virtual Retinal DisplayTM technology is a retinal scanning display (RSD) technology being developed at Microvision, Inc., for a variety of applications including microdisplays. An RSD scans a modulated light beam onto a viewer's retina to produce a perceived image. Red, green and blue light sources, such as lasers, laser diodes or LEDs combine with Microvision's proprietary miniaturized scanner designs to make the RSD very well suited for head-worn and helmet-mounted displays (HMD). This paper compares the features of RSD technology to other display technologies such as the cathode ray tubes or matrix-based displays for HMD and other wearable display applications, and notes important performance advantages due to the number of pixel- generating elements. Also discussed are some fundamental optical limitations for virtual displays used in the HMD applications.

  8. Scanning probe microscopy of biomedical interfaces

    NASA Astrophysics Data System (ADS)

    Vansteenkiste, S. O.; Davies, M. C.; Roberts, C. J.; Tendler, S. J. B.; Williams, P. M.

    1998-02-01

    The development of the scanning probe microscopes over the past decade has provided a number of exciting new surface analytical techniques making a significant progress in the characterisation of biomedical interfaces. In this review, several examples are presented to illustrate that SPM is a powerful and promising tool for surface investigations including biomolecules, cell membranes, polymers and even living cells. The ability of the SPM instrument to monitor adhesion phenomena and provide quantitative information about intermolecular interactions is also described. Moreover, the huge potential of the scanning probe microscopes to study dynamic processes at interfaces under nearly physiological conditions is highlighted. Novel applications in the field of biochemistry, microbiology, biomaterial engineering, drug delivery and even medicine are discussed.

  9. Scanning electron microscopy studies of bacterial cultures

    NASA Astrophysics Data System (ADS)

    Swinger, Tracy; Blust, Brittni; Calabrese, Joseph; Tzolov, Marian

    2012-02-01

    Scanning electron microscopy is a powerful tool to study the morphology of bacteria. We have used conventional scanning electron microscope to follow the modification of the bacterial morphology over the course of the bacterial growth cycle. The bacteria were fixed in vapors of Glutaraldehyde and ruthenium oxide applied in sequence. A gold film of about 5 nm was deposited on top of the samples to avoid charging and to enhance the contrast. We have selected two types of bacteria Alcaligenes faecalis and Kocuria rhizophila. Their development was carefully monitored and samples were taken for imaging in equal time intervals during their cultivation. These studies are supporting our efforts to develop an optical method for identification of the Gram-type of bacterial cultures.

  10. Scanning Tunneling Spectroscope Use in Electrocatalysis Testing

    PubMed Central

    Knutsen, Turid

    2010-01-01

    The relationship between the electrocatalytic properties of an electrode and its ability to transfer electrons between the electrode and a metallic tip in a scanning tunneling microscope (STM) is investigated. The alkaline oxygen evolution reaction (OER) was used as a test reaction with four different metallic glasses, Ni78Si8B14, Ni70Mo20Si5B5, Ni58Co20Si10B12, and Ni25Co50Si15B10, as electrodes. The electrocatalytic properties of the electrodes were determined. The electrode surfaces were then investigated with an STM. A clear relationship between the catalytic activity of an electrode toward the OER and its tunneling characteristics was found. The use of a scanning tunneling spectroscope (STS) in electrocatalytic testing may increase the efficiency of the optimization of electrochemical processes.

  11. Scanning Electron Microscopy Sample Preparation and Imaging.

    PubMed

    Nguyen, Jenny Ngoc Tran; Harbison, Amanda M

    2017-01-01

    Scanning electron microscopes allow us to reach magnifications of 20-130,000× and resolve compositional and topographical images with intense detail. These images are created by bombarding a sample with electrons in a focused manner to generate a black and white image from the electrons that bounce off of the sample. The electrons are detected using positively charged detectors. Scanning electron microscopy permits three-dimensional imaging of desiccated specimens or wet cells and tissues by using variable pressure chambers. SEM ultrastructural analysis and intracellular imaging supplement light microscopy for molecular profiling of prokaryotes, plants, and mammals. This chapter demonstrates how to prepare and image samples that are (a) desiccated and conductive, (b) desiccated and nonconductive but coated with an electron conductive film using a gold sputter coater, and (c) wet and maintained in a hydrated state using a Deben Coolstage.

  12. Kinematic analysis of conically scanned environmental properties

    NASA Technical Reports Server (NTRS)

    Wilkerson, Thomas D. (Inventor); Sanders, Jason A. (Inventor); Andrus, Ionio Q. (Inventor)

    2003-01-01

    A method for determining the velocity of features such as wind. The method preferably includes producing sensor signals and projecting the sensor signals sequentially along lines lying on the surface of a cone. The sensor signals may be in the form of lidar, radar or sonar for example. As the sensor signals are transmitted, the signals contact objects and are backscattered. The backscattered sensor signals are received to determine the location of objects as they pass through the transmission path. The speed and direction the object is moving may be calculated using the backscattered data. The data may be plotted in a two dimensional array with a scan angle on one axis and a scan time on the other axis. The prominent curves that appear in the plot may be analyzed to determine the speed and direction the object is traveling.

  13. Performance evaluation of mail-scanning cameras

    NASA Astrophysics Data System (ADS)

    Rajashekar, Umesh; Vu, Tony Tuan; Hooning, John E.; Bovik, Alan Conrad

    2010-04-01

    Letter-scanning cameras (LSCs) form the front- end imaging systems for virtually all mail-scanning systems that are currently used to automatically sort mail products. As with any vision-dependent technology, the quality of the images generated by the camera is fundamental to the overall performance of the system. We present novel techniques for objective evaluation of LSCs using comparative imaging-a technique that involves measuring the fidelity of target images produced by a camera with reference to an image of the same target captured at very high quality. Such a framework provides a unique opportunity to directly quantify the camera's ability to capture real-world targets, such as handwritten and printed text. Noncomparative techniques were also used to measure properties such as the camera's modulation transfer function, dynamic range, and signal-to-noise ratio. To simulate real-world imaging conditions, application-specific test samples were designed using actual mail product materials.

  14. Scanning thermal plumes. [from power plant condensers

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Madding, R. P.; Green, T., III

    1974-01-01

    In order to study the behavior and effects of thermal plumes associated with the condenser cooling of power plants, thermal line scans are periodically made from aircraft over all power plants along the Wisconsin shore of Lake Michigan. Simultaneous ground truth is also gathered with a radiometer. Some sequential imagery has been obtained for periods up to two hours to study short term variations in the surface temperature of the plume. The article concentrates on the techniques used to analyze thermal scanner data for a single power plant which was studied intensively. The calibration methods, temperature dependence of the thermal scanner, and calculation of the modulation transfer function for the scanner are treated. It is concluded that obtaining quantitative surface-temperature data from thermal scanning is a nontrivial task. Accuracies up to plus or minus 0.1 C are attainable.

  15. Radiation risks from pediatric computed tomography scanning.

    PubMed

    Chodick, Gabriel; Kim, Kwang Pyo; Shwarz, Michael; Horev, Gad; Shalev, Varda; Ron, Elaine

    2009-12-01

    Although radiological exams are not frequently used to diagnose unsuspected endocrine disease, computed tomography (CT) plays a significant role in today's endocrinology. Despite the known association between radiation exposure during childhood and cancer, the use of pediatric CT, which delivers non-negligible radiation doses to some organs and tissues, continues to rise sharply. The purpose of this review is to describe the current use of pediatric CT, explain basic concepts in ionizing radiation physics and dosimetry, and discuss potential risks from pediatric CT scans. Finally, we will summarize two recent programs for reducing and controlling exposure to ionizing radiation from pediatric CT: the As Low As Reasonably Achievable (ALARA) concept and the Image Gently initiative. Promoting public awareness and particularly educating referring physicians, including endocrinologists, about the potential radiation-associated risks from CT scans, is essential for reducing unnecessary radiation exposure from CT in children.

  16. CS-Studio Scan System Parallelization

    SciTech Connect

    Kasemir, Kay; Pearson, Matthew R

    2015-01-01

    For several years, the Control System Studio (CS-Studio) Scan System has successfully automated the operation of beam lines at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS). As it is applied to additional beam lines, we need to support simultaneous adjustments of temperatures or motor positions. While this can be implemented via virtual motors or similar logic inside the Experimental Physics and Industrial Control System (EPICS) Input/Output Controllers (IOCs), doing so requires a priori knowledge of experimenters requirements. By adding support for the parallel control of multiple process variables (PVs) to the Scan System, we can better support ad hoc automation of experiments that benefit from such simultaneous PV adjustments.

  17. Scanning Josephson spectroscopy on the atomic scale

    NASA Astrophysics Data System (ADS)

    Randeria, Mallika T.; Feldman, Benjamin E.; Drozdov, Ilya K.; Yazdani, Ali

    2016-04-01

    The Josephson effect provides a direct method to probe the strength of the pairing interaction in superconductors. By measuring the phase fluctuating Josephson current between a superconducting tip of a scanning tunneling microscope and a BCS superconductor with isolated magnetic adatoms on its surface, we demonstrate that the spatial variation of the pairing order parameter can be characterized on the atomic scale. This system provides an example where the local pairing potential suppression is not directly reflected in the spectra measured via quasiparticle tunneling. Spectroscopy with such superconducting tips also shows signatures of previously unexplored Andreev processes through individual impurity-bound Shiba states. The atomic resolution achieved here establishes scanning Josephson spectroscopy as a promising technique for the study of novel superconducting phases.

  18. High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories.

    PubMed

    Tuma, Tomas; Lygeros, John; Kartik, V; Sebastian, Abu; Pantazi, Angeliki

    2012-05-11

    A novel scan trajectory for high-speed scanning probe microscopy is presented in which the probe follows a two-dimensional Lissajous pattern. The Lissajous pattern is generated by actuating the scanner with two single-tone harmonic waveforms of constant frequency and amplitude. Owing to the extremely narrow frequency spectrum, high imaging speeds can be achieved without exciting the unwanted resonant modes of the scanner and without increasing the sensitivity of the feedback loop to the measurement noise. The trajectory also enables rapid multiresolution imaging, providing a preview of the scanned area in a fraction of the overall scan time. We present a procedure for tuning the spatial and the temporal resolution of Lissajous trajectories and show experimental results obtained on a custom-built atomic force microscope (AFM). Real-time AFM imaging with a frame rate of 1 frame s⁻¹ is demonstrated.

  19. Two-dimensional thermography image retrieval from zig-zag scanned data with TZ-SCAN

    NASA Astrophysics Data System (ADS)

    Okumura, Hiroshi; Yamasaki, Ryohei; Arai, Kohei

    2008-10-01

    TZ-SCAN is a simple and low cost thermal imaging device which consists of a single point radiation thermometer on a tripod with a pan-tilt rotator, a DC motor controller board with a USB interface, and a laptop computer for rotator control, data acquisition, and data processing. TZ-SCAN acquires a series of zig-zag scanned data and stores the data as CSV file. A 2-D thermal distribution image can be retrieved by using the second quefrency peak calculated from TZ-SCAN data. An experiment is conducted to confirm the validity of the thermal retrieval algorithm. The experimental result shows efficient accuracy for 2-D thermal distribution image retrieval.

  20. Cryogenic Multichannel Pressure Sensor With Electronic Scanning

    NASA Technical Reports Server (NTRS)

    Hopson, Purnell, Jr.; Chapman, John J.; Kruse, Nancy M. H.

    1994-01-01

    Array of pressure sensors operates reliably and repeatably over wide temperature range, extending from normal boiling point of water down to boiling point of nitrogen. Sensors accurate and repeat to within 0.1 percent. Operate for 12 months without need for recalibration. Array scanned electronically, sensor readings multiplexed and sent to desktop computer for processing and storage. Used to measure distributions of pressure in research on boundary layers at high Reynolds numbers, achieved by low temperatures.

  1. High-performance reactionless scan mechanism

    NASA Technical Reports Server (NTRS)

    Williams, Ellen I.; Summers, Richard T.; Ostaszewski, Miroslaw A.

    1995-01-01

    A high-performance reactionless scan mirror mechanism was developed for space applications to provide thermal images of the Earth. The design incorporates a unique mechanical means of providing reactionless operation that also minimizes weight, mechanical resonance operation to minimize power, combined use of a single optical encoder to sense coarse and fine angular position, and a new kinematic mount of the mirror. A flex pivot hardware failure and current project status are discussed.

  2. Angular Approach Scanning Ion Conductance Microscopy.

    PubMed

    Shevchuk, Andrew; Tokar, Sergiy; Gopal, Sahana; Sanchez-Alonso, Jose L; Tarasov, Andrei I; Vélez-Ortega, A Catalina; Chiappini, Ciro; Rorsman, Patrik; Stevens, Molly M; Gorelik, Julia; Frolenkov, Gregory I; Klenerman, David; Korchev, Yuri E

    2016-05-24

    Scanning ion conductance microscopy (SICM) is a super-resolution live imaging technique that uses a glass nanopipette as an imaging probe to produce three-dimensional (3D) images of cell surface. SICM can be used to analyze cell morphology at nanoscale, follow membrane dynamics, precisely position an imaging nanopipette close to a structure of interest, and use it to obtain ion channel recordings or locally apply stimuli or drugs. Practical implementations of these SICM advantages, however, are often complicated due to the limitations of currently available SICM systems that inherited their design from other scanning probe microscopes in which the scan assembly is placed right above the specimen. Such arrangement makes the setting of optimal illumination necessary for phase contrast or the use of high magnification upright optics difficult. Here, we describe the designs that allow mounting SICM scan head on a standard patch-clamp micromanipulator and imaging the sample at an adjustable approach angle. This angle could be as shallow as the approach angle of a patch-clamp pipette between a water immersion objective and the specimen. Using this angular approach SICM, we obtained topographical images of cells grown on nontransparent nanoneedle arrays, of islets of Langerhans, and of hippocampal neurons under upright optical microscope. We also imaged previously inaccessible areas of cells such as the side surfaces of the hair cell stereocilia and the intercalated disks of isolated cardiac myocytes, and performed targeted patch-clamp recordings from the latter. Thus, our new, to our knowledge, angular approach SICM allows imaging of living cells on nontransparent substrates and a seamless integration with most patch-clamp setups on either inverted or upright microscopes, which would facilitate research in cell biophysics and physiology.

  3. High-speed scanning: an improved algorithm

    NASA Astrophysics Data System (ADS)

    Nachimuthu, A.; Hoang, Khoi

    1995-10-01

    In using machine vision for assessing an object's surface quality, many images are required to be processed in order to separate the good areas from the defective ones. Examples can be found in the leather hide grading process; in the inspection of garments/canvas on the production line; in the nesting of irregular shapes into a given surface... . The most common method of subtracting the total area from the sum of defective areas does not give an acceptable indication of how much of the `good' area can be used, particularly if the findings are to be used for the nesting of irregular shapes. This paper presents an image scanning technique which enables the estimation of useable areas within an inspected surface in terms of the user's definition, not the supplier's claims. That is, how much useable area the user can use, not the total good area as the supplier estimated. An important application of the developed technique is in the leather industry where the tanner (the supplier) and the footwear manufacturer (the user) are constantly locked in argument due to disputed quality standards of finished leather hide, which disrupts production schedules and wasted costs in re-grading, re- sorting... . The developed basic algorithm for area scanning of a digital image will be presented. The implementation of an improved scanning algorithm will be discussed in detail. The improved features include Boolean OR operations and many other innovative functions which aim at optimizing the scanning process in terms of computing time and the accurate estimation of useable areas.

  4. Cryogenic Multichannel Pressure Sensor With Electronic Scanning

    NASA Technical Reports Server (NTRS)

    Hopson, Purnell, Jr.; Chapman, John J.; Kruse, Nancy M. H.

    1994-01-01

    Array of pressure sensors operates reliably and repeatably over wide temperature range, extending from normal boiling point of water down to boiling point of nitrogen. Sensors accurate and repeat to within 0.1 percent. Operate for 12 months without need for recalibration. Array scanned electronically, sensor readings multiplexed and sent to desktop computer for processing and storage. Used to measure distributions of pressure in research on boundary layers at high Reynolds numbers, achieved by low temperatures.

  5. Scanning electron microscope view of iron crystal

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A scanning electron microscope photograph of iron crystals which grow in a small vug or cavity in a recrystallized breccia (fragmented rock) from the Apollo 15 Hadley-Apennino lunar landing site. The largest crystal is three microns across. Perfectly developed crystals such as these indicate slow formation from a hot vapor as the rock was cooling. The crystals are resting on an interlocking lattice of pyroxene (calsium-magnesium-iron silicate).

  6. Laser Beam Scanning For Remote Control

    NASA Astrophysics Data System (ADS)

    Neyroud, Jean; Metayer, Philippe; Danel, Francois

    1980-05-01

    The skiers access-control to skilifts requires to work unconstrainedly. Therefore, an optical remote control has been considered. A very low-power laser scanning allows to locate the user's skipass and read data barcodes printed on a reflective tag. Optical and electronical filters associated with a microcomputerized decoder allow informations reconstitution and the label validity checking. Each item of this product has been designed to aim the desired performances in the easiest and lowest-cost means.

  7. Differential scanning calorimetry (DSC) of semicrystalline polymers.

    PubMed

    Schick, C

    2009-11-01

    Differential scanning calorimetry (DSC) is an effective analytical tool to characterize the physical properties of a polymer. DSC enables determination of melting, crystallization, and mesomorphic transition temperatures, and the corresponding enthalpy and entropy changes, and characterization of glass transition and other effects that show either changes in heat capacity or a latent heat. Calorimetry takes a special place among other methods. In addition to its simplicity and universality, the energy characteristics (heat capacity C(P) and its integral over temperature T--enthalpy H), measured via calorimetry, have a clear physical meaning even though sometimes interpretation may be difficult. With introduction of differential scanning calorimeters (DSC) in the early 1960s calorimetry became a standard tool in polymer science. The advantage of DSC compared with other calorimetric techniques lies in the broad dynamic range regarding heating and cooling rates, including isothermal and temperature-modulated operation. Today 12 orders of magnitude in scanning rate can be covered by combining different types of DSCs. Rates as low as 1 microK s(-1) are possible and at the other extreme heating and cooling at 1 MK s(-1) and higher is possible. The broad dynamic range is especially of interest for semicrystalline polymers because they are commonly far from equilibrium and phase transitions are strongly time (rate) dependent. Nevertheless, there are still several unsolved problems regarding calorimetry of polymers. I try to address a few of these, for example determination of baseline heat capacity, which is related to the problem of crystallinity determination by DSC, or the occurrence of multiple melting peaks. Possible solutions by using advanced calorimetric techniques, for example fast scanning and high frequency AC (temperature-modulated) calorimetry are discussed.

  8. The scanning model for translation: an update

    PubMed Central

    1989-01-01

    The small (40S) subunit of eukaryotic ribosomes is believed to bind initially at the capped 5'-end of messenger RNA and then migrate, stopping at the first AUG codon in a favorable context for initiating translation. The first-AUG rule is not absolute, but there are rules for breaking the rule. Some anomalous observations that seemed to contradict the scanning mechanism now appear to be artifacts. A few genuine anomalies remain unexplained. PMID:2645293

  9. Mapping with side-scan sonar

    SciTech Connect

    Prior, D.B.; Coleman, J.M.; Roberts, H.H.

    1981-04-01

    The use of sideways scanning sonar as a technique for detailed sea-floor mapping is described in this article. Sea-floor mapping of the continental shelf is becoming increasingly necessary for the development of oil and gas resources. More recently attempts are being made to extend the survey capabilities to deeper water shelf margins, slopes, and basins. Conventional systems, digital systems, survey ranges, data processing, mosaics, and applications are discussed. (DMC)

  10. Observation of Superlubricity by Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Hirano, Motohisa; Shinjo, Kazumasa; Kaneko, Reizo; Murata, Yoshitada

    1997-02-01

    Experimental evidence of superlubricity, the state of vanishing friction, is obtained by examining systems of sliding atomically clean surfaces by using ultrahigh vacuum scanning tunneling microscopy. The experimental results agree with theoretical predictions: Friction is not observed in the superlubricity regime in measurements capable of resolving a friction force of 3×10-9 N, whereas friction of 8×10-8 N, which is comparable to theoretical values, is observed in the friction regime.

  11. Circular zig-zag scan video format

    DOEpatents

    Peterson, C. Glen; Simmons, Charles M.

    1992-01-01

    A circular, ziz-zag scan for use with vidicon tubes. A sine wave is generated, rectified and its fourth root extracted. The fourth root, and its inverse, are used to generate horizontal ramp and sync signals. The fourth root is also used to generate a vertical sync signal, and the vertical sync signal, along with the horizontal sync signal, are used to generate the vertical ramp signal. Cathode blanking and preamplifier clamp signals are also obtained from the vertical sync signal.

  12. Scanning electron microscopy of superficial white onychomycosis*

    PubMed Central

    de Almeida Jr., Hiram Larangeira; Boabaid, Roberta Oliveira; Timm, Vitor; Silva, Ricardo Marques e; de Castro, Luis Antonio Suita

    2015-01-01

    Superficial white onychomycosis is characterized by opaque, friable, whitish superficial spots on the nail plate. We examined an affected halux nail of a 20-year-old male patient with scanning electron microscopy. The mycological examination isolated Trichophyton mentagrophytes. Abundant hyphae with the formation of arthrospores were found on the nail's surface, forming small fungal colonies. These findings showed the great capacity for dissemination of this form of onychomycosis. PMID:26560225

  13. Scanning electron microscope view of iron crystal

    NASA Image and Video Library

    1972-11-10

    A scanning electron microscope photograph of iron crystals which grow in a small vug or cavity in a recrystallized breccia (fragmented rock) from the Apollo 15 Hadley-Apennino lunar landing site. The largest crystal is three microns across. Perfectly developed crystals such as these indicate slow formation from a hot vapor as the rock was cooling. The crystals are resting on an interlocking lattice of pyroxene (calsium-magnesium-iron silicate).

  14. A mini-rapid-scan-spectrophotometer.

    PubMed

    Schmidt, Werner

    2004-02-27

    The mini-rapid-scan-spectrophotometer (Mini-RSS) is a scanning single-beam spectrophotometer that has been patented. It is based on a minimum of reflections and involves exclusively mirrors as beam-deflecting components. This way stray light is minimized, which results in an excellent light-throughput, high dynamics, low cost, compactness and rigidity. The Mini-RSS has been designed as a multi-purpose instrument that allows absorption, transmission, reflection, fluorescence and luminescence measurements in a single-beam mode. Its spectral range extends from the UV and visible spectrum to the IR. This provides for the possibility to measure even optically unfavorable, highly turbid or scattering samples that would be otherwise inaccessible to investigations with commercial spectrophotometers. A miniaturized and very sensitive photomultiplier-module (PM) of high dynamics allows in the visible spectral range absorbance measurements that cover up to four OD units. The Mini-RSS is capable of scanning up to 100 spectra per second with a resolution of 12 bit and 500 points. The linear dispersion is currently 5 nm and the stray light level <0.01%.

  15. Multitip scanning bio-Kelvin probe

    NASA Astrophysics Data System (ADS)

    Baikie, I. D.; Smith, P. J. S.; Porterfield, D. M.; Estrup, P. J.

    1999-03-01

    We have developed a novel multitip scanning Kelvin probe which can measure changes in biological surface potential ΔVs to within 2 mV and, quasisimultaneously monitor displacement to <1 μm. The control and measurement subcomponents are PC based and incorporate a flexible user interface permitting software control of each individual tip, measurement, and scan parameters. We review the mode of operation and design features of the scanning bio-Kelvin probe including tip steering, signal processing, tip calibration, and novel tip tracking/dithering routines. This system uniquely offers both tip-to-sample spacing control (which is essential to avoid spurious changes in ΔVs due to variations in mean spacing) and a dithering routine to maintain tip orientation to the biological specimen, irrespective of the latter's movement. These features permit long term (>48 h) "active" tracking of the displacement and biopotentials developed along and around a plant shoot in response to an environmental stimulus, e.g., differential illumination (phototropism) or changes in orientation (gravitropism).

  16. Photometric Repeatability of Scanned Imagery: UVIS

    NASA Astrophysics Data System (ADS)

    Shanahan, Clare E.; McCullough, Peter; Baggett, Sylvia

    2017-08-01

    We provide the preliminary results of a study on the photometric repeatability of spatial scans of bright, isolated white dwarf stars with the UVIS channel of the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We analyze straight-line scans from the first pair of identical orbits of HST program 14878 to assess if sub 0.1% repeatability can be attained with WFC3/UVIS. This study is motivated by the desire to achieve better signal-to-noise in the UVIS contamination and stability monitor, in which observations of standard stars in staring mode have been taken from the installation of WFC3 in 2009 to the present to assess temporal photometric stability. Higher signal to noise in this program would greatly benefit the sensitivity to detect contamination, and to better characterize the observed small throughput drifts over time. We find excellent repeatability between identical visits of program 14878, with sub 0.1% repeatability achieved in most filters. These! results support the initiative to transition the staring mode UVIS contamination and photometric stability monitor from staring mode images to spatial scans.

  17. Optical scanning cryptography for secure wireless transmission.

    PubMed

    Poon, Ting-Chung; Kim, Taegeun; Doh, Kyu

    2003-11-10

    We propose a method for secure wireless transmission of encrypted information. By use of an encryption key, an image or document is optically encrypted by optical heterodyne scanning and hence encryption is performed on the fly. We call this technique optical scanning cryptography. The output of the heterodyne encrypted signal is at radio frequency and can be directly sent through an antenna to a secure site for digital storage to be prepared for decryption. In the secure site, an identical optical scanning system to that used for encryption is used, together with a decryption key, to generate an electrical signal. The electrical signal is then processed and sent to a computer to be used for decryption. Utilizing the stored information received from the encryption stage and the electrical information from the secure site, a digital decryption unit performs a decryption algorithm. If the encryption key and the decryption key are matched, the decryption unit will decrypt the image or document faithfully. The overall cryptosystem can perform the incoherent optical processing counterpart of the well-known coherent double-random phase-encoding technique. We present computer simulations of the idea.

  18. CCD scanning for asteroids and comets

    NASA Technical Reports Server (NTRS)

    Gehrels, T.; Mcmillan, R. S.

    1986-01-01

    A change coupled device (CCD) is used in a scanning mode to find new asteroids and recover known asteroids and comet nuclei. Current scientific programs include recovery of asteroids and comet nuclei requested by the Minor Planet Center (MPC), discovery of new asteroids in the main belt and of unusual orbital types, and follow-up astrometry of selected new asteroids discovered. The routine six sigma limiting visual magnitude is 19.6 and slightly more than a square degree is scanned three times every 90 minutes of observing time during the fortnight centered on New Moon. Semiautomatic software for detection of moving objects is in routine use; angular speeds as low as 11.0 arcseconds per hour were distinguished from the effects of the Earth's atmosphere on the field of view. A typical set of three 29-minute scans near the opposition point along the ecliptic typically nets at least 5 new main-belt asteroids down to magnitude 19.6. In 18 observing runs (months) 43 asteroids were recovered, astrometric and photometric data on 59 new asteroids were reported, 10 new asteroids with orbital elements were consolidated, and photometry and positions of 22 comets were reported.

  19. Impact echo scanning of concrete and wood

    NASA Astrophysics Data System (ADS)

    Sack, Dennis A.; Olson, Larry D.; Aouad, Marwan F.

    1995-05-01

    This paper presents an overview of a new nondestructive testing (NDT) system that allows rapid nondestructive assessment of many types of structural materials. The new system is based on scanning impact echo (IE), using a rolling receiver, digitally controlled impact source, and a distance measurement wheel integrated into a system that is capable of performing over 3000 IE tests per hour. The system has been successfully used on both concrete and wood for condition assessment. Previously, impact echo testing has been limited to point-by-point testing at rates of typically 30 - 60 points per hour. The new system is usable on any flat, relatively smooth surface such as floor slabs, pavements, walls, columns, beams, etc. In addition to IE scanning, the new system has recently been expanded to allow the performance of spectral analysis of surface waves (SASW) scanning on concrete and wood. The SASW method allows the measurement of material stiffness (modulus) versus depth, and therefore can give a profile of the material condition versus depth. Included in this paper are brief discussions of the IE and SASW methods, the scanner system hardware, and the software which was developed to enable efficient processing, analysis, and display of the test data and results. Also included are sample data plots and a case history presentation of the use of the system in the field, including one in which 23,000 IE tests were performed on an elevated floor slab in approximately 16 hours of testing time.

  20. Holographic Optical Elements as Scanning Lidar Telescopes

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2005-01-01

    We have developed and investigated the use of holographic optical elements (HOEs) and holographic transmission gratings for scanning lidar telescopes. For example, rotating a flat HOE in its own plane with the focal spot on the rotation axis makes a very simple and compact conical scanning telescope. We developed and tested transmission and reflection HOEs for use at the first three harmonic wavelengths of Nd:YAG lasers. The diffraction efficiency, diffraction angle, focal length, focal spot size and optical losses were measured for several HOEs and holographic gratings, and found to be suitable for use as lidar receiver telescopes, and in many cases could also serve as the final collimating and beam steering optic for the laser transmitter. Two lidar systems based on this technology have been designed, built, and successfully tested in atmospheric science applications. This technology will enable future spaceborne lidar missions by significantly lowering the size, weight, power requirement and cost of a large aperture, narrow field of view scanning telescope.