Science.gov

Sample records for 99mtc-tetrofosmin myocardial spect

  1. Quantitative myocardial perfusion SPECT.

    PubMed

    Tsui, B M; Frey, E C; LaCroix, K J; Lalush, D S; McCartney, W H; King, M A; Gullberg, G T

    1998-01-01

    In recent years, there has been much interest in the clinical application of attenuation compensation to myocardial perfusion single photon emission computed tomography (SPECT) with the promise that accurate quantitative images can be obtained to improve clinical diagnoses. The different attenuation compensation methods that are available create confusion and some misconceptions. Also, attenuation-compensated images reveal other image-degrading effects including collimator-detector blurring and scatter that are not apparent in uncompensated images. This article presents basic concepts of the major factors that degrade the quality and quantitative accuracy of myocardial perfusion SPECT images, and includes a discussion of the various image reconstruction and compensation methods and misconceptions and pitfalls in implementation. The differences between the various compensation methods and their performance are demonstrated. Particular emphasis is directed to an approach that promises to provide quantitative myocardial perfusion SPECT images by accurately compensating for the 3-dimensional (3-D) attenuation, collimator-detector response, and scatter effects. With advances in the computer hardware and optimized implementation techniques, quantitatively accurate and high-quality myocardial perfusion SPECT images can be obtained in clinically acceptable processing time. Examples from simulation, phantom, and patient studies are used to demonstrate the various aspects of the investigation. We conclude that quantitative myocardial perfusion SPECT, which holds great promise to improve clinical diagnosis, is an achievable goal in the near future.

  2. Myocardial Perfusion SPECT 2015 in Germany

    PubMed Central

    Burchert, Wolfgang; Schäfer, Wolfgang; Hacker, Marcus

    2016-01-01

    Summary Aim The working group Cardiovascular Nuclear Medicine of the German Society of Nuclear Medicine presents the results of the 7th survey of myocardial perfusion SPECT (MPS) of the reporting year 2015. Method 268 questionnaires (173 practices [PR], 67 hospitals [HO], 28 university hospitals [UH]) were evaluated. Results of the last survey from 2012 are set in squared brackets. Results MPS of 121 939 [105 941] patients were reported. 98 % [95 %] of all MPS were performed with Tc-99m radiopharmaceuticals and 2 % [5 %] with Tl-201. 78 % [79 %] of all patients were studied in PR, 14 % [15 %] in HO, and 8 % [6 %] in UH. A pharmacological stress test was performed in 43 % [39 %] (22 % [24 %] adenosine, 20 % [9 %] regadenoson, 1% [6 %] dipyridamole or dobutamine). Attenuation correction was applied in 25 % [2009: 10 %] of MPS. Gated SPECT was performed in 78 % [70 %] of all rest MPS, in 80 % [73 %] of all stress and in 76 % [67 %] of all stress and rest MPS. 53 % [33 %] of all nuclear medicine departments performed MPS scoring by default, whereas 24 % [41 %] did not apply any quantification. 31 % [26 %] of all departments noticed an increase in their counted MPS and 29 % [29 %] no changes. Data from 89 departments which participated in all surveys showed an increase in MPS count of 11.1 % (PR: 12.2 %, HO: 4.8 %, UH: 18.4 %). 70 % [60 %] of the MPS were requested by ambulatory care cardiologists. Conclusion The 2015 MPS survey reveals a high-grade adherence of routine MPS practice to current guidelines. The positive trend in MPS performance and number of MPS already observed in 2012 continues. Educational training remains necessary in the field of SPECT scoring. PMID:27909712

  3. Recent developments and future prospects of SPECT myocardial perfusion imaging.

    PubMed

    Zaman, Maseeh Uz; Hashmi, Ibrahim; Fatima, Nosheen

    2010-10-01

    Myocardial perfusion SPECT imaging is the most commonly performed functional imaging for assessment of coronary artery disease. High diagnostic accuracy and incremental prognostic value are the major benefits while suboptimal spatial resolution and significant radiation exposure are the main limitations. Its ability to detect hemodynamic significance of lesions seen on multidetector CT angiogram (MDCTA) has paved the path for a successful marriage between anatomical and functional imaging modalities in the form of hybrid SPECT/MDCTA system. In recent years, there have been enormous efforts by industry and academia to develop new SPECT imaging systems with better sensitivity, resolution, compact design and new reconstruction algorithms with ability to improve image quality and resolution. Furthermore, expected arrival of Tc-99m-labeled deoxyglucose in next few years would further strengthen the role of SPECT in imaging hibernating myocardium. In view of these developments, it seems that SPECT would enjoy its pivotal role in spite of major threat to be replaced by fluorine-18-labeled positron emission tomography perfusion and glucose metabolism imaging agents.

  4. Constrictive pericarditis causing a positive TI-201 SPECT stress test for myocardial ischemia

    SciTech Connect

    Matthews, R.J.; Lightfoote, J.; Grusd, R.S. )

    1990-08-01

    A case of constritive pericarditis was demonstrated by a positive thallium SPECT stress test for myocardial ischemia. After pericardiectomy, the repeat thallium stress test was normal. The disappearance of the criteria for a positive test suggests that constrictive pericarditis can cause myocardial ischemia, which can be demonstrated by thallium SPECT stress testing.

  5. Delayed redistribution in thallium 201 SPECT myocardial perfusion studies

    SciTech Connect

    Ziessman, H.A.; Keyes, J.W. Jr.; Fox, L.M.; Green, C.E.; Fox, S.M. )

    1989-11-01

    Stress {sup 201}Tl myocardial perfusion studies are useful in differentiating viable, reversibly ischemic from infarcted myocardium. A perfusion defect that shows redistribution 2 to 4 h after {sup 201}Tl injection is diagnostic of ischemia, while a fixed defect suggests infarction. However, occasional patients with a fixed defect at 4 h have redistribution at 24 h. This study evaluates the frequency and significance of this delayed redistribution with SPECT {sup 201}Tl. Patients with either no or incomplete redistribution at 4 h had repeat imaging 18 to 48 h later. Delayed redistribution was seen in 8/26 (31 percent). Four had incomplete and four had no redistribution at 4 h. Delayed redistribution with SPECT {sup 201}Tl is more common than generally appreciated, and we recommend delayed images in patients with fixed perfusion defects or incomplete redistribution at 4-h imaging, particularly in patients with previous infarctions for whom a revascularization procedure is being considered.

  6. Myocardial Perfusion SPECT Imaging in Patients after Percutaneous Coronary Intervention.

    PubMed

    Georgoulias, Panagiotis; Valotassiou, Varvara; Tsougos, Ioannis; Demakopoulos, Nikolaos

    2010-05-01

    Coronary artery disease (CAD) is the most prevalent form of cardiovascular disease affecting about 13 million Americans, while more than one million percutaneous transluminal intervention (PCI) procedures are performed annually in the USA. The relative high occurrence of restenosis, despite stent implementation, seems to be the primary limitation of PCI. Over the last decades, single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI), has proven an invaluable tool for the diagnosis of CAD and patients' risk stratification, providing useful information regarding the decision about revascularization and is well suited to assess patients after intervention. Information gained from post-intervention MPI is crucial to differentiate patients with angina from those with exo-cardiac chest pain syndromes, to assess peri-intervention myocardial damage, to predict-detect restenosis after PCI, to detect CAD progression in non-revascularized vessels, to evaluate the effects of intervention if required for occupational reasons and to evaluate patients' long-term prognosis. On the other hand, chest pain and exercise electrocardiography are largely unhelpful in identifying patients at risk after PCI.Although there are enough published data demonstrating the value of myocardial perfusion SPECT imaging in patients after PCI, there is still debate on whether or not these tests should be performed routinely.

  7. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision.

    PubMed

    Verberne, Hein J; Acampa, Wanda; Anagnostopoulos, Constantinos; Ballinger, Jim; Bengel, Frank; De Bondt, Pieter; Buechel, Ronny R; Cuocolo, Alberto; van Eck-Smit, Berthe L F; Flotats, Albert; Hacker, Marcus; Hindorf, Cecilia; Kaufmann, Philip A; Lindner, Oliver; Ljungberg, Michael; Lonsdale, Markus; Manrique, Alain; Minarik, David; Scholte, Arthur J H A; Slart, Riemer H J A; Trägårdh, Elin; de Wit, Tim C; Hesse, Birger

    2015-11-01

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated 2015 procedural guidelines are highlighted, focusing on the important changes related to new instrumentation with improved image information and the possibility to reduce radiation exposure, which is further discussed in relation to the recent developments of new International Commission on Radiological Protection (ICRP) models. Introduction of the selective coronary vasodilator regadenoson and the use of coronary CT-contrast agents for hybrid imaging with SPECT/CT angiography are other important areas for nuclear cardiology that were not included in the previous guidelines. A large number of minor changes have been described in more detail in the fully revised version available at the EANM home page: http://eanm.org/publications/guidelines/2015_07_EANM_FINAL_myocardial_perfusion_guideline.pdf .

  8. Hotspot quantification of myocardial focal tracer uptake from molecular targeted SPECT/CT images: experimental validation

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Hwa; Sahul, Zakir; Weyman, Christopher A.; Ryder, William J.; Dione, Donald P.; Dobrucki, Lawrence W.; Mekkaoui, Choukri; Brennan, Matthew P.; Hu, Xiaoyue; Hawley, Christi; Sinusas, Albert J.

    2008-03-01

    We have developed a new single photon emission computerized tomography (SPECT) hotspot quantification method incorporating extra cardiac activity correction and hotspot normal limit estimation. The method was validated for estimation accuracy of myocardial tracer focal uptake in a chronic canine model of myocardial infarction (MI). Dogs (n = 4) at 2 weeks post MI were injected with Tl-201 and a Tc-99m-labeled hotspot tracer targeted at matrix metalloproteinases (MMPs). An external point source filled with Tc-99m was used for a reference of absolute radioactivity. Dual-isotope (Tc-99m/Tl-201) SPECT images were acquired simultaneously followed by an X-ray CT acquisition. Dogs were sacrificed after imaging for myocardial gamma well counting. Images were reconstructed with CT-based attenuation correction (AC) and without AC (NAC) and were quantified using our quantification method. Normal limits for myocardial hotspot uptake were estimated based on 3 different schemes: maximum entropy, meansquared-error minimization (MSEM) and global minimization. Absolute myocardial hotspot uptake was quantified from SPECT images using the normal limits and compared with well-counted radioactivity on a segment-by-segment basis (n = 12 segments/dog). Radioactivity was expressed as % injected dose (%ID). There was an excellent correlation (r = 0.78-0.92) between the estimated activity (%ID) derived using the SPECT quantitative approach and well-counting, independent of AC. However, SPECT quantification without AC resulted in the significant underestimation of radioactivity. Quantification using SPECT with AC and the MSEM normal limit yielded the best results compared with well-counting. In conclusion, focal myocardial "hotspot" uptake of a targeted radiotracer can be accurately quantified in vivo using a method that incorporates SPECT imaging with AC, an external reference, background scatter compensation, and a suitable normal limit. This hybrid SPECT/CT approach allows for the serial

  9. SPECT myocardial perfusion imaging for the assessment of left ventricular mechanical dyssynchrony

    PubMed Central

    Chen, Ji; Garcia, Ernest V.; Bax, Jeroen J.; Iskandrian, Ami E.; Borges-Neto, Salvador; Soman, Prem

    2012-01-01

    Phase analysis of gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is an evolving technique for measuring LV mechanical dyssynchrony. Since its inception in 2005, it has undergone considerable technical development and clinical evaluation. This article reviews the background, the technical and clinical characteristics, and evolving clinical applications of phase analysis of gated SPECT MPI in patients requiring cardiac resynchronization therapy or implantable cardioverter defibrillator therapy and in assessing LV diastolic dyssynchrony. PMID:21567281

  10. Automated three-dimensional quantification of myocardial perfusion and brain SPECT.

    PubMed

    Slomka, P J; Radau, P; Hurwitz, G A; Dey, D

    2001-01-01

    To allow automated and objective reading of nuclear medicine tomography, we have developed a set of tools for clinical analysis of myocardial perfusion tomography (PERFIT) and Brain SPECT/PET (BRASS). We exploit algorithms for image registration and use three-dimensional (3D) "normal models" for individual patient comparisons to composite datasets on a "voxel-by-voxel basis" in order to automatically determine the statistically significant abnormalities. A multistage, 3D iterative inter-subject registration of patient images to normal templates is applied, including automated masking of the external activity before final fit. In separate projects, the software has been applied to the analysis of myocardial perfusion SPECT, as well as brain SPECT and PET data. Automatic reading was consistent with visual analysis; it can be applied to the whole spectrum of clinical images, and aid physicians in the daily interpretation of tomographic nuclear medicine images.

  11. Wiener filtering improves quantification of regional myocardial perfusion with thallium-201 SPECT

    SciTech Connect

    Links, J.M.; Jeremy, R.W.; Dyer, S.M.; Frank, T.L.; Becker, L.C. )

    1990-07-01

    Quantitation of myocardial perfusion with thallium-201 (201Tl) SPECT is limited by finite resolution and image noise. This study examined whether Wiener filtering could improve quantitation of the severity of myocardial perfusion deficits. In 19 anesthetized dogs, adjustable stenoses were placed on the left anterior descending (LAD, n = 12) or circumflex (LCx, n = 7) arteries. Thallium-201 SPECT images were acquired during maximal coronary vasodilation with dipyridamole, and simultaneous measurements of myocardial blood flow were made with microspheres. The relationship between SPECT and microsphere flow deficits in the LAD region was significantly better (p less than 0.05) with Wiener filtering (Y = 0.90X + 0.03, r = 0.78) than with conventional Hanning filtering (Y = 0.66X + 0.34, r = 0.61). Similarly, in the LCx region the relationship between SPECT and microsphere perfusion deficits was better (p less than 0.01) with the Wiener filter (Y = 0.91X + 0.07, r = 0.66) than with the Hanning filter (Y = 0.36X + 0.50, r = 0.40). Wiener filtering improves quantitation of the severity of regional myocardial perfusion deficits, allowing better assessment of the functional significance of coronary artery stenoses.

  12. Myocardial Infarction Area Quantification using High-Resolution SPECT Images in Rats

    PubMed Central

    de Oliveira, Luciano Fonseca Lemos; Mejia, Jorge; de Carvalho, Eduardo Elias Vieira; Lataro, Renata Maria; Frassetto, Sarita Nasbine; Fazan, Rubens; Salgado, Hélio Cesar; Galvis-Alonso, Orfa Yineth; Simões, Marcus Vinícius

    2013-01-01

    Background Imaging techniques enable in vivo sequential assessment of the morphology and function of animal organs in experimental models. We developed a device for high-resolution single photon emission computed tomography (SPECT) imaging based on an adapted pinhole collimator. Objective To determine the accuracy of this system for quantification of myocardial infarct area in rats. Methods Thirteen male Wistar rats (250 g) underwent experimental myocardial infarction by occlusion of the left coronary artery. After 4 weeks, SPECT images were acquired 1.5 hours after intravenous injection of 555 MBq of 99mTc-Sestamibi. The tomographic reconstruction was performed by using specially developed software based on the Maximum Likelihood algorithm. The analysis of the data included the correlation between the area of perfusion defects detected by scintigraphy and extent of myocardial fibrosis assessed by histology. Results The images showed a high target organ/background ratio with adequate visualization of the left ventricular walls and cavity. All animals presenting infarction areas were correctly identified by the perfusion images. There was no difference of the infarct area as measured by SPECT (21.1 ± 21.2%) and by histology (21.7 ± 22.0%; p=0.45). There was a strong correlation between individual values of the area of infarction measured by these two methods. Conclusion The developed system presented adequate spatial resolution and high accuracy for the detection and quantification of myocardial infarction areas, consisting in a low cost and versatile option for high-resolution SPECT imaging of small rodents. PMID:23917507

  13. Myocardial perfusion imaging parameters: IQ-SPECT and conventional SPET system comparison.

    PubMed

    Havel, Martin; Kolacek, Michal; Kaminek, Milan; Dedek, Vladimir; Kraft, Otakar; Sirucek, Pavel

    2014-01-01

    Technological advancement in hardware and software development in myocardial perfusion imaging (MPI) leads to the shortening of acquisition time and reduction of the radiation burden to patients. We compared semiquantitative perfusion results and functional parameters of the left ventricle between new dedicated cardiac system with astigmatic collimators called IQ-SPECT (Siemens Medical Solutions, USA) and conventional single photon emission tomography (SPET) system equipped with standard low energy high resolution collimators. A group of randomly selected 81 patients underwent consecutively the MPI procedure on IQ-SPECT and on conventional SPET systen, both without attenuation correction. The summed scores and the values of the functional parameters of the left ventricle: ejection fraction (EF), end-systolic and end-diastolic volumes (ESV, EDV) received from the automatic analysis software were compared and statistically analyzed. Our results showed that summed scores values were significantly higher for the IQ-SPECT system in comparison to the conventional one. Calculated EF were significantly lower for IQ-SPECT, whereas evaluated left ventricular volumes (LVV) were significantly higher for this system. In conclusion, we recorded significant differences in automatically calculated semiquantitative perfusion and functional parameters when compared uncorrected studies obtained by the IQ-SPECT with the conventional SPET system.

  14. Peritoneal fluid causing inferior attenuation on SPECT thallium-201 myocardial imaging in women

    SciTech Connect

    Rab, S.T.; Alazraki, N.P.; Guertler-Krawczynska, E.

    1988-11-01

    On SPECT thallium images, myocardial left ventricular (LV) anterior wall attenuation due to breast tissue is common in women. In contrast, in men, inferior wall counts are normally decreased compared to anterior counts. The purpose of this report is to describe cases of inferior wall attenuation of counts in women caused by peritoneal fluid, not myocardial disease. Twelve consecutive SPECT thallium myocardial studies performed in women on peritoneal dialysis, being evaluated for kidney transplant, were included in this study. For all studies, 3.5 mCi 201Tl were injected intravenously. Thirty-two images were acquired over 180 degrees (45 degrees RAO progressing to 45 degrees LPO) at 40 sec per stop. SPECT images were reviewed in short axis, horizontal long and vertical long axes. Data were also displayed in bullseye format with quantitative comparison to gender-matched normal files. Ten of 12 female patients studied had inferior wall defects on images, confirmed by bullseye display. All patients had approximately 2 liters of peritoneal fluid. Review of planar rotational views showed diaphragm elevation and fluid margin attenuations affecting left ventricular inferior wall. Thus, peritoneal fluid is a cause of inferior attenuation on 201Tl cardiac imaging.

  15. Identification of Angiogenesis Rich-Viable Myocardium using RGD Dimer based SPECT after Myocardial Infarction

    PubMed Central

    Lee, Min Su; Park, Hyun Soo; Lee, Byung Chul; Jung, Jae Ho; Yoo, Jung Sun; Kim, Sang Eun

    2016-01-01

    Cardiac healing after myocardial ischemia is a complex biological process. Advances in understanding of wound healing response have paved the way for clinical testing of novel molecular imaging to improve clinical outcomes. A key factor for assessing myocardial viability after ischemic injury is the evaluation of angiogenesis accompanying increased expression of integrin αvβ3. Here, we describe the capability of an αvβ3 integrin-targeting SPECT agent, 99mTc-IDA-D-[c(RGDfK)]2, for identification of ischemic but viable myocardium, i.e., hibernating myocardium which is crucial to predict functional recovery after revascularization, the standard care of cardiovascular medicine. In vivo SPECT imaging of rat models with transient coronary occlusion showed significantly high uptake of 99mTc-IDA-D-[c(RGDfK)]2 in the ischemic region. Comparative measurements with 201Tl SPECT and 18F-FDG PET, then, proved that such prominent uptake of 99mTc-IDA-D-[c(RGDfK)]2 exactly matched the hallmark of hibernation, i.e., the perfusion-metabolism mismatch pattern. The uptake of 99mTc-IDA-D-[c(RGDfK)]2 was non-inferior to that of 18F-FDG, confirmed by time-course variation analysis. Immunohistochemical characterization revealed that an intense signal of 99mTc-IDA-D-[c(RGDfK)]2 corresponded to the vibrant angiogenic events with elevated expression of αvβ3 integrin. Together, these results establish that 99mTc-IDA-D-[c(RGDfK)]2 SPECT can serve as a sensitive clinical measure for myocardial salvage to identify the patients who might benefit most from revascularization. PMID:27283041

  16. Reduced dose measurement of absolute myocardial blood flow using dynamic SPECT imaging in a porcine model

    SciTech Connect

    Timmins, Rachel; Klein, Ran; Petryk, Julia; Marvin, Brian; Kemp, Robert A. de; Ruddy, Terrence D.; Wells, R. Glenn; Wei, Lihui

    2015-09-15

    Purpose: Absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR) measurements provide important additional information over traditional relative perfusion imaging. Recent advances in camera technology have made this possible with single-photon emission tomography (SPECT). Low dose protocols are desirable to reduce the patient radiation risk; however, increased noise may reduce the accuracy of MBF measurements. The authors studied the effect of reducing dose on the accuracy of dynamic SPECT MBF measurements. Methods: Nineteen 30–40 kg pigs were injected with 370 + 1110 MBq of Tc-99m sestamibi or tetrofosmin or 37 + 111 MBq of Tl-201 at rest + stress. Microspheres were injected simultaneously to measure MBF. The pigs were imaged in list-mode for 11 min starting at the time of injection using a Discovery NM 530c camera (GE Healthcare). Each list file was modified so that 3/4, 1/2, 1/4, 1/8, 1/16, and 1/32 of the original counts were included in the projections. Modified projections were reconstructed with CT-based attenuation correction and an energy window-based scatter correction and analyzed with FlowQuant kinetic modeling software using a 1-compartment model. A modified Renkin-Crone extraction function was used to convert the tracer uptake rate K1 to MBF values. The SPECT results were compared to those from microspheres. Results: Correlation between SPECT and microsphere MBF values for the full injected activity was r ≥ 0.75 for all 3 tracers and did not significantly degrade over all count levels. The mean MBF and MFR and the standard errors in the estimates were not significantly worse than the full-count data at 1/4-counts (Tc99m-tracers) and 1/2-counts (Tl-201). Conclusions: Dynamic SPECT measurement of MBF and MFR in pigs can be performed with 1/4 (Tc99m-tracers) or 1/2 (Tl-201) of the standard injected activity without significantly reducing accuracy and precision.

  17. Noninvasive Assessment of Myocardial Viability in a Small Animal Model: Comparison of MRI, SPECT, and PET

    PubMed Central

    Thomas, Daniel; Bal, Harshali; Arkles, Jeffrey; Horowitz, James; Araujo, Luis; Acton, Paul D.; Ferrari, Victor A.

    2010-01-01

    Acute myocardial infarction (AMI) research relies increasingly on small animal models and noninvasive imaging methods such as MRI, single-photon emission computed tomography (SPECT), and positron emission tomography (PET). However, a direct comparison among these techniques for characterization of perfusion, viability, and infarct size is lacking. Rats were studied within 18–24 hr post AMI by MRI (4.7 T) and subsequently (40–48 hr post AMI) by SPECT (99Tc-MIBI) and micro-PET (18FDG). A necrosis-specific MRI contrast agent was used to detect AMI, and a fast low angle shot (FLASH) sequence was used to acquire late enhancement and functional images contemporaneously. Infarcted regions showed late enhancement, whereas corresponding radionuclide images had reduced tracer uptake. MRI most accurately depicted AMI, showing the closest correlation and agreement with triphenyl tetrazolium chloride (TTC), followed by SPECT and PET. In some animals a mismatch of reduced uptake in normal myocardium and relatively increased 18FDG uptake in the infarct border zone precluded conventional quantitative analysis. We performed the first quantitative comparison of MRI, PET, and SPECT for reperfused AMI imaging in a small animal model. MRI was superior to the other modalities, due to its greater spatial resolution and ability to detect necrotic myocardium directly. The observed 18FDG mismatch likely represents variable metabolic conditions between stunned myocardium in the infarct border zone and normal myocardium and supports the use of a standardized glucose load or glucose clamp technique for PET imaging of reperfused AMI in small animals. PMID:18228591

  18. Tl-201 myocardial SPECT in patients with Duchenne's muscular dystrophy: A long-term follow-up

    SciTech Connect

    Nagamachi, S.; Jinnouchi, S.; Ono, S.; Hoshi, H.; Inoue, K.; Watanabe, K. )

    1989-11-01

    Tl-201 SPECT was used to evaluate myocardial involvement in 13 patients with Duchenne's muscular dystrophy. Serial studies of 9 patients were done at two-year intervals. The hypoperfused areas of the left ventricle became more prominent with age and severity.

  19. Increased Pericardial Fat Volume Measured From Noncontrast CT Predicts Myocardial Ischemia by SPECT

    PubMed Central

    Tamarappoo, Balaji; Dey, Damini; Shmilovich, Haim; Nakazato, Ryo; Gransar, Heidi; Cheng, Victor Y.; Friedman, John D.; Hayes, Sean W.; Thomson, Louise EJ; Slomka, Piotr J.; Rozanski, Alan; Berman, Daniel S.

    2010-01-01

    OBJECTIVES We evaluated the association between pericardial fat and myocardial ischemia for risk stratification. BACK GROUND Pericardial fat volume (PFV) and thoracic fat volume (TFV) measured from noncontrast computed tomography (CT) performed for calculating coronary calcium score (CCS) are associated with increased CCS and risk for major adverse cardiovascular events. METHODS From a cohort of 1,777 consecutive patients without previously known coronary artery disease (CAD) with noncontrast CT performed within 6 months of single photon emission computed tomography (SPECT), we compared 73 patients with ischemia by SPECT (cases) with 146 patients with normal SPECT (controls) matched by age, gender, CCS category, and symptoms and risk factors for CAD. TFV was automatically measured. Pericardial contours were manually defined within which fat voxels were automatically identified to compute PFV. Computer-assisted visual interpretation of SPECT was performed using standard 17-segment and 5-point score model; perfusion defect was quantified as summed stress score (SSS) and summed rest score (SRS). Ischemia was defined by: SSS – SRS ≥4. Independent relationships of PFV and TFV to ischemia were examined. RESULTS Cases had higher mean PFV (99.1 ± 42.9 cm3 vs. 80.1 ± 31.8 cm3, p = 0.0003) and TFV (196.1 ± 82.7 cm3 vs. 160.8 ± 72.1 cm3, p = 0.001) and higher frequencies of PFV >125 cm3 (22% vs. 8%, p = 0.004) and TFV >200 cm3 (40% vs. 19%, p = 0.001) than controls. After adjustment for CCS, PFV and TFV remained the strongest predictors of ischemia (odds ratio [OR]: 2.91, 95% confidence interval [CI]: 1.53 to 5.52, p = 0.001 for each doubling of PFV; OR: 2.64, 95% CI: 1.48 to 4.72, p = 0.001 for TFV. Receiver operating characteristic analysis showed that prediction of ischemia, as indicated by receiver-operator characteristic area under the curve, improved significantly when PFV or TFV was added to CCS (0.75 vs. 0.68, p = 0.04 for both). CONCLUSIONS Pericardial fat

  20. Integrated assessment of coronary anatomy and myocardial perfusion using a retractable SPECT camera combined with 64-slice CT: initial experience.

    PubMed

    Thilo, Christian; Schoepf, U Joseph; Gordon, Leonie; Chiaramida, Salvatore; Serguson, Jill; Costello, Philip

    2009-04-01

    We evaluated a prototype SPECT system integrated with multidetector row CT (MDCT) for obtaining complementary information on coronary anatomy and hemodynamic lesion significance. Twenty-five consecutive patients with known or suspected coronary artery disease (CAD) underwent routine SPECT myocardial perfusion imaging (MPI). All patients also underwent repeat MPI with a mobile SPECT unit which could be attached to a 64-slice MDCT system. Coronary CT angiography (cCTA) was performed without repositioning the patient. Investigational MPI was compared with routine MPI for detection of myocardial perfusion defects (PD). Two observers diagnosed presence or absence of CAD based on MPI alone, cCTA alone, and based on combined MPI and cCTA with fused image display. In 22/24 patients investigative MPI corresponded with routine MPI (r = 0.80). Stenosis >or= 50% at cCTA was detected in 6/24 patients. Six out of 24 patients had PD at regular MPI. Three of these six patients had no significant stenosis at cCTA. Three out of 19 patients with normal MPI studies had significant stenosis at cCTA. Our initial experience indicates that the integration of SPECT MPI with cCTA is technically feasible and enables the comprehensive evaluation of coronary artery anatomy and myocardial perfusion with a single instrumental setup.

  1. Biphasic thallium 201 SPECT-imaging for the noninvasive diagnosis of myocardial perfusion abnormalities in a child with Kawasaki disease--a case report

    SciTech Connect

    Hausdorf, G.; Nienaber, C.A.; Spielman, R.P.

    1988-02-01

    The mucocutaneous lymph node syndrome (Kawasaki disease) is of increasing importance for the pediatric cardiologist, for coronary aneurysms with the potential of thrombosis and subsequent stenosis can develop in the course of the disease. The authors report a 2 1/2-year-old female child in whom, fourteen months after the acute phase of Kawasaki disease, myocardial infarction occurred. Biphasic thallium 201 SPECT-imaging using dipyridamole depicted anterior wall ischemia and inferolateral infarction. This case demonstrates that noninvasive vasodilation-redistribution thallium 201 SPECT-imaging has the potential to predict reversible myocardial perfusion defects and myocardial necrosis, even in small infants with Kawasaki disease.

  2. Quantitative Tc-99m myocardial perfusion SPECT with 180[degree] acquisition

    SciTech Connect

    Ye, J.

    1992-01-01

    Myocardial perfusion single photon emission computed tomography (SPECT) images using 180[degrees] acquisition are degraded by the effects of scatter, nonuniform attenuation and system geometric resolution variation with source depth. Using a 180[degrees] scan orbit which is closer to the heart may provide higher image resolution, signal-to-noise ratio and defect-to-normal contrast than using a 360[degrees] orbit, however, significant object shape distortion has been observed in the 180[degrees] reconstructed images. A method has been developed that combines filtered back-projection (FBP) with iterative attenuation and three-dimensional (3-D) resolution compensation for Tc-99m myocardial perfusion imaging, data. The non-uniform attenuation coefficient distribution is obtained by a quick transmission scan using a flood source and segmentation of the reconstructed transmission image to define areas of significantly different attenuation. A priori attenuation coefficients are assigned to the areas to form the attenuation distribution map. The 3-D correction is accomplished by including both the non-uniform attenuation and depth-dependent resolution variation in the reprojection procedure of an iterative correction algorithm. The method was evaluated with both simulated and experimental data using clinical protocols with a cardiac phantom. A significant improvement in image resolution was observed with line source images was reduced from approximately 10 mm to 7.l5 mm after 7 iterations of the 3-D correction. The contrast of two perfusion defects to the surrounding normally perfused regions was significantly improved with the correction. Significant improvement in uniformity at different positions in the 100% perfused areas in the myocardium was also observed. The normalized root squared error (NRSE) of one transaxial image from the original source distribution in the simulation study was reduced from 0.8 to 0.2 after 5 iterations of the 3-D correction.

  3. Effect of maintenance oral theophylline on dipyridamole-thallium-201 myocardial imaging using SPECT and dipyridamole-induced hemodynamic changes

    SciTech Connect

    Daley, P.J.; Mahn, T.H.; Zielonka, J.S.; Krubsack, A.J.; Akhtar, R.; Bamrah, V.S.

    1988-06-01

    To evaluate the effect of maintenance oral theophylline therapy on the diagnostic efficacy of dipyridamole-thallium-201 single photon emission computed tomography (SPECT) imaging for coronary artery disease, dipyridamole-thallium-201 SPECT imaging was performed in eight men with documented coronary artery disease before initiation of theophylline treatment and repeated while these patients were receiving therapeutic doses of oral theophylline. Before theophylline treatment, intravenous dipyridamole caused a significant increase in heart rate, decrease in blood pressure, angina in seven of eight patients, and ST segment depression in four of eight patients. While they were being treated with theophylline, none of the patients had angina or ST segment depression, and there were no hemodynamic changes with intravenous dipyridamole. Before theophylline treatment, dipyridamole-thallium-201 SPECT imaging showed reversible perfusion defects in myocardial segments supplied by stenotic coronary arteries. With theophylline treatment, dipyridamole-thallium-201 SPECT showed total absence of reversible perfusion defects. Treatment with theophylline markedly reduced the diagnostic accuracy of dipyridamole-thallium-201 imaging for coronary artery disease.

  4. Design of a digital phantom population for myocardial perfusion SPECT imaging research

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Du, Yong; Fung, George S. K.; Tsui, Benjamin M. W.; Links, Jonathan M.; Frey, Eric

    2014-06-01

    Digital phantoms and Monte Carlo (MC) simulations have become important tools for optimizing and evaluating instrumentation, acquisition and processing methods for myocardial perfusion SPECT (MPS). In this work, we designed a new adult digital phantom population and generated corresponding Tc-99m and Tl-201 projections for use in MPS research. The population is based on the three-dimensional XCAT phantom with organ parameters sampled from the Emory PET Torso Model Database. Phantoms included three variations each in body size, heart size, and subcutaneous adipose tissue level, for a total of 27 phantoms of each gender. The SimSET MC code and angular response functions were used to model interactions in the body and the collimator-detector system, respectively. We divided each phantom into seven organs, each simulated separately, allowing use of post-simulation summing to efficiently model uptake variations. Also, we adapted and used a criterion based on the relative Poisson effective count level to determine the required number of simulated photons for each simulated organ. This technique provided a quantitative estimate of the true noise in the simulated projection data, including residual MC simulation noise. Projections were generated in 1 keV wide energy windows from 48-184 keV assuming perfect energy resolution to permit study of the effects of window width, energy resolution, and crosstalk in the context of dual isotope MPS. We have developed a comprehensive method for efficiently simulating realistic projections for a realistic population of phantoms in the context of MPS imaging. The new phantom population and realistic database of simulated projections will be useful in performing mathematical and human observer studies to evaluate various acquisition and processing methods such as optimizing the energy window width, investigating the effect of energy resolution on image quality and evaluating compensation methods for degrading factors such as crosstalk in

  5. Applying the J-optimal channelized quadratic observer to SPECT myocardial perfusion defect detection

    NASA Astrophysics Data System (ADS)

    Kupinski, Meredith K.; Clarkson, Eric; Ghaly, Michael; Frey, Eric C.

    2016-03-01

    To evaluate performance on a perfusion defect detection task from 540 image pairs of myocardial perfusion SPECT image data we apply the J-optimal channelized quadratic observer (J-CQO). We compare AUC values of the linear Hotelling observer and J-CQO when the defect location is fixed and when it occurs in one of two locations. As expected, when the location is fixed a single channels maximizes AUC; location variability requires multiple channels to maximize the AUC. The AUC is estimated from both the projection data and reconstructed images. J-CQO is quadratic since it uses the first- and second- order statistics of the image data from both classes. The linear data reduction by the channels is described by an L x M channel matrix and in prior work we introduced an iterative gradient-based method for calculating the channel matrix. The dimensionality reduction from M measurements to L channels yields better estimates of these sample statistics from smaller sample sizes, and since the channelized covariance matrix is L x L instead of M x M, the matrix inverse is easier to compute. The novelty of our approach is the use of Jeffrey's divergence (J) as the figure of merit (FOM) for optimizing the channel matrix. We previously showed that the J-optimal channels are also the optimum channels for the AUC and the Bhattacharyya distance when the channel outputs are Gaussian distributed with equal means. This work evaluates the use of J as a surrogate FOM (SFOM) for AUC when these statistical conditions are not satisfied.

  6. ROC evaluation of SPECT myocardial lesion detectability with and without single iteration non-uniform Chang attenuation compensation using an anthropomorphic female phantom

    SciTech Connect

    Jang, S.; Jaszczak, R.J. |; Gilland, D.R.; Turkington, T.G.; Coleman, R.E.; Tsui, B.M.W.; Metz, C.E.

    1998-08-01

    The purpose of this work was to evaluate lesion detectability with and without nonuniform attenuation compensation (AC) in myocardial perfusion SPECT imaging in women using an anthropomorphic phantom and receiver operating characteristics (ROC) methodology. Breast attenuation causes artifacts in reconstructed images and may increase the difficulty of diagnosis of myocardial perfusion imaging in women. The null hypothesis tested using the ROC study was that nonuniform AC does not change the lesion detectability in myocardial perfusion SPECT imaging in women. The authors used a filtered backprojection (FBP) reconstruction algorithm and Chang`s single iteration method for AC. In conclusion, with the proposed myocardial defect model nuclear medicine physicians demonstrated no significant difference for the detection of the anterior wall defect; however, a greater accuracy for the detection of the inferior wall defect was observed without nonuniform AC than with it. Medical physicists did not demonstrate any statistically significant difference in defect detection accuracy with or without nonuniform AC in the female phantom.

  7. Relationship between gated myocardial perfusion SPECT findings and hemodynamic, electrocardiographic, and heart rate changes after Dipyridamole infusion.

    PubMed

    Gholoobi, Arash; Ayati, Narjess; Baghyari, Alireza; Mouhebati, Mohsen; Atar, Baharak; Dabbagh Kakhki, Vahid Reza

    2017-02-01

    After dipyridamole infusion, electrocardiographic (ECG), blood pressure and heart rate (HR) changes were seen. We tried to investigate whether there is a relationship between hemodynamic, ECG and HR changes after dipyridamole infusion and gated myocardial perfusion SPECT findings. We studied 206 consecutive patients which underwent a 2-day protocol Dipyridamole Stress/Rest Tc99m-Sestamibi gated myocardial perfusion SPECT. Systolic blood pressure (SBP), diastolic blood pressure (DBP), HR and ECG were recorded. HR was mildly increased while SBP and DBP were mildly decreased after Dipyridamole infusion. There was only statistically significant difference between ECG changes as well as transient ischemic dilation (TID) ratio between normal scans and scans with ischemia (P = 0.02 and P = 0.01 respectively). There was correlation between these variables and summed stress score (SSS) and summed difference score (SDS). Patients with ischemia in their scans, 44.3% had ST depression after Dipyridamole infusion. Also ST depression most frequently was seen in patients with left anterior descending artery disease. From patients with abnormal scan + ST depression after Dipyridamole infusion (33 patient), 27 patient (81.81%) had ischemia. There was an association between TID ratio as well as ECG changes after Dipyridamole infusion and SSS, SDS and coronary artery territory abnormality. Difference between calculated left ventricular ejection fraction using stress and rest images had significant correlation with SSS and SDS. ST depression after Dipyridamole infusion and TID ratio had association with ischemia, SSS and SDS. So in equivocal Gated SPECT findings, they could be very useful for interpretation.

  8. SPECT quantification of myocardial mass with Thallium-201: Comparison of 180/sup 0/ vs 360/sup 0/ acquisitions

    SciTech Connect

    Summerville, D.A.; Polak, J.F.; English, R.J.; Holman, B.L.

    1984-01-01

    It has recently been proposed that, for the heart, tomographic acquisitions over 180/sup 0/ (30/sup 0/ RAO to 60/sup 0/ LPO) might yield more relevant reconstructions than for 360/sup 0/. The authors have compared the effect of both formats using an Iowa heart phantom placed in the appropriate orientation in an Alderson torso phantom. Chamber activity of 2 ..mu..Ci/cc was used to emulate myocardial T1-201 uptake whereas background activity in the chest phantom was varied from 0 to .3 ..mu..Ci/cc; the latter encompasses the measured target-to-background ratios obtained on stress and redistribution Tl-201 scintigrams of twelve patients. Transaxial reconstructions were made with and without attenuation compensation (AC) for both 180/sup 0/ (30/sup 0/ RAO to 60/sup 0/ LPO) and 360/sup 0/. After formatting into oblique data sets holding 19 slices perpendicular to the long axis of the heart phantom, an algorithm estimating volumes above a certain count threshold of maximum was used to estimate myocardial mass. Defects were introduced into the phantom and the tomographic acquisitions repeated. Attenuation compensated 180/sup 0/ acquisitions yielded appropriate estimates of myocardial mass, even when large defects were reoriented from the septal to the lateral wall. The authors conclude that Tl-201 SPECT derived estimates of myocardial mass can be made from 180/sup 0/ acquisitions if (1) attenuation compensation is used, (2) corrections are made for different background activities in the ''lungs''.

  9. Flurpiridaz F 18 PET: Phase II Safety and Clinical Comparison with SPECT Myocardial Perfusion Imaging for Detection of Coronary Artery Disease

    PubMed Central

    Berman, Daniel S.; Maddahi, Jamshid; Tamarappoo, B. K.; Czernin, Johannes; Taillefer, Raymond; Udelson, James E.; Gibson, C. Michael; Devine, Marybeth; Lazewatsky, Joel; Bhat, Gajanan; Washburn, Dana

    2015-01-01

    Objectives Phase II trial to assess flurpiridaz F 18 for safety and compare its diagnostic performance for PET myocardial perfusion imaging (MPI) to Tc-99m SPECT-MPI regarding image quality, interpretative certainty, defect magnitude and detection of coronary artery disease (CAD)(≥ 50% stenosis) on invasive coronary angiography (ICA). Background In preclinical and phase I studies, flurpiridaz F 18 has shown characteristics of an essentially ideal MPI tracer. Methods 143 patients from 21 centers underwent rest-stress PET and Tc-99m SPECT-MPI. Eighty-six patients underwent ICA, and 39 had low-likelihood of CAD. Images were scored by 3 independent, blinded readers. Results A higher % of images were rated as excellent/good on PET vs. SPECT on stress (99.2% vs. 88.5%, p<0.01) and rest (96.9% vs. 66.4, p<0.01) images. Diagnostic certainty of interpretation (% cases with definitely abnormal/normal interpretation) was higher for PET vs. SPECT (90.8% vs. 70.9%, p<0.01). In 86 patients who underwent ICA, sensitivity of PET was higher than SPECT [78.8% vs. 61.5%, respectively (p=0.02)]. Specificity was not significantly different (PET:76.5% vs. SPECT:73.5%). Receiver operating characteristic curve area was 0.82±0.05 for PET and 0.70±0.06 for SPECT (p=0.04). Normalcy rate was 89.7% with PET and 97.4% with SPECT (p=NS). In patients with CAD on ICA, the magnitude of reversible defects was greater with PET than SPECT (p=0.008). Extensive safety assessment revealed that flurpiridaz F 18 was safe in this cohort. Conclusions In this Phase 2 trial, PET MPI using flurpiridaz F 18 was safe and superior to SPECT MPI for image quality, interpretative certainty, and overall CAD diagnosis. PMID:23265345

  10. Optimization and comparison of simultaneous and separate acquisition protocols for dual isotope myocardial perfusion SPECT

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Links, Jonathan M.; Frey, Eric C.

    2015-07-01

    Dual-isotope simultaneous-acquisition (DISA) rest-stress myocardial perfusion SPECT (MPS) protocols offer a number of advantages over separate acquisition. However, crosstalk contamination due to scatter in the patient and interactions in the collimator degrade image quality. Compensation can reduce the effects of crosstalk, but does not entirely eliminate image degradations. Optimizing acquisition parameters could further reduce the impact of crosstalk. In this paper we investigate the optimization of the rest Tl-201 energy window width and relative injected activities using the ideal observer (IO), a realistic digital phantom population and Monte Carlo (MC) simulated Tc-99m and Tl-201 projections as a means to improve image quality. We compared performance on a perfusion defect detection task for Tl-201 acquisition energy window widths varying from 4 to 40 keV centered at 72 keV for a camera with a 9% energy resolution. We also investigated 7 different relative injected activities, defined as the ratio of Tc-99m and Tl-201 activities, while keeping the total effective dose constant at 13.5 mSv. For each energy window and relative injected activity, we computed the IO test statistics using a Markov chain Monte Carlo (MCMC) method for an ensemble of 1,620 triplets of fixed and reversible defect-present, and defect-absent noisy images modeling realistic background variations. The volume under the 3-class receiver operating characteristic (ROC) surface (VUS) was estimated and served as the figure of merit. For simultaneous acquisition, the IO suggested that relative Tc-to-Tl injected activity ratios of 2.6-5 and acquisition energy window widths of 16-22% were optimal. For separate acquisition, we observed a broad range of optimal relative injected activities from 2.6 to 12.1 and acquisition energy window of widths 16-22%. A negative correlation between Tl-201 injected activity and the width of the Tl-201 energy window was observed in these ranges. The results

  11. Optimization and comparison of simultaneous and separate acquisition protocols for dual isotope myocardial perfusion SPECT

    PubMed Central

    Ghaly, Michael; Links, Jonathan M; Frey, Eric C

    2015-01-01

    Dual-isotope simultaneous-acquisition (DISA) rest-stress myocardial perfusion SPECT (MPS) protocols offer a number of advantages over separate acquisition. However, crosstalk contamination due to scatter in the patient and interactions in the collimator degrade image quality. Compensation can reduce the effects of crosstalk, but does not entirely eliminate image degradations. Optimizing acquisition parameters could further reduce the impact of crosstalk. In this paper we investigate the optimization of the rest Tl-201 energy window width and relative injected activities using the ideal observer (IO), a realistic digital phantom population and Monte Carlo (MC) simulated Tc-99m and Tl-201 projections as a means to improve image quality. We compared performance on a perfusion defect detection task for Tl-201 acquisition energy window widths varying from 4 to 40 keV centered at 72 keV for a camera with a 9% energy resolution. We also investigated 7 different relative injected activities, defined as the ratio of Tc-99m and Tl-201 activities, while keeping the total effective dose constant at 13.5 mSv. For each energy window and relative injected activity, we computed the IO test statistics using a Markov chain Monte Carlo (MCMC) method for an ensemble of 1,620 triplets of fixed and reversible defect-present, and defect-absent noisy images modeling realistic background variations. The volume under the 3-class receiver operating characteristic (ROC) surface (VUS) was estimated and served as the figure of merit. For simultaneous acquisition, the IO suggested that relative Tc-to-Tl injected activity ratios of 2.6–5 and acquisition energy window widths of 16–22% were optimal. For separate acquisition, we observed a broad range of optimal relative injected activities from 2.6 to 12.1 and acquisition energy window of widths 16–22%. A negative correlation between Tl-201 injected activity and the width of the Tl-201 energy window was observed in these ranges. The results

  12. Relation between perfusion defects on stress technetium-99m sestamibi SPECT scintigraphy and the location of a subsequent acute myocardial infarction.

    PubMed

    Miller, G L; Herman, S D; Heller, G V; Kalla, S; Levin, W A; Stillwell, K M; Travin, M I

    1996-07-01

    Although the presence of perfusion defects on stress myocardial perfusion imaging has been shown to correlate with future cardiac events, including acute myocardial infarction (AMI), it is unknown whether the location of the AMI can be predicted. Therefore, for 25 patients who had an AMI following a stress technetium-99m sestamibi single-photon emission computed tomographic (SPECT) imaging study and whose infarct location could be determined, the territory of infarction was correlated with the location of previous myocardial perfusion defects. A SPECT perfusion defect had been present in 24 patients (96%). The AMI occurred in territories that showed a reversible defect in 14 patients (56%), whereas 3 infarctions (12%) were in territories that revealed a fixed defect, and 8 infarctions (32%) were in territories that had not shown a defect on prior SPECT imaging. Whereas the incidence of infarction in territories with a reversible defect was highest at 14 of 26 (54%), the incidence of infarction in territories with a fixed defect was 3 of 7 (43%), and in territories with no defect was 8 of 42 (19%) (p = 0.011). Neither the time interval between SPECT imaging and infarction, nor the perfusion defect severity, was related to the correlation between perfusion defect and infarct location. Thus, although AMI occurs most often at the site of previous perfusion defects, reversible or fixed, a substantial percentage occur in territories without a perfusion defect. These findings suggest that abnormalities on SPECT perfusion imaging, although they serve as markers of significant coronary disease and increase the likelihood of infarction, do not always predict the exact location of infarction.

  13. Evaluation by quantitative 99m-technetium MIBI SPECT and echocardiography of myocardial perfusion and wall motion abnormalities in patients with dobutamine-induced ST-segment elevation.

    PubMed

    Elhendy, A; Geleijnse, M L; Roelandt, J R; van Domburg, R T; Cornel, J H; TenCate, F J; Postma-Tjoa, J; Reijs, A E; el-Said, G M; Fioretti, P M

    1995-09-01

    ST-segment elevation during exercise testing has been attributed to myocardial ischemia and wall motion abnormalities (WMA). However, the functional significance of ST-segment elevation during dobutamine stress testing (DST) has not been evaluated in patients referred for diagnostic evaluation of myocardial ischemia. DST (up to 40 micrograms/kg/min) with simultaneous echocardiography and technetium-99m sestamibi single-photon emission computed tomography (SPECT) was performed in 229 consecutive patients with suspected myocardial ischemia who were unable to perform an adequate exercise test; 127 (55%) had a previous acute myocardial infarction (AMI). ST elevation was defined as > or = 1 mm new or additional J point elevations with a horizontal or upsloping ST segment lasting 80 ms. Reversible perfusion defects on SPECT and new or worsening WMA during stress on echocardiography were considered diagnostic of ischemia. ST elevation occurred in 40 patients (17%) during the test; 34 of them (85%) had previous AMI. All patients with ST-segment elevation had abnormal scintigrams (fixed or reversible defects, or both) and abnormal wall motion (fixed or transient defect, or both) at peak stress. In patients who had ST elevation and no previous AMI (n = 6), ischemia was detected in all by echocardiography and in 5 (83%) by SPECT. In patients with previous AMI, the prevalence of ischemia was not different with or without ST elevation (53% vs 43% by echocardiography and 53% vs 48% by SPECT, respectively). Baseline regional wall motion score in the infarct zone was higher in patients with ST elevation.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Myocardial blood flow measurement with a conventional dual-head SPECT/CT with spatiotemporal iterative reconstructions - a clinical feasibility study

    PubMed Central

    Alhassen, Fares; Nguyen, Nhan; Bains, Sukhkarn; Gould, Robert G; Seo, Youngho; Bacharach, Stephen L; Song, Xiyun; Shao, Lingxiong; Gullberg, Grant T; Aparici, Carina Mari

    2014-01-01

    Cardiac single photon emission computed tomography (SPECT) cameras typically rotate too slowly around a patient to capture changes in the blood pool activity distribution and provide accurate kinetic parameters. A spatiotemporal iterative reconstruction method to overcome these limitations was investigated. Dynamic rest/stress 99mTc-methoxyisobutylisonitrile (99mTc-MIBI) SPECT/CT was performed along with reference standard rest/stress dynamic positron emission tomography (PET/CT) 13N-NH3 in five patients. The SPECT data were reconstructed using conventional and spatiotemporal iterative reconstruction methods. The spatiotemporal reconstruction yielded improved image quality, defined here as a statistically significant (p<0.01) 50% contrast enhancement. We did not observe a statistically significant difference between the correlations of the conventional and spatiotemporal SPECT myocardial uptake K 1 values with PET K 1 values (r=0.25, 0.88, respectively) (p<0.17). These results indicate the clinical feasibility of quantitative, dynamic SPECT/CT using 99mTc-MIBI and warrant further investigation. Spatiotemporal reconstruction clearly provides an advantage over a conventional reconstruction in computing K 1. PMID:24380045

  15. Simultaneous Tc-99m/I-123 dual-radionuclide myocardial perfusion/innervation imaging using Siemens IQ-SPECT with SMARTZOOM collimator.

    PubMed

    Du, Yong; Bhattacharya, Manojeet; Frey, Eric C

    2014-06-07

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about the mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region, compared to a typical parallel-hole low-energy high-resolution collimator, but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator-detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulations and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single-radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter

  16. Simultaneous Tc-99m/I-123 Dual Radionuclide Myocardial Perfusion/Innervation Imaging Using Siemens IQ-SPECT with SMARTZOOM Collimator

    PubMed Central

    Du, Yong; Bhattacharya, Manojeet; Frey, Eric. C.

    2014-01-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region compared to a typical parallel-hole low-energy high-resolution collimator but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulation and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter modeling

  17. Simultaneous Tc-99m/I-123 dual-radionuclide myocardial perfusion/innervation imaging using Siemens IQ-SPECT with SMARTZOOM collimator

    NASA Astrophysics Data System (ADS)

    Du, Yong; Bhattacharya, Manojeet; Frey, Eric C.

    2014-06-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about the mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region, compared to a typical parallel-hole low-energy high-resolution collimator, but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator-detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulations and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single-radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter

  18. Comparison of Channelized Hotelling and Human Observers inDetermining Optimum OS-EM Reconstruction Parameters for MyocardialSPECT

    SciTech Connect

    Gilland, Karen L.; Tsui, Benjamin M.W.; Qi, Yujin; Gullberg,Grant T.

    2005-07-01

    The performance of the Channelized Hotelling Observer (CHO)was compared to that of human observers for determining optimumparameters for the iterative OS-EM image reconstruction method for thetask of defect detection in myocardial SPECT images. The optimumparameters were those that maximized defect detectability in the SPECTimages. Low noise, parallel SPECT projection data, with and without ananterior, inferior or lateral LV wall defect, were simulated using theMonte Carlo method. Poisson noise was added to generate noisyrealizations. Data were reconstructed using OS-EM at 1&4subsets/iteration and at 1, 3, 5, 7&9 iterations. Images wereconverted to 2D short-axis slices with integer pixel values. The CHO used3 radially-symmetric, 2D channels, with varying levels of internalobserver noise. For each parameter setting, 600 defect-present and 600defect-absent image vectors were used to calculate the detectabilityindex (dA). The human observers rated the likelihood that a defect waspresent in a specified location. For each parameter setting, the AUC wasestimated from 48 defect-present and 48 defect-absent images. Thecombined human observer results showed the optimum parameter settingcould be in the range 5-36 updates ([number of subsets]/iteration enumber of iterations). The CHO results showed the optimum parametersetting to be 4-5 updates. The performance of the CHO was much moresensitive to the reconstruction parameter setting than was that of thehuman observers. The rankings of the CHO detectability values did notchange with varying levels of internal noise.

  19. Development of 4D mathematical observer models for the task-based evaluation of gated myocardial perfusion SPECT

    NASA Astrophysics Data System (ADS)

    Lee, Taek-Soo; Frey, Eric C.; Tsui, Benjamin M. W.

    2015-04-01

    This paper presents two 4D mathematical observer models for the detection of motion defects in 4D gated medical images. Their performance was compared with results from human observers in detecting a regional motion abnormality in simulated 4D gated myocardial perfusion (MP) SPECT images. The first 4D mathematical observer model extends the conventional channelized Hotelling observer (CHO) based on a set of 2D spatial channels and the second is a proposed model that uses a set of 4D space-time channels. Simulated projection data were generated using the 4D NURBS-based cardiac-torso (NCAT) phantom with 16 gates/cardiac cycle. The activity distribution modelled uptake of 99mTc MIBI with normal perfusion and a regional wall motion defect. An analytical projector was used in the simulation and the filtered backprojection (FBP) algorithm was used in image reconstruction followed by spatial and temporal low-pass filtering with various cut-off frequencies. Then, we extracted 2D image slices from each time frame and reorganized them into a set of cine images. For the first model, we applied 2D spatial channels to the cine images and generated a set of feature vectors that were stacked for the images from different slices of the heart. The process was repeated for each of the 1,024 noise realizations, and CHO and receiver operating characteristics (ROC) analysis methodologies were applied to the ensemble of the feature vectors to compute areas under the ROC curves (AUCs). For the second model, a set of 4D space-time channels was developed and applied to the sets of cine images to produce space-time feature vectors to which the CHO methodology was applied. The AUC values of the second model showed better agreement (Spearman’s rank correlation (SRC) coefficient = 0.8) to human observer results than those from the first model (SRC coefficient = 0.4). The agreement with human observers indicates the proposed 4D mathematical observer model provides a good predictor of the

  20. Development of 4D mathematical observer models for the task-based evaluation of gated myocardial perfusion SPECT.

    PubMed

    Lee, Taek-Soo; Frey, Eric C; Tsui, Benjamin M W

    2015-04-07

    This paper presents two 4D mathematical observer models for the detection of motion defects in 4D gated medical images. Their performance was compared with results from human observers in detecting a regional motion abnormality in simulated 4D gated myocardial perfusion (MP) SPECT images. The first 4D mathematical observer model extends the conventional channelized Hotelling observer (CHO) based on a set of 2D spatial channels and the second is a proposed model that uses a set of 4D space-time channels. Simulated projection data were generated using the 4D NURBS-based cardiac-torso (NCAT) phantom with 16 gates/cardiac cycle. The activity distribution modelled uptake of (99m)Tc MIBI with normal perfusion and a regional wall motion defect. An analytical projector was used in the simulation and the filtered backprojection (FBP) algorithm was used in image reconstruction followed by spatial and temporal low-pass filtering with various cut-off frequencies. Then, we extracted 2D image slices from each time frame and reorganized them into a set of cine images. For the first model, we applied 2D spatial channels to the cine images and generated a set of feature vectors that were stacked for the images from different slices of the heart. The process was repeated for each of the 1,024 noise realizations, and CHO and receiver operating characteristics (ROC) analysis methodologies were applied to the ensemble of the feature vectors to compute areas under the ROC curves (AUCs). For the second model, a set of 4D space-time channels was developed and applied to the sets of cine images to produce space-time feature vectors to which the CHO methodology was applied. The AUC values of the second model showed better agreement (Spearman's rank correlation (SRC) coefficient = 0.8) to human observer results than those from the first model (SRC coefficient = 0.4). The agreement with human observers indicates the proposed 4D mathematical observer model provides a good predictor of the

  1. Measurement of Absolute Myocardial Blood Flow in Humans Using Dynamic Cardiac SPECT and 99mTc-tetrofosmin: Method and Validation

    PubMed Central

    Shrestha, Uttam; Sciammarella, Maria; Alhassen, Fares; Yeghiazarians, Yerem; Ellin, Justin; Verdin, Emily; Boyle, Andrew; Seo, Youngho; Botvinick, Elias H.; Gullberg, Grant T.

    2015-01-01

    Background The objective of this study was to measure myocardial blood flow (MBF) in humans using 99mTc-tetrofosmin and dynamic single photon emission computed tomography (SPECT). Methods Dynamic SPECT using 99mTc-tetrofosmin and dynamic positron emission tomography (PET) was performed on a group of 16 patients. The SPECT data were reconstructed using a 4D-spatiotemporal iterative reconstruction method. The data corresponding to 9 patients were used to determine the flow-extraction curve for 99mTc-tefrofosmin while data from the remaining 7 patients were used for method validation. The nonlinear tracer correction parameters A and B for 99mTc-tefrofosmin were estimated for the 9 patients by fitting the flow-extraction curve K1=F(1−Aexp(−BF)) for K1 values estimated with 99mTc-tefrofosmin using SPECT and MBF values estimated with 13N-NH3 using PET. These parameters were then used to calculate MBF and coronary flow reserve (CFR) in three coronary territories (LAD, RCA, and LCX) using SPECT for an independent cohort of 7 patients. The results were then compared with that estimated with 13N-NH3 PET. The flow dependent permeability surface-area product (PS) for 99mTc-tefrofosmin was also estimated. Results The estimated flow extraction parameters for 99mTc-tefrofosmin was found to be A=0.91±0.11, B=0.34±0.20 (R2 = 0.49). The range of MBF in LAD, RCA, and LCX was 0.44 ml/min/g to 3.81 ml/min/g. The MBF between PET and SPECT in the group of independent cohort of 7 patients showed statistically significant correlation, r = 0.71 (p < 0.001). However, the corresponding CFR correlation was moderate r = 0.39 yet statistically significant (p = 0.037). The PS for 99mTc-tefrofosmin was (0.091 ± 0.10) * MBF = (0.32 ± 0.16). Conclusions Dynamic cardiac SPECT using 99mTc-tetrofosmin and a clinical two-headed SPECT/CT scanner can be a useful tool for estimation of MBF. PMID:26715603

  2. Superior diagnostic performance of perfusion-cardiovascular magnetic resonance versus SPECT to detect coronary artery disease: The secondary endpoints of the multicenter multivendor MR-IMPACT II (Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary Artery Disease Trial)

    PubMed Central

    2012-01-01

    Background Perfusion-cardiovascular magnetic resonance (CMR) is generally accepted as an alternative to SPECT to assess myocardial ischemia non-invasively. However its performance vs gated-SPECT and in sub-populations is not fully established. The goal was to compare in a multicenter setting the diagnostic performance of perfusion-CMR and gated-SPECT for the detection of CAD in various populations using conventional x-ray coronary angiography (CXA) as the standard of reference. Methods In 33 centers (in US and Europe) 533 patients, eligible for CXA or SPECT, were enrolled in this multivendor trial. SPECT and CXA were performed within 4 weeks before or after CMR in all patients. Prevalence of CAD in the sample was 49% and 515 patients received MR contrast medium. Drop-out rates for CMR and SPECT were 5.6% and 3.7%, respectively (ns). The study was powered for the primary endpoint of non-inferiority of CMR vs SPECT for both, sensitivity and specificity for the detection of CAD (using a single-threshold reading), the results for the primary endpoint were reported elsewhere. In this article secondary endpoints are presented, i.e. the diagnostic performance of CMR versus SPECT in subpopulations such as multi-vessel disease (MVD), in men, in women, and in patients without prior myocardial infarction (MI). For diagnostic performance assessment the area under the receiver-operator-characteristics-curve (AUC) was calculated. Readers were blinded versus clinical data, CXA, and imaging results. Results The diagnostic performance (= area under ROC = AUC) of CMR was superior to SPECT (p = 0.0004, n = 425) and to gated-SPECT (p = 0.018, n = 253). CMR performed better than SPECT in MVD (p = 0.003 vs all SPECT, p = 0.04 vs gated-SPECT), in men (p = 0.004, n = 313) and in women (p = 0.03, n = 112) as well as in the non-infarct patients (p = 0.005, n = 186 in 1–3 vessel disease and p = 0.015, n = 140 in MVD). Conclusion

  3. Review: comparison of PET rubidium-82 with conventional SPECT myocardial perfusion imaging.

    PubMed

    Ghotbi, Adam A; Kjaer, Andreas; Hasbak, Philip

    2014-05-01

    Nuclear cardiology has for many years been focused on gamma camera technology. With ever improving cameras and software applications, this modality has developed into an important assessment tool for ischaemic heart disease. However, the development of new perfusion tracers has been scarce. While cardiac positron emission tomography (PET) so far largely has been limited to centres with on-site cyclotron, recent developments with generator produced perfusion tracers such as rubidium-82, as well as an increasing number of PET scanners installed, may enable a larger patient flow that may supersede that of gamma camera myocardial perfusion imaging.

  4. Free Triiodothyronine Level Correlates with Myocardial Injury and Prognosis in Idiopathic Dilated Cardiomyopathy: Evidence from Cardiac MRI and SPECT/PET Imaging

    PubMed Central

    Wang, Wenyao; Guan, Haixia; Fang, Wei; Zhang, Kuo; Gerdes, A. Martin; Iervasi, Giorgio; Tang, Yi-Da

    2016-01-01

    Thyroid dysfunction is associated with poor prognosis in heart failure, but theories of mechanisms are mainly based on animal experiments, not on human level. We aimed to explore the relation between thyroid function and myocardial injuries in idiopathic dilated cardiomyopathy (IDCM) using cardiac magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Myocardial fibrosis was detected by late gadolinium enhancement (LGE) MRI, and myocardial perfusion/metabolism was evaluated by 99mTc-MIBI SPECT /18F-FDG PET imaging. Across the quartiles of FT3, decreased percentage of segments with LGE and perfusion/metabolism abnormalities were found. As for FT4 and TSH levels, no significant distribution trend of myocardial injuries could be detected. In logistic analysis, FT3 was independently associated with the presence of LGE (OR: 0.140, 95% CI: 0.035–0.567), perfusion abnormalities (OR: 0.172, 95% CI: 0.040–0.738) and metabolism abnormalities (OR: 0.281, 95% CI: 0.081–0.971). After a median follow-up of 46 months, LGE-positive and FT3 < 2.77 pg/mL was identified as the strongest predictor of cardiac events (HR: 8.623, 95% CI: 3.626–16.438). Low FT3 level is associated with myocardial fibrosis and perfusion/metabolism abnormalities in patients with IDCM. The combination of FT3 level and LGE provides useful information for assessing the prognosis of IDCM. PMID:28004791

  5. Purification of a low molecular weight fucoidan for SPECT molecular imaging of myocardial infarction.

    PubMed

    Saboural, Pierre; Chaubet, Frédéric; Rouzet, Francois; Al-Shoukr, Faisal; Azzouna, Rana Ben; Bouchemal, Nadia; Picton, Luc; Louedec, Liliane; Maire, Murielle; Rolland, Lydia; Potier, Guy; Guludec, Dominique Le; Letourneur, Didier; Chauvierre, Cédric

    2014-09-23

    Fucoidans constitute a large family of sulfated polysaccharides with several biochemical properties. A commercial fucoidan from brown algae, containing low molecular weight polysaccharidic species constituted of l-fucose, uronic acids and sulfate groups, was simply treated here with calcium acetate solution. This treatment led to a purified fraction with a yield of 45%. The physicochemical characterizations of the purified fucoidan using colorimetric assay, MALLS, dRI, FT-IR, NMR, exhibited molecular weight distributions and chemical profiles similar for both fucoidans whereas the sulfate and l-fucose contents increased by 16% and 71%, respectively. The biodistribution study in rat of both compounds labeled with 99mTc evidenced a predominant renal elimination of the purified fucoidan, but the crude fucoidan was mainly retained in liver and spleen. In rat myocardial ischemia-reperfusion, we then demonstrated the better efficiency of the purified fucoidan. This purified sulfated polysaccharide appears promising for the development of molecular imaging in acute coronary syndrome.

  6. Modeling of myocardial contractility using parameterized super-quadric SPECT images.

    PubMed

    Lee, Byeong-Il; Son, Byong-Hwan; Choi, Hyun-Ju; Hwang, Hae-Gil; Kim, Hye-Young; Choi, Heung-Kook

    2006-01-01

    We developed methods to represent cardiac motility. Using an innovative model, we estimated several parameters of cardiac features. We implemented the parameterized super quadric model to visualize the motion of a left ventricle (LV) with OpenGL and Visual C++. We displayed myocardial wall thickening with a super-ellipsoidal model. The time frames in this model changed the measured thickening count. We also parameterized motility using the parameterized super quadric model. We analyzed the motility of the LV myocardium and tested its criteria using a validation study of seven normal subjects and 26 patients with prior myocardial infarction. To analyze motility, we used mean and variance of total motion during a cardiac cycle. The average of a normal subject was 0.46 and variance was 0.02. For patients, average and variance of motility were 0.59 and 0.08 respectively. Although the average value did not differ between normal subjects and patients, the variance differed significantly. Thus, we were able to estimate the difference between normal subjects and patients. In patients, motility was 128% higher than in normal subjects, and the variance was 328% higher. In the patient study, quantity of motion decreased rapidly in a stressed state. The visualization for contractility displayed 15 segment variables; we were able to rotate the locations of all points with a mouse interface. We were able to visualize most of the factors for cardiac motility and cardiac features. We expect that this model can distinguish between normal subjects and abnormal subjects, and that we can produce an exact analysis of momentum using this model.

  7. Simultaneous assessment of left ventricular wall motion and myocardial perfusion with technetium-99m-methoxy isobutyl isonitrile at stress and rest in patients with angina: Comparison with thallium-201 SPECT

    SciTech Connect

    Villanueva-Meyer, J.; Mena, I.; Narahara, K.A. )

    1990-04-01

    The newly developed technetium-99m ({sup 99m}Tc) isonitriles can be used for the simultaneous evaluation of ventricular function and myocardial perfusion. We compared technetium-99m hexakis-2-methoxy isobutyl isonitrile (({sup 99m}Tc) MIBI) derived first-pass left ventricular wall motion at stress and rest with simultaneous myocardial perfusion defined by ({sup 99m}Tc)MIBI SPECT. These results were then compared with {sup 201}TI SPECT. We examined 28 patients with coronary artery disease; 25 had a previous myocardial infarction. We found concordance between segmental wall motion and myocardial perfusion imaging in defining normal, ischemic, and infarcted myocardium in 68% and 69% of segments using ({sup 99m}Tc)MIBI and {sup 201}TI respectively. The best agreement between wall motion and myocardial perfusion was seen in the inferior wall, while most of the discrepancies were found at the apex. Agreement between ({sup 99m}Tc)MIBI and {sup 201}TI SPECT myocardial perfusion was seen in 93% of segments. Technetium-99m-MIBI appears to be an ideal radiopharmaceutical for the simultaneous evaluation of ventricular function and myocardial perfusion during stress and at rest.

  8. Purification of a Low Molecular Weight Fucoidan for SPECT Molecular Imaging of Myocardial Infarction

    PubMed Central

    Saboural, Pierre; Chaubet, Frédéric; Rouzet, Francois; Al-Shoukr, Faisal; Ben Azzouna, Rana; Bouchemal, Nadia; Picton, Luc; Louedec, Liliane; Maire, Murielle; Rolland, Lydia; Potier, Guy; Le Guludec, Dominique; Letourneur, Didier; Chauvierre, Cédric

    2014-01-01

    Fucoidans constitute a large family of sulfated polysaccharides with several biochemical properties. A commercial fucoidan from brown algae, containing low molecular weight polysaccharidic species constituted of l-fucose, uronic acids and sulfate groups, was simply treated here with calcium acetate solution. This treatment led to a purified fraction with a yield of 45%. The physicochemical characterizations of the purified fucoidan using colorimetric assay, MALLS, dRI, FT-IR, NMR, exhibited molecular weight distributions and chemical profiles similar for both fucoidans whereas the sulfate and l-fucose contents increased by 16% and 71%, respectively. The biodistribution study in rat of both compounds labeled with 99mTc evidenced a predominant renal elimination of the purified fucoidan, but the crude fucoidan was mainly retained in liver and spleen. In rat myocardial ischemia-reperfusion, we then demonstrated the better efficiency of the purified fucoidan. This purified sulfated polysaccharide appears promising for the development of molecular imaging in acute coronary syndrome. PMID:25251032

  9. Collimator optimization in myocardial perfusion SPECT using the ideal observer and realistic background variability for lesion detection and joint detection and localization tasks

    PubMed Central

    Ghaly, Michael; Du, Yong; Links, Jonathan M; Frey, Eric C

    2016-01-01

    In SPECT imaging, collimators are a major factor limiting image quality and largely determine the noise and resolution of SPECT images. In this paper, we seek the collimator with the optimal tradeoff between image noise and resolution with respect to performance on two tasks related to myocardial perfusion SPECT: perfusion defect detection and joint detection and localization. We used the Ideal Observer (IO) operating on realistic background-known-statistically (BKS) and signal-known-exactly (SKE) data. The areas under the receiver operating characteristic (ROC) and localization ROC (LROC) curves (AUCd, AUCd+l), respectively, were used as the figures of merit for both tasks. We used a previously developed population of 54 phantoms based on the eXtended Cardiac Torso Phantom (XCAT) that included variations in gender, body size, heart size and subcutaneous adipose tissue level. For each phantom, organ uptakes were varied randomly based on distributions observed in patient data. We simulated perfusion defects at six different locations with extents and severities of 10% and 25%, respectively, which represented challenging but clinically relevant defects. The extent and severity are, respectively, the perfusion defect's fraction of the myocardial volume and reduction of uptake relative to the normal myocardium. Projection data were generated using an analytical projector that modeled attenuation, scatter, and collimator-detector response effects, a 9% energy resolution at 140 keV, and a 4 mm full-width at half maximum (FWHM) intrinsic spatial resolution. We investigated a family of eight parallel-hole collimators that spanned a large range of sensitivity-resolution tradeoffs. For each collimator and defect location, the IO test statistics were computed using a Markov Chain Monte Carlo (MCMC) method for an ensemble of 540 pairs of defect-present and -absent images that included the aforementioned anatomical and uptake variability. Sets of test statistics were computed

  10. Collimator optimization in myocardial perfusion SPECT using the ideal observer and realistic background variability for lesion detection and joint detection and localization tasks

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Du, Yong; Links, Jonathan M.; Frey, Eric C.

    2016-03-01

    In SPECT imaging, collimators are a major factor limiting image quality and largely determine the noise and resolution of SPECT images. In this paper, we seek the collimator with the optimal tradeoff between image noise and resolution with respect to performance on two tasks related to myocardial perfusion SPECT: perfusion defect detection and joint detection and localization. We used the Ideal Observer (IO) operating on realistic background-known-statistically (BKS) and signal-known-exactly (SKE) data. The areas under the receiver operating characteristic (ROC) and localization ROC (LROC) curves (AUCd, AUCd+l), respectively, were used as the figures of merit for both tasks. We used a previously developed population of 54 phantoms based on the eXtended Cardiac Torso Phantom (XCAT) that included variations in gender, body size, heart size and subcutaneous adipose tissue level. For each phantom, organ uptakes were varied randomly based on distributions observed in patient data. We simulated perfusion defects at six different locations with extents and severities of 10% and 25%, respectively, which represented challenging but clinically relevant defects. The extent and severity are, respectively, the perfusion defect’s fraction of the myocardial volume and reduction of uptake relative to the normal myocardium. Projection data were generated using an analytical projector that modeled attenuation, scatter, and collimator-detector response effects, a 9% energy resolution at 140 keV, and a 4 mm full-width at half maximum (FWHM) intrinsic spatial resolution. We investigated a family of eight parallel-hole collimators that spanned a large range of sensitivity-resolution tradeoffs. For each collimator and defect location, the IO test statistics were computed using a Markov Chain Monte Carlo (MCMC) method for an ensemble of 540 pairs of defect-present and -absent images that included the aforementioned anatomical and uptake variability. Sets of test statistics were

  11. Creation of an ensemble of simulated cardiac cases and a human observer study: tools for the development of numerical observers for SPECT myocardial perfusion imaging

    NASA Astrophysics Data System (ADS)

    O'Connor, J. Michael; Pretorius, P. Hendrik; Gifford, Howard C.; Licho, Robert; Joffe, Samuel; McGuiness, Matthew; Mehurg, Shannon; Zacharias, Michael; Brankov, Jovan G.

    2012-02-01

    Our previous Single Photon Emission Computed Tomography (SPECT) myocardial perfusion imaging (MPI) research explored the utility of numerical observers. We recently created two hundred and eighty simulated SPECT cardiac cases using Dynamic MCAT (DMCAT) and SIMIND Monte Carlo tools. All simulated cases were then processed with two reconstruction methods: iterative ordered subset expectation maximization (OSEM) and filtered back-projection (FBP). Observer study sets were assembled for both OSEM and FBP methods. Five physicians performed an observer study on one hundred and seventy-nine images from the simulated cases. The observer task was to indicate detection of any myocardial perfusion defect using the American Society of Nuclear Cardiology (ASNC) 17-segment cardiac model and the ASNC five-scale rating guidelines. Human observer Receiver Operating Characteristic (ROC) studies established the guidelines for the subsequent evaluation of numerical model observer (NO) performance. Several NOs were formulated and their performance was compared with the human observer performance. One type of NO was based on evaluation of a cardiac polar map that had been pre-processed using a gradient-magnitude watershed segmentation algorithm. The second type of NO was also based on analysis of a cardiac polar map but with use of a priori calculated average image derived from an ensemble of normal cases.

  12. Prognostic study of cardiac and renal events in Japanese patients with chronic kidney disease and cardiovascular risk using myocardial perfusion SPECT: J-ACCESS 3 study design.

    PubMed

    Nakamura, Satoko; Kawano, Yuhei; Hase, Hiroki; Hatta, Tsuguru; Nishimura, Shigeyuki; Moroi, Masao; Nakagawa, Susumu; Kasai, Tokuo; Kusuoka, Hideo; Takeishi, Yasuchika; Nakajima, Kenichi; Momose, Mitsuru; Takehana, Kazuya; Nanasato, Mamoru; Yoda, Syunichi; Nishina, Hidetaka; Matsumoto, Naoya; Nishimura, Tsunehiko

    2010-08-01

    Cardiovascular disease is the leading cause of morbidity and mortality in patients with chronic kidney disease. Recent studies have indicated that the incidence of cardiovascular disease increases inversely with estimated glomerular filtration rate. Although coronary angiography is considered the gold standard for detecting coronary artery disease, contrast-induced nephropathy or cholesterol microembolization remain serious problems; therefore, a method of detecting coronary artery disease without renal deterioration is desirable. From this viewpoint, stress myocardial perfusion single photon emission computed tomography (SPECT) might be useful for patients with chronic kidney disease. We recently performed the Japanese Assessment of Cardiac Events and Survival Study by Quantitative Gated SPECT (J-ACCESS) investigating patients with suspected or extant coronary artery disease and the J-ACCESS 2 study of patients with diabetes. The findings from these studies showed that SPECT can detect coronary artery disease and help to predict future cardiac events. Thus, we proposed a multicenter, prospective cohort study called "J-ACCESS 3" in patients with chronic kidney disease and cardiovascular risk. The study aimed at predicting cardiovascular and renal events based on myocardial perfusion imaging and clinical backgrounds. We began enrolling patients in J-ACCESS 3 at 74 facilities from April 2009 and will continue to do so until 31 March 2010, with the aim of having a cohort of 800 patients. These will be followed up for three years. The primary endpoints will be cardiac death and sudden death. The secondary endpoints will comprise any cardiovascular or renal events. This study will be completed in 2013. Here, we describe the design of the J-ACCESS 3 study.

  13. The development and initial evaluation of a realistic simulated SPECT dataset with simultaneous respiratory and cardiac motion for gated myocardial perfusion SPECT

    NASA Astrophysics Data System (ADS)

    Lee, Taek-Soo; Tsui, Benjamin M. W.

    2015-02-01

    We developed a realistic simulation dataset for simultaneous respiratory and cardiac (R&C) gated SPECT/CT using the 4D NURBS-based Cardiac-Torso (NCAT) Phantom and Monte Carlo simulation methods, and evaluated it for a sample application study. The 4D NCAT phantom included realistic respiratory motion and beating heart motion based on respiratory gated CT and cardiac tagged MRI data of normal human subjects. To model the respiratory motion, a set of 24 separate 3D NCAT phantoms excluding the heart was generated over a respiratory cycle. The beating heart motion was modeled separately with 48 frames per cardiac cycle for each of the 24 respiratory phases. The resultant set of 24  ×  48 3D NCAT phantoms provides a realistic model of a normal human subject at different phases of combined R&C motions. An almost noise-free SPECT projection dataset for each of the 1152 3D NCAT phantoms was generated using Monte Carlo simulation techniques and the radioactivity uptake distribution of 99mTc sestamibi in different organs. By grouping and summing the separate projection datasets, separate or simultaneous R&C gated acquired data with different gating schemes could be simulated. In the initial evaluation, we combined the projection datasets into ungated, 6 respiratory-gates only, 8 cardiac-gates only, and combined 6 respiratory-gates & 8 cardiac-gates projection datasets. Each dataset was reconstructed using 3D OS-EM without and with attenuation correction using the averaged and respiratory-gated attenuation maps, and the resulting reconstructed images were compared. These results were used to demonstrate the effects of R&C motions and the reduction of image artifact due to R&C motions by gating and attenuation corrections. We concluded that the realistic 4D NCAT phantom and Monte Carlo simulated SPECT projection datasets with R&C motions are powerful tools in the study of the effects of R&C motions, as well as in the development of R&C gating schemes and motion

  14. The Development and Initial Evaluation of a Realistic Simulated SPECT Dataset with Simultaneous Respiratory and Cardiac Motion for Gated Myocardial Perfusion SPECT

    PubMed Central

    Lee, Taek-Soo; Tsui, Benjamin M. W.

    2015-01-01

    We developed a realistic simulation dataset for simultaneous respiratory and cardiac (R&C) gated SPECT/CT using the 4D NURBS-based Cardiac-Torso (NCAT) Phantom and Monte Carlo simulation methods, and evaluated it for a sample application study. The 4D NCAT phantom included realistic respiratory motion and beating heart motion based on respiratory gated CT and cardiac tagged MRI data of normal human subjects. To model the respiratory motion, a set of 24 separate 3D NCAT phantoms excluding the heart was generated over a respiratory cycle. The beating heart motion was modelled separately with 48 frames per cardiac cycle for each of the 24 respiratory phases. The resultant set of 24×48 3D NCAT phantoms provides a realistic model of a normal human subject at different phases of combined R&C motions. An almost noise-free SPECT projection dataset for each of the 1,152 3D NCAT phantoms was generated using Monte Carlo simulation techniques and the radioactivity uptake distribution of 99mTc sestamibi in different organs. By grouping and summing the separate projection datasets, separate or simultaneous R&C gated acquired data with different gating schemes could be simulated. In the initial evaluation, we combined the projection datasets into no gating, 6 respiratory-gates only, 8 cardiac-gates only, and combined 6 respiratory-gates & 8 cardiac-gates projection datasets. Each dataset was reconstructed using 3D OS-EM without and with attenuation correction using the averaged and respiratory-gated attenuation maps, and the resulting reconstructed images were compared. These results were used to demonstrate the effects of R&C motions and the reduction of image artifact due to R&C motions by gating and attenuation corrections. We concluded that the realistic 4D NCAT phantom and Monte Carlo simulated SPECT projection datasets with R&C motions are powerful tools in the study of the effects of R&C motions, as well as in the development of R&C gating schemes and motion correction

  15. Real-time cine and myocardial perfusion with treadmill exercise stress cardiovascular magnetic resonance in patients referred for stress SPECT

    PubMed Central

    2010-01-01

    Background To date, stress cardiovascular magnetic resonance (CMR) has relied on pharmacologic agents, and therefore lacked the physiologic information available only with exercise stress. Methods 43 patients age 25 to 81 years underwent a treadmill stress test incorporating both Tc99m SPECT and CMR. After rest Tc99m SPECT imaging, patients underwent resting cine CMR. Patients then underwent in-room exercise stress using a partially modified treadmill. 12-lead ECG monitoring was performed throughout. At peak stress, Tc99m was injected and patients rapidly returned to their prior position in the magnet for post-exercise cine and perfusion imaging. The patient table was pulled out of the magnet for recovery monitoring. The patient was sent back into the magnet for recovery cine and resting perfusion followed by delayed post-gadolinium imaging. Post-CMR, patients went to the adjacent SPECT lab to complete stress nuclear imaging. Each modality's images were reviewed blinded to the other's results. Results Patients completed on average 9.3 ± 2.4 min of the Bruce protocol. Stress cine CMR was completed in 68 ± 14 sec following termination of exercise, and stress perfusion CMR was completed in 88 ± 8 sec. Agreement between SPECT and CMR was moderate (κ = 0.58). Accuracy in eight patients who underwent coronary angiography was 7/8 for CMR and 5/8 for SPECT (p = 0.625). Follow-up at 6 months indicated freedom from cardiovascular events in 29/29 CMR-negative and 33/34 SPECT-negative patients. Conclusions Exercise stress CMR including wall motion and perfusion is feasible in patients with suspected ischemic heart disease. Larger clinical trials are warranted based on the promising results of this pilot study to allow comparative effectiveness studies of this stress imaging system vs. other stress imaging modalities. PMID:20624294

  16. Angina Relief by Ranolazine Identifies False-Negative SPECT Myocardial Perfusion Scans in Patients with Coronary Disease Demonstrated by Coronary Angiography

    PubMed Central

    Murray, Gary L.

    2014-01-01

    Normal myocardial perfusion imaging (MPI) reduces intermediate- or high-risk pretest probability patients to low- or intermediate-risk posttest probability, respectively, for coronary disease (CD). Since ranolazine (RAN) relieves only angina, anginal patients with normal MPI whose angina is relieved by RAN present a significant dilemma. The purpose of this retrospective chart review was to confirm the impression that coronary angiography (CA) is indicated in patients whose class 3 to 4 angina is relieved by RAN, but have normal myocardial single-photon emission computed tomography (SPECT) MPIs. Charts of patients with stable class 3 to 4 angina (typical and atypical) and normal MPIs (left ventricular ejection fraction [LVEF] ≥50% and segmental score = 0) were reviewed. CA was done on all the patients with complete angina relief taking RAN, as well as nonresponders whose anginal etiology could not be explained. Stenoses were considered flow-restrictive when more than 70% diameter stenosis is observed by quantitative CA, or, when 50 to 70%, fractional flow reserve (FFR) measured ≤0.80. RAN relieved angina in 36 of 54 (67%) patients. Of the known cases, 25 of these 36 (69%) had 43 stenoses ≥50% (mean = 66%): 15 (60%) had 1 vessel disease; 9 (36%) had multivessel disease; 18 (72%) had left anterior descending (LAD) disease; 1 (4%) had left main disease. Twenty one of 43 (49%) stenosis were > 70%; 22 (51%) stenoses were 50 to 70% and required FFR measurement. Twenty nine of 43 stenoses (67%) were considered flow-restrictive in 18 of these 25 (72%) patients. Eight RAN nonresponders with no explanation for angina had no CD at CA. RAN angina relief is invaluable in identifying falsely negative SPECT MPI, and 50% of these patients have flow-restrictive stenoses. PMID:25317027

  17. No evidence of myocardial restoration following transplantation of mononuclear bone marrow cells in coronary bypass grafting surgery patients based upon cardiac SPECT and 18F-PET

    PubMed Central

    Tossios, Paschalis; Müller-Ehmsen, Jochen; Schmidt, Matthias; Scheid, Christof; Ünal, Nermin; Moka, Detlef; Schwinger, Robert HG; Mehlhorn, Uwe

    2006-01-01

    Background We tested the hypothesis, that intramyocardial injection of mononuclear bone marrow cells combined with coronary artery bypass grafting (CABG) surgery improves tissue viability or function in infarct regions with non-viable myocardium as assessed by nuclear imaging techniques. Methods Thus far, 7 patients (60 ± 10 [SD] years) undergoing elective CABG surgery after a myocardial infarction were included in this study. Prior to sternotomy, bone marrow was harvested by sternal puncture. Mononuclear bone marrow cells were isolated by gradient centrifugation and resuspended in 2 ml volume of Hank's buffered salt solution. At the end of CABG surgery 10 injections of 0.2 ml each were applied to the core area and borderzones of the infarct. Global and regional perfusion and viability were evaluated by ECG-gated 99mTc-tetrofosmin myocardial single-photon emission computed tomograph (SPECT) imaging and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) in all study patients < 6 days before and 3 months after the intervention. Results Non-viable segments indicating transmural defects were identified in 5 patients. Two patients were found to have non-transmural defects before surgery. Concomitant surgical revascularisation and bone marrow cell injection was performed in all patients without major complications. The median total injected mononuclear cell number was 7.0 × 107 (range: 0.8–20.4). At 3 months 99mTc-tetrofosmin SPECT and 18F-FDG-PET scanning showed in 5 patients (transmural defect n = 4; non-transmural defect n = 1) no change in myocardial viability and in two patients (transmural defect n = 1, non-transmural defect n = 1) enhanced myocardial viability by 75%. Overall, global and regional LV ejection fraction was not significantly increased after surgery compared with the preoperative value. Conclusion In CABG surgery patients with non-viable segments the concurrent use of intramyocardial cell transfer did not show any clear improvement in

  18. Task-based evaluation of a 4D MAP-RBI-EM image reconstruction method for gated myocardial perfusion SPECT using a human observer study

    NASA Astrophysics Data System (ADS)

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M.; Tsui, Benjamin M. W.

    2015-09-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  19. Task-Based Evaluation of a 4D MAP-RBI-EM Image Reconstruction Method for Gated Myocardial Perfusion SPECT using a Human Observer Study

    PubMed Central

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M.; Tsui, Benjamin M. W.

    2015-01-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  20. Effects of CT-based attenuation correction of rat microSPECT images on relative myocardial perfusion and quantitative tracer uptake

    SciTech Connect

    Strydhorst, Jared H. Ruddy, Terrence D.; Wells, R. Glenn

    2015-04-15

    Purpose: Our goal in this work was to investigate the impact of CT-based attenuation correction on measurements of rat myocardial perfusion with {sup 99m}Tc and {sup 201}Tl single photon emission computed tomography (SPECT). Methods: Eight male Sprague-Dawley rats were injected with {sup 99m}Tc-tetrofosmin and scanned in a small animal pinhole SPECT/CT scanner. Scans were repeated weekly over a period of 5 weeks. Eight additional rats were injected with {sup 201}Tl and also scanned following a similar protocol. The images were reconstructed with and without attenuation correction, and the relative perfusion was analyzed with the commercial cardiac analysis software. The absolute uptake of {sup 99m}Tc in the heart was also quantified with and without attenuation correction. Results: For {sup 99m}Tc imaging, relative segmental perfusion changed by up to +2.1%/−1.8% as a result of attenuation correction. Relative changes of +3.6%/−1.0% were observed for the {sup 201}Tl images. Interscan and inter-rat reproducibilities of relative segmental perfusion were 2.7% and 3.9%, respectively, for the uncorrected {sup 99m}Tc scans, and 3.6% and 4.3%, respectively, for the {sup 201}Tl scans, and were not significantly affected by attenuation correction for either tracer. Attenuation correction also significantly increased the measured absolute uptake of tetrofosmin and significantly altered the relationship between the rat weight and tracer uptake. Conclusions: Our results show that attenuation correction has a small but statistically significant impact on the relative perfusion measurements in some segments of the heart and does not adversely affect reproducibility. Attenuation correction had a small but statistically significant impact on measured absolute tracer uptake.

  1. Reproducibility of area at risk assessment in acute myocardial infarction by T1- and T2-mapping sequences in cardiac magnetic resonance imaging in comparison to Tc99m-sestamibi SPECT.

    PubMed

    Langhans, Birgit; Nadjiri, Jonathan; Jähnichen, Christin; Kastrati, Adnan; Martinoff, Stefan; Hadamitzky, Martin

    2014-10-01

    Area at risk (AAR) is an important parameter for the assessment of the salvage area after revascularization in acute myocardial infarction (AMI). By combining AAR assessment by T2-weighted imaging and scar quantification by late gadolinium enhancement imaging cardiovascular magnetic resonance (CMR) offers a promising alternative to the "classical" modality of Tc99m-sestamibi single photon emission tomography (SPECT). Current T2 weighted sequences for edema imaging in CMR are limited by low contrast to noise ratios and motion artifacts. During the last years novel CMR imaging techniques for quantification of acute myocardial injury, particularly the T1-mapping and T2-mapping, have attracted rising attention. But no direct comparison between the different sequences in the setting of AMI or a validation against SPECT has been reported so far. We analyzed 14 patients undergoing primary coronary revascularization in AMI in whom both a pre-intervention Tc99m-sestamibi-SPECT and CMR imaging at a median of 3.4 (interquartile range 3.3-3.6) days after the acute event were performed. Size of AAR was measured by three different non-contrast CMR techniques on corresponding short axis slices: T2-weighted, fat-suppressed turbospin echo sequence (TSE), T2-mapping from T2-prepared balanced steady state free precession sequences (T2-MAP) and T1-mapping from modified look locker inversion recovery (MOLLI) sequences. For each CMR sequence, the AAR was quantified by appropriate methods (absolute values for mapping sequences, comparison with remote myocardium for other sequences) and correlated with Tc99m-sestamibi-SPECT. All measurements were performed on a 1.5 Tesla scanner. The size of the AAR assessed by CMR was 28.7 ± 20.9 % of left ventricular myocardial volume (%LV) for TSE, 45.8 ± 16.6 %LV for T2-MAP, and 40.1 ± 14.4 %LV for MOLLI. AAR assessed by SPECT measured 41.6 ± 20.7 %LV. Correlation analysis revealed best correlation with SPECT for T2-MAP at a T2-threshold of 60 ms

  2. SPECT myocardial perfusion imaging as an adjunct to coronary calcium score for the detection of hemodynamically significant coronary artery stenosis

    PubMed Central

    2012-01-01

    Background Coronary artery calcifications (CAC) are markers of coronary atherosclerosis, but do not correlate well with stenosis severity. This study intended to evaluate clinical situations where a combined approach of coronary calcium scoring (CS) and nuclear stress test (SPECT-MPI) is useful for the detection of relevant CAD. Methods Patients with clinical indication for invasive coronary angiography (ICA) were included into our study during 08/2005-09/2008. At first all patients underwent CS procedure as part of the study protocol performed by either using a multidetector computed tomography (CT) scanner or a dual-source CT imager. CAC were automatically defined by dedicated software and the Agatston score was semi-automatically calculated. A stress-rest SPECT-MPI study was performed afterwards and scintigraphic images were evaluated quantitatively. Then all patients underwent ICA. Thereby significant CAD was defined as luminal stenosis ≥75% in quantitative coronary analysis (QCA) in ≥1 epicardial vessel. To compare data lacking Gaussian distribution an unpaired Wilcoxon-Test (Mann–Whitney) was used. Otherwise a Students t-test for unpaired samples was applied. Calculations were considered to be significant at a p-value of <0.05. Results We consecutively included 351 symptomatic patients (mean age: 61.2±12.3 years; range: 18–94 years; male: n=240) with a mean Agatston score of 258.5±512.2 (range: 0–4214). ICA verified exclusion of significant CAD in 66/67 (98.5%) patients without CAC. CAC was detected in remaining 284 patients. In 132/284 patients (46.5%) with CS>0 significant CAD was confirmed by ICA, and excluded in 152/284 (53.5%) patients. Sensitivity for CAD detection by CS alone was calculated as 99.2%, specificity was 30.3%, and negative predictive value was 98.5%. An additional SPECT in patients with CS>0 increased specificity to 80.9% while reducing sensitivity to 87.9%. Diagnostic accuracy was 84.2%. Conclusions In patients without CS=0

  3. Diagnosis of myocardial involvement in patients with systemic myopathies with 15-(p-(I-123)iodophenyl) pentadecanoic acid (IPPA) SPECT

    SciTech Connect

    Kropp, J.; Briele, B.; Smekal, A.V.; Hotze, A.L.; Biersack, H.J.; Koehler, U.; Zierz, St. ); Knapp, F.F. )

    1992-01-01

    Involvement of the myocardium in non-infectious myopathies presents in most cases as systolic dysfunction or a disturbed cardiac rhythm. We are interested in exploring how often cardiac involvement can be evaluated with various diagnostic techniques in patients with proven myopathy. We investigated 41 patients with myopathies of various etiology, including mitochondrial and congenital myopathies, Curshmann-Steinert disease, muscular dystrophy, and others. Myopathy was proven by muscular biopsy usually from the bicep. Fatty acid imaging was performed with 15-(p-(I-123)iodophenyl)pentadecanoic acid (IP-PA) and sequential SPECT-scintigraphy with a 180 deg. rotation starting at the 45 deg. RAO position. 190 MBq were injected at the maximal stage of a submaximal exercise. Filtered backprojection and reorientation of the slices were achieved by standard techniques. The quantitative comparison of the oblique slices (bulls-eye technique) of the SPECT-studies revealed turnover-rates as a qualitative measure of {beta}-oxidation. Serum levels of lactate (L), pyruvate (P), glucose (G) and triglycerides (TG) were measured at rest and stress. Ventricular function was investigated by radionuclide ventriculography (MUGA) at rest and under stress with Tc-99m labeled red blood cells. In addition, ECG, 24 hour-ECG, and echocardiography were also performed with standard techniques.

  4. Diagnosis of myocardial involvement in patients with systemic myopathies with 15-(p-[I-123]iodophenyl) pentadecanoic acid (IPPA) SPECT

    SciTech Connect

    Kropp, J.; Briele, B.; Smekal, A.V.; Hotze, A.L.; Biersack, H.J.; Koehler, U.; Zierz, St.; Knapp, F.F.

    1992-03-01

    Involvement of the myocardium in non-infectious myopathies presents in most cases as systolic dysfunction or a disturbed cardiac rhythm. We are interested in exploring how often cardiac involvement can be evaluated with various diagnostic techniques in patients with proven myopathy. We investigated 41 patients with myopathies of various etiology, including mitochondrial and congenital myopathies, Curshmann-Steinert disease, muscular dystrophy, and others. Myopathy was proven by muscular biopsy usually from the bicep. Fatty acid imaging was performed with 15-(p-[I-123]iodophenyl)pentadecanoic acid (IP-PA) and sequential SPECT-scintigraphy with a 180 deg. rotation starting at the 45 deg. RAO position. 190 MBq were injected at the maximal stage of a submaximal exercise. Filtered backprojection and reorientation of the slices were achieved by standard techniques. The quantitative comparison of the oblique slices (bulls-eye technique) of the SPECT-studies revealed turnover-rates as a qualitative measure of {beta}-oxidation. Serum levels of lactate (L), pyruvate (P), glucose (G) and triglycerides (TG) were measured at rest and stress. Ventricular function was investigated by radionuclide ventriculography (MUGA) at rest and under stress with Tc-99m labeled red blood cells. In addition, ECG, 24 hour-ECG, and echocardiography were also performed with standard techniques.

  5. Importance of 123I-ioflupane SPECT and Myocardial MIBG Scintigraphy to Determine the Candidate of Deep Brain Stimulation for Parkinson’s Disease

    PubMed Central

    ASAHI, Takashi; KASHIWAZAKI, Daina; YONEYAMA, Tatsuya; NOGUCHI, Kyo; KURODA, Satoshi

    2016-01-01

    123I-ioflupane SPECT (DaTscan) is an examination that detects presynaptic dopamine neuronal dysfunction, and has been used as a diagnostic tool to identify degenerative parkinsonism. Additionally, myocardial 123I-metaiodobenzyl guanidine (MIBG) scintigraphy measures the concentration of cardiac sympathetic nerve fibers and is used to diagnose Parkinson’s disease (PD). These exams are used as adjuncts in the diagnosis of parkinsonism, however, the relationship of these two examinations are not well-known. We investigated the relationship of these two scanning results specifically for determining the use of deep brain stimulation therapy (DBS). Subjects were Japanese patients with suspected striatonigral degeneration, including PD; DaTscans and myocardial MIBG scintigraphy were performed. The mean values of the left-right specific binding ratios (SBRs) from the DaTscan, and the early/delayed heart-to-mediastinum ratios (HMRs) from the MIBG scintigraphy were calculated. Using simple linear regression analysis, we compared the SBR and early/delayed HMR values. Twenty-four patients were enrolled in this study. Twenty-one patients were positive via the DaTscan, and the MIBG scintigraphy results showed 14 patients were positive. SBR and both early and delayed HMR were positively correlated in cases of PD, but negative in non-PD cases. A mean SBR value less than 3.0 and a delayed HMR value less than 1.7 indicated a Hoehn-Yahr stage 3 or 4 for PD, which is commonly regarded as a level appropriate for initiating DBS therapy. Our results indicate that performing both DaTscan and MIBG scintigraphy is useful for the evaluation of surgical intervention in PD. PMID:26794041

  6. Assessment of cardiac function using myocardial perfusion imaging technique on SPECT with 99mTc sestamibi

    NASA Astrophysics Data System (ADS)

    Gani, M. R. A.; Nazir, F.; Pawiro, S. A.; Soejoko, D. S.

    2016-03-01

    Suspicion on coronary heart disease can be confirmed by observing the function of left ventricle cardiac muscle with Myocardial Perfusion Imaging techniques. The function perfusion itself is indicated by the uptake of radiopharmaceutical tracer. The 31 patients were studied undergoing the MPI examination on Gatot Soebroto Hospital using 99mTc-sestamibi radiopharmaceutical with stress and rest conditions. Stress was stimulated by physical exercise or pharmacological agent. After two hours, the patient did rest condition on the same day. The difference of uptake percentage between stress and rest conditions will be used to determine the malfunction of perfusion due to ischemic or infarct. Degradation of cardiac function was determined based on the image-based assessment of five segments of left ventricle cardiac. As a result, 8 (25.8%) patients had normal myocardial perfusion and 11 (35.5%) patients suspected for having partial ischemia. Total ischemia occurred to 8 (25.8%) patients with reversible and irreversible ischemia and the remaining 4 (12.9%) patients for partial infarct with characteristic the percentage of perfusion ≤50%. It is concluded that MPI technique of image-based assessment on uptake percentage difference between stress and rest conditions can be employed to predict abnormal perfusion as complementary information to diagnose the cardiac function.

  7. Left ventricular dyssynchrony assessed by two three-dimensional imaging modalities: phase analysis of gated myocardial perfusion SPECT and tri-plane tissue Doppler imaging

    PubMed Central

    Ajmone Marsan, Nina; Henneman, Maureen M.; Chen, Ji; Ypenburg, Claudia; Dibbets, Petra; Ghio, Stefano; Bleeker, Gabe B.; Stokkel, Marcel P.; van der Wall, Ernst E.; Tavazzi, Luigi; Garcia, Ernest V.

    2007-01-01

    Purpose To compare left ventricular (LV) dyssynchrony assessment by phase analysis from gated myocardial perfusion SPECT (GMPS) with LV dyssynchrony assessment by tri-plane tissue Doppler imaging (TDI). Baseline LV dyssynchrony assessed with standard deviation (SD) of time-to-peak systolic velocity of 12 LV segments (Ts-SD) with TDI has proven to be a powerful predictor of response to CRT. Information on LV dyssynchrony can also be provided by GMPS with phase analysis of regional LV maximal count changes throughout the cardiac cycle. Methods Forty heart failure patients, referred for evaluation of potential eligibility for CRT, underwent both 3D echocardiography, with tri-plane TDI, and resting GMPS. From tri-plane TDI, Ts-SD was used as a validated parameter of LV dyssynchrony and compared with different indices (histogram bandwidth, phase SD, histogram skewness and kurtosis) derived from phase analysis of GMPS. Results Histogram bandwidth and phase SD showed good correlation with Ts-SD (r=0.77 and r=0.74, p<0.0001, respectively). Patients with substantial LV dyssynchrony assessed with tri-plane TDI (Ts-SD ≥33 ms) had also significantly higher values of histogram bandwidth and phase SD. Conclusions The results of this study support the use of phase analysis by GMPS to evaluate LV dyssynchrony. Histogram bandwidth and phase SD showed the best correlation with Ts-SD assessed with tri-plane TDI and appeared the most optimal variables for assessment of LV dyssynchrony with GMPS. PMID:17874098

  8. The Benefits of Prone SPECT Myocardial Perfusion Imaging in Reducing Both Artifact Defects and Patient Radiation Exposure

    PubMed Central

    Stathaki, Maria; Koukouraki, Sophia; Papadaki, Emmanouela; Tsaroucha, Angeliki; Karkavitsas, Nikolaos

    2015-01-01

    Background Prone imaging has been demonstrated to minimize diaphragmatic and breast tissue attenuation. Objectives To determine the role of prone imaging on the reduction of unnecessary rest perfusion studies and coronary angiographies performed, thus decreasing investigation time and radiation exposure. Methods We examined 139 patients, 120 with an inferior wall and 19 with an anterior wall perfusion defect that might represented attenuation artifact. Post-stress images were acquired in both the supine and prone position. Coronary angiography was used as the “gold standard” for evaluating coronary artery patency. The study was terminated and rest imaging was obviated in the presence of complete improvement of the defect in the prone position. Quantitative interpretation was performed. Results were compared with clinical data and coronary angiographic findings. Results Prone acquisition correctly revealed defect improvement in 89 patients (89/120) with inferior wall and 12 patients (12/19) with anterior wall attenuation artifact. Quantitative analysis demonstrated statistically significant difference in the mean summed stress scores (SSS) of supine and mean SSS of prone studies in patients with disappearing inferior wall defect in the prone position and patent right coronary artery (true negative results). The mean difference between SSS in supine and in prone position was higher with disappearing than with remaining defects. Conclusion Technetium-99m (Tc-99m) tetrofosmin myocardial perfusion imaging with the patient in the prone position overcomes soft tissue attenuation; moreover it provides an inexpensive, accurate approach to limit the number of unnecessary rest perfusion studies and coronary angiographies performed. PMID:26559981

  9. Collimator optimization and collimator-detector response compensation in myocardial perfusion SPECT using the ideal observer with and without model mismatch and an anthropomorphic model observer

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Links, Jonathan M.; Frey, Eric C.

    2016-03-01

    The collimator is the primary factor that determines the spatial resolution and noise tradeoff in myocardial perfusion SPECT images. In this paper, the goal was to find the collimator that optimizes the image quality in terms of a perfusion defect detection task. Since the optimal collimator could depend on the level of approximation of the collimator-detector response (CDR) compensation modeled in reconstruction, we performed this optimization for the cases of modeling the full CDR (including geometric, septal penetration and septal scatter responses), the geometric CDR, or no model of the CDR. We evaluated the performance on the detection task using three model observers. Two observers operated on data in the projection domain: the Ideal Observer (IO) and IO with Model-Mismatch (IO-MM). The third observer was an anthropomorphic Channelized Hotelling Observer (CHO), which operated on reconstructed images. The projection-domain observers have the advantage that they are computationally less intensive. The IO has perfect knowledge of the image formation process, i.e. it has a perfect model of the CDR. The IO-MM takes into account the mismatch between the true (complete and accurate) model and an approximate model, e.g. one that might be used in reconstruction. We evaluated the utility of these projection domain observers in optimizing instrumentation parameters. We investigated a family of 8 parallel-hole collimators, spanning a wide range of resolution and sensitivity tradeoffs, using a population of simulated projection (for the IO and IO-MM) and reconstructed (for the CHO) images that included background variability. We simulated anterolateral and inferior perfusion defects with variable extents and severities. The area under the ROC curve was estimated from the IO, IO-MM, and CHO test statistics and served as the figure-of-merit. The optimal collimator for the IO had a resolution of 9-11 mm FWHM at 10 cm, which is poorer resolution than typical collimators

  10. Adaptive SPECT

    PubMed Central

    Barrett, Harrison H.; Furenlid, Lars R.; Freed, Melanie; Hesterman, Jacob Y.; Kupinski, Matthew A.; Clarkson, Eric; Whitaker, Meredith K.

    2008-01-01

    Adaptive imaging systems alter their data-acquisition configuration or protocol in response to the image information received. An adaptive pinhole single-photon emission computed tomography (SPECT) system might acquire an initial scout image to obtain preliminary information about the radiotracer distribution and then adjust the configuration or sizes of the pinholes, the magnifications, or the projection angles in order to improve performance. This paper briefly describes two small-animal SPECT systems that allow this flexibility and then presents a framework for evaluating adaptive systems in general, and adaptive SPECT systems in particular. The evaluation is in terms of the performance of linear observers on detection or estimation tasks. Expressions are derived for the ideal linear (Hotelling) observer and the ideal linear (Wiener) estimator with adaptive imaging. Detailed expressions for the performance figures of merit are given, and possible adaptation rules are discussed. PMID:18541485

  11. An investigation of the trade-off between the count level and image quality in myocardial perfusion SPECT using simulated images: the effects of statistical noise and object variability on defect detectability

    NASA Astrophysics Data System (ADS)

    He, Xin; Links, Jonathan M.; Frey, Eric C.

    2010-09-01

    Quantum noise as well as anatomic and uptake variability in patient populations limits observer performance on a defect detection task in myocardial perfusion SPECT (MPS). The goal of this study was to investigate the relative importance of these two effects by varying acquisition time, which determines the count level, and assessing the change in performance on a myocardial perfusion (MP) defect detection task using both mathematical and human observers. We generated ten sets of projections of a simulated patient population with count levels ranging from 1/128 to around 15 times a typical clinical count level to simulate different levels of quantum noise. For the simulated population we modeled variations in patient, heart and defect size, heart orientation and shape, defect location, organ uptake ratio, etc. The projection data were reconstructed using the OS-EM algorithm with no compensation or with attenuation, detector response and scatter compensation (ADS). The images were then post-filtered and reoriented to generate short-axis slices. A channelized Hotelling observer (CHO) was applied to the short-axis images, and the area under the receiver operating characteristics (ROC) curve (AUC) was computed. For each noise level and reconstruction method, we optimized the number of iterations and cutoff frequencies of the Butterworth filter to maximize the AUC. Using the images obtained with the optimal iteration and cutoff frequency and ADS compensation, we performed human observer studies for four count levels to validate the CHO results. Both CHO and human observer studies demonstrated that observer performance was dependent on the relative magnitude of the quantum noise and the patient variation. When the count level was high, the patient variation dominated, and the AUC increased very slowly with changes in the count level for the same level of anatomic variability. When the count level was low, however, quantum noise dominated, and changes in the count level

  12. Relation between the kinetics of thallium-201 in myocardial scintigraphy and myocardial metabolism in patients with acute myocardial infarction

    PubMed Central

    Yamagishi, H; Akioka, K; Takagi, M; Tanaka, A; Takeuchi, K; Yoshikawa, J; Ochi, H

    1998-01-01

    Objective—To investigate the relations between myocardial metabolism and the kinetics of thallium-201 in myocardial scintigraphy.
Methods—46 patients within six weeks after the onset of acute myocardial infarction underwent resting myocardial dual isotope, single acquisition, single photon emission computed tomography (SPECT) using radioiodinated 15-iodophenyl 3-methyl pentadecaenoic acid (BMIPP) and thallium-201, exercise thallium-201 SPECT, and positron emission tomography (PET) using nitrogen-13 ammonia (NH3) and [F18]fluorodeoxyglucose (FDG) under fasting conditions. The left ventricle was divided into nine segments, and the severity of defects was assessed visually.
Results—In the resting SPECT, less BMIPP uptake than thallium-201 uptake was observed in all of 40 segments with reverse redistribution of thallium-201, and in 21 of 88 segments with a fixed defect of thallium-201 (p < 0.0001); and more FDG uptake than NH3 uptake (NH3-FDG mismatch) was observed in 35 of 40 segments with reverse redistribution and in 38 of 88 segments with fixed defect (p < 0.0001). Less BMIPP uptake in the resting SPECT was observed in 49 of 54 segments with slow stress redistribution in exercise SPECT, and in nine of 17 segments with rapid stress redistribution (p < 0.0005); NH3-FDG mismatch was observed in 42 of 54 segments with slow stress redistribution and in five of 17 segments with rapid stress redistribution (p < 0.0005).
Conclusions—Thallium-201 myocardial scintigraphy provides information about not only myocardial perfusion and viability but also about myocardial metabolism in patients with acute myocardial infarction.

 Keywords: thallium-201 SPECT;  BMIPP SPECT;  FDG PET;  myocardial infarction;  redistribution PMID:9764055

  13. SPECT and PET in ischemic heart failure.

    PubMed

    Angelidis, George; Giamouzis, Gregory; Karagiannis, Georgios; Butler, Javed; Tsougos, Ioannis; Valotassiou, Varvara; Giannakoulas, George; Dimakopoulos, Nikolaos; Xanthopoulos, Andrew; Skoularigis, John; Triposkiadis, Filippos; Georgoulias, Panagiotis

    2017-02-02

    Heart failure is a common clinical syndrome associated with significant morbidity and mortality worldwide. Ischemic heart disease is the leading cause of heart failure, at least in the industrialized countries. Proper diagnosis of the syndrome and management of patients with heart failure require anatomical and functional information obtained through various imaging modalities. Nuclear cardiology techniques play a main role in the evaluation of heart failure. Myocardial single photon emission computed tomography (SPECT) with thallium-201 or technetium-99 m labelled tracers offer valuable data regarding ventricular function, myocardial perfusion, viability, and intraventricular synchronism. Moreover, positron emission tomography (PET) permits accurate evaluation of myocardial perfusion, metabolism, and viability, providing high-quality images and the ability of quantitative analysis. As these imaging techniques assess different parameters of cardiac structure and function, variations of sensitivity and specificity have been reported among them. In addition, the role of SPECT and PET guided therapy remains controversial. In this comprehensive review, we address these controversies and report the advances in patient's investigation with SPECT and PET in ischemic heart failure. Furthermore, we present the innovations in technology that are expected to strengthen the role of nuclear cardiology modalities in the investigation of heart failure.

  14. Design and assessment of cardiac SPECT systems

    NASA Astrophysics Data System (ADS)

    Lee, Chih-Jie

    Single-photon emission computed tomography (SPECT) is a modality widely used to detect myocardial ischemia and myocardial infarction. Objectively assessing and comparing different SPECT systems is important so that the best detectability of cardiac defects can be achieved. Whitaker, Clarkson, and Barrett's study on the scanning linear observer (SLO) shows that the SLO can be used to estimate the location and size of signals. One major advantage of the SLO is that it can be used with projection data rather than reconstruction data. Thus, this observer model assesses overall hardware performance independent by any reconstruction algorithm. In addition, we will show that the run time of image-quality studies is significantly reduced. Several systems derived from the GE CZT-based dedicated cardiac SPECT camera Discovery 530c design, which is officially named the Alcyone Technology: Discovery NM 530c, were assessed using the performance of the SLO for the task of detecting cardiac defects and estimating the properties of the defects. Clinically, hearts can be virtually segmented into three coronary artery territories: left anterior descending artery (LAD), left circumflex artery (LCX), and right coronary artery (RCA). One of the most important functions of a cardiac SPECT system is to produce images from which a radiologist can correctly predict in which territory the defect exists. A good estimation of the defect extent from the images is also very helpful for determining the seriousness of the myocardial ischemia. In this dissertation, both locations and extent of defects were estimated by the SLO, and system performance was assessed using localization receiver operating characteristic (LROC) / estimation receiver operating characteristic (EROC) curves. Area under LROC curve (AULC) / area under EROC curve (AUEC) and true positive fraction (TPF) at specific false positive fraction (FPF) can be treated as the gures of merit (FOMs). As the results will show, a

  15. Neuroreceptor imaging with SPECT.

    PubMed

    Innis, R B

    1992-11-01

    Single photon emission computed tomography (SPECT) imaging can provide useful measurements of brain receptors and endogenous neurotransmitters and may have significant experimental and clinical applications. This presentation reviews the use of SPECT for neuroreceptor imaging. Studies of receptors for benzodiazepines, dopamine D2 agents, and dopamine reuptake sites will be used to exemplify the capabilities of SPECT. Tracers labeled with the radioisotope 125I have high affinity, high brain uptake, and high ratios of specific to nonspecific binding. Imaging studies of human and nonhuman primate brain will be presented, and the potential clinical applicability of these agents will be discussed.

  16. Abdominal SPECT imaging

    SciTech Connect

    Van Heertum, R.L.; Brunetti, J.C.; Yudd, A.P.

    1987-07-01

    Over the past several years, abdominal single photon emission computed tomography (SPECT) imaging has evolved from a research tool to an important clinical imaging modality that is helpful in the diagnostic assessment of a wide variety of disorders involving the abdominal viscera. Although liver-spleen imaging is the most popular of the abdominal SPECT procedures, blood pool imaging is becoming much more widely utilized for the evaluation of cavernous hemangiomas of the liver as well as other vascular abnormalities in the abdomen. Adjunctive indium leukocyte and gallium SPECT studies are also proving to be of value in the assessment of a variety of infectious and neoplastic diseases. As more experience is acquired in this area, SPECT should become the primary imaging modality for both gallium and indium white blood cells in many institutions. Renal SPECT, on the other hand, has only recently been used as a clinical imaging modality for the assessment of such parameters as renal depth and volume. The exact role of renal SPECT as a clinical tool is, therefore, yet to be determined. 79 references.

  17. The AAPM/RSNA physics tutorial for residents. Physics of SPECT.

    PubMed

    Tsui, B M

    1996-01-01

    Single-photon emission computed tomography (SPECT) provides three-dimensional (3D) image information about the distribution of a radiopharmaceutical injected into the patient for diagnostic purposes. By combining conventional scintigraphic and computed tomographic methods, SPECT images present 3D functional information about the patient in more detail and higher contrast than found in planar scintigrams. A typical SPECT system consists of one or more scintillation cameras that acquire multiple two-dimensional planar projection images around the patient. The projection data are reconstructed into 3D images. The collimator of the scintillation camera has substantial effects on the spatial resolution and detection efficiency of the SPECT system. Physical factors such as photon attenuation and scatter affect the quantitative accuracy and quality of SPECT images, and various methods have been developed to compensate for these image-degrading effects. In myocardial SPECT, an important application of SPECT, recent use of attenuation compensation methods has provided images with reduced artifacts and distortions caused by the non-uniform attenuation in the chest region and by the diaphragmatic and breast attenuation. Attenuation-compensated myocardial SPECT images have the potential to improve clinical diagnosis by reducing the false-positive and false-negative detection of myocardial defects. In the future, further improvement in SPECT images will be realized from the continuous development of new radio-pharmaceuticals for new clinical applications, instrumentation with high spatial resolution and detection efficiency, and image reconstruction algorithms and compensation methods that reduce the image-degrading effects of the collimator-detector, attenuation, and scatter.

  18. SPECT attenuation correction: an essential tool to realize nuclear cardiology's manifest destiny.

    PubMed

    Garcia, Ernest V

    2007-01-01

    Single photon emission computed tomography (SPECT) myocardial perfusion imaging has attained widespread clinical acceptance as a standard of care for cardiac patients. Yet, physical phenomena degrade the accuracy of how our cardiac images are visually interpreted or quantitatively analyzed. This degradation results in cardiac images in which brightness or counts are not necessarily linear with tracer uptake or myocardial perfusion. Attenuation correction (AC) is a methodology that has evolved over the last 30 years to compensate for this degradation. Numerous AC clinical trials over the last 10 years have shown increased diagnostic accuracy over non-AC SPECT for detecting and localizing coronary artery disease, particularly for significantly increasing specificity and normalcy rate. This overwhelming evidence has prompted our professional societies to issue a joint position statement in 2004 recommending the use of AC to maximize SPECT diagnostic accuracy and clinical usefulness. Phantom and animal studies have convincingly shown how SPECT AC recovers the true regional myocardial activity concentration, while non-AC SPECT does not. Thus, AC is also an essential tool for extracting quantitative parameters from all types of cardiac radionuclide distributions, and plays an important role in establishing cardiac SPECT for flow, metabolic, innervation, and molecular imaging, our manifest destiny.

  19. Proceedings of the cardiac PET summit meeting 12 may 2014: Cardiac PET and SPECT instrumentation.

    PubMed

    Garcia, Ernest V

    2015-06-01

    Advances in PET and SPECT and imaging hardware and software are vastly improving the noninvasive evaluation of myocardial perfusion and function. PET perfusion imaging has benefitted from the introduction of novel detectors that now allow true 3D imaging, and precise attenuation correction (AC). These developments have also resulted in perfusion images with higher spatial and contrast resolution that may be acquired in shorter protocols and/or with less patient radiation exposure than traditional PET or SPECT studies. Hybrid PET/CT cameras utilize transmission computed tomographic (CT) scans for AC, and offer the additional clinical advantages of evaluating coronary calcium and myocardial anatomy but at a higher cost than PET scanners that use (68)Ge radioactive line sources. As cardiac PET systems continue to improve, dedicated cardiac SPECT systems are also undergoing a profound change in their design. The scintillation camera general purpose design is being replaced with systems with multiple detectors focused on the heart yielding 5 to 10 times the sensitivity of conventional SPECT. As a result, shorter acquisition times and/or lower tracer doses produce higher quality SPECT images than were possible before. This article reviews these concepts and compares the attributes of PET and SPECT instrumentation.

  20. Bayesian learning for cardiac SPECT image interpretation.

    PubMed

    Sacha, Jarosław P; Goodenday, Lucy S; Cios, Krzysztof J

    2002-01-01

    In this paper, we describe a system for automating the diagnosis of myocardial perfusion from single-photon emission computerized tomography (SPECT) images of male and female hearts. Initially we had several thousand of SPECT images, other clinical data and physician-interpreter's descriptions of the images. The images were divided into segments based on the Yale system. Each segment was described by the physician as showing one of the following conditions: normal perfusion, reversible perfusion defect, partially reversible perfusion defect, fixed perfusion defect, defect showing reverse redistribution, equivocal defect or artifact. The physician's diagnosis of overall left ventricular (LV) perfusion, based on the above descriptions, categorizes a study as showing one or more of eight possible conditions: normal, ischemia, infarct and ischemia, infarct, reverse redistribution, equivocal, artifact or LV dysfunction. Because of the complexity of the task, we decided to use the knowledge discovery approach, consisting of these steps: problem understanding, data understanding, data preparation, data mining, evaluating the discovered knowledge and its implementation. After going through the data preparation step, in which we constructed normal gender-specific models of the LV and image registration, we ended up with 728 patients for whom we had both SPECT images and corresponding diagnoses. Another major contribution of the paper is the data mining step, in which we used several new Bayesian learning classification methods. The approach we have taken, namely the six-step knowledge discovery process has proven to be very successful in this complex data mining task and as such the process can be extended to other medical data mining projects.

  1. Filters in 2D and 3D Cardiac SPECT Image Processing

    PubMed Central

    Ploussi, Agapi; Synefia, Stella

    2014-01-01

    Nuclear cardiac imaging is a noninvasive, sensitive method providing information on cardiac structure and physiology. Single photon emission tomography (SPECT) evaluates myocardial perfusion, viability, and function and is widely used in clinical routine. The quality of the tomographic image is a key for accurate diagnosis. Image filtering, a mathematical processing, compensates for loss of detail in an image while reducing image noise, and it can improve the image resolution and limit the degradation of the image. SPECT images are then reconstructed, either by filter back projection (FBP) analytical technique or iteratively, by algebraic methods. The aim of this study is to review filters in cardiac 2D, 3D, and 4D SPECT applications and how these affect the image quality mirroring the diagnostic accuracy of SPECT images. Several filters, including the Hanning, Butterworth, and Parzen filters, were evaluated in combination with the two reconstruction methods as well as with a specified MatLab program. Results showed that for both 3D and 4D cardiac SPECT the Butterworth filter, for different critical frequencies and orders, produced the best results. Between the two reconstruction methods, the iterative one might be more appropriate for cardiac SPECT, since it improves lesion detectability due to the significant improvement of image contrast. PMID:24804144

  2. Filters in 2D and 3D Cardiac SPECT Image Processing.

    PubMed

    Lyra, Maria; Ploussi, Agapi; Rouchota, Maritina; Synefia, Stella

    2014-01-01

    Nuclear cardiac imaging is a noninvasive, sensitive method providing information on cardiac structure and physiology. Single photon emission tomography (SPECT) evaluates myocardial perfusion, viability, and function and is widely used in clinical routine. The quality of the tomographic image is a key for accurate diagnosis. Image filtering, a mathematical processing, compensates for loss of detail in an image while reducing image noise, and it can improve the image resolution and limit the degradation of the image. SPECT images are then reconstructed, either by filter back projection (FBP) analytical technique or iteratively, by algebraic methods. The aim of this study is to review filters in cardiac 2D, 3D, and 4D SPECT applications and how these affect the image quality mirroring the diagnostic accuracy of SPECT images. Several filters, including the Hanning, Butterworth, and Parzen filters, were evaluated in combination with the two reconstruction methods as well as with a specified MatLab program. Results showed that for both 3D and 4D cardiac SPECT the Butterworth filter, for different critical frequencies and orders, produced the best results. Between the two reconstruction methods, the iterative one might be more appropriate for cardiac SPECT, since it improves lesion detectability due to the significant improvement of image contrast.

  3. First Results of Small Animal Imaging Spect Detector for Cardiovascular Disease Studies on Mice

    NASA Astrophysics Data System (ADS)

    Magliozzi, M. L.; Ballerini, M.; Cisbani, E.; Colilli, S.; Cusanno, F.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Santavenere, F.; Torrioli, S.; Veneroni, P.; Majewsky, S.; Mok, S. P. G.; Tsui, B. M. W.; Wang, Y.; Marano, G.; Musumeci, M.; Palazzesi, S.; Ciccariello, G.; de Vincentis, G.; Accorsi, R.

    2008-06-01

    We have developed a compact, open, Dual Head pinhole SPECT system for high resolution molecular imaging with radionuclides of mice, dedicated mainly to preclinical study of stem cells capability to recover myocardial infarction. The gamma detector is made of pinhole tungsten collimators, pixellated scintillators, matrix of multi-anode PMTs and individual channel readout. Measurements have been performed on phantoms and live mice devoted initially to test and calibrate the system and to optimize protocols. The implemented system and the first results will be presented, demonstrating the effectiveness of our dedicated SPECT detector for small animal imaging.

  4. Investigation of dynamic SPECT measurements of the arterial input function in human subjects using simulation, phantom and human studies

    NASA Astrophysics Data System (ADS)

    Winant, Celeste D.; Aparici, Carina Mari; Zelnik, Yuval R.; Reutter, Bryan W.; Sitek, Arkadiusz; Bacharach, Stephen L.; Gullberg, Grant T.

    2012-01-01

    Computer simulations, a phantom study and a human study were performed to determine whether a slowly rotating single-photon computed emission tomography (SPECT) system could provide accurate arterial input functions for quantification of myocardial perfusion imaging using kinetic models. The errors induced by data inconsistency associated with imaging with slow camera rotation during tracer injection were evaluated with an approach called SPECT/P (dynamic SPECT from positron emission tomography (PET)) and SPECT/D (dynamic SPECT from database of SPECT phantom projections). SPECT/P simulated SPECT-like dynamic projections using reprojections of reconstructed dynamic 94Tc-methoxyisobutylisonitrile (94Tc-MIBI) PET images acquired in three human subjects (1 min infusion). This approach was used to evaluate the accuracy of estimating myocardial wash-in rate parameters K1 for rotation speeds providing 180° of projection data every 27 or 54 s. Blood input and myocardium tissue time-activity curves (TACs) were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K1. For the second method (SPECT/D), an anthropomorphic cardiac torso phantom was used to create real SPECT dynamic projection data of a tracer distribution derived from 94Tc-MIBI PET scans in the blood pool, myocardium, liver and background. This method introduced attenuation, collimation and scatter into the modeling of dynamic SPECT projections. Both approaches were used to evaluate the accuracy of estimating myocardial wash-in parameters for rotation speeds providing 180° of projection data every 27 and 54 s. Dynamic cardiac SPECT was also performed in a human subject at rest using a hybrid SPECT/CT scanner. Dynamic measurements of 99mTc-tetrofosmin in the myocardium were obtained using an infusion time of 2 min. Blood input, myocardium tissue and liver TACs were estimated using the same spatiotemporal splines. The spatiotemporal maximum

  5. Investigation of dynamic SPECT measurements of the arterial input function in human subjects using simulation, phantom and human studies.

    PubMed

    Winant, Celeste D; Aparici, Carina Mari; Zelnik, Yuval R; Reutter, Bryan W; Sitek, Arkadiusz; Bacharach, Stephen L; Gullberg, Grant T

    2012-01-21

    Computer simulations, a phantom study and a human study were performed to determine whether a slowly rotating single-photon computed emission tomography (SPECT) system could provide accurate arterial input functions for quantification of myocardial perfusion imaging using kinetic models. The errors induced by data inconsistency associated with imaging with slow camera rotation during tracer injection were evaluated with an approach called SPECT/P (dynamic SPECT from positron emission tomography (PET)) and SPECT/D (dynamic SPECT from database of SPECT phantom projections). SPECT/P simulated SPECT-like dynamic projections using reprojections of reconstructed dynamic (94)Tc-methoxyisobutylisonitrile ((94)Tc-MIBI) PET images acquired in three human subjects (1 min infusion). This approach was used to evaluate the accuracy of estimating myocardial wash-in rate parameters K(1) for rotation speeds providing 180° of projection data every 27 or 54 s. Blood input and myocardium tissue time-activity curves (TACs) were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K(1). For the second method (SPECT/D), an anthropomorphic cardiac torso phantom was used to create real SPECT dynamic projection data of a tracer distribution derived from (94)Tc-MIBI PET scans in the blood pool, myocardium, liver and background. This method introduced attenuation, collimation and scatter into the modeling of dynamic SPECT projections. Both approaches were used to evaluate the accuracy of estimating myocardial wash-in parameters for rotation speeds providing 180° of projection data every 27 and 54 s. Dynamic cardiac SPECT was also performed in a human subject at rest using a hybrid SPECT/CT scanner. Dynamic measurements of (99m)Tc-tetrofosmin in the myocardium were obtained using an infusion time of 2 min. Blood input, myocardium tissue and liver TACs were estimated using the same spatiotemporal splines. The

  6. [Interest in myocardial scintigraphy following the arterial switch procedure for transposition of the great vessels].

    PubMed

    Acar, P; Maunoury, C; Bonnet, D; Sébahoun, S; Bonhoeffer, P; Hallaj, I; Aggoun, Y; Iserin, F; Sidi, D; Kachaner, J

    2001-05-01

    Coronary artery obstruction is the main late complication of the so-called arterial switch operation designed to repair transpositions of the great arteries in newborn infants by switching the great vessels and transferring the coronary ostia onto the posterior vessel. Our aim was to study the links between myocardial perfusion and coronary artery anatomy after the arterial switch operation. Forty-five patients (5.863 years) underwent a 201Tl myocardial SPECT and a selective coronary artery angiography. The latter was normal in 20 children: 13 had also a normal myocardial scan but 7 had myocardial perfusion defects including 2 with angina who had a very low coronary reserve at positron emission tomography. Twenty-five patients had severe coronary artery lesions: 5 with a normal myocardial scan and 20 with perfusion defects. Twelve out of these 20 underwent surgical revascularization and the SPECT images went back to normal in all within 6 months after surgery. Specificity and sensitivity of myocardial SPECT in detecting coronary artery lesions were 78% and 69% whereas positive and negative predictive values were 74 and 73%. We conclude that myocardial SPECT imaging is not the right way to detect late post arterial switch coronary artery lesions. It is helpful in decision making as to submit these children to surgical revascularization and in assessing its postoperative effectiveness.

  7. Comparison of I-123 MIBG planar imaging and SPECT for the detection of decreased heart uptake in Parkinson disease.

    PubMed

    Oh, Jin-Kyoung; Choi, Eun-Kyoung; Song, In-Uk; Kim, Joong-Seok; Chung, Yong-An

    2015-10-01

    Decreased myocardial uptake of I-123 metaiodobenzylguanidine (MIBG) is an important finding for diagnosis of Parkinson's disease (PD). This study compared I-123 MIBG SPECT and planar imaging with regard to their diagnostic yield for PD. 52 clinically diagnosed PD patients who also had decreased striatal uptake on FP-CIT PET/CT were enrolled. 16 normal controls were also included. All underwent cardiac MIBG planar scintigraphy and SPECT separately. Myocardial I-123 MIBG uptake was interpreted on planar and SPECT/CT images separately by visual and quantitative analysis. The final diagnosis was made by consensus between two readers. Kappa analyses were performed to determine inter-observer agreement for both methods. Sensitivity, specificity, and accuracy were compared with McNemar's test. The sensitivity, specificity, and accuracy were 84.6, 100, and 88.2% for planar images and 96.2, 100 and 97.1% for SPECT, respectively, with a significant difference between the two imaging methods (p < 0.031). All inter-observer agreements were almost perfect (planar scintigraphy: κ = 0.82; SPECT: κ = 0.93). Heart-to-mediastinum ratios from PD patients with negative planar and positive SPECT scans (group A) and patients with positive planar and positive SPECT scans (group B) were 1.69 ± 0.16 (1.59-1.85) and 1.41 ± 0.15 (1.20-1.53), respectively, and showed significant difference (p = 0.023). Lung-to-mediastinum ratios for groups A and B were 2.16 ± 0.20 (1.96-2.37) and 1.6 ± 0.19 (1.3-1.78), respectively, and were significantly higher in the former (p = 0.001). I-123 MIBG SPECT has a significantly higher diagnostic performance for PD than planar images. Increased lung uptake may cause false-negative results on planar imaging.

  8. Unusual extracardiac findings detected on myocardial perfusion single photon emission computed tomography studies with Tc-99m sestamibi.

    PubMed

    Gedik, Gonca Kara; Ergün, Eser Lay; Aslan, Mehmet; Caner, Biray

    2007-12-01

    The authors describe the incidence and various uptake patterns of Tc-99m sestamibi (MIBI) in the extracardiac area due to unusual causes on myocardial perfusion single photon emission computed tomography (SPECT) studies. Seven patients are presented in whom incidental extracardiac findings were observed during the interpretation of the raw data besides the routine evaluation of myocardial reconstructed SPECT slices. These 7 patients were detected out of 582 consecutive patients (1.2%) who had myocardial perfusion SPECT with Tc-99m MIBI. The findings on the raw data led to additional reconstruction of thoracic SPECT images and eventually detailed examination of the extracardiac area. Two of the patients underwent surgery because of incidental extracardiac findings (thymoma and multinodular goiter) on cardiac scintigraphy. Other causes of increased extracardiac activity were the intestine protruded through the left hemithorax, uptake in the pulmonary arterial wall, and pulmonary interstitial fibrosis due to sarcoidosis. The reasons for decreased Tc-99m MIBI accumulation in the extracardiac area in the 2 other patients were significantly dilated pulmonary arteries and hydatic cyst, which were not defined before to our knowledge. Familiarity with the normal biodistribution and variable uptake patterns in the raw images becomes necessary during the interpretation of myocardial SPECT in order not to miss very unusual incidental extracardiac uptake or information that could lead to alteration in patient management. Potential underlying mechanisms of extracardiac Tc-99m MIBI accumulation are discussed, and the literature about noncardiac Tc-99m MIBI findings detected on myocardial perfusion SPECT studies was reviewed.

  9. SPECT Imaging of 2-D and 3-D Distributed Sources with Near-Field Coded Aperture Collimation: Computer Simulation and Real Data Validation.

    PubMed

    Mu, Zhiping; Dobrucki, Lawrence W; Liu, Yi-Hwa

    The imaging of distributed sources with near-field coded aperture (CA) remains extremely challenging and is broadly considered unsuitable for single-photon emission computerized tomography (SPECT). This study proposes a novel CA SPECT reconstruction approach and evaluates the feasibilities of imaging and reconstructing distributed hot sources and cold lesions using near-field CA collimation and iterative image reconstruction. Computer simulations were designed to compare CA and pinhole collimations in two-dimensional radionuclide imaging. Digital phantoms were created and CA images of the phantoms were reconstructed using maximum likelihood expectation maximization (MLEM). Errors and the contrast-to-noise ratio (CNR) were calculated and image resolution was evaluated. An ex vivo rat heart with myocardial infarction was imaged using a micro-SPECT system equipped with a custom-made CA module and a commercial 5-pinhole collimator. Rat CA images were reconstructed via the three-dimensional (3-D) MLEM algorithm developed for CA SPECT with and without correction for a large projection angle, and 5-pinhole images were reconstructed using the commercial software provided by the SPECT system. Phantom images of CA were markedly improved in terms of image quality, quantitative root-mean-squared error, and CNR, as compared to pinhole images. CA and pinhole images yielded similar image resolution, while CA collimation resulted in fewer noise artifacts. CA and pinhole images of the rat heart were well reconstructed and the myocardial perfusion defects could be clearly discerned from 3-D CA and 5-pinhole SPECT images, whereas 5-pinhole SPECT images suffered from severe noise artifacts. Image contrast of CA SPECT was further improved after correction for the large projection angle used in the rat heart imaging. The computer simulations and small-animal imaging study presented herein indicate that the proposed 3-D CA SPECT imaging and reconstruction approaches worked reasonably

  10. Prognostic evaluation in obese patients using a dedicated multipinhole cadmium-zinc telluride SPECT camera.

    PubMed

    De Lorenzo, Andrea; Peclat, Thais; Amaral, Ana Carolina; Lima, Ronaldo S L

    2016-02-01

    The purpose of this study is to evaluate the prognostic value of myocardial perfusion SPECT obtained in CZT cameras (CZT-SPECT) with multipinhole collimation in obese patients. CZT-SPECT may be technically challenging in the obese, and its prognostic value remains largely unknown. Patients underwent single-day, rest/stress (supine and prone) imaging. Images were visually inspected and graded as poor, fair or good/excellent. Summed stress and difference scores (SSS and SDS, respectively) were converted into percentages of total perfusion defect and of ischemic defect by division by the maximum possible score. Obesity was defined as a body mass index (BMI) ≥ 30 kg/m(2) and classified as class I (BMI 30-34.9 kg/m(2)), II (BMI 35-39.9 kg/m(2)), or III (BMI ≥ 40 kg/m(2)). Patients were followed-up by telephone interview for the occurrence of all-cause death, myocardial infarction or revascularization. A Cox proportional hazards analysis was used to assess the independent predictors of death. Among 1396 patients, 365 (26.1 %) were obese (mean BMI 33.9 ± 3.6; 17.5 % class I, 3.4 % class II, and 3.4 % class III). Image quality was good/excellent in 94.5 % of the obese patients. The annualized mortality rates were not significantly different among obese and non-obese patients, being <1 % with normal CZT-SPECT, and increased with the degree of scan abnormality in both obese and non-obese patients. Age, the use of pharmacologic stress and an abnormal CZT-SPECT, but not obesity, were independent predictors of death. In obese patients, single-day rest/stress CZT-SPECT with a multipinhole camera provides prognostic discrimination with high image quality.

  11. Nuclear cardiac imaging for the assessment of myocardial viability

    PubMed Central

    Slart, R.H.J.A.; Bax, J.J.; van der Wall, E.E.; van Veldhuisen, D.J.; Jager, P.L.; Dierckx, R.A.

    2005-01-01

    An important aspect of the diagnostic and prognostic work-up of patients with ischaemic cardiomyopathy is the assessment of myocardial viability. Patients with left ventricular dysfunction who have viable myocardium are the patients at highest risk because of the potential for ischaemia but at the same time benefit most from revascularisation. It is important to identify viable myocardium in these patients, and radionuclide myocardial scintigraphy is an excellent tool for this. Single-photon emission computed tomography perfusion scintigraphy (SPECT), whether using 201thallium, 99mTc-sestamibi, or 99mTc- tetrofosmin, in stress and/or rest protocols, has consistently been shown to be an effective modality for identifying myocardial viability and guiding appropriate management. Metabolic and perfusion imaging with positron emission tomography radiotracers frequently adds additional information and is a powerful tool for predicting which patients will have an improved outcome from revascularisation. New techniques in the nuclear cardiology field, such as attenuation corrected SPECT, dual isotope simultaneous acquisition (DISA) SPECT and gated FDG PET are promising and will further improve the detection of myocardial viability. Also the combination of multislice computed tomography scanners with PET opens possibilities of adding coronary calcium scoring and noninvasive coronary angiography to myocardial perfusion imaging and quantification. ImagesFigure 1Figure 2Figure 3 PMID:25696432

  12. The Value of Attenuation Correction in Hybrid Cardiac SPECT/CT on Inferior Wall According to Body Mass Index

    PubMed Central

    Tamam, Muge; Mulazimoglu, Mehmet; Edis, Nurcan; Ozpacaci, Tevfik

    2016-01-01

    The purpose of this study was to evaluate the diagnostic value of attenuation-corrected single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) on the inferior wall compared to uncorrected (NC) SPECT MPI between obese and nonobese patients. A total of 157 consecutive patients (122 males and 35 females, with median age: 57.4 ± 11 years) who underwent AC technetium 99m-methoxyisobutylisonitrile (AC Tc99m-sestamibi) SPECT MPI were included to the study. A hybrid SPECT and transmission computed tomography (CT) system was used for the diagnosis with 1-day protocol, and stress imaging was performed first. During attenuation correction (AC) processing on a Xeleris Workstation using Myovation cardiac software with ordered subset expectation maximization (OSEM), iterative reconstruction with attenuation correction (IRAC) and NC images filtered back projection (FBP) were used. For statistical purposes, P < 0.05 was considered significant. This study included 73 patients with body mass index (BMI) <30 and 84 patients with BMI ≥ 30. In patients with higher BMI, increased amount of both visual and semiquantitative attenuation of the inferior wall was detected. IRAC reconstruction corrects the diaphragm attenuation of the inferior wall better than FBP. AC with OSEM iterative reconstruction significantly improves the diagnostic value of stress-only SPECT MPI in patients with normal weight and those who are obese, but the improvements are significantly greater in obese patients. Stress-only SPECT imaging with AC provides shorter and lower radiation exposure. PMID:26912974

  13. The Value of Attenuation Correction in Hybrid Cardiac SPECT/CT on Inferior Wall According to Body Mass Index.

    PubMed

    Tamam, Muge; Mulazimoglu, Mehmet; Edis, Nurcan; Ozpacaci, Tevfik

    2016-01-01

    The purpose of this study was to evaluate the diagnostic value of attenuation-corrected single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) on the inferior wall compared to uncorrected (NC) SPECT MPI between obese and nonobese patients. A total of 157 consecutive patients (122 males and 35 females, with median age: 57.4 ± 11 years) who underwent AC technetium 99m-methoxyisobutylisonitrile (AC Tc99m-sestamibi) SPECT MPI were included to the study. A hybrid SPECT and transmission computed tomography (CT) system was used for the diagnosis with 1-day protocol, and stress imaging was performed first. During attenuation correction (AC) processing on a Xeleris Workstation using Myovation cardiac software with ordered subset expectation maximization (OSEM), iterative reconstruction with attenuation correction (IRAC) and NC images filtered back projection (FBP) were used. For statistical purposes, P < 0.05 was considered significant. This study included 73 patients with body mass index (BMI) <30 and 84 patients with BMI ≥ 30. In patients with higher BMI, increased amount of both visual and semiquantitative attenuation of the inferior wall was detected. IRAC reconstruction corrects the diaphragm attenuation of the inferior wall better than FBP. AC with OSEM iterative reconstruction significantly improves the diagnostic value of stress-only SPECT MPI in patients with normal weight and those who are obese, but the improvements are significantly greater in obese patients. Stress-only SPECT imaging with AC provides shorter and lower radiation exposure.

  14. New Trends in Radionuclide Myocardial Perfusion Imaging

    PubMed Central

    Hung, Guang-Uei; Wang, Yuh-Feng; Su, Hung-Yi; Hsieh, Te-Chun; Ko, Chi-Lun; Yen, Ruoh-Fang

    2016-01-01

    Radionuclide myocardial perfusion imaging (MPI) with single photon emission computed tomography (SPECT) has been widely used clinically as one of the major functional imaging modalities for patients with coronary artery disease (CAD) for decades. Ample evidence has supported the use of MPI as a useful and important tool in the diagnosis, risk stratification and treatment planning for CAD. Although popular in the United States, MPI has become the most frequently used imaging modality among all nuclear medicine tests in Taiwan. However, it should be acknowledged that MPI SPECT does have its limitations. These include false-positive results due to certain artifacts, false-negative due to balanced ischemia, complexity and adverse reaction arising from current pharmacological stressors, time consuming nature of the imaging procedure, no blood flow quantitation and relatively high radiation exposure. The purpose of this article was to review the recent trends in nuclear cardiology, including the utilization of positron emission tomography (PET) for MPI, new stressor, new SPECT camera with higher resolution and higher sensitivity, dynamic SPECT protocol for blood flow quantitation, new software of phase analysis for evaluation of LV dyssynchrony, and measures utilized for reducing radiation exposure of MPI. PMID:27122946

  15. Panic attack triggering myocardial ischemia documented by myocardial perfusion imaging study. A case report

    PubMed Central

    2012-01-01

    Background Chest pain, a key element in the investigation of coronary artery disease is often regarded as a benign prognosis when present in panic attacks. However, panic disorder has been suggested as an independent risk factor for long-term prognosis of cardiovascular diseases and a trigger of acute myocardial infarction. Objective Faced with the extreme importance in differentiate from ischemic to non-ischemic chest pain, we report a case of panic attack induced by inhalation of 35% carbon dioxide triggering myocardial ischemia, documented by myocardial perfusion imaging study. Discussion Panic attack is undoubtedly a strong component of mental stress. Patients with coronary artery disease may present myocardial ischemia in mental stress response by two ways: an increase in coronary vasomotor tone or a sympathetic hyperactivity leading to a rise in myocardial oxygen consumption. Coronary artery spasm was presumed to be present in cases of cardiac ischemia linked to panic disorder. Possibly the carbon dioxide challenge test could trigger myocardial ischemia by the same mechanisms. Conclusion The use of mental stress has been suggested as an alternative method for myocardial ischemia investigation. Based on translational medicine objectives the use of CO2 challenge followed by Sestamibi SPECT could be a useful method to allow improved application of research-based knowledge to the medical field, specifically at the interface of PD and cardiovascular disease. PMID:22999016

  16. Organ volume estimation using SPECT

    SciTech Connect

    Zaidi, H.

    1996-06-01

    Knowledge of in vivo thyroid volume has both diagnostic and therapeutic importance and could lead to a more precise quantification of absolute activity contained in the thyroid gland. In order to improve single-photon emission computed tomography (SPECT) quantitation, attenuation correction was performed according to Chang`s algorithm. The dual window method was used for scatter subtraction. The author used a Monte Carlo simulation of the SPECT system to accurately determine the scatter multiplier factor k. Volume estimation using SPECT was performed by summing up the volume elements (voxels) lying within the contour of the object, determined by a fixed threshold and the gray level histogram (GLH) method. Thyroid phantom and patient studies were performed and the influence of (1) fixed thresholding, (2) automatic thresholding, (3) attenuation, (4) scatter, and (5) reconstruction filter were investigated. This study shows that accurate volume estimation of the thyroid gland is feasible when accurate corrections are performed. The relative error is within 7% for the GLH method combined with attenuation and scatter corrections.

  17. Systolic and diastolic assessment by 3D-ASM segmentation of gated-SPECT Studies: a comparison with MRI

    NASA Astrophysics Data System (ADS)

    Tobon-Gomez, C.; Bijnens, B. H.; Huguet, M.; Sukno, F.; Moragas, G.; Frangi, A. F.

    2009-02-01

    Gated single photon emission tomography (gSPECT) is a well-established technique used routinely in clinical practice. It can be employed to evaluate global left ventricular (LV) function of a patient. The purpose of this study is to assess LV systolic and diastolic function from gSPECT datasets in comparison with cardiac magnetic resonance imaging (CMR) measurements. This is achieved by applying our recently implemented 3D active shape model (3D-ASM) segmentation approach for gSPECT studies. This methodology allows for generation of 3D LV meshes for all cardiac phases, providing volume time curves and filling rate curves. Both systolic and diastolic functional parameters can be derived from these curves for an assessment of patient condition even at early stages of LV dysfunction. Agreement of functional parameters, with respect to CMR measurements, were analyzed by means of Bland-Altman plots. The analysis included subjects presenting either LV hypertrophy, dilation or myocardial infarction.

  18. New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease

    PubMed Central

    Sogbein, Oyebola O.; Pelletier-Galarneau, Matthieu; Schindler, Thomas H.; Wei, Lihui; Wells, R. Glenn; Ruddy, Terrence D.

    2014-01-01

    Nuclear cardiology has experienced exponential growth within the past four decades with converging capacity to diagnose and influence management of a variety of cardiovascular diseases. Single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) with technetium-99m radiotracers or thallium-201 has dominated the field; however new hardware and software designs that optimize image quality with reduced radiation exposure are fuelling a resurgence of interest at the preclinical and clinical levels to expand beyond MPI. Other imaging modalities including positron emission tomography (PET) and magnetic resonance imaging (MRI) continue to emerge as powerful players with an expanded capacity to diagnose a variety of cardiac conditions. At the forefront of this resurgence is the development of novel target vectors based on an enhanced understanding of the underlying pathophysiological process in the subcellular domain. Molecular imaging with novel radiopharmaceuticals engineered to target a specific subcellular process has the capacity to improve diagnostic accuracy and deliver enhanced prognostic information to alter management. This paper, while not comprehensive, will review the recent advancements in radiotracer development for SPECT and PET MPI, autonomic dysfunction, apoptosis, atherosclerotic plaques, metabolism, and viability. The relevant radiochemistry and preclinical and clinical development in addition to molecular imaging with emerging modalities such as cardiac MRI and PET-MR will be discussed. PMID:24901002

  19. Myocardial Ischemia

    MedlinePlus

    ... typically on the left side of the body (angina pectoris). Other signs and symptoms — which might be experienced ... ed. Philadelphia, Pa.: Saunders Elsevier; 2014. Podrid PJ. Angina pectoris: Chest pain caused by myocardial ischemia. www.uptodate. ...

  20. Detection of coronary artery stenosis in children with Kawasaki disease. Usefulness of pharmacologic stress sup 201 Tl myocardial tomography

    SciTech Connect

    Kondo, C.; Hiroe, M.; Nakanishi, T.; Takao, A. )

    1989-09-01

    This study determined the feasibility and accuracy of quantitative 201Tl myocardial single-photon emission computed tomography (SPECT) after dipyridamole infusion to detect coronary obstructive lesions in children with Kawasaki disease. 201Tl distribution after dipyridamole infusion was measured in 23 normal children, and with these normal values, quantitative analysis of SPECT was performed in 49 patients. Thirty-four patients had coronary stenosis 90% or greater on angiograms. Side effects resulting from systemic vasodilation were observed in about 70%. Angina pectoris and ischemic ST changes were observed only in patients with coronary stenosis. These symptoms disappeared after aminophylline infusion. Results of visual and quantitative analysis of SPECT were compared. SPECT data were shown on two-dimensional polar maps, and the extent and severity scores were calculated. The sensitivity of SPECT for detection of overall coronary stenosis was 91% (visual analysis) and 88% (quantitative analysis). The specificity of SPECT was 60% visually and 93% quantitatively. The sensitivity of quantitative analysis to detect individual coronary stenosis was similar to that of visual analysis. However, the specificity of visual analysis to detect individual coronary artery stenosis was significantly less than that of quantitative analysis. From these data, we conclude that quantitative analysis of myocardial SPECT after dipyridamole infusion is a safe and accurate diagnostic method for identifying coronary stenosis in children with Kawasaki disease.

  1. Lymphoma: evaluation with Ga-67 SPECT

    SciTech Connect

    Tumeh, S.S.; Rosenthal, D.S.; Kaplan, W.D.; English, R.J.; Holman, B.L.

    1987-07-01

    To determine the value of gallium-67 single photon emission computed tomography (SPECT) in imaging patients with lymphoma, the authors compared Ga-67 planar images and SPECT images in 40 consecutive patients, using radiologic examinations and/or medical records to confirm the presence or absence of disease. Thirty-three patients had Hodgkin disease, and seven had non-Hodgkin lymphoma. Fifty-four examinations were performed. Of 57 sites of lymphoma in the chest, planar imaging depicted 38, while SPECT depicted 55, resulting in sensitivities of 0.66 and 0.96 for planar and SPECT imaging, respectively. In eight sites, both modalities were truly negative, but SPECT was negative in four additional sites that were equivocal on planar imaging, resulting in specificities of 0.66 and 1.00 for planar and SPECT imaging, respectively. In the abdomen, the sensitivities of planar and SPECT imaging were 0.69 and 0.85, and the specificities 0.87 and 1.00, respectively. SPECT was more accurate in depicting foci of gallium-avid lymphoma in the chest and abdomen and in excluding disease when planar imaging was equivocal.

  2. Myocardial viability.

    PubMed Central

    Birnbaum, Y; Kloner, R A

    1996-01-01

    Left ventricular function is a major predictor of outcome in patients with coronary artery disease. Acute ischemia, postischemic dysfunction (stunning), myocardial hibernation, or a combination of these 3 are among the reversible forms of myocardial dysfunction. In myocardial stunning, dysfunction occurs despite normal myocardial perfusion, and function recovers spontaneously over time. In acute ischemia and hibernation, there is regional hypoperfusion. Function improves only after revascularization. Evidence of myocardial viability usually relies on the demonstration of uptake of various metabolic tracers, such as thallium (thallous chloride TI 201) or fludeoxyglucose F 18, by dysfunctional myocardium or by the demonstration of contractile reserve in a dysfunctional region. This can be shown as an augmentation of function during the infusion of various sympathomimetic agents. The response of ventricular segments to increasing doses of dobutamine may indicate the underlying mechanism of dysfunction. Stunned segments that have normal perfusion show dose-dependent augmentation of function. If perfusion is reduced as in hibernating myocardium, however, a biphasic response usually occurs: function improves at low doses of dobutamine, whereas higher doses may induce ischemia and, hence, dysfunction. But in patients with severely impaired perfusion, even low doses may cause ischemia. Myocardial regions with subendocardial infarction or diffuse scarring may also have augmented contractility during catecholamine infusion due to stimulation of the subepicardial layers. In these cases, augmentation of function after revascularization is not expected. Because the underlying mechanism, prognosis, and therapy may differ among these conditions, it is crucial to differentiate among dysfunctional myocardial segments that are nonviable and have no potential to regain function, hibernating or ischemic segments in which recovery of function occurs only after revascularization, and

  3. End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system.

    PubMed

    Chan, Chung; Harris, Mark; Le, Max; Biondi, James; Grobshtein, Yariv; Liu, Yi-Hwa; Sinusas, Albert J; Liu, Chi

    2014-10-21

    Respiratory and cardiac motions can degrade myocardial perfusion SPECT (MPS) image quality and reduce defect detection and quantitative accuracy. In this study, we developed a dual respiratory and cardiac gating system for a high-resolution fully stationary cardiac SPECT scanner in order to improve the image quality and defect detection. Respiratory motion was monitored using a compressive sensor pillow connected to a dual respiratory-cardiac gating box, which sends cardiac triggers only during end-expiration phases to the single cardiac trigger input on the SPECT scanners. The listmode data were rebinned retrospectively into end-expiration frames for respiratory motion reduction or eight cardiac gates only during end-expiration phases to compensate for both respiratory and cardiac motions. The proposed method was first validated on a motion phantom in the presence and absence of multiple perfusion defects, and then applied on 11 patient studies with and without perfusion defects. In the normal phantom studies, the end-expiration gated SPECT (EXG-SPECT) reduced respiratory motion blur and increased myocardium to blood pool contrast by 51.2% as compared to the ungated images. The proposed method also yielded an average of 11.2% increase in myocardium to defect contrast as compared to the ungated images in the phantom studies with perfusion defects. In the patient studies, EXG-SPECT significantly improved the myocardium to blood pool contrast (p < 0.005) by 24% on average as compared to the ungated images, and led to improved perfusion uniformity across segments on polar maps for normal patients. For a patient with defect, EXG-SPECT improved the defect contrast and definition. The dual respiratory-cardiac gating further reduced the blurring effect, increased the myocardium to blood pool contrast significantly by 36% (p < 0.05) compared to EXG-SPECT, and further improved defect characteristics and visualization of fine structures at the expense of increased noise

  4. C-SPECT - a Clinical Cardiac SPECT/Tct Platform: Design Concepts and Performance Potential

    PubMed Central

    Chang, Wei; Ordonez, Caesar E.; Liang, Haoning; Li, Yusheng; Liu, Jingai

    2013-01-01

    Because of scarcity of photons emitted from the heart, clinical cardiac SPECT imaging is mainly limited by photon statistics. The sub-optimal detection efficiency of current SPECT systems not only limits the quality of clinical cardiac SPECT imaging but also makes more advanced potential applications difficult to be realized. We propose a high-performance system platform - C-SPECT, which has its sampling geometry optimized for detection of emitted photons in quality and quantity. The C-SPECT has a stationary C-shaped gantry that surrounds the left-front side of a patient’s thorax. The stationary C-shaped collimator and detector systems in the gantry provide effective and efficient detection and sampling of photon emission. For cardiac imaging, the C-SPECT platform could achieve 2 to 4 times the system geometric efficiency of conventional SPECT systems at the same sampling resolution. This platform also includes an integrated transmission CT for attenuation correction. The ability of C-SPECT systems to perform sequential high-quality emission and transmission imaging could bring cost-effective high-performance to clinical imaging. In addition, a C-SPECT system could provide high detection efficiency to accommodate fast acquisition rate for gated and dynamic cardiac imaging. This paper describes the design concepts and performance potential of C-SPECT, and illustrates how these concepts can be implemented in a basic system. PMID:23885129

  5. [Estimation of I-123 metaiodobenzylguanidine (MIBG) myocardial washout].

    PubMed

    Saito, T; Watanabe, N; Saitoh, T; Asakura, T; Kanke, M; Owada, K; Hoshi, K; Kimura, K; Maruyama, Y

    1990-11-01

    A crosstalk from I-123 to Tl-201 (Tl) window was 35 +/- 30% (mean +/- SD) and 30 +/- 10% in a myocardial phantom and the images of 6 patients respectively. However, the crosstalk from Tl to I-123 was approximately 1% in each. I-123 MIBG (MIBG) and Tl myocardial SPECT images were recorded in 3 normal volunteers (N), 10 patients with myocardial infarction (MI), and 4 with dilated cardiomyopathy (DCM). The MIBG and Tl imagings were performed on the other day to avoid the crosstalk. Myocardial washout rates (WR) of Tl and MIBG were derived from 15 min and 4 hour images. WR of Tl was approximately 36% in each group. On the other hand, WR of MIBG in DCM (52 +/- 7%) and MI (41 +/- 14%) groups were statistically higher than in N (24 +/- 7%) group. Thus WR of MIBG would be useful to detect abnormalities in adrenergic nervous system.

  6. The AdaptiSPECT Imaging Aperture

    PubMed Central

    Chaix, Cécile; Moore, Jared W.; Van Holen, Roel; Barrett, Harrison H.; Furenlid, Lars R.

    2015-01-01

    In this paper, we present the imaging aperture of an adaptive SPECT imaging system being developed at the Center for Gamma Ray Imaging (AdaptiSPECT). AdaptiSPECT is designed to automatically change its configuration in response to preliminary data, in order to improve image quality for a particular task. In a traditional pinhole SPECT imaging system, the characteristics (magnification, resolution, field of view) are set by the geometry of the system, and any modification can be accomplished only by manually changing the collimator and the distance of the detector to the center of the field of view. Optimization of the imaging system for a specific task on a specific individual is therefore difficult. In an adaptive SPECT imaging system, on the other hand, the configuration can be conveniently changed under computer control. A key component of an adaptive SPECT system is its aperture. In this paper, we present the design, specifications, and fabrication of the adaptive pinhole aperture that will be used for AdaptiSPECT, as well as the controls that enable autonomous adaptation. PMID:27019577

  7. SPECT in the diagnosis of hepatic hemangioma

    SciTech Connect

    Brunetti, J.C.; Van Heertum, R.L.; Yudd, A.P.

    1985-05-01

    Tc99m labeled red blood cell blood flow and delayed static blood pool imaging is widely accepted as a reliable, accurate method for the diagnosis of hepatic hemangiomata. The purpose of this study is to assess the relative value of SPECT blood pool imaging in the evaluation of hepatic hemangionata. A total of 68 patients, including 21 patients with proven hepatic cavernous hemangiomas, were studied using both planar and SPECT imaging techniques. All patients underwent multi-phase evaluation which included a hepatic flow study, immediate planar images of the liver, followed by a 360/sup 0/ tomographic (SPECT) study and subsequent 60 minute delayed static planar hepatic blood pool images. All 21 patients with proven hepatic hemangiomas had a positive SPECT exam and 17 of the 21 (81%) patients had a positive planar exam. In the 21 patients, there were a total of 36 hemangiomas ranging in size from .7 cm to 13 cm. The SPECT imaging technique correctly identified all 36 lesions (100%) where as planar imaging detected 25 of the 36 lesions (69.4%). In all the remaining patients (10-normal, 17-metastatic disease, 12-hepatocellular disease, 6-hepatoma, 2-liver cysts), both the planar and SPECT imaging techniques were interpreted as showing no evidence of focal sequestration of red blood cells. SPECT hepatic blood pool imaging represents an improvement in the evaluation of hepatic hemangioma as a result of a reduction in imaging time (less than thirty minutes), improved spatial resolution and greater overall accuracy.

  8. Quantification of myocardial infarction: a comparison of single photon-emission computed tomography with pyrophosphate to serial plasma MB-creatine kinase measurements

    SciTech Connect

    Jansen, D.E.; Corbett, J.R.; Wolfe, C.L.; Lewis, S.E.; Gabliani, G.; Filipchuk, N.; Redish, G.; Parkey, R.W.; Buja, L.M.; Jaffe, A.S.

    1985-08-01

    Single photon-emission computed tomography (SPECT) with /sup 99m/Tc-pyrophosphate (PPi) has been shown to estimate size of myocardial infarction accurately in animals. The authors tested the hypothesis that SPECT with /sup /sup 99m//Tc-PPi and blood pool subtraction can provide prompt and accurate estimates of size of myocardial infarction in patients. SPECT estimates are potentially available early after the onset of infarction and should correlate with estimates of infarct size calculated from serial measurements of plasma MB-creatine kinase (CK) activity. Thirty-three patients with acute myocardial infarction and 16 control patients without acute myocardial infarction were studied. Eleven of the patients had transmural anterior myocardial infarction, 16 had transmural inferior myocardial infarction, and six had nontransmural myocardial infarction. SPECT was performed with a commercially available rotating gamma camera. Identical projection images of the distribution of 99mTc-PPi and the ungated cardiac blood pool were acquired sequentially over 180 degrees. Reconstructed sections were color coded and superimposed for purposes of localization of infarct. Areas of increased PPi uptake within myocardial infarcts were thresholded at 65% of peak activity. The blood pool was thresholded at 50% and subtracted to determine the endocardial border for the left ventricle. Myocardial infarcts ranged in size from 1 to 126 gram equivalents (geq) MB-CK. The correlation of MB-CK estimates of size of infarct with size determined by SPECT (both in geq) was good (r = .89 with a regression line of y = 13.1 + 1.5x).

  9. Integration of AdaptiSPECT, a small-animal adaptive SPECT imaging system

    PubMed Central

    Chaix, Cécile; Kovalsky, Stephen; Kosmider, Matthew; Barrett, Harrison H.; Furenlid, Lars R.

    2015-01-01

    AdaptiSPECT is a pre-clinical adaptive SPECT imaging system under final development at the Center for Gamma-ray Imaging. The system incorporates multiple adaptive features: an adaptive aperture, 16 detectors mounted on translational stages, and the ability to switch between a non-multiplexed and a multiplexed imaging configuration. In this paper, we review the design of AdaptiSPECT and its adaptive features. We then describe the on-going integration of the imaging system. PMID:26347197

  10. SPECT Imaging: Basics and New Trends

    NASA Astrophysics Data System (ADS)

    Hutton, Brian F.

    Single Photon Emission Computed Tomography (SPECT) is widely used as a means of imaging the distribution of administered radiotracers that have single-photon emission. The most widely used SPECT systems are based on the Anger gamma camera, usually involving dual detectors that rotate around the patient. Several factors affect the quality of SPECT images (e.g., resolution and noise) and the ability to perform absolute quantification (e.g., attenuation, scatter, motion, and resolution). There is a trend to introduce dual-modality systems and organ-specific systems, both developments that enhance diagnostic capability.

  11. Abnormal 201Tl myocardial single photon emission computed tomography in energetic male patients with myocardial bridge.

    PubMed

    Huang, W S; Chang, H D; Yang, S P; Tsao, T P; Cheng, C Y; Cherng, S C

    2002-11-01

    Myocardial bridge is a relatively benign condition where a major coronary artery is bridged by a band of muscle and narrows during systole, particularly during rapid heart rates. Its clinical presentation and electrocardiogram (ECG) changes overlap with that of coronary artery disease. 201Tl myocardial perfusion imaging is thus frequently prescribed for further evaluation. This retrospective study was carried out to determine the 201Tl image patterns in patients with myocardial bridge. A total of 17 male patients (aged from 30 to 63 years) who had a positive exercise ECG and angiographic evidence of myocardial bridge in the mid-third of the left anterior descending coronary artery were recruited. Most of them were robust and received routine physical check-ups. They had no known heart disease or medication that affected cardiac function. The patients' clinical presentations, echocardiograph and exercise ECG findings were analysed. 201Tl single photon emission computed tomography (SPECT) was performed by intravenous injection of 201Tl (111 MBq) immediately following stress (treadmill or dipyridamole induced) and 4 h after stress, using a fixed, right angle camera equipped with a low energy, general purpose collimator. The images were interpreted independently by two experienced nuclear medicine physicians. Nine of the 17 patients had anterior chest pain during exercise. All patients had an abnormal ECG during exercise, including ST-T wave depression in leads II, III and aVF, and v4-6. Except for eight patients revealing reversible perfusion defect (R), 16 of the 17 patients also exhibited a partial reversible perfusion defect (PR) or a significant reverse redistribution (RR) scan pattern in the anterior or inferior walls of the left ventricle. Myocardial bridge should be taken into consideration in energetic male patients who had abnormal exercise ECGs and the corresponding patterns of Tl SPECT abnormalities including R, PR and RR.

  12. Awake animal SPECT: Overview and initial results

    SciTech Connect

    Weisenberger, A G; Majewski, S; McKisson, J; Popov, V; Proffitt, J; Stolin, A; Baba, J S; Goddard, J S; Lee, S J; Smith, M F; Tsui, B; Pomper, M

    2009-02-01

    A SPECT / X-ray CT system configured at Johns Hopkins University to image the biodistribution of radiopharmaceuticals in unrestrained, un-anesthetized mice has been constructed and tested on awake mice. The system was built by Thomas Jefferson National Accelerator Facility and Oak Ridge National Laboratory. SPECT imaging is accomplished using two gamma cameras, 10 cm × 20 cm in size based on a 2 × 4 array of Hamamatsu H8500 flat panel position sensitive photomultiplier tubes. A real-time optical tracking system utilizing three infrared cameras provides time stamped pose data of an awake mouse head during a SPECT scan. The six degrees of freedom (three translational and three rotational) pose data are used for motion correction during 3-D tomographic list-mode iterative image reconstruction. SPECT reconstruction of awake, unrestrained mice with motion compensation for head movement has been accomplished.

  13. ADAPTIVE SMALL-ANIMAL SPECT/CT

    PubMed Central

    Furenlid, L.R.; Moore, J.W.; Freed, M.; Kupinski, M.A.; Clarkson, E.; Liu, Z.; Wilson, D.W.; Woolfenden, J.M.; Barrett, H.H.

    2015-01-01

    We are exploring the concept of adaptive multimodality imaging, a form of non-linear optimization where the imaging configuration is automatically adjusted in response to the object. Preliminary studies suggest that substantial improvement in objective, task-based measures of image quality can result. We describe here our work to add motorized adjustment capabilities and a matching CT to our existing FastSPECT II system to form an adaptive small-animal SPECT/CT. PMID:26617457

  14. Cerebral SPECT imaging: Impact on clinical management

    SciTech Connect

    Bloom, M.; Jacobs, S.; Pozniakof, T.

    1994-05-01

    Although cerebral SPECT has been reported to be of value in a variety of neurologic disorders, there is limited data available on the value of SPECT relative to clinical management decisions. The purpose of this study was to determine the effect of cerebral SPECT imaging on patient management. A total of 94 consecutive patients referred for clinical evaluation with brain SPECT were included in this study. Patients were assigned to one of nine groups depending on the clinical indication for the study. These groups included transient ischemia (16), stroke (20), dementia (18), seizures (5), hemorrhage (13), head trauma (6), arteriovenous malformations (6), encephalopathy (6) and a miscellaneous (4) group. All patients were injected with 99mTc HMPAO in doses ranging from 15 mCi to 22 mCi (555 MBq to 814 MBq) and scanned on a triple headed SPECT gamma camera. Two weeks after completion of the study, a standardized interview was conducted between the nuclear and referring physicians to determine if the SPECT findings contributed to an alteration in patient management. Overall, patient management was significantly altered in 47% of the cases referred. The greatest impact on patient management occurred in the group evaluated for transient ischemia, where a total of 13/16 (81%) of patients had their clinical management altered as a result of the cerebral SPECT findings. Clinical management was altered in 61% of patients referred for evaluation of dementia, 67% of patients evaluated for arteriovenous malformations, and 50% of patients with head trauma. In the remainder of the patients, alteration in clinical management ranged from 17% to 50% of patients. This study demonstrates the clinical utility of cerebral SPECT imaging since in a significant number of cases clinical management was altered as a result of the examination. Long term follow up will be necessary to determine patient outcome.

  15. Brain SPECT quantitation in clinical diagnosis

    SciTech Connect

    Hellman, R.S.

    1991-12-31

    Methods to quantitate SPECT data for clinical diagnosis should be chosen so that they take advantage of the lessons learned from PET data. This is particularly important because current SPECT high-resolution brain imaging systems now produce images that are similar in resolution to those generated by the last generation PET equipment (9 mm FWHM). These high-resolution SPECT systems make quantitation of SPECT more problematic than earlier. Methodology validated on low-resolution SPECT systems may no longer be valid for data obtained with the newer SPECT systems. For example, in patients with dementia, the ratio of parietal to cerebellar activity often was studied. However, with new instruments, the cerebellum appears very different: discrete regions are more apparent. The large cerebellar regions usually used with older instrumentation are of an inappropriate size for the new equipment. The normal range for any method of quantitation determined using older equipment probably changes for data obtained with new equipment. It is not surprising that Kim et al. in their simulations demonstrated that because of the finite resolution of imaging systems, the ability to measure pure function is limited, with {open_quotes}anatomy{close_quotes} and {open_quotes}function{close_quotes} coupled in a {open_quotes}complex nonlinear way{close_quotes}. 11 refs.

  16. Noninvasive quantitative assessment of pacing induced ischemia in coronary artery disease patients using SPECT imaging with thallium-201

    SciTech Connect

    Summerville, D.A.; Polak, J.F.; Holman, B.L.; Jaski, B.E.; Nesto, R.W.

    1984-01-01

    The authors have investigated the use of a quantification algorithm which measures total myocardial mass using thallium-201 and single photon emission computed tomography (SPECT). Myocardial and lung uptake ratios were determined from the early and redistribution scintigrams of twelve coronary artery disease patients who had received intraventricular thallium-201 during pacing induced ischemia. The Iowa heart phantom placed in an Alderson chest phantom were imaged tomographically for the obtained range in target-to-background ratios. Tomographic acquisitions were made over 180/sup 0/. 30/sup 0/ RAO to 60/sup 0/ LPO for 64 projections. All reconstructions were made using attenuation compensation. Transverse tomographic slices were formulated into oblique data sets. The slices perpendicular to the left ventricular long axis (typically 16 to 19, .62 cm thick) were processed by a previously described algorithm which estimates volumes above certain threshold count values in contiguous slices and then sums according to Simpson's rule. Calibration curves for different target-to-background values and different threshold values were obtained. In the phantom, changes in the refillable chambers were accurately quantifiable. When applied to six patient studies, estimates of the change in myocardial mass correlated with the amount of ischemia (elevation in left ventricular EDP, r = .93). The authors conclude that SPECT can be used to make accurate estimates of myocardial mass using such algorithms if care is taken to adjust for individual variations in the uptake of thallium-201.

  17. Noninvasive quantitative assessment of pacing induced ischemia in coronary artery disease patients using spect imaging with thallium-201

    SciTech Connect

    Summerville, D.A.; Polak, J.F.; Holman, B.L.; Jaski, B.E.; Nesto, R.W.

    1984-01-01

    The authors have investigated the use of a quantification algorithm which measures total myocardial mass using thallium-201 and single photon emission computed tomography (SPECT). Myocardial and lung uptake ratios were determined from the early and redistribution scintigrams of twelve coronary artery disease patients who had received intraventricular thallium-201 during pacing induced ischemia. The Iowa heart phantom placed in an Alderson chest phantom were imaged tomographically for the obtained range in target-to-background ratios. Tomographic acquisitions were made over 180/sup 0/: 30/sup 0/ RAO to 60/sup 0/ LPO for 64 projections. All reconstructions were made using attenuation compensation. Transverse tomographic slices were formatted into oblique data sets. The slices perpendicular to the left ventricular long axis (typically 16 to 19, .62 cm thick) were processed by a previously described algorithm which estimates volumes above certain threshold count values in contiguous slices and then sums according to Simpson's rule. Calibration curves for different target-to-background values and different threshold values were obtained. In the phantom, changes in the refillable chambers were accurately quantifiable. When applied to six patient studies, estimates of the change in myocardial mass correlated with the amount of ischemia (elevation in left ventricular EDP, r = .93). The authors conclude that SPECT can be used to make accurate estimates of myocardial mass using such algorithms if care is taken to adjust for individual variations in the uptake of tahallium-201.

  18. Machine-learning model observer for detection and localization tasks in clinical SPECT-MPI

    NASA Astrophysics Data System (ADS)

    Parages, Felipe M.; O'Connor, J. Michael; Pretorius, P. Hendrik; Brankov, Jovan G.

    2016-03-01

    In this work we propose a machine-learning MO based on Naive-Bayes classification (NB-MO) for the diagnostic tasks of detection, localization and assessment of perfusion defects in clinical SPECT Myocardial Perfusion Imaging (MPI), with the goal of evaluating several image reconstruction methods used in clinical practice. NB-MO uses image features extracted from polar-maps in order to predict lesion detection, localization and severity scores given by human readers in a series of 3D SPECT-MPI. The population used to tune (i.e. train) the NB-MO consisted of simulated SPECT-MPI cases - divided into normals or with lesions in variable sizes and locations - reconstructed using filtered backprojection (FBP) method. An ensemble of five human specialists (physicians) read a subset of simulated reconstructed images, and assigned a perfusion score for each region of the left-ventricle (LV). Polar-maps generated from the simulated volumes along with their corresponding human scores were used to train five NB-MOs (one per human reader), which are subsequently applied (i.e. tested) on three sets of clinical SPECT-MPI polar maps, in order to predict human detection and localization scores. The clinical "testing" population comprises healthy individuals and patients suffering from coronary artery disease (CAD) in three possible regions, namely: LAD, LcX and RCA. Each clinical case was reconstructed using three reconstruction strategies, namely: FBP with no SC (i.e. scatter compensation), OSEM with Triple Energy Window (TEW) SC method, and OSEM with Effective Source Scatter Estimation (ESSE) SC. Alternative Free-Response (AFROC) analysis of perfusion scores shows that NB-MO predicts a higher human performance for scatter-compensated reconstructions, in agreement with what has been reported in published literature. These results suggest that NB-MO has good potential to generalize well to reconstruction methods not used during training, even for reasonably dissimilar datasets (i

  19. Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology

    NASA Astrophysics Data System (ADS)

    Erlandsson, Kjell; Kacperski, Krzysztof; van Gramberg, Dean; Hutton, Brian F.

    2009-05-01

    D-SPECT (Spectrum Dynamics, Israel) is a novel SPECT system for cardiac perfusion studies. Based on CZT detectors, region-centric scanning, high-sensitivity collimators and resolution recovery, it offers potential advantages over conventional systems. A series of measurements were made on a β-version D-SPECT system in order to evaluate its performance in terms of energy resolution, scatter fraction, sensitivity, count rate capability and resolution. Corresponding measurements were also done on a conventional SPECT system (CS) for comparison. The energy resolution of the D-SPECT system at 140 keV was 5.5% (CS: 9.25%), the scatter fraction 30% (CS: 34%), the planar sensitivity 398 s-1 MBq-1 per head (99mTc, 10 cm) (CS: 72 s-1 MBq-1), and the tomographic sensitivity in the heart region was in the range 647-1107 s-1 MBq-1 (CS: 141 s-1 MBq-1). The count rate increased linearly with increasing activity up to 1.44 M s-1. The intrinsic resolution was equal to the pixel size, 2.46 mm (CS: 3.8 mm). The average reconstructed resolution using the standard clinical filter was 12.5 mm (CS: 13.7 mm). The D-SPECT has superior sensitivity to that of a conventional system with similar spatial resolution. It also has excellent energy resolution and count rate characteristics, which should prove useful in dynamic and dual radionuclide studies.

  20. SPECT gallium imaging in abdominal lymphoma

    SciTech Connect

    Adcock, K.A.; Friefeld, G.D.; Waldron, J.A. Jr.

    1986-05-01

    A case of non-Hodgkin's lymphoma of the abdomen studied by gallium SPECT imaging is reported. The tomographic slices accurately demonstrated the location of residual disease after chemotherapy in the region of the transverse mesocolon. Previous transmission CT had shown considerable persistent retroperitoneal lymphadenopathy, but was not helpful in determining the presence of viable lymphoma.

  1. PET and SPECT imaging in veterinary medicine.

    PubMed

    LeBlanc, Amy K; Peremans, Kathelijne

    2014-01-01

    Veterinarians have gained increasing access to positron emission tomography (PET and PET/CT) imaging facilities, allowing them to use this powerful molecular imaging technique for clinical and research applications. SPECT is currently being used more in Europe than in the United States and has been shown to be useful in veterinary oncology and in the evaluation of orthopedic diseases. SPECT brain perfusion and receptor imaging is used to investigate behavioral disorders in animals that have interesting similarities to human psychiatric disorders. This article provides an overview of the potential applications of PET and SPECT. The use of commercially available and investigational PET radiopharmaceuticals in the management of veterinary disease has been discussed. To date, most of the work in this field has utilized the commercially available PET tracer, (18)F-fluorodeoxyglucose for oncologic imaging. Normal biodistribution studies in several companion animal species (cats, dogs, and birds) have been published to assist in lesion detection and interpretation for veterinary radiologists and clinicians. Studies evaluating other (18)F-labeled tracers for research applications are underway at several institutions and companion animal models of human diseases are being increasingly recognized for their value in biomarker and therapy development. Although PET and SPECT technologies are in their infancy for clinical veterinary medicine, increasing access to and interest in these applications and other molecular imaging techniques has led to a greater knowledge and collective body of expertise for veterinarians worldwide. Initiation and fostering of physician-veterinarian collaborations are key components to the forward movement of this field.

  2. Investigation of optimal acquisition time of myocardial perfusion scintigraphy using cardiac focusing-collimator

    NASA Astrophysics Data System (ADS)

    Niwa, Arisa; Abe, Shinji; Fujita, Naotoshi; Kono, Hidetaka; Odagawa, Tetsuro; Fujita, Yusuke; Tsuchiya, Saki; Kato, Katsuhiko

    2015-03-01

    Recently myocardial perfusion SPECT imaging acquired using the cardiac focusing-collimator (CF) has been developed in the field of nuclear cardiology. Previously we have investigated the basic characteristics of CF using physical phantoms. This study was aimed at determining the acquisition time for CF that enables to acquire the SPECT images equivalent to those acquired by the conventional method in 201TlCl myocardial perfusion SPECT. In this study, Siemens Symbia T6 was used by setting the torso phantom equipped with the cardiac, pulmonary, and hepatic components. 201TlCl solution were filled in the left ventricular (LV) myocardium and liver. Each of CF, the low energy high resolution collimator (LEHR), and the low medium energy general purpose collimator (LMEGP) was set on the SPECT equipment. Data acquisitions were made by regarding the center of the phantom as the center of the heart in CF at various acquisition times. Acquired data were reconstructed, and the polar maps were created from the reconstructed images. Coefficient of variation (CV) was calculated as the mean counts determined on the polar maps with their standard deviations. When CF was used, CV was lower at longer acquisition times. CV calculated from the polar maps acquired using CF at 2.83 min of acquisition time was equivalent to CV calculated from those acquired using LEHR in a 180°acquisition range at 20 min of acquisition time.

  3. Monte Carlo scatter correction for SPECT

    NASA Astrophysics Data System (ADS)

    Liu, Zemei

    The goal of this dissertation is to present a quantitatively accurate and computationally fast scatter correction method that is robust and easily accessible for routine applications in SPECT imaging. A Monte Carlo based scatter estimation method is investigated and developed further. The Monte Carlo simulation program SIMIND (Simulating Medical Imaging Nuclear Detectors), was specifically developed to simulate clinical SPECT systems. The SIMIND scatter estimation (SSE) method was developed further using a multithreading technique to distribute the scatter estimation task across multiple threads running concurrently on multi-core CPU's to accelerate the scatter estimation process. An analytical collimator that ensures less noise was used during SSE. The research includes the addition to SIMIND of charge transport modeling in cadmium zinc telluride (CZT) detectors. Phenomena associated with radiation-induced charge transport including charge trapping, charge diffusion, charge sharing between neighboring detector pixels, as well as uncertainties in the detection process are addressed. Experimental measurements and simulation studies were designed for scintillation crystal based SPECT and CZT based SPECT systems to verify and evaluate the expanded SSE method. Jaszczak Deluxe and Anthropomorphic Torso Phantoms (Data Spectrum Corporation, Hillsborough, NC, USA) were used for experimental measurements and digital versions of the same phantoms employed during simulations to mimic experimental acquisitions. This study design enabled easy comparison of experimental and simulated data. The results have consistently shown that the SSE method performed similarly or better than the triple energy window (TEW) and effective scatter source estimation (ESSE) methods for experiments on all the clinical SPECT systems. The SSE method is proven to be a viable method for scatter estimation for routine clinical use.

  4. Design and evaluation of a mobile bedside PET/SPECT imaging system

    NASA Astrophysics Data System (ADS)

    Studenski, Matthew Thomas

    Patients confined to an intensive care unit, the emergency room, or a surgical suite are managed without nuclear medicine procedures such as positron emission tomography (PET) or single photon emission computed tomography (SPECT). These studies have diagnostic value which can greatly benefit the physician's treatment of the patient but require that the patient is moved to a scanner. This dissertation examines the feasibility of an economical PET/SPECT system that can be brought to the bedside of an immobile patient for imaging. We chose to focus on cardiac SPECT imaging including perfusion imaging using 99mTc tracers and viability imaging using 18F tracers first because of problems arising from positioning a detector beneath a patient's bed, a requirement for the opposed detector orientation in PET imaging. Second, SPECT imaging acquiring over the anterior 180 degrees of the patient results in reduced attenuation effects due to the heart's location in the anterior portion of the body. Four studies were done to assess the clinical feasibility of the mobile system; 1) the performance of the system was evaluated in SPECT mode at both 140 keV (99mTc tracers) and 511 keV (positron emitting tracers), 2) a dynamic cardiac phantom was used to develop and test image acquisition and processing methods for the system at both energies, 3) a high energy pinhole collimator was designed to reduce the effects of high energy photon penetration through the parallel hole collimator, and 4) we estimated the radiation dose to persons that would be in the vicinity of a patient to ensure that the effective dose is below the regulatory limit. With these studies, we show that the mobile system provides an economical means of bringing nuclear medicine to an immobile patient while staying below the regulatory dose limit to other persons. The system performed well at both 140 keV and 511 keV and provided viable images of a phantom myocardium at both energies. The system does not achieve the

  5. Prognostic Utility of Calcium Scoring as an Adjunct to Stress Myocardial Perfusion Scintigraphy in End-Stage Renal Disease.

    PubMed

    Moody, William E; Lin, Erica L S; Stoodley, Matthew; McNulty, David; Thomson, Louise E; Berman, Daniel S; Edwards, Nicola C; Holloway, Benjamin; Ferro, Charles J; Townend, Jonathan N; Steeds, Richard P

    2016-05-01

    Coronary artery calcium score (CACS) is a strong predictor of adverse cardiovascular events in the general population. Recent data confirm the prognostic utility of single-photon emission computed tomographic (SPECT) imaging in end-stage renal disease, but whether performing CACS as part of hybrid imaging improves risk prediction in this population is unclear. Consecutive patients (n = 284) were identified after referral to a university hospital for cardiovascular risk stratification in assessment for renal transplantation. Participants underwent technetium-99m SPECT imaging after exercise or standard adenosine stress in those unable to achieve 85% maximal heart rate; multislice CACS was also performed (Siemens Symbia T16, Siemens, Erlangen, Germany). Subjects with known coronary artery disease (n = 88) and those who underwent early revascularization (n = 2) were excluded. The primary outcome was a composite of death or first myocardial infarction. An abnormal SPECT perfusion result was seen in 22% (43 of 194) of subjects, whereas 45% (87 of 194) had at least moderate CACS (>100 U). The frequency of abnormal perfusion (summed stress score ≥4) increased with increasing CACS severity (p = 0.049). There were a total of 15 events (8 deaths, and 7 myocardial infarctions) after a median duration of 18 months (maximum follow-up 3.4 years). Univariate analysis showed diabetes mellitus (Hazard ratio [HR] 3.30, 95% CI 1.14 to 9.54; p = 0.028), abnormal perfusion on SPECT (HR 5.32, 95% CI 1.84 to 15.35; p = 0.002), and moderate-to-severe CACS (HR 3.55, 95% CI 1.11 to 11.35; p = 0.032) were all associated with the primary outcome. In a multivariate model, abnormal perfusion on SPECT (HR 4.18, 95% CI 1.43 to 12.27; p = 0.009), but not moderate-to-severe CACS (HR 2.50, 95% CI 0.76 to 8.20; p = 0.130), independently predicted all-cause death or myocardial infarction. The prognostic value of CACS was not incremental to clinical and SPECT perfusion data (global chi-square change

  6. Patient position alters attenuation effects in multipinhole cardiac SPECT

    SciTech Connect

    Timmins, Rachel; Ruddy, Terrence D.; Wells, R. Glenn

    2015-03-15

    Purpose: Dedicated cardiac cameras offer improved sensitivity over conventional SPECT cameras. Sensitivity gains are obtained by large numbers of detectors and novel collimator arrangements such as an array of multiple pinholes that focus on the heart. Pinholes lead to variable amounts of attenuation as a source is moved within the camera field of view. This study evaluated the effects of this variable attenuation on myocardial SPECT images. Methods: Computer simulations were performed for a set of nine point sources distributed in the left ventricular wall (LV). Sources were placed at the location of the heart in both an anthropomorphic and a water-cylinder computer phantom. Sources were translated in x, y, and z by up to 5 cm from the center. Projections were simulated with and without attenuation and the changes in attenuation were compared. A LV with an inferior wall defect was also simulated in both phantoms over the same range of positions. Real camera data were acquired on a Discovery NM530c camera (GE Healthcare, Haifa, Israel) for five min in list-mode using an anthropomorphic phantom (DataSpectrum, Durham, NC) with 100 MBq of Tc-99m in the LV. Images were taken over the same range of positions as the simulations and were compared based on the summed perfusion score (SPS), defect width, and apparent defect uptake for each position. Results: Point sources in the water phantom showed absolute changes in attenuation of ≤8% over the range of positions and relative changes of ≤5% compared to the apex. In the anthropomorphic computer simulations, absolute change increased to 20%. The changes in relative attenuation caused a change in SPS of <1.5 for the water phantom but up to 4.2 in the anthropomorphic phantom. Changes were larger for axial than for transverse translations. These results were supported by SPS changes of up to six seen in the physical anthropomorphic phantom for axial translations. Defect width was also seen to significantly increase. The

  7. Estimation of dynamic time activity curves from dynamic cardiac SPECT imaging

    NASA Astrophysics Data System (ADS)

    Hossain, J.; Du, Y.; Links, J.; Rahmim, A.; Karakatsanis, N.; Akhbardeh, A.; Lyons, J.; Frey, E. C.

    2015-04-01

    Whole-heart coronary flow reserve (CFR) may be useful as an early predictor of cardiovascular disease or heart failure. Here we propose a simple method to extract the time-activity curve, an essential component needed for estimating the CFR, for a small number of compartments in the body, such as normal myocardium, blood pool, and ischemic myocardial regions, from SPECT data acquired with conventional cameras using slow rotation. We evaluated the method using a realistic simulation of 99mTc-teboroxime imaging. Uptake of 99mTc-teboroxime based on data from the literature were modeled. Data were simulated using the anatomically-realistic 3D NCAT phantom and an analytic projection code that realistically models attenuation, scatter, and the collimator-detector response. The proposed method was then applied to estimate time activity curves (TACs) for a set of 3D volumes of interest (VOIs) directly from the projections. We evaluated the accuracy and precision of estimated TACs and studied the effects of the presence of perfusion defects that were and were not modeled in the estimation procedure. The method produced good estimates of the myocardial and blood-pool TACS organ VOIs, with average weighted absolute biases of less than 5% for the myocardium and 10% for the blood pool when the true organ boundaries were known and the activity distributions in the organs were uniform. In the presence of unknown perfusion defects, the myocardial TAC was still estimated well (average weighted absolute bias <10%) when the total reduction in myocardial uptake (product of defect extent and severity) was ≤5%. This indicates that the method was robust to modest model mismatch such as the presence of moderate perfusion defects and uptake nonuniformities. With larger defects where the defect VOI was included in the estimation procedure, the estimated normal myocardial and defect TACs were accurate (average weighted absolute bias ≈5% for a defect with 25% extent and 100% severity).

  8. Imaging of acute myocardial infarction in pigs with Indium-111 monoclonal antimyosin scintigraphy and MRI

    SciTech Connect

    ten Kate, C.I.; van Kroonenburgh, M.J.; Schipperheyn, J.J.; Doornbos, J.; Hoedemaeker, P.J.; Maes, A.; v.d. Nat, K.H.; Camps, J.A.; Huysmans, H.A.; Pauwels, E.K. )

    1990-07-01

    Indium-111 antimyosin F(ab')2 was used in a series of scintigraphic studies on experimentally induced myocardial infarctions in pigs. Antimyosin distribution recorded by planar images of in vivo pigs and by single photon emission computed tomography (SPECT) of excised hearts delineated areas of myocardial necrosis if infarct volume exceeded 3.3 cm3. Scintigraphic images were compared with magnetic resonance images (MRI) obtained from excised hearts and with photographs of slices of the hearts. Infarct size and localization determined with antimyosin were compared. The MR images, with or without gadolinium-DTPA (Gd-DTPA), of the in vivo pigs were all false-negative; some myocardial wall thinning and high bloodpool signals were visible. Results show that both the antimyosin and the MR technique are specific methods for the visualization of induced myocardial necrosis in this animal model. However, the use of antimyosin is limited to a period ranging from 24 to 72 hours after infarction.

  9. Regadenoson-stress myocardial CT perfusion and single-photon emission CT: rationale, design, and acquisition methods of a prospective, multicenter, multivendor comparison.

    PubMed

    Cury, Ricardo C; Kitt, Therese M; Feaheny, Kathleen; Akin, Jamie; George, Richard T

    2014-01-01

    Pharmacologic stress myocardial CT perfusion (CTP) has been reported to be a viable imaging modality for detection of myocardial ischemia compared with single-photon emission CT (SPECT) in several single-center studies. However, regadenoson-stress CTP has not previously been compared with SPECT in a multicenter, multivendor study. The rationale and design of a phase 2, randomized, cross-over study of regadenoson-stress myocardial perfusion imaging by CTP compared with SPECT are described herein. The study will be conducted at approximately 25 sites by using 6 different CT scanner models, including 64-, 128-, 256-, and 320-slice systems. Subjects with known/suspected coronary artery disease will be randomly assigned to 1 of 2 imaging procedure sequences; rest and regadenoson-stress SPECT on day 1, then regadenoson-stress CTP and rest CTP/coronary CT angiography (same acquisition) on day 2; or regadenoson-stress CTP and rest CTP/CT angiography on day 1, then rest and regadenoson-stress SPECT on day 2. The prespecified primary analysis examines the agreement rate between CTP and SPECT for detecting or excluding ischemia (≥2 or 0-1 reversible defects, respectively), as assessed by 3 independent blinded readers for each modality. Non-inferiority will be indicated if the lower boundary of the 95% CI for the agreement rate is within 0.15 of 0.78 (the observed agreement rate in the regadenoson pivotal trials). The protocol described herein will support the first evaluation of regadenoson-stress CTP by using multiple scanner types compared with SPECT.

  10. SPECT (single photon emission computed tomography) in pediatrics.

    PubMed

    Chiron, Catherine

    2013-01-01

    Surgery of focal epilepsies in childhood has largely benefited from the recent advances of the noninvasive functional imaging techniques, particularly SPECT which presurgically contributes to the localization of the seizure onset zone, in order to select the patients, decide the optimal placement of intracranial electrodes, and plan the resection. Peri-ictal SPECT (ictal and postictal) proved especially useful when video-EEG is not contributory, when MRI looks normal or shows multiple abnormalities, or in cases of discrepant findings within the presurgery workup. Because of a poor temporal resolution, peri-ictal SPECT must be coupled with video-EEG. Multimodal imaging so-called SISCOM (peri-ictal - interictal SPECT subtraction image superimposed on MRI) increases the sensitivity of peri-ictal SPECT by about 70% and makes it a good predictor of seizure-free outcome after surgery. In addition, interictal SPECT occasionally provides some interesting results regarding functional cortical maturation and learning disorders in childhood.

  11. Postoperative myocardial infarction documented by technetium pyrophosphate scan using single-photon emission computed tomography: Significance of intraoperative myocardial ischemia and hemodynamic control

    SciTech Connect

    Cheng, D.C.; Chung, F.; Burns, R.J.; Houston, P.L.; Feindel, C.M. )

    1989-12-01

    The aim of this prospective study was to document postoperative myocardial infarction (PMI) by technetium pyrophosphate scan using single-photon emission computed tomography (TcPPi-SPECT) in 28 patients undergoing elective coronary bypass grafting (CABG). The relationships of intraoperative electrocardiographic myocardial ischemia, hemodynamic responses, and pharmacological requirements to this incidence of PMI were correlated. Radionuclide cardioangiography and TcPPi-SPECT were performed 24 h preoperatively and 48 h postoperatively. A standard high-dose fentanyl anesthetic protocol was used. Twenty-five percent of elective CABG patients were complicated with PMI, as documented by TcPPi-SPECT with an infarcted mass of 38.0 +/- 5.5 g. No significant difference in demographic, preoperative right and left ventricular function, number of coronary vessels grafted, or aortic cross-clamp time was observed between the PMI and non-PMI groups. The distribution of patients using preoperative beta-adrenergic blocking drugs or calcium channel blocking drugs was found to have no correlation with the outcome of PMI. As well, no significant differences in hemodynamic changes or pharmacological requirements were observed in the PMI and non-PMI groups during prebypass or postbypass periods, indicating careful intraoperative control of hemodynamic indices did not prevent the outcome of PMI in these patients. However, the incidence of prebypass ischemia was 39.3% and significantly correlated with the outcome of positive TcPPi-SPECT, denoting a 3.9-fold increased risk of developing PMI. Prebypass ischemic changes in leads II and V5 were shown to correlate with increased CPK-MB release (P less than 0.05) and tends to occur more frequently with lateral myocardial infarction.

  12. Functional neuroimaging in epilepsy: FDG PET and ictal SPECT.

    PubMed Central

    Lee, D. S.; Lee, S. K.; Lee, M. C.

    2001-01-01

    Epileptogenic zones can be localized by F-18 fluorodeoxyglucose positron emission tomography (FDG PET) and ictal single-photon emission computed tomography(SPECT). In medial temporal lobe epilepsy, the diagnostic sensitivity of FDG PET or ictal SPECT is excellent, however, the sensitivity of MRI is so high that the incremental sensitivity by FDG PET or ictal SPECT has yet to be proven. When MRI findings are ambiguous or normal, or discordant with those of ictal EEG, FDG PET and ictal SPECT are helpful for localization without the need for invasive ictal EEG. In neocortical epilepsy, the sensitivities of FDG PET or ictal SPECT are fair. However, because almost a half of the patients are normal on MRI, FDG PET and ictal SPECT are helpful for localization or at least for lateralization in these non-lesional epilepsies in order to guide the subdural insertion of electrodes. Interpretation of FDG PET has been recently advanced by voxel-based analysis and automatic volume of interest analysis based on a population template. Both analytical methods confirmed the performance of previous visual interpretation results. Ictal SPECT was analyzed using subtraction methods(coregistered to MRI) and voxel-based analysis. Rapidity of injection of tracers, HMPAO versus ECD, and repeated ictal SPECT, which remain the technical issues of ictal SPECT, are detailed. PMID:11748346

  13. Silicon Detectors for PET and SPECT

    NASA Astrophysics Data System (ADS)

    Cochran, Eric R.

    Silicon detectors use state-of-the-art electronics to take advantage of the semiconductor properties of silicon to produce very high resolution radiation detectors. These detectors have been a fundamental part of high energy, nuclear, and astroparticle physics experiments for decades, and they hold great potential for significant gains in both PET and SPECT applications. Two separate prototype nuclear medicine imaging systems have been developed to explore this potential. Both devices take advantage of the unique properties of high resolution pixelated silicon detectors, designed and developed as part of the CIMA collaboration and built at The Ohio State University. The first prototype is a Compton SPECT imaging system. Compton SPECT, also referred to as electronic collimation, is a fundamentally different approach to single photon imaging from standard gamma cameras. It removes the inherent coupling of spatial resolution and sensitivity in mechanically collimated systems and provides improved performance at higher energies. As a result, Compton SPECT creates opportunities for the development of new radiopharmaceuticals based on higher energy isotopes as well as opportunities to expand the use of current isotopes such as 131I due to the increased resolution and sensitivity. The Compton SPECT prototype consists of a single high resolution silicon detector, configured in a 2D geometry, in coincidence with a standard NaI scintillator detector. Images of point sources have been taken for 99mTc (140 keV), 131I (364keV), and 22Na (511 keV), demonstrating the performance of high resolution silicon detectors in a Compton SPECT system. Filtered back projection image resolutions of 10 mm, 7.5 mm, and 6.7 mm were achieved for the three different sources respectively. The results compare well with typical SPECT resolutions of 5-15 mm and validate the claims of improved performance in Compton SPECT imaging devices at higher source energies. They also support the potential of

  14. Accelerated GPU based SPECT Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-01

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: 99m Tc, 111In and 131I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency

  15. Accelerated GPU based SPECT Monte Carlo simulations.

    PubMed

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-07

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational

  16. New Approaches in SPECT Breast Imaging

    DTIC Science & Technology

    2005-07-01

    the use of their breast and torso phantoms. The software package, "SPECTER", developed by Tim Turkington, was used to analyze and display the phantom...breast images. The software package, "SPECT-MAP", developed by James Bowsher, was used for reconstructions. VI. REFERENCES [1] Tornai MP, Bowsher JE...based software . and standard errors of the mean. No attenuation or scatter corrections were taken into account in For a given statistical ensemble of

  17. SPECT and PET Imaging of Meningiomas

    PubMed Central

    Valotassiou, Varvara; Leondi, Anastasia; Angelidis, George; Psimadas, Dimitrios; Georgoulias, Panagiotis

    2012-01-01

    Meningiomas arise from the meningothelial cells of the arachnoid membranes. They are the most common primary intracranial neoplasms and represent about 20% of all intracranial tumors. They are usually diagnosed after the third decade of life and they are more frequent in women than in men. According to the World Health Organization (WHO) criteria, meningiomas can be classified into grade I meningiomas, which are benign, grade II (atypical) and grade III (anaplastic) meningiomas, which have a much more aggressive clinical behaviour. Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are routinely used in the diagnostic workup of patients with meningiomas. Molecular Nuclear Medicine Imaging with Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) could provide complementary information to CT and MRI. Various SPECT and PET tracers may provide information about cellular processes and biological characteristics of meningiomas. Therefore, SPECT and PET imaging could be used for the preoperative noninvasive diagnosis and differential diagnosis of meningiomas, prediction of tumor grade and tumor recurrence, response to treatment, target volume delineation for radiation therapy planning, and distinction between residual or recurrent tumour from scar tissue. PMID:22623896

  18. SPECT and PET imaging of meningiomas.

    PubMed

    Valotassiou, Varvara; Leondi, Anastasia; Angelidis, George; Psimadas, Dimitrios; Georgoulias, Panagiotis

    2012-01-01

    Meningiomas arise from the meningothelial cells of the arachnoid membranes. They are the most common primary intracranial neoplasms and represent about 20% of all intracranial tumors. They are usually diagnosed after the third decade of life and they are more frequent in women than in men. According to the World Health Organization (WHO) criteria, meningiomas can be classified into grade I meningiomas, which are benign, grade II (atypical) and grade III (anaplastic) meningiomas, which have a much more aggressive clinical behaviour. Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are routinely used in the diagnostic workup of patients with meningiomas. Molecular Nuclear Medicine Imaging with Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) could provide complementary information to CT and MRI. Various SPECT and PET tracers may provide information about cellular processes and biological characteristics of meningiomas. Therefore, SPECT and PET imaging could be used for the preoperative noninvasive diagnosis and differential diagnosis of meningiomas, prediction of tumor grade and tumor recurrence, response to treatment, target volume delineation for radiation therapy planning, and distinction between residual or recurrent tumour from scar tissue.

  19. Reconstruction of dynamic gated cardiac SPECT

    SciTech Connect

    Jin Mingwu; Yang Yongyi; King, Michael A.

    2006-11-15

    In this paper we propose an image reconstruction procedure which aims to unify gated single photon emission computed tomography (SPECT) and dynamic SPECT into a single method. We divide the cardiac cycle into a number of gate intervals as in gated SPECT, but treat the tracer distribution for each gate as a time-varying signal. By using both dynamic and motion-compensated temporal regularization, our reconstruction procedure will produce an image sequence that shows both cardiac motion and time-varying tracer distribution simultaneously. To demonstrate the proposed reconstruction method, we simulated gated cardiac perfusion imaging using the gated mathematical cardiac-torso (gMCAT) phantom with Tc99m-Teboroxime as the imaging agent. Our results show that the proposed method can produce more accurate reconstruction of gated dynamic images than independent reconstruction of individual gate frames with spatial smoothness alone. In particular, our results show that the former could improve the contrast to noise ratio of a simulated perfusion defect by as much as 100% when compared to the latter.

  20. SPECT detectors: the Anger Camera and beyond

    PubMed Central

    Peterson, Todd E.; Furenlid, Lars R.

    2011-01-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous NaI(Tl) scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic. PMID:21828904

  1. SPECT detectors: the Anger Camera and beyond

    NASA Astrophysics Data System (ADS)

    Peterson, Todd E.; Furenlid, Lars R.

    2011-09-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic.

  2. Respiratory motion correction in gated cardiac SPECT using quaternion-based, rigid-body registration.

    PubMed

    Parker, Jason G; Mair, Bernard A; Gilland, David R

    2009-10-01

    In this article, a new method is introduced for estimating the motion of the heart due to respiration in gated cardiac SPECT using a rigid-body model with rotation parametrized by a unit quaternion. The method is based on minimizing the sum of squared errors between the reference and the deformed frames resulting from the usual optical flow constraint by using an optimized conjugate gradient routine. This method does not require any user-defined parameters or penalty terms, which simplifies its use in a clinical setting. Using a mathematical phantom, the method was quantitatively compared to the principal axis method, as well as an iterative method in which the rotation matrix was represented by Euler angles. The quaternion-based method was shown to be substantially more accurate and robust across a wide range of extramyocardial activity levels than the principal axis method. Compared with the Euler angle representation, the quaternion-based method resulted in similar accuracy but a significant reduction in computation times. Finally, the quaternion-based method was investigated using a respiratory-gated cardiac SPECT acquisition of a human subject. The motion-corrected image has increased sharpness and myocardial uniformity compared to the uncorrected image.

  3. 4D maximum a posteriori reconstruction in dynamic SPECT using a compartmental model-based prior.

    PubMed

    Kadrmas, D J; Gullberg, G T

    2001-05-01

    A 4D ordered-subsets maximum a posteriori (OSMAP) algorithm for dynamic SPECT is described which uses a temporal prior that constrains each voxel's behaviour in time to conform to a compartmental model. No a priori limitations on kinetic parameters are applied; rather, the parameter estimates evolve as the algorithm iterates to a solution. The estimated parameters and time-activity curves are used within the reconstruction algorithm to model changes in the activity distribution as the camera rotates, avoiding artefacts due to inconsistencies of data between projection views. This potentially allows for fewer, longer-duration scans to be used and may have implications for noise reduction. The algorithm was evaluated qualitatively using dynamic 99mTc-teboroxime SPECT scans in two patients, and quantitatively using a series of simulated phantom experiments. The OSMAP algorithm resulted in images with better myocardial uniformity and definition, gave time-activity curves with reduced noise variations, and provided wash-in parameter estimates with better accuracy and lower statistical uncertainty than those obtained from conventional ordered-subsets expectation-maximization (OSEM) processing followed by compartmental modelling. The new algorithm effectively removed the bias in k21 estimates due to inconsistent projections for sampling schedules as slow as 60 s per timeframe, but no improvement in wash-out parameter estimates was observed in this work. The proposed dynamic OSMAP algorithm provides a flexible framework which may benefit a variety of dynamic tomographic imaging applications.

  4. Respiratory motion correction in gated cardiac SPECT using quaternion-based, rigid-body registration

    PubMed Central

    Parker, Jason G.; Mair, Bernard A.; Gilland, David R.

    2009-01-01

    In this article, a new method is introduced for estimating the motion of the heart due to respiration in gated cardiac SPECT using a rigid-body model with rotation parametrized by a unit quaternion. The method is based on minimizing the sum of squared errors between the reference and the deformed frames resulting from the usual optical flow constraint by using an optimized conjugate gradient routine. This method does not require any user-defined parameters or penalty terms, which simplifies its use in a clinical setting. Using a mathematical phantom, the method was quantitatively compared to the principal axis method, as well as an iterative method in which the rotation matrix was represented by Euler angles. The quaternion-based method was shown to be substantially more accurate and robust across a wide range of extramyocardial activity levels than the principal axis method. Compared with the Euler angle representation, the quaternion-based method resulted in similar accuracy but a significant reduction in computation times. Finally, the quaternion-based method was investigated using a respiratory-gated cardiac SPECT acquisition of a human subject. The motion-corrected image has increased sharpness and myocardial uniformity compared to the uncorrected image. PMID:19928105

  5. Heterogeneity of SPECT bull`s-eyes in normal dogs: Comparison of attenuation compensation algorithms

    SciTech Connect

    DiBella, E.V.R.; Eisner, R.L.; Schmarkey, L.S.; Barclay, A.B.; Patterson, R.E.; Nowak, D.J.; Lalush, D.S.; Tsui, B.M.W. ||

    1995-08-01

    In normal dogs, SPECT {sup 99m}Tc Sestamibi (MIBI) and {sup 201}Tl myocardial perfusion images reconstructed with filtered backprojection (FBP) show a large decrease of counts in the septal wall (S) compared to the lateral wall (L). The authors evaluated the iterative method of Chang at 0 and 1 iterations (Chang0 and Chang1), and the Maximum Likelihood-Expectation Maximization with attenuation compensation (ML-EM-ATN) algorithm on data acquired from 5 normal dogs and from simulated projection data using a homogeneous count-density model of a normal canine myocardium in the attenuation field measured in one dog. Mean counts in the S and L regions were calculated from maximum-count circumferential profile arrays. Their results demonstrate that ML-EM-ATN and Chang1 result in improved uniformity, as measured by the S/L ratio.

  6. Computational tools and methods for objective assessment of image quality in x-ray CT and SPECT

    NASA Astrophysics Data System (ADS)

    Palit, Robin

    Computational tools of use in the objective assessment of image quality for tomography systems were developed for computer processing units (CPU) and graphics processing units (GPU) in the image quality lab at the University of Arizona. Fast analytic x-ray projection code called IQCT was created to compute the mean projection image for cone beam multi-slice helical computed tomography (CT) scanners. IQCT was optimized to take advantage of the massively parallel architecture of GPUs. CPU code for computing single photon emission computed tomography (SPECT) projection images was written calling upon previous research in the image quality lab. IQCT and the SPECT modeling code were used to simulate data for multi-modality SPECT/CT observer studies. The purpose of these observer studies was to assess the benefit in image quality of using attenuation information from a CT measurement in myocardial SPECT imaging. The observer chosen for these studies was the scanning linear observer. The tasks for the observer were localization of a signal and estimation of the signal radius. For the localization study, area under the localization receiver operating characteristic curve (A LROC) was computed as AMeasLROC = 0.89332 ± 0.00474 and ANoLROC = 0.89408 ± 0.00475, where "Meas" implies the use of attenuation information from the CT measurement, and "No" indicates the absence of attenuation information. For the estimation study, area under the estimation receiver operating characteristic curve (AEROC) was quantified as AMeasEROC = 0.55926 ± 0.00731 and ANoEROC = 0.56167 ± 0.00731. Based on these results, it was concluded that the use of CT information did not improve the scanning linear observer's ability to perform the stated myocardial SPECT tasks. The risk to the patient of the CT measurement was quantified in terms of excess effective dose as 2.37 mSv for males and 3.38 mSv for females. Another image quality tool generated within this body of work was a singular value

  7. Dipyridamole stress myocardial perfusion by computed tomography in patients with left bundle branch block

    PubMed Central

    Cabeda, Estêvan Vieira; Falcão, Andréa Maria Gomes; Soares Jr., José; Rochitte, Carlos Eduardo; Nomura, César Higa; Ávila, Luiz Francisco Rodrigues; Parga, José Rodrigues

    2015-01-01

    Background Functional tests have limited accuracy for identifying myocardial ischemia in patients with left bundle branch block (LBBB). Objective To assess the diagnostic accuracy of dipyridamole-stress myocardial computed tomography perfusion (CTP) by 320-detector CT in patients with LBBB using invasive quantitative coronary angiography (QCA) (stenosis ≥ 70%) as reference; to investigate the advantage of adding CTP to coronary computed tomography angiography (CTA) and compare the results with those of single photon emission computed tomography (SPECT) myocardial perfusion scintigraphy. Methods Thirty patients with LBBB who had undergone SPECT for the investigation of coronary artery disease were referred for stress tomography. Independent examiners performed per-patient and per-coronary territory assessments. All patients gave written informed consent to participate in the study that was approved by the institution’s ethics committee. Results The patients’ mean age was 62 ± 10 years. The mean dose of radiation for the tomography protocol was 9.3 ± 4.6 mSv. With regard to CTP, the per-patient values for sensitivity, specificity, positive and negative predictive values, and accuracy were 86%, 81%, 80%, 87%, and 83%, respectively (p = 0.001). The per-territory values were 63%, 86%, 65%, 84%, and 79%, respectively (p < 0.001). In both analyses, the addition of CTP to CTA achieved higher diagnostic accuracy for detecting myocardial ischemia than SPECT (p < 0.001). Conclusion The use of the stress tomography protocol is feasible and has good diagnostic accuracy for assessing myocardial ischemia in patients with LBBB. PMID:26421532

  8. Myocardial imaging. Coxsackie myocarditis

    SciTech Connect

    Wells, R.G.; Ruskin, J.A.; Sty, J.R.

    1986-09-01

    A 3-week-old male neonate with heart failure associated with Coxsackie virus infection was imaged with Tc-99m PYP and TI-201. The abnormal imaging pattern suggested myocardial infarction. Autopsy findings indicated that the cause was myocardial necrosis secondary to an acute inflammatory process. Causes of abnormal myocardial uptake of Tc-99m PYP in pediatrics include infarction, myocarditis, cardiomyopathy, bacterial endocarditis, and trauma. Myocardial imaging cannot provide a specific cause diagnosis. Causes of myocardial infarction in pediatrics are listed in Table 1.

  9. Impact of acute propranolol administration on dobutamine-induced myocardial ischemia as evaluated by myocardial perfusion imaging and echocardiography.

    PubMed

    Shehata, A R; Gillam, L D; Mascitelli, V A; Herman, S D; Ahlberg, A W; White, M P; Chen, C; Waters, D D; Heller, G V

    1997-08-01

    Beta-blocker therapy may delay or completely prevent myocardial ischemia during exercise testing, as assessed by ST-segment shifts, myocardial perfusion defects, or echocardiographic wall motion abnormalities. However, the impact of beta-blocker therapy on these end points during dobutamine stress testing has not been well established. The purpose of this study was to determine the impact of propranolol on dobutamine stress testing with ST-segment monitoring, technetium-99m (Tc-99m) sestamibi single-photon emission computed tomography (SPECT) imaging, and echocardiography. In 17 patients with known reversible perfusion defects, dobutamine stress tests with and without propranolol were performed in randomized order and on separate days, following discontinuation of oral beta blockers and calcium antagonists. Propronolol was administered intravenously to a cumulative dose of 8 mg or to a maximum heart rate reduction of 25% and dobutamine was infused in graded doses in 3 minute stages until a standard clinical end point or the maximum dose of 40 microg/kg/min was achieved. The dobutamine stress test after propranolol was associated with a lower maximum heart rate (83 +/- 18 vs 125 +/- 17, p <0.001) and rate pressure product (14,169 +/- 4,248 vs 19,894 +/- 3,985, p <0.001) despite a higher infusion dose. The SPECT myocardial ischemia score was also lower (6.9 +/- 5.8 vs 10.1 +/- 7.1, p = 0.047) and fewer echocardiographic segments were abnormal (3.4 +/- 3.0 vs 4.6 +/- 3.4, p = 0.042). In 4 of 17 patients, reversible perfusion defects and echocardiographic wall motion abnormalities were detected during the control but not during the propranolol test. Thus, during dobutamine stress testing, beta-blocker therapy attenuates, and in some cases eliminates, evidence of myocardial ischemia.

  10. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction

    SciTech Connect

    Elschot, Mattijs; Smits, Maarten L. J.; Nijsen, Johannes F. W.; Lam, Marnix G. E. H.; Zonnenberg, Bernard A.; Bosch, Maurice A. A. J. van den; Jong, Hugo W. A. M. de; Viergever, Max A.

    2013-11-15

    Purpose: Quantitative imaging of the radionuclide distribution is of increasing interest for microsphere radioembolization (RE) of liver malignancies, to aid treatment planning and dosimetry. For this purpose, holmium-166 ({sup 166}Ho) microspheres have been developed, which can be visualized with a gamma camera. The objective of this work is to develop and evaluate a new reconstruction method for quantitative {sup 166}Ho SPECT, including Monte Carlo-based modeling of photon contributions from the full energy spectrum.Methods: A fast Monte Carlo (MC) simulator was developed for simulation of {sup 166}Ho projection images and incorporated in a statistical reconstruction algorithm (SPECT-fMC). Photon scatter and attenuation for all photons sampled from the full {sup 166}Ho energy spectrum were modeled during reconstruction by Monte Carlo simulations. The energy- and distance-dependent collimator-detector response was modeled using precalculated convolution kernels. Phantom experiments were performed to quantitatively evaluate image contrast, image noise, count errors, and activity recovery coefficients (ARCs) of SPECT-fMC in comparison with those of an energy window-based method for correction of down-scattered high-energy photons (SPECT-DSW) and a previously presented hybrid method that combines MC simulation of photopeak scatter with energy window-based estimation of down-scattered high-energy contributions (SPECT-ppMC+DSW). Additionally, the impact of SPECT-fMC on whole-body recovered activities (A{sup est}) and estimated radiation absorbed doses was evaluated using clinical SPECT data of six {sup 166}Ho RE patients.Results: At the same noise level, SPECT-fMC images showed substantially higher contrast than SPECT-DSW and SPECT-ppMC+DSW in spheres ≥17 mm in diameter. The count error was reduced from 29% (SPECT-DSW) and 25% (SPECT-ppMC+DSW) to 12% (SPECT-fMC). ARCs in five spherical volumes of 1.96–106.21 ml were improved from 32%–63% (SPECT-DSW) and 50%–80

  11. Higher event rate in patients with known CAD despite a normal myocardial perfusion scan

    PubMed Central

    Fatima, Nosheen; Zaman, Unaiza; Zaman, Areeba; Balcoh, Dad J.; Rasheed, S Zahed

    2014-01-01

    Objective The negative predictive value of a normal single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is very high. However, prognostic implication of a normal SPECT MPI in patients with known coronary artery disease (CAD) is not clear. Objective of this study was to evaluate the cardiac event rate in patients with known CAD who had a normal stress SPECT MPI. Methods This prospective study accrued 428 consecutive patients with a history of CAD [revascularization or previous myocardial infarction (MI)] who had a normal stress (dynamic exercise or dipyridamole intervention) and rest Tc-99m-MIBI SPECT MPI. These patients were followed for 2-5 years (median: 3.1 years) for all-cause and cardiac mortality and non-fatal MI. Univariate and multivariate analyses were performed to identify predictors of outcome. Results During a follow-up period, all-cause mortality was found in 60 patients (14%) and 41 (10%) died of cardiac reasons. Non-fatal MI was found in 77 (18%) patients. Annualized cardiac mortality and non-fatal MI rates were 2% and 3.6% respectively. Smoking, congestive heart failure (CHF) and failure to achieve 85% age predicted heart rate were found to be predictors for all-cause and cardiac mortality. Diabetes, dyslipidemia, smoking and limited functional capacity (<7 METS) were found to be predictors for non-fatal MI. Conclusions Patients with known CAD had higher cardiac event rates despite a normal stress SPECT MPI. Diabetes, dyslipidemia, smoking and limited functional capacity were the predictors for fatal and non-fatal cardiac events. A cost effective but comprehensive surveillance strategy is warranted. PMID:25009792

  12. A small-animal imaging system capable of multipinhole circular/helical SPECT and parallel-hole SPECT

    PubMed Central

    Qian, Jianguo; Bradley, Eric L.; Majewski, Stan; Popov, Vladimir; Saha, Margaret S.; Smith, Mark F.; Weisenberger, Andrew G.; Welsh, Robert E.

    2008-01-01

    We have designed and built a small animal single photon emission computed tomography (SPECT) imaging system equipped with parallel-hole and multipinhole collimators and capable of circular or helical SPECT. Copper-beryllium parallel-hole collimators suitable for imaging the ~35 keV photons from the decay of 125I have been built and installed to achieve useful spatial resolution over a range of object-detector distances and to reduce imaging time on our dual-detector array. To address the resolution limitations in the parallel-hole SPECT and the sensitivity and limited field of view of single-pinhole SPECT, we have incorporated multipinhole circular and helical SPECT in addition to expanding the parallel-hole SPECT capabilities. The pinhole SPECT system is based on a 110 mm diameter circular detector equipped with a pixellated NaI(Tl) scintillator array (1×1×5 mm3/pixel). The helical trajectory is accomplished by two stepping motors controlling the rotation of the detector-support gantry and displacement of the animal bed along the axis of rotation of the gantry. Results obtained in SPECT studies of various phantoms show an enlarged field of view, very good resolution and improved sensitivity using multipinhole circular or helical SPECT. Collimators with one, three and five 1 mm diameter pinholes have been implemented and compared in these tests. Our objective is to develop a system on which one may readily select a suitable mode of either parallel-hole SPECT or pinhole circular or helical SPECT for a variety of small animal imaging applications. PMID:19701447

  13. Evaluation of myocardial infarction size with three-dimensional speckle tracking echocardiography: a comparison with single photon emission computed tomography.

    PubMed

    Wang, Qiushuang; Zhang, Chunhong; Huang, Dangsheng; Zhang, Liwei; Yang, Feifei; An, Xiuzhi; Ouyang, Qiaohong; Zhang, Meiqing; Wang, Shuhua; Guo, Jiarui; Ji, Dongdong

    2015-12-01

    To assess whether global and regional myocardial strains from three-dimensional speckle tracking echocardiography (3D-STE) correlate with myocardial infarction size (MIS) detected by single photon emission computed tomography (SPECT). Fifty-seven patients with a history of ST-segment elevation myocardial infarction (MI) within 3-6 months were enrolled, alongside 24 healthy volunteers. Left ventricular (LV) global area strain, global longitudinal strain (GLS), global radial strain, global circumferential strain, left ventricular ejection fraction (LVEF) and wall motion score index (WMSI) were measured and compared with the corresponding SPECT-detected MISs. Patients were sub-grouped into massive MIS group (MIS ≥ 12%) and small MIS group (MIS < 12%). Myocardial strains of all the LV segments were compared with the corresponding MIS. Global myocardial strain parameters, LVEF and WMSI of the patients were significantly different from the control group (all P < 0.05) and correlated well with MISs, most significantly for GLS (r = 0.728, P < 0.01). Significant differences in myocardial strain parameters were found between the massive and small MIS groups (all P < 0.05). Receiver operating characteristic curve analysis indicated that GLS had a highest diagnostic value and when the cutoff was -13.8%, the area under the curve was 0.84, with the 70.6% sensitivity and 87.5% specificity. Significant differences of myocardial strain parameters were observed between segments with and without transmural MIs (P < 0.01). 3D-STE myocardial strain parameters evaluated LV global MIS, 3D GLS had the highest diagnostic value. It also preliminarily gauged the degree of ischemia and necrosis of regional myocardial segments.

  14. Patient doses from hybrid SPECT-CT procedures.

    PubMed

    Avramova-Cholakova, S; Dimcheva, M; Petrova, E; Garcheva, M; Dimitrova, M; Palashev, Y; Vassileva, J

    2015-07-01

    The aim of this work is to estimate patient doses from hybrid single-photon emission computed tomography (SPECT) and computed tomography (CT) procedures. The study involved all four SPECT-CT systems in Bulgaria. Effective dose was estimated for about 100 patients per system. Ten types of examinations were considered, representing all diagnostic procedures performed in the SPECT-CT systems. Effective doses from the SPECT component were calculated applying the ICRP 53 and ICRP 80 conversion coefficients. Computed tomography dose index and dose length product were retrospectively obtained from the archives of the systems, and effective doses from the CT component were calculated with CT-Expo software. Parallel estimation of CT component contribution with the National Radiological Protection Board (NRPB) conversion coefficients was performed where applicable. Large variations were found in the current practice of SPECT-CT imaging. Optimisation actions and diagnostic reference levels were proposed.

  15. Single photon emission computed tomography (SPECT) in epilepsy

    SciTech Connect

    Leroy, R.F.

    1991-12-31

    Epilepsy is a common neurologic disorder which has just begun to be studied with single photon emission computerized tomography (SPECT). Epilepsy usually is studied with electroencephalographic (EEG) techniques that demonstrate the physiologic changes that occur during seizures, and with neuroimaging techniques that show the brain structures where seizures originate. Neither method alone has been adequate to describe the pathophysiology of the patient with epilepsy. EEG techniques lack anatomic sensitivity, and there are no structural abnormalities shown by neuroimaging which are specific for epilepsy. Functional imaging (FI) has developed as a physiologic tool with anatomic sensitivity, and SPECT has been promoted as a FI technique because of its potentially wide availability. However, SPECT is early in its development and its clinical utility for epilepsy still has to be demonstrated. To understand this role of SPECT, consideration must be given to the pathophysiology of epilepsy, brain physiology, types of seizure, epileptic syndromes, and the SPECT technique itself. 44 refs., 2 tabs.

  16. Assessing Cardiac Injury in Mice With Dual Energy-MicroCT, 4D-MicroCT, and MicroSPECT Imaging After Partial Heart Irradiation

    SciTech Connect

    Lee, Chang-Lung; Min, Hooney; Befera, Nicholas; Clark, Darin; Qi, Yi; Das, Shiva; Johnson, G. Allan; Badea, Cristian T.; Kirsch, David G.

    2014-03-01

    Purpose: To develop a mouse model of cardiac injury after partial heart irradiation (PHI) and to test whether dual energy (DE)-microCT and 4-dimensional (4D)-microCT can be used to assess cardiac injury after PHI to complement myocardial perfusion imaging using micro-single photon emission computed tomography (SPECT). Methods and Materials: To study cardiac injury from tangent field irradiation in mice, we used a small-field biological irradiator to deliver a single dose of 12 Gy x-rays to approximately one-third of the left ventricle (LV) of Tie2Cre; p53{sup FL/+} and Tie2Cre; p53{sup FL/−} mice, where 1 or both alleles of p53 are deleted in endothelial cells. Four and 8 weeks after irradiation, mice were injected with gold and iodinated nanoparticle-based contrast agents, and imaged with DE-microCT and 4D-microCT to evaluate myocardial vascular permeability and cardiac function, respectively. Additionally, the same mice were imaged with microSPECT to assess myocardial perfusion. Results: After PHI with tangent fields, DE-microCT scans showed a time-dependent increase in accumulation of gold nanoparticles (AuNp) in the myocardium of Tie2Cre; p53{sup FL/−} mice. In Tie2Cre; p53{sup FL/−} mice, extravasation of AuNp was observed within the irradiated LV, whereas in the myocardium of Tie2Cre; p53{sup FL/+} mice, AuNp were restricted to blood vessels. In addition, data from DE-microCT and microSPECT showed a linear correlation (R{sup 2} = 0.97) between the fraction of the LV that accumulated AuNp and the fraction of LV with a perfusion defect. Furthermore, 4D-microCT scans demonstrated that PHI caused a markedly decreased ejection fraction, and higher end-diastolic and end-systolic volumes, to develop in Tie2Cre; p53{sup FL/−} mice, which were associated with compensatory cardiac hypertrophy of the heart that was not irradiated. Conclusions: Our results show that DE-microCT and 4D-microCT with nanoparticle-based contrast agents are novel imaging approaches

  17. Optimization of the angle between detector modules in a dual-head cardiac SPECT

    NASA Astrophysics Data System (ADS)

    An, Su Jung; Kim, Hyun-Il; Lee, Chae Young; Jo, Woo Jin; Chung, Yong Hyun

    2013-01-01

    In recent years, dedicated cardiac single photon emission computed tomography (SPECT) systems have been undergoing a profound change in design with multiple detectors and various angles between the modules to improve the sensitivity and the resolution by reducing the distance between the heart and the detector. The performance of a dual-head cardiac SPECT for small-animal imaging was characterized as a function of the angle between two detector heads by using GATE simulations, and simulation data were validated with experimental results. Each detector head consists of 50 × 50 × 6 mm3 NaI(Tl) optically coupled to a Hamamatsu H8500 position sensitive photomultiplier (PSPMT) and a low-energy high-resolution parallel-hole collimator (LEHR, septal thickness: 0.2 mm, diameter: 1.9 mm). The distance between the collimator surface and the center of rotation was set as 20, 20, 20, 25, or 31.5 mm for 70°, 80°, 90°, 100°, or 110°, respectively, based on a 40-mm field of view (FOV). A point source and a rat cardiac phantom of Tc-99m in scattering media were simulated. Projection data were acquired for 180 angular views in steps of 2° and were reconstructed by using a filtered back-projection algorithm. Results demonstrated that the angle between the detector heads did not make a big difference in the image quality when scattering media were not presented, but the dual heads in the 80° geometry provided the best spatial resolution in the cardiac phantom study. The peak-to-valley ratio between the myocardial wall and the cavity was measured as 1.87, 11.01, 3.28, 3.40, or 2.46 for 70°, 80°, 90°, 100°, or 110°, respectively. Experiments were performed with a dual-head SPECT in the 80° geometry, and the results agreed well with these from the simulations. In this study, the impact of the angle between dual detector heads on the imaging performance was evaluated, and the optimal angle was derived for a dedicated cardiac SPECT.

  18. Role of 123I-Iobenguane Myocardial Scintigraphy in Predicting Short-term Left Ventricular Functional Recovery: An Interesting Image

    PubMed Central

    Feola, Mauro; Chauvie, Stephane; Biggi, Alberto; Testa, Marzia

    2015-01-01

    123I-iobenguane myocardial scintigraphy (MIBG) has been shown to be a predictor of sudden cardiac mortality in patients with heart failure. One patient with recent anterior myocardial infarction (MI) treated with coronary angioplasty and having left ventricular ejection fraction (LVEF) of 30% underwent early MIBG myocardial scintigraphy/tetrofosmin single-photon emission computed tomography (SPECT) in order to help evaluate his eligibility for implantable cardioverter defibrillator (ICD). The late heart/mediastinum (H/M) ratio was calculated to be 1.32% and the washout rate was 1%. At 40-day follow-up after angioplasty, LVEF proved to be 32%, New York Heart Association (NYHA) class was still II–III, and an ICD was placed in order to reduce mortality from ventricular arrhythmias. MIBG myocardial scintigraphy might be a promising method for evaluating left ventricular recovery in post-MI patients. PMID:26664773

  19. Impact of hypertension on the accuracy of exercise stress myocardial perfusion imaging for the diagnosis of coronary artery disease

    PubMed Central

    Elhendy, A; van Domburg, R T; Sozzi, F; Poldermans, D; Bax, J; Roelandt, J

    2001-01-01

    AIM—To compare the accuracy of exercise stress myocardial perfusion single photon emission computed tomography (SPECT) imaging for the diagnosis of coronary artery disease in patients with and without hypertension.
METHODS—A symptom limited bicycle exercise stress test in conjunction with 99m technetium sestamibi or tetrofosmin SPECT imaging was performed in 332 patients (mean (SD) age, 57 (10) years; 257 men, 75 women) without previous myocardial infarction who underwent coronary angiography. Of these, 137 (41%) had hypertension. Rest SPECT images were acquired 24 hours after the stress test. An abnormal scan was defined as one with reversible or fixed perfusion defects.
RESULTS—In hypertensive patients, myocardial perfusion abnormalities were detected in 79 of 102 patients with significant coronary artery disease and in nine of 35 patients without. In normotensive patients, myocardial perfusion abnormalities were detected in 104 of 138 patients with significant coronary artery disease and in 16 of 57 patients without. There were no differences between normotensive and hypertensive patients in sensitivity (77% (95% confidence interval (CI) 69% to 86%) v 75% (95% CI 68% to 83%)), specificity (74% (95% CI 60% to 89%) v 72% (95% CI 60% to 84%)), and accuracy (77% (95% CI 70% to 84%) v 74% (95% CI 68% to 80%)) of exercise SPECT for diagnosing coronary artery disease. The accuracy of SPECT was greater than electrocardiography, both in hypertensive patients (p = 0.005) and in normotensive patients (p = 0.0001). For the detection of coronary artery disease in individual vessels, sensitivity was 58% (95% CI 51% to 65%) v 57% (95% CI 51% to 64%), specificity was 86% (95% CI 82% to 90%) v 85% (95% CI 81% to 89%), and accuracy was 74% (95% CI 70% to 78%) v 74% (95% CI 70% to 78%) in patients with and without hypertension (NS).
CONCLUSIONS—In the usual clinical setting, the value of exercise myocardial perfusion scintigraphy for diagnosing

  20. Assessment of myocardial viability in patients with acute myocardial infarction by two-dimensional speckle tracking echocardiography combined with low-dose dobutamine stress echocardiography.

    PubMed

    Gong, Lei; Li, Dongye; Chen, Junhong; Wang, Xiaoping; Xu, Tongda; Li, Wenhua; Ren, Shaoyang; Wang, Cheng

    2013-06-01

    It is clinically important to determine the myocardial viability of regional wall motion abnormality segments in patients with acute myocardial infarction (AMI). The purpose of this study was to ascertain the ability and value of a combination of speckle tracking echocardiography (STE) and low dose dobutamine stress echocardiography (LDDSE) for the evaluation of viable myocardium in patients with AMI. Forty-two hospitalized patients with AMI and left ventricular systolic dysfunction (left ventricular ejection fraction <50%) were underwent STE in conjunction with LDDSE and dual isotope simultaneous acquisition single photon emission computed tomography (DISA-SPECT). Percutaneous coronary intervention (PCI) was performed subsequently in all patients. STE was used to measure radial, circumferential, and longitudinal end-systolic strain and peak systolic strain rate. The movement of each segment was observed by routine echocardiography 1, 3, and 6 months after PCI, and its improvement over time was the criterion of viable myocardium. The sensitivity, specificity and accuracy of DISA-SPECT for the assessment of viable myocardium were 83.6, 74.4, and 80.7%, respectively. Among the radial, circumferential, and longitudinal strain and strain rate parameters, only longitudinal strain (LS) and longitudinal strain rate (LSr) at rest and LDDSE emerged as independent predictors of viable myocardium, When combining LS and LSr at LDDSE, the sensitivity, specificity and accuracy for the assessment of viable myocardium rose to 89.8, 90.2 and 89.9%, respectively. The sensitivity of STE in conjunction with LDDSE was similar to DISA-SPECT for detecting viable myocardium in patients with AMI, but the specificity and accuracy of STE performed with LDDSE were higher than DISA-SPECT.

  1. Proceedings of clinical SPECT (single photon emission computed tomography) symposium

    SciTech Connect

    Not Available

    1986-09-01

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base. (TEM)

  2. PET and SPECT studies in Parkinson's disease.

    PubMed

    Brooks, D J

    1997-04-01

    Positron emission tomography (PET) and single photon emission tomography (SPECT) provide sensitive means for quantifying the loss of nigrostriatal dopaminergic fibres in Parkinson's disease and for detecting the presence of dopaminergic dysfunction in asymptomatic at-risk relatives and patients with isolated tremor. Functional imaging can also be used to follow the rate of disease progression objectively, determine the efficacy of putative neuroprotective agents, and monitor the viability of transplants of fetal tissue. Additionally, in vivo pharmacological changes associated with development of treatment complications (fluctuations, dyskinesias) can be studied. Loss of dopaminergic projections produces profound changes in resting and activated brain metabolism. PET and SPECT activation studies have suggested that the akinesia of Parkinson's disease is associated with failure to activate the supplementary motor and dorsal pre-frontal areas. Activation of these cortical areas is restored towards normal by the use of dopaminergic medication, striatal transplantation with fetal mesencephalic tissue, and pallidotomy. The aim of this chapter is to review the insight which functional imaging has given us into the pathophysiology of parkinsonism.

  3. Quantitative SPECT of uptake of monoclonal antibodies

    SciTech Connect

    DeNardo, G.L.; Macey, D.J.; DeNardo, S.J.; Zhang, C.G.; Custer, T.R.

    1989-01-01

    Absolute quantitation of the distribution of radiolabeled antibodies is important to the efficient conduct of research with these agents and their ultimate use for imaging and treatment, but is formidable because of the unrestricted nature of their distribution within the patient. Planar imaging methods have been developed and provide an adequate approximation of the distribution of radionuclide for many purposes, particularly when there is considerable specificity of targeting. This is not currently the case for antibodies and is unlikely in the future. Single photon emission computed tomography (SPECT) provides potential for greater accuracy because it reduces problems caused by superimposition of tissues and non-target contributions to target counts. SPECT measurement of radionuclide content requires: (1) accurate determination of camera sensitivity; (2) accurate determination of the number of counts in a defined region of interest; (3) correction for attenuation; (4) correction for scatter and septal penetration; (5) accurate measurement of the administered dose; (6) adequate statistics; and (7) accurate definition of tissue mass or volume. The major impediment to each of these requirements is scatter of many types. The magnitude of this problem can be diminished by improvements in tomographic camera design, computer algorithms, and methodological approaches. 34 references.

  4. SPECT-US image fusion and clinical applications

    NASA Astrophysics Data System (ADS)

    Hummel, Johann; Kaar, Marcus; Hoffmann, Rainer; Birkfellner, Wolfgang; Beyer, Thomas; Staudenherz, Anton; Figl, Michael

    2014-03-01

    Because scintigraphic images lack anatomical information, single photon emission tomography (SPECT) and positron emission tomography systems (PET) are combined physically with CTs to compensate for this drawback. In our work, we present a method where the CT is replaced by a 3D ultrasound device. Because in this case a mechanical linkage is not possible, we use an additional optical tracking system (OTS) for spatial correlation of the SPECT or PET information and the US. To enable image fusion between the functional SPECT and the anatomical US we first calibrate the SPECT by means of the optical tracking system. This is done by imaging a phantom with SPECT and scanning the surface of the phantom using a calibrated stylus of the OTS. Applying an iterative closest point (ICP) algorithm results in the transformation between the optical coordinate system and the SPECT coordinate system. When a patient undergoes a SPECT scan, a 3D US image is taken immediately after the scan. Since the scan head of the US is also tracked by the OTS, the transformation between OTS and SPECT can be calculated straight forward. For clinical intervention, the patient is again imaged with the US and a 3D/3D registration between the two US volumes allows to transform the functional information of the SPECT to the current US image in real time. We found a mean distance between the point cloud of the optical stylus and the segmented surface of the phantom of 2.3 mm while the maximum distance was found to be 6.9 mm. The 3D3D registration between the two US images was accomplished with an error of 2.1 mm.

  5. Angina pectoris during daily activities and exercise stress testing: The role of inducible myocardial ischemia and psychological distress.

    PubMed

    Sullivan, Mark D; Ciechanowski, Paul S; Russo, Joan E; Spertus, John A; Soine, Laurie A; Jordan-Keith, Kier; Caldwell, James H

    2008-10-31

    Physicians often consider angina pectoris to be synonymous with myocardial ischemia. However, the relationship between angina and myocardial ischemia is highly variable and we have little insight into the sources of this variability. We investigated the relationship of inducible myocardial ischemia on SPECT stress perfusion imaging to angina reported with routine daily activities during the previous four weeks (N=788) and to angina reported during an exercise stress test (N=371) in individuals with confirmed or suspected coronary disease referred for clinical testing. We found that angina experienced during daily life is more strongly and consistently associated with psychological distress and the personal threat associated with angina than with inducible myocardial ischemia. In multivariable models, the presence of any angina during routine activities over the prior month was significantly associated with age, perceived risk of myocardial infarction, and anxiety when compared to those with no reported angina in the past month. Angina during daily life was not significantly associated with inducible myocardial ischemia on stress perfusion imaging in bivariate or multivariable models. In contrast, angina experienced during exercise stress testing was significantly related to image and ECG ischemia, though it was also significantly associated with anxiety. These results suggest that angina frequency over the previous four weeks is more strongly associated with personal threat and psychosocial distress than with inducible myocardial ischemia. These results lend support to angina treatment strategies that aim to reduce threat and distress as well as to reduce myocardial ischemia.

  6. Fabrication of the pinhole aperture for AdaptiSPECT

    PubMed Central

    Kovalsky, Stephen; Kupinski, Matthew A.; Barrett, Harrison H.; Furenlid, Lars R.

    2015-01-01

    AdaptiSPECT is a pre-clinical pinhole SPECT imaging system under final construction at the Center for Gamma-Ray Imaging. The system is designed to be able to autonomously change its imaging configuration. The system comprises 16 detectors mounted on translational stages to move radially away and towards the center of the field-of-view. The system also possesses an adaptive pinhole aperture with multiple collimator diameters and pinhole sizes, as well as the possibility to switch between multiplexed and non-multiplexed imaging configurations. In this paper, we describe the fabrication of the AdaptiSPECT pinhole aperture and its controllers. PMID:26146443

  7. Design and development of MR-compatible SPECT systems for simultaneous SPECT-MR imaging of small animals

    NASA Astrophysics Data System (ADS)

    Tsui, Benjamin M. W.; Hugg, James W.; Xu, Jingyan; Chen, Si; Meier, Dirk; Edelstein, William; El-Sharkawy, Abdel; Wagenaar, Douglas J.; Patt, Bradley E.

    2011-03-01

    We describe a continuing design and development of MR-compatible SPECT systems for simultaneous SPECT-MR imaging of small animals. A first generation prototype SPECT system was designed and constructed to fit inside a MRI system with a gradient bore inner diameter of 12 cm. It consists of 3 angularly offset rings of 8 detectors (1"x1", 16x16 pixels MR-compatible solid-state CZT). A matching 24-pinhole collimator sleeve, made of a tungsten-compound, provides projections from a common FOV of ~25 mm. A birdcage RF coil for MRI data acquisition surrounds the collimator. The SPECT system was tested inside a clinical 3T MRI system. Minimal interference was observed on the simultaneously acquired SPECT and MR images. We developed a sparse-view image reconstruction method based on accurate modeling of the point response function (PRF) of each of the 24 pinholes to provide artifact-free SPECT images. The stationary SPECT system provides relatively low resolution of 3-5 mm but high geometric efficiency of 0.5- 1.2% for fast dynamic acquisition, demonstrated in a SPECT renal kinetics study using Tc-99m DTPA. Based on these results, a second generation prototype MR-compatible SPECT system with an outer diameter of 20 cm that fits inside a mid-sized preclinical MRI system is being developed. It consists of 5 rings of 19 CZT detectors. The larger ring diameter allows the use of optimized multi-pinhole collimator designs, such as high system resolution up to ~1 mm, high geometric efficiency, or lower system resolution without collimator rotation. The anticipated performance of the new system is supported by simulation data.

  8. Motion detection and amelioration in a dedicated cardiac solid-state CZT SPECT device.

    PubMed

    Kennedy, John A; William Strauss, H

    2017-04-01

    A solid-state cadmium zinc tellurium (CZT) dedicated multipinhole cardiac camera which acquires all views simultaneously has been introduced for myocardial SPECT acquisition. We report a method to detect and ameliorate patient motion artifacts in myocardial perfusion imaging (MPI) studies recorded with this device. To detect motion, a myocardial phantom study was recorded, and at mid-scan, the phantom was moved stepwise along each of 6 orthogonal directions, causing MPI artifacts. Using QPS software (Cedars-Sinai) and an in-house normal database, displacements giving artifactual perfusion defects (total perfusion deficit score, TPD, >5 %) were all 1.5 cm or greater (11.2 ± 1.3 % for 1.5 cm). List mode data were reframed into 10-s steps, and the norm of the changes in center of mass among the 19 projections (32 × 32 matrix, pixel size 2.46 mm) was used as a motion index. Rejection of misregistered data gave artifact-free reconstructions (TPD = 1.0 ± 0.8 %) in phantom scans and reduced blur in a rest/stress clinical study. Blur on the patient's stress scan was consistent with increased motion compared to rest (motion index of 4.4 vs. 3.0 pixels, respectively). For CZT cameras that acquire data from multiple views simultaneously, motion during MPI can cause clinically significant artifacts. Reframing acquisitions into discrete time intervals enables the detection of motion and its amelioration, improving diagnostic accuracy.

  9. Performance evaluation of advanced industrial SPECT system with diverging collimator.

    PubMed

    Park, Jang Guen; Jung, Sung-Hee; Kim, Jong Bum; Moon, Jinho; Yeom, Yeon Soo; Kim, Chan Hyeong

    2014-12-01

    An advanced industrial SPECT system with 12-fold-array diverging collimator was developed for flow visualization in industrial reactors and was discussed in the previous study. The present paper describes performance evaluation of the SPECT system under both static- and dynamic- flow conditions. Under static conditions, the movement of radiotracer inside the test reactor was compared with that of color tracer (blue ink) captured with a high-speed camera. The comparison of the reconstructed images obtained with the radiotracer and the SPECT system showed fairly good agreement with video-frames of the color tracer obtained with the camera. Based on the results of the performance evaluation, it is concluded that the SPECT system is suitable for investigation and visualization of flows in industrial flow reactors.

  10. [The development and application in clinical programme of SPECT].

    PubMed

    Sun, Li-ming; Liu, Chen-bin

    2002-11-01

    On the base of original computer software of Elscint Apex 609 RG SPECT, two clinical application programmes are successfully designed for clinical engineers to explore and practise by using the CLIP (The Clinical Interpreter Programming) language.

  11. Initial Investigation of Preclinical Integrated SPECT and MR Imaging

    PubMed Central

    Hamamura, Mark J.; Ha, Seunghoon; Roeck, Werner W.; Wagenaar, Douglas J.; Meier, Dirk; Patt, Bradley E.; Nalcioglu, Orhan

    2014-01-01

    Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a specialized radiofrequency (RF) coil that was placed within a whole-body 4 T MRI system. The importance of proper corrections for non-uniform detector sensitivity and Lorentz force effects was demonstrated. MRI data were utilized for attenuation correction (AC) of the nuclear projection data and optimized Wiener filtering of the SPECT reconstruction for improved image accuracy. Finally, simultaneous dual-imaging of a nude mouse was performed to demonstrated the utility of co-registration for accurate localization of a radioactive source. PMID:20082527

  12. Cervical SPECT Camera for Parathyroid Imaging

    SciTech Connect

    None, None

    2012-08-31

    Primary hyperparathyroidism characterized by one or more enlarged parathyroid glands has become one of the most common endocrine diseases in the world affecting about 1 per 1000 in the United States. Standard treatment is highly invasive exploratory neck surgery called Parathyroidectomy. The surgery has a notable mortality rate because of the close proximity to vital structures. The move to minimally invasive parathyroidectomy is hampered by the lack of high resolution pre-surgical imaging techniques that can accurately localize the parathyroid with respect to surrounding structures. We propose to develop a dedicated ultra-high resolution (~ 1 mm) and high sensitivity (10x conventional camera) cervical scintigraphic imaging device. It will be based on a multiple pinhole-camera SPECT system comprising a novel solid state CZT detector that offers the required performance. The overall system will be configured to fit around the neck and comfortably image a patient.

  13. Periodontitis and myocardial hypertrophy.

    PubMed

    Suzuki, Jun-Ichi; Sato, Hiroki; Kaneko, Makoto; Yoshida, Asuka; Aoyama, Norio; Akimoto, Shouta; Wakayama, Kouji; Kumagai, Hidetoshi; Ikeda, Yuichi; Akazawa, Hiroshi; Izumi, Yuichi; Isobe, Mitsuaki; Komuro, Issei

    2017-04-01

    There is a deep relationship between cardiovascular disease and periodontitis. It has been reported that myocardial hypertrophy may be affected by periodontitis in clinical settings. Although these clinical observations had some study limitations, they strongly suggest a direct association between severity of periodontitis and left ventricular hypertrophy. However, the detailed mechanisms between myocardial hypertrophy and periodontitis have not yet been elucidated. Recently, we demonstrated that periodontal bacteria infection is closely related to myocardial hypertrophy. In murine transverse aortic constriction models, a periodontal pathogen, Aggregatibacter actinomycetemcomitans markedly enhanced cardiac hypertrophy with matrix metalloproteinase-2 activation, while another pathogen Porphyromonas gingivalis (P.g.) did not accelerate these pathological changes. In the isoproterenol-induced myocardial hypertrophy model, P.g. induced myocardial hypertrophy through Toll-like receptor-2 signaling. From our results and other reports, regulation of chronic inflammation induced by periodontitis may have a key role in the treatment of myocardial hypertrophy. In this article, we review the pathophysiological mechanism between myocardial hypertrophy and periodontitis.

  14. ACR testing of a dedicated head SPECT unit.

    PubMed

    Sensakovic, William F; Hough, Matthew C; Kimbley, Elizabeth A

    2014-07-08

    Physics testing necessary for program accreditation is rigorously defined by the ACR. This testing is easily applied to most conventional SPECT systems based on gamma camera technology. The inSPira HD is a dedicated head SPECT system based on a rotating dual clamshell design that acquires data in a dual-spiral geometry. The unique geometry and configuration force alterations of the standard ACR physics testing protocol. Various tests, such as intrinsic planar uniformity and/or resolution, do not apply. The Data Spectrum Deluxe Phantom used for conventional SPECT testing cannot fit in the inSPira HD scanner bore, making (currently) unapproved use of the Small Deluxe SPECT Phantom necessary. Matrix size, collimator type, scanning time, reconstruction method, and attenuation correction were all varied from the typically prescribed ACR instructions. Visible spheres, sphere contrast, visible rod groups, uniformity, and root mean square (RMS) noise were measured. The acquired SPECT images surpassed the minimum ACR requirements for both spatial resolution (9.5 mm spheres resolved) and contrast (6.4 mm rod groups resolved). Sphere contrast was generally high. Integral uniformity was 4% and RMS noise was 1.7%. Noise appeared more correlated than in images from a conventional SPECT scanner. Attenuation-corrected images produced from direct CT scanning of the phantom and a manufacturer supplied model of the phantom demonstrated negligible differences.

  15. Review and current status of SPECT scatter correction

    NASA Astrophysics Data System (ADS)

    Hutton, Brian F.; Buvat, Irène; Beekman, Freek J.

    2011-07-01

    Detection of scattered gamma quanta degrades image contrast and quantitative accuracy of single-photon emission computed tomography (SPECT) imaging. This paper reviews methods to characterize and model scatter in SPECT and correct for its image degrading effects, both for clinical and small animal SPECT. Traditionally scatter correction methods were limited in accuracy, noise properties and/or generality and were not very widely applied. For small animal SPECT, these approximate methods of correction are often sufficient since the fraction of detected scattered photons is small. This contrasts with patient imaging where better accuracy can lead to significant improvement of image quality. As a result, over the last two decades, several new and improved scatter correction methods have been developed, although often at the cost of increased complexity and computation time. In concert with (i) the increasing number of energy windows on modern SPECT systems and (ii) excellent attenuation maps provided in SPECT/CT, some of these methods give new opportunities to remove degrading effects of scatter in both standard and complex situations and therefore are a gateway to highly quantitative single- and multi-tracer molecular imaging with improved noise properties. Widespread implementation of such scatter correction methods, however, still requires significant effort.

  16. Story of Rubidium-82 and Advantages for Myocardial Perfusion PET Imaging.

    PubMed

    Chatal, Jean-François; Rouzet, François; Haddad, Ferid; Bourdeau, Cécile; Mathieu, Cédric; Le Guludec, Dominique

    2015-01-01

    Rubidium-82 has a long story, starting in 1954. After preclinical studies in dogs showing that myocardial uptake of this radionuclide was directly proportional to myocardial blood flow (MBF), clinical studies were performed in the 80s leading to an approval in the USA in 1989. From that time, thousands of patients have been tested and their results have been reported in three meta-analyses. Pooled patient-based sensitivity and specificity were, respectively, 0.91 and 0.90. By comparison with (99m)Tc-SPECT, (82)Rb PET had a much better diagnostic accuracy, especially in obese patients with body mass index ≥30 kg/m(2) (85 versus 67% with SPECT) and in women with large breasts. A great advantage of (82)Rb PET is its capacity to accurately quantify MBF. Quite importantly, it has been recently shown that coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity. Moreover, coronary flow reserve is a functional parameter particularly useful in the estimate of microvascular dysfunction, such as in diabetes mellitus. Due to the very short half-life of rubidium-82, the effective dose calculated for a rest/stress test is roughly equivalent to the annual natural exposure and even less when stress-only is performed with a low activity compatible with a good image quality with the last generation 3D PET scanners. There is still some debate on the relative advantages of (82)Rb PET with regard to (99m)Tc-SPECT. For the last 10 years, great technological advances substantially improved performances of SPECT with its accuracy getting closer to this of (82)Rb/PET. Currently, the main advantages of PET are its capacity to accurately quantify MBF and to deliver a low radiation exposure.

  17. Story of Rubidium-82 and Advantages for Myocardial Perfusion PET Imaging

    PubMed Central

    Chatal, Jean-François; Rouzet, François; Haddad, Ferid; Bourdeau, Cécile; Mathieu, Cédric; Le Guludec, Dominique

    2015-01-01

    Rubidium-82 has a long story, starting in 1954. After preclinical studies in dogs showing that myocardial uptake of this radionuclide was directly proportional to myocardial blood flow (MBF), clinical studies were performed in the 80s leading to an approval in the USA in 1989. From that time, thousands of patients have been tested and their results have been reported in three meta-analyses. Pooled patient-based sensitivity and specificity were, respectively, 0.91 and 0.90. By comparison with 99mTc-SPECT, 82Rb PET had a much better diagnostic accuracy, especially in obese patients with body mass index ≥30 kg/m2 (85 versus 67% with SPECT) and in women with large breasts. A great advantage of 82Rb PET is its capacity to accurately quantify MBF. Quite importantly, it has been recently shown that coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity. Moreover, coronary flow reserve is a functional parameter particularly useful in the estimate of microvascular dysfunction, such as in diabetes mellitus. Due to the very short half-life of rubidium-82, the effective dose calculated for a rest/stress test is roughly equivalent to the annual natural exposure and even less when stress-only is performed with a low activity compatible with a good image quality with the last generation 3D PET scanners. There is still some debate on the relative advantages of 82Rb PET with regard to 99mTc-SPECT. For the last 10 years, great technological advances substantially improved performances of SPECT with its accuracy getting closer to this of 82Rb/PET. Currently, the main advantages of PET are its capacity to accurately quantify MBF and to deliver a low radiation exposure. PMID:26442267

  18. Quantitatively accurate activity measurements with a dedicated cardiac SPECT camera: Physical phantom experiments

    SciTech Connect

    Pourmoghaddas, Amir Wells, R. Glenn

    2016-01-15

    Purpose: Recently, there has been increased interest in dedicated cardiac single photon emission computed tomography (SPECT) scanners with pinhole collimation and improved detector technology due to their improved count sensitivity and resolution over traditional parallel-hole cameras. With traditional cameras, energy-based approaches are often used in the clinic for scatter compensation because they are fast and easily implemented. Some of the cardiac cameras use cadmium-zinc-telluride (CZT) detectors which can complicate the use of energy-based scatter correction (SC) due to the low-energy tail—an increased number of unscattered photons detected with reduced energy. Modified energy-based scatter correction methods can be implemented, but their level of accuracy is unclear. In this study, the authors validated by physical phantom experiments the quantitative accuracy and reproducibility of easily implemented correction techniques applied to {sup 99m}Tc myocardial imaging with a CZT-detector-based gamma camera with multiple heads, each with a single-pinhole collimator. Methods: Activity in the cardiac compartment of an Anthropomorphic Torso phantom (Data Spectrum Corporation) was measured through 15 {sup 99m}Tc-SPECT acquisitions. The ratio of activity concentrations in organ compartments resembled a clinical {sup 99m}Tc-sestamibi scan and was kept consistent across all experiments (1.2:1 heart to liver and 1.5:1 heart to lung). Two background activity levels were considered: no activity (cold) and an activity concentration 1/10th of the heart (hot). A plastic “lesion” was placed inside of the septal wall of the myocardial insert to simulate the presence of a region without tracer uptake and contrast in this lesion was calculated for all images. The true net activity in each compartment was measured with a dose calibrator (CRC-25R, Capintec, Inc.). A 10 min SPECT image was acquired using a dedicated cardiac camera with CZT detectors (Discovery NM530c, GE

  19. Dynamic molecular imaging of cardiac innervation using a dual headpinhole SPECT system

    SciTech Connect

    Hu, Jicun; Boutchko, Rostyslav; Sitek, Arkadiusz; Reutter, BryanW.; Huesman, Ronald H.; Gullberg, Grant T.

    2008-03-29

    Typically 123I-MIBG is used for the study of innervation andfunction of the sympathetic nervous system in heart failure. The protocolinvolves two studies: first a planar or SPECT scan is performed tomeasure initial uptake of the tracer, followed some 3-4 hours later byanother study measuring the wash-out of the tracer from the heart. A fastwash-out is indicative of a compromised heart. In this work, a dual headpinhole SPECT system was used for imaging the distribution and kineticsof 123I-MIBG in the myocardium of spontaneous hypertensive rats (SHR) andnormotensive Wistar Kyoto (WKY) rats. The system geometry was calibratedbased on a nonlinear point projection fitting method using a three-pointsource phantom. The angle variation effect of the parameters was modeledwith a sinusoidal function. A dynamic acquisition was performed byinjecting 123I-MIBG into rats immediately after starting the dataacquisition. The detectors rotated continuously performing a 360o dataacquisition every 90 seconds. We applied the factor analysis (FA)methodand region of interest (ROI) sampling method to obtain time activitycurves (TACs)in the blood pool and myocardium and then appliedtwo-compartment modeling to estimate the kinetic parameters. Since theinitial injection bolus is too fast for obtaining a consistenttomographic data set in the first few minutes of the study, we appliedthe FA method directly to projections during the first rotation. Then thetime active curves for blood and myocardial tissue were obtained from ROIsampling. The method was applied to determine if there were differencesin the kinetics between SHR and WKY rats and requires less time byreplacing the delayed scan at 3-4 hours after injection with a dynamicacquisition over 90 to 120 minutes. The results of a faster washout and asmaller distribution volume of 123IMIBG near the end of life in the SHRmodel of hypertrophic cardiomyopthy may be indicative of a failing heartin late stages of heart failure.

  20. Value of thallium-201 reinjection after delayed SPECT imaging for predicting reversible ischemia after coronary artery bypass grafting

    SciTech Connect

    Ohtani, H.; Tamaki, N.; Yonekura, Y.; Mohiuddin, I.H.; Hirata, K.; Ban, T.; Konishi, J. )

    1990-08-15

    The reinjection of a small dose (40 MBq) of thallium-201 after stress and delayed imaging often shows new redistribution in the regions with persistent defect. To assess whether these segments may represent reversible ischemia, reinjection thallium-201 single-photon emission computed tomography (SPECT) was performed after stress and 3-hour delayed imaging in 24 patients before coronary artery bypass grafting (CABG). The left ventricular myocardium was divided into 5 myocardial segments and regional wall motion was scored on a scale from 0 (normal) to 4 (dyskinesia). Thallium-201 findings were compared with improvement in regional perfusion and wall motion 1 to 2 months after CABG. The reinjection imaging identified new redistribution in 15 of 32 persistent defects (47%) on the 3-hour delayed images. In the study of stress and delayed SPECT imaging, the improvement in perfusion was observed in 34 of 43 segments (79%) exhibiting redistribution and 15 of 32 (47%) segments without redistribution (p less than 0.01). The reinjection SPECT identified new redistribution in 12 of the 15 improved segments that were not detected on the delayed images. Similarly, the improvement in wall motion was observed in 23 of 31 segments (74%) exhibiting redistribution and 14 of 30 segments (47%) without redistribution on the delayed images (p less than 0.05). The reinjection identified new redistribution in 10 of the 14 improved segments that were undetected on the delayed images. The predictive values for improvement in perfusion and wall motion by the reinjection imaging were significantly higher (92 and 89%) than those by the delayed imaging (69 and 62%, respectively, p less than 0.05 each).

  1. Diagnostic role of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for early and atypical bone metastases.

    PubMed

    Chen, Xiao-Liang; Li, Qian; Cao, Lin; Jiang, Shi-Xi

    2014-01-01

    The bone metastasis appeared early before the bone imaging for most of the above patients. (99)Tc(m)-MDP ((99)Tc(m) marked methylene diphosphonate) bone imaging could diagnosis the bone metastasis with highly sensitivity, but with lower specificity. The aim of this study is to explore the diagnostic value of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for the early period atypical bone metastases. 15 to 30 mCi (99)Tc(m)-MDP was intravenously injected to the 34 malignant patients diagnosed as doubtful early bone metastases. SPECT, CT and SPECT/CT images were captured and analyzed consequently. For the patients diagnosed as early period atypical bone metastases by SPECT/CT, combining the SPECT/CT and MRI together as the SPECT/MRI integrated image. The obtained SPECT/MRI image was analyzed and compared with the pathogenic results of patients. The results indicated that 34 early period doubtful metastatic focus, including 34 SPECT positive focus, 17 focus without special changes by using CT method, 11 bone metastases focus by using SPECT/CT method, 23 doubtful bone metastases focus, 8 doubtful bone metastases focus, 14 doubtful bone metastases focus and 2 focus without clear image. Totally, SPECT/CT combined with SPECT/MRI method diagnosed 30 bone metastatic focus and 4 doubtfully metastatic focus. In conclusion, (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging shows a higher diagnostic value for the early period bone metastases, which also enhances the diagnostic accuracy rate.

  2. Acute insulin resistance in ST-segment elevation myocardial infarction in non-diabetic patients is associated with incomplete myocardial reperfusion and impaired coronary microcirculatory function

    PubMed Central

    2014-01-01

    Background Insulin resistance (IR) assessed by the Homeostatic Model Assessment (HOMA) index in the acute phase of myocardial infarction in non-diabetic patients was recently established as an independent predictor of intrahospital mortality. In this study we postulated that acute IR is a dynamic phenomenon associated with the development of myocardial and microvascular injury and larger final infarct size in patients with ST-segment elevation myocardial infarction (STEMI) treated by primary percutaneous coronary intervention (pPCI). Methods In 104 consecutive patients with the first anterior STEMI without diabetes, the HOMA index was determined on the 2nd and 7th day after pPCI. Worst-lead residual ST-segment elevation (ST-E) on postprocedural ECG, coronary flow reserve (CFR) determined by transthoracic Doppler echocardiography on the 2nd day after pPCI and fixed perfusion defect on single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI) determined six weeks after pPCI were analyzed according to HOMA indices. Results IR was present in 55 % and 58 % of patients on day 2 and day 7, respectively. Incomplete post-procedural ST-E resolution was more frequent in patients with IR compared to patients without IR, both on day 2 (p = 0.001) and day 7 (p < 0.001). The HOMA index on day 7 correlated with SPECT-MPI perfusion defect (r = 0.331), whereas both HOMA indices correlated well with CFR (r = -0.331 to -0.386) (p < 0.01 for all). In multivariable backward logistic regression analysis adjusted for significant univariate predictors and potential confounding variables, IR on day 2 was an independent predictor of residual ST-E ≥ 2 mm (OR 11.70, 95% CI 2.46-55.51, p = 0.002) and CFR < 2 (OR = 5.98, 95% CI 1.88-19.03, p = 0.002), whereas IR on day 7 was an independent predictor of SPECT-MPI perfusion defect > 20% (OR 11.37, 95% CI 1.34-96.21, p = 0.026). Conclusion IR assessed by the HOMA index during the

  3. A Naive-Bayes model observer for detection and localization of perfusion defects in cardiac SPECT-MPI

    NASA Astrophysics Data System (ADS)

    Parages, Felipe M.; O'Connor, J. Michael; Pretorius, P. Hendrik; Brankov, Jovan G.

    2014-03-01

    Model observers (MO) are widely used in medical imaging to act as surrogates of human observers in task-based image quality evaluation, frequently towards optimization of reconstruction algorithms. In SPECT myocardial perfusion imaging (MPI), a realistic task-based approach involves detection and localization of perfusion defects, as well as a subsequent assessment of defect severity. In this paper we explore a machine-learning MO based on Naive- Bayes classification (NB-MO). NB-MO uses a set of polar-map image features to predict lesion detection, localization and severity scores given by five human readers for a set of simulated 3D SPECT-MPI patients. The simulated dataset included lesions with different sizes, perfusion-reduction ratios, and locations. Simulated projections were reconstructed using two readily used methods namely: FBP and OSEM. For validation, a multireader multi-case (MRMC) analysis of alternative free-response ROC (AFROC) curve was performed for NB-MO and human observers. For comparison, we also report performances of a statistical Hotelling Observer applied on polar-map images. Results show excellent agreement between NB-MO and humans, as well as model's good generalization between different reconstruction treatments.

  4. Amnestic mild cognitive impairment with low myocardial metaiodobenzylguanidine uptake

    PubMed Central

    Sakakibara, Ryuji; Ogata, Takeshi; Haruta, Masayuki; Kishi, Masahiko; Tsuyusaki, Yohei; Tateno, Akihiko; Tateno, Fuyuki; Mouri, Takayuki

    2012-01-01

    Objectives: We reported cases of amnestic mild cognitive impairment (MCI) without the core clinical features of dementia with Lewy bodies (DLB) (dementia and spontaneous parkinsonism) with low uptake in 123I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy. Methods: During a 3-year period at a university clinic, we had 254 patients with memory complaints; 106 men, 148 women; mean age 72.5 years (48-95 years). In all patients we performed neurologic examination; memory tests including the MMSE, ADAScog, FAB and additional WMS-R; and imaging tests including brain MRI, SPECT and MIBG scintigraphy. Results: The criteria of amnestic MCI were fulfilled in 44 patients; and 13 of them (30%) showed low MIBG uptake. They had the following: uniformly elderly, with an equal sex ratio, have relatively slow progression, preserved general cognitive function (MMSE 24.8/30). In addition to memory impairment, they commonly showed low frontal function by FAB (12.5/18) and some had mild visual hallucination (5). Other than memory disorder, they had autonomic disorder (nocturia in 7, constipation in 2, postural hypotension in one), REM sleep behavioral disorder (in 3) and occipital hypoperfusion by SPECT (in 5). Conclusion: This cohort of multidomain amnestic MCI cases may present with early stage DLB because of the presence of low MIBG uptake. Clinically, they commonly have low FAB, and may have visual hallucination, autonomic and sleep disorders. PMID:23383388

  5. Sci—Thur PM: Imaging — 01: Position-sensitive noise characteristics in multi-pinhole cardiac SPECT imaging

    SciTech Connect

    Cuddy-Walsh, SG; Wells, RG

    2014-08-15

    Myocardial perfusion imaging (MPI) with Single Photon Emission Computed Tomography (SPECT) is invaluable in the diagnosis and management of heart disease. It provides essential information on myocardial blood flow and ischemia. Multi-pinhole dedicated cardiac-SPECT cameras offer improved count sensitivity, and spatial and energy resolutions over parallel-hole camera designs however variable sensitivity across the field-of-view (FOV) can lead to position-dependent noise variations. Since MPI evaluates differences in the signal-to-noise ratio, noise variations in the camera could significantly impact the sensitivity of the test for ischemia. We evaluated the noise characteristics of GE Healthcare's Discovery NM530c camera with a goal of optimizing the accuracy of our patient assessment and thereby improving outcomes. Theoretical sensitivity maps of the camera FOV, including attenuation effects, were estimated analytically based on the distance and angle between the spatial position of a given voxel and each pinhole. The standard deviation in counts, σ was inferred for each voxel position from the square root of the sensitivity mapped at that position. Noise was measured experimentally from repeated (N=16) acquisitions of a uniform spherical Tc-99m-water phantom. The mean (μ) and standard deviation (σ) were calculated for each voxel position in the reconstructed FOV. Noise increased ∼2.1× across a 12 cm sphere. A correlation of 0.53 is seen when experimental noise is compared with theory suggesting that ∼53% of the noise is attributed to the combined effects of attenuation and the multi-pinhole geometry. Further investigations are warranted to determine the clinical impact of the position-dependent noise variation.

  6. Assessment of a Monte-Carlo simulation of SPECT recordings from a new-generation heart-centric semiconductor camera: from point sources to human images

    NASA Astrophysics Data System (ADS)

    Imbert, Laetitia; Galbrun, Ernest; Odille, Freddy; Poussier, Sylvain; Noel, Alain; Wolf, Didier; Karcher, Gilles; Marie, Pierre-Yves

    2015-02-01

    Geant4 application for tomographic emission (GATE), a Monte-Carlo simulation platform, has previously been used for optimizing tomoscintigraphic images recorded with scintillation Anger cameras but not with the new-generation heart-centric cadmium-zinc-telluride (CZT) cameras. Using the GATE platform, this study aimed at simulating the SPECT recordings from one of these new CZT cameras and to assess this simulation by direct comparison between simulated and actual recorded data, ranging from point sources to human images. Geometry and movement of detectors, as well as their respective energy responses, were modeled for the CZT ‘D.SPECT’ camera in the GATE platform. Both simulated and actual recorded data were obtained from: (1) point and linear sources of 99mTc for compared assessments of detection sensitivity and spatial resolution, (2) a cardiac insert filled with a 99mTc solution for compared assessments of contrast-to-noise ratio and sharpness of myocardial borders and (3) in a patient with myocardial infarction using segmented cardiac magnetic resonance imaging images. Most of the data from the simulated images exhibited high concordance with the results of actual images with relative differences of only: (1) 0.5% for detection sensitivity, (2) 6.7% for spatial resolution, (3) 2.6% for contrast-to-noise ratio and 5.0% for sharpness index on the cardiac insert placed in a diffusing environment. There was also good concordance between actual and simulated gated-SPECT patient images for the delineation of the myocardial infarction area, although the quality of the simulated images was clearly superior with increases around 50% for both contrast-to-noise ratio and sharpness index. SPECT recordings from a new heart-centric CZT camera can be simulated with the GATE software with high concordance relative to the actual physical properties of this camera. These simulations may be conducted up to the stage of human SPECT-images even if further refinement is needed

  7. Myocardial Noncompaction Presenting With Myocardial Bridge

    PubMed Central

    Shen, Yuechun; Li, Xinchun; Lu, Dongfeng; Xiao, Aiyi; Li, Jun

    2015-01-01

    Abstract Myocardial noncompaction, namly isolated noncompaction of the left ventricular myocardium (NVM), is a rare congenital disease. It can be either seen in the absence of other cardiac anomalies, or associated with other congenital cardiac defects, mostly stenotic lesions of the left ventricular outflow tract. A myocardial bridge (MB) is thought being associated with coronary heart disease, such as coronary spasm, arrhythmia, and so on. The significance of MB in association with other congenital cardiac conditions is unknown. We report a novel case who was presented NVM and MB. A 34-year-old man complained of chest prickling-like pain and dizzy for 1 year. His blood pressure was 110/70 mm Hg. Echocardiograph revealed increased trabeculations below the level of papillary muscle of left ventricle (LV); deep intertrabecular recesses in the endocardial wall of LV particularly in apex free wall; and LV ejection fraction of 57%. A coronary computerized tomography scan showed that part, 38.9 cm, of left descending artery tunnel was surrounding by cardiac muscles rather than resting on top of the myocardium. The therapeutics interventions included lifestyle cares, agents of anti-ischemia and improvement myocardial cell metabolism. The patient was followed up for 2.6 years, and his general condition was stable. This case indicates that NVM can be developed with MB, and the complete diagnosis of NVM and MB should be made by different image studies. PMID:26356695

  8. Multimodality tomographic scintimammography with PET, PECI, and SPECT: initial evaluation

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Feiglin, David H.; Thomas, Frank D.; Hellwig, Bradford J.; Gagne, George M.

    2002-04-01

    We compared tomographic scintimammography performed using single photon emission computed tomography (SPECT), positron emission coincidence imaging (PECI) and positron emission tomography (PET). A female thorax phantom was used. Activities of the myocardium, thorax and breasts were adjusted to emulate the count rate observed with patients. Hollow plastic spheres, imitating hot lesions (1.5-20ml), filled with radioactive saline were inserted in the center of each breast. Specific activities of internal organs were adjusted to emulate the count rate observed with patients. SPECT data were acquired with Tc-99m using gamma cameras with NaI(Tl) detectors. A modified FBP (CODE) reconstruction algorithm was used to render SPECT tomographic images. PECI (Siemens E.CAM with NaI(Tl)) and PET (GE Advance with BGO) data were acquired using F-18 FDG. Vendor supplied reconstruction algorithms were used. The reconstructed hot lesions contrast and resolution were investigated. Image quality obtained can be ranked as follows: (1) PET(BGO), (2) PECI(NaI), (3) SPECT(NaI) In conclusion, assuming comparable uptake values of Tc-99m-sestamibi and F-18 FDG, PET seems to be a superior methodology in visualization of breast lesion as compared to SPECT and PECI. All these tomographic methods appear to be promising adjunct to x-ray mammography in difficult to interpret cases.

  9. Enhancing the utility of prostascint SPECT scans for patient management.

    PubMed

    Noz, Marilyn E; Chung, Grace; Lee, Benjamin Y; Maguire, Gerald Q; DeWyngaert, J Keith; Doshi, Jay V; Kramer, Elissa L; Murphy-Walcott, Antoinette D; Zeleznik, Michael P; Kwak, Noeun G

    2006-04-01

    This project investigated reducing the artifact content of In-ill ProstaScint SPECT scans for use in treatment planning and management. Forty-one patients who had undergone CT or MRI scans and simultaneous Tc-99m RBC/In-111 ProstaScint SPECT scans were included. SPECT volume sets, reconstructed using Ordered Set-Expectation Maximum (OS-EM) were compared against those reconstructed with standard Filtered Back projection (FBP). Bladder activity in Tc-99m scans was suppressed within an ellipsoidal volume. Tc-99m voxel values were subtracted from the corresponding In-111 after scaling based on peak activity within the descending aorta. The SPECT volume data sets were merged with the CT or MRI scans before and after processing. Volume merging, based both on visual assessment and statistical evaluation, was not affected. Thus iterative reconstruction together with bladder suppression and blood pool subtraction may improve the interpretation and utility of ProstaScint SPECT scans for patient management.

  10. Diagnostic performance of combined noninvasive coronary angiography and myocardial perfusion imaging using 320 row detector computed tomography: design and implementation of the CORE320 multicenter, multinational diagnostic study.

    PubMed

    Vavere, Andrea L; Simon, Gregory G; George, Richard T; Rochitte, Carlos E; Arai, Andrew E; Miller, Julie M; Di Carli, Marcello; Arbab-Zadeh, Armin; Zadeh, Armin A; Dewey, Marc; Niinuma, Hiroyuki; Laham, Roger; Rybicki, Frank J; Schuijf, Joanne D; Paul, Narinder; Hoe, John; Kuribyashi, Sachio; Sakuma, Hajime; Nomura, Cesar; Yaw, Tan Swee; Kofoed, Klaus F; Yoshioka, Kunihiro; Clouse, Melvin E; Brinker, Jeffrey; Cox, Christopher; Lima, Joao A C

    2011-01-01

    Multidetector coronary computed tomography angiography (CTA) is a promising modality for widespread clinical application because of its noninvasive nature and high diagnostic accuracy as found in previous studies using 64 to 320 simultaneous detector rows. It is, however, limited in its ability to detect myocardial ischemia. In this article, we describe the design of the CORE320 study ("Combined coronary atherosclerosis and myocardial perfusion evaluation using 320 detector row computed tomography"). This prospective, multicenter, multinational study is unique in that it is designed to assess the diagnostic performance of combined 320-row CTA and myocardial CT perfusion imaging (CTP) in comparison with the combination of invasive coronary angiography and single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI). The trial is being performed at 16 medical centers located in 8 countries worldwide. CT has the potential to assess both anatomy and physiology in a single imaging session. The co-primary aim of the CORE320 study is to define the per-patient diagnostic accuracy of the combination of coronary CTA and myocardial CTP to detect physiologically significant coronary artery disease compared with (1) the combination of conventional coronary angiography and SPECT-MPI and (2) conventional coronary angiography alone. If successful, the technology could revolutionize the management of patients with symptomatic CAD.

  11. Angina and Mental Stress-Induced Myocardial Ischemia

    PubMed Central

    Pimple, Pratik; Shah, Amit J.; Rooks, Cherie; Bremner, J. Douglas; Nye, Jonathon; Ibeanu, Ijeoma; Raggi, Paolo; Vaccarino, Viola

    2015-01-01

    Objective Mental stress-induced myocardial ischemia is a common phenomenon in patients with coronary artery disease (CAD) and an emerging prognostic factor. Mental stress ischemia is correlated with ambulatory ischemia. However, whether it is related to angina symptoms during daily life has not been examined. Methods We assessed angina-frequency (past month) in 98 post-myocardial infarction (MI) subjects (age 18-60 years) using the Seattle Angina Questionnaire. Patients underwent [99mTc]sestamibi SPECT perfusion imaging at rest, after mental stress, and after exercise/pharmacological stress. Summed scores of perfusion abnormalities were obtained by observer-independent software. A summed-difference score (SDS), the difference between stress and rest scores, was used to quantify myocardial ischemia under both stress conditions. Results The mean age was 50 years, 50% were female and 60% were non-white. After adjustment for age, sex, smoking, CAD-severity, depressive, anger and anxiety symptoms, each 1-point increase in mental-stress SDS was associated with 1.73-unit increase in the angina-frequency score (95% CI: 0.09-3.37) and 17% higher odds of being in a higher angina-frequency category (OR: 1.17, 95% CI: 1.00-1.38). Depressive symptoms were associated with 12% higher odds of being in a higher angina-frequency category (OR: 1.12, 95% CI: 1.03-1.21). In contrast, exercise/pharmacological stress-induced SDS was not associated with angina-frequency. Conclusion Among young and middle-aged post-MI patients, myocardial ischemia induced by mental stress in the lab, but not by exercise/pharmacological stress, is associated with higher frequency of retrospectively reported angina during the day. Psychosocial stressors related to mental stress ischemia may be important contributory factor to daily angina. PMID:25727240

  12. A SPECT imager with synthetic collimation

    NASA Astrophysics Data System (ADS)

    Havelin, Ronan J.; Miller, Brian W.; Barrett, Harrison H.; Furenlid, Lars R.; Murphy, J. M.; Foley, Mark J.

    2013-09-01

    This work outlines the development of a multi-pinhole SPECT system designed to produce a synthetic-collimator image of a small field of view. The focused multi-pinhole collimator was constructed using rapid-prototyping and casting techniques. The collimator projects the field of view through forty-six pinholes when the detector is adjacent to the collimator. The detector is then moved further from the collimator to increase the magnification of the system. The amount of pinhole-projection overlap increases with the system magnification. There is no rotation in the system; a single tomographic angle is used in each system configuration. The maximum-likelihood expectation-maximization (MLEM) algorithm is implemented on graphics processing units to reconstruct the object in the field of view. Iterative reconstruction algorithms, such as MLEM, require an accurate model of the system response. For each system magnification, a sparsely-sampled system response is measured by translating a point source through a grid encompassing the field of view. The pinhole projections are individually identified and associated with their respective apertures. A 2D elliptical Gaussian model is applied to the pinhole projections on the detector. These coefficients are associated with the object-space location of the point source, and a finely-sampled system matrix is interpolated. Simulations with a hot-rod phantom demonstrate the efficacy of combining low-resolution non-multiplexed data with high-resolution multiplexed data to produce high-resolution reconstructions.

  13. MULTIMODALITY IMAGING: BEYOND PET/CT AND SPECT/CT

    PubMed Central

    Cherry, Simon R.

    2009-01-01

    Multimodality imaging with PET/CT and SPECT/CT has become commonplace in clinical practice and in preclinical and basic medical research. Do other combinations of imaging modalities have a similar potential to impact medical science and clinical medicine? The combination of PET or SPECT with MRI is an area of active research at the present time, while other, perhaps less obvious combinations, including CT/MR and PET/optical also are being studied. In addition to the integration of the instrumentation, there are parallel developments in synthesizing imaging agents that can be viewed by multiple imaging modalities. Is the fusion of PET and SPECT with CT the ultimate answer in multimodality imaging, or is it just the first example of a more general trend towards harnessing the complementary nature of the different modalities on integrated imaging platforms? PMID:19646559

  14. 3D quantitative analysis of brain SPECT images

    NASA Astrophysics Data System (ADS)

    Loncaric, Sven; Ceskovic, Ivan; Petrovic, Ratimir; Loncaric, Srecko

    2001-07-01

    The main purpose of this work is to develop a computer-based technique for quantitative analysis of 3-D brain images obtained by single photon emission computed tomography (SPECT). In particular, the volume and location of ischemic lesion and penumbra is important for early diagnosis and treatment of infracted regions of the brain. SPECT imaging is typically used as diagnostic tool to assess the size and location of the ischemic lesion. The segmentation method presented in this paper utilizes a 3-D deformable model in order to determine size and location of the regions of interest. The evolution of the model is computed using a level-set implementation of the algorithm. In addition to 3-D deformable model the method utilizes edge detection and region growing for realization of a pre-processing. Initial experimental results have shown that the method is useful for SPECT image analysis.

  15. Myocardial Lineage Development

    PubMed Central

    Evans, Sylvia M.; Yelon, Deborah; Conlon, Frank L.; Kirby, Margaret L.

    2010-01-01

    The myocardium of the heart is composed of multiple highly specialized myocardial lineages, including those of the ventricular and atrial myocardium, and the specialized conduction system. Specification and maturation of each of these lineages during heart development is a highly ordered, ongoing process involving multiple signaling pathways and their intersection with transcriptional regulatory networks. Here, we attempt to summarize and compare much of what we know about specification and maturation of myocardial lineages from studies in several different vertebrate model systems. To date, most research has focused on early specification, and while there is still more to learn, less is known about factors that promote subsequent maturation of myocardial lineages required to build the functioning adult heart. PMID:21148449

  16. Determination of left ventricular mass through SPECT imaging

    NASA Astrophysics Data System (ADS)

    Zárate-Morales, A.; Rodríguez-Villafuerte, M.; Martínez-Rodríguez, F.; Arévila-Ceballos, N.

    1998-08-01

    An edge detection algorithm has been applied to estimate left ventricular (LV) mass from single photon emission computed tomography (SPECT) thallium-201 images. The algorithm was validated using SPECT images of a phantom. The algorithm was applied to 20 patient studies from the Hospital de Cardiologia, Centro Médico Nacional Siglo XXI. Left ventricular masses derived from the stress and redistribution studies were highly correlated (r=0.96). The average LV masses obtained were 162±37 g and 169±34 g in the redistribution and stress studies, respectively.

  17. Determination of left ventricular mass through SPECT imaging

    SciTech Connect

    Zarate-Morales, A.; Rodriguez-Villafuerte, M.; Martinez-Rodriguez, F.; Arevila-Ceballos, N.

    1998-08-28

    An edge detection algorithm has been applied to estimate left ventricular (LV) mass from single photon emission computed tomography (SPECT) thallium-201 images. The algorithm was validated using SPECT images of a phantom. The algorithm was applied to 20 patient studies from the Hospital de Cardiologia, Centro Medico Nacional Siglo XXI. Left ventricular masses derived from the stress and redistribution studies were highly correlated (r=0.96). The average LV masses obtained were 162{+-}37 g and 169{+-}34 g in the redistribution and stress studies, respectively.

  18. Myocardial diseases of animals.

    PubMed Central

    Van Vleet, J. F.; Ferrans, V. J.

    1986-01-01

    In this review we have attempted a comprehensive compilation of the cardiac morphologic changes that occur in spontaneous and experimental myocardial diseases of animals. Our coverage addresses diseases of mammals and birds and includes these diseases found in both domesticated and wild animals. A similar review of the myocardial diseases in this broad range of animal species has not been attempted previously. We have summarized and illustrated the gross, microscopic, and ultrastructural alterations for these myocardial diseases; and, whenever possible, we have reviewed their biochemical pathogenesis. We have arranged the myocardial diseases for presentation and discussion according to an etiologic classification with seven categories. These include a group of idiopathic or primary cardiomyopathies recognized in man (hypertrophic, dilated, and restrictive types) and a large group of secondary cardiomyopathies with known causes, such as inherited tendency; nutritional deficiency; toxicity; physical injury and shock; endocrine disorders, and myocarditides of viral, bacterial, and protozoal causation. Considerable overlap exists between each of the etiologic groups in the spectrum of pathologic alterations seen in the myocardium. These include various degenerative changes, myocyte necrosis, and inflammatory lesions. However, some diseases show rather characteristic myocardial alterations such as vacuolar degeneration in anthracycline cardiotoxicity, myofibrillar lysis in furazolidone cardiotoxicity, calcification in calcinosis of mice, glycogen accumulation in the glycogenoses, lipofuscinosis in cattle, fatty degeneration in erucic acid cardiotoxicity, myofiber disarray in hypertrophic cardiomyopathy, and lymphocytic inflammation with inclusion bodies in canine parvoviral myocarditis. The myocardial diseases represent the largest group in the spectrum of spontaneous cardiac diseases of animals. Pericardial and endocardial diseases and congential cardiac diseases are

  19. Receptor Specific Ligands for Spect Imaging

    SciTech Connect

    Kung, H. F.

    2003-02-25

    In the past funding period we have concentrated in developing new 99mTc labeled MIBG analogs. Basic chemistry of ligand synthesis, radiochemistry of Re and 99mTc complex formation, separation of stereoisomers and in vitro stability were investigated. We have prepared a number of new MIBG derivatives containing chelating moiety N2S2 and additional groups to increase lipophilicity. Unfortunately none of the new 99mTc labeled MIBG analogs showed promise as an imaging agent for myocardial neuronal function. Radioactive-iodine-labeled meta-iodobenzylguanidine (MIBG) is currently being used as an in vivo imaging agent to evaluate neuroendocrine tumors as well as the myocardial sympathetic nervous system in patients with myocardial infarct and cardiomyopathy. It is generally accepted that MIBG is an analog of norepinephrine and its uptake in the heart corresponds to the distribution of norepinephrine and the density of sympathetic neurons. A series of MIBG derivatives containing suitable chelating functional groups N2S2 for the formation of [Tcv0]+3N2S2 complex was successfully synthesized and the 99mTc-labeled complexes were prepared and tested in rats. One of the compounds, [99mTc]M2, tested showed significant, albeit lower, heart uptakes post iv injection in rats (0.18% dose/organ at 4 hours) as compared to [l25l]MIBG (1.4% dose/organ at 4 hours). The heart uptake of the 99mTc-labeled complex, [99mTc]M2, appears to be specific and can be reduced by coinjection with nonradioactive MIBG or by pretreatment with desipramine. a selective norepinephrine transporter inhibitor. Further evaluation of the in vitro uptake of [99mTc]M2 in cultured neuroblastoma cells displayed consistently lower, but measurable uptake (app. 10% of that for [125l]MlBG). These preliminary results suggested that the mechanisms of heart uptake of [99mTc]M2 may be related to those for [125l]MIBG uptake. To improve the heart uptake of the MIBG derivatives we have developed chemistry related to the

  20. Role of SPECT and SPECT/CT in the Surgical Treatment of Primary Hyperparathyroidism

    PubMed Central

    Taubman, Michele L.; Goldfarb, Melanie; Lew, John I.

    2011-01-01

    Primary hyperparathyroidism is the most common cause of hypercalcemia in the outpatient population. This condition is usually the result of a single hyperfunctioning parathyroid gland. Targeted parathyroidectomy guided by intraoperative parathyroid hormone monitoring (IPM) through a small cervical incision has replaced traditional bilateral neck exploration (BNE) as the initial approach in the surgical treatment of primary hyperparathyroidism at many medical centers worldwide. Preoperative sestamibi-technetium 99m scintigraphy serves as an important prerequisite for successful targeted parathyroidectomy. Single-photon emission computed tomography (SPECT) and CT fusion, however, is a recent imaging technique that provides a three-dimensional functional image with advanced contrast resolution to greatly improve preoperative localization of parathyroid tumors. PMID:21776381

  1. Assessment of Coronary Flow Reserve by Adenosine Stress Myocardial Perfusion Imaging in Patients with Hypertension.

    PubMed

    Fu, Qiang; Zhang, Qian; Lu, Wen; Wang, Yuetao; Huang, Yijie; Wang, Yanjiong; Wu, Qiang; Lu, Cunzhi

    2015-11-01

    In this study, our aim was to assess the coronary flow reserve (CFR) by performing the adenosine stress (99m)Tc-MIBI single-photon computed tomographic (SPECT) myocardial perfusion imaging in patients with hypertension. 47 hypertensive patients with normal coronary angiography were divided into 2 groups, defined by the presence (LVH, n = 22) and absence (non-LVH, n = 25) of left ventricular hypertrophy with 17 normal cases as controls. All patients were administered the adenosine stress-rest (99m)Tc-MIBI scintigraphy. 0.14 mg/kg/min adenosine was administered by continuous infusion for 6 min. We found that adenosine-induced myocardial ischemia was present in 26 cases (55.3 %) with 87 segments (20.6 %) showing abnormal distribution in the hypertensive group versus a single case (5.9 %) (χ (2) = 31.12, P < 0.001) and segment (0.7 %) (χ (2) = 32.90, P < 0.001) in the control group by SPECT perfusion. In the LVH group, 17 cases (77.3 %) and 67 segments (33.8 %) of myocardial ischemia were present. In the non-LVH group, there were 9 cases (36.0 %) (χ (2) = 8.06, P < 0.001), 20 segments (8.9 %) (χ (2) = 40.13, P < 0.001). There was a significant decrease in coronary reserve in the hypertensive groups following adenosine infusion with a fourfold decrease in cases and a sixfold decrease in segments (P < 0.001). Our study suggests that assessing CFR by the (99m)Tc-MIBI adenosine stress by SPECT imaging is a relatively easy, safe, and non-invasive test in patients with hypertension. We noted a decrease in CFR in patients with hypertension. This decrease was especially remarkable for hypertensive patients with LVH. This study shows that administering the (99m)Tc-MIBI adenosine stress by SPECT imaging is a safe, simple, and non-invasive test for detecting CFR in patients with hypertension.

  2. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    SciTech Connect

    Baba, Justin S; Endres, Christopher; Foss, Catherine; Nimmagadda, Sridhar; Jung, Hyeyun; Goddard Jr, James Samuel; Lee, Seung Joon; McKisson, John; Smith, Mark F.; Stolin, Alexander; Weisenberger, Andrew G.; Pomper, Martin

    2013-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a 99mTc-pertechnetate phantom, 99mTcmethylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand 123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of 123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.

  3. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    SciTech Connect

    Baba, Justin S.; Endres, Christopher J.; Foss, Catherine A.; Nimmagadda, Sridhar; Jung, Hyeyun; Goddard, James S.; Lee, Seung Joon; McKisson, John; Smith, Mark F.; Stolin, Alexander V.; Weisenberger, Andrew G.; Pomper, Martin G.

    2013-06-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a ^99mTc-pertechnetate phantom, ^99mTc-methylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand ^123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of ^123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.

  4. Small hepatocellular carcinomas in chronic liver disease: Detection with SPECT

    SciTech Connect

    Kudo, M.; Hirasa, M.; Takakuwa, H.; Ibuki, Y.; Fujimi, K.; Miyamura, M.; Tomita, S.; Komori, H.; Todo, A.; Kitaura, Y.

    1986-06-01

    Single-photon emission computed tomography (SPECT) performed using a rotating gamma camera was compared with ..cap alpha../sub 1/-fetoprotein (AFP) assay, conventional liver scintigraphy, ultrasound (US) imaging, computed tomography (CT), and selective celiac angiography in 40 patients with a total of 50 small hepatocellular carcinomas (HCCs;<5 cm). The detection rates of US and CT were determined on an initial screening study and on a second, more precisely focused study. The detection rate of small HCCs by the various modalities was as follows: AFP, 13%; liver scintigraphy, 36%; SPECT, 72%; initial screening US, 80%; second, more precise US studies, 94%; initial screening CT, 64%; second, more precise CT study, 82%; angiography, 88%. Although SPECT was inferior to the initial screening US examination in detecting HCCs less than 2 cm in size, its sensitivity was identical to that of the initial screening US study for detecting HCCs of 2-5 cm. The combination of SPECT and US was an excellent method for the early detection of HCCs, yielding a detection rate of 94%.

  5. A COMPUTER MODEL OF LUNG MORPHOLOGY TO ANALYZE SPECT IMAGES

    EPA Science Inventory

    Measurement of the three-dimensional (3-D) spatial distribution of aerosol deposition can be performed using Single Photon Emission Computed Tomography (SPECT). The advantage of using 3-D techniques over planar gamma imaging is that deposition patterns can be related to real lun...

  6. Nonlinear Dual Reconstruction of SPECT Activity and Attenuation Images

    PubMed Central

    Liu, Huafeng; Guo, Min; Hu, Zhenghui; Shi, Pengcheng; Hu, Hongjie

    2014-01-01

    In single photon emission computed tomography (SPECT), accurate attenuation maps are needed to perform essential attenuation compensation for high quality radioactivity estimation. Formulating the SPECT activity and attenuation reconstruction tasks as coupled signal estimation and system parameter identification problems, where the activity distribution and the attenuation parameter are treated as random variables with known prior statistics, we present a nonlinear dual reconstruction scheme based on the unscented Kalman filtering (UKF) principles. In this effort, the dynamic changes of the organ radioactivity distribution are described through state space evolution equations, while the photon-counting SPECT projection data are measured through the observation equations. Activity distribution is then estimated with sub-optimal fixed attenuation parameters, followed by attenuation map reconstruction given these activity estimates. Such coupled estimation processes are iteratively repeated as necessary until convergence. The results obtained from Monte Carlo simulated data, physical phantom, and real SPECT scans demonstrate the improved performance of the proposed method both from visual inspection of the images and a quantitative evaluation, compared to the widely used EM-ML algorithms. The dual estimation framework has the potential to be useful for estimating the attenuation map from emission data only and thus benefit the radioactivity reconstruction. PMID:25225796

  7. Geometric Characterization of Multi-Axis Multi-Pinhole SPECT

    PubMed Central

    DiFilippo, Frank P.

    2008-01-01

    A geometric model and calibration process are developed for SPECT imaging with multiple pinholes and multiple mechanical axes. Unlike the typical situation where pinhole collimators are mounted directly to rotating gamma ray detectors, this geometric model allows for independent rotation of the detectors and pinholes, for the case where the pinhole collimator is physically detached from the detectors. This geometric model is applied to a prototype small animal SPECT device with a total of 22 pinholes and which uses dual clinical SPECT detectors. All free parameters in the model are estimated from a calibration scan of point sources and without the need for a precision point source phantom. For a full calibration of this device, a scan of four point sources with 360° rotation is suitable for estimating all 95 free parameters of the geometric model. After a full calibration, a rapid calibration scan of two point sources with 180° rotation is suitable for estimating the subset of 22 parameters associated with repositioning the collimation device relative to the detectors. The high accuracy of the calibration process is validated experimentally. Residual differences between predicted and measured coordinates are normally distributed with 0.8 mm full width at half maximum and are estimated to contribute 0.12 mm root mean square to the reconstructed spatial resolution. Since this error is small compared to other contributions arising from the pinhole diameter and the detector, the accuracy of the calibration is sufficient for high resolution small animal SPECT imaging. PMID:18293574

  8. Nonlinear dual reconstruction of SPECT activity and attenuation images.

    PubMed

    Liu, Huafeng; Guo, Min; Hu, Zhenghui; Shi, Pengcheng; Hu, Hongjie

    2014-01-01

    In single photon emission computed tomography (SPECT), accurate attenuation maps are needed to perform essential attenuation compensation for high quality radioactivity estimation. Formulating the SPECT activity and attenuation reconstruction tasks as coupled signal estimation and system parameter identification problems, where the activity distribution and the attenuation parameter are treated as random variables with known prior statistics, we present a nonlinear dual reconstruction scheme based on the unscented Kalman filtering (UKF) principles. In this effort, the dynamic changes of the organ radioactivity distribution are described through state space evolution equations, while the photon-counting SPECT projection data are measured through the observation equations. Activity distribution is then estimated with sub-optimal fixed attenuation parameters, followed by attenuation map reconstruction given these activity estimates. Such coupled estimation processes are iteratively repeated as necessary until convergence. The results obtained from Monte Carlo simulated data, physical phantom, and real SPECT scans demonstrate the improved performance of the proposed method both from visual inspection of the images and a quantitative evaluation, compared to the widely used EM-ML algorithms. The dual estimation framework has the potential to be useful for estimating the attenuation map from emission data only and thus benefit the radioactivity reconstruction.

  9. Thallium-201 accumulation in cerebral candidiasis: Unexpected finding on SPECT

    SciTech Connect

    Tonami, N.; Matsuda, H.; Ooba, H.; Yokoyama, K.; Hisada, K.; Ikeda, K.; Yamashita, J. )

    1990-06-01

    The authors present an unexpected finding of Tl-201 uptake in the intracerebral lesions due to candidiasis. SPECT demonstrated the extent of the lesions and a high target-to-background ratio. The regions where abnormal Tl-201 accumulation was seen were nearly consistent with CT scans of those enhanced by a contrast agent. After treatment, most of the abnormal Tl-201 accumulation disappeared.

  10. Hemimegalencephaly: Clinical, EEG, neuroimaging, and IMP-SPECT correlation

    SciTech Connect

    Konkol, R.J.; Maister, B.H.; Wells, R.G.; Sty, J.R. )

    1990-11-01

    Iofetamine-single photon emission computed tomography (IMP-SPECT) was performed on 2 girls (5 1/2 and 6 years of age) with histories of intractable seizures, developmental delay, and unilateral hemiparesis secondary to hemimegalencephaly. Electroencephalography (EEG) revealed frequent focal discharges in 1 patient, while a nearly continuous burst suppression pattern over the malformed hemisphere was recorded in the other. IMP-SPECT demonstrated a good correlation with neuroimaging studies. In spite of the different EEG patterns, which had been proposed to predict contrasting clinical outcomes, both IMP-SPECT scans disclosed a similar decrease in tracer uptake in the malformed hemisphere. These results are consistent with the pattern of decreased tracer uptake found in other interictal studies of focal seizures without cerebral malformations. In view of recent recommendations for hemispherectomy in these patients, we suggest that the IMP-SPECT scan be used to compliment EEG as a method to define the extent of abnormality which may be more relevant to long-term prognosis than EEG alone.

  11. The aSPECT experiment - an overview and latest results

    NASA Astrophysics Data System (ADS)

    Schmidt, Christian; Aspect Collaboration

    2016-09-01

    The aSPECT retardation spectrometer measures the β- ν angular correlation coefficient a in free neutron β-decay. This measurement can be used to determine the ratio gA/gV of the weak coupling constants, as well as to search for physics beyond the Standard Model. In 2013 aSPECT had a successful beam time at the Institut Laue-Langevin. The goal of this beam time is to improve the current uncertainty of a from Δa / a 5 % to about 1%. The data analysis is in its final stage and nearly finished. In order to achieve an uncertainty of 1%, the systematics of aSPECT have to be understood accordingly. This is achieved by systematic tests and measurements of a with different parameter settings for the spectrometer during the beam time. Additionally, offline measurements have been performed to determine the effect on the systematics, e.g. work-function fluctuations of the electrodes. These measurements are used as input for on-going simulations of the spectrometer to understand and reduce the systematic uncertainties further. In this talk aSPECT will be introduced and the current status of the data analysis will be reported, including a preliminary error budget of the systematic uncertainties.

  12. Collimator design for a multipinhole brain SPECT insert for MRI

    SciTech Connect

    Van Audenhaege, Karen; Van Holen, Roel; Vanhove, Christian; Vandenberghe, Stefaan

    2015-11-15

    Purpose: Brain single photon emission computed tomography (SPECT) imaging is an important clinical tool, with unique tracers for studying neurological diseases. Nowadays, most commercial SPECT systems are combined with x-ray computed tomography (CT) in so-called SPECT/CT systems to obtain an anatomical background for the functional information. However, while CT images have a high spatial resolution, they have a low soft-tissue contrast, which is an important disadvantage for brain imaging. Magnetic resonance imaging (MRI), on the other hand, has a very high soft-tissue contrast and does not involve extra ionizing radiation. Therefore, the authors designed a brain SPECT insert that can operate inside a clinical MRI. Methods: The authors designed and simulated a compact stationary multipinhole SPECT insert based on digital silicon photomultiplier detector modules, which have shown to be MR-compatible and have an excellent intrinsic resolution (0.5 mm) when combined with a monolithic 2 mm thick LYSO crystal. First, the authors optimized the different parameters of the SPECT system to maximize sensitivity for a given target resolution of 7.2 mm in the center of the field-of-view, given the spatial constraints of the MR system. Second, the authors performed noiseless simulations of two multipinhole configurations to evaluate sampling and reconstructed resolution. Finally, the authors performed Monte Carlo simulations and compared the SPECT insert with a clinical system with ultrahigh-resolution (UHR) fan beam collimators, based on contrast-to-noise ratio and a visual comparison of a Hoffman phantom with a 9 mm cold lesion. Results: The optimization resulted in a stationary multipinhole system with a collimator radius of 150.2 mm and a detector radius of 172.67 mm, which corresponds to four rings of 34 diSPM detector modules. This allows the authors to include eight rings of 24 pinholes, which results in a system volume sensitivity of 395 cps/MBq. Noiseless simulations

  13. Advanced reconstruction of attenuation maps using SPECT emission data only

    NASA Astrophysics Data System (ADS)

    Salomon, André; Goedicke, Andreas; Aach, Til

    2009-02-01

    Today, attenuation corrected SPECT, typically performed using CT or Gadolinium line source based transmission scans, is more and more becoming standard in many medical applications. Moreover, the information about the material density distribution provided by these scans is key for other artifact compensation approaches in advanced SPECT reconstruction. Major drawbacks of these approaches are the additional patient radiation and hardware/maintenance costs as well as the additional workflow effort, e.g. if the CT scans are not performed on a hybrid scanner. It has been investigated in the past, whether it is possible to recover this structural information solely from the SPECT scan data. However, the investigated methods often result in noticeable image artifacts due to cross-dependences between attenuation and activity distribution estimation. With the simultaneous reconstruction method presented in this paper, we aim to effectively prevent these typical cross-talk artifacts using a-priori known atlas information of a human body. At first, an initial 3D shape model is coarsely registered to the SPECT data using anatomical landmarks and each organ structure within the model is identified with its typical attenuation coefficient. During the iterative reconstruction based on a modified ML-EM scheme, the algorithm simultaneously adapts both, the local activity estimation and the 3D shape model in order to improve the overall consistency between measured and estimated sinogram data. By explicitly avoiding topology modifications resulting in a non-anatomical state, we ensure that the estimated attenuation map remains realistic. Several tests with simulated as well as real patient SPECT data were performed to test the proposed algorithm, which demonstrated reliable convergence behaviour in both cases. Comparing the achieved results with available reference data, an overall good agreement for both cold as well as hot activity regions could be observed (mean deviation: -5.98%).

  14. Comparison of planar and SPECT thallium imaging in men and women

    SciTech Connect

    Links, J.M.; Fintel, D.F.; Becker, L.C.; Wagner, H.N. Jr.

    1985-05-01

    The authors studied the overall accuracy of planar and SPECT Tl imaging in the diagnosis of coronary artery disease (CAD) in 85 subjects (65 males, 20 females; 52 with angiographic CAD, 33 without CAD), and then separately analyzed men and women to see if factors such as breast attenuation significantly alter the accuracy. All subjects were exercised to symptom-limit or peak heart rate achievement, and injected with 2 mCi Tl-201. Planar and SPECT stress studies were acquired in a random order, with delayed studies acquired 3 hours after injection. The studies were viewed in a blinded, random order, and interpreted on a 5 point scale by consensus of 3 observers (1: definitely normal, 2: probably normal, 3: equivocal, 4: probably abnormal, 5: definitely abnormal). Receiver operating characteristic (ROC) curves were constructed for overall planar and SPECT, and then separately for male planar, male SPECT, female planar, female SPECT. The overall SPECT curve was above the overall planar curve. The overall SPECT curve was above the overall planar curve. At a specificity of 90%, SPECT sensitivity was 93%, planar was 80%. For both males and females, the SPECT curves were above the planar curves. However, both planar and SPECT male curves were above both female curves. At a specificity of 90%, sensitivities were male planar, 83%; male SPECT, 97%; female planar, 50%; female SPECT, 80%. This difference in accuracy between males and females was not due to adequacy of exercise (peak exercise heart rate in CAD pts: males, 145 +- 28 bpm; females, 151 +- 28; p=NS; in normals: 178 bpm for both males and females). SPECT is more accurate than planar imaging in the diagnosis of CAD. However, differences in accuracy exist between men and women, which may be due to breast attenuation.

  15. Discrepancies in brain perfusion SPECT findings between Tc-99m HMPAO and Tc-99m ECD: evaluation using dynamic SPECT in patients with hyperemia.

    PubMed

    Miyazawa, N; Koizumi, K; Mitsuka, S; Nukui, H

    1998-10-01

    Discrepancies have been reported between the findings of Tc-99m HMPAO and Tc-99m ECD brain perfusion SPECT imaging. This study investigated the discrepancies in the accumulation of these tracers using dynamic SPECT to detect the super early phase of distribution. Thirteen patients with luxury perfusion or high flow states were studied with both dynamic and standard SPECT using Tc-99m HMPAO and Tc-99m ECD within 1-3 days. Standard SPECT showed discrepancies in 6 of 13 patients. Patients with meningioma and cerebral thrombosis had increased accumulation of Tc-99m HMPAO and decreased uptake of Tc-99m ECD. Patients with arteriovenous malformation, subarachnoid hemorrhage, and cavernous angioma had decreased accumulation of both tracers, but to different degrees. Dynamic SPECT showed increased or normal accumulation (i.e., essentially no discrepancy) in the first few minutes. However, Tc-99m HMPAO had a longer retention time than Tc-99m ECD in the ensuing 5-10 minutes. Dynamic SPECT revealed a similar accumulation pattern but different washout rates for the two tracers. Tc-99m HMPAO might be a more suitable tracer to detect high flow states or luxury perfusion because the findings on standard SPECT were more in agreement with those of dynamic SPECT using this tracer.

  16. Activity concentration measurements using a conjugate gradient (Siemens xSPECT) reconstruction algorithm in SPECT/CT.

    PubMed

    Armstrong, Ian S; Hoffmann, Sandra A

    2016-11-01

    The interest in quantitative single photon emission computer tomography (SPECT) shows potential in a number of clinical applications and now several vendors are providing software and hardware solutions to allow 'SUV-SPECT' to mirror metrics used in PET imaging. This brief technical report assesses the accuracy of activity concentration measurements using a new algorithm 'xSPECT' from Siemens Healthcare. SPECT/CT data were acquired from a uniform cylinder with 5, 10, 15 and 20 s/projection and NEMA image quality phantom with 25 s/projection. The NEMA phantom had hot spheres filled with an 8 : 1 activity concentration relative to the background compartment. Reconstructions were performed using parameters defined by manufacturer presets available with the algorithm. The accuracy of activity concentration measurements was assessed. A dose calibrator-camera cross-calibration factor (CCF) was derived from the uniform phantom data. In uniform phantom images, a positive bias was observed, ranging from ∼6% in the lower count images to ∼4% in the higher-count images. On the basis of the higher-count data, a CCF of 0.96 was derived. As expected, considerable negative bias was measured in the NEMA spheres using region mean values whereas positive bias was measured in the four largest NEMA spheres. Nonmonotonically increasing recovery curves for the hot spheres suggested the presence of Gibbs edge enhancement from resolution modelling. Sufficiently accurate activity concentration measurements can easily be measured on images reconstructed with the xSPECT algorithm without a CCF. However, the use of a CCF is likely to improve accuracy further. A manual conversion of voxel values into SUV should be possible, provided that the patient weight, injected activity and time between injection and imaging are all known accurately.

  17. Quantification of myocardial injury produced by temporary coronary artery occlusion and reflow with technetium-99m-pyrophosphate

    SciTech Connect

    Jansen, D.E.; Corbett, J.R.; Buja, L.M.; Hansen, C.; Ugolini, V.; Parkey, R.W.; Willerson, J.T.

    1987-03-01

    Previously, technetium-99m-stannous pyrophosphate (/sup 99m/Tc-PPi) has been used to localize and estimate the size of myocardial infarcts in animals after permanent coronary artery occlusion. This study tested the hypothesis that /sup 99m/Tc-PPi accurately sizes myocardial infarctions produced by temporary coronary artery occlusion and reflow in dogs. Three groups of dogs were studied: group A underwent 3 hr of occlusion followed by 2 hr of reperfusion, with /sup 99m/Tc-PPi injected 10 min after reflow (n = 10); group B underwent 3 hr of occlusion followed by 2 hr of reperfusion, with /sup 99m/Tc-PPi injected 90 min after reflow (n = 11); and group C underwent 3 hr of occlusion followed by reflow with /sup 99m/Tc-PPi injected at 10 min and again at 48 hr after reflow (n = 5). Myocardial slices from group A and B dogs were imaged in vitro. Group C dogs were imaged with single photon-emission computed tomography (SPECT) in vivo, and myocardial slices were imaged in vitro at the conclusion of the study. The extent of myocardial infarction was defined with triphenyltetrazolium chloride (TTC) staining, and coronary blood flow was estimated with radioactive microspheres. In addition, transmural myocardial tissue samples were taken from the center of the myocardial infarction, the lateral portion of the myocardial infarction, the normal myocardium adjacent to the lateral aspect of the infarcts, and from the normal myocardium and counted for /sup 99m/Tc-PPi activity. A significant correlation was found between infarct size determined by areas of increased /sup 99m/Tc-PPi uptake and that estimated from TTC staining for both group A (r = .89) and group B animals (r = .98).

  18. Anatomical-based Partial Volume Correction for Low-dose Dedicated Cardiac SPECT/CT

    PubMed Central

    Liu, Hui; Chan, Chung; Grobshtein, Yariv; Ma, Tianyu; Liu, Yaqiang; Wang, Shi; Stacy, Mitchel R.; Sinusas, Albert J.; Liu, Chi

    2016-01-01

    Due to the limited spatial resolution, partial volume effect (PVE) has been a major degrading factor on quantitative accuracy in emission tomography systems. This study aims to investigate the performance of several anatomical-based partial volume correction (PVC) methods for a dedicated cardiac SPECT/CT system (GE Discovery NM/CT 570c) with focused field-of-view (FOV) over a clinically relevant range of high and low count levels for two different radiotracer distributions. These PVC methods include perturbation Geometry Transfer Matrix (pGTM), pGTM followed by multi-target correction (MTC), pGTM with known concentration in blood pool, the former followed by MTC and our newly proposed methods, which perform the MTC method iteratively, where the mean values in all regions are estimated and updated by the MTC-corrected images each time in the iterative process. The NCAT phantom was simulated for cardiovascular imaging with 99mTc-tetrofosmin, a myocardial perfusion agent, and 99mTc-red blood cell (RBC), a pure intravascular imaging agent. Images were acquired at six different count levels to investigate the performance of PVC methods in both high and low count levels for low-dose applications. We performed two large animal in vivo cardiac imaging experiments following injection of 99mTc-RBC for evaluation of intramyocardial blood volume (IMBV). The simulation results showed our proposed iterative methods provide superior performance than other existing PVC methods in terms of image quality, quantitative accuracy, and reproducibility (standard deviation), particularly for low-count data. The iterative approaches are robust for both 99mTc-tetrofosmin perfusion imaging and 99mTc-RBC imaging of IMBV and blood pool activity even at low count levels. The animal study results indicated the effectiveness of PVC to correct the overestimation of IMBV due to blood pool contamination. In conclusion, the iterative PVC methods can achieve more accurate quantification, particularly

  19. Effects of scatter modeling on time-activity curves estimated directly from dynamic SPECT projections

    SciTech Connect

    Reutter, Bryan W.; Gullberg, Grant T.; Huesman, Ronald H.

    2003-10-29

    Quantitative analysis of uptake and washout of cardiac single photon emission computed tomography (SPECT) radiopharmaceuticals has the potential to provide better contrast between healthy and diseased tissue, compared to conventional reconstruction of static images. Previously, we used B-splines to model time-activity curves (TACs) for segmented volumes of interest and developed fast least-squares algorithms to estimate spline TAC coefficients and their statistical uncertainties directly from dynamic SPECT projection data. This previous work incorporated physical effects of attenuation and depth-dependent collimator response. In the present work, we incorporate scatter and use a computer simulation to study how scatter modeling affects directly estimated TACs and subsequent estimates of compartmental model parameters. An idealized single-slice emission phantom was used to simulate a 15 min dynamic {sup 99m}Tc-teboroxime cardiac patient study in which 500,000 events containing scatter were detected from the slice. When scatter was modeled, unweighted least-squares estimates of TACs had root mean square (RMS) error that was less than 0.6% for normal left ventricular myocardium, blood pool, liver, and background tissue volumes and averaged 3% for two small myocardial defects. When scatter was not modeled, RMS error increased to average values of 16% for the four larger volumes and 35% for the small defects. Noise-to-signal ratios (NSRs) for TACs ranged between 1-18% for the larger volumes and averaged 110% for the small defects when scatter was modeled. When scatter was not modeled, NSR improved by average factors of 1.04 for the larger volumes and 1.25 for the small defects, as a result of the better-posed (though more biased) inverse problem. Weighted least-squares estimates of TACs had slightly better NSR and worse RMS error, compared to unweighted least-squares estimates. Compartmental model uptake and washout parameter estimates obtained from the TACs were less

  20. Anatomical-based partial volume correction for low-dose dedicated cardiac SPECT/CT

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Chan, Chung; Grobshtein, Yariv; Ma, Tianyu; Liu, Yaqiang; Wang, Shi; Stacy, Mitchel R.; Sinusas, Albert J.; Liu, Chi

    2015-09-01

    Due to the limited spatial resolution, partial volume effect has been a major degrading factor on quantitative accuracy in emission tomography systems. This study aims to investigate the performance of several anatomical-based partial volume correction (PVC) methods for a dedicated cardiac SPECT/CT system (GE Discovery NM/CT 570c) with focused field-of-view over a clinically relevant range of high and low count levels for two different radiotracer distributions. These PVC methods include perturbation geometry transfer matrix (pGTM), pGTM followed by multi-target correction (MTC), pGTM with known concentration in blood pool, the former followed by MTC and our newly proposed methods, which perform the MTC method iteratively, where the mean values in all regions are estimated and updated by the MTC-corrected images each time in the iterative process. The NCAT phantom was simulated for cardiovascular imaging with 99mTc-tetrofosmin, a myocardial perfusion agent, and 99mTc-red blood cell (RBC), a pure intravascular imaging agent. Images were acquired at six different count levels to investigate the performance of PVC methods in both high and low count levels for low-dose applications. We performed two large animal in vivo cardiac imaging experiments following injection of 99mTc-RBC for evaluation of intramyocardial blood volume (IMBV). The simulation results showed our proposed iterative methods provide superior performance than other existing PVC methods in terms of image quality, quantitative accuracy, and reproducibility (standard deviation), particularly for low-count data. The iterative approaches are robust for both 99mTc-tetrofosmin perfusion imaging and 99mTc-RBC imaging of IMBV and blood pool activity even at low count levels. The animal study results indicated the effectiveness of PVC to correct the overestimation of IMBV due to blood pool contamination. In conclusion, the iterative PVC methods can achieve more accurate quantification, particularly for low

  1. Anatomical-based partial volume correction for low-dose dedicated cardiac SPECT/CT.

    PubMed

    Liu, Hui; Chan, Chung; Grobshtein, Yariv; Ma, Tianyu; Liu, Yaqiang; Wang, Shi; Stacy, Mitchel R; Sinusas, Albert J; Liu, Chi

    2015-09-07

    Due to the limited spatial resolution, partial volume effect has been a major degrading factor on quantitative accuracy in emission tomography systems. This study aims to investigate the performance of several anatomical-based partial volume correction (PVC) methods for a dedicated cardiac SPECT/CT system (GE Discovery NM/CT 570c) with focused field-of-view over a clinically relevant range of high and low count levels for two different radiotracer distributions. These PVC methods include perturbation geometry transfer matrix (pGTM), pGTM followed by multi-target correction (MTC), pGTM with known concentration in blood pool, the former followed by MTC and our newly proposed methods, which perform the MTC method iteratively, where the mean values in all regions are estimated and updated by the MTC-corrected images each time in the iterative process. The NCAT phantom was simulated for cardiovascular imaging with (99m)Tc-tetrofosmin, a myocardial perfusion agent, and (99m)Tc-red blood cell (RBC), a pure intravascular imaging agent. Images were acquired at six different count levels to investigate the performance of PVC methods in both high and low count levels for low-dose applications. We performed two large animal in vivo cardiac imaging experiments following injection of (99m)Tc-RBC for evaluation of intramyocardial blood volume (IMBV). The simulation results showed our proposed iterative methods provide superior performance than other existing PVC methods in terms of image quality, quantitative accuracy, and reproducibility (standard deviation), particularly for low-count data. The iterative approaches are robust for both (99m)Tc-tetrofosmin perfusion imaging and (99m)Tc-RBC imaging of IMBV and blood pool activity even at low count levels. The animal study results indicated the effectiveness of PVC to correct the overestimation of IMBV due to blood pool contamination. In conclusion, the iterative PVC methods can achieve more accurate quantification, particularly

  2. The impact of system matrix dimension on small FOV SPECT reconstruction with truncated projections

    SciTech Connect

    Chan, Chung E-mail: Chi.Liu@yale.edu; Wu, Jing; Liu, Chi E-mail: Chi.Liu@yale.edu; Dey, Joyoni; Grobshtein, Yariv; Liu, Yi-Hwa; Lampert, Rachel; Sinusas, Albert J.

    2016-01-15

    Purpose: A dedicated cardiac hybrid single photon emission computed tomography (SPECT)/CT scanner that uses cadmium zinc telluride detectors and multiple pinhole collimators for stationary acquisition offers many advantages. However, the impact of the reconstruction system matrix (SM) dimension on the reconstructed image quality from truncated projections and 19 angular samples acquired on this scanner has not been extensively investigated. In this study, the authors aimed to investigate the impact of the dimensions of SM and the use of body contour derived from adjunctive CT imaging as an object support in reconstruction on this scanner, in relation to background extracardiac activity. Methods: The authors first simulated a generic SPECT/CT system to image four NCAT phantoms with various levels of extracardiac activity and compared the reconstructions using SM in different dimensions and with/without body contour as a support for quantitative evaluations. The authors then compared the reconstructions of 18 patient studies, which were acquired on a GE Discovery NM570c scanner following injection of different radiotracers, including {sup 99m}Tc-Tetrofosmin and {sup 123}I-mIBG, comparing the scanner’s default SM that incompletely covers the body with a large SM that incorporates a patient specific full body contour. Results: The simulation studies showed that the reconstructions using a SM that only partially covers the body yielded artifacts on the edge of the field of view (FOV), overestimation of activity and increased nonuniformity in the blood pool for the phantoms with higher relative levels of extracardiac activity. However, the impact on the quantitative accuracy in the high activity region, such as the myocardium, was subtle. On the other hand, an excessively large SM that enclosed the entire body alleviated the artifacts and reduced overestimation in the blood pool, but yielded slight underestimation in myocardium and defect regions. The reconstruction

  3. A methodology for generating normal and pathological brain perfusion SPECT images for evaluation of MRI/SPECT fusion methods: application in epilepsy

    NASA Astrophysics Data System (ADS)

    Grova, C.; Jannin, P.; Biraben, A.; Buvat, I.; Benali, H.; Bernard, A. M.; Scarabin, J. M.; Gibaud, B.

    2003-12-01

    Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method consists in generating normal or pathological SPECT data perfectly aligned with a high-resolution 3D T1-weighted MRI using realistic Monte Carlo simulations that closely reproduce the response of a SPECT imaging system. Anatomical input data for the SPECT simulations are obtained from this 3D T1-weighted MRI, while functional input data result from an inter-individual analysis of anatomically standardized SPECT data. The method makes it possible to control the 'brain perfusion' function by proposing a theoretical model of brain perfusion from measurements performed on real SPECT images. Our method provides an absolute gold standard for assessing MRI/SPECT registration method accuracy since, by construction, the SPECT data are perfectly registered with the MRI data. The proposed methodology has been applied to create a theoretical model of normal brain perfusion and ictal brain perfusion characteristic of mesial temporal lobe epilepsy. To approach realistic and unbiased perfusion models, real SPECT data were corrected for uniform attenuation, scatter and partial volume effect. An anatomic standardization was used to account for anatomic variability between subjects. Realistic simulations of normal and ictal SPECT deduced from these perfusion models are presented. The comparison of real and simulated SPECT images showed relative differences in regional activity concentration of less than 20% in most anatomical structures, for both normal and ictal data, suggesting realistic models of perfusion distributions for evaluation purposes. Inter-hemispheric asymmetry coefficients measured on simulated data were found within

  4. A methodology for generating normal and pathological brain perfusion SPECT images for evaluation of MRI/SPECT fusion methods: application in epilepsy.

    PubMed

    Grova, C; Jannin, P; Biraben, A; Buvat, I; Benali, H; Bernard, A M; Scarabin, J M; Gibaud, B

    2003-12-21

    Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method consists in generating normal or pathological SPECT data perfectly aligned with a high-resolution 3D T1-weighted MRI using realistic Monte Carlo simulations that closely reproduce the response of a SPECT imaging system. Anatomical input data for the SPECT simulations are obtained from this 3D T1-weighted MRI, while functional input data result from an inter-individual analysis of anatomically standardized SPECT data. The method makes it possible to control the 'brain perfusion' function by proposing a theoretical model of brain perfusion from measurements performed on real SPECT images. Our method provides an absolute gold standard for assessing MRI/SPECT registration method accuracy since, by construction, the SPECT data are perfectly registered with the MRI data. The proposed methodology has been applied to create a theoretical model of normal brain perfusion and ictal brain perfusion characteristic of mesial temporal lobe epilepsy. To approach realistic and unbiased perfusion models, real SPECT data were corrected for uniform attenuation, scatter and partial volume effect. An anatomic standardization was used to account for anatomic variability between subjects. Realistic simulations of normal and ictal SPECT deduced from these perfusion models are presented. The comparison of real and simulated SPECT images showed relative differences in regional activity concentration of less than 20% in most anatomical structures, for both normal and ictal data, suggesting realistic models of perfusion distributions for evaluation purposes. Inter-hemispheric asymmetry coefficients measured on simulated data were found within

  5. Myocardial gene therapy

    NASA Astrophysics Data System (ADS)

    Isner, Jeffrey M.

    2002-01-01

    Gene therapy is proving likely to be a viable alternative to conventional therapies in coronary artery disease and heart failure. Phase 1 clinical trials indicate high levels of safety and clinical benefits with gene therapy using angiogenic growth factors in myocardial ischaemia. Although gene therapy for heart failure is still at the pre-clinical stage, experimental data indicate that therapeutic angiogenesis using short-term gene expression may elicit functional improvement in affected individuals.

  6. Myocardial Tagging With SSFP

    PubMed Central

    Herzka, Daniel A.; Guttman, Michael A.; McVeigh, Elliot R.

    2007-01-01

    This work presents the first implementation of myocardial tagging with refocused steady-state free precession (SSFP) and magnetization preparation. The combination of myocardial tagging (a noninvasive method for quantitative measurement of regional and global cardiac function) with the high tissue signal-to-noise ratio (SNR) obtained with SSFP is shown to yield improvements in terms of the myocardium–tag contrast-to-noise ratio (CNR) and tag persistence when compared to the current standard fast gradient-echo (FGRE) tagging protocol. Myocardium–tag CNR and tag persistence were studied using numerical simulations as well as phantom and human experiments. Both quantities were found to decrease with increasing imaging flip angle (α) due to an increased tag decay rate and a decrease in myocardial steady-state signal. However, higher α yielded better blood–myocardium contrast, indicating that optimal α is dependent on the application: higher α for better blood–myocardium boundary visualization, and lower α for better tag persistence. SSFP tagging provided the same myocardium–tag CNR as FGRE tagging when acquired at four times the bandwidth and better tag– and blood–myocardium CNRs than FGRE tagging when acquired at equal or twice the receiver bandwidth (RBW). The increased acquisition efficiency of SSFP allowed decreases in breath-hold duration, or increases in temporal resolution, as compared to FGRE. PMID:12541254

  7. [The significance of 201Tl/123I MIBG (metaiodobenzylguanidine) mismatched myocardial regions for predicting ventricular tachycardia in patients with idiopathic dilated cardiomyopathy].

    PubMed

    Maeno, M; Ishida, Y; Shimonagata, T; Hayashida, K; Toyama, T; Hirose, Y; Nagata, M; Miyatake, K; Uehara, T; Nishimura, T

    1993-10-01

    123I-MIBG (MIBG) regional defects in myocardial regions with preserved 201Tl (Tl) uptake have been observed in patients with idiopathic dilated cardiomyopathy (DCM). To evaluate whether the presence of Tl/MIBG mismatched regions is related to the occurrence of ventricular tachycardia (VT), we performed myocardial dual SPECT imaging with Tl (111 MBq) and MIBG (111 MBq) in 17 patients with DCM, 11 (Gp A) with and 6 (Gp B) without VT. Myocardial dual SPECT imaging was performed at 15 minutes after and 4 hours after the tracer injection. The regional tracer uptake was scored visually in 6 segments of the basal, middle, and apical short-axial images and in 2 apical segments of the midventricular vertical long-axial image by a four-point scoring system (0 = normal, 1 = moderate, 2 = severe and 3 = complete defect). Then, the severity of tracer maldistributions was assessed by the difference between total defect scores (TDSs) of Tl and MIBG (delta TDS). TDS was not different between Gps A and B in both Tl and MIBG images. However, delta TDS was larger in Gp A than in Gp B (13.5 +/- 6.5 vs. 5.8 +/- 3.0, p < 0.05). Also, the number of segments with the mismatched tracer uptake was larger in Gp A than in Gp B (12.5 +/- 3.0 vs. 8.3 +/- 1.5, p < 0.01). In the electrophysiologic study, we found that the fractionated area corresponded to the mismatched region in 3 of 5 patients in Gp A. These results suggest that regional sympathetic denervation is a possible factor which provocates VT, and myocardial dual SPECT imaging with Tl and MIBG is a useful method for predicting VT in patients with DCM.

  8. Quantification of infarct size by /sup 201/Tl single-photon emission computed tomography during acute myocardial infarction in humans. Comparison with enzymatic estimates

    SciTech Connect

    Mahmarian, J.J.; Pratt, C.M.; Borges-Neto, S.; Cashion, W.R.; Roberts, R.; Verani, M.S.

    1988-10-01

    We prospectively investigated whether /sup 201/Tl single-photon emission computed tomography (SPECT) could accurately diagnose the presence and quantify the extent of acute myocardial infarction when compared with infarct size assessed by plasma MB-creatine kinase activity. Thirty patients with enzymatic evidence of infarction were imaged within 12-36 hours of chest pain (mean, 23.4 hours). No patient had a previous infarction, and none underwent intervention seeking to restore coronary patency. Infarct size was quantified with computer-generated polar maps of the myocardial radioactivity and expressed as a percentage of the total left ventricular volume. To assess left and right ventricular performance, blood-pool gated radionuclide angiography was performed immediately after SPECT. All 30 patients had perfusion defects consistent with myocardial infarction. Scintigraphic and enzymatic estimates of infarct size correlated well for the group as a whole (r = 0.78, p less than 0.001, SEE = 9.1) but especially for those patients with anterior infarction (r = 0.91, p less than 0.001, SEE = 7.9). The poor correlation observed in patients with inferior infarction (r = 0.50, p less than 0.05, SEE = 10.0) was believed to be related to the frequent occurrence of right ventricular involvement because SPECT assessed only left ventricular damage, whereas the enzymatic method estimated the myocardial injury in both ventricles. A quantitative index of right ventricular infarct size, derived from the relation between the scintigraphic and enzymatic estimates, had a strong inverse correlation with right ventricular ejection fraction (r = -0.89, p less than 0.001, SEE = 3.6).

  9. Design and simulation of a high-resolution stationary SPECT system for small animals

    NASA Astrophysics Data System (ADS)

    Beekman, Freek J.; Vastenhouw, Brendan

    2004-10-01

    Exciting new SPECT systems can be created by combining pinhole imaging with compact high-resolution gamma cameras. These new systems are able to solve the problem of the limited sensitivity-resolution trade-off that hampers contemporary small animal SPECT. The design presented here (U-SPECT-III) uses a set of detectors placed in a polygonal configuration and a cylindrical collimator that contains 135 pinholes arranged in nine rings. Each ring contains 15 gold pinhole apertures that focus on the centre of the cylinder. A non-overlapping projection is acquired via each pinhole. Consequently, when a mouse brain is placed in the central field-of-view, each voxel in the cerebrum can be observed via 130 to 135 different pinholes simultaneously. A method for high-resolution scintillation detection is described that eliminates the depth-of-interaction problem encountered with pinhole cameras, and is expected to provide intrinsic detector resolutions better than 150 µm. By means of simulations U-SPECT-III is compared to a simulated dual pinhole SPECT (DP-SPECT) system with a pixelated array consisting of 2.0 × 2.0 mm NaI crystals. Analytic calculations indicate that the proposed U-SPECT-III system yields an almost four times higher linear and about sixty times higher volumetric system resolution than DP-SPECT, when the systems are compared at matching system sensitivity. In addition, it should be possible to achieve a 15 up to 30 times higher sensitivity with U-SPECT-III when the systems are compared at equal resolution. Simulated images of a digital mouse-brain phantom show much more detail with U-SPECT-III than with DP-SPECT. In a resolution phantom, 0.3 mm diameter cold rods are clearly visible with U-SPECT-III, whereas with DP-SPECT the smallest visible rods are about 0.6-0.8 mm. Furthermore, with U-SPECT-III, the image deformations outside the central plane of reconstruction that hamper conventional pinhole SPECT are strongly suppressed. Simulation results indicate

  10. Potential value of serial cerebral SPECT scanning in the evaluation of psychiatric illness

    SciTech Connect

    Notardonato, H.; Gonzalez-Avilez, A.; Van Heertum, R.L.; O'Connell, R.A.; Yudd, A.P.

    1989-05-01

    Cerebral SPECT imaging has the potential to make an important contribution to clinical psychiatry. Cerebral SPECT scanning, stimulated by the work with PET, is readily available and much less expensive than PET. This paper reports a case demonstrating the potential value of cerebral SPECT scanning with I-123 IMP, specifically in the serial evaluation of a schizophrenic patient with auditory hallucinations. The initial scan revealed focal areas of increased uptake in the caudate nuclei of the basal ganglia, and in the right temporal lobe. After pharmacological treatment with clinical improvement, the follow-up SPECT scan demonstrated significant improvement in the distribution of the radiopharmaceutical.

  11. Perioperative myocardial infarction in patients undergoing myocardial revascularization surgery

    PubMed Central

    Pretto, Pericles; Martins, Gerez Fernandes; Biscaro, Andressa; Kruczan, Dany David; Jessen, Barbara

    2015-01-01

    Introduction Perioperative myocardial infarction adversely affects the prognosis of patients undergoing coronary artery bypass graft and its diagnosis was hampered by numerous difficulties, because the pathophysiology is different from the traditional instability atherosclerotic and the clinical difficulty to be characterized. Objective To identify the frequency of perioperative myocardial infarction and its outcome in patients undergoing coronary artery bypass graft. Methods Retrospective cohort study performed in a tertiary hospital specialized in cardiology, from May 01, 2011 to April 30, 2012, which included all records containing coronary artery bypass graft records. To confirm the diagnosis of perioperative myocardial infarction criteria, the Third Universal Definition of Myocardial Infarction was used. Results We analyzed 116 cases. Perioperative myocardial infarction was diagnosed in 28 patients (24.1%). Number of grafts and use and cardiopulmonary bypass time were associated with this diagnosis and the mean age was significantly higher in this group. The diagnostic criteria elevated troponin I, which was positive in 99.1% of cases regardless of diagnosis of perioperative myocardial infarction. No significant difference was found between length of hospital stay and intensive care unit in patients with and without this complication, however patients with perioperative myocardial infarction progressed with worse left ventricular function and more death cases. Conclusion The frequency of perioperative myocardial infarction found in this study was considered high and as a consequence the same observed average higher troponin I, more cases of worsening left ventricular function and death. PMID:25859867

  12. SPECT study of regional cerebral blood flow in Alzheimer disease

    SciTech Connect

    Bonte, F.J.; Ross, E.D.; Chehabi, H.H.; Devous, M.D. Sr.

    1986-07-01

    A common cause of dementia in late midlife and old age is Alzheimer disease (AD), which affects more than one in 20 individuals over the age of 65. Past studies of regional cerebral blood flow (rCBF) in patients with AD here suggested blood flow abnormalities, but findings have differed. We have studied 37 patients diagnosed as having AD with inhalation and washout of /sup 133/Xe and single-photon emission computed tomography (SPECT), obtaining evidence of abnormal rCBF patterns in 19. Flow reductions were most common in the temporoparietal regions and were occasionally found in the frontal areas. Investigators using positron-emission tomography (PET) have identified similar findings with respect to rCBF and regional oxygen, glucose, and protein metabolism. The SPECT determination of rCBF, which gives information similar to that provided by PET, may assume importance in the diagnosis of AD and in the differential diagnosis of the dementias.

  13. Accuracy of quantitative reconstructions in SPECT/CT imaging

    NASA Astrophysics Data System (ADS)

    Shcherbinin, S.; Celler, A.; Belhocine, T.; van der Werf, R.; Driedger, A.

    2008-09-01

    The goal of this study was to determine the quantitative accuracy of our OSEM-APDI reconstruction method based on SPECT/CT imaging for Tc-99m, In-111, I-123, and I-131 isotopes. Phantom studies were performed on a SPECT/low-dose multislice CT system (Infinia-Hawkeye-4 slice, GE Healthcare) using clinical acquisition protocols. Two radioactive sources were centrally and peripherally placed inside an anthropometric Thorax phantom filled with non-radioactive water. Corrections for attenuation, scatter, collimator blurring and collimator septal penetration were applied and their contribution to the overall accuracy of the reconstruction was evaluated. Reconstruction with the most comprehensive set of corrections resulted in activity estimation with error levels of 3-5% for all the isotopes.

  14. Infective endocarditis detection through SPECT/CT images digital processing

    NASA Astrophysics Data System (ADS)

    Moreno, Albino; Valdés, Raquel; Jiménez, Luis; Vallejo, Enrique; Hernández, Salvador; Soto, Gabriel

    2014-03-01

    Infective endocarditis (IE) is a difficult-to-diagnose pathology, since its manifestation in patients is highly variable. In this work, it was proposed a semiautomatic algorithm based on SPECT images digital processing for the detection of IE using a CT images volume as a spatial reference. The heart/lung rate was calculated using the SPECT images information. There were no statistically significant differences between the heart/lung rates values of a group of patients diagnosed with IE (2.62+/-0.47) and a group of healthy or control subjects (2.84+/-0.68). However, it is necessary to increase the study sample of both the individuals diagnosed with IE and the control group subjects, as well as to improve the images quality.

  15. Dual-headed SPECT for awake animal brain imaging

    SciTech Connect

    Lee, Seung Joon; Weisenberger, A G; McKisson, J; Goddard Jr, James Samuel; Baba, Justin S; Smith, M F

    2011-01-01

    Abstract- Motion-corrected awake animal imaging is needed for normal-state investigations of models of neurological disease and brain activity. The awake animal brain SPECT/CT system, AwakeSPECT at Johns Hopkins University has in the past used a single gamma camera for imaging. Enhancements have been made by adding a pinhole collimator to the second gamma camera at the opposite side which has been previously equipped parallel hole collimator. Geometry calibration was performed using a custom built quality control phantom containing three Co-57 point sources and applied to the tomographic reconstruction code. Hot-rod phantom scans with Tc-99m were performed to test sensitivity and resolution improvements. The reconstruction results show significant resolution and sensitivity improvements.

  16. Dual-headed SPECT for awake animal brain imaging

    SciTech Connect

    S. Lee, B. Kross, D. Weisenberger, J. McKisson, J.S. Goddard, J.S. Baba, M.S. Smith

    2012-02-01

    Motion-corrected awake animal imaging is needed for normal-state investigations of models of neurological disease and brain activity. The awake animal brain SPECT/CT system, AwakeSPECT at Johns Hopkins University has in the past used a single gamma camera for imaging. Enhancements have been made by adding a pinhole collimator to the second gamma camera at the opposite side which has been previously equipped parallel hole collimator. Geometry calibration was performed using a custom built quality control phantom containing three Co-57 point sources and applied to the tomographic reconstruction code. Hot-rod phantom scans with Tc-99m were performed to test sensitivity and resolution improvements. The reconstruction results show significant resolution and sensitivity improvements.

  17. A novel SPECT camera for molecular imaging of the prostate

    NASA Astrophysics Data System (ADS)

    Cebula, Alan; Gilland, David; Su, Li-Ming; Wagenaar, Douglas; Bahadori, Amir

    2011-10-01

    The objective of this work is to develop an improved SPECT camera for dedicated prostate imaging. Complementing the recent advancements in agents for molecular prostate imaging, this device has the potential to assist in distinguishing benign from aggressive cancers, to improve site-specific localization of cancer, to improve accuracy of needle-guided prostate biopsy of cancer sites, and to aid in focal therapy procedures such as cryotherapy and radiation. Theoretical calculations show that the spatial resolution/detection sensitivity of the proposed SPECT camera can rival or exceed 3D PET and further signal-to-noise advantage is attained with the better energy resolution of the CZT modules. Based on photon transport simulation studies, the system has a reconstructed spatial resolution of 4.8 mm with a sensitivity of 0.0001. Reconstruction of a simulated prostate distribution demonstrates the focal imaging capability of the system.

  18. In Vivo Dosimetry Of Patients Submitted To Brain Spect Studies

    NASA Astrophysics Data System (ADS)

    Cruz-Cortés, D.; Azorín, J.; Saucedo, V. M.

    2004-09-01

    Single photon emission computed tomography (SPECT) is a diagnosis technique which allows to visualize a three dimensional distribution of a radioactive material in the brain. This technique is used for evaluating the blood flux and the metabolic function of the diverse brain regions and is very useful to diagnostic several pathologies such as Alzheimer disease, tumors, epilepsy brain hemorrhages, etc. The radioactive tracer used is 99mTc-labeled hexamethylpropyleneamineoxime (99mTc-HMPAO). We present the results obtained from measurements performed in the chest, back and skull of patients submitted to brain SPECT studies during two hours using home-made LiF:Mg,Cu,P+PTFE thermoluminescent dosimeters. Results obtained showed that the dose received by the patients during two hours are lower than 0.3 mGy.

  19. High-order total variation minimization for interior SPECT

    NASA Astrophysics Data System (ADS)

    Yang, Jiansheng; Yu, Hengyong; Jiang, Ming; Wang, Ge

    2012-01-01

    Recently, we developed an approach for solving the computed tomography (CT) interior problem based on the high-order TV (HOT) minimization, assuming that a region-of-interest (ROI) is piecewise polynomial. In this paper, we generalize this finding from the CT field to the single-photon emission computed tomography (SPECT) field, and prove that if an ROI is piecewise polynomial, then the ROI can be uniquely reconstructed from the SPECT projection data associated with the ROI through the HOT minimization. Also, we propose a new formulation of HOT, which has an explicit formula for any n-order piecewise polynomial function, while the original formulation has no explicit formula for n ⩾ 2. Finally, we verify our theoretical results in numerical simulation, and discuss relevant issues.

  20. Myocardial perfusion and adrenergic innervation in patients with RBBB and LAfB: the effect of altering the activation sequence with right ventricular apical pacing.

    PubMed

    Simantirakis, Emmanuel N; Prassopoulos, Vasilios K; Marketou, Maria E; Chrysostomakis, Stavros I; Koukouraki, Sophia I; Lekakis, John P; Karkavitsas, Nikolaos S; Vardas, Panos E

    2003-05-01

    The aim of this study was to investigate myocardial perfusion and adrenergic innervation in patients with intraventricular conduction disturbances and to detect any changes caused by alteration of the ventricular activation sequence as a result of right ventricular apical pacing. We studied 15 patients with right bundle branch block (RBBB) and left anterior fascicular block (LAFB), while 15 healthy individuals served as controls. All patients underwent planar and single-photon emission computed tomography (SPECT) myocardial imaging after intravenous infusion of 5mCi 123I-metaiodobenzylguanidine (123I-MIBG) and a SPECT thallium201 myocardial perfusion study before and 3 months after pacemaker implantation. The heart to mediastinum ratio was calculated during the 123I-MIBG study in order to assess the global cardiac sympathetic activity and was significantly smaller in patients than in controls (P < 0.001). Patients with RBBB and LAFB revealed regional adrenergic innervation defects, mostly in the inferior and posterior walls. After a medium-term pacing period, a redistribution of 123I-MIBG uptake was detected, with aggravation of adrenergic innervation defects in the apical and posterior walls and amelioration in septal and anterior walls. Five patients showed perfusion defects that remained unchanged after pacing. Two others displayed mild myocardial perfusion defects that did not exist before pacing. In conclusion, patients with RBBB and LAFB reveal global and regional disturbances of myocardial adrenergic innervation, which shows redistribution as a result of the altered propagation of the ventricular electrical activation. To a smaller degree these patients reveal myocardial perfusion disturbances in which pacing has a limited medium-term effect.

  1. SVD-based evaluation of multiplexing in multipinhole SPECT systems.

    PubMed

    Jorgensen, Aaron K; Zeng, Gengsheng L

    2008-01-01

    Multipinhole SPECT system design is largely a trial-and-error process. General principles can give system designers a general idea of how a system with certain characteristics will perform. However, the specific performance of any particular system is unknown before the system is tested. The development of an objective evaluation method that is not based on experimentation would facilitate the optimization of multipinhole systems. We derive a figure of merit for prediction of SPECT system performance based on the entire singular value spectrum of the system. This figure of merit contains significantly more information than the condition number of the system, and is therefore more revealing of system performance. This figure is then compared with simulated results of several SPECT systems and is shown to correlate well to the results of the simulations. The proposed figure of merit is useful for predicting system performance, but additional steps could be taken to improve its accuracy and applicability. The limits of the proposed method are discussed, and possible improvements to it are proposed.

  2. Physiological imaging with PET and SPECT in Dementia

    SciTech Connect

    Jagust, W.J. . Dept. of Neurology Lawrence Berkeley Lab., CA )

    1989-10-01

    Dementia is a medical problem of increasingly obvious importance. The most common cause of dementia, Alzheimer's disease (AD) accounts for at least 50% of all cases of dementia, with multi-infarct dementia the next most common cause of the syndrome. While the accuracy of diagnosis of AD may range from 80 to 90%, there is currently no laboratory test to confirm the diagnosis. Functional imaging techniques such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) offer diagnostic advantages since brain function is unequivocally disturbed in all dementing illnesses. Both PET and SPECT have been utilized in the study of dementia. While both techniques rely on principles of emission tomography to produce three dimensional maps of injected radiotracers, the differences between positron and single photon emission have important consequences for the practical applications of the two procedures. This briefly reviews the technical differences between PET and SPECT, and discusses how both techniques have been used in our laboratory to elucidate the pathophysiology of dementia. 32 refs., 2 figs.

  3. Anatomy guided automated SPECT renal seed point estimation

    NASA Astrophysics Data System (ADS)

    Dwivedi, Shekhar; Kumar, Sailendra

    2010-04-01

    Quantification of SPECT(Single Photon Emission Computed Tomography) images can be more accurate if correct segmentation of region of interest (ROI) is achieved. Segmenting ROI from SPECT images is challenging due to poor image resolution. SPECT is utilized to study the kidney function, though the challenge involved is to accurately locate the kidneys and bladder for analysis. This paper presents an automated method for generating seed point location of both kidneys using anatomical location of kidneys and bladder. The motivation for this work is based on the premise that the anatomical location of the bladder relative to the kidneys will not differ much. A model is generated based on manual segmentation of the bladder and both the kidneys on 10 patient datasets (including sum and max images). Centroid is estimated for manually segmented bladder and kidneys. Relatively easier bladder segmentation is followed by feeding bladder centroid coordinates into the model to generate seed point for kidneys. Percentage error observed in centroid coordinates of organs from ground truth to estimated values from our approach are acceptable. Percentage error of approximately 1%, 6% and 2% is observed in X coordinates and approximately 2%, 5% and 8% is observed in Y coordinates of bladder, left kidney and right kidney respectively. Using a regression model and the location of the bladder, the ROI generation for kidneys is facilitated. The model based seed point estimation will enhance the robustness of kidney ROI estimation for noisy cases.

  4. Diurnal variations in myocardial metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The heart is challenged by a plethora of extracellular stimuli over the course of a normal day, each of which distinctly influences myocardial contractile function. It is therefore not surprising that myocardial metabolism also oscillates in a time-of-day dependent manner. What is becoming increasin...

  5. Myocardial revascularisation after acute myocardial infarction.

    PubMed

    Bana, A; Yadava, O P; Ghadiok, R; Selot, N

    1999-05-15

    One hundred and twenty-three patients had coronary artery bypass grafting (CABG) within 30 days of acute myocardial infarction (AMI) from May 1992 to November 1997. Commonest infarct was anterior transmural (61.8%) and commonest indication of surgery was post-infarct persistent or recurrent angina (69.1%). Ten patients were operated within 48 h and 36 between 48 h to 2 weeks of having MI. Out of these, nine patients were having infarct extension and cardiogenic shock at the time of surgery. Pre-operatively fourteen patients were on inotropes of which six also had intra-aortic balloon pump (IABP) support. All patients had complete revascularisation with 3.8+/-1.2 distal anastomoses per patient. By multivariate analysis, we found that independent predictors of post-operative morbidity [inotropes >48 h, use of IABP, ventilation >24 h, ICU stay >5 days] and complications [re-exploration, arrhythmias, pulmonary complications, wound infection, cerebrovascular accident (CVA)] were left ventricular ejection fraction (LVEF) <30%, Q-wave MI, surgery <48 h after AMI, presence of pre-operative cardiogenic shock and age >60 years (P < or = 0.01). Mortality at 30 days was 3.3%. LVEF <30%, Q-wave MI, surgery <48 h after AMI, presence of pre-operative cardiogenic shock and age >60 years were found to be independent predictors of 30 days mortality (P < or = 0.01). Ninety patients were followed up for a mean duration of 33 months (1 to 65 months). There were three late deaths and five patients developed recurrence of angina. To conclude, CABG can be carried out with low risk following AMI in stable patients for post-infarct angina. Patients who undergo urgent or emergent surgery and who have pre-operative cardiogenic shock, IABP, poor left ventricular functions, age >60 years and Q-wave MI are at increased risk.

  6. Prevalence and risk factors accounting for true silent myocardial ischemia: a pilot case-control study comparing type 2 diabetic with non-diabetic control subjects

    PubMed Central

    2011-01-01

    Background Given the elevated risk of cardiovascular events and the higher prevalence of silent coronary artery disease (CAD) in diabetic versus non-diabetic patients, the need to screen asymptomatic diabetic patients for CAD assumes increasing importante. The aims of the study were to assess prospectively the prevalence and risk factor predictors of true silent myocardial ischemia (myocardial perfusion defects in the absence of both angina and ST-segment depression) in asymptomatic type 2 diabetic patients. Methods Stress myocardial perfusion gated SPECT (Single Photon Emission Computed Tomography) was carried out in 41 type 2 diabetic patients without history of cardiovascular disease (CVD) and 41 nondiabetic patients matched by age and gender. Results There were no significant differences between the two groups regarding either the classic CVD risk factors or left ventricular function. True silent ischemia was detected in 21.9% of diabetic patients but only in 2.4% of controls (p < 0.01). The presence of myocardial perfusion defects was independently associated with male gender and the presence of diabetic retinopathy (DR). The probability of having myocardial perfusion defects in an asymptomatic diabetic patient with DR in comparison with diabetic patients without DR was 11.7 [IC95%: 3.7-37]. Conclusions True silent myocardial ischemia is a high prevalent condition in asymptomatic type 2 diabetic patients. Male gender and the presence of DR are the risk factors related to its development. PMID:21255408

  7. The frequency of late reversibility in SPECT thallium-201 stress-redistribution studies.

    PubMed

    Yang, L D; Berman, D S; Kiat, H; Resser, K J; Friedman, J D; Rozanski, A; Maddahi, J

    1990-02-01

    The frequency of thallium-201 late reversibility was prospectively assessed in 118 patients who had stress-redistribution thallium-201 studies by single photon emission computed tomography (SPECT). These patients demonstrated two or more segments with nonreversible defects at 4 h imaging and underwent late (18 to 72 h) redistribution imaging. When the criterion of late reversibility was defined as greater than or equal to 1 segment with 4 h nonreversible defects demonstrating late reversibility, it was present in 62 (53%) of the 118 patients and 164 (22%) of 762 segments. When the criterion of greater than or equal to 2 segments was used, late reversibility was found in 41 (35%) of 118 patients and 143 (19%) of 762 segments. The frequency of detected reversible defects increased from 27% at 4 h imaging to 43% at combined 4 h and late imaging (p less than 0.0001) and was significantly increased in all myocardial regions. In comparing the efficacy of initial and late imaging alone versus performing initial, 4 h and late imaging for the identification of reversible defects, 421 (94%) of 449 segments classified as reversible by the latter protocol were also correctly identified by the early and late imaging only approach, with the remaining 6% (28 segments) comprising those segments demonstrating the reversible pattern at 4 h and the nonreversible pattern at late imaging. No major differences were noted with respect to clinical, stress electrocardiographic and scintigraphic variables between the 118 patients undergoing late imaging and 98 additional randomly selected patients with two or more nonreversible defects at 4 h, who did not have late imaging.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Comparison of heterogeneity quantification algorithms for brain SPECT perfusion images

    PubMed Central

    2012-01-01

    Background Several algorithms from the literature were compared with the original random walk (RW) algorithm for brain perfusion heterogeneity quantification purposes. Algorithms are compared on a set of 210 brain single photon emission computed tomography (SPECT) simulations and 40 patient exams. Methods Five algorithms were tested on numerical phantoms. The numerical anthropomorphic Zubal head phantom was used to generate 42 (6 × 7) different brain SPECT simulations. Seven diffuse cortical heterogeneity levels were simulated with an adjustable Gaussian noise function and six focal perfusion defect levels with temporoparietal (TP) defects. The phantoms were successively projected and smoothed with Gaussian kernel with full width at half maximum (FWHM = 5 mm), and Poisson noise was added to the 64 projections. For each simulation, 5 Poisson noise realizations were performed yielding a total of 210 datasets. The SPECT images were reconstructed using filtered black projection (Hamming filter: α = 0.5). The five algorithms or measures tested were the following: the coefficient of variation, the entropy and local entropy, fractal dimension (FD) (box counting and Fourier power spectrum methods), the gray-level co-occurrence matrix (GLCM), and the new RW. The heterogeneity discrimination power was obtained with a linear regression for each algorithm. This regression line is a mean function of the measure of heterogeneity compared to the different diffuse heterogeneity and focal defect levels generated in the phantoms. A greater slope denotes a larger separation between the levels of diffuse heterogeneity. The five algorithms were computed using 40 99mTc-ethyl-cysteinate-dimer (ECD) SPECT images of patients referred for memory impairment. Scans were blindly ranked by two physicians according to the level of heterogeneity, and a consensus was obtained. The rankings obtained by the algorithms were compared with the physicians' consensus ranking. Results The GLCM method

  9. A parallel Monte Carlo code for planar and SPECT imaging: implementation, verification and applications in (131)I SPECT.

    PubMed

    Dewaraja, Yuni K; Ljungberg, Michael; Majumdar, Amitava; Bose, Abhijit; Koral, Kenneth F

    2002-02-01

    This paper reports the implementation of the SIMIND Monte Carlo code on an IBM SP2 distributed memory parallel computer. Basic aspects of running Monte Carlo particle transport calculations on parallel architectures are described. Our parallelization is based on equally partitioning photons among the processors and uses the Message Passing Interface (MPI) library for interprocessor communication and the Scalable Parallel Random Number Generator (SPRNG) to generate uncorrelated random number streams. These parallelization techniques are also applicable to other distributed memory architectures. A linear increase in computing speed with the number of processors is demonstrated for up to 32 processors. This speed-up is especially significant in Single Photon Emission Computed Tomography (SPECT) simulations involving higher energy photon emitters, where explicit modeling of the phantom and collimator is required. For (131)I, the accuracy of the parallel code is demonstrated by comparing simulated and experimental SPECT images from a heart/thorax phantom. Clinically realistic SPECT simulations using the voxel-man phantom are carried out to assess scatter and attenuation correction.

  10. NOTE: Implementation of angular response function modeling in SPECT simulations with GATE

    NASA Astrophysics Data System (ADS)

    Descourt, P.; Carlier, T.; Du, Y.; Song, X.; Buvat, I.; Frey, E. C.; Bardies, M.; Tsui, B. M. W.; Visvikis, D.

    2010-05-01

    Among Monte Carlo simulation codes in medical imaging, the GATE simulation platform is widely used today given its flexibility and accuracy, despite long run times, which in SPECT simulations are mostly spent in tracking photons through the collimators. In this work, a tabulated model of the collimator/detector response was implemented within the GATE framework to significantly reduce the simulation times in SPECT. This implementation uses the angular response function (ARF) model. The performance of the implemented ARF approach has been compared to standard SPECT GATE simulations in terms of the ARF tables' accuracy, overall SPECT system performance and run times. Considering the simulation of the Siemens Symbia T SPECT system using high-energy collimators, differences of less than 1% were measured between the ARF-based and the standard GATE-based simulations, while considering the same noise level in the projections, acceleration factors of up to 180 were obtained when simulating a planar 364 keV source seen with the same SPECT system. The ARF-based and the standard GATE simulation results also agreed very well when considering a four-head SPECT simulation of a realistic Jaszczak phantom filled with iodine-131, with a resulting acceleration factor of 100. In conclusion, the implementation of an ARF-based model of collimator/detector response for SPECT simulations within GATE significantly reduces the simulation run times without compromising accuracy.

  11. GATE simulation of a new design of pinhole SPECT system for small animal brain imaging

    NASA Astrophysics Data System (ADS)

    Uzun Ozsahin, D.; Bläckberg, L.; El Fakhri, G.; Sabet, H.

    2017-01-01

    Small animal SPECT imaging has gained an increased interest over the past decade since it is an excellent tool for developing new drugs and tracers. Therefore, there is a huge effort on the development of cost-effective SPECT detectors with high capabilities. The aim of this study is to simulate the performance characteristics of new designs for a cost effective, stationary SPECT system dedicated to small animal imaging with a focus on mice brain. The conceptual design of this SPECT system platform, Stationary Small Animal SSA-SPECT, is to use many pixelated CsI:TI detector modules with 0.4 mm × 0.4 mm pixels in order to achieve excellent intrinsic detector resolution where each module is backed by a single pinhole collimator with 0.3 mm hole diameter. In this work, we present the simulation results of four variations of the SSA-SPECT platform where the number of detector modules and FOV size is varied while keeping the detector size and collimator hole size constant. Using the NEMA NU-4 protocol, we performed spatial resolution, sensitivity, image quality simulations followed by a Derenzo-like phantom evaluation. The results suggest that all four SSA-SPECT systems can provide better than 0.063% system sensitivity and < 1.5 mm FWHM spatial resolution without resolution recovery or other correction techniques. Specifically, SSA-SPECT-1 showed a system sensitivity of 0.09% in combination with 1.1 mm FWHM spatial resolution.

  12. A comparison of MR-based attenuation correction in PET versus SPECT

    NASA Astrophysics Data System (ADS)

    Marshall, H. R.; Stodilka, R. Z.; Theberge, J.; Sabondjian, E.; Legros, A.; Deans, L.; Sykes, J. M.; Thompson, R. T.; Prato, F. S.

    2011-07-01

    Attenuation correction (AC) is a critical step in the reconstruction of quantitatively accurate positron emission tomography (PET) and single photon emission computed tomography (SPECT) images. Several groups have proposed magnetic resonance (MR)-based AC algorithms for application in hybrid PET/MR systems. However, none of these approaches have been tested on SPECT data. Since SPECT/MR systems are under active development, it is important to ascertain whether MR-based AC algorithms validated for PET can be applied to SPECT. To investigate this issue, two imaging experiments were performed: one with an anthropomorphic chest phantom and one with two groups of canines. Both groups of canines were imaged from neck to abdomen, one with PET/CT and MR (n = 4) and the other with SPECT/CT and MR (n = 4), while the phantom was imaged with all modalities. The quality of the nuclear medicine reconstructions using MR-based attenuation maps was compared between PET and SPECT on global and local scales. In addition, the sensitivity of these reconstructions to variations in the attenuation map was ascertained. On both scales, it was found that the SPECT reconstructions were of higher fidelity than the PET reconstructions. Further, they were less sensitive to changes to the MR-based attenuation map. Thus, MR-based AC algorithms that have been designed for PET/MR can be expected to demonstrate improved performance when used for SPECT/MR.

  13. Implementation of Angular Response Function modeling in SPECT simulations with GATE

    PubMed Central

    Descourt, P; Carlier, T; Du, Y; Song, X; Buvat, I; Frey, E C; Bardies, M; Tsui, B M W; Visvikis, D

    2010-01-01

    Among Monte Carlo simulation codes in medical imaging, the GATE simulation platform is widely used today given its flexibility and accuracy, despite long run times, which in SPECT simulations, is mostly spent in tracking photons through the collimators. In this work, a tabulated model of the collimator/detector response was implemented within the GATE framework to significantly reduce the simulation times in SPECT. This implementation uses the Angular Response Function (ARF) model. The performance of the implemented ARF approach has been compared to standard SPECT GATE simulations in terms of the ARF tables' accuracy, overall SPECT system performance and run times. Considering the simulation of the Siemens Symbia T SPECT system using high-energy collimators, differences of less than 1% were measured between the ARF based and the standard GATE based simulations, while considering the same noise level in the projections, acceleration factors of up to 180 were obtained when simulating a planar 364keV source seen with the same SPECT system. The ARF-based and the standard GATE simulation results also agreed very well when considering a 4-head SPECT simulation of a realistic Jaszczak phantom filled with iodine-131, with a resulting acceleration factor of 100. In conclusion, the implementation of an ARF-based model of collimator/detector response for SPECT simulations within GATE significantly reduces the simulation run times without compromising accuracy. PMID:20393239

  14. Implementation of angular response function modeling in SPECT simulations with GATE.

    PubMed

    Descourt, P; Carlier, T; Du, Y; Song, X; Buvat, I; Frey, E C; Bardies, M; Tsui, B M W; Visvikis, D

    2010-05-07

    Among Monte Carlo simulation codes in medical imaging, the GATE simulation platform is widely used today given its flexibility and accuracy, despite long run times, which in SPECT simulations are mostly spent in tracking photons through the collimators. In this work, a tabulated model of the collimator/detector response was implemented within the GATE framework to significantly reduce the simulation times in SPECT. This implementation uses the angular response function (ARF) model. The performance of the implemented ARF approach has been compared to standard SPECT GATE simulations in terms of the ARF tables' accuracy, overall SPECT system performance and run times. Considering the simulation of the Siemens Symbia T SPECT system using high-energy collimators, differences of less than 1% were measured between the ARF-based and the standard GATE-based simulations, while considering the same noise level in the projections, acceleration factors of up to 180 were obtained when simulating a planar 364 keV source seen with the same SPECT system. The ARF-based and the standard GATE simulation results also agreed very well when considering a four-head SPECT simulation of a realistic Jaszczak phantom filled with iodine-131, with a resulting acceleration factor of 100. In conclusion, the implementation of an ARF-based model of collimator/detector response for SPECT simulations within GATE significantly reduces the simulation run times without compromising accuracy.

  15. SPECT assay of radiolabeled monoclonal antibodies. Final performance report, March 1992--November 1995

    SciTech Connect

    Jaszczak, R.J.

    1995-12-01

    Research is described in the following areas: development and evaluation quantitatively of reconstruction algorithms with improved compensations for attenuation, scatter, and geometric collimator response; evaluation of single photon emission computed tomography (SPECT) quantification of iodine 123 and astatine 211; and the development and evaluation of SPECT pinhole imaging for low and medium energy photons.

  16. Distinction between hemangioma of the liver and hepatocellular carcinoma: value of labeled RBC-SPECT scanning

    SciTech Connect

    Kudo, M.; Ikekubo, K.; Yamamoto, K.; Ibuki, Y.; Hino, M.; Tomita, S.; Komori, H.; Orino, A.; Todo, A.

    1989-05-01

    The role of adding single-photon emission CT (SPECT) to /sup 99m/Tc-labeled RBC imaging of the liver was evaluated by specifically focusing on the differentiation between hepatic hemangioma and hepatocellular carcinoma. Planar RBC imaging followed by blood-pool SPECT scanning was performed in 77 patients with a total of 108 hemangiomas and in 29 patients with a total of 46 hepatocellular carcinomas. All lesions were smaller than 5 cm in diameter. Thirty-six (33%) of 108 hemangiomas were detected by planar delayed RBC imaging, whereas 63 (58%) were detected by the delayed RBC-SPECT scan. The smallest hemangioma shown by delayed RBC-SPECT scanning was 1.4 cm in diameter, compared with 1.7 cm by planar RBC scanning. When confined to nodules larger than 1.4 cm in diameter, 42% of hemangiomas (36/85) were detected by planar delayed RBC imaging, whereas 74% (63/85) were detected by delayed RBC-SPECT. Increase in sensitivity was noted in nodules 2.1-4.0 cm in diameter. No hepatocellular carcinomas were shown by delayed RBC planar or SPECT scans. We concluded that with the addition of SPECT, the sensitivity of delayed RBC scans in the detection of small hemangiomas is considerably improved. Delayed RBC-SPECT scanning can be used to distinguish hemangioma from hepatocellular carcinoma.

  17. SPECT-OPT multimodal imaging enables accurate evaluation of radiotracers for β-cell mass assessments

    PubMed Central

    Eter, Wael A.; Parween, Saba; Joosten, Lieke; Frielink, Cathelijne; Eriksson, Maria; Brom, Maarten; Ahlgren, Ulf; Gotthardt, Martin

    2016-01-01

    Single Photon Emission Computed Tomography (SPECT) has become a promising experimental approach to monitor changes in β-cell mass (BCM) during diabetes progression. SPECT imaging of pancreatic islets is most commonly cross-validated by stereological analysis of histological pancreatic sections after insulin staining. Typically, stereological methods do not accurately determine the total β-cell volume, which is inconvenient when correlating total pancreatic tracer uptake with BCM. Alternative methods are therefore warranted to cross-validate β-cell imaging using radiotracers. In this study, we introduce multimodal SPECT - optical projection tomography (OPT) imaging as an accurate approach to cross-validate radionuclide-based imaging of β-cells. Uptake of a promising radiotracer for β-cell imaging by SPECT, 111In-exendin-3, was measured by ex vivo-SPECT and cross evaluated by 3D quantitative OPT imaging as well as with histology within healthy and alloxan-treated Brown Norway rat pancreata. SPECT signal was in excellent linear correlation with OPT data as compared to histology. While histological determination of islet spatial distribution was challenging, SPECT and OPT revealed similar distribution patterns of 111In-exendin-3 and insulin positive β-cell volumes between different pancreatic lobes, both visually and quantitatively. We propose ex vivo SPECT-OPT multimodal imaging as a highly accurate strategy for validating the performance of β-cell radiotracers. PMID:27080529

  18. SPECT-OPT multimodal imaging enables accurate evaluation of radiotracers for β-cell mass assessments.

    PubMed

    Eter, Wael A; Parween, Saba; Joosten, Lieke; Frielink, Cathelijne; Eriksson, Maria; Brom, Maarten; Ahlgren, Ulf; Gotthardt, Martin

    2016-04-15

    Single Photon Emission Computed Tomography (SPECT) has become a promising experimental approach to monitor changes in β-cell mass (BCM) during diabetes progression. SPECT imaging of pancreatic islets is most commonly cross-validated by stereological analysis of histological pancreatic sections after insulin staining. Typically, stereological methods do not accurately determine the total β-cell volume, which is inconvenient when correlating total pancreatic tracer uptake with BCM. Alternative methods are therefore warranted to cross-validate β-cell imaging using radiotracers. In this study, we introduce multimodal SPECT - optical projection tomography (OPT) imaging as an accurate approach to cross-validate radionuclide-based imaging of β-cells. Uptake of a promising radiotracer for β-cell imaging by SPECT, (111)In-exendin-3, was measured by ex vivo-SPECT and cross evaluated by 3D quantitative OPT imaging as well as with histology within healthy and alloxan-treated Brown Norway rat pancreata. SPECT signal was in excellent linear correlation with OPT data as compared to histology. While histological determination of islet spatial distribution was challenging, SPECT and OPT revealed similar distribution patterns of (111)In-exendin-3 and insulin positive β-cell volumes between different pancreatic lobes, both visually and quantitatively. We propose ex vivo SPECT-OPT multimodal imaging as a highly accurate strategy for validating the performance of β-cell radiotracers.

  19. Evaluation of quantitative accuracy in CZT-based pre-clinical SPECT for various isotopes

    NASA Astrophysics Data System (ADS)

    Park, S.-J.; Yu, A. R.; Kim, Y.-s.; Kang, W.-S.; Jin, S. S.; Kim, J.-S.; Son, T. J.; Kim, H.-J.

    2015-05-01

    In vivo pre-clinical single-photon emission computed tomography (SPECT) is a valuable tool for functional small animal imaging, but several physical factors, such as scatter radiation, limit the quantitative accuracy of conventional scintillation crystal-based SPECT. Semiconductor detectors such as CZT overcome these deficiencies through superior energy resolution. To our knowledge, little scientific information exists regarding the accuracy of quantitative analysis in CZT-based pre-clinical SPECT systems for different isotopes. The aim of this study was to assess the quantitative accuracy of CZT-based pre-clinical SPECT for four isotopes: 201Tl, 99mTc, 123I, and 111In. The quantitative accuracy of the CZT-based Triumph X-SPECT (Gamma-Medica Ideas, Northridge, CA, U.S.A.) was compared with that of a conventional SPECT using GATE simulation. Quantitative errors due to the attenuation and scatter effects were evaluated for all four isotopes with energy windows of 5%, 10%, and 20%. A spherical source containing the isotope was placed at the center of the air-or-water-filled mouse-sized cylinder phantom. The CZT-based pre-clinical SPECT was more accurate than the conventional SPECT. For example, in the conventional SPECT with an energy window of 10%, scatter effects degraded quantitative accuracy by up to 11.52%, 5.10%, 2.88%, and 1.84% for 201Tl, 99mTc, 123I, and 111In, respectively. However, with the CZT-based pre-clinical SPECT, the degradations were only 9.67%, 5.45%, 2.36%, and 1.24% for 201Tl, 99mTc, 123I, and 111In, respectively. As the energy window was increased, the quantitative errors increased in both SPECT systems. Additionally, the isotopes with lower energy of photon emissions had greater quantitative error. Our results demonstrated that the CZT-based pre-clinical SPECT had lower overall quantitative errors due to reduced scatter and high detection efficiency. Furthermore, the results of this systematic assessment quantifying the accuracy of these SPECT

  20. A Vector Uniform Cramer-Rao Bound for SPECT System Design

    PubMed Central

    Meng, Ling-Jian; Li, Nan

    2016-01-01

    In this paper, we present the use of modified uniform Cramer-Rao type bounds (MUCRB) for the design of single photon emission tomography (SPECT) systems. The MUCRB is the lowest attainable total variance using any estimator of an unknown vector parameter, whose mean gradient matrix satisfies a given constraint. Since the mean gradient is closely related to local impulse function, the MUCRB approach can be used to evaluate the fundamental tradeoffs between spatial resolution and variance that are achievable with a given SPECT system design. As a possible application, this approach allows one to compare different SPECT system designs based on the optimum average resolution-variance tradeoffs that can be achieved across multiple control-points inside a region-of-interest. The formulation of the MUCRB allows detailed modelling of physical aspects of practical SPECT systems and requests only a modest computation load. It can be used as an analytical performance index for comparing different SPECT system or aperture designs.

  1. Comparative evaluation of MRS and SPECT in prognostication of patients with mild to moderate head injury.

    PubMed

    Dhandapani, Sivashanmugam; Sharma, Anurag; Sharma, Karamchand; Das, Lakshman

    2014-05-01

    Magnetic resonance spectroscopy (MRS) and single-photon emission computed tomography (SPECT) have only been individually studied in patients with head injury. This study aimed to comparatively assess both in patients with mild to moderate head injury. Patients with a Glasgow Coma Scale (GCS) score of 9-14 who underwent MRS and/or SPECT were evaluated in relation to various clinical factors and neurological outcome at 3months. There were 56 SPECT (Tc99m-ethylcysteinate dimer [ECD]) studies and 41 single voxel proton MRS performed in 53 patients, with 41 patients having both. Of the 41 who underwent MRS, 13 had a lower N-acetyl-aspartate/creatine (NAA/Cr) ratio, 14 had a higher choline (Cho)/Cr ratio, 19 were normal, and nine had bilateral MRS abnormalities. Of the 56 who underwent SPECT, 22 and 19 had severe and moderate hypoperfusion, respectively. Among those in Traumatic Coma Data Bank CT scan category 1 and 2, 50% had MRS abnormalities, whereas 64% had SPECT hypoperfusion, suggesting greater incremental validity of SPECT over MRS. In univariate analyses, GCS, moderate/severe hypoperfusion and bilateral SPECT changes were found to have significant association with unfavorable outcome (odds ratio 13.2, 15.9, and 4.4, and p values <0.01, 0.01, and 0.05, respectively). Patients with lower NAA/Cr ratio in MRS had more unfavorable outcomes, however this was not significant. In multivariate analysis employing binary logistic regression, GCS and severe hypoperfusion on SPECT were noted to have significant association with unfavorable outcome, independent of age, CT scan category, and MRS abnormalities (p values=0.02 and 0.04, respectively). To conclude, ECD-SPECT seems to have greater sensitivity, incremental validity and prognostic value than single voxel proton MRS in select patients with head injury, with only severe hypoperfusion in SPECT significantly associated with unfavorable outcome independent of other confounding factors.

  2. Alterations in myocardial thallium-201 distribution in patients with chronic systemic hypertension undergoing single-photon emission computed tomography

    SciTech Connect

    DePuey, E.G.; Guertler-Krawczynska, E.; Perkins, J.V.; Robbins, W.L.; Whelchel, J.D.; Clements, S.D.

    1988-08-01

    To characterize thallium-201 distribution in single-photon emission computed tomography (SPECT) cardiac images and polar bullseye maps, 100 patients with chronic systemic hypertension due to end-stage renal disease were studied and the results compared with those in 35 normotensive control subjects. Thallium-201 SPECT was performed after exercise in all control subjects and 70 hypertensive patients, and after intravenous dipyridamole in 30 patients. A frequent finding in hypertensive patients was a fixed decrease in the normal lateral-to-septal count density ratio in immediate thallium-201 SPECT images (1.02 +/- 0.10 vs 1.17 +/- 0.08 in control subjects, p less than 0.00001) and in 3-hour delayed images (1.02 +/- 0.11 vs 1.11 +/- 0.08 in control subjects, p less than 0.00001). No significant difference in count density ratio was present in patients undergoing treadmill versus diypridamole intervention. In 35 patients the count density ratio was greater than 2.0 standard deviations below the normal mean, creating the false impression of a fixed lateral defect (i.e., myocardial infarction). In 12 patients, myocardial wall thickness was measured at end-diastole by 2-dimensional echocardiography. Wall thickness was increased (greater than 11 mm) in all patients. The mean lateral-to-septal wall thickness ratio was 1.08 +/- 1.11; in no patient was the ratio less than 0.76 to indicate selective septal hypertrophy. The lateral-to-septal wall thickness and lateral-to-septal thallium-201 count density ratios correlated poorly (r = 0.43).

  3. Navigation of a robot-integrated fluorescence laparoscope in preoperative SPECT/CT and intraoperative freehand SPECT imaging data: a phantom study

    NASA Astrophysics Data System (ADS)

    van Oosterom, Matthias Nathanaël; Engelen, Myrthe Adriana; van den Berg, Nynke Sjoerdtje; KleinJan, Gijs Hendrik; van der Poel, Henk Gerrit; Wendler, Thomas; van de Velde, Cornelis Jan Hadde; Navab, Nassir; van Leeuwen, Fijs Willem Bernhard

    2016-08-01

    Robot-assisted laparoscopic surgery is becoming an established technique for prostatectomy and is increasingly being explored for other types of cancer. Linking intraoperative imaging techniques, such as fluorescence guidance, with the three-dimensional insights provided by preoperative imaging remains a challenge. Navigation technologies may provide a solution, especially when directly linked to both the robotic setup and the fluorescence laparoscope. We evaluated the feasibility of such a setup. Preoperative single-photon emission computed tomography/X-ray computed tomography (SPECT/CT) or intraoperative freehand SPECT (fhSPECT) scans were used to navigate an optically tracked robot-integrated fluorescence laparoscope via an augmented reality overlay in the laparoscopic video feed. The navigation accuracy was evaluated in soft tissue phantoms, followed by studies in a human-like torso phantom. Navigation accuracies found for SPECT/CT-based navigation were 2.25 mm (coronal) and 2.08 mm (sagittal). For fhSPECT-based navigation, these were 1.92 mm (coronal) and 2.83 mm (sagittal). All errors remained below the <1-cm detection limit for fluorescence imaging, allowing refinement of the navigation process using fluorescence findings. The phantom experiments performed suggest that SPECT-based navigation of the robot-integrated fluorescence laparoscope is feasible and may aid fluorescence-guided surgery procedures.

  4. Design and performance of a multi-pinhole collimation device for small animal imaging with clinical SPECT and SPECT-CT scanners

    PubMed Central

    DiFilippo, Frank P.

    2008-01-01

    A multi-pinhole collimation device is developed that uses the gamma camera detectors of a clinical SPECT or SPECT-CT scanner to produce high resolution SPECT images. The device consists of a rotating cylindrical collimator having 22 tungsten pinholes with 0.9 mm diameter apertures and an animal bed inside the collimator that moves linearly to provide helical or ordered-subsets axial sampling. CT images also may be acquired on a SPECT-CT scanner for purposes of image co-registration and SPECT attenuation correction. The device is placed on the patient table of the scanner without attaching to the detectors or scanner gantry. The system geometry is calibrated in-place from point source data and is then used during image reconstruction. The SPECT imaging performance of the device is evaluated with test phantom scans. Spatial resolution from reconstructed point source images is measured to be 0.6 mm full width at half maximum or better. Micro-Derenzo phantom images demonstrate the ability to resolve 0.7 mm diameter rod patterns. The axial slabs of a Micro-Defrise phantom are visualized well. Collimator efficiency exceeds 0.05% at the center of the field of view, and images of a uniform phantom show acceptable uniformity and minimal artifact. The overall simplicity and relatively good imaging performance of the device make it an interesting low-cost alternative to dedicated small animal scanners. PMID:18635899

  5. Design and performance of a multi-pinhole collimation device for small animal imaging with clinical SPECT and SPECT CT scanners

    NASA Astrophysics Data System (ADS)

    Di Filippo, Frank P.

    2008-08-01

    A multi-pinhole collimation device is developed that uses the gamma camera detectors of a clinical SPECT or SPECT-CT scanner to produce high-resolution SPECT images. The device consists of a rotating cylindrical collimator having 22 tungsten pinholes with 0.9 mm diameter apertures and an animal bed inside the collimator that moves linearly to provide helical or ordered-subsets axial sampling. CT images also may be acquired on a SPECT-CT scanner for purposes of image co-registration and SPECT attenuation correction. The device is placed on the patient table of the scanner without attaching to the detectors or scanner gantry. The system geometry is calibrated in-place from point source data and is then used during image reconstruction. The SPECT imaging performance of the device is evaluated with test phantom scans. Spatial resolution from reconstructed point source images is measured to be 0.6 mm full width at half maximum or better. Micro-Derenzo phantom images demonstrate the ability to resolve 0.7 mm diameter rod patterns. The axial slabs of a Micro-Defrise phantom are visualized well. Collimator efficiency exceeds 0.05% at the center of the field of view, and images of a uniform phantom show acceptable uniformity and minimal artifact. The overall simplicity and relatively good imaging performance of the device make it an interesting low-cost alternative to dedicated small animal scanners.

  6. Impact of subcortical white matter lesions on dopamine transporter SPECT.

    PubMed

    Funke, Elisabeth; Kupsch, Andreas; Buchert, Ralph; Brenner, Winfried; Plotkin, Michail

    2013-07-01

    Subcortical arteriosclerotic encephalopathy (SAE) can affect the nigrostriatal system and presumably cause vascular parkinsonism (VP). However, in patients with SAE, the differentiation of VP from idiopathic Parkinson's disease (IPS) is challenging. The aim of the present study was to examine the striatal dopamine transporter (DAT) density in patients with parkinsonism and SAE. Fifteen consecutive patients with parkinsonian symptoms displayed SAE, as detected by magnetic resonance imaging (MRI). Fifteen retrospectively chosen, matched patients with diagnosis of IPS without any abnormalities in MRI served as a reference group. DAT SPECT was performed using the tracer ¹²³I-FP-CIT. Scans were acquired on a triple-head SPECT system (Multispect 3, Siemens) and analysed using the investigator-independent BRASS™ software (HERMES). In the SAE group, a DAT deficit was observed in 9/15 patients. In contrast, all patients from the IPS group showed a reduced DAT binding (p = 0.008). The specific binding ratios (BR) of putamen contralateral to the side of the more affected limb versus occipital lobe were in trend higher in patients with SAE versus patients in the IPS-group (p = 0.053). Indices for putaminal asymmetry (p = 0.036) and asymmetry caudate-to-putamen (p = 0.026) as well as the ratio caudate-to-putamen (p = 0.048) were significantly higher in IPS patients having no SAE. DAT deficit was less pronounced in patients with SAE and parkinsonism than in patients with IPS without any abnormalities in the MRI. A potential role of DAT SPECT in the differential diagnosis of VP and IPS requires more assessments within prospective studies.

  7. Impact of reconstruction parameters on quantitative I-131 SPECT

    NASA Astrophysics Data System (ADS)

    van Gils, C. A. J.; Beijst, C.; van Rooij, R.; de Jong, H. W. A. M.

    2016-07-01

    Radioiodine therapy using I-131 is widely used for treatment of thyroid disease or neuroendocrine tumors. Monitoring treatment by accurate dosimetry requires quantitative imaging. The high energy photons however render quantitative SPECT reconstruction challenging, potentially requiring accurate correction for scatter and collimator effects. The goal of this work is to assess the effectiveness of various correction methods on these effects using phantom studies. A SPECT/CT acquisition of the NEMA IEC body phantom was performed. Images were reconstructed using the following parameters: (1) without scatter correction, (2) with triple energy window (TEW) scatter correction and (3) with Monte Carlo-based scatter correction. For modelling the collimator-detector response (CDR), both (a) geometric Gaussian CDRs as well as (b) Monte Carlo simulated CDRs were compared. Quantitative accuracy, contrast to noise ratios and recovery coefficients were calculated, as well as the background variability and the residual count error in the lung insert. The Monte Carlo scatter corrected reconstruction method was shown to be intrinsically quantitative, requiring no experimentally acquired calibration factor. It resulted in a more accurate quantification of the background compartment activity density compared with TEW or no scatter correction. The quantification error relative to a dose calibrator derived measurement was found to be  <1%,-26% and 33%, respectively. The adverse effects of partial volume were significantly smaller with the Monte Carlo simulated CDR correction compared with geometric Gaussian or no CDR modelling. Scatter correction showed a small effect on quantification of small volumes. When using a weighting factor, TEW correction was comparable to Monte Carlo reconstruction in all measured parameters, although this approach is clinically impractical since this factor may be patient dependent. Monte Carlo based scatter correction including accurately simulated CDR

  8. Multipinhole collimator with 20 apertures for a brain SPECT application

    SciTech Connect

    Lee, Tzu-Cheng; Ellin, Justin R.; Shrestha, Uttam; Seo, Youngho; Huang, Qiu; Gullberg, Grant T.

    2014-11-01

    Purpose: Several new technologies for single photon emission computed tomography (SPECT) instrumentation with parallel-hole collimation have been proposed to improve detector sensitivity and signal collection efficiency. Benefits from improved signal efficiency include shorter acquisition times and lower dose requirements. In this paper, the authors show a possibility of over an order of magnitude enhancement in photon detection efficiency (from 7.6 × 10{sup −5} to 1.6 × 10{sup −3}) for dopamine transporter (DaT) imaging of the striatum over the conventional SPECT parallel-hole collimators by use of custom-designed 20 multipinhole (20-MPH) collimators with apertures of 0.75 cm diameter. Methods: Quantifying specific binding ratio (SBR) of {sup 123}I-ioflupane or {sup 123}I-iometopane’s signal at the striatal region is a common brain imaging method to confirm the diagnosis of the Parkinson’s disease. The authors performed imaging of a striatal phantom filled with aqueous solution of I-123 and compared camera recovery ratios of SBR acquired between low-energy high-resolution (LEHR) parallel-hole collimators and 20-MPH collimators. Results: With only two-thirds of total acquisition time (20 min against 30 min), a comparable camera recovery ratio of SBR was achieved using 20-MPH collimators in comparison to that from the LEHR collimator study. Conclusions: Their systematic analyses showed that the 20-MPH collimator could be a promising alternative for the DaT SPECT imaging for brain over the traditional LEHR collimator, which could give both shorter scan time and improved diagnostic accuracy.

  9. High Sensitivity SPECT for Small Animals and Plants

    SciTech Connect

    Mitchell, Gregory S.

    2015-02-28

    Imaging systems using single gamma-ray emitting radioisotopes typically implement collimators in order to form the images. However, a tradeoff in sensitivity is inherent in the use of collimators, and modern preclinical single-photon emission computed tomography (SPECT) systems detect a very small fraction of emitted gamma-rays (<0.3%). We have built a collimator-less system, which can reach sensitivity of 40% for 99mTc imaging, while still producing images of sufficient spatial resolution for certain applications in thin objects such as mice, small plants, and well plates used for in vitro experiments.

  10. Comparison of exercise radionuclide angiography with thallium SPECT imaging for detection of significant narrowing of the left circumflex coronary artery

    SciTech Connect

    Dilsizian, V.; Perrone-Filardi, P.; Cannon, R.O. 3d.; Freedman, N.M.; Bacharach, S.L.; Bonow, R.O. )

    1991-08-01

    Although quantitation of exercise thallium tomograms has enhanced the noninvasive diagnosis and localization of coronary artery disease, the detection of stenosis of the left circumflex coronary artery remains suboptimal. Because posterolateral regional wall motion during exercise is well assessed by radionuclide angiography, this study determined whether regional dysfunction of the posterolateral wall during exercise radionuclide angiography is more sensitive in identifying left circumflex disease than thallium perfusion abnormalities assessed by single-photon emission computed tomography (SPECT). One hundred ten consecutive patients with CAD were studied, of whom 70 had a significant stenosis of the left circumflex coronary artery or a major obtuse marginal branch. Both regional function and segmental thallium activity of the posterolateral wall were assessed using visual and quantitative analysis. Left ventricular regional function was assessed objectively by dividing the left ventricular region of interest into 20 sectors; the 8 sectors corresponding to the posterolateral free wall were used to assess function in the left circumflex artery distribution. Similarly, using circumferential profile analysis of short-axis thallium tomograms, left ventricular myocardial activity was subdivided into 64 sectors; the 16 sectors corresponding to the posterolateral region were used to assess thallium perfusion abnormalities in the left circumflex artery territory. Qualitative posterolateral wall motion analysis detected 76% of patients with left circumflex coronary artery stenosis, with a specificity of 83%, compared with only 44% by qualitative thallium tomography (p less than 0.001) and a specificity of 92%.

  11. Monte Carlo simulation of PET and SPECT imaging of {sup 90}Y

    SciTech Connect

    Takahashi, Akihiko Sasaki, Masayuki; Himuro, Kazuhiko; Yamashita, Yasuo; Komiya, Isao; Baba, Shingo

    2015-04-15

    Purpose: Yittrium-90 ({sup 90}Y) is traditionally thought of as a pure beta emitter, and is used in targeted radionuclide therapy, with imaging performed using bremsstrahlung single-photon emission computed tomography (SPECT). However, because {sup 90}Y also emits positrons through internal pair production with a very small branching ratio, positron emission tomography (PET) imaging is also available. Because of the insufficient image quality of {sup 90}Y bremsstrahlung SPECT, PET imaging has been suggested as an alternative. In this paper, the authors present the Monte Carlo-based simulation–reconstruction framework for {sup 90}Y to comprehensively analyze the PET and SPECT imaging techniques and to quantitatively consider the disadvantages associated with them. Methods: Our PET and SPECT simulation modules were developed using Monte Carlo simulation of Electrons and Photons (MCEP), developed by Dr. S. Uehara. PET code (MCEP-PET) generates a sinogram, and reconstructs the tomography image using a time-of-flight ordered subset expectation maximization (TOF-OSEM) algorithm with attenuation compensation. To evaluate MCEP-PET, simulated results of {sup 18}F PET imaging were compared with the experimental results. The results confirmed that MCEP-PET can simulate the experimental results very well. The SPECT code (MCEP-SPECT) models the collimator and NaI detector system, and generates the projection images and projection data. To save the computational time, the authors adopt the prerecorded {sup 90}Y bremsstrahlung photon data calculated by MCEP. The projection data are also reconstructed using the OSEM algorithm. The authors simulated PET and SPECT images of a water phantom containing six hot spheres filled with different concentrations of {sup 90}Y without background activity. The amount of activity was 163 MBq, with an acquisition time of 40 min. Results: The simulated {sup 90}Y-PET image accurately simulated the experimental results. PET image is visually

  12. Wave propagation of myocardial stretch: correlation with myocardial stiffness.

    PubMed

    Pislaru, Cristina; Pellikka, Patricia A; Pislaru, Sorin V

    2014-01-01

    The mechanism of flow propagation during diastole in the left ventricle (LV) has been well described. Little is known about the associated waves propagating along the heart walls. These waves may have a mechanism similar to pulse wave propagation in arteries. The major goal of the study was to evaluate the effect of myocardial stiffness and preload on this wave transmission. Longitudinal late diastolic deformation and wave speed (Vp) of myocardial stretch in the anterior LV wall were measured using sonomicrometry in 16 pigs. Animals with normal and altered myocardial stiffness (acute myocardial infarction) were studied with and without preload alterations. Elastic modulus estimated from Vp (E VP; Moens-Korteweg equation) was compared to incremental elastic modulus obtained from exponential end-diastolic stress-strain relation (E SS). Myocardial distensibility and α- and β-coefficients of stress-strain relations were calculated. Vp was higher at reperfusion compared to baseline (2.6 ± 1.3 vs. 1.3 ± 0.4 m/s; p = 0.005) and best correlated with E SS (r2 = 0.80, p < 0.0001), β-coefficient (r2 = 0.78, p < 0.0001), distensibility (r2 = 0.47, p = 0.005), and wall thickness/diameter ratio (r2 = 0.42, p = 0.009). Elastic moduli (E VP and E SS) were strongly correlated (r2 = 0.83, p < 0.0001). Increasing preload increased Vp and E VP and decreased distensibility. At multivariate analysis, E SS, wall thickness, and end-diastolic and systolic LV pressures were independent predictors of Vp (r2 model = 0.83, p < 0.0001). In conclusion, the main determinants of wave propagation of longitudinal myocardial stretch were myocardial stiffness and LV geometry and pressure. This local wave speed could potentially be measured noninvasively by echocardiography.

  13. Use of bio-informatics assessment schema (BIAS) to improve diagnosis and prognosis of myocardial perfusion data: results from the NHLBI-sponsored women’s ischemia syndrome evaluation (WISE)

    PubMed Central

    Pohost, Gerald M.; Bairey Merz, C. Noel; Shaw, Leslee J.; Sopko, George; Rogers, William J.; Sharaf, Barry L.; Pepine, Carl J.; Thompson, Diane V.; Rayarao, Geetha; Tauxe, Lindsey; Kelsey, Sheryl F.; Biederman, Robert W. W.

    2016-01-01

    Background We introduce an algorithmic approach to optimize diagnostic and prognostic value of gated cardiac single photon emission computed tomography (SPECT) and magnetic resonance (MR) myocardial perfusion imaging (MPI) modalities in women with suspected myocardial ischemia. The novel approach: bio-informatics assessment schema (BIAS) forms a mathematical model utilizing MPI data and cardiac metrics generated by one modality to predict the MPI status of another modality. The model identifies cardiac features that either enhance or mask the image-based evidence of ischemia. For each patient, the BIAS model value is used to set an appropriate threshold for the detection of ischemia. Methods Women (n=130), with symptoms and signs of suspected myocardial ischemia, underwent MPI assessment for regional perfusion defects using two different modalities: gated SPECT and MR. To determine perfusion status, MR data were evaluated qualitatively (MRIQL) and semi-quantitatively (MRISQ) while SPECT data were evaluated using conventional clinical criteria. Evaluators were masked to results of the alternate modality. These MPI status readings were designated “original”. Two regression models designated “BIAS” models were generated to model MPI status obtained with one modality (e.g., MRI) compared with a second modality (e.g., SPECT), but importantly, the BIAS models did not include the primary Original MPI reading of the predicting modality. Instead, the BIAS models included auxiliary measurements like left ventricular chamber volumes and myocardial wall thickness. For each modality, the BIAS model was used to set a progressive threshold for interpretation of MPI status. Women were then followed for 38±14 months for the development of a first major adverse cardiovascular event [MACE: CV death, nonfatal myocardial infarction (MI) or hospitalization for heart failure]. Original and BIAS-augmented perfusion status were compared in their ability to detect coronary artery

  14. Intrinsic Feature Pose Measurement for Awake Animal SPECT Imaging

    SciTech Connect

    Goddard Jr, James Samuel; Baba, Justin S; Lee, Seung Joon; Weisenberger, A G; Stolin, A; McKisson, J; Smith, M F

    2009-01-01

    New developments have been made in optical motion tracking for awake animal imaging that measures 3D position and orientation (pose) for a single photon emission computed tomography (SPECT) imaging system. Ongoing SPECT imaging research has been directed towards head motion measurement for brain studies in awake, unrestrained mice. In contrast to previous results using external markers, this work extracts and tracks intrinsic features from multiple camera images and computes relative pose from the tracked features over time. Motion tracking thus far has been limited to measuring extrinsic features such as retro-reflective markers applied to the mouse s head. While this approach has been proven to be accurate, the additional animal handling required to attach the markers is undesirable. A significant improvement in the procedure is achieved by measuring the pose of the head without extrinsic markers using only the external surface appearance. This approach is currently being developed with initial results presented here. The intrinsic features measurement extracts discrete, sparse natural features from 2D images such as eyes, nose, mouth and other visible structures. Stereo correspondence between features for a camera pair is determined for calculation of 3D positions. These features are also tracked over time to provide continuity for surface model fitting. Experimental results from live images are presented.

  15. Optimizing multi-pinhole SPECT geometries using an analytical model

    NASA Astrophysics Data System (ADS)

    Rentmeester, M. C. M.; van der Have, F.; Beekman, F. J.

    2007-05-01

    State-of-the-art multi-pinhole SPECT devices allow for sub-mm resolution imaging of radio-molecule distributions in small laboratory animals. The optimization of multi-pinhole and detector geometries using simulations based on ray-tracing or Monte Carlo algorithms is time-consuming, particularly because many system parameters need to be varied. As an efficient alternative we develop a continuous analytical model of a pinhole SPECT system with a stationary detector set-up, which we apply to focused imaging of a mouse. The model assumes that the multi-pinhole collimator and the detector both have the shape of a spherical layer, and uses analytical expressions for effective pinhole diameters, sensitivity and spatial resolution. For fixed fields-of-view, a pinhole-diameter adapting feedback loop allows for the comparison of the system resolution of different systems at equal system sensitivity, and vice versa. The model predicts that (i) for optimal resolution or sensitivity the collimator layer with pinholes should be placed as closely as possible around the animal given a fixed detector layer, (ii) with high-resolution detectors a resolution improvement up to 31% can be achieved compared to optimized systems, (iii) high-resolution detectors can be placed close to the collimator without significant resolution losses, (iv) interestingly, systems with a physical pinhole diameter of 0 mm can have an excellent resolution when high-resolution detectors are used.

  16. SPECT in Alzheimer`s disease and the dementias

    SciTech Connect

    Bonte, F.J.

    1991-12-31

    Among 90 patients with a clinical diagnosis of Alzheimer`s disease (AD), two subgroups were identified for special study, including 42 patients who had a history of dementia in one or more first-degree relatives, and 14 who had a diagnosis of early AD. Of the 42 patients with a family history of dementia, 34 out of the 35 patients whose final clinical diagnosis was possible or probable AD had positive SPECT rCBF studies. Studies in the 14 patients thought to have very early AD were positive in 11 cases. This finding suggests that altered cortical physiology, and hence, rCBF, occurs quite early in the course of AD, perhaps before the onset of symptoms. It is possible that Xenon 133 rCBF studies might be used to detect the presence of subclinical AD in a population of individuals at risk to this disorder. Despite the drawbacks of a radionuclide with poor photon energy, Xenon 133, with its low cost and round-the-clock availability, deserves further study. Although the physical characteristics of Xenon 127 might make it preferable as a SPECT tracer, it is still not regularly available, and some instrument systems are not designed to handle its higher photon energies.

  17. Development of PET and SPECT Probes for Glutamate Receptors

    PubMed Central

    Nakayama, Morio

    2015-01-01

    l-Glutamate and its receptors (GluRs) play a key role in excitatory neurotransmission within the mammalian central nervous system (CNS). Impaired regulation of GluRs has also been implicated in various neurological disorders. GluRs are classified into two major groups: ionotropic GluRs (iGluRs), which are ligand-gated ion channels, and metabotropic GluRs (mGluRs), which are coupled to heterotrimeric guanosine nucleotide binding proteins (G-proteins). Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging of GluRs could provide a novel view of CNS function and of a range of brain disorders, potentially leading to the development of new drug therapies. Although no satisfactory imaging agents have yet been developed for iGluRs, several PET ligands for mGluRs have been successfully employed in clinical studies. This paper reviews current progress towards the development of PET and SPECT probes for GluRs. PMID:25874256

  18. Brain SPECT findings of anosognosia in Alzheimer's disease.

    PubMed

    Sedaghat, Fereshteh; Dedousi, Eleni; Baloyannis, Ioannis; Tegos, Thomas; Costa, Vasiliki; Dimitriadis, Athanasios S; Baloyannis, Stavros J

    2010-01-01

    Anosognosia is a common symptom of dementia. The aim of this study was to evaluate the contribution of different regions of the brain to anosognosia in Alzheimer's disease (AD) brains using single photon emission computed tomography (SPECT). Forty-two patients with AD were included in this study. After clinical interviews with the patients and their relatives, the patients were divided into two groups: Anosognosia and No-anosognosia. The patients were studied regarding the severity of dementia. They underwent SPECT with HMPAO and regional cerebral blood flow (rCBF) was measured. Regional CBF significantly differed between Anosognosia and No-anosognosia groups in right prefrontal (P < or = 0.02), right inferior parietal (P < or = 0.00), and right (P < or = 0.01) and left (P < or = 0.01) medial temporal cortex. There was a significant correlation between the severity of dementia and rCBF in medial temporal regions. When comparisons were made between mild and moderate stages separately, the 'right inferior parietal region' was the common region which showed hypoperfusion in both anosognosia subgroups. We conclude that anosognosia may be a reflection of functional impairment in right prefrontal, right frontal and especially right inferior parietal regions in AD.

  19. Adaptive SPECT imaging with crossed-slit apertures

    PubMed Central

    Durko, Heather L.; Furenlid, Lars R.

    2015-01-01

    Preclinical single-photon emission computed tomography (SPECT) is an essential tool for studying the progression, response to treatment, and physiological changes in small animal models of human disease. The wide range of imaging applications is often limited by the static design of many preclinical SPECT systems. We have developed a prototype imaging system that replaces the standard static pinhole aperture with two sets of movable, keel-edged copper-tungsten blades configured as crossed (skewed) slits. These apertures can be positioned independently between the object and detector, producing a continuum of imaging configurations in which the axial and transaxial magnifications are not constrained to be equal. We incorporated a megapixel silicon double-sided strip detector to permit ultrahigh-resolution imaging. We describe the configuration of the adjustable slit aperture imaging system and discuss its application toward adaptive imaging, and reconstruction techniques using an accurate imaging forward model, a novel geometric calibration technique, and a GPU-based ultra-high-resolution reconstruction code. PMID:26190884

  20. SPECT, MRI and cognitive functions in multiple sclerosis.

    PubMed Central

    Pozzilli, C; Passafiume, D; Bernardi, S; Pantano, P; Incoccia, C; Bastianello, S; Bozzao, L; Lenzi, G L; Fieschi, C

    1991-01-01

    Seventeen patients with relapsing remitting multiple sclerosis (MS) and mild physical disability had neuropsychological testing, magnetic resonance imaging (MRI) and single photon emission computerised tomography (SPECT) using technetium 99m (99mTc) hexamethyl-propyleneamine oxime (HMPAO). Performance in verbal fluency, naming and memory testing appeared to be impaired in MS patients compared with 17 age-sex and education matched normal controls. Weighted periventricular and confluent lesion scores and the width of the third ventricle, proved to be the most sensitive MRI measures in differentiating more cognitively impaired patients from those who were relatively unimpaired. Ratios of regional to whole brain activity, measured by SPECT, showed significant reduction in the frontal lobes and in the left temporal lobe of MS patients. A relationship was found between left temporal abnormality in 99mTc-HMPAO uptake and deficit in verbal fluency and verbal memory. Finally, asymmetrical lobar activity indicated a predominant left rather than right temporo-parietal involvement. PMID:2019835

  1. Radiotracers for PET and SPECT studies of neurotransmitter systems

    SciTech Connect

    Fowler, J.S.

    1991-01-01

    The study of neurotransmitter systems is one of the major thrusts in emission tomography today. The current generation of Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) radiotracers examines neurotransmitter properties from a number of different perspectives including their pre and post synaptic sites and the activity of the enzymes which regulate their concentration. Although the dopamine system has been the most extensively investigated, other neurotransmitter systems including the acetylcholine muscarine, serotonin, benzodiazepine, opiate, NMDA and others are also under intensive development. Enzymes involved in the synthesis and regulation of neurotransmitter concentration, for example monoamine oxidase and amino acid decarboxylase has also been probed in vivo. Medical applications range from the study of normal function and the characterization of neurotransmitter activity in neurological and psychiatric diseases and in heart disease and cancer to the study of the binding of therapeutic drugs and substances of abuse. This chapter will provide an overview of the current generation of radiotracers for PET and SPECT studies of neurotransmitter systems including radiotracer design, synthesis localization mechanisms and applications in emission tomography. 60 refs., 1 tab.

  2. Simultaneous reconstruction and segmentation for dynamic SPECT imaging

    NASA Astrophysics Data System (ADS)

    Burger, Martin; Rossmanith, Carolin; Zhang, Xiaoqun

    2016-10-01

    This work deals with the reconstruction of dynamic images that incorporate characteristic dynamics in certain subregions, as arising for the kinetics of many tracers in emission tomography (SPECT, PET). We make use of a basis function approach for the unknown tracer concentration by assuming that the region of interest can be divided into subregions with spatially constant concentration curves. Applying a regularised variational framework reminiscent of the Chan-Vese model for image segmentation we simultaneously reconstruct both the labelling functions of the subregions as well as the subconcentrations within each region. Our particular focus is on applications in SPECT with the Poisson noise model, resulting in a Kullback-Leibler data fidelity in the variational approach. We present a detailed analysis of the proposed variational model and prove existence of minimisers as well as error estimates. The latter apply to a more general class of problems and generalise existing results in literature since we deal with a nonlinear forward operator and a nonquadratic data fidelity. A computational algorithm based on alternating minimisation and splitting techniques is developed for the solution of the problem and tested on appropriately designed synthetic data sets. For those we compare the results to those of standard EM reconstructions and investigate the effects of Poisson noise in the data.

  3. Simultaneous CT and SPECT tomography using CZT detectors

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Simpson, Michael L.; Britton, Jr., Charles L.

    2002-01-01

    A method for simultaneous transmission x-ray computed tomography (CT) and single photon emission tomography (SPECT) comprises the steps of: injecting a subject with a tracer compound tagged with a .gamma.-ray emitting nuclide; directing an x-ray source toward the subject; rotating the x-ray source around the subject; emitting x-rays during the rotating step; rotating a cadmium zinc telluride (CZT) two-sided detector on an opposite side of the subject from the source; simultaneously detecting the position and energy of each pulsed x-ray and each emitted .gamma.-ray captured by the CZT detector; recording data for each position and each energy of each the captured x-ray and .gamma.-ray; and, creating CT and SPECT images from the recorded data. The transmitted energy levels of the x-rays lower are biased lower than energy levels of the .gamma.-rays. The x-ray source is operated in a continuous mode. The method can be implemented at ambient temperatures.

  4. Adaptive SPECT imaging with crossed-slit apertures

    NASA Astrophysics Data System (ADS)

    Durko, Heather L.; Furenlid, Lars R.

    2014-09-01

    Preclinical single-photon emission computed tomography (SPECT) is an essential tool for studying the pro-gression, response to treatment, and physiological changes in small animal models of human disease. The wide range of imaging applications is often limited by the static design of many preclinical SPECT systems. We have developed a prototype imaging system that replaces the standard static pinhole aperture with two sets of movable, keel-edged copper-tungsten blades configured as crossed (skewed) slits. These apertures can be positioned independently between the object and detector, producing a continuum of imaging configurations in which the axial and transaxial magnifications are not constrained to be equal. We incorporated a megapixel silicon double-sided strip detector to permit ultrahigh-resolution imaging. We describe the configuration of the adjustable slit aperture imaging system and discuss its application toward adaptive imaging, and reconstruction techniques using an accurate imaging forward model, a novel geometric calibration technique, and a GPU-based ultra-high-resolution reconstruction code.

  5. Optimization of myocardial function.

    PubMed

    Alpert, N R; Mulieri, L A; Hasenfuss, G; Holubarsch, C

    1993-01-01

    Under normal conditions the cardiac output is designed to meet the metabolic needs of the organism. Thus, the demands imposed on the heart muscle can range from low values at rest to an order of magnitude greater values during exercise. The heart uses a number of strategies to meet the short- and long-term changes in demand. These strategies are of general biological interest and employ similar mechanisms to those responsible for the differences in muscle performance seen between muscle from various species and diverse muscle types within a given animal. This review deals with the heart's utilization of these strategies to meet a broad range of requirements. Tortoise (TM) and rat soleus (RS) muscles are slow, have high economy and develop low power. In contrast (FM) and rat extensor digitorum longus (REDL) are fast, have low economy and have a high power output. These differences are explainable in terms of the characteristics of the myosin head cross-bridge cycle (Cross-bridge tension-time integral: FM/FT = 0.024; REDL/RS = 0.16. Myosin ATPase activity: FM/TM = 15; RDEL/RS = 2.3) and excitation contraction coupling system (time to peak tension: FM/TM = 0.2; REDL/RS = 0.4). Heart muscle employs similar strategies (cross-bridge cycle; excitation contraction coupling) to meet short (catecholamine) and long (hypertrophy secondary to pressure overload or thyrotoxicosis) term changes in demand. In the presence of catecholamine power is increased while economy is decreased. This difference between control (C) and isoproterenol treated hearts (I) is explainable in terms of the contractile and excitation contraction coupling systems (Cross-bridge tension-time integral: I/C = 0.4. Tension independent heat: I/C = 2.0. Tension independent heat rate: I/C = 2.5). A persistent increase in the demand on the heart results in myocardial hypertrophy that is associated with intracellular reorganization. Hyperthyroidism (T) and pressure overload (PO) were used to produce myocardial

  6. A Investigation of Partially Extracted Tracers Used to Determine Myocardial Blood Flow with PET.

    NASA Astrophysics Data System (ADS)

    Christian, Bradley Thomas

    Positron Emission Tomography (PET) provides the ability to quantitatively measure mass-specific blood flow to myocardial tissue (ml/min/g tissue). The partially extracted tracers ^{62}Cu -PTSM and two single photon emission computed tomography(SPECT) agents, teboroxime and sestamibi were studied. The latter two demonstrate the effectiveness of PET as a pharmacological tool for SPECT perfusion tracer development. The characteristics of these tracers were compared to commonly used partially extracted tracers ^{13}rm NH_3 and ^{82} Rb. Positron emitting ^{rm 94m}Tc was used to label ligands originally developed for ^{rm 99m} Tc labeling. ^{rm 94m }Tc can be produced by the bombardment of a natural molybdenum foil with an 11Mev proton beam, via the ^{94}rm Mo(p,n)^ {94m}Tc reaction. The production of ^{rm94m}Tc is accompanied by ^{92}Tc, ^ {94}Tc, ^{95} Tc, ^{rm 95m}Tc, ^{96}Tc, and ^{rm 99m}Tc due to the isotopic mixture of natural Mo. The presence of these radionuclidic impurities increase the radiation dose received by the patient and radio chemist. The elimination of these impurities was achieved by irradiating an isotopically enriched target material, ^{94}rm MoO_3. The ability to reclaim the enriched target is essential due to the high cost of the material. Recovery was accomplished by a solvent extraction technique yielding an activity recovery of 80% and target material recovery of 95%. Preliminary data was measured for the myocardial perfusion tracer ^{62}Cu -PTSM. It was found that the uptake of ^ {62}Cu-PTSM is linear for resting flows but a high degree of variability is observed at stress induced flows. This same result was found in the human studies when compared to ^{13} rm NH_3 measured myocardial perfusion values. The dynamic analysis of multiple tracers in the sequence of protocols: (1) acute canine prep ( ^{11}rm CO, ^{82 }Rb, ^{62}Cu-PTSM, ^{13}rm NH_3, ^{94m,99m}Tc-BATO, H_2 ^{14}rm O, ^{18 }FCH_3), (2) chronic canine prep ( ^{82}rm Rb, ^{13 }NH_3

  7. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    SciTech Connect

    Bowsher, James Giles, William; Yin, Fang-Fang; Yan, Susu; Roper, Justin

    2014-01-15

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  8. CAD of myocardial perfusion

    NASA Astrophysics Data System (ADS)

    Storm, Corstiaan J.; Slump, Cornelis H.

    2007-03-01

    Our purpose is in the automated evaluation of the physiological relevance of lesions in coronary angiograms. We aim to extract as much as possible quantitative information about the physiological condition of the heart from standard angiographic image sequences. Coronary angiography is still the gold standard for evaluating and diagnosing coronary abnormalities as it is able to locate precisely the coronary artery lesions. The dimensions of the stenosis can be assessed nowadays successfully with image processing based Quantitative Coronary Angiography (QCA) techniques. Our purpose is to assess the clinical relevance of the pertinent stenosis. We therefore analyze the myocardial perfusion as revealed in standard angiographic image sequences. In a Region-of-Interest (ROI) on the angiogram (without an overlaying major blood vessel) the contrast is measured as a function of time (the so-called time-density curve). The required hyperemic state of exercise is induced artificially by the injection of a vasodilator drug e.g. papaverine. In order to minimize motion artifacts we select based on the recorded ECG signal end-diastolic images in both a basal and a hyperemic run in the same projection to position the ROI. We present the development of the algorithms together with results of a small study of 20 patients which have been catheterized following the standard protocol.

  9. Myocardial mechanics in cardiomyopathies.

    PubMed

    Modesto, Karen; Sengupta, Partho P

    2014-01-01

    Cardiomyopathies are a heterogeneous group of diseases that can be phenotypically recognized by specific patterns of ventricular morphology and function. The authors summarize recent clinical observations that mechanistically link the multidirectional components of left ventricular (LV) deformation with morphological phenotypes of cardiomyopathies for offering key insights into the transmural heterogeneity of myocardial function. Subendocardial dysfunction predominantly alters LV longitudinal shortening, lengthening and suction performance and contributes to the phenotypic patterns of heart failure (HF) with preserved ejection fraction (EF) seen with hypertrophic and restrictive patterns of cardiomyopathy. On the other hand, a more progressive transmural disease results in reduction of LV circumferential and twist mechanics leading to the phenotypic pattern of dilated cardiomyopathy and the clinical syndrome of HF with reduced (EF). A proper characterization of LV transmural mechanics, energetics, and space-time distributions of pressure and shear stress may allow recognition of early functional changes that can forecast progression or reversal of LV remodeling. Furthermore, the interactions between LV muscle and fluid mechanics hold the promise for offering newer mechanistic insights and tracking impact of novel therapies.

  10. Abnormal myocardial fatty acid metabolism in dilated cardiomyopathy detected by iodine-123 phenylpentadecanoic acid and tomographic imaging

    SciTech Connect

    Ugolini, V.; Hansen, C.L.; Kulkarni, P.V.; Jansen, D.E.; Akers, M.S.; Corbett, J.R.

    1988-11-01

    The radioidinated synthetic fatty acid iodine-123 phenylpentadecanoic acid (IPPA) has proven useful in the identification of regional abnormalities of cardiac metabolism in patients with myocardial ischemia. The present study was performed to test the hypothesis that the myocardial distribution and turnover of fatty acids, assessed noninvasively with IPPA, are altered in patients with cardiomyopathy. Nine normal volunteers and 19 patients with dilated cardiomyopathy of various etiologies underwent cardiac imaging with single-photon emission computed tomography (SPECT) after intravenous injection of IPPA. Apical short-axis and basal short-axis sections were reconstructed and quantitatively analyzed for relative IPPA activity distribution and washout. Patients with congestive cardiomyopathy demonstrated significantly greater heterogeneity of IPPA uptake than normal subjects (maximal percent variation of activity 27 +/- 11 vs 18 +/- 4, p less than 0.01). They also demonstrated a more rapid percent washout rate than control subjects (24 +/- 8 vs 17 +/- 6 for the apical short-axis section, p less than 0.05; 26 +/- 7 vs 18 +/- 5 for the basal short-axis section, p less than 0.01). These abnormalities of fatty acid distribution and turnover were independent of the etiology of the cardiomyopathy. The degree of heterogeneity of IPPA uptake was significantly related to the patients' New York Heart Association functional class (r = 0.64, p less than 0.01). Thus, compared with normal myocardium, the myocardium of patients with congestive cardiomyopathy demonstrates a more heterogeneous distribution of fatty acid uptake, which parallels the clinical severity of the disease. Furthermore, patients with congestive cardiomyopathy demonstrate a more rapid myocardial clearance of the labeled fatty acid, as assessed with SPECT imaging.

  11. The Prognostic Significance of Resting Regional Left Ventricular Function in Patients With Varying Degrees of Myocardial Ischemia

    PubMed Central

    Kilcullen, Niamh M.; Uthamalingam, Shanmugan; Gurm, Gagandeep S; Gregory, Shawn A.; Picard, Michael H.

    2013-01-01

    Background Our aim was to determine whether regional left ventricular (LV) function on a resting transthoracic echo (TTE) provides prognostic information in patients with varying degrees of ischemia on myocardial perfusion imaging. Methods Between 2004 - 2009, we identified 503 patients (mean age 69 (SD 11); 79% male) with reversible ischemia on a myocardial SPECT scan who had a TTE within 30 days. We evaluated the rate of subsequent revascularization and death for all patients. Results Following the SPECT scan and TTE, 246/503(49%) patients underwent revascularization, 64/503 (13%) patients died, 369 (73%) patients had a normal left ventricular ejection fraction (LVEF), 242 (48%) patients had a resting wall motion abnormality (WMA), 21/261 (8%) with no WMA died compared to 43/242 (18%) in patients with a WMA. In patients with a WMA (n = 242) there was no significant difference in mortality when comparing patients with small (< 6 segments) and large (> 6 segments) WMA (P = 0.44). In patients with moderate/severe ischemia, the presence of a resting WMA was associated with a higher mortality rate (18% v 7%; P = 0.005). In a multivariable model, LVEF (< 50%) was associated with a hazard ratio of 2.2 (P = 0.002, 95% CI 1.34 - 3.68) however, WMA and number of abnormal segments did not reach statistical significance. Conclusion A resting wall motion abnormality in patients with moderate/severe ischemia is associated with a higher mortality compared to patients with mild ischemia on myocardial perfusion imaging. Regional left ventricular dysfunction unlike LVEF was not an independent predictor of mortality.

  12. Positron Emission Tomography for the Assessment of Myocardial Viability

    PubMed Central

    2005-01-01

    ventricular (LV) viability is, therefore, critical in deciding whether a patient with coronary artery disease and severe LV dysfunction should undergo revascularization, receive a heart transplant, or remain on medical therapy. Assessment of Left Ventricular Viability Techniques for assessing myocardial viability depend on the measurement of a specific characteristic of viable myocytes such as cell membrane integrity, preserved metabolism, mitochondria integrity, and preserved contractile reserve. In Ontario, single photon emission computed tomography (SPECT) using radioactive 201thallium is the most commonly used technique followed by dobutamine echocardiography. Newer techniques include SPECT using technetium tracers, cardiac magnetic resonance imaging, and PET, the subject of this review. Positron Emission Tomography PET is a nuclear imaging technique based on the metabolism of radioactive analogs of normal substrates such as glucose and water. The radiopharmaceutical used most frequently in myocardial viability assessment is F18 fluorodeoxyglucose (FDG), a glucose analog. The procedure involves the intravenous administration of FDG under controlled glycemic conditions, and imaging with a PET scanner. The images are reconstructed using computer software and analyzed visually or semi-quantitatively, often in conjunction with perfusion images. Dysfunctional but stunned myocardium is characterized by normal perfusion and normal FDG uptake; hibernating myocardium exhibits reduced perfusion and normal/enhanced FDG uptake (perfusion/metabolism mismatch), whereas scar tissue is characterized by reduction in both perfusion and FDG uptake (perfusion/metabolism match). Review Strategy The Medical Advisory Secretariat used a search strategy similar to that used in the 2001 ICES review to identify English language reports of health technology assessments and primary studies in selected databases, published from January 1, 2001 to April 20, 2005. Patients of interest were those with

  13. Myocardial perfusion imaging for detection of silent myocardial ischemia

    SciTech Connect

    Beller, G.A.

    1988-04-21

    Despite the widespread use of the exercise stress test in diagnosing asymptomatic myocardial ischemia, exercise radionuclide imaging remains useful for detecting silent ischemia in numerous patient populations, including those who are totally asymptomatic, those who have chronic stable angina, those who have recovered from an episode of unstable angina or an uncomplicated myocardial infarction, and those who have undergone angioplasty or received thrombolytic therapy. Studies show that thallium scintigraphy is more sensitive than exercise electrocardiography in detecting ischemia, i.e., in part, because perfusion defects occur more frequently than ST depression and before angina in the ischemic cascade. Thallium-201 scintigraphy can be performed to differentiate a true- from a false-positive exercise electrocardiographic test in patients with exercise-induced ST depression and no angina. The development of technetium-labeled isonitriles may improve the accuracy of myocardial perfusion imaging. 11 references.

  14. MYOCARDIAL AKT: THE OMNIPRESENT NEXUS

    PubMed Central

    Sussman, Mark A.; Völkers, Mirko; Fischer, Kimberlee; Bailey, Brandi; Cottage, Christopher T.; Din, Shabana; Gude, Natalie; Avitabile, Daniele; Alvarez, Roberto; Sundararaman, Balaji; Quijada, Pearl; Mason, Matt; Konstandin, Mathias H.; Malhowski, Amy; Cheng, Zhaokang; Khan, Mohsin; McGregor, Michael

    2013-01-01

    One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses. PMID:21742795

  15. How reliable is myocardial imaging in the diagnosis of acute myocardial infarction

    SciTech Connect

    Willerson, J.T.

    1983-01-01

    Myocardial scintigraphic techniques available presently allow a sensitive and relatively specific diagnosis of acute myocardial infarction when they are used correctly, although every technique has definite limitations. Small myocardial infarcts (less than 3 gm.) may be missed, and there are temporal limitations in the usefulness of the scintigraphic techniques. The development of tomographic methodology that may be used with single-photon radionuclide emitters (including technetium and /sup 201/Tl will allow the detection of relatively small abnormalities in myocardial perfusion and regions of myocardial infarction and will help to provide a more objective interpretation of the myocardial scintigrams. The use of overlay techniques allowing simultaneous assessment of myocardial perfusion, infarct-avid imaging, and radionuclide ventriculograms will provide insight into the relevant aspects of the extent of myocardial damage, the relationship of damage to myocardial perfusion, and the functional impact of myocardial infarction on ventricular performance.

  16. Design and performance evaluation of a 20-aperture multipinhole collimator for myocardial perfusion imaging applications

    NASA Astrophysics Data System (ADS)

    Bowen, Jason D.; Huang, Qiu; Ellin, Justin R.; Lee, Tzu-Cheng; Shrestha, Uttam; Gullberg, Grant T.; Seo, Youngho

    2013-10-01

    Single photon emission computed tomography (SPECT) myocardial perfusion imaging remains a critical tool in the diagnosis of coronary artery disease. However, after more than three decades of use, photon detection efficiency remains poor and unchanged. This is due to the continued reliance on parallel-hole collimators first introduced in 1964. These collimators possess poor geometric efficiency. Here we present the performance evaluation results of a newly designed multipinhole collimator with 20 pinhole apertures (PH20) for commercial SPECT systems. Computer simulations and numerical observer studies were used to assess the noise, bias and diagnostic imaging performance of a PH20 collimator in comparison with those of a low energy high resolution (LEHR) parallel-hole collimator. Ray-driven projector/backprojector pairs were used to model SPECT imaging acquisitions, including simulation of noiseless projection data and performing MLEM/OSEM image reconstructions. Poisson noise was added to noiseless projections for realistic projection data. Noise and bias performance were investigated for five mathematical cardiac and torso (MCAT) phantom anatomies imaged at two gantry orbit positions (19.5 and 25.0 cm). PH20 and LEHR images were reconstructed with 300 MLEM iterations and 30 OSEM iterations (ten subsets), respectively. Diagnostic imaging performance was assessed by a receiver operating characteristic (ROC) analysis performed on a single MCAT phantom; however, in this case PH20 images were reconstructed with 75 pixel-based OSEM iterations (four subsets). Four PH20 projection views from two positions of a dual-head camera acquisition and 60 LEHR projections were simulated for all studies. At uniformly-imposed resolution of 12.5 mm, significant improvements in SNR and diagnostic sensitivity (represented by the area under the ROC curve, or AUC) were realized when PH20 collimators are substituted for LEHR parallel-hole collimators. SNR improves by factors of 1

  17. A high-sensitivity small animal SPECT system

    NASA Astrophysics Data System (ADS)

    Mitchell, Gregory S.; Cherry, Simon R.

    2009-03-01

    Medical imaging using single gamma-ray-emitting radionuclides typically makes use of parallel hole collimators or pinholes in order to achieve good spatial resolution. However, a tradeoff in sensitivity is inherent in the use of a collimator, and modern preclinical single photon emission computed tomography (SPECT) systems detect a very small fraction of emitted gamma rays, often less than 0.1%. A system for small animal SPECT imaging which uses no collimators could potentially achieve very high sensitivity—several tens of percent—with reasonably sized detectors. This would allow two significant improvements in preclinical studies: images could be obtained more rapidly, allowing higher throughput for screening applications, or for dynamic processes to be observed with very good time resolution; and images could be obtained with less radioactive tracer, making possible the in vivo imaging of low-capacity receptor systems, aiding research into new tracer compounds, and reducing the cost and easing the regulatory burden of an experiment. Of course, a system with no collimator will not be able to approach the submillimeter spatial resolutions produced by the most advanced pinhole and collimated systems, but a high-sensitivity system with resolution of order 1 cm could nonetheless find significant and new use in the many molecular imaging applications which do not require good spatial resolution—for example, screening applications for drug development or new imaging agents. Rather than as an alternative to high-resolution SPECT systems, the high-sensitivity system is proposed as a radiotracer alternative to optical imaging for small animals. We have developed a prototype system for mouse imaging applications. The scanner consists of two large, thin, closely spaced scintillation detectors. Simulation studies indicate that a FWHM spatial resolution of 7 mm is possible. In an in vivo mouse imaging study using the 99mTc labeled tracer MAG-3, the sensitivity of the

  18. Evaluation of Hospitalized Intractable Epileptic Children with SPECT Scan in Ahvaz, South West of Iran

    PubMed Central

    Ahmadi, Faramarz; Malekian, Arash; Davoodzadeh, Hannaneh; Kabirinia, Hossein

    2016-01-01

    Introduction Seizures are the most frequent neurologic disorder seen in childhood. Epilepsy is a group of disorders that includes an abnormally increased susceptibility to seizures. Aim To examine the effectiveness of SPECT (Single Photon Emission Computerized Tomography) in detecting seizure foci in 21 Iranian children who had medically refractory epilepsy. Materials and Methods Children between 2 to 15 years of age with uncontrolled seizures were investigated using SPECT scan as a standardized protocol. Results In 16 cases (76.2%), likely seizure foci were evident, as were seen in the form of decreased regional blood flow, while in 5 cases (23.8%), SPECT scan results were normal. Left temporal lobe was the most common area which had decreased regional blood flow. Conclusion SPECT scan can potentially be used to investigate children with uncontrolled seizures. PMID:27891419

  19. A SPECT study in internal carotid artery occlusion: Discrepancies between flow image and neurologic deficits

    SciTech Connect

    Moriwaki, H.; Hougaku, H.; Matsuda, I.; Kusunoki, M.; Shirai, J. )

    1989-08-01

    A SPECT (single photon emission computed tomography) study in internal carotid artery (ICA) occlusion was performed in 6 patients. The validity of iodoamphetamine (IMP) SPECT study in the evaluation of cerebral blood flow (CBF) or neurologic function is still controversial. In this study, the authors showed several cases in whom SPECT images of brain were not compatible with their neurologic deficits. In 2 typical cases, a large low-density area was observed in the non-dominant hemisphere in computed tomography (CT) scan, but no apparent motor-sensory deficits in left limbs were present. In these patients, SPECT study also revealed flow reduction in the affected side of the brain. So there was a possibility that an IMP brain image could not always reflect CBF, which maintains neurologic function of the brain.

  20. Clinical application of SPECT in adrenal imaging with iodine-131 6 beta-iodomethyl-19-norcholesterol

    SciTech Connect

    Ishimura, J.; Kawanaka, M.; Fukuchi, M.

    1989-04-01

    Forty-one patients with or without adrenocortical disorders were studied to evaluate the clinical usefulness of SPECT in adrenal imaging with I-131 Adosterol. In the SPECT images from this study, all glands with either normally functioning or hyperfunctioning adrenal cortices could be detected, while those glands with hypofunctioning adrenal cortices could not be detected. Particularly in transaxial and sagittal slices, the adrenal gland was identified posteriorly and was clearly distinguished from the gallbladder. In preliminary results using SPECT by a standard method, uptake in 68 detectable glands ranged from 1.7% to 4.9% in four glands with Cushing's syndrome, from 1.1% to 1.3% in seven glands with primary aldosteronism, and were distributed below 1.0% in the remaining glands with normally functioning adrenal cortices. These data show that it is possible to evaluate the adrenocortical functioning status simply by analyzing the SPECT images of the adrenal.

  1. NMF-Based Analysis of SPECT Brain Images for the Diagnosis of Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Padilla, Pablo; Górriz, Juan-Manuel; Ramírez, Javier; Lang, Elmar; Chaves, Rosa; Segovia, Fermin; Álvarez, Ignacio; Salas-González, Diego; López, Miriam

    This paper offers a computer-aided diagnosis (CAD) technique for early diagnosis of Alzheimer's disease (AD) by means of single photon emission computed tomography (SPECT) image classification. The SPECT database for different patients is analyzed by applying the Fisher discriminant ratio (FDR) and non-negative matrix factorization (NMF) for the selection and extraction of the most significative features of each patient SPECT data, in order to reduce the large dimensionality of the input data and the problem of the curse of dimensionality, extracting score features. The NMF-transformed set of data, with reduced number of features, is classified by means of support vector machines (SVM) classification. The proposed NMF+SVM method yields up to 94% classification accuracy, thus becoming an accurate method for SPECT image classification. For the sake of completeness, comparison between conventional PCA+SVM method and the proposed method is also provided.

  2. Combined SPECT/CT and PET/CT for breast imaging

    NASA Astrophysics Data System (ADS)

    Russo, Paolo; Larobina, Michele; Di Lillo, Francesca; Del Vecchio, Silvana; Mettivier, Giovanni

    2016-02-01

    In the field of nuclear medicine imaging, breast imaging for cancer diagnosis is still mainly based on 2D imaging techniques. Three-dimensional tomographic imaging with whole-body PET or SPECT scanners, when used for imaging the breast, has performance limits in terms of spatial resolution and sensitivity, which can be overcome only with a dedicated instrumentation. However, only few hybrid imaging systems for PET/CT or SPECT/CT dedicated to the breast have been developed in the last decade, providing complementary functional and anatomical information on normal breast tissue and lesions. These systems are still under development and clinical trials on just few patients have been reported; no commercial dedicated breast PET/CT or SPECT/CT is available. This paper reviews combined dedicated breast PET/CT and SPECT/CT scanners described in the recent literature, with focus on their technological aspects.

  3. 99mTc-HMPAO perfusion SPECT/CT in the diagnosis of brain death.

    PubMed

    Derlin, Thorsten; Weiberg, Desiree

    2016-01-01

    This report describes a case of brain death (BD) evaluated by 99mTc-hexamethylpropylene amine oxime (HMPAO) single photon emission tomography/computed tomography (SPECT/CT). A 16-year-old boy with a history of rapid unexpected brain herniation due to pilocytic astrocytoma underwent 99mTc-HMPAO SPECT/CT for evaluation of brain death in the context of organ donation. Flow images demonstrated lack of blood flow to the brain, and delayed images showed absence of demonstrable radionuclide activity within the brain. SPECT/CT confirmed absence of tracer accumulation, and was deemed helpful for evaluation of the brain stem. 99mTc-HMPAO SPECT/CT is a valuable tool enabling imaging-based confirmation of BD.

  4. Morphological aspects of myocardial bridges.

    PubMed

    Lujinović, Almira; Kulenović, Amela; Kapur, Eldan; Gojak, Refet

    2013-11-01

    Although some myocardial bridges can be asymptomatic, their presence often causes coronary disease either through direct compression of the "tunnel" segment or through stimulation and accelerated development of atherosclerosis in the segment proximally to the myocardial bridge. The studied material contained 30 human hearts received from the Department of Anatomy. The hearts were preserved 3 to 5 days in 10% formalin solution. Thereafter, the fatty tissue was removed and arterial blood vessels prepared by careful dissection with special reference to the presence of the myocardial bridges. Length and thickness of the bridges were measured by the precise electronic caliper. The angle between the myocardial bridge fibre axis and other axis of the crossed blood vessel was measured by a goniometer. The presence of the bridges was confirmed in 53.33% of the researched material, most frequently (43.33%) above the anterior interventricular branch. The mean length of the bridges was 14.64 ± 9.03 mm and the mean thickness was 1.23 ± 1.32 mm. Myocardial bridge fibres pass over the descending blood vessel at the angle of 10-90 degrees. The results obtained on a limited sample suggest that the muscular index of myocardial bridge is the highest for bridges located on RIA, but that the difference is not significant in relation to bridges located on other branches. The results obtained suggest that bridges located on other branches, not only those on RIA, could have a great contractive power and, consequently, a great compressive force, which would be exerted on the wall of a crossed blood vessel.

  5. Comparison study of temporal regularization methods for fully 5D reconstruction of cardiac gated dynamic SPECT

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofeng; Yang, Yongyi; King, Michael A.

    2012-09-01

    Temporal regularization plays a critical role in cardiac gated dynamic SPECT reconstruction, of which the goal is to obtain an image sequence from a single acquisition which simultaneously shows both cardiac motion and tracer distribution change over the course of imaging (termed 5D). In our recent work, we explored two different approaches for temporal regularization of the dynamic activities in gated dynamic reconstruction without the use of fast camera rotation: one is the dynamic EM (dEM) approach which is imposed on the temporal trend of the time activity of each voxel, and the other is a B-spline modeling approach in which the time activity is regulated by a set of B-spline basis functions. In this work, we extend the B-spline approach to fully 5D reconstruction and conduct a thorough quantitative comparison with the dEM approach. In the evaluation of the reconstruction results, we apply a number of quantitative measures on two major aspects of the reconstructed dynamic images: (1) the accuracy of the reconstructed activity distribution in the myocardium and (2) the ability of the reconstructed dynamic activities to differentiate perfusion defects from normal myocardial wall uptake. These measures include the mean square error (MSE), bias-variance analysis, accuracy of time-activity curves (TAC), contrast-to-noise ratio of a defect, composite kinetic map of the left ventricle wall and perfusion defect detectability with channelized Hotelling observer. In experiments, we simulated cardiac gated imaging with the NURBS-based cardiac-torso phantom and Tc99m-Teboroxime as the imaging agent, where acquisition with the equivalent of only three full camera rotations was used during the imaging period. The results show that both dEM and B-spline 5D could achieve similar overall accuracy in the myocardium in terms of MSE. However, compared to dEM 5D, the B-spline approach could achieve a more accurate reconstruction of the voxel TACs; in particular, B-spline 5D could

  6. Modeling of the Sensitivity of Fan-Beam Collimation in Spect Imaging

    DTIC Science & Technology

    2007-11-02

    dB by the manufacturer and by projection measurements of a uniform flood source. 2 THEORY 2.1 Ideal collimation Consider a schematic representation of...MODELING OF THE SENSITIVITY OF FAN-BEAM COLLIMATION IN SPECT IMAGING Michel Koolex, Yves D’Asselerx, Stefaan Vandenberghex, Rik Van de Wallex, Koen...Nuclear Medicine Division, University Hospital of Ghent, De Pintelaan 185 B-9000 Ghent, Belgium Abstract An essential feature of SPECT imaging is

  7. Radiation risk and protection of patients in clinical SPECT/CT.

    PubMed

    Brix, Gunnar; Nekolla, Elke A; Borowski, Markus; Noßke, Dietmar

    2014-05-01

    Clinical studies have demonstrated that hybrid single photon emission computed tomography (SPECT)/CT for various diagnostic issues has an added value as compared to SPECT alone. However, the combined acquisition of functional and anatomical images can substantially increase radiation exposure to patients, in particular when using a hybrid system with diagnostic CT capabilities. It is, therefore, essential to carefully balance the diagnostic needs and radiation protection requirements. To this end, the evidence on health effects induced by ionizing radiation is outlined. In addition, the essential concepts for estimating radiation doses and lifetime attributable cancer risks associated with SPECT/CT examinations are presented taking into account both the new recommendations of the International Commission on Radiological Protection (ICRP) as well as the most recent radiation risk models. Representative values of effective dose and lifetime attributable risk are reported for ten frequently used SPECT radiopharmaceuticals and five fully diagnostic partial-body CT examinations. A diagnostic CT scan acquired as part of a combined SPECT/CT examination contributes considerably to, and for some applications even dominates, the total patient exposure. For the common SPECT and CT examinations considered in this study, the lifetime attributable risk of developing a radiation-related cancer is less than 0.27 %/0.37 % for men/women older than 16 years, respectively, and decreases markedly with increasing age at exposure. Since there is no clinical indication for a SPECT/CT examination unless an emission scan has been indicated, the issue on justification comes down to the question of whether it is necessary to additionally acquire a low-dose CT for attenuation correction and anatomical localization of tracer uptake or even a fully diagnostic CT. In any case, SPECT/CT studies have to be optimized, e.g. by adapting dose reduction measures from state-of-the-art CT practice, and

  8. Investigation of Metastatic Breast Tumor Heterogeneity and Progression Using Dual Optical/SPECT Imaging

    DTIC Science & Technology

    2007-05-01

    parallel-hole collimator or coded aperture are better suited for small animal imaging. Front end computer – 64 bit Athlon FX Gigabit ethernet switch D...our capability to detect millimeter or sub-millimeter metastases in mice by light emission. To this end we have used Light Emission Tomography (LET...Tomography (SPECT), and to this end we have developed a new form of micro-SPECT based on cooled, electron-multiplied Charge-Coupled Devices (EMCCDs) with

  9. U-SPECT-BioFluo: an integrated radionuclide, bioluminescence, and fluorescence imaging platform

    PubMed Central

    2014-01-01

    Background In vivo bioluminescence, fluorescence, and single-photon emission computed tomography (SPECT) imaging provide complementary information about biological processes. However, to date these signatures are evaluated separately on individual preclinical systems. In this paper, we introduce a fully integrated bioluminescence-fluorescence-SPECT platform. Next to an optimization in logistics and image fusion, this integration can help improve understanding of the optical imaging (OI) results. Methods An OI module was developed for a preclinical SPECT system (U-SPECT, MILabs, Utrecht, the Netherlands). The applicability of the module for bioluminescence and fluorescence imaging was evaluated in both a phantom and in an in vivo setting using mice implanted with a 4 T1-luc + tumor. A combination of a fluorescent dye and radioactive moiety was used to directly relate the optical images of the module to the SPECT findings. Bioluminescence imaging (BLI) was compared to the localization of the fluorescence signal in the tumors. Results Both the phantom and in vivo mouse studies showed that superficial fluorescence signals could be imaged accurately. The SPECT and bioluminescence images could be used to place the fluorescence findings in perspective, e.g. by showing tracer accumulation in non-target organs such as the liver and kidneys (SPECT) and giving a semi-quantitative read-out for tumor spread (bioluminescence). Conclusions We developed a fully integrated multimodal platform that provides complementary registered imaging of bioluminescent, fluorescent, and SPECT signatures in a single scanning session with a single dose of anesthesia. In our view, integration of these modalities helps to improve data interpretation of optical findings in relation to radionuclide images. PMID:25386389

  10. Paraganglioma causing a myocardial infarction

    PubMed Central

    DeMers, Gerard; Portouw, Steve

    2012-01-01

    Paragangliomas, extra-adrenal pheochromocytomas, are rare and classically associated with sustained or paroxysmal hypertension, headache, perspiration, palpitations, and anxiety. A 49-year-old male, parachute instructor, likely developed a hypertensive emergency when deploying his parachute leading to a myocardial infarction. A para-aortic tumor was incidentally discovered during the patient's emergency department work-up and was eventually surgically resected. He had no evidence of coronary disease during his evaluation. This case shows that a myocardial infarction may be the initial manifestation of these neuroendocrine tumors. Hypertensive emergency, much less elevated blood pressure may not be present at time of presentation. PMID:22787353

  11. A Modified Post Processing Correction Matrix For SPECT

    NASA Astrophysics Data System (ADS)

    Macey, D. J.; DeNardo, G. L.; DeNardo, S. J.; Seibert, J. A.

    1986-01-01

    A post reconstruction method of attenuation compensation for Single Photon Emission Computed Tomography (SPECT) has been investigated that offers a new approach to the problem of quantitation. A modified correction matrix is generated for attenuation compensation in which the Linear Attenuation Coefficient (LAC) for each pixel is assigned a value depending on the radial distance of the pixel from the true section boundary. Attenuation compensation of transverse section images of small and large volume sources of Tc-99m in phantoms using this modified matrix indicated that a known quantity of radionuclide could be determined to better than 10%. The scatter fraction was estimated as the difference in the corrected section images using a multiplicative matrix generated with a constant LAC for each pixel and the modified matrix proposed in this report.

  12. High resolution SPECT, small deep infarcts and diaschisis.

    PubMed Central

    Bowler, J V; Costa, D C; Jones, B E; Steiner, T J; Wade, J P

    1992-01-01

    Eighteen cases of lacunar infarction are presented. Six of these cases had a purely motor clinical deficit. All the cases were studied by serial high resolution SPECT (single photon emission computerized tomography) using 99Tcm HMPAO. The degree and extent of the changes in cerebral perfusion consistent with diaschisis were noted and these compared with the severity of the clinical deficit at presentation and over time. No significant correlation between diaschisis and the clinical state was found at any stage. The nature, aetiology and importance of diaschisis are discussed and it is suggested that caution should be exercised in attributing clinical features to diaschisis simply because it may be present. Images Figure 1. Figure 2. PMID:1556715

  13. PET/SPECT imaging agents for neurodegenerative diseases

    PubMed Central

    Zhu, Lin; Ploessl, Karl; Kung, Hank F.

    2014-01-01

    Single photon emission computed tomography (SPECT) or positron emission computed tomography (PET) imaging agents for neurodegenerative disease have a significant impact on clinical diagnosis and patient care. The examples of Parkinson’s Disease (PD) and Alzheimer’s Disease (AD) imaging agents described in this paper provide a general view on how imaging agents, ie radioactive drugs, are selected, chemically prepared and applied in humans. Imaging the living human brain can provide unique information on the pathology and progression of neurodegenerative diseases, such as AD and PD. The imaging method will also facilitate preclinical and clinical trials of new drugs offering specific information related to drug binding sites in the brain. In the future, chemists will continue to play important roles in identifying specific targets, synthesizing target-specific probes for screening and ultimately testing them by in vitro and in vivo assays. PMID:24676152

  14. Quantitative severity of stress thallium-201 myocardial perfusion single-photon emission computed tomography defects in one-vessel coronary artery disease.

    PubMed

    Matzer, L; Kiat, H; Van Train, K; Germano, G; Papanicolaou, M; Silagan, G; Eigler, N; Maddahi, J; Berman, D S

    1993-08-01

    The relation between the quantitative myocardial perfusion defect severity of exercise thallium-201 single-photon emission computed tomography (SPECT) and the quantitative degree of coronary stenosis was examined in 18 patients with 1-vessel disease (> or = 50% diameter stenosis), and abnormal thallium-201 SPECT. A total of 26 vessels were analyzed. Thallium-201 SPECT quantitative defect severity score was derived by summing the number of pixels in a coronary territory in which counts fell below the normal mean and multiplied by the number of SDs by which they fell below the normal mean. The thallium-201 defect severity score was significantly (p < 0.001) related to the maximal percent luminal diameter narrowing (r = 0.93), percent area narrowing (r = 0.89), absolute stenotic area (r = 0.79), and absolute stenotic diameter (r = 0.81). As expected, the strongest relation between thallium-201 defect severity and quantitative angiographic indexes was in the low and high ranges of coronary stenosis, with more variability and lower correlation coefficients (percent diameter: r = 0.75, p < 0.02, percent area stenosis: r = 0.63, p < 0.05) in the middle ranges (50 to 80% diameter stenosis). This observation is likely to be due to the complex flow characteristics across stenotic lesions. The findings suggest that in a select population, thallium-201 defect severity is potentially useful for noninvasive characterization of the functional severity of coronary artery stenosis and may complement coronary angiography in predicting functionally significant stenosis.

  15. A randomized, open-label, multicenter trial for the safety and efficacy of adult mesenchymal stem cells after acute myocardial infarction.

    PubMed

    Lee, Jun-Won; Lee, Seung-Hwan; Youn, Young-Jin; Ahn, Min-Soo; Kim, Jang-Young; Yoo, Byung-Su; Yoon, Junghan; Kwon, Woocheol; Hong, In-Soo; Lee, Kyounghoon; Kwan, Jun; Park, Keum Soo; Choi, Donghoon; Jang, Yang Soo; Hong, Mun K

    2014-01-01

    Recent studies suggest that the intracoronary administration of bone marrow (BM)-derived mesenchymal stem cells (MSCs) may improve left ventricular function in patients with acute myocardial infarction (AMI). However, there is still argumentative for the safety and efficacy of MSCs in the AMI setting. We thus performed a randomized pilot study to investigate the safety and efficacy of MSCs in patients with AMI. Eighty patients with AMI after successful reperfusion therapy were randomly assigned and received an intracoronary administration of autologous BM-derived MSCs into the infarct related artery at 1 month. During follow-up period, 58 patients completed the trial. The primary endpoint was changes in left ventricular ejection fraction (LVEF) by single-photon emission computed tomography (SPECT) at 6 month. We also evaluated treatment-related adverse events. The absolute improvement in the LVEF by SPECT at 6 month was greater in the BM-derived MSCs group than in the control group (5.9% ± 8.5% vs 1.6% ± 7.0%; P=0.037). There was no treatment-related toxicity during intracoronary administration of MSCs. No significant adverse cardiovascular events occurred during follow-up. In conclusion, the intracoronary infusion of human BM-derived MSCs at 1 month is tolerable and safe with modest improvement in LVEF at 6-month follow-up by SPECT. (ClinicalTrials.gov registration number: NCT01392105).

  16. Assessment of the ability of myocardial contrast echocardiography with harmonic power Doppler imaging to identify perfusion abnormalities in patients with Kawasaki disease at rest and during dipyridamole stress.

    PubMed

    Ishii, M; Himeno, W; Sawa, M; Iemura, M; Furui, J; Muta, H; Sugahara, Y; Egami, K; Akagi, T; Ishibashi, M; Kato, H

    2002-01-01

    The aim of our study was to assess the ability of myocardial contrast echocardiography (MCE) with harmonic power Doppler imaging (HPDI) to identify perfusion abnormalities in patients with Kawasaki disease at rest and during pharmacological stress imaging with dipyridamole. Results were compared with those of 99mTc-tetrofosmin single-photon emission computed tomography (SPECT) imaging as the clinical reference standard. MCE with HPDI was performed on 20 patients with a history of Kawasaki disease. Images were obtained at baseline and during dipyridamole infusion (0.56 mg x kg(-1)) in the apical two- and four-chamber views. Myocardial opacification suitable for the analysis was obtained in all patients. Nine patients with stenotic lesions had a reversible defect after dipyridamole infusion detected by both MCE with HPDI and SPECT, and 3 patients with a history of myocardial infarction had a partially or completely irreversible defect detected by both methods. Three patients with coronary aneurysm without stenotic lesion, 4 patients with regressed coronary aneurysm, and 2 patients with normal coronary artery in acute phase also had normal perfusion at rest and after pharmacological stress by both methods. A 96% concordance (kappa = 0.87) was obtained when comparing the respective segmental perfusion scores using the two methods at baseline, and an 86% concordance (kappa = 0.81) was obtained at postdipyridamole infusion. After combining baseline and postdipyridamole images, each segment was labeled as having normal perfusion, irreversible defects, or reversible defects. Using these classifications, concordance for the two methods was 92% (kappa = 0.87). MCE with HPDI is a safe and feasible method by which to detect asymptomatic ischemia due to severe stenotic lesion, and it may be an important addition to the modalities used to identify patients at risk for myocardial infarction as a complication of Kawasaki disease.

  17. Evaluation of Silent Myocardial Ischemia with Single-Photon Emission Computed Tomography/Computed Tomography in Asymptomatic Subjects with Diabetes and Pre-Diabetes

    PubMed Central

    Özdemir, Elif; Burçak Polat, Şefika; Yıldırım, Nilüfer; Türkölmez, Şeyda; Ersoy, Reyhan; Durmaz, Tahir; Keleş, Telat; Bozkurt, Engin; Çakır, Bekir

    2016-01-01

    Objective: The aim of this study was to disclose the prevalence of myocardial ischemia, as detected by adenosine stress myocardial perfusion imaging (MPI) with hybrid single-photon emission computed tomography/computed tomography (SPECT/CT), in asymptomatic diabetic and pre-diabetic patients and to find out whether ischemia predicted the occurrence of adverse cardiac/cerebrovascular events (ACCE) at follow-up. Methods: Forty-three diabetic and thirty-five pre-diabetic asymptomatic patients without any history of coronary artery disease, underwent MPI and were followed-up for a 12.8±2.2 (8-19) months for the occurrence of ACCE. Baseline variables that would predict the presence of ischemia and the value of ischemia on MPI for predicting the occurrence of ACCE at follow-up were evaluated by logistic regression analysis. Results: Ischemia was detected in ten (23.3%) of the diabetic and in four (11.4%) of the pre-diabetic patients. The presence of diabetes was the only independent predictor of myocardial ischemia [odds ratio (OR): 12.31, 95% confidence interval (CI): 1.83-82.66; p<0.01]. During 12.8±2.2 (8-19) months of follow-up, ACCE was observed in five out of 78 (6.4%) patients. Patients with ischemia were significantly more likely to have ACCE during follow-up as compared to those with normal MPI scans (event rates: 21.4% vs. 3.1%, OR: 8.455 95% CI: 1.264-56.562, p=0.038). Conclusion: Myocardial ischemia as detected by adenosine stress SPECT/CT in a population of asymptomatic patients with diabetes mellitus or pre-diabetes appeared to predict the occurrence of ACCE at follow-up. PMID:27277323

  18. Combining Coronary Angiography and Myocardial Perfusion by Computed Tomography in the Identification of Flow-Limiting Stenosis – The CORE320 study

    PubMed Central

    Magalhães, Tiago A.; Kishi, Satoru; George, Richard; Arbab-Zadeh, Armin; Vavere, Andrea; Cox, Christopher; Matheson, Matthew B.; Miller, Julie; Brinker, Jeffrey; Di Carli, Marcelo; Rybicki, Frank J.; Rochitte, Carlos E.; Clouse, Melvin; Lima, João A.C.

    2015-01-01

    Background The combination of coronary computed tomography angiography (CTA) and myocardial CT perfusion (CTP) is gaining increasing acceptance, but a standardized approach to be implemented in the clinical setting is necessary. Objectives To investigate the accuracy of a combined coronary CTA and myocardial CTP comprehensive protocol compared to coronary CTA alone, using a combination of invasive coronary angiography (ICA) and Single-Photon Emission Computed Tomography (SPECT) as reference. Methods Three-hundred eighty-one patients included in CORE320 trial were analyzed in this study. Flow-limiting stenosis was defined as the presence of ≥50% stenosis by ICA with a related perfusion deficit by SPECT. The combined CTA+CTP definition of disease was the presence of a ≥50% stenosis with a related perfusion deficit. All data sets were analyzed by two experienced readers, aligning anatomical findings by CTA with perfusion deficits by CTP. Results Mean patient age was 62±6 years (66% male), 27% with prior history of myocardial infarction. In a per-patient analysis, sensitivity for CTA alone was 93% specificity was 54%, positive predictive value (PPV) was 55%; negative predictive value (NPV) 93% and overall accuracy was 69%. After combining CTA and CTP, sensitivity was 78%, specificity 73%, NPV 64%; PPV 0.85% and overall accuracy was 75%. In a per-vessel analysis, overall accuracy of CTA alone was 73%as compared to 79% for the combination of CTA and CTP (p<0.0001 for difference). Conclusions Combining coronary CTA and myocardial CTP findings through a comprehensive protocol is feasible. While sensitivity is lower, specificity and overall accuracy are higher than assessment by coronary CTA when compared against a reference standard of stenosis with an associated perfusion deficit. PMID:25977111

  19. Thallium-201 myocardial scintigraphy in acute myocardial infarction and ischemia

    SciTech Connect

    Wackers, F.J.

    1982-04-01

    Thallium-201 scintigraphy provides a sensitive and reliable method of detecting acute myocardial infarction and ischemia when imaging is performed with understanding of the temporal characteristics and accuracy of the technique. The results of scintigraphy are related to the time interval between onset of symptoms and time of imaging. During the first 6 hr after chest pain almost all patients with acute myocardial infarction and approximately 50% of the patients with unstable angina will demonstrate /sup 201/TI pefusion defects. Delayed imaging at 2-4 hr will permit distinction between ischemia and infarction. In patients with acute myocardial infarction, the size of the perfusion defect accurately reflects the extent of the infarcted and/or jeopardized myocardium, which may be used for prognostic stratification. In view of the characteristics of /sup 201/TI scintigraphy, the most practical application of this technique is in patients in whom myocardial infarction has to be ruled out, and for early recognition of patients at high risk for complications.

  20. [Usefulness of SPECT images in helping radiologists understand brain diseases].

    PubMed

    Hayashida, K

    2001-04-01

    Nuclear brain imaging is able to show functional abnormalities of lesions that are not detectable by CT and MR images. The diagnostic keys of nuclear-imaging in terms of clinical usefulness are its early detection of lesions and determination of the efficacy of drug and surgical therapies. In dementic patients, F-18 FDG brain images can be diagnosed as Alzheimer's disease 12 months earlier than is possible on CT and MRI images, and can provide information for effective drug therapy. O-15 water CBF images can predict the effect of Nicholin by assessing transient increases in cerebral blood flow (CBF), thereby facilitating improvement in higher brain functions such as orientation. In stroke patients, brain SPECT images with Tc-99m HMPAO can predict fatal cerebral hemorrhage caused by anti-thrombic therapy by showing the decrease in count ratio (count ratio of infarcted to contralateral area of < 0.34) in the acute phase and identifying disruption of the blood brain barrier by showing hyperfixation in the subacute phase. Brain SPECT with I-123 IMP can also identify "misery" perfused areas resulting from reduced CBF and decreased vasoreactivity in the chronic phase. This criterion is utilized for patient selection for extracranial/intracranial bypass surgery, because patients with areas of poor perfusion might be indicated for such surgery. Since nuclear medicine images can accurately select candidates for drug or surgical therapies, they will be beneficial in reducing Medicare costs as well as in enhancing patients' quality of life as a result of the successful treatment. With the advancement of technology, nuclear medicine units that can simultaneously obtain CT images and can combine functional with anatomical images will provide more useful information for the diagnosis of brain disease.

  1. GATE: a simulation toolkit for PET and SPECT.

    PubMed

    Jan, S; Santin, G; Strul, D; Staelens, S; Assié, K; Autret, D; Avner, S; Barbier, R; Bardiès, M; Bloomfield, P M; Brasse, D; Breton, V; Bruyndonckx, P; Buvat, I; Chatziioannou, A F; Choi, Y; Chung, Y H; Comtat, C; Donnarieix, D; Ferrer, L; Glick, S J; Groiselle, C J; Guez, D; Honore, P F; Kerhoas-Cavata, S; Kirov, A S; Kohli, V; Koole, M; Krieguer, M; van der Laan, D J; Lamare, F; Largeron, G; Lartizien, C; Lazaro, D; Maas, M C; Maigne, L; Mayet, F; Melot, F; Merheb, C; Pennacchio, E; Perez, J; Pietrzyk, U; Rannou, F R; Rey, M; Schaart, D R; Schmidtlein, C R; Simon, L; Song, T Y; Vieira, J M; Visvikis, D; Van de Walle, R; Wieërs, E; Morel, C

    2004-10-07

    Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to achieve a modular, versatile, scripted simulation toolkit adapted to the field of nuclear medicine. In particular, GATE allows the description of time-dependent phenomena such as source or detector movement, and source decay kinetics. This feature makes it possible to simulate time curves under realistic acquisition conditions and to test dynamic reconstruction algorithms. This paper gives a detailed description of the design and development of GATE by the OpenGATE collaboration, whose continuing objective is to improve, document and validate GATE by simulating commercially available imaging systems for PET and SPECT. Large effort is also invested in the ability and the flexibility to model novel detection systems or systems still under design. A public release of GATE licensed under the GNU Lesser General Public License can be downloaded at http:/www-lphe.epfl.ch/GATE/. Two benchmarks developed for PET and SPECT to test the installation of GATE and to serve as a tutorial for the users are presented. Extensive validation of the GATE simulation platform has been started, comparing simulations and measurements on commercially available acquisition systems. References to those results are listed. The future prospects towards the gridification of GATE and its extension to other domains such as dosimetry are also discussed.

  2. Multipinhole SPECT helical scan parameters and imaging volume

    SciTech Connect

    Yao, Rutao Deng, Xiao; Wei, Qingyang; Dai, Tiantian; Ma, Tianyu; Lecomte, Roger

    2015-11-15

    Purpose: The authors developed SPECT imaging capability on an animal PET scanner using a multiple-pinhole collimator and step-and-shoot helical data acquisition protocols. The objective of this work was to determine the preferred helical scan parameters, i.e., the angular and axial step sizes, and the imaging volume, that provide optimal imaging performance. Methods: The authors studied nine helical scan protocols formed by permuting three rotational and three axial step sizes. These step sizes were chosen around the reference values analytically calculated from the estimated spatial resolution of the SPECT system and the Nyquist sampling theorem. The nine helical protocols were evaluated by two figures-of-merit: the sampling completeness percentage (SCP) and the root-mean-square (RMS) resolution. SCP was an analytically calculated numerical index based on projection sampling. RMS resolution was derived from the reconstructed images of a sphere-grid phantom. Results: The RMS resolution results show that (1) the start and end pinhole planes of the helical scheme determine the axial extent of the effective field of view (EFOV), and (2) the diameter of the transverse EFOV is adequately calculated from the geometry of the pinhole opening, since the peripheral region beyond EFOV would introduce projection multiplexing and consequent effects. The RMS resolution results of the nine helical scan schemes show optimal resolution is achieved when the axial step size is the half, and the angular step size is about twice the corresponding values derived from the Nyquist theorem. The SCP results agree in general with that of RMS resolution but are less critical in assessing the effects of helical parameters and EFOV. Conclusions: The authors quantitatively validated the effective FOV of multiple pinhole helical scan protocols and proposed a simple method to calculate optimal helical scan parameters.

  3. Pharmacokinetics of SPECT radiopharmaceuticals for imaging hypoxic tissues.

    PubMed

    Wiebe, L I; Stypinski, D

    1996-09-01

    Although hypoxia has been known for decades to play an important role in the outcome of radiotherapy in oncology, and inspite of the contribution of hypoxia to a myriad of pathologies that involve vascular disease, the selective imaging of hypoxic tissue has attained prominence only within the past decade. Contemporary research in the hypoxia imaging field is based largely on radiosensitizer research of the 1960's and 1970's. Early sensitizer research identified a family of nitro-organic compounds, the N-1 substituted 2-nitroimidazoles as candidate drugs. The early champion, and still the reference standard for therapeutic radiosensitization of hypoxic tumor cells is misonidazole (MISO). Its peripheral neurotoxicity led to failure in clinical studies, but its biological, biophysical and biochemical properties have been investigated in detail and serve as a basis for further design, not only of sensitizers, but of diagnostic radiopharmaceuticals for imaging tissue hypoxia. Pharmacokinetic characterization of radiopharmaceuticals, specifically radiopharmaceuticals for imaging tissue hypoxia, has not been a central theme in their development. The advent of PET, through which quantitative determinations first became possible, opened the field for both descriptive and analytical radiopharmacokinetic studies. In SPECT, however, this approach is still undergoing refinement. This paper addresses some of the underlying issues in radiopharmaceutical pharmacokinetics. There is a paucity of published radiopharmacokinetic data for SPECT hypoxia imaging agents. Consequently, the pharmacokinetic issues for MISO are presented as a basis for development of pharmacokinetics for the chemically-related imaging agents. Properties of an hypoxia marker are described from a pharmacokinetic viewpoint, a theoretical model for descriptive pharmacokinetics is introduced and finally, recent pharmacokinetic studies from our laboratory are described.

  4. Attenuation correction effects on SPECT/CT procedures: phantoms studies.

    PubMed

    Oliveira, M L; Seren, M E G; Rocha, F C; Brunetto, S Q; Ramos, C D; Button, V L S N

    2013-01-01

    Attenuation correction is widely used in SPECT/CT (Single Photon Emission Computed Tomography) procedures, especially for imaging of the thorax region. Different compensation methods have been developed and introduced into clinical practice. Most of them use attenuation maps obtained using transmission scanning systems. However, this gives extra dose of radiation to the patient. The purpose of this study was to identify when attenuation correction is really important during SPECT/CT procedures.For this purpose, we used Jaszczak phantom and phantom with three line sources, filled with technetium ((99m)-Tc), with scattering materials, like air, water and acrylic, in different detectors configurations. In all images acquired were applied analytic and iterative reconstruction algorithms; the last one with or without attenuation correction. We analyzed parameters such as eccentricity, contrast and spatial resolution in the images.The best reconstruction algorithm on average was iterative, for images with 128 × 128 and 64 × 64 matrixes. The analytical algorithm was effective only to improve eccentricity in 64 × 64 matrix and matrix in contrast 128 × 128 with low statistics. Turning to the clinical routine examinations, on average, for 128 × 128 matrix and low statistics counting, the best algorithm was the iterative, without attenuation correction,improving in 150% the three parameters analyzed and, for the same matrix size, but with high statistical counting, iterative algorithm with attenuation correction was 25% better than that without correction. We can conclude that using the iterative algorithm with attenuation correction in the water, and its extra dose given, is not justified for the procedures of low statistic counting, being relevant only if the intention is to prioritize contrast in acquisitions with high statistic counting.

  5. Automated coregistration and statistical analyses of SPECT brain images

    SciTech Connect

    Gong, W.; Devous, M.D.

    1994-05-01

    Statistical analyses of SPECT image data often require highly accurate image coregistration. Several image coregistration algorithms have been developed. The Pellizari algorithm (PA) uses the Powell technique to estimate transformation parameters between the {open_quotes}head{close_quotes} (model) and {open_quotes}hat{close_quotes} (images to be registered). Image normalization and good initial transformation parameters heavily affect the accuracy and speed of convergence of the PA. We have explored various normalization methods and found a simple technique that avoids most artificial edge effects and minimizes blurring of useful edges. We have tested the effects on accuracy and convergence speed of the PA caused by different initial transformation parameters. From these data, a modified PA was integrated into an automated coregistration system for SPECT brain images on the PRISM 3000S under X Windows. The system yields an accuracy of approximately 2 mm between model and registered images, and employs minimal user intervention through a simple graphic user interface. Data are automatically resliced, normalized and coregistered, with the user choosing only the slice range for inclusion and two initial transformation parameters (under computer-aided guidance). Coregistration is accomplished (converges) in approximately 8 min for a 128 x 128 x 128 set of 2 mm{sup 3} voxels. The complete process (editing, reslicing, normalization, coregistration) takes about 20 min. We have also developed automated 3-dimensional parametric images ({open_quotes}t{close_quotes}, {open_quotes}z{close_quotes}, and subtraction images) from coregistered data sets for statistical analyses. Data are compared against a coregistered normal control group (N = 50) distributed in age and gender for matching against subject samples.

  6. Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition.

    PubMed

    Hamamura, Mark J; Ha, Seunghoon; Roeck, Werner W; Muftuler, L Tugan; Wagenaar, Douglas J; Meier, Dirk; Patt, Bradley E; Nalcioglu, Orhan

    2010-03-21

    In medical imaging, single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high spatial resolution anatomical information as well as complementary functional information. In this study, we developed a miniaturized dual-modality SPECT/MRI (MRSPECT) system and demonstrated the feasibility of simultaneous SPECT and MRI data acquisition, with the possibility of whole-body MRSPECT systems through suitable scaling of components. For our MRSPECT system, a cadmium-zinc-telluride (CZT) nuclear radiation detector was interfaced with a specialized radiofrequency (RF) coil and placed within a whole-body 4 T MRI system. Various phantom experiments characterized the interaction between the SPECT and MRI hardware components. The metallic components of the SPECT hardware altered the B(0) field and generated a non-uniform reduction in the signal-to-noise ratio (SNR) of the MR images. The presence of a magnetic field generated a position shift and resolution loss in the nuclear projection data. Various techniques were proposed to compensate for these adverse effects. Overall, our results demonstrate that accurate, simultaneous SPECT and MRI data acquisition is feasible, justifying the further development of MRSPECT for either small-animal imaging or whole-body human systems by using appropriate components.

  7. Final Report: A CdZnTe detector for MRI-compatible SPECT Systems

    SciTech Connect

    Meng, Ling-Jian

    2012-12-27

    The key objective of this project is to develop the enabling technology for future MRI-compatible nuclear (e.g. SPECT) imaging system, and to demonstrate the feasibility of performing simultaneous MR and SPECT imaging studies of the same object. During the past three years, we have developed (a) a MRI-compatible ultrahigh resolution gamma ray detector and associated readout electronics, (b) a theoretical approach for modeling the effect of strong magnetic field on SPECT image quality, and (c) a maximum-likelihood (ML) based reconstruction routine with correction for the MR-induced distortion. With this support, we have also constructed a four-head MR-compatible SPECT system and tested the system inside a 3-T clinical MR-scanner located on UI campus. The experimental results obtained with this system have clearly demonstrated that sub-500um spatial resolution can be achieved with a SPECT system operated inside a 3-T MRI scanner. During the past three years, we have accomplished most of the major objectives outlined in the original proposal. These research efforts have laid out a solid foundation the development of future MR-compatible SPECT systems for both pre-clinical and clinical imaging applications.

  8. Hybrid SPECT/CT Imaging in the Evaluation of Coronary Stenosis: Role in Diabetic Patients

    PubMed Central

    Romagnoli, Andrea; Schillaci, Orazio; Arganini, Chiara; Gaspari, Eleonora; Ricci, Aurora; Morosetti, Daniele; Coco, Irene; Crusco, Sonia; Calabria, Ferdinando; Sperandio, Massimiliano; Simonetti, Giovanni

    2013-01-01

    Purpose. Our purpose was to combine the results of the MDCT (multidetector computed tomography) morphological data and the SPECT (single-photon emission computed tomography) data using hybrid imaging to overcome the limits of the MDCT in the evaluation of coronary stenosis in diabetic patients with large amount of calcium in the coronary arteries. Method and Materials. 120 diabetic patients underwent MDCT examination and SPECT examination. We evaluated 324 coronary arteries. After the examinations, we merged CT and SPECT images. Results. CT evaluation: 52 (32.8%) coronaries with stenosis ≥ 50%, 228 (70.4%) with stenosis < 50%, and 44 (13.6%) with a doubtful evaluation. SPECT evaluation: 80 (24.7%) areas with hypoperfusion, 232 (71.6%) with normal perfusion, and 12 (3.7%) with a doubtful evaluation. Of 324 coronary arteries and corresponding areas, the hybrid SPECT/CT evaluation showed 92 (28.4%) areas with hypoperfusion, and 232 (71.6%) with normal perfusion. Conclusion. Hybrid CT/SPECT imaging could be useful in the detection of significant coronary stenosis in patients with large amount of coronary calcifications. PMID:24959556

  9. Effect of reconstruction algorithms on the accuracy of 99mTc sestamibi SPECT/CT parathyroid imaging

    PubMed Central

    Nichols, Kenneth J; Tronco, Gene G; Palestro, Christopher J

    2015-01-01

    The superiority of SPECT/CT over SPECT for 99mTc-sestamibi parathyroid imaging often is assumed to be due to improved lesion localization provided by the anatomic component (computed tomography) of the examination. It also is possible that this superiority may be related to the algorithms used for SPECT data reconstruction. The objective of this investigation was to determine the effect of SPECT reconstruction algorithms on the accuracy of MIBI SPECT/CT parathyroid imaging. We retrospectively analyzed preoperative MIBI SPECT/CT parathyroid imaging studies performed on 106 patients. SPECT data were reconstructed by filtered back projection (FBP) and by iterative reconstruction with corrections for collimator resolution recovery and attenuation (IRC). Two experienced readers independently graded lesion detection certainty on a 5-point scale without knowledge of each other’s readings, reconstruction methods, other test results or final diagnoses. All patients had surgical confirmation of the final diagnosis, including disease limited to the neck, and location and weight of excised lesion(s). There were 135 parathyroid lesions among the 106 patients. For FBP SPECT/CT and IRC SPECT/CT sensitivity was 76% and 90% (p = 0.003), specificity was 87% and 87% (p = 0.90), and accuracy was 83% and 88% (p = 0.04), respectively. Inter-rater agreement was significantly higher for IRC than for FBP (kappa = 0.76, “good agreement”, versus kappa = 0.58, “moderate agreement”, p < 0.0001). We conclude that the improved accuracy of MIBI SPECT/CT compared to MIBI SPECT for preoperative parathyroid lesion localization is due in part to the use of IRC for SPECT data reconstruction. PMID:25973340

  10. Multi-pinhole collimator design for small-object imaging with SiliSPECT: a high-resolution SPECT

    PubMed Central

    Shokouhi, S; Metzler, S D; Wilson, D W; Peterson, T E

    2010-01-01

    We have designed a multi-pinhole collimator for a dual-headed, stationary SPECT system that incorporates high-resolution silicon double-sided strip detectors. The compact camera design of our system enables imaging at source–collimator distances between 20 and 30 mm. Our analytical calculations show that using knife-edge pinholes with small-opening angles or cylindrically shaped pinholes in a focused, multi-pinhole configuration in combination with this camera geometry can generate narrow sensitivity profiles across the field of view that can be useful for imaging small objects at high sensitivity and resolution. The current prototype system uses two collimators each containing 127 cylindrically shaped pinholes that are focused toward a target volume. Our goal is imaging objects such as a mouse brain, which could find potential applications in molecular imaging. PMID:19088387

  11. Imaging techniques for myocardial inflammation

    SciTech Connect

    O'Connell, J.B.; Henkin, R.E.; Robinson, J.A.

    1986-03-01

    Dilated cardiomyopathy (DC) represents a heterogeneous group of disorders which results in morbidity and mortality in young individuals. Recent evidence suggests that a subset of these patients have histologic evidence of myocarditis which is potentially treatable with immunosuppression. The identification of myocardial inflammation may therefore lead to development of therapeutic regimens designed to treat the cause rather than the effect of the myocardial disease. Ultimately, this may result in improvement in the abysmal prognosis of DC. The currently accepted technique for identification of active myocardial inflammation is endomyocardial biopsy. This technique is not perfect, however, since pathologic standards for the diagnosis of myocarditis have not been established. Furthermore, focal inflammation may give rise to sampling error. The inflammation-avid radioisotope gallium-67 citrate has been used as an adjunct to biopsy improving the yield of myocarditis from 7 percent to 36 percent. Serial imaging correlates well to biopsy results. Future studies are designed to study the applicability of lymphocyte labelling techniques to myocardial inflammatory disease.

  12. Spousal Adjustment to Myocardial Infarction.

    ERIC Educational Resources Information Center

    Ziglar, Elisa J.

    This paper reviews the literature on the stresses and coping strategies of spouses of patients with myocardial infarction (MI). It attempts to identify specific problem areas of adjustment for the spouse and to explore the effects of spousal adjustment on patient recovery. Chapter one provides an overview of the importance in examining the…

  13. Severe Hypokalemia Masquerading Myocardial Ischemia

    PubMed Central

    Petrov, Daniel Bogdanov; Sardovski, Svetlozar Ivanov; Milanova, Maria Hristova

    2012-01-01

    An advanced degree of body potassium deficit may produce striking changes in the electrocardiogram (ECG). These changes can result in incidental findings on the 12-lead ECG or precipitate potentially life-threatening dysrhythmias. Although usually readily recognized, at times these abnormalities may be confused with myocardial ischemia. The object was to report a case of severe hypokalemia mimicking myocardial ischemia. A 33-year-old, previously healthy man, presented to the Emergency Department (ED) with a progressive weakness and chest discomfort. The electrocardiogram showed a marked ST-segment depression in leads II, III, aVF, V1-V6. The initial diagnosis was non ST-elevation myocardial infarction. Echocardiography was normal and troponin levels were within normal limits. A more detailed history revealed that the patient had an episode of acute gastroenteritis with diarrhea and vomiting. Serum chemistries were notable for a potassium concentration of 1,8 mmol per liter. With aggressive electrolyte correction, the ECG abnormalities reverted as potassium levels normalized. Hypokalemia induced ST-segment depression may simulate myocardial ischemia. The differential diagnosis might be difficult, especially in the cases when ST changes are accompanied with chest discomfort.

  14. Initial experience with SPECT imaging of the brain using I-123 p-iodoamphetamine in focal epilepsy

    SciTech Connect

    LaManna, M.M.; Sussman, N.M.; Harner, R.N.; Kaplan, L.R.; Hershey, B.L.; Bernstein, D.R.; Goldstein, P.; Parker, J.A.; Wolodzko, J.G.; Popky, G.L.

    1989-06-01

    Nineteen patients with complex partial seizures refractory to medical treatment were examined with routine electroencephalography (EEG), video EEG monitoring, computed tomography or magnetic resonance imaging, neuropsychological tests and interictal single photon emission computed tomography (SPECT) with I-123 iodoamphetamine (INT). In 18 patients, SPECT identified areas of focal reduction in tracer uptake that correlated with the epileptogenic focus identified on the EEG. In addition, SPECT disclosed other areas of neurologic dysfunction as elicited on neuropsychological tests. Thus, IMP SPECT is a useful tool for localizing epileptogenic foci and their associated dynamic deficits.

  15. Novel Cadmium Zinc Telluride Devices for Myocardial Perfusion Imaging-Technological Aspects and Clinical Applications.

    PubMed

    Ben-Haim, Simona; Kennedy, John; Keidar, Zohar

    2016-07-01

    Myocardial perfusion imaging plays an important role in the assessment of patients with known or suspected coronary artery disease and is well established for diagnosis and for prognostic evaluation in these patients. The dedicated cardiac SPECT cameras with solid-state cadmium zinc telluride (CZT) detectors were first introduced a decade ago. A large body of evidence is building up, showing the superiority of the new technology compared with conventional gamma cameras. Not only the CZT detectors, but also new collimator geometries, the ability to perform focused imaging optimized for the heart and advances in data processing algorithms all contribute to the significantly improved sensitivity up to 8-10 times, as well as improved energy resolution and improved reconstructed spatial resolution compared with conventional technology. In this article, we provide an overview of the physical characteristics of the CZT cameras, as well as a review of the literature published so far, including validation studies in comparison with conventional myocardial perfusion imaging and with invasive coronary angiography, significant reduction in radiation dose, and new imaging protocols enabled by the new technology.

  16. Myocardial disarray. A critical review.

    PubMed Central

    Becker, A E; Caruso, G

    1982-01-01

    Myocardial disarray or disorganisation is at present a contentious topic, not least because its value as a clinical marker for hypertrophic cardiomyopathy has changed considerably over the years. Initially observed as one of the features of asymmetric septal hypertrophy, disarray has since been promoted as its pathognomonic histological feature, regarded by some observers as the morphological manifestation of a genetically transmitted myocardial defect. Recently, however, it has become evident that myocardial disarray is not limited to hypertrophic cardiomyopathy, but is encountered in hearts with both congenital and acquired conditions, and is also observed in normal hearts. The specificity of disarray for hypertrophic cardiomyopathy is thus seriously questioned. Latterly, it has been suggested that disarray, judged from through-and-through sections of the ventricular midseptum is a highly specific and sensitive marker of hypertrophic cardiomyopathy when considered in quantitative rather than qualitative fashion. The present study sets out to answer the question whether disarray could be the histological expression of the normal but intricate fibre architecture of the heart, a consideration also initiated by debatable definitions of normality and abnormality of myocardial histology. Gross fibre dissections in five normal hearts showed that many sites occurred in which disarray was a natural phenomenon. In five more hearts it was found that the plane of section of a tissue block might profoundly influence the histology. In fact, tissue cubicles sampled from different faces showed a change in histology in the vast majority. Thus the diagnostic significance of myocardial disarray as a marker of hypertrophic cardiomyopathy in the clinical setting almost vanishes; a change in orientation of a tissue section may actually turn "normality" into "disarray". Images PMID:7044398

  17. Prognostic importance of scintigraphic left ventricular cavity dilation during intravenous dipyridamole technetium-99m sestamibi myocardial tomographic imaging in predicting coronary events.

    PubMed

    McClellan, J R; Travin, M I; Herman, S D; Baron, J I; Golub, R J; Gallagher, J J; Waters, D; Heller, G V

    1997-03-01

    Left ventricular (LV) cavity dilation during stress myocardial perfusion imaging has been associated with multivessel disease, and may be an independent prognostic marker in addition to perfusion defects. The present study examines the predictive value for future cardiac events of transient or fixed LV dilation during dipyridamole technetium-99m (Tc-99m) sestamibi single-photon emission computed tomography (SPECT) imaging. The study included 512 consecutive patients who underwent SPECT imaging with Tc-99m sestamibi after dipyridamole infusion. Transient LV dilation was seen in 70 patients (14%) and 74 had fixed cavity dilation (14%); cavity size was normal in 368 patients (72%). Each perfusion scan was classified as normal or abnormal, and if abnormal, defects were categorized as transient or fixed, and as small, medium, or large (depending upon the number of abnormal vascular territories). Events during a mean follow-up of 12.8 +/- 6.8 months were tabulated by direct review of hospital charts and death certificates. The cardiac event rate (cardiac death or nonfatal infarction) was 1.9% in patients with normal cavity size, 11.4% with transient LV dilation, and 13.5% with fixed LV dilation (p < 0.01). Compared with patients with normal cavity size, those with transient LV dilation were more likely to sustain a myocardial infarction (p < 0.01) and those with fixed dilation more frequently suffered cardiac death (p < 0.01) and hospitalization for heart failure (p < 0.01). The group with the highest risk had both a large perfusion defect and cavity dilation. By Cox proportional hazard regression analysis, both transient and fixed LV dilation were strong independent predictors of cardiac events. Transient or fixed LV dilation are commonly seen during dipyridamole Tc-99m sestamibi SPECT imaging (14% incidence for each) and are useful predictors of cardiac events.

  18. Altered myocardial perfusion in patients with angina pectoris or silent ischemia during exercise as assessed by quantitative thallium-201 single-photon emission computed tomography

    SciTech Connect

    Mahmarian, J.J.; Pratt, C.M.; Cocanougher, M.K.; Verani, M.S. )

    1990-10-01

    The extent of abnormally perfused myocardium was compared in patients with and without chest pain during treadmill exercise from a large, relatively low-risk consecutive patient population (n = 356) referred for quantitative thallium-201 single-photon emission computed tomography (SPECT). All patients had concurrent coronary angiography. Patients were excluded if they had prior coronary angioplasty or bypass surgery. Tomographic images were assessed visually and from computer-generated polar maps. Chest pain during exercise was as frequent in patients with normal coronary arteries (12%) as in those with significant (greater than 50% stenosis) coronary artery disease (CAD) (14%). In the 219 patients with significant CAD, silent ischemia was fivefold more common than symptomatic ischemia (83% versus 17%, p = 0.0001). However, there were no differences in the extent, severity, or distribution of coronary stenoses in patients with silent or symptomatic ischemia. Our major observation was that the extent of quantified SPECT perfusion defects was nearly identical in patients with (20.9 +/- 15.9%) and without (20.5 +/- 15.6%) exertional chest pain. The sensitivity for detecting the presence of CAD was significantly improved with quantitative SPECT compared with stress electrocardiography (87% versus 65%, p = 0.0001). Although scintigraphic and electrocardiographic evidence of exercise-induced ischemia were comparable in patients with chest pain (67% versus 73%, respectively; p = NS), SPECT was superior to stress electrocardiography for detecting silent myocardial ischemia. The majority of patients in this study with CAD who developed ischemia during exercise testing were asymptomatic, although they exhibited an angiographic profile and extent of abnormally perfused myocardium similar to those of patients with symptomatic ischemia.

  19. Technological value of SPECT/CT fusion imaging for the diagnosis of lower gastrointestinal bleeding.

    PubMed

    Wang, Z G; Zhang, G X; Hao, S H; Zhang, W W; Zhang, T; Zhang, Z P; Wu, R X

    2015-11-24

    The aim of this study was to assess the clinical value of diagnosing and locating lower gastrointestinal (GI) bleeding using single photon emission computed tomography (SPECT)/computed tomography (CT) fusion imaging with 99mTc labeled red blood cells ((99m)Tc-RBC). Fifty-six patients with suspected lower GI bleeding received a preoperative intravenous injection of (99m)Tc-RBC and each underwent planar, SPECT/CT imaging of the lower abdominal region. The location and path of lower GI bleeding were diagnosed by contrastive analysis of planar and SPECT/CT fusion imaging. Among the 56 patients selected, there were abnormalities in concentrated radionuclide activity with planar imaging in 50 patients and in SPECT/CT fusion imaging in 52 patients. Moreover, bleeding points that were coincident with the surgical results were evident with planar imaging in 31 patients and with SPECT/CT fusion imaging in 48 patients. The diagnostic sensitivity of planar imaging and SPECT/CT fusion imaging were 89.3% (50/56) and 92.9% (52/56), respectively, and the difference was not statistically significant (χ(2) = 0.11, P > 0.05). The corresponding positional accuracy values were 73.8% (31/42) and 92.3% (48/52), and the difference was statistically significant (χ(2) = 4.63, P < 0.05). (99m)Tc- RBC SPECT/CT fusion imaging is an effective, simple, and accurate method that can be used for diagnosing and locating lower GI bleeding.

  20. Invisible Base Electrode Coordinates Approximation for Simultaneous SPECT and EEG Data Visualization

    NASA Astrophysics Data System (ADS)

    Kowalczyk, L.; Goszczynska, H.; Zalewska, E.; Bajera, A.; Krolicki, L.

    2014-04-01

    This work was performed as part of a larger research concerning the feasibility of improving the localization of epileptic foci, as compared to the standard SPECT examination, by applying the technique of EEG mapping. The presented study extends our previous work on the development of a method for superposition of SPECT images and EEG 3D maps when these two examinations are performed simultaneously. Due to the lack of anatomical data in SPECT images it is a much more difficult task than in the case of MRI/EEG study where electrodes are visible in morphological images. Using the appropriate dose of radioisotope we mark five base electrodes to make them visible in the SPECT image and then approximate the coordinates of the remaining electrodes using properties of the 10-20 electrode placement system and the proposed nine-ellipses model. This allows computing a sequence of 3D EEG maps spanning on all electrodes. It happens, however, that not all five base electrodes can be reliably identified in SPECT data. The aim of the current study was to develop a method for determining the coordinates of base electrode(s) missing in the SPECT image. The algorithm for coordinates approximation has been developed and was tested on data collected for three subjects with all visible electrodes. To increase the accuracy of the approximation we used head surface models. Freely available model from Oostenveld research based on data from SPM package and our own model based on data from our EEG/SPECT studies were used. For data collected in four cases with one electrode not visible we compared the invisible base electrode coordinates approximation for Oostenveld and our models. The results vary depending on the missing electrode placement, but application of the realistic head model significantly increases the accuracy of the approximation.

  1. Radiation dose estimate in small animal SPECT and PET.

    PubMed

    Funk, Tobias; Sun, Mingshan; Hasegawa, Bruce H

    2004-09-01

    Calculations of radiation dose are important in assessing the medical and biological implications of ionizing radiation in medical imaging techniques such as SPECT and PET. In contrast, radiation dose estimates of SPECT and PET imaging of small animals are not very well established. For that reason we have estimated the whole-body radiation dose to mice and rats for isotopes such as 18F, 99mTc, 201Tl, (111)In, 123I, and 125I that are used commonly for small animal imaging. We have approximated mouse and rat bodies with uniform soft tissue equivalent ellipsoids. The mouse and rat sized ellipsoids had a mass of 30 g and 300 g, respectively, and a ratio of the principal axes of 1:1:4 and 0.7:1:4. The absorbed fractions for various photon energies have been calculated using the Monte Carlo software package MCNP. Using these values, we then calculated MIRD S-values for two geometries that model the distribution of activity in the animal body: (a) a central point source and (b) a homogeneously distributed source, and compared these values against S-value calculations for small ellipsoids tabulated in MIRD Pamphlet 8 to validate our results. Finally we calculated the radiation dose taking into account the biological half-life of the radiopharmaceuticals and the amount of activity administered. Our calculations produced S-values between 1.06 x 10(-13) Gy/Bq s and 2.77 x 10(-13) Gy/Bq s for SPECT agents, and 15.0 x 10(-13) Gy/Bq s for the PET agent 18F, assuming mouse sized ellipsoids with uniform source distribution. The S-values for a central point source in an ellipsoid are about 10% higher than the values obtained for the uniform source distribution. Furthermore, the S-values for mouse sized ellipsoids are approximately 10 times higher than for the rat sized ellipsoids reflecting the difference in mass. We reviewed published data to obtain administered radioactivity and residence times for small animal imaging. From these values and our computed S-values we estimated

  2. Quantitative Comparison of PET and Bremsstrahlung SPECT for Imaging the In Vivo Yttrium-90 Microsphere Distribution after Liver Radioembolization

    PubMed Central

    Elschot, Mattijs; Vermolen, Bart J.; Lam, Marnix G. E. H.; de Keizer, Bart; van den Bosch, Maurice A. A. J.; de Jong, Hugo W. A. M.

    2013-01-01

    Background After yttrium-90 (90Y) microsphere radioembolization (RE), evaluation of extrahepatic activity and liver dosimetry is typically performed on 90Y Bremsstrahlung SPECT images. Since these images demonstrate a low quantitative accuracy, 90Y PET has been suggested as an alternative. The aim of this study is to quantitatively compare SPECT and state-of-the-art PET on the ability to detect small accumulations of 90Y and on the accuracy of liver dosimetry. Methodology/Principal Findings SPECT/CT and PET/CT phantom data were acquired using several acquisition and reconstruction protocols, including resolution recovery and Time-Of-Flight (TOF) PET. Image contrast and noise were compared using a torso-shaped phantom containing six hot spheres of various sizes. The ability to detect extra- and intrahepatic accumulations of activity was tested by quantitative evaluation of the visibility and unique detectability of the phantom hot spheres. Image-based dose estimates of the phantom were compared to the true dose. For clinical illustration, the SPECT and PET-based estimated liver dose distributions of five RE patients were compared. At equal noise level, PET showed higher contrast recovery coefficients than SPECT. The highest contrast recovery coefficients were obtained with TOF PET reconstruction including resolution recovery. All six spheres were consistently visible on SPECT and PET images, but PET was able to uniquely detect smaller spheres than SPECT. TOF PET-based estimates of the dose in the phantom spheres were more accurate than SPECT-based dose estimates, with underestimations ranging from 45% (10-mm sphere) to 11% (37-mm sphere) for PET, and 75% to 58% for SPECT, respectively. The differences between TOF PET and SPECT dose-estimates were supported by the patient data. Conclusions/Significance In this study we quantitatively demonstrated that the image quality of state-of-the-art PET is superior over Bremsstrahlung SPECT for the assessment of the 90Y

  3. Sci—Thur PM: Imaging — 05: Calibration of a SPECT/CT camera for quantitative SPECT with {sup 99m}Tc

    SciTech Connect

    Gaudin, Émilie; Montégiani, Jean-François; Després, Philippe; Beauregard, Jean-Mathieu

    2014-08-15

    While quantitation is the norm in PET, it is not widely available yet in SPECT. This work's aim was to calibrate a commercially available SPECT/CT system to perform quantitative SPECT. Counting sensitivity, dead-time (DT) constant and partial volume effect (PVE) of the system were assessed. A dual-head Siemens SymbiaT6 SPECT/CT camera equipped with low energy high-resolution collimators was studied. {sup 99m}Tc was the radioisotope of interest because of its wide usage in nuclear medicine. First, point source acquisitions were performed (activity: 30–990MBq). Further acquisitions were then performed with a uniform Jaszczak phantom filled with water at high activity (25–5000MBq). PVE was studied using 6 hot spheres (diameters: 9.9–31.2 mm) filled with {sup 99m}Tc (2.8MBq/cc) in the Jaszczak phantom, which was: (1) empty, (2) water-filled and (3) water-filled with low activity (0.1MBq/cc). The data was reconstructed with the Siemens's Flash3D iterative algorithm with 4 subsets and 8 iterations, attenuation-correction (AC) and scatter-correction (SC). DT modelling was based on the total spectrum counting rate. Sensitivity was assessed using AC-SC reconstructed SPECT data. Sensitivity and DT for the sources were 99.51±1.46cps/MBq and 0.60±0.04µs. For the phantom, sensitivity and DT were 109.9±2.3cps/MBq and 0.62±0.13µs. The recovery-coefficient varied from 5% for the 9.9mm, to 80% for the 31.2mm spheres. With our calibration methods, both sensitivity and DT constant of the SPECT camera had little dependence on the object geometry and attenuation. For small objects of known size, recovery-coefficient can be applied to correct PVE. Clinical quantitative SPECT appears to be possible and has many potential applications.

  4. Radiation dose to radiosensitive organs in PET/CT myocardial perfusion examination using versatile optical fibre

    NASA Astrophysics Data System (ADS)

    Salasiah, M.; Nordin, A. J.; Fathinul Fikri, A. S.; Hishar, H.; Tamchek, N.; Taiman, K.; Ahmad Bazli, A. K.; Abdul-Rashid, H. A.; Mahdiraji, G. A.; Mizanur, R.; Noor, Noramaliza M.

    2013-05-01

    Cardiac positron emission tomography (PET) provides a precise method in order to diagnose obstructive coronary artery disease (CAD), compared to single photon emission tomography (SPECT). PET is suitable for obese and patients who underwent pharmacologic stress procedures. It has the ability to evaluate multivessel coronary artery disease by recording changes in left ventricular function from rest to peak stress and quantifying myocardial perfusion (in mL/min/g of tissue). However, the radiation dose to the radiosensitive organs has become crucial issues in the Positron Emission Tomography/Computed Tomography(PET/CT) scanning procedure. The objective of this study was to estimate radiation dose to radiosensitive organs of patients who underwent PET/CT myocardial perfusion examination at Centre for Diagnostic Nuclear Imaging, Universiti Putra Malaysia in one month period using versatile optical fibres (Ge-B-doped Flat Fibre) and LiF (TLD-100 chips). All stress and rest paired myocardial perfusion PET/CT scans will be performed with the use of Rubidium-82 (82Rb). The optic fibres were loaded into plastic capsules and attached to patient's eyes, thyroid and breasts prior to the infusion of 82Rb, to accommodate the ten cases for the rest and stress PET scans. The results were compared with established thermoluminescence material, TLD-100 chips. The result shows that radiation dose given by TLD-100 and Germanium-Boron-doped Flat Fiber (Ge-B-doped Flat Fiber) for these five organs were comparable to each other where the p>0.05. For CT scans,thyroid received the highest dose compared to other organs. Meanwhile, for PET scans, breasts received the highest dose.

  5. [Acute stent thrombosis and reverse transient left ventricular dilatation after performing a single-photon emission computed tomography myocardial perfusion].

    PubMed

    Miranda, B; Pizzi, M N; Aguadé-Bruix, S; Domingo, E; Candell-Riera, J

    2015-01-01

    A 63-year-old male patient with a history of stent implantation in the left anterior descending three months before. Due to the presentation of vegetative symptoms, he was referred for gated-SPECT myocardial perfusion. During acquisition of the resting images he presented chest pain and ST segment elevation, so that urgent cardiac catheterization was performed, showing stent thrombosis. Rest perfusion imaging showed a defect in anterior and apical perfusion, more severe and extensive than in the stress images, with striking left ventricular dilatation and a fall in the ejection fraction related to the acute ischemia phenomenon. Intense exercise is associated with a transient activation of the coagulation system and hemodynamic changes that might induce thrombosis, especially in recently implanted coronary stents that probably still have not become completely endothelialized.

  6. SemiSPECT: A small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays

    PubMed Central

    Kim, Hyunki; Furenlid, Lars R.; Crawford, Michael J.; Wilson, Donald W.; Barber, H. Bradford; Peterson, Todd E.; Hunter, William C. J.; Liu, Zhonglin; Woolfenden, James M.; Barrett, Harrison H.

    2008-01-01

    The first full single-photon emission computed tomography (SPECT) imager to exploit eight compact high-intrinsic-resolution cadmium zinc telluride (CZT) detectors, called SemiSPECT, has been completed. Each detector consists of a CZT crystal and a customized application-specific integrated circuit (ASIC). The CZT crystal is a 2.7 cm × 2.7 cm × ~ 0.2 cm slab with a continuous top electrode and a bottom electrode patterned into a 64 × 64 pixel array by photolithography. The ASIC is attached to the bottom of the CZT crystal by indium-bump bonding. A bias voltage of −180 V is applied to the continuous electrode. The eight detectors are arranged in an octagonal lead-shielded ring. Each pinhole in the eight-pinhole aperture placed at the center of the ring is matched to each individual detector array. An object is imaged onto each detector through a pinhole, and each detector is operated independently with list-mode acquisition. The imaging subject can be rotated about a vertical axis to obtain additional angular projections. The performance of SemiSPECT was characterized using 99mTc. When a 0.5 mm diameter pinhole is used, the spatial resolution on each axis is about 1.4 mm as estimated by the Fourier crosstalk matrix, which provides an algorithm-independent average resolution over the field of view. The energy resolution achieved by summing neighboring pixel signals in a 3 × 3 window is about 10% full-width-at-half-maximum of the photopeak. The overall system sensitivity is about 0.5 × 10−4 with the energy window of ±10% from the photopeak. Line-phantom images are presented to visualize the spatial resolution provided by SemiSPECT, and images of bone, myocardium, and human tumor xenografts in mice demonstrate the feasibility of preclinical small-animal studies with SemiSPECT. PMID:16532954

  7. SemiSPECT: a small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays.

    PubMed

    Kim, Hyunki; Furenlid, Lars R; Crawford, Michael J; Wilson, Donald W; Barber, H Bradford; Peterson, Todd E; Hunter, William C J; Liu, Zhonglin; Woolfenden, James M; Barrett, Harrison H

    2006-02-01

    The first full single-photon emission computed tomography (SPECT) imager to exploit eight compact high-intrinsic-resolution cadmium zinc telluride (CZT) detectors, called SemiSPECT, has been completed. Each detector consists of a CZT crystal and a customized application-specific integrated circuit (ASIC). The CZT crystal is a 2.7 cm x 2.7 cm x -0.2 cm slab with a continuous top electrode and a bottom electrode patterned into a 64 x 64 pixel array by photolithography. The ASIC is attached to the bottom of the CZT crystal by indium-bump bonding. A bias voltage of -180 V is applied to the continuous electrode. The eight detectors are arranged in an octagonal lead-shielded ring. Each pinhole in the eight-pinhole aperture placed at the center of the ring is matched to each individual detector array. An object is imaged onto each detector through a pinhole, and each detector is operated independently with list-mode acquisition. The imaging subject can be rotated about a vertical axis to obtain additional angular projections. The performance of SemiSPECT was characterized using 99mTc. When a 0.5 mm diameter pinhole is used, the spatial resolution on each axis is about 1.4 mm as estimated by the Fourier crosstalk matrix, which provides an algorithm-independent average resolution over the field of view. The energy resolution achieved by summing neighboring pixel signals in a 3 x 3 window is about 10% full-width-at-half-maximum of the photopeak. The overall system sensitivity is about 0.5 x 10(-4) with the energy window of +/-10% from the photopeak. Line-phantom images are presented to visualize the spatial resolution provided by SemiSPECT, and images of bone, myocardium, and human tumor xenografts in mice demonstrate the feasibility of preclinical small-animal studies with SemiSPECT.

  8. Lung Dose Calculation With SPECT/CT for {sup 90}Yittrium Radioembolization of Liver Cancer

    SciTech Connect

    Yu, Naichang; Srinivas, Shaym M.; DiFilippo, Frank P.; Shrikanthan, Sankaran; Levitin, Abraham; McLennan, Gordon; Spain, James; Xia, Ping; Wilkinson, Allan

    2013-03-01

    Purpose: To propose a new method to estimate lung mean dose (LMD) using technetium-99m labeled macroaggregated albumin ({sup 99m}Tc-MAA) single photon emission CT (SPECT)/CT for {sup 90}Yttrium radioembolization of liver tumors and to compare the LMD estimated using SPECT/CT with clinical estimates of LMD using planar gamma scintigraphy (PS). Methods and Materials: Images of 71 patients who had SPECT/CT and PS images of {sup 99m}Tc-MAA acquired before TheraSphere radioembolization of liver cancer were analyzed retrospectively. LMD was calculated from the PS-based lung shunt assuming a lung mass of 1 kg and 50 Gy per GBq of injected activity shunted to the lung. For the SPECT/CT-based estimate, the LMD was calculated with the activity concentration and lung volume derived from SPECT/CT. The effect of attenuation correction and the patient's breathing on the calculated LMD was studied with the SPECT/CT. With these effects correctly taken into account in a more rigorous fashion, we compared the LMD calculated with SPECT/CT with the LMD calculated with PS. Results: The mean dose to the central region of the lung leads to a more accurate estimate of LMD. Inclusion of the lung region around the diaphragm in the calculation leads to an overestimate of LMD due to the misregistration of the liver activity to the lung from the patient's breathing. LMD calculated based on PS is a poor predictor of the actual LMD. For the subpopulation with large lung shunt, the mean overestimation from the PS method for the lung shunt was 170%. Conclusions: A new method of calculating the LMD for TheraSphere and SIR-Spheres radioembolization of liver cancer based on {sup 99m}Tc-MAA SPECT/CT is presented. The new method provides a more accurate estimate of radiation risk to the lungs. For patients with a large lung shunt calculated from PS, a recalculation of LMD based on SPECT/CT is recommended.

  9. Optimal energy window selection of a CZT-based small-animal SPECT for quantitative accuracy

    NASA Astrophysics Data System (ADS)

    Park, Su-Jin; Yu, A. Ram; Choi, Yun Young; Kim, Kyeong Min; Kim, Hee-Joung

    2015-05-01

    Cadmium zinc telluride (CZT)-based small-animal single-photon emission computed tomography (SPECT) has desirable characteristics such as superior energy resolution, but data acquisition for SPECT imaging has been widely performed with a conventional energy window. The aim of this study was to determine the optimal energy window settings for technetium-99 m (99mTc) and thallium-201 (201Tl), the most commonly used isotopes in SPECT imaging, using CZT-based small-animal SPECT for quantitative accuracy. We experimentally investigated quantitative measurements with respect to primary count rate, contrast-to-noise ratio (CNR), and scatter fraction (SF) within various energy window settings using Triumph X-SPECT. The two ways of energy window settings were considered: an on-peak window and an off-peak window. In the on-peak window setting, energy centers were set on the photopeaks. In the off-peak window setting, the ratios of energy differences between the photopeak from the lower- and higher-threshold varied from 4:6 to 3:7. In addition, the energy-window width for 99mTc varied from 5% to 20%, and that for 201Tl varied from 10% to 30%. The results of this study enabled us to determine the optimal energy windows for each isotope in terms of primary count rate, CNR, and SF. We selected the optimal energy window that increases the primary count rate and CNR while decreasing SF. For 99mTc SPECT imaging, the energy window of 138-145 keV with a 5% width and off-peak ratio of 3:7 was determined to be the optimal energy window. For 201Tl SPECT imaging, the energy window of 64-85 keV with a 30% width and off-peak ratio of 3:7 was selected as the optimal energy window. Our results demonstrated that the proper energy window should be carefully chosen based on quantitative measurements in order to take advantage of desirable characteristics of CZT-based small-animal SPECT. These results provided valuable reference information for the establishment of new protocol for CZT

  10. MRI-SPECT image registration using multiple MR pulse sequences to examine osteoarthritis of the knee

    NASA Astrophysics Data System (ADS)

    Lynch, John A.; Peterfy, Charles G.; White, David L.; Hawkins, Randall A.; Genant, Harry K.

    1999-05-01

    We have examined whether automated image registration can be used to combine metabolic information from SPECT knee scans with anatomical information from MRI. Ten patients, at risk of developing OA due to meniscal surgery, were examined. 99mTc methyldiphosphonate SPECT, T2-weighted fast spin echo (FSE) MRI, and T1-weighted, 3D fat-suppressed gradient recalled echo (SPGR) MRI images were obtained. Registration was performed using normalized mutual information. For each patient, FSE data was registered to SPGR data, providing a composite MRI image with each voxel represented by two intensities (ISPGR, IFSE). Modifications to the registration algorithm were made to allow registration of SPECT data (one intensity per voxel) to composite MRI data (2 intensities per voxel). Registration sources was assessed by visual inspection of uptake localization over expected anatomical locations, and the absence of uptake over unlikely sites. Three patients were discarded from SPECT-MRI registration tests since they had metallic artifacts that prevented co-registration of MR data. Registration of SPECT to SPGR or FSE data alone proved unreliable, with less than 50% of attempts succeeding. The modified algorithm, treating co-registered SPGR and FSE data as a two-value-per-voxel image, proved most reliable, allowing registration of all patients with no metallic artifacts on MRI.

  11. First use of mini gamma cameras for intra-operative robotic SPECT reconstruction.

    PubMed

    Matthies, Philipp; Sharma, Kanishka; Okur, Ash; Gardiazabal, José; Vogel, Jakob; Lasserl, Tobias; Navab, Nassir

    2013-01-01

    Different types of nuclear imaging systems have been used in the past, starting with pre-operative gantry-based SPECT systems and gamma cameras for 2D imaging of radioactive distributions. The main applications are concentrated on diagnostic imaging, since traditional SPECT systems and gamma cameras are bulky and heavy. With the development of compact gamma cameras with good resolution and high sensitivity, it is now possible to use them without a fixed imaging gantry. Mounting the camera onto a robot arm solves the weight issue, while also providing a highly repeatable and reliable acquisition platform. In this work we introduce a novel robotic setup performing scans with a mini gamma camera, along with the required calibration steps, and show the first SPECT reconstructions. The results are extremely promising, both in terms of image quality as well as reproducibility. In our experiments, the novel setup outperformed a commercial fhSPECT system, reaching accuracies comparable to state-of-the-art SPECT systems.

  12. Measurement of gallbladder volume and dynamics by combined SPECT and planar scintigraphy.

    PubMed

    Brown, P H; Krishnamurthy, G T; Brar, H S; Gray, L H; Gilbert, S

    1986-06-01

    A new method is described for measurement of gallbladder volume based on three-dimensional single photon emission computed tomography (SPECT). The technique was first validated in a body phantom that used a balloon to represent the gallbladder. The balloon was inflated with a known volume and SPECT volume was calculated by summing the voxels in each transaxial slice above a percentage count threshold. The SPECT and true volume showed a high linear correlation between 15 to 90 ml (r = 0.99). The mean fasting gallbladder volume using a technetium-99m-labelled hepatobiliary agent in nine normal subjects was 26 +/- 2 ml (range 18 to 39 ml). By combining the SPECT measurement with a planar technique, it was also possible to evaluate gallbladder emptying parameters. Following a 3 min infusion of 10 ng kg-1 of cholecystokinin octapeptide (CCK), the mean gallbladder ejection rate was 1.2 +/- 0.2 ml min-1 and the residual volume was 12 +/- 2 ml. SPECT offers a new noninvasive method for accurate measurement of gallbladder volume.

  13. A preclinical SPECT camera with depth-of-interaction compensation using a focused-cut scintillator

    NASA Astrophysics Data System (ADS)

    Alhassen, Fares; Kudrolli, Haris; Singh, Bipin; Kim, Sangtaek; Seo, Youngho; Gould, Robert G.; Nagarkar, Vivek V.

    2011-03-01

    Preclinical SPECT offers a powerful means to understand the molecular pathways of metabolic activity in animals. SPECT cameras using pinhole collimators offer high resolution that is needed for visualizing small structures in laboratory animals. One of the limitations of pinhole geometries is that increased magnification causes some rays to travel through the scintillator detector at steep angles, introducing parallax errors due to variable depth-of-interaction in the scintillator, especially towards the edges of the detector field of view. These parallax errors ultimately limit the resolution of pinhole preclinical SPECT systems, especially for higher energy isotopes that can easily penetrate through millimeters of scintillator material. A pixellated, focused-cut scintillator, with its pixels laser-cut so that they are collinear with incoming rays, can potentially compensate for these parallax errors and thus open up a new regime of sub-mm preclinical SPECT. We have built a 4-pinhole prototype gamma camera for preclinical SPECT imaging, using an EMCCD camera coupled to a 3 mm thick CsI(Tl) scintillator whose pixels are focused towards each 500 μm-diameter pinhole aperture of the four pinholes. The focused-cut scintillator was fabricated using a laser ablation process that allows for cuts with very high aspect ratios. We present preliminary results from our phantom experiments.

  14. Functional tests for myocardial ischemia

    SciTech Connect

    Levinson, J.R.; Guiney, T.E.; Boucher, C.A. )

    1991-01-01

    Functional tests for myocardial ischemia are numerous. Most depend upon a combination of either exercise or pharmacologic intervention with analysis of the electrocardiogram, of regional perfusion with radionuclide imaging, or of regional wall motion with radionuclide imaging or echocardiography. While each test has unique features, especially at the research level, they are generally quite similar in clinical practice, so the clinician is advised to concentrate on one or two in which local expertise is high.22 references.

  15. Tachyarrhythmias in acute myocardial infarction.

    PubMed

    McLean, K H; Bett, J N; Saltups, A

    1975-02-01

    In 1505 patients with acute myocardial infarction (MI) serious ventricular arrhythmias were commoner in those with transmural ECG changes, and were associated with an increase in mortality and in the incidence of left ventricular failure (LVF) as well as higher peak serum lactic dehydrogenase (LDH) levels. Atrial fibrillation (AF) occurred more often in older patients and in those with LVF and clinical evidence of pericarditis.

  16. Myocardial structure and matrix metalloproteinases.

    PubMed

    Aggeli, C; Pietri, P; Felekos, I; Rautopoulos, L; Toutouzas, K; Tsiamis, E; Stefanadis, C

    2012-01-01

    Metalloproteinases (MMPs) are enzymes which enhance proteolysis of extracellular matrix proteins. The pathophysiologic and prognostic role of MMPs has been demonstrated in numerous studies. The present review covers a wide a range of topics with regards to MMPs structural and functional properties, as well as their role in myocardial remodeling in several cardiovascular diseases. Moreover, the clinical and therapeutic implications from their assessment are highlighted.

  17. [Premonitory sign of myocardial rupture].

    PubMed

    Lauten, A; Dittrich, P

    1975-10-01

    It is reported on 14 cases in which a rupture of the myocardium occurred following a myocardial infarction. The moment of the appearance as well as anamnestic and clinical peculiarities are examined. As the only usable symptom of the rupture the symptomatology of the electromechanic dissociation must be taken into consideration. Finally it is referred to the on principle possible operative consequences of the rupture of the myocardium (oversewing or infarctetomy).

  18. Myocardialization of the cardiac outflow tract

    NASA Technical Reports Server (NTRS)

    van den Hoff, M. J.; Moorman, A. F.; Ruijter, J. M.; Lamers, W. H.; Bennington, R. W.; Markwald, R. R.; Wessels, A.

    1999-01-01

    During development, the single-circuited cardiac tube transforms into a double-circuited four-chambered heart by a complex process of remodeling, differential growth, and septation. In this process the endocardial cushion tissues of the atrioventricular junction and outflow tract (OFT) play a crucial role as they contribute to the mesenchymal components of the developing septa and valves in the developing heart. After fusion, the endocardial ridges in the proximal portion of the OFT initially form a mesenchymal outlet septum. In the adult heart, however, this outlet septum is basically a muscular structure. Hence, the mesenchyme of the proximal outlet septum has to be replaced by cardiomyocytes. We have dubbed this process "myocardialization." Our immunohistochemical analysis of staged chicken hearts demonstrates that myocardialization takes place by ingrowth of existing myocardium into the mesenchymal outlet septum. Compared to other events in cardiac septation, it is a relatively late process, being initialized around stage H/H28 and being basically completed around stage H/H38. To unravel the molecular mechanisms that are responsible for the induction and regulation of myocardialization, an in vitro culture system in which myocardialization could be mimicked and manipulated was developed. Using this in vitro myocardialization assay it was observed that under the standard culture conditions (i) whole OFT explants from stage H/H20 and younger did not spontaneously myocardialize the collagen matrix, (ii) explants from stage H/H21 and older spontaneously formed extensive myocardial networks, (iii) the myocardium of the OFT could be induced to myocardialize and was therefore "myocardialization-competent" at all stages tested (H/H16-30), (iv) myocardialization was induced by factors produced by, most likely, the nonmyocardial component of the outflow tract, (v) at none of the embryonic stages analyzed was ventricular myocardium myocardialization-competent, and finally

  19. Three modality image registration of brain SPECT/CT and MR images for quantitative analysis of dopamine transporter imaging

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuzuho; Takeda, Yuta; Hara, Takeshi; Zhou, Xiangrong; Matsusako, Masaki; Tanaka, Yuki; Hosoya, Kazuhiko; Nihei, Tsutomu; Katafuchi, Tetsuro; Fujita, Hiroshi

    2016-03-01

    Important features in Parkinson's disease (PD) are degenerations and losses of dopamine neurons in corpus striatum. 123I-FP-CIT can visualize activities of the dopamine neurons. The activity radio of background to corpus striatum is used for diagnosis of PD and Dementia with Lewy Bodies (DLB). The specific activity can be observed in the corpus striatum on SPECT images, but the location and the shape of the corpus striatum on SPECT images only are often lost because of the low uptake. In contrast, MR images can visualize the locations of the corpus striatum. The purpose of this study was to realize a quantitative image analysis for the SPECT images by using image registration technique with brain MR images that can determine the region of corpus striatum. In this study, the image fusion technique was used to fuse SPECT and MR images by intervening CT image taken by SPECT/CT. The mutual information (MI) for image registration between CT and MR images was used for the registration. Six SPECT/CT and four MR scans of phantom materials are taken by changing the direction. As the results of the image registrations, 16 of 24 combinations were registered within 1.3mm. By applying the approach to 32 clinical SPECT/CT and MR cases, all of the cases were registered within 0.86mm. In conclusions, our registration method has a potential in superimposing MR images on SPECT images.

  20. Utility of the SPECT Tc-99m labeled RBC blood pool scan in the detection of hepatic hemangiomas

    SciTech Connect

    Guze, B.H.; Hawkins, R.A.

    1989-11-01

    The sensitivity of SPECT imaging of hepatic blood pool activity using Tc-99m labeled RBCs was contrasted with magnetic resonance and CT imaging in 22 cases. SPECT is a noninvasive technique with a high sensitivity for the diagnosis of hepatic hemangiomas. It is helpful for clarifying equivocal magnetic resonance imaging results.

  1. Comparison of planar images and SPECT with bayesean preprocessing for the demonstration of facial anatomy and craniomandibular disorders

    SciTech Connect

    Kircos, L.T.; Ortendahl, D.A.; Hattner, R.S.; Faulkner, D.; Taylor, R.L.

    1984-01-01

    Craniomandiublar disorders involving the facial anatomy may be difficult to demonstrate in planar images. Although bone scanning is generally more sensitive than radiography, facial bone anatomy is complex and focal areas of increased or decreased radiotracer may become obscured by overlapping structures in planar images. Thus SPECT appears ideally suited to examination of the facial skeleton. A series of patients with craniomandibular disorders of unknown origin were imaged using 20 mCi Tc-99m MDP. Planar and SPECT (Siemens 7500 ZLC Orbiter) images were obtained four hours after injection. The SPECT images were reconstructed with a filtered back-projection algorithm. In order to improve image contrast and resolution in SPECT images, the rotation views were pre-processed with a Bayesean deblurring algorithm which has previously been show to offer improved contrast and resolution in planar images. SPECT images using the pre-processed rotation views were obtained and compared to the SPECT images without pre-processing and the planar images. TMJ arthropathy involving either the glenoid fossa or the mandibular condyle, orthopedic changes involving the mandible or maxilla, localized dental pathosis, as well as changes in structures peripheral to the facial skeleton were identified. Bayesean pre-processed SPECT depicted the facial skeleton more clearly as well as providing a more obvious demonstration of the bony changes associated with craniomandibular disorders than either planar images or SPECT without pre-processing.

  2. Myocardial Infarction in the Elderly

    PubMed Central

    Carro, Amelia; Kaski, Juan Carlos

    2011-01-01

    Advances in pharmacological treatment and effective early myocardial revascularization have –in recent years- led to improved clinical outcomes in patients with acute myocardial infarction (AMI). However, it has been suggested that compared to younger subjects, elderly AMI patients are less likely to receive evidence-based treatment, including myocardial revascularization therapy. Several reasons have been postulated to explain this trend, including uncertainty regarding the true benefits of the interventions commonly used in this setting as well as increased risk mainly associated with comorbidities. The diagnosis, management, and post-hospitalization care of elderly patients presenting with an acute coronary syndrome pose many difficulties at present. A complex interplay of variables such as comorbidities, functional and socioeconomic status, side effects associated with multiple drug administration, and individual biologic variability, all contribute to creating a complex clinical scenario. In this complex setting, clinicians are often required to extrapolate evidence-based results obtained in cardiovascular trials from which older patients are often, implicitly or explicitly, excluded. This article reviews current recommendations regarding management of AMI in the elderly. PMID:22396870

  3. [Compartment analysis of 123I-IMP brain SPECT].

    PubMed

    Higano, S; Shishido, F; Aizawa, Y; Miura, S; Murakami, M; Inugami, A; Kanno, I; Fujita, H; Uemura, K

    1990-01-01

    To clarify the kinetics of N-isopropyl [123I]p-iodoamphetamine (IMP) in the brain, 2-compartment analysis was applied for brain SPECT with 57-minute dynamic scan in 9 subjects. The model consisted of blood component and brain tissue component. Two transfer rate constants were defined; k1 showed the rate from the blood to the brain tissue, and k2 was that of back diffusion. The late scan was performed 210 minutes after the tracer injection. Suitable k values best fitting to the dynamic data were determined for all regions of interest. Predicted regional cerebral activity at 210 minutes using 57-minute dynamic data was well agreed with measured activity. These showed the kinetics of IMP in the brain was well described by the 2-compartment model. The partition coefficient (k1/k2 ratio) was as large as about 35, and almost constant in the various brain structures including hypoperfused areas. These findings indicated that the initial IMP images reflected the reasonable CBF distribution, which gave relatively reliable CBF values even if using microsphere model.

  4. Complementary acupuncture in Parkinson's disease: a spect study.

    PubMed

    Huang, Yong; Jiang, Xuemei; Zhuo, Ying; Wik, Gustav

    2010-02-01

    We studied cerebral effects of complementary acupuncture in Parkinson's disease using single photon emission computed tomography (SPECT) measures of 99mTc-ECD and 99mTc-TRODAT-4, before and after five weeks of treatment. Ten patients were randomly assigned to receive levodopa alone (controls) or levodopa and complementary scalp electro-acupuncture. Before treatment, no hemispheric regional cerebral blood flow (rCBF) differences were found, whereas striatal dopamine transporter (DAT) activity was lower in the most affected hemisphere. Treatment with levodopa alone did not change rCBF, whereas it increased basal ganglion DAT activity in the most affected hemisphere. Patients who received levodopa and complementary acupuncture had increased rCBF in the frontal lobe, the occipital lobe, the basal ganglion, and the cerebellum in the most affected hemisphere as compared to baseline, but there were no changes in basal ganglia DAT levels. Thus, complementary acupuncture treatment in Parkinson's disease may affect rCBF but not basal ganglion DAT.

  5. SPECT scatter modelling in non-uniform attenuating objects

    NASA Astrophysics Data System (ADS)

    Beekman, Freek J.; den Harder, Johan M.; Viergever, Max A.; van Rijk, Peter P.

    1997-06-01

    SPECT quantitation and image contrast are degraded by photon scatter. Water equivalent depths (WEDs) have been used by several investigators to model scatter responses in non-uniform attenuators. The drawback of this approach is the occurrence of undesired fluctuations in the shape of the scatter responses, as is shown by measurements. An improvement of the WED method is presented, based on the assumption that only a part of the scattering object (the region in the `scatter cone') contributes significantly to the detected scatter events. The remaining part of the object is treated as a uniform medium. The extension of the WED method with extra-conical invariance is evaluated by projection measurements of a phantom with a source. Shapes of scatter responses predicted by the method are found to agree better with the measurements than those predicted by conventional WEDs.

  6. Visual-search observers for SPECT simulations with clinical backgrounds

    NASA Astrophysics Data System (ADS)

    Gifford, Howard C.

    2016-03-01

    The purpose of this work was to test the ability of visual-search (VS) model observers to predict the lesion- detection performance of human observers with hybrid SPECT images. These images consist of clinical back- grounds with simulated abnormalities. The application of existing scanning model observers to hybrid images is complicated by the need for extensive statistical information, whereas VS models based on separate search and analysis processes may operate with reduced knowledge. A localization ROC (LROC) study involved the detection and localization of solitary pulmonary nodules in Tc-99m lung images. The study was aimed at op- timizing the number of iterations and the postfiltering of four rescaled block-iterative reconstruction strategies. These strategies implemented different combinations of attenuation correction, scatter correction, and detector resolution correction. For a VS observer in this study, the search and analysis processes were guided by a single set of base morphological features derived from knowledge of the lesion profile. One base set used difference-of- Gaussian channels while a second base set implemented spatial derivatives in combination with the Burgess eye filter. A feature-adaptive VS observer selected features of interest for a given image set on the basis of training-set performance. A comparison of the feature-adaptive observer results against previously acquired human-observer data is presented.

  7. [Dependence of uniformity on the radionuclide in SPECT: test methods].

    PubMed

    Kalnischke, Heiko; Grebe, Gerhard; Zander, Andreas; Munz, Dieter Ludwig; Geworski, Lilli

    2004-01-01

    The aim of this study was to investigate test methods to clarify whether the non-uniformity of a gamma camera depends on individual radionuclides, and whether it is necessary to measure a separate correction matrix for each radionuclide used in single photon emission computed tomography (SPECT). Two methods were devised to verify the nuclide-dependence of the gamma camera. In order to test the energy correction of the detectors, the first approach was based on the evaluation of the intrinsic non-uniformity and on the production of images with asymmetrical energy window. The second method was based on the production of correction matrices for different radionuclides, as well as on the subsequent application to phantom data that were also generated with different radionuclides. The investigation of a dualhead gamma camera produced the same results with both methods. One detector head was found to be weakly dependent on the radionuclide, due to the insufficient quality of energy correction. In this case, the phantom or patient data should be corrected using a uniformity correction matrix measured with the same radionuclide. The second detector remained nuclide-independent; in this case the uniformity correction matrix acquired for only one radionuclide was sufficient.

  8. High-resolution reconstruction for 3D SPECT

    NASA Astrophysics Data System (ADS)

    Li, Tianfang; Wen, Junhai; Lu, Hongbing; Li, Xiang; Liang, Zhengrong

    2003-05-01

    In this work, we have developed a new method for SPECT (single photon emission computed tomography) image reconstruction, which has shown the potential to provide higher resolution results than any other conventional methods using the same projection data. Unlike the conventional FBP- (filtered backprojection) and EM- (expectation maximization) type algorithms, we utilize as much system response information as we can during the reconstruction process. This information can be pre-measured during the calibration process and stored in the computer. By selecting different sampling schemes for the point response measurement, different system kernel matrices are obtained. Reconstruction utilizing these kernels generates a set of reconstructed images of the same source. Based on these reconstructed images and their corresponding sampling schemes, we are able to achieve a high resolution final image that best represents the object. Because a uniform attenuation, resolution variation and some other effects are included during the formation of the system kernel matrices, the reconstruction from the acquired projection data also compensates for all these effects correctly.

  9. Development of a Germanium Small-Animal SPECT System

    PubMed Central

    Johnson, Lindsay C.; Ovchinnikov, Oleg; Shokouhi, Sepideh; Peterson, Todd E.

    2015-01-01

    Advances in fabrication techniques, electronics, and mechanical cooling systems have given rise to germanium detectors suitable for biomedical imaging. We are developing a small-animal SPECT system that uses a double-sided Ge strip detector. The detector’s excellent energy resolution may help to reduce scatter and simplify processing of multi-isotope imaging, while its ability to measure depth of interaction has the potential to mitigate parallax error in pinhole imaging. The detector’s energy resolution is <1% FWHM at 140 keV and its spatial resolution is approximately 1.5 mm FWHM. The prototype system described has a single-pinhole collimator with a 1-mm diameter and a 70-degree opening angle with a focal length variable between 4.5 and 9 cm. Phantom images from the gantry-mounted system are presented, including the NEMA NU-2008 phantom and a hot-rod phantom. Additionally, the benefit of energy resolution is demonstrated by imaging a dual-isotope phantom with 99mTc and 123I without cross-talk correction. PMID:26755832

  10. Clinical value and severity of myocardial perfusion defects in asymptomatic diabetic patients with negative or weakly positive exercise treadmill test

    PubMed Central

    Zakavi, Seyed Rasoul; Taherpour, Mehdi; Moossavi, Zohreh; Sadeghi, Ramin; Kakhki, Vahidreza Dabbagh; Rokni, Haleh

    2013-01-01

    Objective: Although coronary artery disease (CAD) is the leading cause of death in type 2 diabetic patients, it is frequently asymptomatic. Myocardial perfusion imaging (MPI) is reported to show ischemia in a significant number of asymptomatic diabetic patients. We studied the prevalence and severity of myocardial perfusion defects in asymptomatic diabetic patients and its clinical impact. Methods and patients: One hundred thirty consecutive asymptomatic patients, aged 35-65 years with type 2 diabetes mellitus and with no history of CAD and no cardiac symptoms were recruited in the study. Echocardiography, electrocardiography (ECG), routine laboratory tests and exercise treadmill test (ETT) were performed and patients with weakly positive or negative ETT underwent Dipyridamole MPI. Patients with positive ETT were referred to coronary angiography. Patients were followed for at least 17 months (mean 21.7 months) and any cardiac event was recorded. Results: We studied 81 female and 49 male patients with mean age of 51.8 years. Negative, weakly positive and positive ETT result was noted in 74.3%, 15% and 10.7% respectively. 75% of patients with positive ETT had coronary artery disease in angiography. Gated myocardial perfusion SPECT was done in 106 patients. MPI showed reversible defect in 26.9% of the patients with a mean summed stress score of 3.3±1.8. Follow up completed in 112 patients and only one patient with abnormal MPI underwent coronary angiography followed by PTCA. No cardiac death, MI, UA or hospital admission occurred among our patients during follow up (17-26 months). Mean stress end diastolic volume (EDV) was significantly higher in patients with reversible defect compared to patients without reversible defect based on MPI findings (62.0±31.6 Vs 48.5±18.4 ml, P=0.04). Blood glucose and HbA1c were significantly higher in patients with ischemia compared to patients without ischemia (P<0.05). Meanwhile the ratio of TG to HDL was 6.06±3.2 in ischemic

  11. Imaging of myocardial perfusion with magnetic resonance.

    PubMed

    Barkhausen, Jörg; Hunold, Peter; Jochims, Markus; Debatin, Jörg F

    2004-06-01

    Coronary artery disease (CAD) is currently the leading cause of death in developed nations. Reflecting the complexity of cardiac function and morphology, noninvasive diagnosis of CAD represents a major challenge for medical imaging. Although coronary artery stenoses can be depicted with magnetic resonance (MR) and computed tomography (CT) techniques, its functional or hemodynamic impact frequently remains elusive. Therefore, there is growing interest in other, target organ-specific parameters such as myocardial function at stress and first-pass myocardial perfusion imaging to assess myocardial blood flow. This review explores the pathophysiologic background, recent technical developments, and current clinical status of first-pass MR imaging (MRI) of myocardial perfusion.

  12. MIRD pamphlet No. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy.

    PubMed

    Dewaraja, Yuni K; Frey, Eric C; Sgouros, George; Brill, A Bertrand; Roberson, Peter; Zanzonico, Pat B; Ljungberg, Michael

    2012-08-01

    In internal radionuclide therapy, a growing interest in voxel-level estimates of tissue-absorbed dose has been driven by the desire to report radiobiologic quantities that account for the biologic consequences of both spatial and temporal nonuniformities in these dose estimates. This report presents an overview of 3-dimensional SPECT methods and requirements for internal dosimetry at both regional and voxel levels. Combined SPECT/CT image-based methods are emphasized, because the CT-derived anatomic information allows one to address multiple technical factors that affect SPECT quantification while facilitating the patient-specific voxel-level dosimetry calculation itself. SPECT imaging and reconstruction techniques for quantification in radionuclide therapy are not necessarily the same as those designed to optimize diagnostic imaging quality. The current overview is intended as an introduction to an upcoming series of MIRD pamphlets with detailed radionuclide-specific recommendations intended to provide best-practice SPECT quantification-based guidance for radionuclide dosimetry.

  13. Diagnoses behind patients with hard-to-classify tremor and normal DaT-SPECT: a clinical follow up study

    PubMed Central

    Menéndez-González, Manuel; Tavares, Francisco; Zeidan, Nahla; Salas-Pacheco, José M.; Arias-Carrión, Oscar

    2014-01-01

    The [123I]ioflupane—a dopamine transporter radioligand—SPECT (DaT-SPECT) has proven to be useful in the differential diagnosis of tremor. Here, we investigate the diagnoses behind patients with hard-to-classify tremor and normal DaT-SPECT. Therefore, 30 patients with tremor and normal DaT-SPECT were followed up for 2 years. In 18 cases we were able to make a diagnosis. The residual 12 patients underwent a second DaT-SPECT, were then followed for additional 12 months and thereafter the diagnosis was reconsidered again. The final diagnoses included cases of essential tremor, dystonic tremor, multisystem atrophy, vascular parkinsonism, progressive supranuclear palsy, corticobasal degeneration, fragile X–associated tremor ataxia syndrome, psychogenic parkinsonism, iatrogenic parkinsonism and Parkinson's disease. However, for 6 patients the diagnosis remained uncertain. Larger series are needed to better establish the relative frequency of the different conditions behind these cases. PMID:24744729

  14. Clinical Usefulness of SPECT-CT in Patients with an Unexplained Pain in Metal on Metal (MOM) Total Hip Arthroplasty.

    PubMed

    Berber, Reshid; Henckel, Johann; Khoo, Michael; Wan, Simon; Hua, Jia; Skinner, John; Hart, Alister

    2015-04-01

    SPECT-CT is increasingly used to assess painful knee arthroplasties. The aim of this study was to evaluate the clinical usefulness of SPECT-CT in unexplained painful MOM hip arthroplasty. We compared the diagnosis and management plan for 19 prosthetic MOM hips in 15 subjects with unexplained pain before and after SPECT-CT. SPECT-CT changed the management decision in 13 (68%) subjects, Chi-Square=5.49, P=0.24. In 6 subjects (32%) pain remained unexplained however the result reassured the surgeon to continue with non-operative management. SPECT-CT should be reserved as a specialist test to help identify possible causes of pain where conventional investigations have failed. It can help reassure surgeons making management decisions for patients with unexplained pain following MOM hip arthroplasty.

  15. Myocardial perfusion scintigraphy: the evidence

    PubMed Central

    Anagnostopoulos, C.; Cerqueira, M.; Ell, P. J.; Flint, E. J.; Harbinson, M.; Kelion, A. D.; Al-Mohammad, A.; Prvulovich, E. M.; Shaw, L. J.; Tweddel, A. C.

    2003-01-01

    This review summarises the evidence for the role of myocardial perfusion scintigraphy (MPS) in patients with known or suspected coronary artery disease. It is the product of a consensus conference organised by the British Cardiac Society, the British Nuclear Cardiology Society and the British Nuclear Medicine Society and is endorsed by the Royal College of Physicians of London and the Royal College of Radiologists. It was used to inform the UK National Institute of Clinical Excellence in their appraisal of MPS in patients with chest pain and myocardial infarction. MPS is a well-established, non-invasive imaging technique with a large body of evidence to support its effectiveness in the diagnosis and management of angina and myocardial infarction. It is more accurate than the exercise ECG in detecting myocardial ischaemia and it is the single most powerful technique for predicting future coronary events. The high diagnostic accuracy of MPS allows reliable risk stratification and guides the selection of patients for further interventions, such as revascularisation. This in turn allows more appropriate utilisation of resources, with the potential for both improved clinical outcomes and greater cost-effectiveness. Evidence from modelling and observational studies supports the enhanced cost-effectiveness associated with MPS use. In patients presenting with stable or acute chest pain, strategies of investigation involving MPS are more cost-effective than those not using the technique. MPS also has particular advantages over alternative techniques in the management of a number of patient subgroups, including women, the elderly and those with diabetes, and its use will have a favourable impact on cost-effectiveness in these groups. MPS is already an integral part of many clinical guidelines for the investigation and management of angina and myocardial infarction. However, the technique is underutilised in the UK, as judged by the inappropriately long waiting times and by

  16. Blind deconvolution of human brain SPECT images using a distribution mixture estimation

    NASA Astrophysics Data System (ADS)

    Mignotte, Max; Meunier, Jean

    2000-06-01

    Thanks to its ability to yield functionally-based information, the SPECT imagery technique has become a great help in the diagnostic of cerebrovascular diseases. Nevertheless, due to the imaging process, SPECT images are blurred and consequently their interpretation by the clinician is often difficult. In order to improve the spatial resolution of these images and then to facilitate their interpretation, we propose herein to implement a deconvolution procedure relying on an accurate distribution mixture parameter estimation procedure. Parameters of this distribution mixture are efficiently exploited in order to prevent overfitting of the noisy data or to determine the support of the object to be deconvolved when this one is needed. In this context, we compare the deconvolution results obtained by the Lucy-Richardson method and by the recent blind deconvolution technique called the NAS-RIF algorithm on real and simulated brain SPECT images. The NAS-RIF performs the best and shows significant contrast enhancement with little mottle (noise) amplification.

  17. Drug Development in Alzheimer’s Disease: The Contribution of PET and SPECT

    PubMed Central

    Declercq, Lieven D.; Vandenberghe, Rik; Van Laere, Koen; Verbruggen, Alfons; Bormans, Guy

    2016-01-01

    Clinical trials aiming to develop disease-altering drugs for Alzheimer’s disease (AD), a neurodegenerative disorder with devastating consequences, are failing at an alarming rate. Poorly defined inclusion-and outcome criteria, due to a limited amount of objective biomarkers, is one of the major concerns. Non-invasive molecular imaging techniques, positron emission tomography and single photon emission (computed) tomography (PET and SPE(C)T), allow visualization and quantification of a wide variety of (patho)physiological processes and allow early (differential) diagnosis in many disorders. PET and SPECT have the ability to provide biomarkers that permit spatial assessment of pathophysiological molecular changes and therefore objectively evaluate and follow up therapeutic response, especially in the brain. A number of specific PET/SPECT biomarkers used in support of emerging clinical therapies in AD are discussed in this review. PMID:27065872

  18. SPECT reconstruction using a backpropagation neural network implemented on a massively parallel SIMD computer

    SciTech Connect

    Kerr, J.P.; Bartlett, E.B.

    1992-12-31

    In this paper, the feasibility of reconstructing a single photon emission computed tomography (SPECT) image via the parallel implementation of a backpropagation neural network is shown. The MasPar, MP-1 is a single instruction multiple data (SIMD) massively parallel machine. It is composed of a 128 x 128 array of 4-bit processors. The neural network is distributed on the array by dedicating a processor to each node and each interconnection of the network. An 8 x 8 SPECT image slice section is projected into eight planes. It is shown that based on the projections, the neural network can produce the original SPECT slice image exactly. Likewise, when trained on two parallel slices, separated by one slice, the neural network is able to reproduce the center, untrained image to an RMS error of 0.001928.

  19. Cerebral abnormalities in cocaine abusers: Demonstration by SPECT perfusion brain scintigraphy. Work in progress

    SciTech Connect

    Tumeh, S.S.; Nagel, J.S.; English, R.J.; Moore, M.; Holman, B.L. )

    1990-09-01

    Single photon emission computed tomography (SPECT) perfusion brain scans with iodine-123 isopropyl iodoamphetamine (IMP) were obtained in 12 subjects who acknowledged using cocaine on a sporadic to a daily basis. The route of cocaine administration varied from nasal to intravenous. Concurrent abuse of other drugs was also reported. None of the patients were positive for human immunodeficiency virus. Brain scans demonstrated focal defects in 11 subjects, including seven who were asymptomatic, and no abnormality in one. Among the findings were scattered focal cortical deficits, which were seen in several patients and which ranged in severity from small and few to multiple and large, with a special predilection for the frontal and temporal lobes. No perfusion deficits were seen on I-123 SPECT images in five healthy volunteers. Focal alterations in cerebral perfusion are seen commonly in asymptomatic drug users, and these focal deficits are readily depicted by I-123 IMP SPECT.

  20. [Regional cerebral blood flow-SPECT "OFF-ON": a case report of catatonia].

    PubMed

    Moreno Caballero, M; Corchos González, N; De Antonio Rubio, I; Gómez-Río, M; Guerrero Velázquez, J F; Rodríguez Fernández, A; Llamas Elvira, J M

    2014-01-01

    We report the case of a patient with a long history of dysthymia and major depressive episodes requiring repeated hospitalization. We describe the most recent episode, associated with catatonia symptomatology and features suggestive of cognitive impairment. The absence of a clear initial psychopharmacological response alongside the clinical severity made the patient a potential candidate for electroconvulsive therapy (ECT). A regional cerebral blood flow SPECT (SPECT-rCBF), performed to rule out concomitant Alzheimer disease (AD), revealed a markedly decreased neocortical uptake, with no definitive pattern of concomitant primary cognitive impairment. Because a gradual clinical improvement was observed in the patient, with evidence of enhanced cerebral reperfusion in a second SPECT-rCBF study at two weeks after admission, the application of ECT was discounted and an expectant attitude was adopted.

  1. SPECT Imaging of Inflammatory Response in Ischemic–Reperfused Rat Hearts Using a 99mTc-Labeled Dual-Domain Cytokine Ligand

    PubMed Central

    Liu, Zhonglin; Barber, Christy; Wan, Li; Liu, Shan; Hui, Mizhou M.; Furenlid, Lars R.; Xu, Hua; Woolfenden, James M.

    2016-01-01

    Soluble tumor necrosis factor (TNF) receptor-2 (TNFR2) and interleukin-1 receptor antagonist (IL-1ra) were fused to the Fc portion of IgG1 using recombinant DNA technology. The resulting dual-domain cytokine ligand, TNFR2-Fc-IL-1ra, specifically binds to TNF and to the type I IL-1 receptor (IL-1RI). This study was designed to characterize the kinetic profile of 99mTc-labeled TNFR2-Fc-IL-1ra (TFI) for imaging inflammatory response in an ischemic–reperfused (IR) rat heart model. Methods The IR model was created by ligating the left coronary artery for 45 min, followed by 2-h reperfusion. Cardiac SPECT images of TFI in the IR model (n = 6) were dynamically acquired for 3 h. Correlative data of myocardial TFI distribution versus microsphere-determined tissue blood flow were acquired in 3 extra IR hearts. Inflammation targeting affinity of TFI was compared with 2 individual cytokine radioligands, 99mTc-IL-1ra-Fc (IF) and 99mTc-TNFR2-Fc (TF) (n = 6 each group). Myocardial cytokine expression was evaluated by immunochemical assay. Results Increased TFI uptake was found in the ischemic area and correlated with the severity of ischemia. At 3 h after injection, the ratio of hot-spot accumulation in the ischemic area to a remote viable zone was 5.39 ± 1.11 for TFI, which was greater than that for IF (3.28 ± 0.81) and TF (3.29 ± 0.75) (P < 0.05). The in vivo uptake profiles of TFI, TF, and IF were consistent with ex vivo radioactive measurements and correlated with upregulated IL-1 and TNF expression. Conclusion The dual-domain TFI is promising for noninvasive detection of inflammatory reactions in IR myocardium because of its more potent affinity to the inflammatory sites compared with TF and IF. PMID:24179185

  2. Impact of hybrid SPECT/CT imaging on the detection of single parathyroid adenoma

    NASA Astrophysics Data System (ADS)

    Morrison, Antony; Brennan, Patrick C.; Reed, Warren; Pietrzyk, Mariusz; Schembri, Geoff; Bailey, Elizabeth; Roach, Paul; Evanoff, Michael; Kench, Peter L.

    2011-03-01

    Objective: The aim of this investigation is to determine the impact of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) on the detection of parathyroid adenoma. Materials and methods: 16 patients presented with suspected parathyroid adenoma localised within the neck. All patients were injected with Tc-99m sestamibi and were scanned with a GE Infinia Hawkeye SPECT/CT. There were six negative and ten positive confirmed cases. Five expert radiologists specializing in nuclear medicine were asked to report on the 16 planar and SPECT data sets and were then asked to report on the same randomly ordered data sets with the addition of CT. Receiver operating characteristic (ROC) analysis was performed using the Dorfman-Berbaum-Metz multireadermulticase methodology and sensitivity and specificity values were generated. A significance level of p <= 0.05 was set for all comparisons. Results: ROC analysis demonstrated an AUC of 0.64 and 0.69 for SPECT and SPECT/CT respectively (p = 0.31). Mean sensitivity scores increased from 0.64 to 0.80 (p = 0.17) and specificity scores decreased from 0.57 to 0.40 (p = 0.17) with the addition of the CT data. Conclusion: This preliminary investigation suggests that extra CT information may increase lesion detection as well as false positive rates for SPECT-based investigations of a single parathyroid adenoma. However the difference in diagnostic efficacy between the two groups was not found to be statistically significant therefore requiring further investigation. These findings have implications beyond the clinical situation described here.

  3. SPECT Imaging as a Tool for Testing and Challenging Assumptions About Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Moysey, S. M.; DeVol, T. A.; Tornai, M. P.

    2014-12-01

    Medical imaging has shown promise for unraveling the influence of physical, chemical and biological processes on contaminant transport. Micro-CT scans, for instance, are increasingly utilized to image the pore-scale structure of rocks and soils, which can subsequently be used within modeling studies. A disadvantage of micro-CT, however, is that this imaging modality does not directly detect contaminants. In contrast, Single Photon Emission Computed Tomography (SPECT) can provide the three-dimensional distribution of gamma emitting materials and is thus ideal for imaging the transport of radionuclides. SPECT is of particular interest as a tool for both directly imaging the behavior of long-lived radionuclides of interest, e.g., 99Tc and 137Cs, as well as monitoring shorter-lived isotopes as in-situ tracers of flow and biogeochemical processes. We demonstrate the potential of combining CT and SPECT imaging to improve the mechanistic understanding of flow and transport processes within a heterogeneous porous medium. In the experiment, a column was packed with 0.2mm glass beads with a cylindrical zone of 2mm glass beads embedded near the outlet; this region could be readily identified within the CT images. The column was injected with a pulse of NaCl solution spiked with 99mTcO4- and monitored using SPECT while aliquots of the effluent were used to analyze the breakthrough of both solutes. The breakthrough curves could be approximately replicated by a one-dimensional transport model, but the SPECT data revealed that the tracers migrated around the inclusion of larger beads. Although the zone of large-diameter beads was expected to act as a preferential pathway, the observed behavior could only be replicated in numerical transport simulations if this region was treated as a low-permeability zone relative to the rest of the column. This simple experiment demonstrates the potential of SPECT for investigating flow and transport phenomena within a porous medium.

  4. Diffuse Gallium-67 Accumulation in the Left Atrial Wall Detected Using SPECT/CT Fusion Images

    PubMed Central

    Kawabe, Joji; Higashiyama, Shigeaki; Yoshida, Atsushi; Shiomi, Susumu

    2016-01-01

    Gallium-67 scintigraphy is useful for detecting active inflammation. We show a 66-year-old female patient with atrial fibrillation and diffuse thickening of the left atrial wall due to acute myocarditis, who presented diffuse abnormal accumulation of gallium-67 in the left atrium on single photon emission computed tomography/computed tomography (SPECT/CT) fusion images. In the second gallium-67 scan 2 months after the first scintigraphy, the abnormal accumulation in the heart was no longer visible. Gallium-67 SPECT/CT images helped understanding the disease condition that temporary inflammation in the left atrium caused atrial fibrillation. PMID:28097031

  5. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    PubMed Central

    Yan, Susu; Bowsher, James; Tough, MengHeng; Cheng, Lin; Yin, Fang-Fang

    2014-01-01

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT PhantomTM), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole

  6. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    SciTech Connect

    Yan, Susu Tough, MengHeng; Bowsher, James; Yin, Fang-Fang; Cheng, Lin

    2014-11-01

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT Phantom{sup TM}), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the

  7. Relative hyperperfusion by SPECT in a family with a presenilin 1 (T245P) mutation.

    PubMed

    Edwards-Lee, Terri; Wen, Johnny; Chung, Julia A; Vasinrapee, Panukorn; Mishkin, Frederick S

    2008-01-01

    Clinical characteristics of autosomal dominant Alzheimer's disease often differ clinically from sporadic disease with the onset of seizures, spasticity and myoclonus early in the disease course. Similarly imaging characteristics may also differ. We report the findings of relative hyperperfusion by Tc-99m HMPAO SPECT in the medial orbitofrontal cortex and anterior temporal lobe in four affected family members carrying a presenilin 1 mutation. SPECT of the four individuals was compared to an age-matched normal database. We speculate that the findings of relative medial orbitofrontal and anterior temporal lobe hyperperfusion may be a marker of early onset Alzheimer's disease in this family.

  8. Gallium-SPECT in the detection of prosthetic valve endocarditis and aortic ring abscess

    SciTech Connect

    O'Brien, K.; Barnes, D.; Martin, R.H.; Rae, J.R. )

    1991-09-01

    A 52-yr-old man who had a bioprosthetic aortic valve developed Staphylococcus aureus bacteremia. Despite antibiotic therapy he had persistent pyrexia and developed new conduction system disturbances. Echocardiography did not demonstrate vegetations on the valve or an abscess, but gallium scintigraphy using SPECT clearly identified a focus of intense activity in the region of the aortic valve. The presence of valvular vegetations and a septal abscess was confirmed at autopsy. Gallium scintigraphy, using SPECT, provided a useful noninvasive method for the demonstration of endocarditis and the associated valve ring abscess.

  9. Multifocal inflammatory leukoencephalopathy: use of thallium-201 SPECT and proton MRS.

    PubMed Central

    Hwang, Yang Ha; Suh, Chung Kyu; Park, Sung Pa

    2003-01-01

    In a patient receiving 5-fluorouracil and levamisole, neurologic deficits suggest the cerebral demyelinating syndrome as a differential diagnosis. The authors report a patient diagnosed as multifocal inflammatory leukoencephalopathy for which thallium-201 (201Tl) single photon emission computed tomography (SPECT) and proton magnetic resonance spectroscopy (MRS) were employed as noninvasive diagnostic tools. 201Tl SPECT study was negative and proton MRS showed an increase of choline and lactate and well preserved N-acetylaspartate. These findings support histopathologic findings of multifocal inflammatory leukoencephalopathy revealing demyelination with relative axonal sparing in the patient. PMID:12923348

  10. SPECT/CT of osteitis condensans ilii: one-stop shop imaging.

    PubMed

    Gemmel, Filip; de Coningh, Arwin van Vrijberghe; Collins, James; Rijk, Paul

    2011-01-01

    A 16-year-old, nonpregnant, healthy, and sportive teenager suffers from intermittent low back pain. Pelvic x-ray complemented by bone-SPECT/CT demonstrated an uncommon benign condition called osteitis condensans ilii. In the early phase, it is of paramount importance to distinguish osteitis condensans ilii from sacroiliitis or ankylosing spondylitis. This case report highlights the incremental value of performing one-stop shop hybrid SPECT/low-dose CT bone imaging in diagnosing and managing this rare benign skeletal condition.

  11. Cerebral infarction on 99mTc-MDP SPECT/CT imaging.

    PubMed

    Guo, Jia; Hu, Shuang; Wang, Haitao; Kuang, Anren

    2013-11-01

    A 70-year-old man with lung cancer underwent whole-body MDP bone scintigraphy to evaluate bone metastases that showed marked tracer uptake in the right side of the head, suggestive of skull metastasis. SPECT/CT imaging was performed for further evaluation. The SPECT images demonstrated increased MDP activity in the region of the brain perfused by the right middle cerebral artery. On CT images, there was a large hypoattenuation area corresponding to elevated MDP accumulation. At the same day, magnetic resonance angiography of the brain revealed occlusion of the right middle cerebral artery.

  12. MIRD pamphlet No. 24: Guidelines for quantitative 131I SPECT in dosimetry applications.

    PubMed

    Dewaraja, Yuni K; Ljungberg, Michael; Green, Alan J; Zanzonico, Pat B; Frey, Eric C; Bolch, Wesley E; Brill, A Bertrand; Dunphy, Mark; Fisher, Darrell R; Howell, Roger W; Meredith, Ruby F; Sgouros, George; Wessels, Barry W

    2013-12-01

    The reliability of radiation dose estimates in internal radionuclide therapy is directly related to the accuracy of activity estimates obtained at each imaging time point. The recently published MIRD pamphlet no. 23 provided a general overview of quantitative SPECT imaging for dosimetry. The present document is the first in a series of isotope-specific guidelines that will follow MIRD 23 and focuses on one of the most commonly used therapeutic radionuclides, (131)I. The purpose of this document is to provide guidance on the development of protocols for quantitative (131)I SPECT in radionuclide therapy applications that require regional (normal organs, lesions) and 3-dimensional dosimetry.

  13. Lymphoscintigraphic SPECT/CT-Contralateral Axillary Sentinel Lymph Node Drainage in Breast Cancer.

    PubMed

    Koyyalamudi, Ratna T; Rossleigh, Monica Anne

    2017-02-01

    A 58-year-old woman with previous right breast carcinoma treated with lumpectomy, right axillary clearance, chemo-radiotherapy, and adjuvant hormonal therapy underwent a lymphoscintigraphy for a new right breast lesion. On planar images, an alternate route of lymphatic drainage was observed to the right internal mammary chain and the left axilla. A chest SPECT/CT was performed to confirm the location of the sentinel nodes. The patient underwent a right mastectomy and left axillary sentinel lymph node biopsy, which showed no evidence of lymphovascular invasion. Combining planar imaging and SPECT/CT techniques can accurately identify sentinel lymph nodes at their new unpredicted location.

  14. Relationships between the lung-heart ratio assessed from post-exercise thallium-201 myocardial tomograms, myocardial ischemia and the extent of coronary artery disease

    SciTech Connect

    Ilmer, B.; Reijs, A.E.; Reiber, J.H.; Bakker, W.; Fioretti, P. )

    1990-01-01

    Uptake of thallium (Tl)-201 in the lungs has been proposed as a measure of left ventricular dysfunction. In this study we were interested in pursuing two goals: (1) to assess possible relationships between the post-exercise Tl-201 lung-heart (LH)-ratio determined from the anterior view during SPECT-acquisition, myocardial ischemia and the extent of coronary artery disease; and (2) to explore the effects of coronary revascularisation procedures on the LH-ratio. The study group consisted of 145 patients with early and late postexercise Tl-201 tomograms, including 32 PTCA-patients with pre- and post-PTCA studies and 20 patients who underwent coronary artery bypass surgery (CABG) with corresponding pre- and post-CABG studies. Ischemia was defined as evoked angina during the exercise test in combination with greater than or equal to 1 mm horizontal or downsloping ST-depression on the ECG. The severity of coronary obstructions was assessed from coronary angiograms with a PC-based digital caliper technique; a stenosis was defined to be significant when its severity exceeded 50% diameter stenosis. The LH-ratio was defined by the ratio of the mean pulmonary counts and the mean myocardial counts assessed from corresponding regions of interest (ROI's) positioned over the left lung and the heart, respectively in the anterior view of a tomographic data acquisition procedure. Our results made clear that the LH-ratio was not significantly different between patients with and without ischemia during exercise, and between patients with single vs. multiple vessel disease.

  15. Technetium-99m-labelled red blood cell imaging in the diagnosis of hepatic haemangiomas: the role of SPECT/CT with a hybrid camera.

    PubMed

    Schillaci, Orazio; Danieli, Roberta; Manni, Carlo; Capoccetti, Francesca; Simonetti, Giovanni

    2004-07-01

    Delayed liver single-photon emission computed tomography (SPECT) after (99m)Tc red blood cell (RBC) labelling is helpful in detecting hepatic haemangiomas; however, diagnosis can be difficult when lesions are situated adjacent to structures like the inferior vena cava, the heart or hepatic vessels, where blood activity persists. The aims of this study were to evaluate the usefulness of RBC SPECT and transmission computed tomography (RBC SPECT/CT) performed simultaneously with a hybrid imaging system for correct characterisation of hepatic lesions in patients with suspected haemangioma, and to assess the additional value of fused images compared with SPECT alone. Twelve patients with 24 liver lesions were studied. The acquisitions of both anatomical (CT) and functional (SPECT) data were performed during a single session. SPECT images were first interpreted alone and then re-evaluated after adding the transmission anatomical maps. Image fusion was successful in all patients, with perfect correspondence between SPECT and CT data, allowing the precise anatomical localisation of sites of increased blood pool activity. SPECT/CT had a significant impact on results in four patients (33.3%) with four lesions defined as indeterminate on SPECT images, accurately characterising the hot spot foci located near vascular structures. In conclusion, RBC SPECT/CT imaging using this hybrid SPECT/CT system is feasible and useful in the identification or exclusion of suspected hepatic haemangiomas located near regions with high vascular activity.

  16. Implications of CT noise and artifacts for quantitative {sup 99m}Tc SPECT/CT imaging

    SciTech Connect

    Hulme, K. W.; Kappadath, S. C.

    2014-04-15

    Purpose: This paper evaluates the effects of computed tomography (CT) image noise and artifacts on quantitative single-photon emission computed-tomography (SPECT) imaging, with the aim of establishing an appropriate range of CT acquisition parameters for low-dose protocols with respect to accurate SPECT attenuation correction (AC). Methods: SPECT images of two geometric and one anthropomorphic phantom were reconstructed iteratively using CT scans acquired at a range of dose levels (CTDI{sub vol} = 0.4 to 46 mGy). Resultant SPECT image quality was evaluated by comparing mean signal, background noise, and artifacts to SPECT images reconstructed using the highest dose CT for AC. Noise injection was performed on linear-attenuation (μ) maps to determine the CT noise threshold for accurate AC. Results: High levels of CT noise (σ ∼ 200–400 HU) resulted in low μ-maps noise (σ ∼ 1%–3%). Noise levels greater than ∼10% in 140 keV μ-maps were required to produce visibly perceptible increases of ∼15% in {sup 99m}Tc SPECT images. These noise levels would be achieved at low CT dose levels (CTDI{sub vol} = 4 μGy) that are over 2 orders of magnitude lower than the minimum dose for diagnostic CT scanners. CT noise could also lower (bias) the expected μ values. The relative error in reconstructed SPECT signal trended linearly with the relative shift in μ. SPECT signal was, on average, underestimated in regions corresponding with beam-hardening artifacts in CT images. Any process that has the potential to change the CT number of a region by ∼100 HU (e.g., misregistration between CT images and SPECT images due to motion, the presence of contrast in CT images) could introduce errors in μ{sub 140} {sub keV} on the order of 10%, that in turn, could introduce errors on the order of ∼10% into the reconstructed {sup 99m}Tc SPECT image. Conclusions: The impact of CT noise on SPECT noise was demonstrated to be negligible for clinically achievable CT parameters. Because

  17. What do practice policies have to do with SPECT imaging?

    SciTech Connect

    Pierson, R.N. Jr.

    1991-12-31

    The introduction of new technologies has been the hallmark of professionals in nuclear medicine from the beginning of our specialty less than 50 years ago. A side effect of the entrenched and productive scenario whereby new technologies beget medical advances, and most of the advances in other areas of science beget new technologies applicable to medicine, is a constant escalation of the scope of practice, a desirable effect. A second side effect is a constant escalation of the cost of providing medical care. Careful analyses of the increases in costs of medical care allocate approximately one-third of the increase to new technology. We require mechanisms to argue competitively for the utility, the effectiveness, and the global relevance of new technologies. The first audience to be reached is the professionals who will, if we are successful, learn what we can do, and then will ask that it be made available in their hospitals. This workshop addresses primarily this first transition: radiopharmaceuticals, instrument performance characteristics, image processing, patient conditioning and positioning, interpretive strategies, and the definition of normal. At the time of the workshop, looking backward, it might appear the SPECT had not arrived at the time for interactions with other specialty societies; first, there must be evidence that techniques are repeatable; that they correlate with whatever gold standard is available; and that our patient-referring colleagues are willing to ask for them. However, looking forward, the questions of clinical utility, and the choices of {open_quotes}which technology{close_quotes} are here. It is time to prepare conceptually for the next step; how do we bring our new technologies to clinical acceptance, to reimbursement, and to an appropriate niche in the clinical firmament? The answer is via the pathways of practice guidelines.

  18. Compensation for non-uniform attenuation in SPECT brain imaging

    SciTech Connect

    Glick, S.J.; King, M.A.; Pan, T.S.

    1994-05-01

    Photon attenuation is a major limitation in performing quantitative SPECT brain imaging. A number of methods have been proposed for compensation of attenuation in regions of the body that can be modelled as a uniform attenuator. The magnitude of the errors introduced into reconstructed brain images by assuming the head to be a uniform attenuator are uncertain (the skull, sinus cavities and head holder all have different attenuation properties than brain tissue). Brain imaging is unique in that the radioisotope, for the most part, is taken up within a uniform attenuation medium (i.e., brain tissue) which is surrounded by bone (i.e., the skull) of a different density. Using this observation, Bellini`s method for attenuation compensation (which is an exact solution to the exponential Radon transform) has been modified to account for the different attenuation properties of the skull. To test this modified Bellini method, a simple mathematical phantom was designed to model the brain and a skull of varying thickness less than 7.5 mm. To model brain imaging with Tc-99m HMPAO, the attenuation coefficient of the brain tissue and skull were set to 0.15 cm{sup -1} and 0.22 cm{sup -1} respectively. A ray-driven projector which accounted for non-uniform attenuation was used to simulate projection data from 128 views. The detector response and scatter were not simulated. It was observed that reconstructions processed with uniform attenuation compensation (i.e., where it was assumed that the brain tissue and the skull had the same attenuation coefficient) provided errors of 6-20%, whereas those processed with the non-uniform Bellini algorithm were biased by only 0-5%.

  19. Technetium myocardial perfusion agents: an introduction

    SciTech Connect

    English, R.J.; Kozlowski, J.; Tumeh, S.S.; Holman, B.L.

    1987-09-01

    This is the third in a series of four Continuing Education articles on developing radiopharmaceuticals. After reading this article, the reader should be able to: 1) understand the basic concepts of myocardial perfusion imaging; and 2) discuss the advantages of the technetium myocardial perfusion complexes over thallium-201.

  20. Impact of Gender on the Prognostic Value of Coronary Artery Calcium in Symptomatic Patients With Normal Single-Photon Emission Computed Tomography Myocardial Perfusion.

    PubMed

    Engbers, Elsemiek M; Timmer, Jorik R; Ottervanger, Jan Paul; Mouden, Mohamed; Knollema, Siert; Jager, Pieter L

    2016-12-01

    The coronary artery calcium (CAC) score provides independent prognostic value on top of single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). We sought to determine whether the prognostic value of the CAC score in patients with normal SPECT MPI is gender specific. We studied 3,705 consecutive symptomatic patients without a history of coronary artery disease with normal SPECT MPI. All patients underwent concomitant CAC scoring, which was categorized as CAC score 0, 1 to 99, 100 to 399, 400 to 999, or ≥1,000. Major adverse cardiac events were defined as revascularization, nonfatal myocardial infarction, or all-cause mortality. The median CAC score was 9 in women (interquartile range 0 to 113) and 47 in men (interquartile range 1 to 307, p <0.001). The annual event rate was lower in women than in men (1.6% and 2.7%, respectively, p <0.001). When stratified by CAC score, annual event rates were similar (for women and men, respectively: CAC score 0, 0.6% and 0.5%, p = 0.95; CAC score 1 to 99, 0.9% and 1.2%, p = 0.45; CAC score 100 to 399, 2.7% and 3.8%, p = 0.23; CAC score 400 to 999, 3.8% and 5.3%, p = 0.34; CAC score ≥1,000, 8.4% and 8.7%, p = 0.99). The CAC score was an independent predictor of major adverse cardiac events in both genders (CAC score ≥1,000: hazard ratio for women 8.5, 95% confidence interval 4.0 to 18.1; hazard ratio for men 14.8, 95% confidence interval 5.3 to 41.1). In conclusion, risk for events is similar for both genders when stratified by CAC score, wherein a high CAC score carries a high risk for events despite normal SPECT MPI. Our findings do not reveal a gender-specific prognostic value of the CAC score.

  1. Taxonomy of segmental myocardial systolic dysfunction

    PubMed Central

    McDiarmid, Adam K.; Pellicori, Pierpaolo; Cleland, John G.

    2017-01-01

    The terms used to describe different states of myocardial health and disease are poorly defined. Imprecision and inconsistency in nomenclature can lead to difficulty in interpreting and applying trial outcomes to clinical practice. In particular, the terms ‘viable’ and ‘hibernating’ are commonly applied interchangeably and incorrectly to myocardium that exhibits chronic contractile dysfunction in patients with ischaemic heart disease. The range of inherent differences amongst imaging modalities used to define myocardial health and disease add further challenges to consistent definitions. The results of several large trials have led to renewed discussion about the classification of dysfunctional myocardial segments. This article aims to describe the diverse myocardial pathologies that may affect the myocardium in ischaemic heart disease and cardiomyopathy, and how they may be assessed with non-invasive imaging techniques in order to provide a taxonomy of myocardial dysfunction. PMID:27147609

  2. Risk stratification after myocardial infarction. Clinical overview

    SciTech Connect

    O'Rourke, R.A. )

    1991-09-01

    Many patients with an acute myocardial infarction can be stratified into subgroups that are at high risk for morbidity and mortality on the basis of clinical characteristics that indicate recurrent myocardial ischemia, persistent left ventricular dysfunction, and/or recurrent cardiac arrhythmias. In patients with uncomplicated myocardial infarction the assessment of symptoms, physical findings, and ECG changes during predischarge exercise testing often identifies patients at increased risk for further cardiac events. Because of the suboptimum sensitivity and specificity of the exercise ECG for detecting myocardial ischemia, myocardial perfusion imaging with 201Tl and/or assessment of global and segmental ventricular function by two-dimensional echocardiography or radionuclide cineangiography during or immediately after exercise are often added to the predischarge risk stratification.

  3. [Cardiac rehabilitation after myocardial infarction].

    PubMed

    Ghannem, M; Ghannem, L; Ghannem, L

    2015-12-01

    Although the proofs of the benefits of cardiac rehabilitation accumulate, many patients are not sent to rehabilitation units, especially younger and very elderly patients. As the length of stay in acute care units decreases, rehabilitation offers more time to fully assess the patients' conditions and needs. Meta-analyses of randomised trials suggest that mortality can be improved by as much as 20-30%. In addition, rehabilitation helps managing risk factors, including hyperlipidemia, diabetes, smoking and sedentary behaviours. Physical training also helps improving exercise capacity. Because of all of these effects, cardiac rehabilitation for post-myocardial infarction patients has been given a class IA recommendation in current guidelines.

  4. Solar activity and myocardial infarction.

    PubMed

    Szczeklik, E; Mergentaler, J; Kotlarek-Haus, S; Kuliszkiewicz-Janus, M; Kucharczyk, J; Janus, W

    1983-01-01

    The correlation between the incidence of myocardial infarction, sudden cardiac death, the solar activity and geomagnetism in the period 1969-1976 was studied, basing on Wrocław hospitals material registered according to WHO standards; sudden death was assumed when a person died within 24 hours after the onset of the disease. The highest number of infarctions and sudden deaths was detected for 1975, which coincided with the lowest solar activity, and the lowest one for the years 1969-1970 coinciding with the highest solar activity. Such an inverse, statistically significant correlation was not found to exist between the studied biological phenomena and geomagnetism.

  5. Accurate Coregistration between Ultra-High-Resolution Micro-SPECT and Circular Cone-Beam Micro-CT Scanners.

    PubMed

    Ji, Changguo; van der Have, Frans; Gratama van Andel, Hugo; Ramakers, Ruud; Beekman, Freek

    2010-01-01

    Introduction. Spatially registering SPECT with CT makes it possible to anatomically localize SPECT tracers. In this study, an accurate method for the coregistration of ultra-high-resolution SPECT volumes and multiple cone-beam CT volumes is developed and validated, which does not require markers during animal scanning. Methods. Transferable animal beds were developed with an accurate mounting interface. Simple calibration phantoms make it possible to obtain both the spatial transformation matrix for stitching multiple CT scans of different parts of the animal and to register SPECT and CT. The spatial transformation for image coregistration is calculated once using Horn's matching algorithm. Animal images can then be coregistered without using markers. Results. For mouse-sized objects, average coregistration errors between SPECT and CT in X, Y, and Z directions are within 0.04 mm, 0.10 mm, and 0.19 mm, respectively. For rat-sized objects, these numbers are 0.22 mm, 0.14 mm, and 0.28 mm. Average 3D coregistration errors were within 0.24 mm and 0.42 mm for mouse and rat imaging, respectively. Conclusion. Extending the field-of-view of cone-beam CT by stitching is improved by prior registration of the CT volumes. The accuracy of registration between SPECT and CT is typically better than the image resolution of current ultra-high-resolution SPECT.

  6. Single-photon emission computed tomography (SPECT): Applications and potential

    SciTech Connect

    Holman, B.L.; Tumeh, S.S. )

    1990-01-26

    Single-photon emission computed tomography has received increasing attention as radiopharmaceuticals that reflect perfusion, metabolism, and receptor and cellular function have become widely available. Perfusion single-photon emission computed tomography of the brain provides functional information useful for the diagnosis and management of stroke, dementia, and epilepsy. Single-photon emission computed tomography has been applied to myocardial, skeletal, hepatic, and tumor scintigraphy, resulting in increased diagnostic accuracy over planar imaging because background activity and overlapping tissues interfere far less with activity from the target structure when tomographic techniques are used. Single-photon emission computed tomography is substantially less expensive and far more accessible than positron emission tomography and will become an increasingly attractive alternative for transferring the positron emission tomography technology to routine clinical use.

  7. Brain SPECT and transcranial Doppler (TCD) evaluation of the effects of intra-arterial papaverine for cerebral vasospasm

    SciTech Connect

    Lewis, D.H.; Newell, D.W.; Eskridge, J.M.

    1994-05-01

    Cerebral vasospasm (cv) is a common and serious consequence of subarachnoid hemorrhage. Interventional neuroradiologic techniques for treating cv refractory to medical and hemodynamic measures have included transluminal microballoon angioplasty and intra-arterial papaverine infusion (pap). Eight patients (pts) who had symptomatic cv but were not candidates for microballoon angioplasty received pap via arterial catheter. All 8 pts had brain SPECT with Tc-99m HMPAO and 7 had TCD readings before and after treatment. One pt had 2 separate treatments. Total treatments = 9. Results: Of the total of 9 treatments: 5 demonstrated marked improvement in regional cerebral blood flow on SPECT in the vascular territories that were ischemic, 3 showed mild to moderate improvement of blood flow, and 1 was unchanged. The pt that did not improve on SPECT died due to cardiorespiratory problems but remained comatose without neurologic improvement after the treatment. The other 8 had either prompt clinical improvement or modestly delayed improvement due to concomitant hydrocephalus. infection, recurrent vasospasm or other intervening medical problems. TCD readings in the treated vessels showed improved (lower) velocities that agreed with SPECT improvement after 4 intra-arterial pap treatments. There were 4 discrepancies of SPECT and TCD: 1 with rising TCD velocity in the mild cv range in the treated vessel that demonstrated SPECT improvement; 1 with unchanged velocity in the moderate cv range that showed SPECT improvement; 1 that showed lower velocity in the moderate cv range while the SPECT was unchanged; and 1 that had normal TCD velocities before and after treatment but high pulsatility indices on Doppler (which are characteristic of either elevated intra-cranial pressure or distal vessel disease) who had mild to moderate improvement of blood flow on SPECT after treatment.

  8. Mechanics of the left ventricular myocardial interstitium: effects of acute and chronic myocardial edema.

    PubMed

    Desai, Ketaki V; Laine, Glen A; Stewart, Randolph H; Cox, Charles S; Quick, Christopher M; Allen, Steven J; Fischer, Uwe M

    2008-06-01

    Myocardial interstitial edema forms as a result of several disease states and clinical interventions. Acute myocardial interstitial edema is associated with compromised systolic and diastolic cardiac function and increased stiffness of the left ventricular chamber. Formation of chronic myocardial interstitial edema results in deposition of interstitial collagen, which causes interstitial fibrosis. To assess the effect of myocardial interstitial edema on the mechanical properties of the left ventricle and the myocardial interstitium, we induced acute and chronic interstitial edema in dogs. Acute myocardial edema was generated by coronary sinus pressure elevation, while chronic myocardial edema was generated by chronic pulmonary artery banding. The pressure-volume relationships of the left ventricular myocardial interstitium and left ventricular chamber for control animals were compared with acutely and chronically edematous animals. Collagen content of nonedematous and chronically edematous animals was also compared. Generating acute myocardial interstitial edema resulted in decreased left ventricular chamber compliance compared with nonedematous animals. With chronic edema, the primary form of collagen changed from type I to III. Left ventricular chamber compliance in animals made chronically edematous was significantly higher than nonedematous animals. The change in primary collagen type secondary to chronic left ventricular myocardial interstitial edema provides direct evidence for structural remodeling. The resulting functional adaptation allows the chronically edematous heart to maintain left ventricular chamber compliance when challenged with acute edema, thus preserving cardiac function over a wide range of interstitial fluid pressures.

  9. Parametric display of myocardial function.

    PubMed

    Eusemann, C D; Ritman, E L; Bellemann, M E; Robb, R A

    2001-01-01

    Quantitative assessment of regional heart motion has significant potential to provide more specific diagnosis of cardiac disease and cardiac malfunction than currently possible. Local heart motion may be captured from various medical imaging scanners. In this study, 3-D reconstructions of pre-infarct and post-infarct hearts were obtained from the Dynamic Spatial Reconstructor (DSR)[Ritman EL, Robb RA, Harris LD. Imaging physiological functions: experience with DSR. Philadelphia: Praeger, 1985; Robb RA, Lent AH, Gilbert BK, Chu A. The dynamic spatial reconstructor: a computed tomography system for high-speed simultaneous scanning of multiple cross sections of the heart. J Med Syst 1980;4(2):253-88; Jorgensen SM, Whitlock SV, Thomas PJ, Roessler RW, Ritman EL. The dynamic spatial reconstructor: a high speed, stop action, 3-D, digital radiographic imager of moving internal organs and blood. Proceedings of SPIE, Ultrahigh- and High-speed Photography, Videography, Photonics, and Velocimetry 1990;1346:180-91.] (DSR). Using functional parametric mapping of disturbances in regional contractility and relaxation, regional myocardial motion during a cardiac cycle is color mapped onto a deformable heart model to facilitate appreciation of the structure-to-function relationships in the myocardium, such as occurs in regional patterns of akinesis or dyskinesis associated with myocardial ischemia or infarction resulting from coronary artery occlusion.

  10. Image quality phantom and parameters for high spatial resolution small-animal SPECT

    NASA Astrophysics Data System (ADS)

    Visser, Eric P.; Harteveld, Anita A.; Meeuwis, Antoi P. W.; Disselhorst, Jonathan A.; Beekman, Freek J.; Oyen, Wim J. G.; Boerman, Otto C.

    2011-10-01

    At present, generally accepted standards to characterize small-animal single photon emission tomographs (SPECT) do not exist. Whereas for small-animal positron emission tomography (PET), the NEMA NU 4-2008 guidelines are available, such standards are still lacking for small-animal SPECT. More specifically, a dedicated image quality (IQ) phantom and corresponding IQ parameters are absent. The structures of the existing PET IQ phantom are too large to fully characterize the sub-millimeter spatial resolution of modern multi-pinhole SPECT scanners, and its diameter will not fit into all scanners when operating in high spatial resolution mode. We therefore designed and constructed an adapted IQ phantom with smaller internal structures and external diameter, and a facility to guarantee complete filling of the smallest rods. The associated IQ parameters were adapted from NEMA NU 4. An additional parameter, effective whole-body sensitivity, was defined since this was considered relevant in view of the variable size of the field of view and the use of multiple bed positions as encountered in modern small-animal SPECT scanners. The usefulness of the phantom was demonstrated for 99mTc in a USPECT-II scanner operated in whole-body scanning mode using a multi-pinhole mouse collimator with 0.6 mm pinhole diameter.

  11. 5-HT Radioligands for Human Brain Imaging With PET and SPECT

    PubMed Central

    Paterson, Louise M.; Kornum, Birgitte R.; Nutt, David J.; Pike, Victor W.; Knudsen, Gitte M.

    2014-01-01

    The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used for positron emission tomography (PET) and single photon emission computerized tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter (SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the 5-HT system in humans include antagonists for the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 receptors, and for SERT. Here we describe the evolution of these radioligands, along with the attempts made to develop radioligands for additional serotonergic targets. We describe the properties needed for a radioligand to become successful and the main caveats. The success of a PET or SPECT radioligand can ultimately be assessed by its frequency of use, its utility in humans, and the number of research sites using it relative to its invention date, and so these aspects are also covered. In conclusion, the development of PET and SPECT radioligands to image serotonergic targets is of high interest, and successful evaluation in humans is leading to invaluable insight into normal and abnormal brain function, emphasizing the need for continued development of both SPECT and PET radioligands for human brain imaging. PMID:21674551

  12. Onboard SPECT for Localizing Functional and Molecular Targets in Metastatic Breast Cancer

    DTIC Science & Technology

    2009-07-01

    A. Clemenson, S. Charrier, V. Feil- lel, G. Le Bouedec, P. Kaufmann, J. Dauplat, and A. Veyre, “ Technetium - 99m-sestamibi uptake in breast tumor and...Savelli, and E. Bombardieri, “Assessment of mediastinal involvement in lung cancer with technetium -99m-sestamibi SPECT,” J. Nucl. Med. 37, 938–942 1996

  13. Role of 99mTc-ECD SPECT in the Management of Children with Craniosynostosis

    PubMed Central

    Barik, Mayadhar; Bajpai, Minu; Das, Rashmi Ranajn; Malhotra, Arun; Panda, Shasanka Shekhar; Sahoo, Manas Kumar; Dwivedi, Sadanand

    2014-01-01

    Purpose of the Report. There is a paucity of data on correlation of various imaging modalities with clinical findings in craniosynostosis. Moreover, no study has specifically reported the role of 99mTc-ECD SPECT in a large number of subjects with craniosynostosis. Materials and Methods. We prospectively analyzed a cohort of 85 patients with craniosynostosis from year 2007 to 2012. All patients underwent evaluation with 99mTc-ECD SPECT and the results were correlated with radiological and surgical findings. Results. 99mTc-ECD SPECT revealed regional perfusion abnormalities in the cerebral hemisphere corresponding to the fused sutures preoperatively that disappeared postoperatively in all the cases. Corresponding to this, the mean mental performance quotient (MPQ) increased significantly (P < 0.05) postoperatively only in those children with absent perfusion defect postoperatively. Conclusions. Our study suggests that early surgery and release of craniosynostosis in patients with preoperative perfusion defects (absent on 99mTc-ECD SPECT study) are beneficial, as theylead to improved MPQ after surgery. PMID:24987670

  14. Collar Osteophytes Mimicking Osteonecrosis in Planar Bone Scintigraphy and Usefulness of SPECT/CT Images.

    PubMed

    Juang, Jr-Jian; Chen, Yi-Hsing; Tsai, Shih-Chuan; Lin, Wan-Yu

    2017-03-01

    The use of prednisolone is one major risk factor for osteonecrosis in patients with systemic lupus erythematosus. Bone scintigraphy can be a diagnostic tool for early diagnosis. We present a case who had collar osteophytes at the bilateral femoral heads, which mimicked osteonecrosis in the planar bone scintigram. An SPECT/CT scan avoided this pitfall and increased the diagnostic accuracy for osteonecrosis.

  15. Multimodal imaging with hybrid semiconductor detectors Timepix for an experimental MRI-SPECT system

    NASA Astrophysics Data System (ADS)

    Zajicek, J.; Jakubek, J.; Burian, M.; Vobecky, M.; Fauler, A.; Fiederle, M.; Zwerger, A.

    2013-01-01

    An increasing number of clinical applications are being based on multimodal imaging systems (MIS), including anatomical (CT, MRI) and functional (PET, SPECT) techniques to provide complex information in a single image. CT with one of the scintigraphic methods (PET or SPECT) is nowadays a combination of choice for clinical practice and it is mostly used in cardiography and tumour diagnostics. Combination with MRI is also being implemented as no radiation dose is imparted to the patient and it is possible to gain higher structural resolution of soft tissues (brain imaging). A major disadvantage of such systems is inability to operate scintillators with photomultipliers (used for detection of γ rays) in presence of high magnetic fields. In this work we present the application of the semiconductor pixel detector for SPECT method in combination with MR imaging. We propose a novel approach based on MRI compatible setup with CdTe pixel sensor Timepix and non-conductive collimator. Measurements were performed on high proton-density (PD) phantom (1H) with an embedded radioisotopic source inside the shielded RF coil by MRI animal scanner (4.7 T). Our results pave the way for a combined MRI-SPECT system. The project was performed in the framework of the Medipix Collaboration.

  16. Brain SPECT can differentiate between essential tremor and early-stage tremor-dominant Parkinson's disease.

    PubMed

    Song, In-Uk; Park, Jeong-Wook; Chung, Sung-Woo; Chung, Yong-An

    2014-09-01

    There are no confirmatory or diagnostic tests or tools to differentiate between essential tremor (ET) and tremor in idiopathic Parkinson's disease (PD). Although a number of imaging studies have indicated that there are differences between ET and PD, the functional imaging study findings are controversial. Therefore, we analyzed regional cerebral blood flow (CBF) by perfusion brain single-photon emission computed tomography (SPECT) to identify differences between ET and tremor-dominant Parkinson's disease (TPD). We recruited 33 patients with TPD, 16 patients with ET, and 33 healthy controls. We compared the severity of tremor symptoms by comparing the Fahn-Tolosa-Marin rating scale (FTM) score and the tremor score from Unified Parkinson's Disease Rating Scale (UPDRS) between TPD and ET patients. Subjects were evaluated by neuropsychological assessments, MRI and perfusion SPECT of the brain. Total FTM score was significantly higher in ET patients than TPD patients. However, there was no significant difference in FTM Part A scores between the two patient groups, while the scores for FTM Part B and C were significantly higher in ET patients than TPD patients. Brain SPECT analysis of the TPD group demonstrated significant hypoperfusion of both the lentiform nucleus and thalamus compared to the ET group. Brain perfusion SPECT may be a useful clinical method to differentiate between TPD and ET even during early-phase PD, because the lentiform nucleus and thalamus show differences in regional perfusion between these two groups during this time period. Additionally, we found evidence of cerebellar dysfunction in both TPT and ET.

  17. SPECT imaging with the long bore collimator: Loss in sensitivity vs improved contrast resolution

    SciTech Connect

    Muller, S.; Polak, J.F.; Holman, B.L.; Eisner, R.L.

    1984-01-01

    A long bore (LB) collimator (16 cm thick) was compared with the standard low energy all purpose (LEAP) collimator for SPECT imaging. Line spread functions at various depths were measured in scatter material (planar imaging). Both collimators have similar full-width-at-half-maximum (FWHM) values yet the LB has less resolution loss with distance and consistently lower full-width-at-tenth-maximum (FWTM) values. An assessment of overall performance was made by planar imaging of the Rollo phantom with both collectors. Performance was judged by calculating the chi-square for the observed and expected contrasts of spherical cold targets (2.54, 1.91, 1.27 and 0.95 cm diameter). In all cases, LB scored consistently better than the LEAP. SPECT imaging of a bar phantom (spacing 2.25 cm) filled with I-123 (p,2n) confirmed the superior contrast resolution of the LB. Using SPECT data from 5 clinical I-123 IMP brain studies and from measurements of % rms noise as a function of total slice counts in a cylindrical phantom, the authors calculate that LB images would have a % rms noise of 8.7% compared to 5.7% for LEAP images acquired over the same time interval. The authors conclude that SPECT of the brain with the LB would lead to improved contrast resolution and a minimal increase in % rms noise despite a significant loss in sensitivity.

  18. A restraint-free small animal SPECT imaging system with motion tracking

    SciTech Connect

    Weisenberger, A.G.; Gleason, S.S.; Goddard, J.; Kross, B.; Majewski, S.; Meikle, S.R.; Paulus, M.J.; Pomper, M.; Popov, V.; Smith, M.F.; Welch, B.L.; Wojcik, R.

    2005-06-01

    We report on an approach toward the development of a high-resolution single photon emission computed tomography (SPECT) system to image the biodistribution of radiolabeled tracers such as Tc-99m and I-125 in unrestrained/unanesthetized mice. An infrared (IR)-based position tracking apparatus has been developed and integrated into a SPECT gantry. The tracking system is designed to measure the spatial position of a mouse's head at a rate of 10-15 frames per second with submillimeter accuracy. The high-resolution, gamma imaging detectors are based on pixellated NaI(Tl) crystal scintillator arrays, position-sensitive photomultiplier tubes, and novel readout circuitry requiring fewer analog-digital converter (ADC) channels while retaining high spatial resolution. Two SPECT gamma camera detector heads based upon position-sensitive photomultiplier tubes have been built and installed onto the gantry. The IR landmark-based pose measurement and tracking system is under development to provide animal position data during a SPECT scan. The animal position and orientation data acquired by the tracking system will be used for motion correction during the tomographic image reconstruction.

  19. Implementation of strip-area system model for fan-beam collimator SPECT reconstruction

    NASA Astrophysics Data System (ADS)

    Ye, Hongwei; Krol, Andrzej; Feiglin, David H.; Lipson, Edward D.; Lee, Wei; Coman, Ioana L.

    2006-03-01

    We have implemented a more accurate physical system representation, a strip-area system model (SASM), for improved fan-beam collimator (FBC) SPECT reconstruction. This approach required implementation of modified ray tracing and attenuation compensation in comparison to a line-length system model (LLSM). We have compared performance of SASM with LLSM using Monte Carlo and analytical simulations of FBC SPECT from a thorax phantom. OSEM reconstruction was performed with OS=3 in a 64×64 matrix with attenuation compensation (assuming uniform attenuation of 0.13 cm -1). Scatter correction and smoothing were not applied. We observe overall improvement in SPECT image bias, visual image quality and an improved hot myocardium contrast for SASM vs. LLSM. In contrast to LLSM, the sensitivity pattern artifacts are not present in the SASM reconstruction. In both reconstruction methods, cross-talk image artifacts (e.g. inverse images of the lungs) can be observed, due to the uniform attenuation map used. SASM applied to fan-beam collimator SPECT results in better image quality and improved hot target contrast, as compared to LLSM, but at the expense of 1.5-fold increase in reconstruction time.

  20. A Silicon SPECT System for Molecular Imaging of the Mouse Brain.

    PubMed

    Shokouhi, Sepideh; Fritz, Mark A; McDonald, Benjamin S; Durko, Heather L; Furenlid, Lars R; Wilson, Donald W; Peterson, Todd E

    2007-01-01

    We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 1024 strips on each side gives rise to a detector with over one million pixels. Combining four high-resolution DSSDs into a SPECT system offers an unprecedented space-bandwidth product for the imaging of single-photon emitters. The system consists of two camera heads with two silicon detectors stacked one behind the other in each head. The collimator has a focused pinhole system with cylindrical-shaped pinholes that are laser-drilled in a 250 μm tungsten plate. The unique ability to collect projection data at two magnifications simultaneously allows for multiplexed data at high resolution to be combined with lower magnification data with little or no multiplexing. With the current multi-pinhole collimator design, our SPECT system will be capable of offering high spatial resolution, sensitivity and angular sampling for small field-of-view applications, such as molecular imaging of the mouse brain.

  1. Objective evaluation of reconstruction methods for quantitative SPECT imaging in the absence of ground truth.

    PubMed

    Jha, Abhinav K; Song, Na; Caffo, Brian; Frey, Eric C

    2015-04-13

    Quantitative single-photon emission computed tomography (SPECT) imaging is emerging as an important tool in clinical studies and biomedical research. There is thus a need for optimization and evaluation of systems and algorithms that are being developed for quantitative SPECT imaging. An appropriate objective method to evaluate these systems is by comparing their performance in the end task that is required in quantitative SPECT imaging, such as estimating the mean activity concentration in a volume of interest (VOI) in a patient image. This objective evaluation can be performed if the true value of the estimated parameter is known, i.e. we have a gold standard. However, very rarely is this gold standard known in human studies. Thus, no-gold-standard techniques to optimize and evaluate systems and algorithms in the absence of gold standard are required. In this work, we developed a no-gold-standard technique to objectively evaluate reconstruction methods used in quantitative SPECT when the parameter to be estimated is the mean activity concentration in a VOI. We studied the performance of the technique with realistic simulated image data generated from an object database consisting of five phantom anatomies with all possible combinations of five sets of organ uptakes, where each anatomy consisted of eight different organ VOIs. Results indicate that the method provided accurate ranking of the reconstruction methods. We also demonstrated the application of consistency checks to test the no-gold-standard output.

  2. The parallel implementation of a backpropagation neural network and its applicability to SPECT image reconstruction

    SciTech Connect

    Kerr, J.P.

    1992-12-31

    The objective of this study was to determine the feasibility of using an Artificial Neural Network (ANN), in particular a backpropagation ANN, to improve the speed and quality of the reconstruction of three-dimensional SPECT (single photon emission computed tomography) images. In addition, since the processing elements (PE)s in each layer of an ANN are independent of each other, the speed and efficiency of the neural network architecture could be better optimized by implementing the ANN on a massively parallel computer. The specific goals of this research were: to implement a fully interconnected backpropagation neural network on a serial computer and a SIMD parallel computer, to identify any reduction in the time required to train these networks on the parallel machine versus the serial machine, to determine if these neural networks can learn to recognize SPECT data by training them on a section of an actual SPECT image, and to determine from the knowledge obtained in this research if full SPECT image reconstruction by an ANN implemented on a parallel computer is feasible both in time required to train the network, and in quality of the images reconstructed.

  3. The parallel implementation of a backpropagation neural network and its applicability to SPECT image reconstruction

    SciTech Connect

    Kerr, J.P.

    1992-01-01

    The objective of this study was to determine the feasibility of using an Artificial Neural Network (ANN), in particular a backpropagation ANN, to improve the speed and quality of the reconstruction of three-dimensional SPECT (single photon emission computed tomography) images. In addition, since the processing elements (PE)s in each layer of an ANN are independent of each other, the speed and efficiency of the neural network architecture could be better optimized by implementing the ANN on a massively parallel computer. The specific goals of this research were: to implement a fully interconnected backpropagation neural network on a serial computer and a SIMD parallel computer, to identify any reduction in the time required to train these networks on the parallel machine versus the serial machine, to determine if these neural networks can learn to recognize SPECT data by training them on a section of an actual SPECT image, and to determine from the knowledge obtained in this research if full SPECT image reconstruction by an ANN implemented on a parallel computer is feasible both in time required to train the network, and in quality of the images reconstructed.

  4. New open-source ictal SPECT analysis method implemented in BioImage Suite.

    PubMed

    Scheinost, Dustin; Teisseyre, Thomas Z; Distasio, Marcello; DeSalvo, Matthew N; Papademetris, Xenophon; Blumenfeld, Hal

    2010-04-01

    Ictal single photon emission computed tomography (SPECT) is a powerful tool for noninvasive seizure localization, but it has been underutilized because of practical challenges, including difficulty in implementing ictal-interictal SPECT difference analysis. We previously validated a freely available utility for this purpose, ictal-interictal subtraction analysis by statistical parametric mapping (SPM) (ISAS). To further simplify and improve the difference imaging technique, we now compare a new algorithm, ISAS BioImage Suite (see http://spect.yale.edu and http://bioimagesuite.org), to the original ISAS method in 13 patients with known seizure localization. We found that ISAS BioImage Suite was in agreement with the original algorithm in all cases for which ISAS correctly identified a single unambiguous region of seizure onset. We also tested for possible effects of scan-order bias in the control group used for the analysis and found no significant effect on the results. These findings establish a simple, validated and objective method for analyzing ictal-interictal SPECT difference images for use in the care of patients with epilepsy.

  5. Improving the count rate performance of a modular cylindrical SPECT system

    SciTech Connect

    Li, Y.J.; Hollinger, E.F.; Liu, J.; Chang, W.

    1996-12-31

    We recently proposed a design of a modular cylindrical cardiac SPECT system. one special feature of this system is an integrated provision for transmission imaging. To meet the clinical demands of obtaining transmission images, this system must be able to achieve a very high count rate (CR). To explore methods for achieving a high CR capability on a modular cylindrical detector system, we have used our existing modular cylindrical brain SPECT system to examine the feasibility of two approaches. First, we use digital-signal-processing (DSP) boards, in parallel, to execute real time position calculations. Second, we use local encoding and triggering circuits to perform analog signal processing, including identifying the detector module and digitizing the pulse signals. The results of our preliminary investigations indicate that applying the multiple-DSP parallel position calculation and local triggering techniques in a modular SPECT system can improve the CR capability significantly. Applying local triggering increased the CR capability by 15% at a CR capability of 200 kcps. Because we have used slow-speed DSP boards during this proof-of-concept testing, we have not yet met the CR requirements for transmission imaging. However, these results indicate that by using state-of-the-art DSP boards the CR capability of this modular SPECT system can be increased to over 300 kcps.

  6. Imaging analysis of Parkinson’s disease patients using SPECT and tractography

    PubMed Central

    Son, Seong-Jin; Kim, Mansu; Park, Hyunjin

    2016-01-01

    Parkinson’s disease (PD) is a degenerative disorder that affects the central nervous system. PD-related alterations in structural and functional neuroimaging have not been fully explored. This study explored multi-modal PD neuroimaging and its application for predicting clinical scores on the Movement Disorder Society-sponsored Unified Parkinson’s Disease Rating Scale (MDS-UPDRS). Multi-modal imaging that combined 123I-Ioflupane single-photon emission computed tomography (SPECT) and diffusion tensor imaging (DTI) were adopted to incorporate complementary brain imaging information. SPECT and DTI images of normal controls (NC; n = 45) and PD patients (n = 45) were obtained from a database. The specific binding ratio (SBR) was calculated from SPECT. Tractography was performed using DTI. Group-wise differences between NC and PD patients were quantified using SBR of SPECT and structural connectivity of DTI for regions of interest (ROIs) related to PD. MDS-UPDRS scores were predicted using multi-modal imaging features in a partial least-squares regression framework. Three regions and four connections within the cortico-basal ganglia thalamocortical circuit were identified using SBR and DTI, respectively. Predicted MDS-UPDRS scores using identified regions and connections and actual MDS-UPDRS scores showed a meaningful correlation (r = 0.6854, p < 0.001). Our study provided insight on regions and connections that are instrumental in PD. PMID:27901100

  7. Incidental 99mTc-DTPA Uptake in Tarlov Cysts on Radionuclide SPECT/CT Cisternography.

    PubMed

    Vamadevan, Shankar; Le, Ken; Bui, Chuong; Mansberg, Robert

    2017-04-01

    Sacral perineural cysts are also known as Tarlov cysts. A 58-year-old man with suspected intracranial hypotension was evaluated with Tc-DTPA radionuclide cisternography. Radionuclide planar and SPECT/CT cisternography revealed Tc-DTPA uptake in sacral lesions. Spine MRI confirmed Tarlov cysts at the S1 and S2 levels.

  8. The parallel implementation of a backpropagation neural network and its applicability to SPECT image reconstruction

    NASA Astrophysics Data System (ADS)

    Kerr, J. P.

    1992-07-01

    The objective of this study was to determine the feasibility of using an Artificial Neural Network (ANN), in particular a backpropagation ANN, to improve the speed and quality of the reconstruction of three-dimensional SPECT (single photon emission computed tomography) images. In addition, since the processing elements (PE)s in each layer of an ANN are independent of each other, the speed and efficiency of the neural network architecture could be better optimized by implementing the ANN on a massively parallel computer. The specific goals of this research were: to implement a fully interconnected backpropagation neural network on a serial computer and a SIMD parallel computer, to identify any reduction in the time required to train these networks on the parallel machine versus the serial machine, to determine if these neural networks can learn to recognize SPECT data by training them on a section of an actual SPECT image, and to determine from the knowledge obtained in this research if full SPECT image reconstruction by an ANN implemented on a parallel computer is feasible both in time required to train the network, and in quality of the images reconstructed.

  9. Corrective 111 In Capromab Pendetide SPECT Image Reconstruction Methods for Improved Detection of Recurrent Prostate Cancer

    DTIC Science & Technology

    2006-06-01

    with compensation for attenuation and detector response (OSAD). The results in pink are from 25% lesion contrast with respect to background and the...Trans. Nucl. Sci., 1980. NS-27(3): p. 1137-1153. 10. Jaszczak, R.J., C.E. Floyd , Jr., and R.E. Coleman, Scatter Compensation Techniques For SPECT

  10. Objective evaluation of reconstruction methods for quantitative SPECT imaging in the absence of ground truth

    NASA Astrophysics Data System (ADS)

    Jha, Abhinav K.; Song, Na; Caffo, Brian; Frey, Eric C.

    2015-03-01

    Quantitative single-photon emission computed tomography (SPECT) imaging is emerging as an important tool in clinical studies and biomedical research. There is thus a need for optimization and evaluation of systems and algorithms that are being developed for quantitative SPECT imaging. An appropriate objective method to evaluate these systems is by comparing their performance in the end task that is required in quantitative SPECT imaging, such as estimating the mean activity concentration in a volume of interest (VOI) in a patient image. This objective evaluation can be performed if the true value of the estimated parameter is known, i.e. we have a gold standard. However, very rarely is this gold standard known in human studies. Thus, no-gold-standard techniques to optimize and evaluate systems and algorithms in the absence of gold standard are required. In this work, we developed a no-gold-standard technique to objectively evaluate reconstruction methods used in quantitative SPECT when the parameter to be estimated is the mean activity concentration in a VOI. We studied the performance of the technique with realistic simulated image data generated from an object database consisting of five phantom anatomies with all possible combinations of five sets of organ uptakes, where each anatomy consisted of eight different organ VOIs. Results indicate that the method pro- vided accurate ranking of the reconstruction methods. We also demonstrated the application of consistency checks to test the no-gold-standard output.

  11. The use of spect/ct in the evaluation of heterotopic ossification in para/tetraplegics

    PubMed Central

    Lima, Maurício Coelho; Passarelli, Marcus Ceregati; Dario, Virgílio; Lebani, Bruno Rodrigues; Monteiro, Paulo Henrique Silva; Ramos, Celso Darío

    2014-01-01

    Objective: To evaluate the stage of maturation and the metabolism of neurogenic heterotopic ossification by using SPECT/CT. Methods: A total of 12 medical records of patients with spinal cord injury, all of them classified according to the ASIA protocol (disability scale from the American Spinal Injury Association) in complete lesion (A) and partial lesions (B, C and D) and registered at the Laboratory of Biomechanics and Rehabilitation of the Locomotor System, were submitted to SPECT/CT evaluation. Results: Sixteen hips with heterotopic ossification observed in X-ray were studied and only two (12.5%) had high osteoblastic activity. Five hips showed medium activity, three (18.75%) low activity and six (37.5%) did not present any activity detected by SPECT/CT. Conclusion: SPECT/CT helps to determinate which patients have a greater risk of relapse after surgical resection, proving to be a useful imaging study in preoperative evaluation that can be used to determinate the postoperative prognosis of these patients. Level of Evidence III, Investigating a Diagnostic Test. PMID:24644413

  12. Single photon emission photography/magnetic resonance imaging (SPECT/MRI) visualization for frontal-lobe-damaged regions

    NASA Astrophysics Data System (ADS)

    Stokking, Rik; Zuiderveld, Karel J.; Hulshoff Pol, Hilleke E.; Viergever, Max A.

    1994-09-01

    We present multi-modality visualization strategies to convey information contained in registered Single Photon Emission Photography (SPECT) and Magnetic Resonance (MR) images of the brain. Multi-modality visualization provides a means to retrieve valuable information from the data which might otherwise remain obscured. Here we use MRI as an anatomical framework for functional information acquired with SPECT. This is part of clinical research studying the change of functionality caused by a frontal lobe damaged region. A number of known and newly developed techniques for the integrated visualization of SPECT and MR images will be discussed.

  13. Added Value of SPECT/CT in the Evaluation of Benign Bone Diseases of the Appendicular Skeleton.

    PubMed

    Abikhzer, Gad; Srour, Saher; Keidar, Zohar; Bar-Shalom, Rachel; Kagna, Olga; Israel, Ora; Militianu, Daniela

    2016-04-01

    Bone scintigraphy is a sensitive technique to detect altered bone mineralization but has limited specificity. The use of SPECT/CT has improved significantly the diagnostic accuracy of bone scintigraphy, in patients with cancer as well as in evaluation of benign bone disease. It provides precise localization and characterization of tracer-avid foci, shortens the diagnostic workup, and decreases patient anxiety. Through both the SPECT and the CT components, SPECT/CT has an incremental value in characterizing benign bone lesions, specifically in the appendicular skeleton, as illustrated by present case series.

  14. Effects of voxel size and iterative reconstruction parameters on the spatial resolution of 99mTc SPECT/CT.

    PubMed

    Kappadath, S Cheenu

    2011-11-15

    The purpose of this study was to evaluate the effects of voxel size and iterative reconstruction parameters on the radial and tangential resolution for 99mTc SPECT as a function of radial distance from isocenter. SPECT/CT scans of eight coplanar point sources of size smaller than 1 mm3 containing high concentration 99mTc solution were acquired on a SPECT/CT system with 5/8 inch NaI(Tl) detector and low-energy, high-resolution collimator. The tomographic projection images were acquired in step-and-shoot mode for 360 views over 360° with 250,000 counts per view, a zoom of 2.67, and an image matrix of 256 × 256 pixels that resulted in a 0.9 × 0.9 × 0.9 mm3 SPECT voxel size over 230 mm field-of-view. The projection images were also rebinned to image matrices of 128 × 128 and 64 × 64 to yield SPECT voxel sizes of 1.8 × 1.8 × 1.8 and 3.6 × 3.6 × 3.6 mm3, respectively. The SPECT/CT datasets were reconstructed using the vendor-supplied iterative reconstruction software that incorporated collimator-specific resolution recovery, CT-based attenuation correction, and dual-energy window-based scatter correction using different combinations of iterations and subsets. SPECT spatial resolution was estimated as the full width at half maximum of the radial and tangential profiles through the center of each point source in reconstructed SPECT images. Both radial and tangential resolution improved with higher iterations and subsets, and with smaller voxel sizes. Both radial and tangential resolution also improved with radial distance further away from isocenter. The magnitude of variation decreased for smaller voxel sizes and for higher number of iterations and subsets. Tangential resolution was found not to be equal to the radial resolution, and the nature of the anisotropy depended on the distribution of the radionuclide and on the reconstruction parameters used. The tangential resolution converged faster than the radial resolution, with higher iterations and subsets

  15. Consideration of QRS complex in addition to ST-segment abnormalities in the estimation of the "risk region" during acute anterior or inferior myocardial infarction.

    PubMed

    Vervaat, F E; Bouwmeester, S; van Hellemond, I E G; Wagner, G S; Gorgels, A P M

    2014-01-01

    The myocardial area at risk (MaR) is an important aspect in acute ST-elevation myocardial infarction (STEMI). It represents the myocardium at the onset of the STEMI that is ischemic and could become infarcted if no reperfusion occurs. The MaR, therefore, has clinical value because it gives an indication of the amount of myocardium that could potentially be salvaged by rapid reperfusion therapy. The most validated method for measuring the MaR is (99m)Tc-sestamibi SPECT, but this technique is not easily applied in the clinical setting. Another method that can be used for measuring the MaR is the standard ECG-based scoring system, Aldrich ST score, which is more easily applied. This ECG-based scoring system can be used to estimate the extent of acute ischemia for anterior or inferior left ventricular locations, by considering quantitative changes in the ST-segment. Deviations in the ST-segment baseline that occur following an acute coronary occlusion represent the ischemic changes in the transmurally ischemic myocardium. In most instances however, the ECG is not available at the very first moments of STEMI and as times passes the ischemic myocardium becomes necrotic with regression of the ST-segment deviation along with progressive changes of the QRS complex. Thus over the time course of the acute event, the Aldrich ST score would be expected to progressively underestimate the MaR, as was seen in studies with SPECT as gold standard; anterior STEMI (r=0.21, p=0.32) and inferior STEMI (r=0.17, p=0.36). Another standard ECG-based scoring system is the Selvester QRS score, which can be used to estimate the final infarct size by considering the quantitative changes in the QRS complex. Therefore, additional consideration of the Selvester QRS score in the acute phase could potentially provide the "component" of infarcted myocardium that is missing when the Aldrich ST score alone is used to determine the MaR in the acute phase, as was seen in studies with SPECT as gold

  16. Magnetic resonance imaging for characterizing myocardial diseases.

    PubMed

    Saeed, Maythem; Liu, Hui; Liang, Chang-Hong; Wilson, Mark W

    2017-03-31

    The National Institute of Health defined cardiomyopathy as diseases of the heart muscle. These myocardial diseases have different etiology, structure and treatment. This review highlights the key imaging features of different myocardial diseases. It provides information on myocardial structure/orientation, perfusion, function and viability in diseases related to cardiomyopathy. The standard cardiac magnetic resonance imaging (MRI) sequences can reveal insight on left ventricular (LV) mass, volumes and regional contractile function in all types of cardiomyopathy diseases. Contrast enhanced MRI sequences allow visualization of different infarct patterns and sizes. Enhancement of myocardial inflammation and infarct (location, transmurality and pattern) on contrast enhanced MRI have been used to highlight the key differences in myocardial diseases, predict recovery of function and healing. The common feature in many forms of cardiomyopathy is the presence of diffuse-fibrosis. Currently, imaging sequences generating the most interest in cardiomyopathy include myocardial strain analysis, tissue mapping (T1, T2, T2*) and extracellular volume (ECV) estimation techniques. MRI sequences have the potential to decode the etiology by showing various patterns of infarct and diffuse fibrosis in myocarditis, amyloidosis, sarcoidosis, hypertrophic cardiomyopathy due to aortic stenosis, restrictive cardiomyopathy, arrythmogenic right ventricular dysplasia and hypertension. Integrated PET/MRI system may add in the future more information for the diagnosis and progression of cardiomyopathy diseases. With the promise of high spatial/temporal resolution and 3D coverage, MRI will be an indispensible tool in diagnosis and monitoring the benefits of new therapies designed to treat myocardial diseases.

  17. An adult case of Kawasaki disease with multiplex coronary aneurysms and myocardial infarction: the role of transesophageal echocardiography.

    PubMed

    Habon, T; Toth, K; Keltai, M; Lengyel, M; Palik, I

    1998-07-01

    Kawasaki disease (mucocutaneous lymph node syndrome) is an acute inflammatory disease that primarily affects infants and young children. In spite of proper therapy, coronary aneurysms develop in 10 to 25% of cases. Adult diagnosis of coronary aneurysm, presumably caused by Kawasaki disease, is rare. A 37-year-old male patient with previous inferior wall myocardial infarction (MI) was admitted with an acute anterior wall MI. Coronary angiography, performed 2 weeks after successful thrombolytic therapy, showed right coronary artery occlusion and multiplex (left main, left anterior descending, left circumflex, right coronary artery) giant coronary aneurysms. Transthoracic echocardiography was unable to detect the aneurysms. Transesophageal echocardiography (TEE) visualized a large left main coronary aneurysm with an occlusive thrombus and measured low flow velocity (0.2 m/s) in the proximal left anterior descending artery. At 4 weeks control, TEE showed marked regression of the thrombus, and it was not detectable after 6 months of oral anticoagulation with acenocumarol (International Normalized Ratio: 3-3.5) and standard postinfarction therapy. After 2 years of follow-up, the patient has no symptoms, and myocardial ischemia could not be provoked by stress tests [treadmill, dipyridamole single-photon emission computed tomography (SPECT)]. We conclude that, for diagnosis and follow-up of adult Kawasaki disease, transesophageal echocardiography is indicated. The importance and efficacy of long-term anticoagulant treatment should be emphasized in this disease.

  18. Use of thallium 201 myocardial imaging to exclude myocardial infarction after dissection in congenital coarctation of the aorta

    SciTech Connect

    Halon, D.A.; Weiss, A.T.; Tzivoni, D.; Atlan, H.; Gotsman, M.S.

    1981-10-01

    The use of a mobile gamma camera with thallium 201 myocardial imaging is described to exclude myocardial infarction in a patient admitted to the coronary care unit in shock and with clinical, enzyme, and ECG changes consistent with infarction. The patient suffered from acute aortic dissection associated with congenital coarctation of the aorta. The myocardial scan excluded transmural myocardial injury.

  19. TOPICAL REVIEW: Small animal SPECT and its place in the matrix of molecular imaging technologies

    NASA Astrophysics Data System (ADS)

    Meikle, Steven R.; Kench, Peter; Kassiou, Michael; Banati, Richard B.

    2005-11-01

    Molecular imaging refers to the use of non-invasive imaging techniques to detect signals that originate from molecules, often in the form of an injected tracer, and observe their interaction with a specific cellular target in vivo. Differences in the underlying physical principles of these measurement techniques determine the sensitivity, specificity and length of possible observation of the signal, characteristics that have to be traded off according to the biological question under study. Here, we describe the specific characteristics of single photon emission computed tomography (SPECT) relative to other molecular imaging technologies. SPECT is based on the tracer principle and external radiation detection. It is capable of measuring the biodistribution of minute (<10-10 molar) concentrations of radio-labelled biomolecules in vivo with sub-millimetre resolution and quantifying the molecular kinetic processes in which they participate. Like some other imaging techniques, SPECT was originally developed for human use and was subsequently adapted for imaging small laboratory animals at high spatial resolution for basic and translational research. Its unique capabilities include (i) the ability to image endogenous ligands such as peptides and antibodies due to the relative ease of labelling these molecules with technetium or iodine, (ii) the ability to measure relatively slow kinetic processes (compared with positron emission tomography, for example) due to the long half-life of the commonly used isotopes and (iii) the ability to probe two or more molecular pathways simultaneously by detecting isotopes with different emission energies. In this paper, we review the technology developments and design tradeoffs that led to the current state-of-the-art in SPECT small animal scanning and describe the position SPECT occupies within the matrix of molecular imaging technologies.

  20. Collimator Interchange System for Adaptive Cardiac Imaging in C-SPECT

    PubMed Central

    Rozler, Mike; Chang, Wei

    2013-01-01

    Compared to imaging the heart with conventional cameras, dedicated cardiac SPECT systems can achieve much higher performance through use of a small field of view. To realize this potential, however, the heart must be reliably placed in the appropriate small FOV prior to imaging, thus requiring a separate scout operation to locate the heart and estimate its size. Further-more, to achieve high performance across the general population, a system should provide several imaging configurations optimized for different size and location of the heart and the size of the patient. Because of the critical role the collimator plays in SPECT, it would be ideal if a dedicated collimator could be used for each of the different patient groups, as well as for the scout imaging. The ability to exchange collimators without moving the patient can also enable serial studies with different imaging options while preserving anatomic registration. We developed a slit exchange system for the slit-slat collimator of the C-SPECT cardiac platform. The full-scale prototype, a precision link conveyor following a curved, body contouring path, allows four distinct transaxial collimation options. The collimators can be exchanged in 10 seconds without disturbing the patient, thus allowing adaptive clinical SPECT imaging. The positioning precision for all elements of the system is within 0.1 mm and has shown no degradation over 100,000 complete revolutions of the conveyor—twice the expected usage for a clinical system. We consider the rapid and precise operation allowing optimal collimation for different imaging tasks to be an important technological step for cardiac SPECT. PMID:24499740

  1. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals

    SciTech Connect

    Joint Graduate Group in Bioengineering, University of California, San Francisco and University of California, Berkeley; Department of Radiology, University of California; Gullberg, Grant T; Hwang, Andrew B.; Franc, Benjamin L.; Gullberg, Grant T.; Hasegawa, Bruce H.

    2008-02-15

    Small animal SPECT imaging systems have multiple potential applications in biomedical research. Whereas SPECT data are commonly interpreted qualitatively in a clinical setting, the ability to accurately quantify measurements will increase the utility of the SPECT data for laboratory measurements involving small animals. In this work, we assess the effect of photon attenuation, scatter and partial volume errors on the quantitative accuracy of small animal SPECT measurements, first with Monte Carlo simulation and then confirmed with experimental measurements. The simulations modeled the imaging geometry of a commercially available small animal SPECT system. We simulated the imaging of a radioactive source within a cylinder of water, and reconstructed the projection data using iterative reconstruction algorithms. The size of the source and the size of the surrounding cylinder were varied to evaluate the effects of photon attenuation and scatter on quantitative accuracy. We found that photon attenuation can reduce the measured concentration of radioactivity in a volume of interest in the center of a rat-sized cylinder of water by up to 50percent when imaging with iodine-125, and up to 25percent when imaging with technetium-99m. When imaging with iodine-125, the scatter-to-primary ratio can reach up to approximately 30percent, and can cause overestimation of the radioactivity concentration when reconstructing data with attenuation correction. We varied the size of the source to evaluate partial volume errors, which we found to be a strong function of the size of the volume of interest and the spatial resolution. These errors can result in large (>50percent) changes in the measured amount of radioactivity. The simulation results were compared with and found to agree with experimental measurements. The inclusion of attenuation correction in the reconstruction algorithm improved quantitative accuracy. We also found that an improvement of the spatial resolution through the

  2. [Development of a Novel Body Phantom with Bone Equivalent Density for Evaluation of Bone SPECT].

    PubMed

    Ichikawa, Hajime; Miwa, Kenta; Matsutomo, Norikazu; Watanabe, Yoichi; Kato, Toyohiro; Shimada, Hideki

    2015-12-01

    We developed a custom-designed phantom for bone single photon emission computed tomography (SPECT)-specific radioactivity distribution and linear attenuation coefficient. The aim of this study was to evaluate the accuracy of the phantom. The lumbar phantom consisted of the trunk of a body phantom (background) containing a cylinder (vertebral body), a sphere (tumor), and a T-shaped container (processus). The vertebral body, tumor, and processus phantoms contained a K(2)HPO(4) solution of bone equivalent density and 50, 300 and 50 kBq/mL of (99m)Tc, respectively. The body phantom contained 8 kBq/mL of (99m)Tc solution. SPECT images were acquired using low-energy high-resolution collimation, a 128 × 128 matrix and 120 projections over 360° with a dwell time of 15 sec/view × 4 times. Thereafter, CT images were acquired at 130 kV and 70 ref mAs using adaptive dose modulation. The SPECT data were reconstructed with ordered subset expectation maximization with three-dimensional, scatter, and CT-based attenuation correction. Count ratio, linear attenuation coefficient (LAC), and full-width at half-maximum (FWHM) were measured. Count ratios between the background, the vertebral body, and the tumor in SPECT images were 463.8: 2888.0: 15150.3 (1: 6.23: 32.7). The LAC of the background and vertebral body in the CT-derived attenuation map were 0.155 cm⁻¹ and 0.284 cm⁻¹, respectively, and the FWHM measured from the processus was 15.27 mm. The precise counts and LAC indicated that the phantom was accurate and could serve as a tool for evaluating acquisition, reconstruction parameters, and quantitation in bone SPECT images.

  3. Microdialysis and SPECT measurements of amphetamine-induced dopamine release in nonhuman primates.

    PubMed

    Laruelle, M; Iyer, R N; al-Tikriti, M S; Zea-Ponce, Y; Malison, R; Zoghbi, S S; Baldwin, R M; Kung, H F; Charney, D S; Hoffer, P B; Innis, R B; Bradberry, C W

    1997-01-01

    The competition between endogenous transmitters and radiolabeled ligands for in vivo binding to neuroreceptors might provide a method to measure endogenous transmitter release in the living human brain with noninvasive techniques such as positron emission tomography (PET) or single photon emission computerized tomography (SPECT). In this study, we validated the measure of amphetamine-induced dopamine release with SPECT in nonhuman primates. Microdialysis experiments were conducted to establish the dose-response curve of amphetamine-induced dopamine release and to document how pretreatment with the dopamine depleter alpha-methyl-para-tyrosine (alpha MPT) affects this response. SPECT experiments were performed with two iodinated benzamides, [123I]IBZM and [123I]IBF, under sustained equilibrium condition. Both radio-tracers are specific D2 antagonists, but the affinity of [123I]IBZM (KD-0.4 nM) is lower than that of [123I]IBF (KD 0.1 nM). With both tracers, we observed a prolonged reduction in binding to D2 receptors following amphetamine injection. [123I]IBZM binding to D2 receptors was more affected than [123I]IBF by high doses of amphetamine, indicating that a lower affinity increases the vulnerability of a tracer to endogenous competition. With [123I]IBZM, we observed an excellent correlation between reduction of D2 receptor binding measured with SPECT and peak dopamine release measured with microdialysis after various doses of amphetamine. Pretreatment with alpha MPT significantly reduced the effect of amphetamine on [123I]IBZM binding to D2 receptors, confirming that this effect was mediated by intrasynaptic dopamine release. Together, these results validate the use of this SPECT paradigm as a noninvasive measurement of intrasynaptic dopamine release in the living brain.

  4. Voxel-by-voxel analysis of brain SPECT perfusion in Fibromyalgia

    NASA Astrophysics Data System (ADS)

    Guedj, Eric; Taïeb, David; Cammilleri, Serge; Lussato, David; de Laforte, Catherine; Niboyet, Jean; Mundler, Olivier

    2007-02-01

    We evaluated brain perfusion SPECT at rest, without noxious stiumuli, in a homogeneous group of hyperalgesic FM patients. We performed a voxel-based analysis in comparison to a control group, matched for age and gender. Under such conditions, we made the assumption that significant cerebral perfusion abnormalities could be demonstrated, evidencing altered cerebral processing associated with spontaneous pain in FM patients. The secondary objective was to study the reversibility and the prognostic value of such possible perfusion abnormalities under specific treatment. Eighteen hyperalgesic FM women (mean age 48 yr; range 25-63 yr; ACR criteria) and 10 healthy women matched for age were enrolled in the study. A voxel-by-voxel group analysis was performed using SPM2 ( p<0.05, corrected for multiple comparisons). All brain SPECT were performed before any change was made in therapy in the pain care unit. A second SPECT was performed a month later after specific treatment by Ketamine. Compared to control subjects, we observed individual brain SPECT abnormalities in FM patients, confirmed by SPM2 analysis with hyperperfusion of the somatosensory cortex and hypoperfusion of the frontal, cingulate, medial temporal and cerebellar cortices. We also found that a medial frontal and anterior cingulate hypoperfusions were highly predictive (PPV=83%; NPV=91%) of non-response on Ketamine, and that only responders showed significant modification of brain perfusion, after treatment. In the present study performed without noxious stimuli in hyperalgesic FM patients, we found significant hyperperfusion in regions of the brain known to be involved in sensory dimension of pain processing and significant hypoperfusion in areas assumed to be associated with the affective dimension. As current pharmacological and non-pharmacological therapies act differently on both components of pain, we hypothesize that SPECT could be a valuable and readily available tool to guide individual therapeutic

  5. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals

    NASA Astrophysics Data System (ADS)

    Hwang, Andrew B.; Franc, Benjamin L.; Gullberg, Grant T.; Hasegawa, Bruce H.

    2008-05-01

    Small animal SPECT imaging systems have multiple potential applications in biomedical research. Whereas SPECT data are commonly interpreted qualitatively in a clinical setting, the ability to accurately quantify measurements will increase the utility of the SPECT data for laboratory measurements involving small animals. In this work, we assess the effect of photon attenuation, scatter and partial volume errors on the quantitative accuracy of small animal SPECT measurements, first with Monte Carlo simulation and then confirmed with experimental measurements. The simulations modeled the imaging geometry of a commercially available small animal SPECT system. We simulated the imaging of a radioactive source within a cylinder of water, and reconstructed the projection data using iterative reconstruction algorithms. The size of the source and the size of the surrounding cylinder were varied to evaluate the effects of photon attenuation and scatter on quantitative accuracy. We found that photon attenuation can reduce the measured concentration of radioactivity in a volume of interest in the center of a rat-sized cylinder of water by up to 50% when imaging with iodine-125, and up to 25% when imaging with technetium-99m. When imaging with iodine-125, the scatter-to-primary ratio can reach up to approximately 30%, and can cause overestimation of the radioactivity concentration when reconstructing data with attenuation correction. We varied the size of the source to evaluate partial volume errors, which we found to be a strong function of the size of the volume of interest and the spatial resolution. These errors can result in large (>50%) changes in the measured amount of radioactivity. The simulation results were compared with and found to agree with experimental measurements. The inclusion of attenuation correction in the reconstruction algorithm improved quantitative accuracy. We also found that an improvement of the spatial resolution through the use of resolution

  6. Determination of the Role of Oxygen in Suspected Acute Myocardial Infarction by Biomarkers

    ClinicalTrials.gov

    2017-03-02

    Acute Myocardial Infarction (AMI); Acute Coronary Syndrome (ACS); ST Elevation (STEMI) Myocardial Infarction; Ischemic Reperfusion Injury; Non-ST Elevation (NSTEMI) Myocardial Infarction; Angina, Unstable

  7. [Percutaneous myocardial laser revascularization (PMR)].

    PubMed

    Lauer, B; Stahl, F; Bratanow, S; Schuler, G

    2000-09-01

    In patients with severe angina pectoris due to coronary artery disease, who are not candidates for either percutaneous coronary angioplasty or coronary artery bypass surgery, transmyocardial laser revascularization (TMR) often leads to improvement of clinical symptoms and increased exercise capacity. One drawback of TMR is the need for surgical thoracotomy in order to gain access to the epicardial surface of the heart. Therefore, a catheter-based system has been developed, which allows creation of laser channels into the myocardium from the left ventricular cavity. Between January 1997 and November 1999, this "percutaneous myocardial laser revascularization" (PMR) has been performed in 101 patients at the Herzzentrum Leipzig. In 63 patients, only 1 region of the heart (anterior, lateral, inferior or septal) was treated with PMR, in 38 patients 2 or 3 regions were treated in 1 session. There were 12.3 +/- 4.5 (range 4 to 22) channels/region created into the myocardium. After 3 months, the majority of patients reported significant improvement of clinical symptoms (CCS class at baseline: 3.3 +/- 0.4, after 6 months: 1.6 +/- 0.8) (p < 0.001) and an increased exercise capacity (baseline: 397 +/- 125 s, after 6 months: 540 +/- 190 s) (p < 0.05). After 2 years, the majority of patients had experienced sustained clinical benefit after PMR, the CCS class after 2 years was 1.3 +/- 0.7, exercise capacity was 500 +/- 193 s. However, thallium scintigraphy failed to show increased perfusion in the PMR treated regions. The pathophysiologic mechanisms of myocardial laser revascularization is not yet understood. Most of the laser channels are found occluded after various time intervals after intervention. Other possible mechanisms include myocardial denervation or angioneogenesis after laser revascularization, however, unequivocal evidence for these theories is not yet available. In conclusion, PMR seems to be a safe and feasible new therapeutic option for patients with refractory

  8. Nanog expression in heart tissues induced by acute myocardial infarction.

    PubMed

    Luo, Huanhuan; Li, Qiong; Pramanik, Jogen; Luo, Jiankai; Guo, Zhikun

    2014-10-01

    Nanog is a potential stem cell marker and is considered a regeneration factor during tissue repair. In the present study, we investigated expression patterns of nanog in the rat heart after acute myocardial infarction by semi-quantitative RT-PCR, immunohistochemistry and Western blot analyses. Our results show that nanog at both mRNA and protein levels is positively expressed in myocardial cells, fibroblasts and small round cells in different myocardial zones at different stages after myocardial infarction, showing a spatio-temporal and dynamic change. After myocardial infarction, the nanog expression in fibroblasts and small round cells in the infarcted zone (IZ) is much stronger than that in the margin zone (MZ) and remote infarcted zone (RIZ). From day 7 after myocardial infarction, the fibroblasts and small cells strongly expressed nanog protein in the IZ, and a few myocardial cells in the MZ and the RIZ and the numbers of nanog-positive fibroblasts and small cells reached the highest peak at 21 days after myocardial infarction, but in this period the number of nanog-positive myocardial cells decreased gradually. At 28 days after myocardial infarction, the numbers of all nanog-positive cells decreased into a low level. Therefore, our data suggest that all myocardial cells, fibroblasts and small round cells are involved in myocardial reconstruction after cardiac infarction. The nanog-positive myocardial cells may respond to early myocardial repair, and the nanog-positive fibroblasts and small round cells are the main source for myocardial reconstruction after cardiac infarction.

  9. Ethanol-induced myocardial ischemia: close relation between blood acetaldehyde level and myocardial ischemia.

    PubMed

    Ando, H; Abe, H; Hisanou, R

    1993-05-01

    A patient with vasospastic angina who developed myocardial ischemia following ethanol ingestion but not after exercise was described. Myocardial ischemia was evidenced by electrocardiograms (ECGs) and thallium-201 scintigrams. The blood acetaldehyde level after ethanol ingestion was abnormally high. The time course and severity of myocardial ischemia coincided with those of the blood ethanol and acetaldehyde level. Coronary arteriography showed ergonovine ma