Science.gov

Sample records for 99mtc-tetrofosmin myocardial spect

  1. Quantitative myocardial perfusion SPECT.

    PubMed

    Tsui, B M; Frey, E C; LaCroix, K J; Lalush, D S; McCartney, W H; King, M A; Gullberg, G T

    1998-01-01

    In recent years, there has been much interest in the clinical application of attenuation compensation to myocardial perfusion single photon emission computed tomography (SPECT) with the promise that accurate quantitative images can be obtained to improve clinical diagnoses. The different attenuation compensation methods that are available create confusion and some misconceptions. Also, attenuation-compensated images reveal other image-degrading effects including collimator-detector blurring and scatter that are not apparent in uncompensated images. This article presents basic concepts of the major factors that degrade the quality and quantitative accuracy of myocardial perfusion SPECT images, and includes a discussion of the various image reconstruction and compensation methods and misconceptions and pitfalls in implementation. The differences between the various compensation methods and their performance are demonstrated. Particular emphasis is directed to an approach that promises to provide quantitative myocardial perfusion SPECT images by accurately compensating for the 3-dimensional (3-D) attenuation, collimator-detector response, and scatter effects. With advances in the computer hardware and optimized implementation techniques, quantitatively accurate and high-quality myocardial perfusion SPECT images can be obtained in clinically acceptable processing time. Examples from simulation, phantom, and patient studies are used to demonstrate the various aspects of the investigation. We conclude that quantitative myocardial perfusion SPECT, which holds great promise to improve clinical diagnosis, is an achievable goal in the near future.

  2. Myocardial Perfusion SPECT 2015 in Germany

    PubMed Central

    Burchert, Wolfgang; Schäfer, Wolfgang; Hacker, Marcus

    2016-01-01

    Summary Aim The working group Cardiovascular Nuclear Medicine of the German Society of Nuclear Medicine presents the results of the 7th survey of myocardial perfusion SPECT (MPS) of the reporting year 2015. Method 268 questionnaires (173 practices [PR], 67 hospitals [HO], 28 university hospitals [UH]) were evaluated. Results of the last survey from 2012 are set in squared brackets. Results MPS of 121 939 [105 941] patients were reported. 98 % [95 %] of all MPS were performed with Tc-99m radiopharmaceuticals and 2 % [5 %] with Tl-201. 78 % [79 %] of all patients were studied in PR, 14 % [15 %] in HO, and 8 % [6 %] in UH. A pharmacological stress test was performed in 43 % [39 %] (22 % [24 %] adenosine, 20 % [9 %] regadenoson, 1% [6 %] dipyridamole or dobutamine). Attenuation correction was applied in 25 % [2009: 10 %] of MPS. Gated SPECT was performed in 78 % [70 %] of all rest MPS, in 80 % [73 %] of all stress and in 76 % [67 %] of all stress and rest MPS. 53 % [33 %] of all nuclear medicine departments performed MPS scoring by default, whereas 24 % [41 %] did not apply any quantification. 31 % [26 %] of all departments noticed an increase in their counted MPS and 29 % [29 %] no changes. Data from 89 departments which participated in all surveys showed an increase in MPS count of 11.1 % (PR: 12.2 %, HO: 4.8 %, UH: 18.4 %). 70 % [60 %] of the MPS were requested by ambulatory care cardiologists. Conclusion The 2015 MPS survey reveals a high-grade adherence of routine MPS practice to current guidelines. The positive trend in MPS performance and number of MPS already observed in 2012 continues. Educational training remains necessary in the field of SPECT scoring. PMID:27909712

  3. Recent developments and future prospects of SPECT myocardial perfusion imaging.

    PubMed

    Zaman, Maseeh Uz; Hashmi, Ibrahim; Fatima, Nosheen

    2010-10-01

    Myocardial perfusion SPECT imaging is the most commonly performed functional imaging for assessment of coronary artery disease. High diagnostic accuracy and incremental prognostic value are the major benefits while suboptimal spatial resolution and significant radiation exposure are the main limitations. Its ability to detect hemodynamic significance of lesions seen on multidetector CT angiogram (MDCTA) has paved the path for a successful marriage between anatomical and functional imaging modalities in the form of hybrid SPECT/MDCTA system. In recent years, there have been enormous efforts by industry and academia to develop new SPECT imaging systems with better sensitivity, resolution, compact design and new reconstruction algorithms with ability to improve image quality and resolution. Furthermore, expected arrival of Tc-99m-labeled deoxyglucose in next few years would further strengthen the role of SPECT in imaging hibernating myocardium. In view of these developments, it seems that SPECT would enjoy its pivotal role in spite of major threat to be replaced by fluorine-18-labeled positron emission tomography perfusion and glucose metabolism imaging agents.

  4. Myocardial perfusion and left ventricular function indices assessed by gated myocardial perfusion SPECT in methamphetamine abusers.

    PubMed

    Dadpour, Bita; Dabbagh Kakhki, Vahid R; Afshari, Reza; Dorri-Giv, Masoumeh; Mohajeri, Seyed A R; Ghahremani, Somayeh

    2016-12-01

    Methamphetamine (MA) is associated with alterations of cardiac structure and function, although it is less known. In this study, we assessed possible abnormality in myocardial perfusion and left ventricular function using gated myocardial perfusion SPECT. Fifteen patients with MA abuse, on the basis of Diagnostic and Statistical Manual of Mental Disorders, 4th ed. (DSM-IV) MA dependency determined by Structured Clinical Interview for DSM-IV, underwent 2-day dipyridamole stress/rest Tc-sestamibi gated myocardial perfusion SPECT. An average daily dose of MA use was 0.91±1.1 (0.2-4) g. The duration of MA use was 3.4±2.1 (1-7) years. In visual and semiquantitative analyses, all patients had normal gated myocardial perfusion SPECT, with no perfusion defects. In all gated SPECT images, there was no abnormality in left ventricular wall motion and thickening. All summed stress scores and summed rest scores were below 3. Calculated left ventricular functional indices including the end-diastolic volume, end-systolic volume, and left ventricular ejection fraction were normal. Many cardiac findings because of MA mentioned in previous reports are less likely because of significant epicardial coronary artery stenosis.

  5. Constrictive pericarditis causing a positive TI-201 SPECT stress test for myocardial ischemia

    SciTech Connect

    Matthews, R.J.; Lightfoote, J.; Grusd, R.S. )

    1990-08-01

    A case of constritive pericarditis was demonstrated by a positive thallium SPECT stress test for myocardial ischemia. After pericardiectomy, the repeat thallium stress test was normal. The disappearance of the criteria for a positive test suggests that constrictive pericarditis can cause myocardial ischemia, which can be demonstrated by thallium SPECT stress testing.

  6. Delayed redistribution in thallium 201 SPECT myocardial perfusion studies

    SciTech Connect

    Ziessman, H.A.; Keyes, J.W. Jr.; Fox, L.M.; Green, C.E.; Fox, S.M. )

    1989-11-01

    Stress {sup 201}Tl myocardial perfusion studies are useful in differentiating viable, reversibly ischemic from infarcted myocardium. A perfusion defect that shows redistribution 2 to 4 h after {sup 201}Tl injection is diagnostic of ischemia, while a fixed defect suggests infarction. However, occasional patients with a fixed defect at 4 h have redistribution at 24 h. This study evaluates the frequency and significance of this delayed redistribution with SPECT {sup 201}Tl. Patients with either no or incomplete redistribution at 4 h had repeat imaging 18 to 48 h later. Delayed redistribution was seen in 8/26 (31 percent). Four had incomplete and four had no redistribution at 4 h. Delayed redistribution with SPECT {sup 201}Tl is more common than generally appreciated, and we recommend delayed images in patients with fixed perfusion defects or incomplete redistribution at 4-h imaging, particularly in patients with previous infarctions for whom a revascularization procedure is being considered.

  7. Myocardial Perfusion SPECT Imaging in Patients after Percutaneous Coronary Intervention.

    PubMed

    Georgoulias, Panagiotis; Valotassiou, Varvara; Tsougos, Ioannis; Demakopoulos, Nikolaos

    2010-05-01

    Coronary artery disease (CAD) is the most prevalent form of cardiovascular disease affecting about 13 million Americans, while more than one million percutaneous transluminal intervention (PCI) procedures are performed annually in the USA. The relative high occurrence of restenosis, despite stent implementation, seems to be the primary limitation of PCI. Over the last decades, single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI), has proven an invaluable tool for the diagnosis of CAD and patients' risk stratification, providing useful information regarding the decision about revascularization and is well suited to assess patients after intervention. Information gained from post-intervention MPI is crucial to differentiate patients with angina from those with exo-cardiac chest pain syndromes, to assess peri-intervention myocardial damage, to predict-detect restenosis after PCI, to detect CAD progression in non-revascularized vessels, to evaluate the effects of intervention if required for occupational reasons and to evaluate patients' long-term prognosis. On the other hand, chest pain and exercise electrocardiography are largely unhelpful in identifying patients at risk after PCI.Although there are enough published data demonstrating the value of myocardial perfusion SPECT imaging in patients after PCI, there is still debate on whether or not these tests should be performed routinely.

  8. Noninvasive Nuclear SPECT Myocardial Blood Flow Quantitation to Guide Management for Coronary Artery Disease.

    PubMed

    Chen, Lung-Ching; Jong, Bor-Hsin; Lin, Sheng-Che; Ku, Chi-Tai; Chen, Ing-Jou; Chen, Yen-Kung; Hsu, Bailing

    2017-09-01

    Recently, myocardial blood flow quantitation with dynamic SPECT has been validated to enhance the detection of multivessel coronary artery disease (CAD) and conclude equivocal SPECT myocardial perfusion study. This advance opened an important clinical application to utilize the tool in guiding CAD management for area where myocardial perfusion tracers for PET are unavailable or unaffordable. We present a clinical patient with ongoing recursive angina who underwent multiple nuclear stress tests for a sequence of CAD evaluation in 26 months and demonstrated that SPECT myocardial blood flow quantitation properly guided CAD management to warrant patient outcome.

  9. Automated quantitative coronary computed tomography correlates of myocardial ischaemia on gated myocardial perfusion SPECT.

    PubMed

    de Graaf, Michiel A; El-Naggar, Heba M; Boogers, Mark J; Veltman, Caroline E; Broersen, Alexander; Kitslaar, Pieter H; Dijkstra, Jouke; Kroft, Lucia J; Al Younis, Imad; Reiber, Johan H; Bax, Jeroen J; Delgado, Victoria; Scholte, Arthur J

    2013-08-01

    Automated software tools have permitted more comprehensive, robust and reproducible quantification of coronary stenosis, plaque burden and plaque location of coronary computed tomography angiography (CTA) data. The association between these quantitative CTA (QCT) parameters and the presence of myocardial ischaemia has not been explored. The aim of the present investigation was to evaluate the association between QCT parameters of coronary artery lesions and the presence of myocardial ischaemia on gated myocardial perfusion single-photon emission CT (SPECT). Included in the study were 40 patients (mean age 58.2 ± 10.9 years, 27 men) with known or suspected coronary artery disease (CAD) who had undergone multidetector row CTA and gated myocardial perfusion SPECT within 6 months. From the CTA datasets, vessel-based and lesion-based visual analyses were performed. Consecutively, lesion-based QCT was performed to assess plaque length, plaque burden, percentage lumen area stenosis and remodelling index. Subsequently, the presence of myocardial ischaemia was assessed using the summed difference score (SDS ≥2) on gated myocardial perfusion SPECT. Myocardial ischaemia was seen in 25 patients (62.5%) in 37 vascular territories. Quantitatively assessed significant stenosis and quantitatively assessed lesion length were independently associated with myocardial ischaemia (OR 7.72, 95% CI 2.41-24.7, p < 0.001, and OR 1.07, 95% CI 1.00-1.45, p = 0.032, respectively) after correcting for clinical variables and visually assessed significant stenosis. The addition of quantitatively assessed significant stenosis (χ(2) = 20.7) and lesion length (χ(2) = 26.0) to the clinical variables and the visual assessment (χ(2) = 5.9) had incremental value in the association with myocardial ischaemia. Coronary lesion length and quantitatively assessed significant stenosis were independently associated with myocardial ischaemia. Both quantitative parameters have incremental value

  10. IQ-SPECT for thallium-201 myocardial perfusion imaging: effect of normal databases on quantification.

    PubMed

    Konishi, Takahiro; Nakajima, Kenichi; Okuda, Koichi; Yoneyama, Hiroto; Matsuo, Shinro; Shibutani, Takayuki; Onoguchi, Masahisa; Kinuya, Seigo

    2017-07-01

    Although IQ-single-photon emission computed tomography (SPECT) provides rapid acquisition and attenuation-corrected images, the unique technology may create characteristic distribution different from the conventional imaging. This study aimed to compare the diagnostic performance of IQ-SPECT using Japanese normal databases (NDBs) with that of the conventional SPECT for thallium-201 ((201)Tl) myocardial perfusion imaging (MPI). A total of 36 patients underwent 1-day (201)Tl adenosine stress-rest MPI. Images were acquired with IQ-SPECT at approximately one-quarter of the standard time of conventional SPECT. Projection data acquired with the IQ-SPECT system were reconstructed via an ordered subset conjugate gradient minimizer method with or without scatter and attenuation correction (SCAC). Projection data obtained using the conventional SPECT were reconstructed via a filtered back projection method without SCAC. The summed stress score (SSS) was calculated using NDBs created by the Japanese Society of Nuclear Medicine working group, and scores were compared between IQ-SPECT and conventional SPECT using the acquisition condition-matched NDBs. The diagnostic performance of the methods for the detection of coronary artery disease was also compared. SSSs were 6.6 ± 8.2 for the conventional SPECT, 6.6 ± 9.4 for IQ-SPECT without SCAC, and 6.5 ± 9.7 for IQ-SPECT with SCAC (p = n.s. for each comparison). The SSS showed a strong positive correlation between conventional SPECT and IQ-SPECT (r = 0.921 and p < 0.0001), and the correlation between IQ-SPECT with and without SCAC was also good (r = 0.907 and p < 0.0001). Regarding diagnostic performance, the sensitivity, specificity, and accuracy were 80.8, 78.9, and 79.4%, respectively, for the conventional SPECT; 80.8, 80.3, and 82.0%, respectively, for IQ-SPECT without SCAC; and 88.5, 86.8, and 87.3%, respectively, for IQ-SPECT with SCAC, respectively. The area under the curve obtained via receiver operating

  11. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision.

    PubMed

    Verberne, Hein J; Acampa, Wanda; Anagnostopoulos, Constantinos; Ballinger, Jim; Bengel, Frank; De Bondt, Pieter; Buechel, Ronny R; Cuocolo, Alberto; van Eck-Smit, Berthe L F; Flotats, Albert; Hacker, Marcus; Hindorf, Cecilia; Kaufmann, Philip A; Lindner, Oliver; Ljungberg, Michael; Lonsdale, Markus; Manrique, Alain; Minarik, David; Scholte, Arthur J H A; Slart, Riemer H J A; Trägårdh, Elin; de Wit, Tim C; Hesse, Birger

    2015-11-01

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated 2015 procedural guidelines are highlighted, focusing on the important changes related to new instrumentation with improved image information and the possibility to reduce radiation exposure, which is further discussed in relation to the recent developments of new International Commission on Radiological Protection (ICRP) models. Introduction of the selective coronary vasodilator regadenoson and the use of coronary CT-contrast agents for hybrid imaging with SPECT/CT angiography are other important areas for nuclear cardiology that were not included in the previous guidelines. A large number of minor changes have been described in more detail in the fully revised version available at the EANM home page: http://eanm.org/publications/guidelines/2015_07_EANM_FINAL_myocardial_perfusion_guideline.pdf .

  12. Hotspot quantification of myocardial focal tracer uptake from molecular targeted SPECT/CT images: experimental validation

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Hwa; Sahul, Zakir; Weyman, Christopher A.; Ryder, William J.; Dione, Donald P.; Dobrucki, Lawrence W.; Mekkaoui, Choukri; Brennan, Matthew P.; Hu, Xiaoyue; Hawley, Christi; Sinusas, Albert J.

    2008-03-01

    We have developed a new single photon emission computerized tomography (SPECT) hotspot quantification method incorporating extra cardiac activity correction and hotspot normal limit estimation. The method was validated for estimation accuracy of myocardial tracer focal uptake in a chronic canine model of myocardial infarction (MI). Dogs (n = 4) at 2 weeks post MI were injected with Tl-201 and a Tc-99m-labeled hotspot tracer targeted at matrix metalloproteinases (MMPs). An external point source filled with Tc-99m was used for a reference of absolute radioactivity. Dual-isotope (Tc-99m/Tl-201) SPECT images were acquired simultaneously followed by an X-ray CT acquisition. Dogs were sacrificed after imaging for myocardial gamma well counting. Images were reconstructed with CT-based attenuation correction (AC) and without AC (NAC) and were quantified using our quantification method. Normal limits for myocardial hotspot uptake were estimated based on 3 different schemes: maximum entropy, meansquared-error minimization (MSEM) and global minimization. Absolute myocardial hotspot uptake was quantified from SPECT images using the normal limits and compared with well-counted radioactivity on a segment-by-segment basis (n = 12 segments/dog). Radioactivity was expressed as % injected dose (%ID). There was an excellent correlation (r = 0.78-0.92) between the estimated activity (%ID) derived using the SPECT quantitative approach and well-counting, independent of AC. However, SPECT quantification without AC resulted in the significant underestimation of radioactivity. Quantification using SPECT with AC and the MSEM normal limit yielded the best results compared with well-counting. In conclusion, focal myocardial "hotspot" uptake of a targeted radiotracer can be accurately quantified in vivo using a method that incorporates SPECT imaging with AC, an external reference, background scatter compensation, and a suitable normal limit. This hybrid SPECT/CT approach allows for the serial

  13. [Cost-effectiveness of stress-only myocardial perfusion single photon emission computed tomography (SPECT) imaging].

    PubMed

    Vallejo, Enrique; Acevedo, César; Varela, Samuel; Alburez, José Carlos; Bialostozky, David

    2012-01-01

    Single photon emission computed tomography (SPECT) myocardial perfusion imaging is widely used for diagnosing coronary artery disease (CAD). However, SPECT costs, imaging time, and radiation exposure, limit SPECT indications. Determine whether a stress-only SPECT imaging would be enough to obtain a diagnosis of CAD improving nuclear laboratory efficiency. 122 patients with unknown CAD were evaluated with stress-only SPECT imaging. In order to evaluate diagnostic accuracy and the prognostic value of the stress-only protocol, patients with abnormal SPECT underwent invasive angiography and patients with normal SPECT were followed-up during 3 years. Diagnosis time, SPECT cost, and radiopharmaceutical dosage were significantly lower as compared with the conventional SPECT imaging protocol (30, 40 and 55%, respectively). Diagnostic accuracy and cardiac prognosis information were comparable to those obtained with the conventional imaging protocol (positive predictive value for CAD of 85% and negative predictive value for cardiac events of 97%). In patients with intermediate risk for CAD, stress-only SPECT imaging will significantly improve nuclear laboratory efficiency, and with similar accuracy than that the one obtained with the conventional protocol.

  14. Regional cardiac wall motion from gated myocardial perfusion SPECT studies

    NASA Astrophysics Data System (ADS)

    Smith, M. F.; Brigger, P.; Ferrand, S. K.; Dilsizian, V.; Bacharach, S. L.

    1999-06-01

    A method for estimating regional epicardial and endocardial wall motion from gated myocardial perfusion SPECT studies has been developed. The method uses epicardial and endocardial boundaries determined from four long-axis slices at each gate of the cardiac cycle. The epicardial and endocardial wall position at each time gate is computed with respect to stationary reference ellipsoids, and wall motion is measured along lines normal to these ellipsoids. An initial quantitative evaluation of the method was made using the beating heart from the dynamic mathematical cardiac torso (MCAT) phantom, with and without a 1.5-cm FWHM Gaussian blurring filter. Epicardial wall motion was generally well-estimated within a fraction of a 3.56-mm voxel, although apical motion was overestimated with the Gaussian filter. Endocardial wall motion was underestimated by about two voxels with and without the Gaussian filter. The MCAT heart phantom was modified to model hypokinetic and dyskinetic wall motion. The wall motion analysis method enabled this abnormal motion to be differentiated from normal motion. Regional cardiac wall motion also was analyzed for /sup 201/Tl patient studies. Estimated wall motion was consistent with a nuclear medicine physician's visual assessment of motion from gated long-axis slices for male and female study examples. Additional research is required for a comprehensive evaluation of the applicability of the method to patient studies with normal and abnormal wall motion.

  15. SPECT imaging with Tl-201 and Ga-67 in myocardial sarcoidosis

    SciTech Connect

    Kurata, C.; Sakata, K.; Taguchi, T.; Fukumoto, Y.; Miyata, H.; Aoshima, S.; Yamazaki, N. )

    1990-06-01

    Two patients with myocardial sarcoidosis are presented, both of whom underwent SPECT imaging with Tl-201 and Ga-67. The first had Ga-67 myocardial uptake with a Tl-201 defect, which disappeared with corticosteroid therapy. The second had multiple Tl-201 defects without Ga-67 uptake, which persisted despite corticosteroid therapy. Therefore, the combination of Tl-201 and Ga-67 imaging may be useful for recognizing myocardial sarcoidosis and for predicting the response to corticosteroid therapy.

  16. SPECT myocardial perfusion imaging for the assessment of left ventricular mechanical dyssynchrony

    PubMed Central

    Chen, Ji; Garcia, Ernest V.; Bax, Jeroen J.; Iskandrian, Ami E.; Borges-Neto, Salvador; Soman, Prem

    2012-01-01

    Phase analysis of gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is an evolving technique for measuring LV mechanical dyssynchrony. Since its inception in 2005, it has undergone considerable technical development and clinical evaluation. This article reviews the background, the technical and clinical characteristics, and evolving clinical applications of phase analysis of gated SPECT MPI in patients requiring cardiac resynchronization therapy or implantable cardioverter defibrillator therapy and in assessing LV diastolic dyssynchrony. PMID:21567281

  17. Characteristics of regional myocardial stunning after exercise in gated myocardial SPECT.

    PubMed

    Paul, Asit Kr; Hasegawa, Shinji; Yoshioka, Jun; Mu, Xiuli; Maruyama, Kaoru; Kusuoka, Hideo; Nishimura, Tsunehiko

    2002-01-01

    A number of studies have demonstrated prolonged left ventricular (LV) global dysfunction after exercise-induced ischemia in gated myocardial single photon emission tomography (SPECT) as a manifestation of exercise-induced stunning. This study investigated the residual effects of exercise on postexercise LV regional function and its implications on the detection of stunning in gated SPECT. Fifty-three subjects with known or suspected coronary artery disease and 10 control subjects underwent myocardial SPECT according to a same-day exercise-rest protocol. Both postexercise and resting images were gated and acquired 1 hour after injection of technetium 99m tetrofosmin. The LV global ejection fraction and segmental systolic wall thickening were quantitated with the use of an automatic program. Segmental perfusion was assessed semiquantitatively on summed nongated tomograms. Wall thickening index (WTI), the ratio of systolic wall thickening of a segment to that of a corresponding control segment, was significantly lower after exercise than at rest in the reversible defect (RD) segments (0.66 +/- 0.24 vs 0.78 +/- 0.24; P <.0001). In patients with exercise-induced ischemia, the difference in WTI between rest and after exercise was significantly greater in the RD segments, which represented ischemia, than in the non-RD segments. Postexercise WTIs were not different from the resting values in subjects with no perfusion abnormalities or who had fixed defects (infarction). Significant postexercise dysfunction was present in 44% of the RD segments, compared with 5% of the normal and 3% of the fixed defect segments. Postexercise segmental dysfunction was correlated with the segmental reversibility score, the difference in defect scores between exercise and rest images (n = 82, Spearman rank correlation coefficient = -0.78, P <.0001). Among 19 patients with ischemia, 9 (47%) exhibited concurrent segmental and global dysfunction, but segmental dysfunction persisted in the absence

  18. Validation of a short-scan-time imaging protocol for thallium-201 myocardial SPECT with a multifocal collimator.

    PubMed

    Horiguchi, Yoriko; Ueda, Tomohiro; Shiomori, Tomofumi; Kanna, Masahiko; Matsushita, Hirooki; Kawaminami, Tomoko; Sudo, Yuta; Kikuchi, Shinnosuke; Sasaki, Ryo; Hoshimiya, Jun; Morita, Yukiko

    2014-10-01

    IQ-SPECT (Siemens AG, Munich, Germany) is a highly sensitive single-photon-emission computed tomography (SPECT) myocardial perfusion imaging (MPI) system that uses a multifocal collimator. We searched for a suitable protocol for short-time imaging by IQ-SPECT in thallium-201 (Tl-201) MPI by evaluating phantom images and also by comparing human IQ-SPECT images with conventional SPECT images as reference standards. We assessed the image quality using the normalized mean square error (NMSE) and drew up count profiles in Tl-201 SPECT images acquired with IQ-SPECT in a phantom study. We also performed Tl-201 stress myocardial SPECT/CT in 21 patients and compared delayed images acquired by using IQ-SPECT with 36 or 17 views per head with images obtained by using conventional SPECT. The NMSE of SPECT images from IQ-SPECT with 36 views was approximately one-fifth of that with 17 views. The myocardial count profile of images with 17 views was lower than those of images with 36 or 104 views in some regions. Defect scores were significantly lower, and image quality scores higher, in images from conventional SPECT than in those from IQ-SPECT with 17 views. Defect scores and image quality scores were equivalent in images from conventional SPECT and those from IQ-SPECT with 36 views. Agreement with the results of conventional SPECT in terms of coronary artery territory-based defect judgment was the best in IQ-SPECT with 36 views with computed tomography-derived attenuation correction (CTAC): the kappa values for IQ-SPECT with 36 views were 0.76 (without CTAC) and 0.83 (with CTAC), and those for IQ-SPECT with 17 views were 0.62 (without CTAC) and 0.59 (with CTAC). The difference in quantitative tracer uptake between conventional SPECT images and IQ-SPECT images was significantly greater for IQ-SPECT images with 17 views than for those with 36 views. Scanning with 36 views per head with CTAC may be appropriate for Tl-201 MPI using IQ-SPECT, because it provides images equivalent to

  19. [Variables that influence the indication of a second myocardial perfusion gated-SPECT after a normal stress-rest gated SPECT].

    PubMed

    Romero-Farina, G; Candell-Riera, J; Aguadé-Bruix, S; Cuberas-Borrós, G; Pizzi, M N; Santos, A; de León, G; García-Dorado, D

    2014-01-01

    The objective of this study was to investigate predictor variables at the moment of normal stress-rest myocardial perfusion gated SPECT for indication of a second gated SPECT. A prospective, single center cohort study was conducted. We evaluated 2326 consecutive patients (age 63.6 ± 13 years, 57.3% females) without perfusion defects and with normal left ventricular ejection fraction on a myocardial perfusion gated SPECT. Clinical and stress test variables were studied to predict indication of a second gated SPECT and presence of reversible perfusion defects in the second gated SPECT. During a mean follow-up of 3.6 ± 2 years a second gated SPECT was performed in 286 patients (12.3%). Independent predictor variables of a second gated SPECT were presence of three or more cardiovascular risk factors (χ(2): 5.510; HR: 1.4; p=0.019), previous acute myocardial infarction (χ(2): 3.867; HR: 1.4; p=0.049), previous coronary revascularization (χ(2): 41.081; HR: 2.5; p<0.001), and a positive stress test (χ(2): 8.713; HR: 1.5; p=0.003). Observation of perfusion defects in the 280 patients in whom a second stress-rest gated SPECT was performed was more likely in male patients (χ(2): 4.322; HR: 1.9; p=0.038) who had a first pure pharmacological gated-SPECT (χ(2): 7.182; HR: 2.6; p=0.007). In patients with a first normal myocardial perfusion gated SPECT, various clinical factors and variables derived from the stress test affect the indication of a second gated SPECT and the presence of ischemia in the latter. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  20. Automated three-dimensional quantification of myocardial perfusion and brain SPECT.

    PubMed

    Slomka, P J; Radau, P; Hurwitz, G A; Dey, D

    2001-01-01

    To allow automated and objective reading of nuclear medicine tomography, we have developed a set of tools for clinical analysis of myocardial perfusion tomography (PERFIT) and Brain SPECT/PET (BRASS). We exploit algorithms for image registration and use three-dimensional (3D) "normal models" for individual patient comparisons to composite datasets on a "voxel-by-voxel basis" in order to automatically determine the statistically significant abnormalities. A multistage, 3D iterative inter-subject registration of patient images to normal templates is applied, including automated masking of the external activity before final fit. In separate projects, the software has been applied to the analysis of myocardial perfusion SPECT, as well as brain SPECT and PET data. Automatic reading was consistent with visual analysis; it can be applied to the whole spectrum of clinical images, and aid physicians in the daily interpretation of tomographic nuclear medicine images.

  1. Wiener filtering improves quantification of regional myocardial perfusion with thallium-201 SPECT

    SciTech Connect

    Links, J.M.; Jeremy, R.W.; Dyer, S.M.; Frank, T.L.; Becker, L.C. )

    1990-07-01

    Quantitation of myocardial perfusion with thallium-201 (201Tl) SPECT is limited by finite resolution and image noise. This study examined whether Wiener filtering could improve quantitation of the severity of myocardial perfusion deficits. In 19 anesthetized dogs, adjustable stenoses were placed on the left anterior descending (LAD, n = 12) or circumflex (LCx, n = 7) arteries. Thallium-201 SPECT images were acquired during maximal coronary vasodilation with dipyridamole, and simultaneous measurements of myocardial blood flow were made with microspheres. The relationship between SPECT and microsphere flow deficits in the LAD region was significantly better (p less than 0.05) with Wiener filtering (Y = 0.90X + 0.03, r = 0.78) than with conventional Hanning filtering (Y = 0.66X + 0.34, r = 0.61). Similarly, in the LCx region the relationship between SPECT and microsphere perfusion deficits was better (p less than 0.01) with the Wiener filter (Y = 0.91X + 0.07, r = 0.66) than with the Hanning filter (Y = 0.36X + 0.50, r = 0.40). Wiener filtering improves quantitation of the severity of regional myocardial perfusion deficits, allowing better assessment of the functional significance of coronary artery stenoses.

  2. Thallium-201 myocardial SPECT in left bundle branch block: diagnosis of myocardial ischemia with a disease-specific reference database.

    PubMed

    Zupán, Kristóf; Kári, Béla; Fontos, Géza; Dékány, Péter; Pártos, Oszkár

    2006-07-01

    The aim of this study was to assess the value of a myocardial perfusion single photon emission computed tomography (SPECT) reference file for patients with left bundle branch block (LBBB). Tl-201 stress-redistribution myocardial perfusion SPECT studies of patients with complete, permanent LBBB were reviewed retrospectively. To develop a reference database, 18 patients with a low likelihood of coronary artery disease (CAD) were selected. Left ventricular regional average and standard deviation (SD) values of the reference file images were calculated. The diagnostic performance was tested on perfusion images of 49 patients with LBBB, undergoing both scintigraphic and coronary angiographic evaluation, and was compared with a commercial quantitative analysis system using a general reference database. The LBBB reference file performed significantly better in detecting epicardial CAD than did the general reference database (receiver operating characteristic area under the curve 0.835 +/- 0.06 vs 0.580 +/- 0.08, p < .01). Disease localization also was improved significantly in the territory of the left anterior descending and of the right coronary arteries. The use of a reference file of patients with LBBB and a low likelihood of CAD aids the detection and the localization of myocardial ischemia on Tl-201 myocardial SPECT images of this patient group.

  3. Relationship Between Coronary Contrast-Flow Quantitative Flow Ratio and Myocardial Ischemia Assessed by SPECT MPI.

    PubMed

    Smit, Jeff M; Koning, Gerhard; van Rosendael, Alexander R; Dibbets-Schneider, Petra; Mertens, Bart J; Jukema, J Wouter; Delgado, Victoria; Reiber, Johan H C; Bax, Jeroen J; Scholte, Arthur J

    2017-07-06

    A new method has been developed to calculate fractional flow reserve (FFR) from invasive coronary angiography, the so-called "contrast-flow quantitative flow ratio (cQFR)". Recently, cQFR was compared to invasive FFR in intermediate coronary lesions showing an overall diagnostic accuracy of 85%. The purpose of this study was to investigate the relationship between cQFR and myocardial ischemia assessed by single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI). Patients who underwent SPECT MPI and coronary angiography within 3 months were included. The cQFR computation was performed offline, using dedicated software. The cQFR computation was based on 3-dimensional quantitative coronary angiography (QCA) and computational fluid dynamics. The standard 17-segment model was used to determine the vascular territories. Myocardial ischemia was defined as a summed difference score ≥2 in a vascular territory. A cQFR of ≤0.80 was considered abnormal. Two hundred and twenty-four coronary arteries were analysed in 85 patients. Overall accuracy of cQFR to detect ischemia on SPECT MPI was 90%. In multivariable analysis, cQFR was independently associated with ischemia on SPECT MPI (OR per 0.01 decrease of cQFR: 1.10; 95% CI 1.04-1.18, p = 0.002), whereas clinical and QCA parameters were not. Furthermore, cQFR showed incremental value for the detection of ischemia compared to clinical and QCA parameters (global chi square 48.7 to 62.6; p <0.001). A good relationship between cQFR and SPECT MPI was found. cQFR was independently associated with ischemia on SPECT MPI and showed incremental value to detect ischemia compared to clinical and QCA parameters.

  4. Acute myocardial infarction: estimation of at-risk and salvaged myocardium at myocardial perfusion SPECT 1 month after infarction.

    PubMed

    Romero-Farina, Guillermo; Aguadé-Bruix, Santiago; Candell-Riera, Jaume; Pizzi, M Nazarena; Pineda, Victor; Figueras, Jaume; Cuberas, Gemma; de León, Gustavo; Castell-Conesa, Joan; García-Dorado, David

    2013-11-01

    To estimate at-risk and salvaged myocardium by using gated single photon emission computed tomography (SPECT) myocardial perfusion imaging after acute myocardial infarction (AMI). The study was approved by the hospital's Ethical Committee on Clinical Trials (trial register number, PR(HG)36/2000), and all patients gave informed consent. Forty patients (mean age, 61.78 years; eight women) with a first AMI underwent two gated SPECT examinations--one before percutaneous coronary intervention (PCI) and one 4-5 weeks after PCI. Myocardium at risk was estimated by assessing the perfusion defect at the first gated SPECT examination, and salvaged myocardium was estimated by assessing the risk area minus necrosis at the second examination. Myocardium at risk was estimated by determining the discordance between the areas of left ventricular (LV) wall motion and perfusion at the second examination. Concordance between tests was analyzed by means of linear regression analysis, the Pearson correlation, the intraclass correlation coefficient, and Bland-Altman analysis. An improvement in perfusion, wall motion, wall thickening, and LV ejection fraction (P < .001) was observed at 1 month. At 1 month, the area with abnormal wall motion was greater than the area of altered perfusion (35.47 vs 23.1 cm(2); P = .007). The extent of myocardium at risk estimated from this discordance correlated well with myocardium at risk measured at the first gated SPECT examination and with salvaged myocardium between both studies (Pearson correlation: 0.78 and 0.6, respectively). Concordance for correct classification of patients with salvaged myocardium of 50% or greater was 83% (κ = 0.65). Myocardial perfusion gated SPECT performed 1 month after early PCI in a first AMI provides potentially useful information on at-risk and salvaged myocardium. http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.13122324/-/DC1. RSNA, 2013

  5. Dobutamine stress echocardiography versus quantitative technetium-99m sestamibi SPECT for detecting residual stenosis and multivessel disease after myocardial infarction

    PubMed Central

    Lancellotti, P; Benoit, T; Rigo, P; Pierard, L

    2001-01-01

    OBJECTIVE—To compare the relative accuracy of dobutamine stress echocardiography (DSE) and quantitative technetium-99m sestamibi single photon emission computed tomography (mibi SPECT) for detecting infarct related artery stenosis and multivessel disease early after acute myocardial infarction.
DESIGN—Prospective study.
SETTING—University hospital.
METHODS—75 patients underwent simultaneous DSE and mibi SPECT at (mean (SD)) 5 (2) days after a first acute myocardial infarct. Quantitative coronary angiography was performed in all patients after imaging studies.
RESULTS—Significant stenosis (> 50%) of the infarct related artery was detected in 69 patients. Residual ischaemia was identified by DSE in 55 patients and by quantitative mibi SPECT in 49. The sensitivity of DSE and mibi SPECT for detecting significant infarct related artery stenosis was 78% and 70%, respectively, with a specificity of 83% for both tests. The combination of DSE and mibi SPECT did not change the specificity (83%) but increased the sensitivity to 94%. Mibi SPECT was more sensitive than DSE for detecting mild stenosis (73% v 9%; p = 0.008). The sensitivity of DSE for detecting moderate or severe stenosis was greater than mibi SPECT (97% v 74%; p = 0.007). Wall motion abnormalities with DSE and transient perfusion defects with mibi SPECT outside the infarction zone were sensitive (80% v 67%; NS) and highly specific (95% v 93%; NS) for multivessel disease.
CONCLUSIONS—DSE and mibi SPECT have equivalent accuracy for detecting residual infarct related artery stenosis of ⩾ 50% and multivessel disease early after acute myocardial infarction. DSE is more predictive of moderate or severe infarct related artery stenosis. Combined imaging only improves the detection of mild stenosis.


Keywords: myocardial infarction; dobutamine echocardiography; single photon emission computed tomography; SPECT; myocardial ischaemia PMID:11602542

  6. Nuclear myocardial perfusion imaging using thallium-201 with a novel multifocal collimator SPECT/CT: IQ-SPECT versus conventional protocols in normal subjects.

    PubMed

    Matsuo, Shinro; Nakajima, Kenichi; Onoguchi, Masahisa; Wakabayash, Hiroshi; Okuda, Koichi; Kinuya, Seigo

    2015-06-01

    A novel multifocal collimator, IQ-SPECT (Siemens) consists of SMARTZOOM, cardio-centric and 3D iterative SPECT reconstruction and makes it possible to perform MPI scans in a short time. The aims are to delineate the normal uptake in thallium-201 ((201)Tl) SPECT in each acquisition method and to compare the distribution between new and conventional protocol, especially in patients with normal imaging. Forty patients (eight women, mean age of 75 years) who underwent myocardial perfusion imaging were included in the study. All patients underwent one-day protocol perfusion scan after an adenosine-stress test and at rest after administering (201)Tl and showed normal results. Acquisition was performed on a Symbia T6 equipped with a conventional dual-headed gamma camera system (Siemens ECAM) and with a multifocal SMARTZOOM collimator. Imaging was performed with a conventional system followed by IQ-SPECT/computed tomography (CT). Reconstruction was performed with or without X-ray CT-derived attenuation correction (AC). Two nuclear physicians blinded to clinical information interpreted all myocardial perfusion images. A semi-quantitative myocardial perfusion was analyzed by a 17-segment model with a 5-point visual scoring. The uptake of each segment was measured and left ventricular functions were analyzed by QPS software. IQ-SPECT provided good or excellent image quality. The quality of IQ-SPECT images without AC was similar to those of conventional LEHR study. Mid-inferior defect score (0.3 ± 0.5) in the conventional LEHR study was increased significantly in IQ-SPECT with AC (0 ± 0). IQ-SPECT with AC improved the mid-inferior decreased perfusion shown in conventional images. The apical tracer count in IQ-SPECT with AC was decreased compared to that in LEHR (0.1 ± 0.3 vs. 0.5 ± 0.7, p < 0.05). The left ventricular ejection fraction from IQ-SPECT was significantly higher than that from the LEHR collimator (p = 0.0009). The images of IQ-SPECT acquired in a

  7. Myocardial perfusion imaging parameters: IQ-SPECT and conventional SPET system comparison.

    PubMed

    Havel, Martin; Kolacek, Michal; Kaminek, Milan; Dedek, Vladimir; Kraft, Otakar; Sirucek, Pavel

    2014-01-01

    Technological advancement in hardware and software development in myocardial perfusion imaging (MPI) leads to the shortening of acquisition time and reduction of the radiation burden to patients. We compared semiquantitative perfusion results and functional parameters of the left ventricle between new dedicated cardiac system with astigmatic collimators called IQ-SPECT (Siemens Medical Solutions, USA) and conventional single photon emission tomography (SPET) system equipped with standard low energy high resolution collimators. A group of randomly selected 81 patients underwent consecutively the MPI procedure on IQ-SPECT and on conventional SPET systen, both without attenuation correction. The summed scores and the values of the functional parameters of the left ventricle: ejection fraction (EF), end-systolic and end-diastolic volumes (ESV, EDV) received from the automatic analysis software were compared and statistically analyzed. Our results showed that summed scores values were significantly higher for the IQ-SPECT system in comparison to the conventional one. Calculated EF were significantly lower for IQ-SPECT, whereas evaluated left ventricular volumes (LVV) were significantly higher for this system. In conclusion, we recorded significant differences in automatically calculated semiquantitative perfusion and functional parameters when compared uncorrected studies obtained by the IQ-SPECT with the conventional SPET system.

  8. Myocardial Infarction Area Quantification using High-Resolution SPECT Images in Rats

    PubMed Central

    de Oliveira, Luciano Fonseca Lemos; Mejia, Jorge; de Carvalho, Eduardo Elias Vieira; Lataro, Renata Maria; Frassetto, Sarita Nasbine; Fazan, Rubens; Salgado, Hélio Cesar; Galvis-Alonso, Orfa Yineth; Simões, Marcus Vinícius

    2013-01-01

    Background Imaging techniques enable in vivo sequential assessment of the morphology and function of animal organs in experimental models. We developed a device for high-resolution single photon emission computed tomography (SPECT) imaging based on an adapted pinhole collimator. Objective To determine the accuracy of this system for quantification of myocardial infarct area in rats. Methods Thirteen male Wistar rats (250 g) underwent experimental myocardial infarction by occlusion of the left coronary artery. After 4 weeks, SPECT images were acquired 1.5 hours after intravenous injection of 555 MBq of 99mTc-Sestamibi. The tomographic reconstruction was performed by using specially developed software based on the Maximum Likelihood algorithm. The analysis of the data included the correlation between the area of perfusion defects detected by scintigraphy and extent of myocardial fibrosis assessed by histology. Results The images showed a high target organ/background ratio with adequate visualization of the left ventricular walls and cavity. All animals presenting infarction areas were correctly identified by the perfusion images. There was no difference of the infarct area as measured by SPECT (21.1 ± 21.2%) and by histology (21.7 ± 22.0%; p=0.45). There was a strong correlation between individual values of the area of infarction measured by these two methods. Conclusion The developed system presented adequate spatial resolution and high accuracy for the detection and quantification of myocardial infarction areas, consisting in a low cost and versatile option for high-resolution SPECT imaging of small rodents. PMID:23917507

  9. A randomized study of the effect of carbonated water prior to myocardial SPECT.

    PubMed

    Vermeltfoort, Ilse A C; van Dijk, Arjan B; de Jong, Jeroen A F; Teule, Gerrit J J; Gevers, Marjon; Verhoeven, Bas; Raaijmakers, Esther; Knaapen, Paul; Raijmakers, Pieter G H M

    2014-08-01

    In myocardial perfusion single-photon emission computed tomography (SPECT), abdominal activity often interferes with the evaluation of perfusion in the inferior wall, especially after pharmacological stress. In this randomized study, we examined the effect of carbonated water intake versus still water intake on the quality of images obtained during myocardial perfusion images (MPI) studies. A total of 467 MIBI studies were randomized into a carbonated water group and a water group. The presence of intestinal activity adjacent to the inferior wall was evaluated by two observers. Furthermore, a semi-quantitative analysis was performed in the adenosine subgroup, using a count ratio of the inferior myocardial wall and adjacent abdominal activity. The need for repeated SPECT in the adenosine studies was 5.3% in the carbonated water group versus 19.4% in the still water group (p = 0.019). The inferior wall-to-abdomen count ratio was significantly higher in the carbonated water group compared to the still water group (2.11 ± 1.00 vs. 1.72 ± 0.73, p < 0.001). The effect of carbonated water during rest and after exercise was not significant. This randomized study showed that carbonated water significantly reduced the interference of extra-cardiac activity in adenosine SPECT MPI.

  10. Peritoneal fluid causing inferior attenuation on SPECT thallium-201 myocardial imaging in women

    SciTech Connect

    Rab, S.T.; Alazraki, N.P.; Guertler-Krawczynska, E.

    1988-11-01

    On SPECT thallium images, myocardial left ventricular (LV) anterior wall attenuation due to breast tissue is common in women. In contrast, in men, inferior wall counts are normally decreased compared to anterior counts. The purpose of this report is to describe cases of inferior wall attenuation of counts in women caused by peritoneal fluid, not myocardial disease. Twelve consecutive SPECT thallium myocardial studies performed in women on peritoneal dialysis, being evaluated for kidney transplant, were included in this study. For all studies, 3.5 mCi 201Tl were injected intravenously. Thirty-two images were acquired over 180 degrees (45 degrees RAO progressing to 45 degrees LPO) at 40 sec per stop. SPECT images were reviewed in short axis, horizontal long and vertical long axes. Data were also displayed in bullseye format with quantitative comparison to gender-matched normal files. Ten of 12 female patients studied had inferior wall defects on images, confirmed by bullseye display. All patients had approximately 2 liters of peritoneal fluid. Review of planar rotational views showed diaphragm elevation and fluid margin attenuations affecting left ventricular inferior wall. Thus, peritoneal fluid is a cause of inferior attenuation on 201Tl cardiac imaging.

  11. Effect of mechanically simulated diaphragmatic respiratory motion on myocardial SPECT processed with and without attenuation correction.

    PubMed

    Pitman, Alexander G; Kalff, Victor; Van Every, Bruce; Risa, Borghild; Barnden, Leighton R; Kelly, Michael J

    2002-09-01

    The goal of this study was to assess the effect of diaphragmatic respiratory motion on inferior wall cold artifact in myocardial SPECT and to assess the ability of attenuation correction (AC) to correct for this artifact in the presence of diaphragmatic motion. We used an anthropomorphic phantom with ventricular wall activity, variable ventricular caudal tilt, attenuating liver and spleen cold inserts, and variable vertical (diaphragmatic) motion amplitude and pattern. Cardiac SPECT images were acquired on a gamma camera with dual scanning transmission line sources and commercially available AC software (with scatter correction and iterative reconstruction). The acquired data were processed either using filtered backprojection or with the AC software. The resulting myocardial activity maps were processed with polar plots and with standardized inferior-to-anterior and anterior-to-lateral wall ratios. Subdiaphragmatic attenuation reduces inferior wall counts and this component of inferior wall artifact is fully corrected by AC relative to anterior wall counts both with and without diaphragmatic respiratory motion. In the phantom, diaphragmatic motion artifact manifests as reduction in relative count density in both the anterior wall and the inferior wall relative to the lateral wall, which is not corrected by AC. This artifact becomes more marked with increasing respiratory amplitude and its symmetry depends on the pattern of diaphragmatic motion. Images with AC acquired at small respiratory amplitudes (approximately 2 cm) in the phantom resemble images with AC found in published normal patient databases. These results support a clinical need for respiratory gating of myocardial SPECT images.

  12. Development of a myocardial phantom and analysis system toward the standardization of myocardial SPECT image across institutions.

    PubMed

    Shibutani, Takayuki; Onoguchi, Masahisa; Katafuchi, Tetsuro; Kinuya, Seigo

    2016-12-01

    We developed a novel myocardial phantom and analysis program to standardize using a quantitative index to objectively evaluate the image quality. We aimed to reveal whether our proposed phantom and analysis program are suitable for image standardization. An evaluation system of myocardial image based on technical grounds (EMIT) phantom was developed to standardize the image quality of myocardial SPECT and was constructed with the lung and myocardium in the thorax phantom; the myocardial phantom included five normal areas and eight defective areas with four defects in size (5, 10, 15, and 20 mm) and four defects in thickness (10, 7.5, 5, and 2.5 mm). Therefore, this phantom was appropriate to simultaneously simulate eight different defects and normal myocardium. The %rate value, calculated using the region of interest method, and the %count value, calculated from the profile method, were automatically analyzed to evaluate myocardial defects. The phantom was validated using difference in count levels and filter parameters compared with those in previously reported models. The average %count of eight defects by 0.3, 0.4, 0.5, and 0.6 cycles/cm were 56.8, 47.4, 44.3, and 43.4 %, respectively, whereas the %count for 0.3 cycles/cm was significantly higher than that for 0.5 and 0.6 cycles/cm. The uniformity between full- and half-time images was 16.5 ± 4.2 and 18.7 ± 5.5 % for integral uniformity and 3.4 ± 1.2 and 3.4 ± 1.3 % for differential uniformity, respectively, revealing a significant difference in integral uniformity between the two acquisition times. Visual differences in defects were evident in full-time images between 0.30 and 0.50 cycles/cm, and defect detectability of the myocardial image at 0.30 cycles/cm was poor. Normal myocardial thickness widened in comparison with images at 0.50 cycles/cm. Compared with full-time myocardial image at the same cut-off frequency, the half-time myocardial image demonstrated inhomogeneous distribution and

  13. Noninvasive stress testing of myocardial perfusion defects: head-to-head comparison of thallium-201 SPECT to MRI perfusion.

    PubMed

    Vincenti, Gabriella; Nkoulou, René; Steiner, Charles; Imperiano, Hestia; Ambrosio, Giuseppe; Mach, François; Ratib, Osman; Vallee, Jean-Paul; Schindler, Thomas H

    2009-01-01

    To evaluate the diagnostic value of magnetic resonance imaging (MRI) of myocardial perfusion in the assessment of flow-limiting epicardial stenosis in a head-to-head comparison with abnormal thallium-201 ((201)TI) single photon emission tomography (SPECT) studies in patients with predominantly known coronary artery disease (CAD). Twenty-one patients (mean age 65 +/- 10 years) with reversible myocardial perfusion defects on (201)TI-SPECT images during dipyridamole-stimulated hyperemia were recruited for study purpose. Within 5 days of the (201)TI-SPECT study, myocardial perfusion was studied again with MRI during dipyridamole stimulation and at rest. Overall, (201)TI-SPECT identified 30 reversible regional perfusion defects. The sensitivity to detect hypoperfused segments was 70% (21/30) with the GRE-MRI perfusion analysis with (201)TI-SPECT as reference. When patients were subgrouped according to the extent of regional reversible perfusion defects on (201)TI-SPECT, mild- (SDS: 2-4), moderate- (SDS: 5-8), and severe- (SDS > 8) perfusion defects were also identified by GRE-MRI perfusion analysis in 75% (6/8), in 56% (9/16) and 100% (6/6), respectively. GRE-MRI first-pass stress perfusion imaging may not identify up to 30% of mild-to-moderate perfusion defects in a group of preselected patients with predominantly known CAD and abnormal (201)TI-SPECT studies.

  14. Identification of Angiogenesis Rich-Viable Myocardium using RGD Dimer based SPECT after Myocardial Infarction

    PubMed Central

    Lee, Min Su; Park, Hyun Soo; Lee, Byung Chul; Jung, Jae Ho; Yoo, Jung Sun; Kim, Sang Eun

    2016-01-01

    Cardiac healing after myocardial ischemia is a complex biological process. Advances in understanding of wound healing response have paved the way for clinical testing of novel molecular imaging to improve clinical outcomes. A key factor for assessing myocardial viability after ischemic injury is the evaluation of angiogenesis accompanying increased expression of integrin αvβ3. Here, we describe the capability of an αvβ3 integrin-targeting SPECT agent, 99mTc-IDA-D-[c(RGDfK)]2, for identification of ischemic but viable myocardium, i.e., hibernating myocardium which is crucial to predict functional recovery after revascularization, the standard care of cardiovascular medicine. In vivo SPECT imaging of rat models with transient coronary occlusion showed significantly high uptake of 99mTc-IDA-D-[c(RGDfK)]2 in the ischemic region. Comparative measurements with 201Tl SPECT and 18F-FDG PET, then, proved that such prominent uptake of 99mTc-IDA-D-[c(RGDfK)]2 exactly matched the hallmark of hibernation, i.e., the perfusion-metabolism mismatch pattern. The uptake of 99mTc-IDA-D-[c(RGDfK)]2 was non-inferior to that of 18F-FDG, confirmed by time-course variation analysis. Immunohistochemical characterization revealed that an intense signal of 99mTc-IDA-D-[c(RGDfK)]2 corresponded to the vibrant angiogenic events with elevated expression of αvβ3 integrin. Together, these results establish that 99mTc-IDA-D-[c(RGDfK)]2 SPECT can serve as a sensitive clinical measure for myocardial salvage to identify the patients who might benefit most from revascularization. PMID:27283041

  15. Realistic Simulation of Regional Myocardial Perfusion Defects for Cardiac SPECT Studies

    PubMed Central

    Fung, George S.K.; Segars, W. Paul; Lee, Taek-Soo; Higuchi, Takahiro; Veress, Alexander I.; Gullberg, Grant T.; Tsui, Benjamin M.W.

    2012-01-01

    The current 3D XCAT phantom allows users to manually define the regional myocardial perfusion defect (MPD) as a simple pie-shaped wedge region with reduced activity level in the myocardium of left ventricle. To more accurately and realistically model the MPD, we have developed a new regional MPD model for the 3D XCAT phantom for myocardial perfusion SPECT (MP-SPECT) studies based on the location and the severity of the stenosis in a computer generated coronary arterial tree. First, we generated a detailed coronary arterial tree by extending the large proximal branches segmented from patient CT images to cover the whole heart using an iterative rule-based algorithm. Second, we determined the affected downstream vascular segments of a given stenosis. Third, we computed the activity of each myocardial region as a function of the inverse-distance-weighted average of the flow of the neighboring vascular segments. Fourth, we generated a series of bull’s-eye maps of MP-SPECT images of different coronary artery stenosis scenarios. Fifth, we had expert physician readers to qualitatively assess the bull’s-eye maps based on their similarity to typical clinical cases in terms of the shape, the extent, and the severity of the MPDs. Their input was used to iteratively revise the coronary artery tree model so that the MPDs were closely matched to those found in bull’s-eye maps from patient studies. Finally, from our simulated MP-SPECT images, we observed that (1) the locations of the MPDs caused by stenoses at different main arteries were different largely according to their vascular territories, (2) a stenosis at a proximal branch produced a larger MPD than the one at a distal branch, and (3) a more severe stenosis produced a larger MPD than the less severe one. These observations were consistent to those found in clinical cases. Therefore, this new regional MPD model has enhanced the generation of realistic pathological MP-SPECT images using the XCAT phantom. When

  16. Submaximal exercise thallium-201 SPECT for assessment of interventional therapy in patients with acute myocardial infarction

    SciTech Connect

    Stewart, R.E.; Kander, N.; Juni, J.E.; Ellis, S.G.; O'Neill, W.W.; Schork, M.A.; Topol, E.J.; Schwaiger, M. )

    1991-04-01

    Submaximal thallium-201 stress testing has been shown to provide important diagnostic and prognostic information in patients with acute myocardial infarction. The purpose of this investigation was to evaluate the diagnostic value of early submaximal stress testing and thallium-201 single photon emission computed tomography (SPECT) after interventional therapy. Scintigraphic results from 56 patients with infarctions, who underwent acute thrombolytic therapy, angioplasty, or both, were compared with late (6 weeks) functional outcome as assessed by radionuclide ventriculography and with results of discharge coronary angiography. A linear correlation was found between the extent of thallium-201 SPECT perfusion defect and late ventricular function (r = 0.74, p less than 0.01). Forty-two percent of patients with large SPECT perfusion defects had normal left ventricular ejection fractions, suggesting an overestimation of infarct size by early imaging. Sensitivity and specificity of thallium-201 SPECT for detection of coronary artery stenosis in noninfarct territories was 57% and 46%, respectively, indicating limited diagnostic definition of extent of underlying coronary artery disease. Results of follow-up coronary angiography showed a significant relationship between the size of the initial perfusion defect and early restenosis or reocclusion of the infarct artery. Thus the extent of early thallium-201 perfusion defects correlates with late functional outcome but appears to overestimate the degree of injury. Submaximal thallium-201 stress testing allows only limited characterization of underlying coronary artery disease. Early assessment of infarct size may identify a patient population at high risk for reocclusion of the infarct artery.

  17. Value of attenuation correction in stress-only myocardial perfusion imaging using CZT-SPECT.

    PubMed

    van Dijk, J D; Mouden, M; Ottervanger, J P; van Dalen, J A; Knollema, S; Slump, C H; Jager, P L

    2017-04-01

    Attenuation correction (AC) improves the diagnostic outcome of stress-only myocardial perfusion imaging (MPI) using conventional SPECT. Our aim was to determine the value of AC using a cadmium zinc telluride-based (CZT)-SPECT camera. We retrospectively included 107 consecutive patients who underwent stress-optional rest MPI CZT-SPECT/CT. Next, we created three types of images for each patient; (1) only displaying reconstructed data without the CT-based AC (NC), (2) only displaying AC, and (3) with both NC and AC (NC + AC). Next, two experienced physicians visually interpreted these 321 randomized images as normal, equivocal, or abnormal. Image outcome was compared with all hard events over a mean follow-up time of 47.7 ± 9.8 months. The percentage of images interpreted as normal increased from 45% using the NC images to 72% using AC and to 67% using NC + AC images (P < .001). Hard event hazard ratios for images interpreted as normal were not different between using NC and AC (1.01, P = .99), or NC and NC + AC images (0.97, P = .97). AC lowers the need for additional rest imaging in stress-first MPI using CZT-SPECT, while long-term patient outcome remained identical. Use of AC reduces the need for additional rest imaging, decreasing the mean effective dose by up to 1.2 mSv.

  18. Prognosis of normal stress-only gated-SPECT myocardial perfusion imaging: a single center study.

    PubMed

    Ferreira, Maria João Vidigal; Cunha, Maria João; Albuquerque, Anabela; Moreira, Ana Paula; Ramos, Domingos; Costa, Gracinda; Lima, João; Pego, Mariano

    2013-10-01

    It has been advocated that using the stress followed by rest protocol, if the stress images were normal there is no need of rest images, reducing radiation exposure and costs. Our purpose was to assess the prognosis of a group of patients with normal stress-only gated-SPECT myocardial perfusion imaging. This was retrospective study that includes 790 patients with normal myocardial stress only perfusion gated SPECT images. Images were considered as normal if a homogeneous myocardial distribution of the tracer was associated with a normal ejection fraction. The mean follow-up was of 42.8 ± 13.3 months. The considered events were death of all causes, myocardial infarction and myocardial revascularization. During this period there were 85 events (10.8 %), including 57 deaths of all causes (67.1 %), 9 myocardial infarctions (10.6 %), 19 revascularizations (2.4 %). In the first year of follow-up there were 32 events (4.0 %) and excluding non cardiac deaths there were 8 events (1.0 %). Using Cox survival analysis, diabetes (HR = 2.2; CI = 1.4-3.4; p ≤ 0.0005), the history of coronary artery disease (CAD) (HR = 2.1; CI = 1.3-3.2; p ≤ 0.001), age (HR = 1.0; CI = 1.0-1.0; p ≤ 0.05) and type of stress protocol were related with events (exercise test vs. adenosine) (Exercise test: HR = 0.5; CI = 0.3-0.8; p ≤ 0.01). In a multivariate analysis the independent predictors were diabetes, CAD and the type of stress protocol. Based on these results, normal stress-only images are associated with an excellent prognosis even in patients at higher risk, diabetics and patients with known CAD.

  19. SPECT imaging of teboroxime during myocardial blood flow changes

    NASA Astrophysics Data System (ADS)

    Di Bella, E. V. R.; Khare, H. S.; Kadrmas, D. J.; Gullberg, G. T.

    2000-06-01

    Kinetic parameters and static images from dynamic SPECT imaging of /sup 99m/Tc-teboroxime have been shown to reflect blood flow in dogs and in humans at rest and during adenosine stress. When compartment modeling is used, steady-state physiological conditions are assumed. With standard adenosine stress protocols, imaging of teboroxime would likely involve significant changes in flow, even if performed only for five minutes. These flow changes may significantly bias the kinetic parameter estimates. On the other hand, when static imaging is performed, large flow changes during acquisition may improve contrast between normal and occluded regions. Computer simulations were performed to determine the effect of changing flows on kinetic parameter estimation and on static (average tissue uptake) images. Two canine studies were also performed in which adenosine was given with a standard protocol, and then imaging was repeated with adenosine infusion held constant. The simulations predicted biases on the order of 7% for kinetic washin parameter estimation and 18% for the washout parameter. Contrast for static studies was found to depend critically on the time-activity behavior of the distribution as well as on the stress protocol. The differences in washin contrast from the standard and continuous adenosine dog studies was slightly larger than predicted from the simulations. Optimal imaging of teboroxime with adenosine using compartment modeling will require non-standard adenosine stress protocols, although sub-optimal imaging may still be useful clinically.

  20. Optimal thallium-201 dose in cadmium-zinc-telluride SPECT myocardial perfusion imaging.

    PubMed

    Ishihara, Masaru; Taniguchi, Yasuyo; Onoguchi, Masahisa; Shibutani, Takayuki

    2016-12-22

    We aimed to determine the optimal thallium 201 chloride (thallium-201) dose using a novel ultrafast cardiac gamma camera with cadmium-zinc-telluride (CZT) solid-state semiconductor detectors (D-SPECT). The optimal thallium-201 dose for obtaining left ventricular (LV) myocardial counts was determined from a phantom study. Consecutive 292 patients underwent stress myocardial perfusion imaging with a thallium-201 injection. Stress test comprised exercise or pharmacological (adenosine) provocation. We calculated an optimal thallium-201 dose that resulted in better LV myocardial counts during 6 minutes of acquisition time. We corrected the respective values according to the patient's age, sex, body mass index (BMI), and type of stress test. The lowest thallium-201 dose for obtaining acceptable imaging was 1.2 million counts. Radiopharmaceutical doses showed a positive correlation with the patient's age (P < .001), sex (P = .012), BMI (P < .001), and type of stress test (P < .001). Multivariate analysis revealed that the patient's BMI and the type of stress test were statistically significant factors for determining the correct radiopharmaceutical dose (P < .001 for both). For clinical use of the CZT SPECT system, the optimal individual thallium-201 doses can be determined based on the patient's BMI and type of stress test.

  1. Long-term mortality following normal exercise myocardial perfusion SPECT according to coronary disease risk factors.

    PubMed

    Rozanski, Alan; Gransar, Heidi; Min, James K; Hayes, Sean W; Friedman, John D; Thomson, Louise E J; Berman, Daniel S

    2014-04-01

    While normal exercise myocardial perfusion imaging (SPECT-MPI) is a robust predictor of low short-term clinical risk, there is increasing interest in ascertaining how clinical factors influence long-term risk following SPECT-MPI. We evaluated the predictors of outcome from clinical data obtained at the time of testing in 12,232 patients with normal exercise SPECT-MPI studies. All-cause mortality (ACM) was assessed at a mean of 11.2 ± 4.5 years using the Social Security Death Index. The ACM rate was 0.8%/year, but varied markedly according to the presence of CAD risk factors. Hypertension, smoking, diabetes, exercise capacity, dyspnea, obesity, higher resting heart rate, an abnormal ECG, LVH, atrial fibrillation, and LVEF < 45% were all predictors of increased mortality. Risk factors were synergistic in predicting mortality: annualized age and gender-adjusted ACM rates ranged from only 0.2%/year among patients exercising for >9 minutes having none of three significant risk factors (among hypertension, diabetes, and smoking) to 1.6%/year among patients exercising <6 minutes and having ≥ 2 of these three risk factors. The age and gender-adjusted hazard ratio for mortality was increased by 7.3 (95% confidence interval 5.5-9.7) in the latter patients compared to those patients who exercised >9 minutes and had no significant risk factors (P < .001). Long-term mortality risk varies markedly in accordance with baseline CAD risk factors and functional capacity among patients with normal exercise SPECT-MPI studies. Further study is indicated to determine whether the prospective characterization of both short-term and long-term risks following the performance of stress SPECT-MPI leads to improved clinical management.

  2. Parametric quantification of myocardial ischaemia using real-time perfusion adenosine stress echocardiography images, with SPECT as reference method.

    PubMed

    Gudmundsson, P; Shahgaldi, K; Winter, R; Dencker, M; Kitlinski, M; Thorsson, O; Ljunggren, L; Willenheimer, R

    2010-01-01

    Real-time perfusion (RTP) adenosine stress echocardiography (ASE) can be used to visually evaluate myocardial ischaemia. The RTP power modulation technique, provides images for off-line parametric perfusion quantification using Qontrast software. From replenishment curves, this generates parametric images of peak signal intensity (A), myocardial blood flow velocity (beta) and myocardial blood flow (Axbeta) at rest and stress. This may be a tool for objective myocardial ischaemia evaluation. We assessed myocardial ischaemia by RTP-ASE Qontrast((R))-generated images, using 99mTc-tetrofosmin single-photon emission computed tomography (SPECT) as reference. Sixty-seven patients admitted to SPECT underwent RTP-ASE (SONOS 5500) during Sonovue infusion, before and throughout adenosine stress, also used for SPECT. Quantitative off-line analyses of myocardial perfusion by RTP-ASE Qontrast-generated A, beta and Axbeta images, at different time points during rest and stress, were blindly compared to SPECT. We analysed 201 coronary territories [corresponding to the left anterior descendent (LAD), left circumflex (LCx) and right coronary (RCA) arteries] from 67 patients. SPECT showed ischaemia in 18 patients. Receiver operator characteristics and kappa values showed that A, beta and Axbeta image interpretation significantly identified ischaemia in all territories (area under the curve 0.66-0.80, P = 0.001-0.05). Combined A, beta and Axbeta image interpretation gave the best results and the closest agreement was seen in the LAD territory: 89% accuracy; kappa 0.63; P<0.001. Myocardial isachemia can be evaluated in the LAD territory using RTP-ASE Qontrast-generated images, especially by combined A, beta and Axbeta image interpretation. However, the technique needs improvements regarding the LCx and RCA territories.

  3. Reduced dose measurement of absolute myocardial blood flow using dynamic SPECT imaging in a porcine model

    SciTech Connect

    Timmins, Rachel; Klein, Ran; Petryk, Julia; Marvin, Brian; Kemp, Robert A. de; Ruddy, Terrence D.; Wells, R. Glenn; Wei, Lihui

    2015-09-15

    Purpose: Absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR) measurements provide important additional information over traditional relative perfusion imaging. Recent advances in camera technology have made this possible with single-photon emission tomography (SPECT). Low dose protocols are desirable to reduce the patient radiation risk; however, increased noise may reduce the accuracy of MBF measurements. The authors studied the effect of reducing dose on the accuracy of dynamic SPECT MBF measurements. Methods: Nineteen 30–40 kg pigs were injected with 370 + 1110 MBq of Tc-99m sestamibi or tetrofosmin or 37 + 111 MBq of Tl-201 at rest + stress. Microspheres were injected simultaneously to measure MBF. The pigs were imaged in list-mode for 11 min starting at the time of injection using a Discovery NM 530c camera (GE Healthcare). Each list file was modified so that 3/4, 1/2, 1/4, 1/8, 1/16, and 1/32 of the original counts were included in the projections. Modified projections were reconstructed with CT-based attenuation correction and an energy window-based scatter correction and analyzed with FlowQuant kinetic modeling software using a 1-compartment model. A modified Renkin-Crone extraction function was used to convert the tracer uptake rate K1 to MBF values. The SPECT results were compared to those from microspheres. Results: Correlation between SPECT and microsphere MBF values for the full injected activity was r ≥ 0.75 for all 3 tracers and did not significantly degrade over all count levels. The mean MBF and MFR and the standard errors in the estimates were not significantly worse than the full-count data at 1/4-counts (Tc99m-tracers) and 1/2-counts (Tl-201). Conclusions: Dynamic SPECT measurement of MBF and MFR in pigs can be performed with 1/4 (Tc99m-tracers) or 1/2 (Tl-201) of the standard injected activity without significantly reducing accuracy and precision.

  4. Predictors of high-risk coronary artery disease in subjects with normal SPECT myocardial perfusion imaging.

    PubMed

    Nakanishi, Rine; Gransar, Heidi; Slomka, Piotr; Arsanjani, Reza; Shalev, Aryeh; Otaki, Yuka; Friedman, John D; Hayes, Sean W; Thomson, Louise E B; Fish, Mathews; Germano, Guido; Abidov, Aiden; Shaw, Leslee; Rozanski, Alan; Berman, Daniel S

    2016-06-01

    While uncommon, normal stress SPECT myocardial perfusion imaging (MPI) can be seen in patients with high-risk coronary artery disease (CAD) by invasive coronary angiography (ICA).The predictors of high-risk CAD in patients with normal SPECT-MPI have not been described. We studied 580 patients (age 64 ± 12 years, 49% men) without known CAD who underwent stress-gated SPECT-MPI [exercise (41%) or vasodilator (59%)] <2 months before ICA and had summed stress score (SSS) <4. High-risk CAD was defined as 3 vessels with ≥70% stenosis, 2 vessels with ≥70% stenosis including proximal left anterior descending, or left main with ≥50% stenosis. Obstructive non-high-risk CAD was defined by the presence of a ≥70% stenosis but without having other high-risk criteria. Tenfold cross-validated receiver operating characteristic (ROC) estimates were obtained to assess the predictors of high-risk CAD. Forty-two subjects (7.2%) had high-risk CAD and 168 (29.0%) had obstructive non-high-risk CAD. Variables associated with high-risk CAD were pretest probability of CAD ≥66% (Odds ratio [OR] 3.63, 95% CI 1.6-8.3, P = .002), SSS > 0 (OR 7.46, 95% CI 2.6-21.1, P < 0.001), and abnormal TID (OR 2.16, 95% CI 1.0-4.5, P = 0.044). When substituted for TID, EF change was also predictive of high-risk CAD (OR 0.93, 95% CI 0.9-1.0, P = 0.023). The prevalence of high-risk CAD increased as the number of these predictors increased. In a sub-analysis of patients in whom quantitative total perfusion deficit (TPD) was available, TPD > 0 was also a predictor of high-risk CAD (OR 6.01, 95% CI 1.5-22.2, P = 0.011). Several clinical, stress, and SPECT-MPI findings are associated high-risk CAD among patients with normal SPECT-MPI. Consideration of these factors may improve the overall assessment of the likelihood of high-risk CAD in patients undergoing stress SPECT-MPI.

  5. Prone versus supine thallium myocardial SPECT: A method to decrease artifactual inferior wall defects

    SciTech Connect

    Segall, G.M.; Davis, M.J.

    1989-04-01

    Artifactual inferior wall defects as a result of diaphragmatic attenuation of activity are a frequent source of error in thallium myocardial single photon emission computed tomography (SPECT) studies. Thirty-four patients and 11 clinically normal volunteers were studied prospectively to see if specificity of inferior wall defects for right coronary artery disease could be improved by scanning patients prone versus supine. All individuals were scanned both prone and supine, in random order, following symptom limited treadmill exercise. Images were acquired at 3 degrees steps, 25 sec per frame, in a 180 degrees elliptical orbit always beginning in the 45 degrees right anterior oblique position relative to the patient. Polar maps generated from the short axis slices were used to calculate the average regional activity. The prone studies showed consistently higher inferior wall activity compared to the supine studies on both the exercise (182 +/- 22 vs. 160 +/- 23, p less than or equal to 0.001) and 4-hr delay studies (183 +/- 20 vs. 175 +/- 21, p less than or equal to 0.001). Prone imaging resulted in a significantly higher specificity for RCA disease compared to supine imaging (90% vs. 66%, p less than 0.05) with an improvement in accuracy from 71% to 82%. Sensitivity, specificity, and accuracy for left anterior descending and left circumflex artery disease were not significantly affected by patient position during imaging. All patients having SPECT thallium myocardial perfusion studies should be imaged prone to minimize artifactual inferior wall defects and improve accuracy.

  6. Noninvasive Assessment of Myocardial Viability in a Small Animal Model: Comparison of MRI, SPECT, and PET

    PubMed Central

    Thomas, Daniel; Bal, Harshali; Arkles, Jeffrey; Horowitz, James; Araujo, Luis; Acton, Paul D.; Ferrari, Victor A.

    2010-01-01

    Acute myocardial infarction (AMI) research relies increasingly on small animal models and noninvasive imaging methods such as MRI, single-photon emission computed tomography (SPECT), and positron emission tomography (PET). However, a direct comparison among these techniques for characterization of perfusion, viability, and infarct size is lacking. Rats were studied within 18–24 hr post AMI by MRI (4.7 T) and subsequently (40–48 hr post AMI) by SPECT (99Tc-MIBI) and micro-PET (18FDG). A necrosis-specific MRI contrast agent was used to detect AMI, and a fast low angle shot (FLASH) sequence was used to acquire late enhancement and functional images contemporaneously. Infarcted regions showed late enhancement, whereas corresponding radionuclide images had reduced tracer uptake. MRI most accurately depicted AMI, showing the closest correlation and agreement with triphenyl tetrazolium chloride (TTC), followed by SPECT and PET. In some animals a mismatch of reduced uptake in normal myocardium and relatively increased 18FDG uptake in the infarct border zone precluded conventional quantitative analysis. We performed the first quantitative comparison of MRI, PET, and SPECT for reperfused AMI imaging in a small animal model. MRI was superior to the other modalities, due to its greater spatial resolution and ability to detect necrotic myocardium directly. The observed 18FDG mismatch likely represents variable metabolic conditions between stunned myocardium in the infarct border zone and normal myocardium and supports the use of a standardized glucose load or glucose clamp technique for PET imaging of reperfused AMI in small animals. PMID:18228591

  7. Normal Myocardial Perfusion Gated SPECT and Positive Stress Test: Different Prognoses in Women and Men.

    PubMed

    Romero-Farina, Guillermo; Candell-Riera, Jaume; Ferreira-González, Ignacio; Aguadé-Bruix, Santiago; Pizzi, Nazarena; García-Dorado, David

    2015-06-01

    The aim of this study was to analyze different prognoses in women and men with normal myocardial perfusion gated SPECT, according to stress test results. Differences between women and men in terms of hard events (HE) (non-fatal acute myocardial infarction or cardiac death) and HE plus coronary revascularization (HE + CR) were analyzed in 2,414 consecutive patients (mean age 62.8 ± 13.5 years, 1,438 women) with a normal stress-rest gated SPECT, taking into account their stress test results. Four hundred and seven patients (16.9%) (15.9% women and 17.5% men) had a positive stress test (ST-segment depression ≥1 mm and/or angina). During a follow-up of 5.1 ± 3.4 years, there were more significant HE (6.5% vs 2.3%; P = .005) and HE + CR (11.6% vs 4.8%, P = .001) in men with a positive stress test than in men with a negative stress test. These differences were not observed in women. In multivariate regression models, HE and HE + CR were also more frequent in men with a positive stress test (HR:3.3 [95% CI 1.1% to 9.5%]; HR:4.2 [95% CI 1.8% to 9.9%]; respectively) vs women with a positive stress test. Although patients with normal gated SPECT studies have a favorable outcome, men with an abnormal stress test have a more adverse prognosis than women.

  8. Thallium-201 myocardial SPECT in a patient with mirror-image dextrocardia and left bundle branch block.

    PubMed

    Turgut, Bülent; Kitapci, Mehmet T; Temiz, N Hakan; Unlü, Mustafa; Erselcan, Taner

    2003-09-01

    A 53-year-old male patient with a previous diagnosis of situs inversus with mirror-image dextrocardia underwent thallium-201 (Tl-201) stress-redistribution myocardial perfusion single photon emission computed tomography (SPECT). Electrocardiogram (ECG) obtained on right hemithorax revealed constant complete left bundle branch block. Tl-201 stress-redistribution SPECT images revealed abnormal perfusion with reversible ischemia in the anteroseptal, septal and inferoseptal walls. Coronary angiography performed 1 month after SPECT study was normal. This case illustrates that false positive reversible perfusion defects can be seen in patients with mirror-image dextrocardia associated with constant complete left bundle branch block. To our knowledge, this is the first reported case of mirror-image dextrocardia and constant complete left bundle branch block with false positive Tl-201 SPECT findings.

  9. Tl-201 myocardial SPECT in patients with Duchenne's muscular dystrophy: A long-term follow-up

    SciTech Connect

    Nagamachi, S.; Jinnouchi, S.; Ono, S.; Hoshi, H.; Inoue, K.; Watanabe, K. )

    1989-11-01

    Tl-201 SPECT was used to evaluate myocardial involvement in 13 patients with Duchenne's muscular dystrophy. Serial studies of 9 patients were done at two-year intervals. The hypoperfused areas of the left ventricle became more prominent with age and severity.

  10. Increased Pericardial Fat Volume Measured From Noncontrast CT Predicts Myocardial Ischemia by SPECT

    PubMed Central

    Tamarappoo, Balaji; Dey, Damini; Shmilovich, Haim; Nakazato, Ryo; Gransar, Heidi; Cheng, Victor Y.; Friedman, John D.; Hayes, Sean W.; Thomson, Louise EJ; Slomka, Piotr J.; Rozanski, Alan; Berman, Daniel S.

    2010-01-01

    OBJECTIVES We evaluated the association between pericardial fat and myocardial ischemia for risk stratification. BACK GROUND Pericardial fat volume (PFV) and thoracic fat volume (TFV) measured from noncontrast computed tomography (CT) performed for calculating coronary calcium score (CCS) are associated with increased CCS and risk for major adverse cardiovascular events. METHODS From a cohort of 1,777 consecutive patients without previously known coronary artery disease (CAD) with noncontrast CT performed within 6 months of single photon emission computed tomography (SPECT), we compared 73 patients with ischemia by SPECT (cases) with 146 patients with normal SPECT (controls) matched by age, gender, CCS category, and symptoms and risk factors for CAD. TFV was automatically measured. Pericardial contours were manually defined within which fat voxels were automatically identified to compute PFV. Computer-assisted visual interpretation of SPECT was performed using standard 17-segment and 5-point score model; perfusion defect was quantified as summed stress score (SSS) and summed rest score (SRS). Ischemia was defined by: SSS – SRS ≥4. Independent relationships of PFV and TFV to ischemia were examined. RESULTS Cases had higher mean PFV (99.1 ± 42.9 cm3 vs. 80.1 ± 31.8 cm3, p = 0.0003) and TFV (196.1 ± 82.7 cm3 vs. 160.8 ± 72.1 cm3, p = 0.001) and higher frequencies of PFV >125 cm3 (22% vs. 8%, p = 0.004) and TFV >200 cm3 (40% vs. 19%, p = 0.001) than controls. After adjustment for CCS, PFV and TFV remained the strongest predictors of ischemia (odds ratio [OR]: 2.91, 95% confidence interval [CI]: 1.53 to 5.52, p = 0.001 for each doubling of PFV; OR: 2.64, 95% CI: 1.48 to 4.72, p = 0.001 for TFV. Receiver operating characteristic analysis showed that prediction of ischemia, as indicated by receiver-operator characteristic area under the curve, improved significantly when PFV or TFV was added to CCS (0.75 vs. 0.68, p = 0.04 for both). CONCLUSIONS Pericardial fat

  11. Assessment of fatty acid metabolism in taxan-induced myocardial damage with iodine-123 BMIPP SPECT: comparative study with myocardial perfusion, left ventricular function, and histopathological findings.

    PubMed

    Saito, Kimimasa; Takeda, Kan; Imanaka-Yoshida, Kyoko; Imai, Hiroshi; Sekine, Takao; Kamikura, Yuko

    2003-09-01

    We investigated myocardial fatty acid metabolism in taxan-induced myocardial damage in patients with advanced lung cancer. Twenty-five patients with non-small-cell lung cancer were treated with taxan combined with carboplatin intravenously for three cycles. Myocardial SPECT imaging using 99mTc-methoxyisobutyl isonitrile (MIBI) and 123I-15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid (BMIPP) was performed successively before and after chemotherapy. Regional uptake scores of BMIPP and MIBI were visually assessed and total uptake scores and the number of abnormal segments were calculated. Left ventricular ejection fraction (LVEF) was obtained by first-pass radionuclide angiocardiography using MIBI. Postmortem pathological examination was performed in 5 patients. Total BMIPP uptake scores after chemotherapy were significantly lower than those before chemotherapy (23.4 +/- 3.4 vs. 26.6 +/- 0.8; p < 0.001). Mean LVEF showed a significant decrease after chemotherapy. Of the 25 patients, 4 exhibited a decrease in LVEF of more than 10%, 1 had a decrease in LVEF to below 50%, and 1 developed congestive heart failure. These 6 patients had significant decreases in total BMIPP uptake scores and increases in the number of abnormal segments as compared with the other 19 patients. Histopathological examination of myocardial tissue showed interstitial edema and disarrayed myocardial cells. Taxan impairs myocardial fatty acid metabolism. 123I-BMIPP myocardial SPECT is useful for evaluating the cardiotoxicity induced by taxan.

  12. Integrated assessment of coronary anatomy and myocardial perfusion using a retractable SPECT camera combined with 64-slice CT: initial experience.

    PubMed

    Thilo, Christian; Schoepf, U Joseph; Gordon, Leonie; Chiaramida, Salvatore; Serguson, Jill; Costello, Philip

    2009-04-01

    We evaluated a prototype SPECT system integrated with multidetector row CT (MDCT) for obtaining complementary information on coronary anatomy and hemodynamic lesion significance. Twenty-five consecutive patients with known or suspected coronary artery disease (CAD) underwent routine SPECT myocardial perfusion imaging (MPI). All patients also underwent repeat MPI with a mobile SPECT unit which could be attached to a 64-slice MDCT system. Coronary CT angiography (cCTA) was performed without repositioning the patient. Investigational MPI was compared with routine MPI for detection of myocardial perfusion defects (PD). Two observers diagnosed presence or absence of CAD based on MPI alone, cCTA alone, and based on combined MPI and cCTA with fused image display. In 22/24 patients investigative MPI corresponded with routine MPI (r = 0.80). Stenosis >or= 50% at cCTA was detected in 6/24 patients. Six out of 24 patients had PD at regular MPI. Three of these six patients had no significant stenosis at cCTA. Three out of 19 patients with normal MPI studies had significant stenosis at cCTA. Our initial experience indicates that the integration of SPECT MPI with cCTA is technically feasible and enables the comprehensive evaluation of coronary artery anatomy and myocardial perfusion with a single instrumental setup.

  13. Myocardial perfusion SPECT 2015 in Germany. Results of the 7(th) survey.

    PubMed

    Lindner, Oliver; Burchert, Wolfgang; Schäfer, Wolfgang; Hacker, Marcus

    2017-02-14

    The working group Cardiovascular Nuclear Medicine of the German Society of Nuclear Medicine presents the results of the 7th survey of myocardial perfusion SPECT (MPS) of the reporting year 2015. 268 questionnaires (173 practices [PR], 67 hospitals [HO], 28 university hospitals [UH]) were evaluated. Results of the last survey from 2012 are set in squared brackets. MPS of 121 939 [105 941] patients were reported. 98 % [95 %] of all MPS were performed with Tc-99m radiopharmaceuticals and 2 % [5 %] with Tl-201. 78 % [79 %] of all patients were studied in PR, 14 % [15 %] in HO, and 8 % [6 %] in UH. A pharmacological stress test was performed in 43 % [39 %] (22 % [24 %] adenosine, 20 % [9 %] regadenoson, 1 % [6 %] dipyridamole or dobutamine). Attenuation correction was applied in 25 % [2009: 10 %] of MPS. Gated SPECT was performed in 78 % [70 %] of all rest MPS, in 80 % [73 %] of all stress and in 76 % [67 %] of all stress and rest MPS. 53 % [33 %] of all nuclear medicine departments performed MPS scoring by default, whereas 24 % [41 %] did not apply any quantification. 31 % [26 %] of all departments noticed an increase in their counted MPS and 29 % [29 %] no changes. Data from 89 departments which participated in all surveys showed an increase in MPS count of 11.1 % (PR: 12.2 %, HO: 4.8 %, UH: 18.4 %). 70 % [60 %] of the MPS were requested by ambulatory care cardiologists. The 2015 MPS survey reveals a high-grade adherence of routine MPS practice to current guidelines. The positive trend in MPS performance and number of MPS already observed in 2012 continues. Educational training remains necessary in the field of SPECT scoring.

  14. Evaluation of myocardial CT perfusion in patients presenting with acute chest pain to the emergency department: comparison with SPECT-myocardial perfusion imaging.

    PubMed

    Feuchtner, Gudrun Maria; Plank, Fabian; Pena, Constantino; Battle, Juan; Min, James; Leipsic, Jonathon; Labounty, Troy; Janowitz, Warren; Katzen, Barry; Ziffer, Jack; Cury, Ricardo C

    2012-10-01

    To determine whether evaluation of resting myocardial CT perfusion (CTP) from coronary CT angiography (CTA) datasets in patients presenting with chest pain (CP) to the emergency department (ED), might have added value to coronary CTA. 76 Patients (age 54.9 y±13; 32 (42%) women) presenting with CP to the ED underwent coronary 64-slice CTA. Myocardial perfusion defects were evaluated for CTP (American Heart Association 17-segment model) and compared with rest sestamibi single-photon emission CT myocardial perfusion imaging (SPECT-MPI). CTA was assessed for >50% stenosis per vessel. CTP demonstrated a sensitivity of 92% and 89%, specificity of 95% and 99%, positive predictive value (PPV) of 80% and 82% and negative predictive value (NPV) of 98% and 99% for each patient and for each segment, respectively. CTA showed an accuracy of 92%, sensitivity of 70.4%, specificity of 95.5%, PPV 67.8%, and NPV of 95% compared with SPECT-MPI. When CTP findings were added to CTA the PPV improved from 67% to 90.1%. In patients presenting to the ED with CP, the evaluation of rest myocardial CTP demonstrates high diagnostic performance as compared with SPECT-MPI. Addition of CTP to CTA improves the accuracy of CTA, primarily by reducing rates of false-positive CTA.

  15. Assessment of coronary flow reserve using a combination of planar first-pass angiography and myocardial SPECT: Comparison with myocardial (15)O-water PET.

    PubMed

    Nose, Naoko; Fukushima, Kazuhito; Lapa, Constantin; Werner, Rudolf A; Javadi, Mehrbod Som; Taki, Junichi; Higuchi, Takahiro

    2016-11-01

    Coronary flow reserve (CFR), defined as the ratio of maximum coronary flow increase from baseline resting blood flow, is one of the most sensitive parameters to detect early signs of coronary arteriosclerosis at the microvascular level. Myocardial perfusion PET is a well-established technology for CFR measurement, however, availability is still limited. The aim of this study is to introduce and validate myocardial flow reserve measurement by myocardial perfusion SPECT. Myocardial perfusion SPECT at rest and ATP stress (0.16mg/Kg/min) was performed in 10 patients with known coronary artery disease. Immediately after the injection of Tc-99m sestamibi (MIBI), left ventricular (LV) dynamic planar angiographic data were obtained for 90s. Coronary flow reserve index as measured by MIBI SPECT (CFRMIBI) was calculated as follows: CFRMIBI=CmsSbmb/CmbSbms, where subscripts b, s, Cm, and Sbm indicate baseline, during stress, myocardial counts with MIBI SPECT, and integral of LV counts with first pass angiography, respectively. Additionally, standard stress/rest (15)O-water PET to estimate CFR was performed in all patients as standard of reference. CFRMIBI increased in conjunction with CFR, but underestimated blood flow at high flow rates. The relationship between CFRMIBI (Y) and CFRPET (X) was well fitted as follows: Y=1.40x(1-exp(1.79/x)) (r=0.84). The index of CFRMIBI reflects the CFR by (15)O-water PET but underestimates flow at high flows, maybe as a reflection of pharmacokinetic limitations of MIBI. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Numerical surrogates for human observers in myocardial motion evaluation from SPECT image

    PubMed Central

    Marin, Thibault; Kalayehis, Mahdi M.; Parages, Felipe M.; Brankov, Jovan G.

    2014-01-01

    In medical imaging, the gold standard for image-quality assessment is a task-based approach in which one evaluates human observer performance for a given diagnostic task (e.g., detection of a myocardial perfusion or motion defect). To facilitate practical task-based image-quality assessment, model observers are needed as approximate surrogates for human observers. In cardiac-gated SPECT imaging, diagnosis relies on evaluation of the myocardial motion as well as perfusion. Model observers for the perfusion-defect detection task have been studied previously, but little effort has been devoted toward development of a model observer for cardiac-motion defect detection. In this work describe two model observers for predicting human observer performance in detection of cardiac-motion defects. Both proposed methods rely on motion features extracted using previously reported deformable mesh model for myocardium motion estimation. The first method is based on a Hotelling linear discriminant that is similar in concept to that used commonly for perfusion-defect detection. In the second method, based on relevance vector machines (RVM) for regression, we compute average human observer performance by first directly predicting individual human observer scores, and then using multi reader receiver operating characteristic (ROC) analysis. Our results suggest that the proposed RVM model observer can predict human observer performance accurately, while the new Hotelling motion-defect detector is somewhat less effective. PMID:23981533

  17. Clinical evaluation of 360 degrees and 180 degrees data sampling techniques for transaxial SPECT thallium-201 myocardial perfusion imaging.

    PubMed

    Go, R T; MacIntyre, W J; Houser, T S; Pantoja, M; O'Donnell, J K; Feiglin, D H; Sufka, B J; Underwood, D A; Meaney, T F

    1985-07-01

    The most serious controversy regarding the application of transaxial SPECT technology to 201Tl myocardial perfusion imaging is the choice between 360 degrees compared with 180 degrees data sampling techniques. The present study utilized the original 360 degrees sampled raw data of 25 patients who had both SPECT 201Tl myocardial perfusion imaging and coronary angio/ventriculography for back projection reprocessing to accomplish the 360 degrees/180 degrees comparison. The results show a high incidence, 36% (9/25), of false-positive segmental perfusion abnormality and a high incidence, 24% (6/25), of moderate to severe degree of image distortion with the 180 degrees data sampled reconstructed images. These were not observed in the 360 degrees data sampled reconstructed images. The above findings confirmed our previous preliminary conclusion that even though the 180 degrees data sampling technique has the advantage of providing improved image contrast and reduction in acquisition time it is not a reliable technique and should be abandoned. The 360 degrees data sampling is the technique of choice for transaxial SPECT 201Tl myocardial perfusion imaging.

  18. Biphasic thallium 201 SPECT-imaging for the noninvasive diagnosis of myocardial perfusion abnormalities in a child with Kawasaki disease--a case report

    SciTech Connect

    Hausdorf, G.; Nienaber, C.A.; Spielman, R.P.

    1988-02-01

    The mucocutaneous lymph node syndrome (Kawasaki disease) is of increasing importance for the pediatric cardiologist, for coronary aneurysms with the potential of thrombosis and subsequent stenosis can develop in the course of the disease. The authors report a 2 1/2-year-old female child in whom, fourteen months after the acute phase of Kawasaki disease, myocardial infarction occurred. Biphasic thallium 201 SPECT-imaging using dipyridamole depicted anterior wall ischemia and inferolateral infarction. This case demonstrates that noninvasive vasodilation-redistribution thallium 201 SPECT-imaging has the potential to predict reversible myocardial perfusion defects and myocardial necrosis, even in small infants with Kawasaki disease.

  19. Cost-minimization analysis of intravenous adenosine and dipyridamole in thallous chloride TI 201 SPECT myocardial perfusion imaging.

    PubMed

    Hilleman, D E; Lucas, B D; Mohiuddin, S M; Holmberg, M J

    1997-09-01

    To conduct a cost-minimization analysis of intravenous adenosine and intravenous dipyridamole in thallous chloride TI 201 single-photon emission computed tomography (SPECT) myocardial perfusion imaging. A retrospective, open-label, cost-minimization analysis. University hospital, outpatient nuclear medicine department. Eighty-three patients undergoing dipyridamole TI 201 SPECT and 166 patients undergoing adenosine TI 201 SPECT. A cost-minimization analysis was conducted using a direct cost accounting approach estimating institutional costs. For the purpose of this study, sensitivity and specificity between adenosine SPECT and dipyridamole SPECT were assumed to be identical. Key costs evaluated included acquisition, administration, monitoring, treatment of adverse effects, follow-up care, and repeat tests. Adenosine increased heart rate and lowered blood pressure to a significantly greater extent than dipyridamole. The frequency of adverse reactions was not significantly different (p = 0.103) between adenosine (1.64 +/- 1.32 per patient) and dipyridamole (1.36 +/- 1.23 per patient). The frequency of prolonged and late-onset adverse effects was significantly greater for dipyridamole than for adenosine (p < 0.001). The frequency of adverse events requiring medical intervention was statistically greater for dipyridamole (24%) compared with adenosine (5%) (p < 0.00001). Total cost was significantly less for adenosine ($378.50 +/- $128.20 per patient) compared with dipyridamole ($485.60 +/- $230.40). Although adenosine had a significantly greater acquisition cost than dipyridamole (p < 0.0001), administration, monitoring, and adverse reaction costs were significantly less for adenosine than for dipyridamole. The cost of using dipyridamole is significantly greater than the cost of using adenosine despite adenosine's high acquisition cost. Adenosine is less expensive to use because of lower administration costs, monitoring costs, and adverse effect costs. Adenosine should

  20. Effect of power Doppler and digital subtraction techniques on the comparison of myocardial contrast echocardiography with SPECT.

    PubMed

    Haluska, B; Case, C; Short, L; Anderson, J; Marwick, T H

    2001-05-01

    To compare the accuracy and feasibility of harmonic power Doppler and digitally subtracted colour coded grey scale imaging for the assessment of perfusion defect severity by single photon emission computed tomography (SPECT) in an unselected group of patients. Cohort study. Regional cardiothoracic unit. 49 patients (mean (SD) age 61 (11) years; 27 women, 22 men) with known or suspected coronary artery disease were studied with simultaneous myocardial contrast echo (MCE) and SPECT after standard dipyridamole stress. Regional myocardial perfusion by SPECT, performed with (99m)Tc tetrafosmin, scored qualitatively and also quantitated as per cent maximum activity. Normal perfusion was identified by SPECT in 225 of 270 segments (83%). Contrast echo images were interpretable in 92% of patients. The proportion of normal MCE by grey scale, subtracted, and power Doppler techniques were respectively 76%, 74%, and 88% (p < 0.05) at > 80% of maximum counts, compared with 65%, 69%, and 61% at < 60% of maximum counts. For each technique, specificity was lowest in the lateral wall, although power Doppler was the least affected. Grey scale and subtraction techniques were least accurate in the septal wall, but power Doppler showed particular problems in the apex. On a per patient analysis, the sensitivity was 67%, 75%, and 83% for detection of coronary artery disease using grey scale, colour coded, and power Doppler, respectively, with a significant difference between power Doppler and grey scale only (p < 0.05). Specificity was also the highest for power Doppler, at 55%, but not significantly different from subtracted colour coded images. Myocardial contrast echo using harmonic power Doppler has greater accuracy than with grey scale imaging and digital subtraction. However, power Doppler appears to be less sensitive for mild perfusion defects.

  1. Relationship between myocardial perfusion-gated SPECT and the performance of coronary revascularization in patients with ischemic cardiomyopathy.

    PubMed

    Romero-Farina, Guillermo; Candell-Riera, Jaume; Aguadé-Bruix, Santiago; Ferreira-Gonzalez, Ignacio; Igual, Albert; García-Dorado, David

    2012-10-01

    Ischemic cardiomyopathy (ICM) is a disease with high morbidity and mortality. There are several published studies on the evolution and prognosis of patients with ICM. However, reports on the therapeutic management in clinical practice are scarce. The aim of this study was to analyze coronary revascularization (CR) performance in patients with ICM and suitable coronary anatomy according to myocardial perfusion stress-rest gated SPECT results. Eighty-seven consecutive patients (mean age, 62.4 y; 20 women), with ischemic heart disease, left ventricular ejection fraction of 40% or less, coronary anatomy suitable for CR, and without previous CR, were evaluated by means of stress-rest gated SPECT. Sixty-four percent of patients had scintigraphic criteria of viability and 62.1% showed scintigraphic ischemia in stress-rest gated SPECT. Forty-five percent of patients were revascularized, and the remainder received medical treatment only. Coronary revascularization was more frequent in patients with scintigraphic viability (P = 0.012), in those with scintigraphic ischemia (P = 0.007), and in those with low left ventricular end-systolic volume (P = 0.006). Cox regression analysis identified multivessel disease [hazard ratio (HR), 3.3; 95% confidence interval (CI), 4-7.8], summed difference score greater than 4 (HR, 3.9; 95% CI, 1.5-9.8), and left ventricular end-systolic volume less than 120 mL (HR, 3.2; 95% CI, 1.3-8.2) as the best independent predictors of CR treatment. In patients with ICM and suitable coronary arteries who are able to perform a stress myocardial perfusion-gated SPECT, the presence of multivessel disease and myocardial ischemia and the absence of severely increased left ventricular volume were associated to a decision of CR.

  2. Quantitative Tc-99m myocardial perfusion SPECT with 180[degree] acquisition

    SciTech Connect

    Ye, J.

    1992-01-01

    Myocardial perfusion single photon emission computed tomography (SPECT) images using 180[degrees] acquisition are degraded by the effects of scatter, nonuniform attenuation and system geometric resolution variation with source depth. Using a 180[degrees] scan orbit which is closer to the heart may provide higher image resolution, signal-to-noise ratio and defect-to-normal contrast than using a 360[degrees] orbit, however, significant object shape distortion has been observed in the 180[degrees] reconstructed images. A method has been developed that combines filtered back-projection (FBP) with iterative attenuation and three-dimensional (3-D) resolution compensation for Tc-99m myocardial perfusion imaging, data. The non-uniform attenuation coefficient distribution is obtained by a quick transmission scan using a flood source and segmentation of the reconstructed transmission image to define areas of significantly different attenuation. A priori attenuation coefficients are assigned to the areas to form the attenuation distribution map. The 3-D correction is accomplished by including both the non-uniform attenuation and depth-dependent resolution variation in the reprojection procedure of an iterative correction algorithm. The method was evaluated with both simulated and experimental data using clinical protocols with a cardiac phantom. A significant improvement in image resolution was observed with line source images was reduced from approximately 10 mm to 7.l5 mm after 7 iterations of the 3-D correction. The contrast of two perfusion defects to the surrounding normally perfused regions was significantly improved with the correction. Significant improvement in uniformity at different positions in the 100% perfused areas in the myocardium was also observed. The normalized root squared error (NRSE) of one transaxial image from the original source distribution in the simulation study was reduced from 0.8 to 0.2 after 5 iterations of the 3-D correction.

  3. Costs and clinical outcomes after coronary multidetector CT angiography in patients without known coronary artery disease: comparison to myocardial perfusion SPECT.

    PubMed

    Min, James K; Kang, Ning; Shaw, Leslee J; Devereux, Richard B; Robinson, Matthew; Lin, Fay; Legorreta, Antonio P; Gilmore, Amanda

    2008-10-01

    To assess costs and clinical outcomes in individuals without known coronary artery disease (CAD) who underwent multidetector computed tomographic (CT) angiography compared with those in matched patients who underwent myocardial perfusion single photon emission computed tomography (SPECT). Data were captured from a deidentified, HIPAA-compliant data warehouse. We examined 1-year CAD costs (additional diagnostic coronary testing, CAD hospitalization, and coronary procedural and revascularization costs) and clinical outcomes in individuals without known CAD who underwent multidetector CT (n = 1647) compared with those in a matched cohort of patients who underwent myocardial perfusion SPECT (n = 6588). Cox proportional hazards models were employed for clinical outcome measures, including CAD hospitalization, myocardial infarction, and angina. Adjusted CAD costs in the multidetector CT group were 25.9% lower than in the myocardial perfusion SPECT group, by an average of $1075 (95% confidence interval [CI]: $243, $2570) per patient. Those in the multidetector CT group were more likely to undergo downstream testing with myocardial perfusion SPECT (odds ratio, 6.65; 95% CI: 5.05, 8.75; P < .001), while those in the myocardial perfusion SPECT group were more likely to undergo downstream testing with invasive angiography (odds ratio, 6.25; 95% CI: 4.35, 9.09; P < .001). The multidetector CT group was less likely to undergo coronary revascularization (hazard ratio, 0.76; 95% CI: 0.75, 0.77; P < .001) than the myocardial perfusion SPECT group. There was no significant difference between multidetector CT and myocardial perfusion SPECT groups for rates of myocardial infarction (0.4% for both) or CAD hospitalization (0.7% vs 1.1%, respectively), while rates of angina were significantly lower in the multidetector CT group (4.3% vs 6.4%, P < .001). Individuals without known CAD who underwent multidetector CT as an initial diagnostic test, compared with those who underwent

  4. Quantification of myocardial blood flow using (201)Tl SPECT and population-based input function.

    PubMed

    Koshino, Kazuhiro; Fukushima, Kazuhito; Fukumoto, Masaji; Hori, Yuki; Moriguchi, Tetsuaki; Zeniya, Tsutomu; Nishimura, Yoshihiro; Kiso, Keisuke; Iida, Hidehiro

    2014-11-01

    Thallium-201 ((201)Tl) single photon emission computed tomography (SPECT) is an important tool in the diagnosis of ischemic heart disease. Absolute quantification of myocardial blood flow (MBF) has the potential to provide more useful information on myocardial perfusion than semi-quantitative assessments. This study aimed to validate the quantification of MBF using (201)Tl cardiac SPECT based on a population-averaged input function (STD-IF) and one-point blood sample technique. (201)Tl emission and computed tomography (CT)-based attenuation scans were performed on 11 healthy volunteers at rest using a SPECT/CT scanner. Individual input functions (IND-IFs) during the emission scans were based on arterial blood samples. The STD-IF technique was validated as follows: (1) optimal time to calibrate a STD-IF was determined to minimize differences between the calibrated STD-IF and the IND-IFs. (2) Tissue time-activity curves (TTACs) were generated based on a single-tissue compartment model for MBFtrue = 0.5, 1.0, 1.5, and 2.0 mL/min/g, a constant distribution volume of 45 mL/mL, and IND-IFs. The pseudo STD-IF for each subject was generated using the leave-one-out technique. Using the optimal calibration time and the pseudo STD-IFs, MBF values were estimated on the TTACs with an autoradiography method. Optimal mid-scan time (MST) with a fixed duration of 20 min was determined to minimize intersubject variation in estimated MBF errors, and (3) Global and regional MBF values estimated with pseudo STD-IFs were compared to those with IND-IFs using the optimal calibration time and MST. The optimal calibration time and MST were both 20 min after (201)Tl injection. Global MBF determined using both IND-IFs and pseudo STD-IF showed significant correlations with rate-pressure products, R (2) = 0.645; p < 0.01 and R (2) = 0.303; p < 0.05, respectively. The mean percent error in regional MBF using pseudo STD-IFs was 0.69 ± 7.80 % (-12.80 to 14.25 %). No significant

  5. Effect of maintenance oral theophylline on dipyridamole-thallium-201 myocardial imaging using SPECT and dipyridamole-induced hemodynamic changes

    SciTech Connect

    Daley, P.J.; Mahn, T.H.; Zielonka, J.S.; Krubsack, A.J.; Akhtar, R.; Bamrah, V.S.

    1988-06-01

    To evaluate the effect of maintenance oral theophylline therapy on the diagnostic efficacy of dipyridamole-thallium-201 single photon emission computed tomography (SPECT) imaging for coronary artery disease, dipyridamole-thallium-201 SPECT imaging was performed in eight men with documented coronary artery disease before initiation of theophylline treatment and repeated while these patients were receiving therapeutic doses of oral theophylline. Before theophylline treatment, intravenous dipyridamole caused a significant increase in heart rate, decrease in blood pressure, angina in seven of eight patients, and ST segment depression in four of eight patients. While they were being treated with theophylline, none of the patients had angina or ST segment depression, and there were no hemodynamic changes with intravenous dipyridamole. Before theophylline treatment, dipyridamole-thallium-201 SPECT imaging showed reversible perfusion defects in myocardial segments supplied by stenotic coronary arteries. With theophylline treatment, dipyridamole-thallium-201 SPECT showed total absence of reversible perfusion defects. Treatment with theophylline markedly reduced the diagnostic accuracy of dipyridamole-thallium-201 imaging for coronary artery disease.

  6. [Follow-up of patients with good exercise capacity in stress test with myocardial single-photon emission computed tomography (SPECT)].

    PubMed

    González, Javiera; Prat, Hernán; Swett, Eduardo; Berrocal, Isabel; Fernández, René; Zhindon, Juan Pablo; Castro, Ariel; Massardo, Teresa

    2015-11-01

    The evaluation of coronary artery disease (CAD) can be performed with stress test and myocardial SPECT tomography. To assess the predictive value of myocardial SPECT using stress test for cardiovascular events in patients with good exercise capacity. We included 102 males aged 56 ± 10 years and 19 females aged 52 ± 10 years, all able to achieve 10 METs and ≥ 85% of the theoretical maximum heart rate and at least 8 min in their stress test with gated 99mTc-sestamibi SPECT. Eighty two percent of patients were followed clinically for 33 ± 17 months. Sixty seven percent of patients were studied for CAD screening and the rest for known disease assessment. Treadmill stress test was negative in 75.4%; 37% of patients with moderate to severe Duke Score presented ischemia. Normal myocardial perfusion SPECT was observed in 70.2%. Reversible defects appeared in 24.8% of cases, which were of moderate or severe degree (> 10% left ventricular extension) in 56.6%. Only seven cases had coronary events after the SPECT. Two major (myocardial infarction and emergency coronary revascularization) and 5 minor events (elective revascularization) ere observed in the follow-up. In a multivariate analysis, SPECT ischemia was the only statistically significant parameter that increased the probability of having a major or minor event. Nearly a quarter of our patients with good exercise capacity demonstrated reversible defects in their myocardial perfusion SPECT. In the intermediate-term follow-up, a low rate of cardiac events was observed, being the isotopic ischemia the only significant predictive parameter.

  7. Comparison of occupational radiation exposure from myocardial perfusion imaging with Rb-82 PET and Tc-99m SPECT.

    PubMed

    Tout, Deborah; Davidson, Gillian; Hurley, Caroline; Bartley, Michelle; Arumugam, Parthiban; Bradley, Andy

    2014-10-01

    Rubidium-82 (Rb-82) PET myocardial perfusion imaging (MPI) has superior diagnostic accuracy, at least similar prognostic value, and lower patient radiation exposure when compared with technetium-99m single-photon emission computed tomography (Tc-99m SPECT) MPI. The aim of this study was to compare occupational radiation exposure from the two modalities and show that improvements for the patient do not come at a cost to staff. Electronic personal dosimeters were worn by staff involved in the administration and imaging of routine clinical Tc-99m SPECT and Rb-82 PET MPI, and during tracer production and QC. To estimate dose to the staff in the event of a medical emergency, a survey meter was placed in close contact with the patient during Rb-82 infusion and imaging, and immediately after administration for Tc-99m SPECT. Mean (SD) whole-body effective dose to staff during a single MPI procedure was 0.4 (0.4) μSv for Rb-82 PET (1110 MBq) and 3.3 (1.7) μSv for Tc-99m SPECT (350 MBq). Staff effective dose during tracer production and QC was low (<0.2 μSv/patient) and comparable between tracers. An additional effective dose was measured at close contact to the patient during, and immediately after, tracer administration, although this will not pose a significant radiation risk to staff with either technique as long as this is not routine practice. There is a significant reduction in effective dose during Rb-82 PET when compared with Tc-99m SPECT MPI because of the short half-life of Rb-82 and reduced patient contact.

  8. Left-ventricular dyssynchrony evaluated by Tl-201 gated SPECT myocardial perfusion imaging: a comparison with Tc-99m sestamibi.

    PubMed

    Chen, Chien-Cheng; Huang, Wen-Sheng; Hung, Guang-Uei; Chen, Wan-Chen; Kao, Chia-Hung; Chen, Ji

    2013-03-01

    Phase analysis of gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) has been validated as a reliable tool to assess left-ventricular (LV) mechanical dyssynchrony. The initial results were all confirmed from studies using technetium-99m (Tc-99m) sestamibi or tetrofosmin as the radiotracers. The purpose of this study was to evaluate the feasibility of phase analysis in thallium-201 (Tl-201) gated SPECT MPI. Seventeen patients referred from a cardiology clinic for evaluation of coronary artery disease were studied. All patients underwent both Tl-201 and Tc-99m sestamibi gated SPECT MPI within 1 week. An additional 34 patients with Tl-201 gated SPECT and 22 patients with Tc-99m sestamibi gated SPECT, who had a low likelihood of coronary artery disease, normal LV function, and normal perfusion on MPI, were used as normal controls. LV dyssynchrony parameters, including phase standard deviation (PSD) and phase histogram bandwidth (PHB), were measured using a standard phase analysis tool and compared between Tl-201 and Tc-99m sestamibi images. The LV dyssynchrony parameters correlated well (r=0.93 for PSD and r=0.84 for PHB) between Tl-201 and Tc-99m sestamibi images. The dyssynchrony parameters of Tl-201 were significantly larger than those of Tc-99m sestamibi (PSD: 24.5±12.0 vs. 17.4±9.7, P<0.001; PHB: 74.7±35.5 vs. 50.6±25.0, P<0.001). In comparison with normal controls, Tl-201 and Tc-99m sestamibi images showed concordant results. LV dyssynchrony parameters correlated well between Tl-201 and Tc-99m sestamibi images, even though the values were significantly larger for Tl-201 than for Tc-99m sestamibi. Tl-201 images showed results similar to those of Tc-99m sestamibi in the diagnosis of LV dyssynchrony.

  9. Applying the J-optimal channelized quadratic observer to SPECT myocardial perfusion defect detection

    NASA Astrophysics Data System (ADS)

    Kupinski, Meredith K.; Clarkson, Eric; Ghaly, Michael; Frey, Eric C.

    2016-03-01

    To evaluate performance on a perfusion defect detection task from 540 image pairs of myocardial perfusion SPECT image data we apply the J-optimal channelized quadratic observer (J-CQO). We compare AUC values of the linear Hotelling observer and J-CQO when the defect location is fixed and when it occurs in one of two locations. As expected, when the location is fixed a single channels maximizes AUC; location variability requires multiple channels to maximize the AUC. The AUC is estimated from both the projection data and reconstructed images. J-CQO is quadratic since it uses the first- and second- order statistics of the image data from both classes. The linear data reduction by the channels is described by an L x M channel matrix and in prior work we introduced an iterative gradient-based method for calculating the channel matrix. The dimensionality reduction from M measurements to L channels yields better estimates of these sample statistics from smaller sample sizes, and since the channelized covariance matrix is L x L instead of M x M, the matrix inverse is easier to compute. The novelty of our approach is the use of Jeffrey's divergence (J) as the figure of merit (FOM) for optimizing the channel matrix. We previously showed that the J-optimal channels are also the optimum channels for the AUC and the Bhattacharyya distance when the channel outputs are Gaussian distributed with equal means. This work evaluates the use of J as a surrogate FOM (SFOM) for AUC when these statistical conditions are not satisfied.

  10. Optimal left ventricular lead position assessed with phase analysis on gated myocardial perfusion SPECT

    PubMed Central

    Boogers, Mark J.; Chen, Ji; van Bommel, Rutger J.; Borleffs, C. Jan Willem; Dibbets-Schneider, Petra; van der Hiel, Bernies; Al Younis, Imad; Schalij, Martin J.; van der Wall, Ernst E.; Garcia, Ernest V.

    2010-01-01

    Purpose The aim of the current study was to evaluate the relationship between the site of latest mechanical activation as assessed with gated myocardial perfusion SPECT (GMPS), left ventricular (LV) lead position and response to cardiac resynchronization therapy (CRT). Methods The patient population consisted of consecutive patients with advanced heart failure in whom CRT was currently indicated. Before implantation, 2-D echocardiography and GMPS were performed. The echocardiography was performed to assess LV end-systolic volume (LVESV), LV end-diastolic volume (LVEDV) and LV ejection fraction (LVEF). The site of latest mechanical activation was assessed by phase analysis of GMPS studies and related to LV lead position on fluoroscopy. Echocardiography was repeated after 6 months of CRT. CRT response was defined as a decrease of ≥15% in LVESV. Results Enrolled in the study were 90 patients (72% men, 67±10 years) with advanced heart failure. In 52 patients (58%), the LV lead was positioned at the site of latest mechanical activation (concordant), and in 38 patients (42%) the LV lead was positioned outside the site of latest mechanical activation (discordant). CRT response was significantly more often documented in patients with a concordant LV lead position than in patients with a discordant LV lead position (79% vs. 26%, p<0.01). After 6 months, patients with a concordant LV lead position showed significant improvement in LVEF, LVESV and LVEDV (p<0.05), whereas patients with a discordant LV lead position showed no significant improvement in these variables. Conclusion Patients with a concordant LV lead position showed significant improvement in LV volumes and LV systolic function, whereas patients with a discordant LV lead position showed no significant improvements. PMID:20953608

  11. Design of a digital phantom population for myocardial perfusion SPECT imaging research

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Du, Yong; Fung, George S. K.; Tsui, Benjamin M. W.; Links, Jonathan M.; Frey, Eric

    2014-06-01

    Digital phantoms and Monte Carlo (MC) simulations have become important tools for optimizing and evaluating instrumentation, acquisition and processing methods for myocardial perfusion SPECT (MPS). In this work, we designed a new adult digital phantom population and generated corresponding Tc-99m and Tl-201 projections for use in MPS research. The population is based on the three-dimensional XCAT phantom with organ parameters sampled from the Emory PET Torso Model Database. Phantoms included three variations each in body size, heart size, and subcutaneous adipose tissue level, for a total of 27 phantoms of each gender. The SimSET MC code and angular response functions were used to model interactions in the body and the collimator-detector system, respectively. We divided each phantom into seven organs, each simulated separately, allowing use of post-simulation summing to efficiently model uptake variations. Also, we adapted and used a criterion based on the relative Poisson effective count level to determine the required number of simulated photons for each simulated organ. This technique provided a quantitative estimate of the true noise in the simulated projection data, including residual MC simulation noise. Projections were generated in 1 keV wide energy windows from 48-184 keV assuming perfect energy resolution to permit study of the effects of window width, energy resolution, and crosstalk in the context of dual isotope MPS. We have developed a comprehensive method for efficiently simulating realistic projections for a realistic population of phantoms in the context of MPS imaging. The new phantom population and realistic database of simulated projections will be useful in performing mathematical and human observer studies to evaluate various acquisition and processing methods such as optimizing the energy window width, investigating the effect of energy resolution on image quality and evaluating compensation methods for degrading factors such as crosstalk in

  12. Comparison of 8-frame and 16-frame thallium-201 gated myocardial perfusion SPECT for determining left ventricular systolic and diastolic parameters.

    PubMed

    Kurisu, Satoshi; Sumimoto, Yoji; Ikenaga, Hiroki; Watanabe, Noriaki; Ishibashi, Ken; Dohi, Yoshihiro; Fukuda, Yukihiro; Kihara, Yasuki

    2017-07-01

    The myocardial perfusion single photon emission computed tomography synchronized with the electrocardiogram (gated SPECT) has been widely used for the assessment of left ventricular (LV) systolic and diastolic functions using Quantitative gated SPECT. The aim of this study was to compare the effects of 8-frame and 16-frame thallium-201 (Tl-201) gated SPECT for determining LV systolic and diastolic parameters. The study population included 42 patients with suspected coronary artery disease who underwent gated SPECT by clinical indication. LV systolic and diastolic parameters were assessed on 8-frame and 16-frame gated SPECT. There were good correlations in end-diastolic volume (r = 0.99, p < 0.001), end-systolic volume (ESV) (r = 0.97, p < 0.001) and ejection fraction (EF) (r = 0.95, p < 0.001) between 8-frame and 16-frame gated SPECT. Bland-Altman plot showed a significant negative slope of -0.08 in EDV indicating a larger difference for larger EDV. Eight-frame gated SPECT overestimated ESV by 2.3 ml, and underestimated EF by -4.2% than 16-frame gated SPECT. There were good correlations in peak filling rate (PFR) (r = 0.87, p < 0.001), one third mean filling rate (r = 0.87, p < 0.001) and time to PFR (r = 0.61, p < 0.001) between 8-frame and 16-frame gated SPECT. Eight-frame gated SPECT underestimated PFR by -0.22 than 16-frame gated SPECT. Eight-frame gated SPECT estimated as much MFR/3 and TPFR as 16-frame gated SPECT. According to the data, the study suggested that 8-frame Tl-201 gated SPECT could underestimate systolic and/or diastolic parameter when compared with 16-frame gated SPECT.

  13. Correction of hysteretic respiratory motion in SPECT myocardial perfusion imaging: Simulation and patient studies.

    PubMed

    Dasari, Paul K R; Könik, Arda; Pretorius, P Hendrik; Johnson, Karen L; Segars, William P; Shazeeb, Mohammed S; King, Michael A

    2017-02-01

    Amplitude-based respiratory gating is known to capture the extent of respiratory motion (RM) accurately but results in residual motion in the presence of respiratory hysteresis. In our previous study, we proposed and developed a novel approach to account for respiratory hysteresis by applying the Bouc-Wen (BW) model of hysteresis to external surrogate signals of anterior/posterior motion of the abdomen and chest with respiration. In this work, using simulated and clinical SPECT myocardial perfusion imaging (MPI) studies, we investigate the effects of respiratory hysteresis and evaluate the benefit of correcting it using the proposed BW model in comparison with the abdomen signal typically employed clinically. The MRI navigator data acquired in free-breathing human volunteers were used in the specially modified 4D NCAT phantoms to allow simulating three types of respiratory patterns: monotonic, mild hysteresis, and strong hysteresis with normal myocardial uptake, and perfusion defects in the anterior, lateral, inferior, and septal locations of the mid-ventricular wall. Clinical scans were performed using a Tc-99m sestamibi MPI protocol while recording respiratory signals from thoracic and abdomen regions using a visual tracking system (VTS). The performance of the correction using the respiratory signals was assessed through polar map analysis in phantom and 10 clinical studies selected on the basis of having substantial RM. In phantom studies, simulations illustrating normal myocardial uptake showed significant differences (P < 0.001) in the uniformity of the polar maps between the RM uncorrected and corrected. No significant differences were seen in the polar map uniformity across the RM corrections. Studies simulating perfusion defects showed significantly decreased errors (P < 0.001) in defect severity and extent for the RM corrected compared to the uncorrected. Only for the strong hysteretic pattern, there was a significant difference (P < 0.001) among

  14. [The meaning of the combination of fibrinogen, micro/macroalbuminuria and atheromatosis in the carotid bloodstream for the evaluation of the abnormal finding of the stress myocardial SPECT in the asymptomatic 2nd type diabetic patients].

    PubMed

    Zamrazil, V; Pálová, S; Holá, D

    2006-02-01

    Stress perfusion myocardial scintigraphy (SPECT) is useful in silent ischemia detection in the group of the asymptomatic type 2. diabetic patients. In our paper we present the combinations of the parameters predictive for stress myocardial SPECT result. We selected parameters (fibrinogen, micro/macroalbuminuria, ateroma in carotid artery bed) that were significantly associated with stress myocardial SPECT result. We analyzed the combinations of these parameters change and evaluated their significance for stress myocardial SPECT result prediction. We evaluated 121 type 2. diabetic patients without patological ECG changes and with normal left ventricle ejection fraction. Thirty one (26%) had abnormal and 90 (74%) equivocal or normal stress myocardial SPECT result. The combination of ateroma presence in carotid bed and fibrinogen in upper tertile was found in 20 patients. Fifteen of them (75%) had the abnormal SPECT result. The combinations of the ateroma absence, negative micro/macroalbuminuria and fibrinogen in the middle or lower tertile were present almost in the half of all the examined diabetic patients. Such combinations were connected with normal or equivocal SPECT result in 93-96% cases. Micro/macroalbuminuria, fibrinogen and ateroma in carotid bed found by sonography are significantly associated with stress myocardial SPECT result. Combinations of these parameters changes lead to the futher stratification that enables the rationale approach in the stress examination indication.

  15. ROC evaluation of SPECT myocardial lesion detectability with and without single iteration non-uniform Chang attenuation compensation using an anthropomorphic female phantom

    SciTech Connect

    Jang, S.; Jaszczak, R.J. |; Gilland, D.R.; Turkington, T.G.; Coleman, R.E.; Tsui, B.M.W.; Metz, C.E.

    1998-08-01

    The purpose of this work was to evaluate lesion detectability with and without nonuniform attenuation compensation (AC) in myocardial perfusion SPECT imaging in women using an anthropomorphic phantom and receiver operating characteristics (ROC) methodology. Breast attenuation causes artifacts in reconstructed images and may increase the difficulty of diagnosis of myocardial perfusion imaging in women. The null hypothesis tested using the ROC study was that nonuniform AC does not change the lesion detectability in myocardial perfusion SPECT imaging in women. The authors used a filtered backprojection (FBP) reconstruction algorithm and Chang`s single iteration method for AC. In conclusion, with the proposed myocardial defect model nuclear medicine physicians demonstrated no significant difference for the detection of the anterior wall defect; however, a greater accuracy for the detection of the inferior wall defect was observed without nonuniform AC than with it. Medical physicists did not demonstrate any statistically significant difference in defect detection accuracy with or without nonuniform AC in the female phantom.

  16. Patients with left bundle branch block pattern and high cardiac risk myocardial SPECT: does the current management suffice?

    PubMed

    Ten Cate, T J F; Kelder, J C; Plokker, H W M; Verzijlbergen, J F; van Hemel, N M

    2013-03-01

    Myocardial perfusion SPECT (MPS) is frequently used for cardiovascular risk stratification. The significance of MPS in patients with abnormal electrical ventricular activation is often questionable. This review assesses the value of MPS for risk stratification of patients with intrinsic left bundle branch block or that due to right ventricular apical pacing. We reviewed the literature by a search of the MEDLINE database (January 1980 to September 2010). The terms prognosis or prognostic value were combined with SPECT and LBBB or pacing or pacemakers. MPS was categorised as low and high risk according to the original definitions. We identified 11 studies suitable for review. A low-risk MPS is associated with a low risk of cardiac events whereas high-risk MPS carries a 4.8-fold increased risk, 95% CI [3.2 - 7.2] (p < 0.0001). Despite secondary prevention and an improved medical and interventional care, these figures have hardly changed over time. A low-risk MPS permits a policy of watchful waiting whereas a high-risk MPS requires further analysis and treatment. The persistent high cardiac death and acute myocardial infarction rate after a high-risk MPS suggest that the current management of these patients does not suffice and needs reconsideration.

  17. Soft tissue attenuation patterns in stress myocardial perfusion SPECT images: a comparison between supine and upright acquisition systems.

    PubMed

    Chawla, David; Rahaby, Mouyyad; Amin, Amit P; Vashistha, Raj; Alyousef, Tareq; Martinez, Hector X; Doukky, Rami

    2011-04-01

    Soft tissue attenuation patterns and their interaction with body habitus and gender in Single Photon Emission Computed Tomography (SPECT)-myocardial perfusion imaging (MPI) of upright patient-position acquisition systems are not well described. In a retrospective cross-sectional study, we compared the prevalence and patterns of soft tissue attenuation in two groups of normal SPECT-MPI studies acquired by supine (n = 263) vs upright (n = 212) acquisition systems. Attenuation patterns observed in the study population were: anterior (22.3%), inferior (51.6%) and lateral (18.1%). Anterior attenuation was significantly less in those imaged upright (6.1% vs 35.4%), P < .001; particularly among women (9.5% vs 50.7%), P < .001. Inferior attenuation was more common among women imaged upright (49.5% vs 13.5%), P < .001; but was not affected by imaging position among men. Lateral attenuation was more prevalent in the upright group (24.1% vs 13.3%), P = .002; and had a strong association with female gender (P < .001) and BMI ≥ 30 (P < .001). Upright SPECT-MPI acquisition is associated with a unique attenuation pattern which is vastly different than the supine position. Female gender strongly impacted this attenuation pattern, particularly obese women. Our study is the first to describe, in details, the attenuation patterns with upright imaging and is critical for the accurate interpretation of SPECT-MPI acquired with upright systems.

  18. Relationship between gated myocardial perfusion SPECT findings and hemodynamic, electrocardiographic, and heart rate changes after Dipyridamole infusion.

    PubMed

    Gholoobi, Arash; Ayati, Narjess; Baghyari, Alireza; Mouhebati, Mohsen; Atar, Baharak; Dabbagh Kakhki, Vahid Reza

    2017-02-01

    After dipyridamole infusion, electrocardiographic (ECG), blood pressure and heart rate (HR) changes were seen. We tried to investigate whether there is a relationship between hemodynamic, ECG and HR changes after dipyridamole infusion and gated myocardial perfusion SPECT findings. We studied 206 consecutive patients which underwent a 2-day protocol Dipyridamole Stress/Rest Tc99m-Sestamibi gated myocardial perfusion SPECT. Systolic blood pressure (SBP), diastolic blood pressure (DBP), HR and ECG were recorded. HR was mildly increased while SBP and DBP were mildly decreased after Dipyridamole infusion. There was only statistically significant difference between ECG changes as well as transient ischemic dilation (TID) ratio between normal scans and scans with ischemia (P = 0.02 and P = 0.01 respectively). There was correlation between these variables and summed stress score (SSS) and summed difference score (SDS). Patients with ischemia in their scans, 44.3% had ST depression after Dipyridamole infusion. Also ST depression most frequently was seen in patients with left anterior descending artery disease. From patients with abnormal scan + ST depression after Dipyridamole infusion (33 patient), 27 patient (81.81%) had ischemia. There was an association between TID ratio as well as ECG changes after Dipyridamole infusion and SSS, SDS and coronary artery territory abnormality. Difference between calculated left ventricular ejection fraction using stress and rest images had significant correlation with SSS and SDS. ST depression after Dipyridamole infusion and TID ratio had association with ischemia, SSS and SDS. So in equivocal Gated SPECT findings, they could be very useful for interpretation.

  19. Flurpiridaz F 18 PET: Phase II Safety and Clinical Comparison with SPECT Myocardial Perfusion Imaging for Detection of Coronary Artery Disease

    PubMed Central

    Berman, Daniel S.; Maddahi, Jamshid; Tamarappoo, B. K.; Czernin, Johannes; Taillefer, Raymond; Udelson, James E.; Gibson, C. Michael; Devine, Marybeth; Lazewatsky, Joel; Bhat, Gajanan; Washburn, Dana

    2015-01-01

    Objectives Phase II trial to assess flurpiridaz F 18 for safety and compare its diagnostic performance for PET myocardial perfusion imaging (MPI) to Tc-99m SPECT-MPI regarding image quality, interpretative certainty, defect magnitude and detection of coronary artery disease (CAD)(≥ 50% stenosis) on invasive coronary angiography (ICA). Background In preclinical and phase I studies, flurpiridaz F 18 has shown characteristics of an essentially ideal MPI tracer. Methods 143 patients from 21 centers underwent rest-stress PET and Tc-99m SPECT-MPI. Eighty-six patients underwent ICA, and 39 had low-likelihood of CAD. Images were scored by 3 independent, blinded readers. Results A higher % of images were rated as excellent/good on PET vs. SPECT on stress (99.2% vs. 88.5%, p<0.01) and rest (96.9% vs. 66.4, p<0.01) images. Diagnostic certainty of interpretation (% cases with definitely abnormal/normal interpretation) was higher for PET vs. SPECT (90.8% vs. 70.9%, p<0.01). In 86 patients who underwent ICA, sensitivity of PET was higher than SPECT [78.8% vs. 61.5%, respectively (p=0.02)]. Specificity was not significantly different (PET:76.5% vs. SPECT:73.5%). Receiver operating characteristic curve area was 0.82±0.05 for PET and 0.70±0.06 for SPECT (p=0.04). Normalcy rate was 89.7% with PET and 97.4% with SPECT (p=NS). In patients with CAD on ICA, the magnitude of reversible defects was greater with PET than SPECT (p=0.008). Extensive safety assessment revealed that flurpiridaz F 18 was safe in this cohort. Conclusions In this Phase 2 trial, PET MPI using flurpiridaz F 18 was safe and superior to SPECT MPI for image quality, interpretative certainty, and overall CAD diagnosis. PMID:23265345

  20. SPECT quantification of myocardial mass with Thallium-201: Comparison of 180/sup 0/ vs 360/sup 0/ acquisitions

    SciTech Connect

    Summerville, D.A.; Polak, J.F.; English, R.J.; Holman, B.L.

    1984-01-01

    It has recently been proposed that, for the heart, tomographic acquisitions over 180/sup 0/ (30/sup 0/ RAO to 60/sup 0/ LPO) might yield more relevant reconstructions than for 360/sup 0/. The authors have compared the effect of both formats using an Iowa heart phantom placed in the appropriate orientation in an Alderson torso phantom. Chamber activity of 2 ..mu..Ci/cc was used to emulate myocardial T1-201 uptake whereas background activity in the chest phantom was varied from 0 to .3 ..mu..Ci/cc; the latter encompasses the measured target-to-background ratios obtained on stress and redistribution Tl-201 scintigrams of twelve patients. Transaxial reconstructions were made with and without attenuation compensation (AC) for both 180/sup 0/ (30/sup 0/ RAO to 60/sup 0/ LPO) and 360/sup 0/. After formatting into oblique data sets holding 19 slices perpendicular to the long axis of the heart phantom, an algorithm estimating volumes above a certain count threshold of maximum was used to estimate myocardial mass. Defects were introduced into the phantom and the tomographic acquisitions repeated. Attenuation compensated 180/sup 0/ acquisitions yielded appropriate estimates of myocardial mass, even when large defects were reoriented from the septal to the lateral wall. The authors conclude that Tl-201 SPECT derived estimates of myocardial mass can be made from 180/sup 0/ acquisitions if (1) attenuation compensation is used, (2) corrections are made for different background activities in the ''lungs''.

  1. Optimization and comparison of simultaneous and separate acquisition protocols for dual isotope myocardial perfusion SPECT

    PubMed Central

    Ghaly, Michael; Links, Jonathan M; Frey, Eric C

    2015-01-01

    Dual-isotope simultaneous-acquisition (DISA) rest-stress myocardial perfusion SPECT (MPS) protocols offer a number of advantages over separate acquisition. However, crosstalk contamination due to scatter in the patient and interactions in the collimator degrade image quality. Compensation can reduce the effects of crosstalk, but does not entirely eliminate image degradations. Optimizing acquisition parameters could further reduce the impact of crosstalk. In this paper we investigate the optimization of the rest Tl-201 energy window width and relative injected activities using the ideal observer (IO), a realistic digital phantom population and Monte Carlo (MC) simulated Tc-99m and Tl-201 projections as a means to improve image quality. We compared performance on a perfusion defect detection task for Tl-201 acquisition energy window widths varying from 4 to 40 keV centered at 72 keV for a camera with a 9% energy resolution. We also investigated 7 different relative injected activities, defined as the ratio of Tc-99m and Tl-201 activities, while keeping the total effective dose constant at 13.5 mSv. For each energy window and relative injected activity, we computed the IO test statistics using a Markov chain Monte Carlo (MCMC) method for an ensemble of 1,620 triplets of fixed and reversible defect-present, and defect-absent noisy images modeling realistic background variations. The volume under the 3-class receiver operating characteristic (ROC) surface (VUS) was estimated and served as the figure of merit. For simultaneous acquisition, the IO suggested that relative Tc-to-Tl injected activity ratios of 2.6–5 and acquisition energy window widths of 16–22% were optimal. For separate acquisition, we observed a broad range of optimal relative injected activities from 2.6 to 12.1 and acquisition energy window of widths 16–22%. A negative correlation between Tl-201 injected activity and the width of the Tl-201 energy window was observed in these ranges. The results

  2. Optimization and comparison of simultaneous and separate acquisition protocols for dual isotope myocardial perfusion SPECT

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Links, Jonathan M.; Frey, Eric C.

    2015-07-01

    Dual-isotope simultaneous-acquisition (DISA) rest-stress myocardial perfusion SPECT (MPS) protocols offer a number of advantages over separate acquisition. However, crosstalk contamination due to scatter in the patient and interactions in the collimator degrade image quality. Compensation can reduce the effects of crosstalk, but does not entirely eliminate image degradations. Optimizing acquisition parameters could further reduce the impact of crosstalk. In this paper we investigate the optimization of the rest Tl-201 energy window width and relative injected activities using the ideal observer (IO), a realistic digital phantom population and Monte Carlo (MC) simulated Tc-99m and Tl-201 projections as a means to improve image quality. We compared performance on a perfusion defect detection task for Tl-201 acquisition energy window widths varying from 4 to 40 keV centered at 72 keV for a camera with a 9% energy resolution. We also investigated 7 different relative injected activities, defined as the ratio of Tc-99m and Tl-201 activities, while keeping the total effective dose constant at 13.5 mSv. For each energy window and relative injected activity, we computed the IO test statistics using a Markov chain Monte Carlo (MCMC) method for an ensemble of 1,620 triplets of fixed and reversible defect-present, and defect-absent noisy images modeling realistic background variations. The volume under the 3-class receiver operating characteristic (ROC) surface (VUS) was estimated and served as the figure of merit. For simultaneous acquisition, the IO suggested that relative Tc-to-Tl injected activity ratios of 2.6-5 and acquisition energy window widths of 16-22% were optimal. For separate acquisition, we observed a broad range of optimal relative injected activities from 2.6 to 12.1 and acquisition energy window of widths 16-22%. A negative correlation between Tl-201 injected activity and the width of the Tl-201 energy window was observed in these ranges. The results

  3. Microvascular obstruction on delayed enhancement cardiac magnetic resonance imaging after acute myocardial infarction, compared with myocardial (201)Tl and (123)I-BMIPP dual SPECT findings.

    PubMed

    Mori, Hiroaki; Isobe, Satoshi; Sakai, Shinichi; Yamada, Takashi; Watanabe, Naoki; Miura, Manabu; Uchida, Yasuhiro; Kanashiro, Masaaki; Ichimiya, Satoshi; Okumura, Takahiro; Murohara, Toyoaki

    2015-08-01

    The hypo-enhanced regions within the hyper-enhanced infarct areas detected by cardiac magnetic resonance (CMR) imaging reflect microvascular obstruction (MO) after acute myocardial infarction (AMI). The combined myocardial thallium-201 ((201)Tl)/iodine-123-15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid ((123)I-BMIPP) dual single-photon emission computed tomography (SPECT) is a useful tool for detecting myocardial reversibility after AMI. We evaluated whether MO could be an early predictor of irreversible myocardial damage in comparison with (201)Tl and (123)I-BMIPP dual SPECT findings in AMI patients. Sixty-two patients with initial AMI who successfully underwent coronary revascularization were enrolled. MO was defined by CMR imaging. Patients were divided into 2 groups as follows: MO group (n=32) and non-MO group (n=30). Scintigraphic defect scores were calculated using a 17-segment model with a 5-point scoring system. The mismatch score (MMS) was calculated as follows: the total sum of (Σ) (123)I-BMIPP defect score minus Σ(201)Tl defect score. The percentage mismatch score (%MMS) was calculated as follows: MMS/(Σ(123)I-BMIPP score)×100 (%). The percentage infarct size (%IS) was significantly greater in the MO group than in the non-MO group (32.2±13.8% vs. 18.3±12.1%, p<0.001). The %MMS significantly correlated with the %IS and the percentage MO (r=-0.26, p=0.03; r=-0.45, p<0.001, respectively). The %MMS was significantly greater in the non-MO group than in the MO group (45.4±42.4% vs. 13.3±28.0%, p=0.001), and was an independent predictor for MO (OR 0.97, 95%CI 0.94-0.99, p=0.02). Our results reconfirm that, in comparison with myocardial dual scintigraphy, MO is an important structural abnormality. CMR imaging is useful for the early detection of irreversible myocardial damage after AMI. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. [Use of SPECT-scanning of the heart in estimating of influence of drugs of the background therapy of ischemic heart disease on myocardial perfusion].

    PubMed

    Svistov, A S; Sukhov, V Iu; Makiev, R G; Alanichev, A E

    2012-10-01

    Some new facts about the influence of different groups of drugs on myocardial perfusion were educed during the research. Educed facts conduce representation extension by matching the optimal therapy of ischemic heart disease. With the help of SPECT-scanning were educed myocardial blood flow, areas of maximal hypoperfusion and its influence on time pattern and redistribution of myocardial blood flow in patients receiving disease-modifying agents and statins. Some regularities of change of myocardial blood flow depending on applied group of drugs and peculiarities of influence of myocardial perfusion in certain time interval were revealed. Criteria with prognostic significance in prospective individual effectiveness of anti-ischemic drugs were pointed out. New approach, based on choice of anti-ischemic therapy depending on extent of influence on myocardial perfusion and also individual clinical and functional traits of patients, was applied.

  5. Enhanced diagnosis of coronary artery disease in women by dobutamine thallium-201 ST-segment/heart rate slope and thallium-201 myocardial SPECT.

    PubMed

    Yeih, Dong-Feng; Huang, Por-Jau; Ho, Yi-Lwun

    2007-10-01

    The diagnosis of coronary artery disease (CAD) in women presents a great challenge because of poor exercise capacity and inadequate heart rate response during stress test. The clinical significance of stress-related ST-segment/heart rate slope (ST/HR slope) value for evaluating CAD in women remains controversial. Therefore, we conducted the present study to assess the diagnostic performance of dobutamine ST/HR slope in women, compared with myocardial perfusion study using thallium-201 single-photon emission computed tomography (Tl-201 SPECT). A total of 51 female patients with suspected CAD underwent simultaneous 12-lead electrocardiographic recording during 3-minute stages of dobutamine infusion as well as Tl-201 SPECT, and coronary angiography was performed within 2 weeks post Tl-201 SPECT. The sensitivity, specificity, positive predictive value and negative predictive value of dobutamine ST/HR slope and Tl-201 SPECT were assessed, and the results of coronary angiography were used as a gold standard. The sensitivity, specificity and accuracy of dobutamine ST/HR slope in detecting CAD were 43%, 83% and 61%, and those of Tl-201 SPECT were 71%, 87% and 78%, respectively. However, using both positive results of Tl-201 SPECT and ST/HR slope for detecting CAD, the diagnostic specificity increased from 87% to 96%. Using both negative results of Tl-201 SPECT and ST/HR slope to exclude CAD, the negative predictive value increased from 71% to 85%. The accuracy of dobutamine ST/HR slope in detecting CAD was not affected by the use of beta-blockers. Dobutamine ST/HR slope is less sensitive and less accurate than Tl-201 SPECT for detecting CAD in women. However, it adds diagnostic benefit to Tl-201 SPECT with only a little extra calculation.

  6. Incremental diagnostic benefit of resolution recovery software in patients with equivocal myocardial perfusion single-photon emission computed tomography (SPECT).

    PubMed

    Qutub, Mohammed A; Dowsley, Taylor; Ali, Iftikhar; Wells, R Glenn; Chen, Li; Ruddy, Terrence D; Chow, Benjamin J W

    2013-08-01

    Though myocardial perfusion imaging (MPI) with single-photon emission computed tomography (SPECT) is an established diagnostic method, equivocal studies are commonly encountered. New software has been introduced that incorporates resolution recovery (RR) and noise regulation into the reconstruction algorithm and has been used to facilitate "half-dose" and "half-time" studies. Its utility with "full-time, full-dose" acquisition has not been well studied. We sought to understand the potential benefit of incorporating RR software in equivocal SPECT studies. Patients with full-time, full-dose SPECT MPI were reviewed and those with equivocal results, who subsequently underwent cardiac Rb-82 positron emission tomography (PET) scan were identified. Image reconstruction was performed with iterative reconstruction (IR), attenuation correction (IR + AC), and RR software (IR + AC + RR). Images were anonymized and read blindly by consensus of two experienced readers. All images were qualitatively assessed and semi-quantitatively graded using summed stress and summed rest scores. 45 patients were included (28 males, age = 59.6 ± 9.9 years) and the diagnostic accuracy of each of the reconstruction algorithms (IR, IR + AC, IR + AC + RR) was compared to Rb-82 PET. Agreement of clinical diagnosis of each SPECT reconstruction with Rb-PET showed incremental improvement. The agreement with PET for IR + AC + RR (κ = 0.66, CI 0.454-0.875) is significantly better than for IR (κ = 0.22, CI 0.0-0.450, P = .005) and for IR + AC (κ = 0.32, CI 0.077-0.563, P = .03). Also, IR + AC + RR improved the clinical diagnosis in 14 cases and with overall improvement of reclassification proportion of 23.5% compared to IR (P = .01). Using PET as a reference standard, ROC curves were created for IR + AC + RR, IR + AC, and IR which showed incremental value of the area under the curve of IR + AC + RR (AUC: 0.87; CI 0.76-0.98) over IR + AC (AUC: 0.75; CI 0.61-0.89, P = .078), and over IR (AUC 0.68; CI 0

  7. Characteristics of images of angiographically proven normal coronary arteries acquired by adenosine-stress thallium-201 myocardial perfusion SPECT/CT-IQ[Symbol: see text]SPECT with CT attenuation correction changed stepwise.

    PubMed

    Takahashi, Teruyuki; Tanaka, Haruki; Kozono, Nami; Tanakamaru, Yoshiki; Idei, Naomi; Ohashi, Norihiko; Ohtsubo, Hideki; Okada, Takenori; Yasunobu, Yuji; Kaseda, Shunichi

    2015-04-01

    Although several studies have shown the diagnostic and prognostic value of CT-based attenuation correction (AC) of single photon emission computed tomography (SPECT) images for diagnosing coronary artery disease (CAD), this issue remains a matter of debate. To clarify the characteristics of CT-AC SPECT images that might potentially improve diagnostic performance, we analyzed images acquired using adenosine-stress thallium-201 myocardial perfusion SPECT/CT equipped with IQ[Symbol: see text]SPECT (SPECT/CT-IQ[Symbol: see text]SPECT) from patients with angiographically proven normal coronary arteries after changing the CT attenuation correction (CT-AC) in a stepwise manner. We enrolled 72 patients (Male 36, Female 36) with normal coronary arteries according to findings of invasive coronary angiography or CT-angiography within three months after a SPECT/CT study. Projection images were reconstructed at CT-AC values of (-), 40, 60, 80 and 100 % using a CT number conversion program according to our definition and analyzed using polar maps according to sex. CT attenuation corrected segments were located from the mid- and apical-inferior spread through the mid- and apical-septal regions and finally to the basal-anterior and basal- and mid-lateral regions in males, and from the mid-inferior region through the mid-septal and mid-anterior, and mid-lateral regions in females as the CT-AC values increased. Segments with maximal mean counts shifted from the apical-anterior to mid-anterolateral region under both stress and rest conditions in males, whereas such segments shifted from the apical-septal to the mid-anteroseptal region under both stress and rest conditions in females. We clarified which part of the myocardium and to which degree CT-AC affects it in adenosine-stress thallium-201 myocardial perfusion SPECT/CT-IQ[Symbol: see text]SPECT images by changing the CT-AC value stepwise. We also identified sex-specific shifts of segments with maximal mean counts that changed as

  8. Combined use of dopamine transporter imaging (DAT-SPECT) and (123)I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy for diagnosing Parkinson's disease.

    PubMed

    Yoshii, Fumihito; Ryo, Masafuchi; Baba, Yasuhiko; Koide, Takashi; Hashimoto, Jun

    2017-04-15

    To examine whether combined use of (123)I-FP-CIT dopamine transporter single photon emission computed tomography (DAT-SPECT) and (123)I-MIBG myocardial scintigraphy (MIBG) is superior to either modality alone for diagnosing Parkinson's disease (PD). Patients with probable PD (n=120) who underwent both DAT-SPECT and MIBG myocardial scintigraphy within short intervals were enrolled. Specific binding ratio (SBR) of DAT-SPECT images and heart-to-mediastinum (H/M) ratio of MIBG images were used as quantitative measures. We classified patients into 4 groups based on SBR value and H/M ratio, or into two groups based on the striatal asymmetry index (SAI) of DAT-SPECT, and examined the clinical features of each group. We also investigated the characteristics of SWEDDs (scans without evidence of dopaminergic deficits) patients. Finally, we calculated the sensitivity and specificity of each method and the combined method. SBR value was significantly correlated with both early and delayed H/M ratio values. Motor complications and hallucinations were observed at high frequency in the group with both lower SBR and H/M ratio, and hallucinations appeared in the group with larger SAI. SWEDDs were observed 8.3% of patients. The sensitivity and specificity of diagnosing PD were 91.7% and 15.0% by SBR of DAT-SPECT, 78.3% and 90.0% by H/M ratio of MIBG uptake, and 74.2% and 95.0% by the combined modalities, respectively. Combined use of DAT-SPECT and MIBG myocardial scintigraphy increases the specificity of PD diagnosis, and is helpful for understanding the clinical features or predicting complications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Association between non-perfusion parameters and presence of ischemia in gated-SPECT myocardial perfusion imaging studies.

    PubMed

    Peix, Amalia; Cabrera, Lázaro O; Padrón, Kenia; Rodríguez, Lydia; Fernández, Jesús; López, Giselle; Carrillo, Regla; Mena, Erick; Fernández, Yoel; Dondi, Maurizio; Páez, Diana

    2016-11-17

    Combined assessment of perfusion and function improves diagnostic and prognostic power of gated-SPECT in patients with coronary artery disease. The aim of this study was to investigate whether the presence of stress-induced ischemia is associated with abnormal resting left ventricular (LV) function and intraventricular dyssynchrony. Gated-SPECT myocardial perfusion imaging (MPI) at rest and 15 min post-stress was performed in 101 patients, who were divided into three groups: those with stress-induced ischemia (Group 1, n = 58), those with normal scans (Group 2, n = 28), and those with scar but no ischemia (Group 3, n = 15). More extensive perfusion defects were found in patients of Groups 1 and 3 [Summed stress score (SSS): 13 ± 8 and 21 ± 9, respectively]. In Group 2, the mean SSS was 1.5. The mean change in LV ejection fraction (LVEF at stress - LVEF at rest) was higher in Group 1 v. Group 2 patients: -5.54% ± 6.24% vs -2.46% ± 5.56%, p = 0.02. Group 3 patients also had higher values, similar to Group 1: -6.47% ± 8.82%. Patients with ischemia had almost 50% higher end-diastolic volumes than patients with normal MPI. Similarly, end-systolic volumes were almost twice as high in this group (p < 0.0001). In addition, the histogram bandwidth, a measure of intraventricular dyssynchrony, was greater in Group 1. Baseline differences in left ventricular volumes and degree of dyssynchrony are associated with inducible ischemia on stress testing in a gated-SPECT MPI. Stress-induced ischemia increases the degree of intraventricular dyssynchrony.

  10. Automated quality control of emission-transmission misalignment for attenuation correction in myocardial perfusion imaging with SPECT-CT systems.

    PubMed

    Chen, Ji; Caputlu-Wilson, Serpil F; Shi, Hongcheng; Galt, James R; Faber, Tracy L; Garcia, Ernest V

    2006-01-01

    Emission-transmission misalignment with single-photon emission computed tomography (SPECT)-computed tomography (CT) systems can impair attenuation correction (AC) in myocardial perfusion imaging. This study was performed to develop automated quality control (Auto-QC) to detect critical misalignment that can significantly impact AC. Auto-QC was developed to segment myocardium and mediastinum from emission and transmission reconstructions, respectively. Myocardium-mediastinum mismatch was used as the quality-control index (QCI). The QCI threshold for acceptable AC was determined with NCAT (NURBS [nonuniform rational B-spline]-based cardiac torso phantom) simulation and verified with 2 patients with minimal misalignment. Compromised data sets, generated by shifting the attenuation maps by 0.5, 1.0, 1.5, and 2.0 pixels along left-right, up-down, and head-foot directions, respectively, were qualitatively and quantitatively compared with the unshifted data sets. Auto-QC was tested with the 2 verification patients and 41 additional patients. Shifts by more than 1 pixel along any direction compromised AC. Auto-QC with the QCI threshold (3%) had highly concordant results with manual quality control in the detection of critical misalignment (sensitivity of 88% and 90% and specificity of 93% and 95% for the tests by use of the 2 verification patients and 41 additional patients, respectively). QCI quantitatively represented the severity of misalignment. Auto-QC can help clinicians be aware of critical misalignment and can assist in realignment of SPECT and CT images.

  11. Functional evaluation of myocardial viability by 99mTc tetrofosmin gated SPECT--a quantitative comparison with 18F fluorodeoxyglucose positron emission CT (18F FDG PET).

    PubMed

    Kuwabara, Y; Watanabe, S; Nakaya, J; Fujiwara, M; Hasegawa, R; Matsuno, K; Kuroda, T; Mikami, Y; Fujii, K; Himi, T; Masuda, Y

    1999-06-01

    To validate functional analysis of gated SPECT in detecting myocardial viability, seventeen patients (male 15, female 2, mean age 58) with angiographically proven chronic ischemic heart disease (RCA 6, LAD 10, LCX 1) and eight normal volunteers (all male) were studied. All patients underwent 18F FDG PET and 99mTc tetrofosmin (TF) gated SPECT within a week. After being displayed in a polar map, myocardial perfusion was regionally determined by the mean count in 9 segments at end diastole (ED) and end systole (ES) in gated SPECT. Systolic function was determined by the count increase ratio from ED to ES (WTI: ES - ED/ED). Glucose metabolism was assessed by 18F FDG PET in the segments correspondent to those defined for SPECT. TF %uptake of < 60% was defined as hypoperfusion, and FDG %uptake of < 50% was defined as reduced glucose metabolism. The myocardial segments were classified into 3 categories: "normal" perfusion (n = 85), "mismatch" (reduced perfusion with reserved FDG uptake, n = 25) and "matched" reduced perfusion and metabolic reduction (n = 26). Mean WTI in "mismatch" segment was 0.38 +/- 0.21, and was significantly greater than that in "matched reduced" segments, 0.15 +/- 0.20 (p < 0.001). It was also greater than that in "normal" segments, 0.27 +/- 0.16. Regression analysis showed that association between WTI and FDG %uptake was significant (r = 0.57, p < 0.0005) for the ischemic segments ("mismatch" + "matched", n = 51), but the association was weak for the entire segments although it was statistically significant (r = 0.26, p = 0.02, n = 136). For the segments determined as infarct by perfusion image, systolic functional analysis by gated SPECT is helpful in differentiation of a viable myocardial region or artifact from a scar. Nevertheless, further clinical and technical assessment is required for ECG gating to eliminate overestimation of viability and to warrant clinical use.

  12. Inappropriate utilization of SPECT myocardial perfusion imaging on the USA-Mexico border.

    PubMed

    Lalude, Omosalewa O; Gutarra, Mell F; Pollono, Eduardo N; Lee, Soyoung; Tarwater, Patrick M

    2014-06-01

    The American College of Cardiology/American Society of Nuclear Cardiology published revised appropriate use criteria (AUC) for SPECT MPI in 2009. We assessed adherence to these guidelines and factors associated with inappropriate utilization at the University Medical Center. The AUC was applied retrospectively to 420 SPECT MPI studies. Two-sample t test, Fisher's exact test, and multivariable logistic regression models were used for analysis. There were 322 appropriate (86%) and 54 (14%) inappropriate studies. The odds of having an inappropriate test increased with younger age (P < .001) and female gender (P < .001). Subjects with diabetes (P = .007) and chest pain (P < .001) were less likely to have an inappropriate test. Academic outpatients were three times more likely to have an inappropriate study (P = .123), while community PCPs were 5.6 times (P = .011) and community cardiologists eight times more likely to order inappropriate tests (P = .031). Inappropriate SPECT MPI in low risk younger women is an important issue on the USA-Mexico border. Initiatives to reduce inappropriate SPECT MPI should focus on a few indications and evaluation of cardiovascular symptoms in younger age women in outpatient/community practices.

  13. Quantitative Upright–Supine High-Speed SPECT Myocardial Perfusion Imaging for Detection of Coronary Artery Disease: Correlation with Invasive Coronary Angiography

    PubMed Central

    Nakazato, Ryo; Tamarappoo, Balaji K.; Kang, Xingping; Wolak, Arik; Kite, Faith; Hayes, Sean W.; Thomson, Louise E.J.; Friedman, John D.; Berman, Daniel S.; Slomka, Piotr J.

    2011-01-01

    A recently developed camera system for high-speed SPECT (HS-SPECT) myocardial perfusion imaging shows excellent correlation with conventional SPECT. Our goal was to test the diagnostic accuracy of an automated quantification of combined upright and supine myocardial SPECT for detection of coronary artery disease (CAD) (≥70% luminal diameter stenosis or, in left main coronary artery, ≥50% luminal diameter stenosis) in comparison to invasive coronary angiography (ICA). Methods We studied 142 patients undergoing upright and supine HS-SPECT, including 56 consecutive patients (63% men; mean age 6 ± SD, 64 ± 13 y; 45% exercise stress) without known CAD who underwent diagnostic ICA within 6 mo of HS-SPECT and 86 consecutive patients with a low likelihood of CAD. Reference limits for upright and supine HS-SPECT were created from studies of patients with a low likelihood of CAD. Automated software adopted from supine–prone analysis was used to quantify the severity and extent of perfusion abnormality and was expressed as total perfusion deficit (TPD). TPD was obtained for upright (U-TPD), supine (S-TPD), and combined upright–supine acquisitions (C-TPD). Stress U-TPD ≥ 5%, S-TPD ≥ 5%, and C-TPD ≥ 3% myocardium were considered abnormal for per-patient analysis, and U-TPD, S-TPD, and C-TPD ≥ 2% in each coronary artery territory were considered abnormal for per-vessel analysis. Results On a per-patient basis, the sensitivity was 91%, 88%, and 94% for U-TPD, S-TPD, and C-TPD, respectively, and specificity was 59%, 73%, and 86% for U-TPD, S-TPD, and C-TPD, respectively. C-TPD had a larger area under the receiver-operating-characteristic curve than U-TPD or S-TPD for identification of stenosis ≥ 70% (0.94 vs. 0.88 and 0.89, P < 0.05 and not significant, respectively). On a per-vessel basis, the sensitivity was 67%, 66%, and 69% for U-TPD, S-TPD, and C-TPD, respectively, and specificity was 91%, 94%, and 97% for U-TPD, S-TPD, and C-TPD, respectively (P = 0

  14. The Diagnostic Value of Tc-99m MIBI Gated Myocardial Perfusion SPECT in Detection of Silent Myocardial Ischemia in Asymptomatic Patients with Type 2 Diabetes Mellitus

    PubMed Central

    Ak, Coskun; Sahin, Ali; Capoglu, Ilyas

    2008-01-01

    Objective: In this study, we aimed to evaluate the diagnostic value of Technetium-99m methoxyisobutylisonitrile (Tc-99m MIBI) gated myocardial perfusion SPECT (MPS) in the detection of coronary artery disease (CAD) and silent myocardial ischemia (SMI) in patients with asymptomatic type 2 diabetes mellitus (DM). Materials and Methods: For this purpose, 35 patients with type 2 DM and 15 volunteers with no cardiac symptoms (control group) were included in this study. Exercise tolerance tests (ETT), echocardiography and Tc-99m MIBI gated MPS were performed in patients and volunteers. Computed tomography coronary angiography (CTCA) was performed in patients with coronary ischemia or infarct detected by Tc-99m MIBI gated MPS. The results were analyzed and compared visually and statistically. Results: The present study revealed a high rate of silent myocardial ischemia (25.71%, N=9) in 35 patients with type 2 DM. Severe CAD in CTCA was detected in four of nine patients with ischemia or infarct by Tc-99m MIBI gated MPS (44.4%). Left ventricular diastolic dysfunction, ischemic pattern and high risk of CAD were detected in the same four patients by echocardiography, ETT and biochemical analysis, respectively. At the end of the statistical evaluation, we found that Tc-99m MIBI gated MPS showed significant correlations with CTCA, echocardiography, ETT, Hba1c level, risk of CAD and diabetic age in diabetic patients with CAD. Conclusion: We propose that Tc-99m MIBI gated MPS is a reliable and non-invasive method that can be used to detect silent myocardial ischemia and CAD in patients with type 2 DM. PMID:25610029

  15. Comparison of diagnostic performance of four software packages for phase dyssynchrony analysis in gated myocardial perfusion SPECT.

    PubMed

    Okuda, Koichi; Nakajima, Kenichi; Matsuo, Shinro; Kashiwaya, Soichiro; Yoneyama, Hiroto; Shibutani, Takayuki; Onoguchi, Masahisa; Hashimoto, Mitsumasa; Kinuya, Seigo

    2017-12-01

    Phase analysis of gated myocardial perfusion single-photon emission computed tomography (SPECT) for assessment of left ventricular (LV) dyssynchrony was investigated using the following dedicated software packages: Corridor4DM (4DM), cardioREPO (cREPO), Emory Cardiac Toolbox (ECTb), and quantitative gated SPECT (QGS). The purpose of this study was to evaluate the normal values of 95% histogram bandwidth, phase standard deviation (SD), and entropy and to compare the diagnostic performance of the four software packages. A total of 122 patients with normal myocardial perfusion and cardiac function (58.9 ± 12.3 years, 60 women, ejection fraction (EF) 74.3 ± 5.7%, and end-diastolic volume (EDV) 83.5 ± 3.6 mL) and 34 patients with suspected LV dyssynchrony (64.1 ± 12.2 years, 9 women, EF 52.0 ± 18.0%, and EDV 145.0 ± 6.8 mL) who underwent Tc-99m methoxy-isobutyl-isonitrile/tetrofosmin gated SPECT were retrospectively evaluated. Dyssynchrony indices of the 95% histogram bandwidth, phase SD, and entropy were computed with the four software programs. Diagnostic performance of LV phase dyssynchrony assessments was determined by receiver operator characteristic (ROC) analysis. The area under the ROC curve (AUC) was used to compare the software programs. The optimal cutoff point was determined by ROC curve based on the Youden index. The average of normal bandwidth significantly differed among the four software programs except in the comparison of 4DM and ECTb. Moreover, the normal phase SD significantly differed among the four software programs except in the comparison of cREPO and ECTb. The software programs showed high correlation levels for bandwidth, phase SD, and entropy (r ≥ 0.73, p < 0.001). ROC AUCs of bandwidth, phase SD, and entropy were ≥0.850, ≥0.858, and ≥0.900, respectively. Moreover, the ROC AUCs of bandwidth, phase SD, and entropy did not significantly differ among the four software programs. Optimal cutoff

  16. A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease

    SciTech Connect

    Go, R.T.; Marwick, T.H.; MacIntyre, W.J.; Saha, G.B.; Neumann, D.R.; Underwood, D.A.; Simpfendorfer, C.C. )

    1990-12-01

    The purpose of the present study is to prospectively compare myocardial perfusion imaging with rubidium-82 ({sup 82}Rb) by positron emission tomography (PET) with thallium-201 ({sup 201}Tl) imaging by single-photon emission tomography (SPECT) by recording both studies with a single dipyridamole handgrip stress, and reading both sets of images with the same display technique. In a series of 202 patients with previous coronary arteriography, the sensitivity, specificity, and accuracy of {sup 82}Rb PET were 93%, 78%, and 90% and for {sup 201}Tl SPECT 76%, 80%, and 77%, respectively. When 70 patients with previous therapeutic interventions were excluded, the remaining 132 patients showed a sensitivity, specificity, and accuracy of 95%, 82% and 92% for {sup 82}Rb PET and 79%, 76%, and 78% for {sup 201}Tl SPECT. The improved contrast resolution of PET resulted in markedly superior images and a more confident identification of defects.

  17. Myocardial perfusion SPECT identifies patients with left bundle branch block patterns at high risk for future coronary events.

    PubMed

    ten Cate, Tim J F; Kelder, Johannes C; Plokker, Herbert W M; Verzijlbergen, J Fred; van Hemel, Norbert M

    2010-04-01

    The value of myocardial perfusion SPECT (MPS) for patients with left bundle branch block (LBBB) or right ventricular apical (RVA) pacing seems reduced. The prognosis of patients with only abnormal activation related perfusion defects (AARD) due to LBBB or RVA-pacing is similar to those with a normal MPS. We assessed the prognostic value of MPS in patients with LBBB or RVA pacing. Patients with LBBB or RVA pacing referred for vasodilator stress MPS between April 2002 and January 2006 were analyzed. Group 1 are patients with normal MPS and MPS with AARD. Group 2 are patients with an MPS with a perfusion defect extending outside the AARD area. Events were cardiac death, acute myocardial infarction and coronary revascularization. In Group 1 (101 patients) 12 events and in Group 2 (96 patients) 45 events occurred during a mean follow-up of 2.6 +/- 1.5 years. The prognosis of Group 2 was significantly worse (49%) compared with Group 1 (91%). The annual cardiac death rate was 0.7%/year in Group 1 and 6.4%/year in Group 2 (P < .001). The prognosis of patients with LBBB was not different from those with RVA pacing. Group 2 had a significantly worse cardiac prognosis compared to Group 1. The annual cardiac death rate of <1% in Group 1 warrants a watchful waiting strategy, whereas the cardiac death rate in Group 2 warrants aggressive invasive coronary strategies.

  18. Relation between perfusion defects on stress technetium-99m sestamibi SPECT scintigraphy and the location of a subsequent acute myocardial infarction.

    PubMed

    Miller, G L; Herman, S D; Heller, G V; Kalla, S; Levin, W A; Stillwell, K M; Travin, M I

    1996-07-01

    Although the presence of perfusion defects on stress myocardial perfusion imaging has been shown to correlate with future cardiac events, including acute myocardial infarction (AMI), it is unknown whether the location of the AMI can be predicted. Therefore, for 25 patients who had an AMI following a stress technetium-99m sestamibi single-photon emission computed tomographic (SPECT) imaging study and whose infarct location could be determined, the territory of infarction was correlated with the location of previous myocardial perfusion defects. A SPECT perfusion defect had been present in 24 patients (96%). The AMI occurred in territories that showed a reversible defect in 14 patients (56%), whereas 3 infarctions (12%) were in territories that revealed a fixed defect, and 8 infarctions (32%) were in territories that had not shown a defect on prior SPECT imaging. Whereas the incidence of infarction in territories with a reversible defect was highest at 14 of 26 (54%), the incidence of infarction in territories with a fixed defect was 3 of 7 (43%), and in territories with no defect was 8 of 42 (19%) (p = 0.011). Neither the time interval between SPECT imaging and infarction, nor the perfusion defect severity, was related to the correlation between perfusion defect and infarct location. Thus, although AMI occurs most often at the site of previous perfusion defects, reversible or fixed, a substantial percentage occur in territories without a perfusion defect. These findings suggest that abnormalities on SPECT perfusion imaging, although they serve as markers of significant coronary disease and increase the likelihood of infarction, do not always predict the exact location of infarction.

  19. Effect of a patient-specific minimum activity in stress myocardial perfusion imaging using CZT-SPECT: Prognostic value, radiation dose, and scan outcome.

    PubMed

    van Dijk, J D; Borren, N M; Mouden, M; van Dalen, J A; Ottervanger, J P; Jager, P L

    2017-08-18

    SPECT Myocardial perfusion imaging (MPI) is associated with a relatively high radiation burden and decreasing image quality in heavy patients. Patient-specific low-activity protocols (PLAPs) are suggested but follow-up data is lacking. Our aim was to compare the use of a standard fixed-activity protocol (FAP) with a PLAP in cadmium zinc telluride (CZT)-SPECT MPI. We retrospectively included 1255 consecutive patients who underwent CZT-SPECT stress-optional rest MPI. 668 Patients were scanned using FAP (370 MBq) and 587 patients using PLAP (2.25 MBq·kg(-1)). Percentage of scans interpreted as normal, radiation dose, and 1-year follow-up including hard event rates (all-cause death or non-fatal myocardial infarction) were collected and compared. The percentage of scans interpreted as normal was 67% in FAP and 70% in PLAP groups (P = .29). The annualized hard event rates in these patients were 1.0% in the FAP and 0.9% in the PLAP group (P = .86). However, the mean radiation dose decreased by 23% for stress-only and by 15% to 2.6 mSv for stress-optional rest MPI after introduction of the PLAP (p<0.001). Introduction of a patient-specific low-activity protocol does not affect the percentage of scans interpreted as normal or prognosis but significantly lowers the radiation dose for CZT-SPECT MPI.

  20. Myocardial blood flow measurement with a conventional dual-head SPECT/CT with spatiotemporal iterative reconstructions - a clinical feasibility study

    PubMed Central

    Alhassen, Fares; Nguyen, Nhan; Bains, Sukhkarn; Gould, Robert G; Seo, Youngho; Bacharach, Stephen L; Song, Xiyun; Shao, Lingxiong; Gullberg, Grant T; Aparici, Carina Mari

    2014-01-01

    Cardiac single photon emission computed tomography (SPECT) cameras typically rotate too slowly around a patient to capture changes in the blood pool activity distribution and provide accurate kinetic parameters. A spatiotemporal iterative reconstruction method to overcome these limitations was investigated. Dynamic rest/stress 99mTc-methoxyisobutylisonitrile (99mTc-MIBI) SPECT/CT was performed along with reference standard rest/stress dynamic positron emission tomography (PET/CT) 13N-NH3 in five patients. The SPECT data were reconstructed using conventional and spatiotemporal iterative reconstruction methods. The spatiotemporal reconstruction yielded improved image quality, defined here as a statistically significant (p<0.01) 50% contrast enhancement. We did not observe a statistically significant difference between the correlations of the conventional and spatiotemporal SPECT myocardial uptake K 1 values with PET K 1 values (r=0.25, 0.88, respectively) (p<0.17). These results indicate the clinical feasibility of quantitative, dynamic SPECT/CT using 99mTc-MIBI and warrant further investigation. Spatiotemporal reconstruction clearly provides an advantage over a conventional reconstruction in computing K 1. PMID:24380045

  1. Influence of proton-pump inhibitors on stomach wall uptake of 99mTc-tetrofosmin in cadmium-zinc-telluride SPECT myocardial perfusion imaging.

    PubMed

    Mouden, Mohamed; Rijkee, Karlijn S; Schreuder, Nanno; Timmer, Jorik R; Jager, Pieter L

    2015-02-01

    Proton-pump inhibitors (PPIs) induce potentially interfering stomach wall activity in single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI) with technetium-99m ((99m)Tc)-sestamibi. However, no data are available for (99m)Tc-tetrofosmin. We assessed the influence of prolonged (>2 weeks) PPI use on the stomach wall uptake of (99m)Tc-tetrofosmin in patients referred for stress MPI with a cadmium-zinc-telluride-based SPECT camera and its relation with dyspepsia symptoms. Consecutive patients (n=127) underwent a 1-day adenosine stress-first SPECT-MPI with (99m)Tc-tetrofosmin, of whom 54 (43%) patients had been on PPIs for more than 2 weeks. Stomach wall activity was identified on stress SPECT using computed tomographic attenuation maps and was scored using a four-point grading scale into clinically relevant (scores 2 or 3) or nonrelevant (scores 0 or 1).Patients on PPIs had stomach wall uptake more frequently as compared with patients not using PPIs (22 vs. 7%, P=0.017). Dyspepsia was similar in both groups. Prolonged use of PPIs is associated with stomach wall uptake of (99m)Tc-tetrofosmin in stress cadmium-zinc-telluride-SPECT images. Gastric symptoms were not associated with stomach wall uptake.

  2. Simultaneous Tc-99m/I-123 Dual Radionuclide Myocardial Perfusion/Innervation Imaging Using Siemens IQ-SPECT with SMARTZOOM Collimator

    PubMed Central

    Du, Yong; Bhattacharya, Manojeet; Frey, Eric. C.

    2014-01-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region compared to a typical parallel-hole low-energy high-resolution collimator but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulation and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter modeling

  3. Simultaneous Tc-99m/I-123 dual-radionuclide myocardial perfusion/innervation imaging using Siemens IQ-SPECT with SMARTZOOM collimator.

    PubMed

    Du, Yong; Bhattacharya, Manojeet; Frey, Eric C

    2014-06-07

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about the mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region, compared to a typical parallel-hole low-energy high-resolution collimator, but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator-detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulations and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single-radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter

  4. Simultaneous Tc-99m/I-123 dual-radionuclide myocardial perfusion/innervation imaging using Siemens IQ-SPECT with SMARTZOOM collimator

    NASA Astrophysics Data System (ADS)

    Du, Yong; Bhattacharya, Manojeet; Frey, Eric C.

    2014-06-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about the mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region, compared to a typical parallel-hole low-energy high-resolution collimator, but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator-detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulations and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single-radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter

  5. Evaluation by quantitative 99m-technetium MIBI SPECT and echocardiography of myocardial perfusion and wall motion abnormalities in patients with dobutamine-induced ST-segment elevation.

    PubMed

    Elhendy, A; Geleijnse, M L; Roelandt, J R; van Domburg, R T; Cornel, J H; TenCate, F J; Postma-Tjoa, J; Reijs, A E; el-Said, G M; Fioretti, P M

    1995-09-01

    ST-segment elevation during exercise testing has been attributed to myocardial ischemia and wall motion abnormalities (WMA). However, the functional significance of ST-segment elevation during dobutamine stress testing (DST) has not been evaluated in patients referred for diagnostic evaluation of myocardial ischemia. DST (up to 40 micrograms/kg/min) with simultaneous echocardiography and technetium-99m sestamibi single-photon emission computed tomography (SPECT) was performed in 229 consecutive patients with suspected myocardial ischemia who were unable to perform an adequate exercise test; 127 (55%) had a previous acute myocardial infarction (AMI). ST elevation was defined as > or = 1 mm new or additional J point elevations with a horizontal or upsloping ST segment lasting 80 ms. Reversible perfusion defects on SPECT and new or worsening WMA during stress on echocardiography were considered diagnostic of ischemia. ST elevation occurred in 40 patients (17%) during the test; 34 of them (85%) had previous AMI. All patients with ST-segment elevation had abnormal scintigrams (fixed or reversible defects, or both) and abnormal wall motion (fixed or transient defect, or both) at peak stress. In patients who had ST elevation and no previous AMI (n = 6), ischemia was detected in all by echocardiography and in 5 (83%) by SPECT. In patients with previous AMI, the prevalence of ischemia was not different with or without ST elevation (53% vs 43% by echocardiography and 53% vs 48% by SPECT, respectively). Baseline regional wall motion score in the infarct zone was higher in patients with ST elevation.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Feasibility of combined risk stratification with coronary CT angiography and stress myocardial SPECT in patients with chronic coronary artery disease.

    PubMed

    Kiriyama, Tomonari; Fukushima, Yoshimitsu; Hayashi, Hiromitsu; Takano, Hitoshi; Kumita, Shin-Ichiro

    2017-10-06

    To examine the additional prognostic value of coronary CT angiography (CTA) over myocardial perfusion imaging (MPI) in patients with suspected or known coronary artery disease. A series of 157 patients (mean age 69 ± 9 years; 76% male; median follow-up 49 months; range 12-82 months) underwent stress MPI with SPECT and coronary CTA within a 6-month interval. Summed stress score (SSS) and summed difference score (SDS) of stress MPI, number of vessels with stenosis, and presence of left main trunk stenosis and high-risk plaques on coronary CTA were examined. Primary endpoints were cardiac death, acute myocardial infarction, or unstable angina requiring revascularization. Secondary endpoints were revascularization > 60 days after the latter imaging test. All patients were followed up for at least 1 year (mean 45 ± 19 months; range 12-82 months). Nine (6%) patients reached primary endpoints. Cardiac death occurred in 1 (0.6%) patient, myocardial infarction in 5 (3%), and unstable angina requiring hospitalization in 3 (2%). Elective revascularization within 60 days was performed in 31 (20%) patients. Sixteen (10%) patients required revascularization after > 60 days. Primary endpoint event-free survival rates were significantly lower in patients with myocardial ischemia (SDS ≥ 2) and high-risk plaques (HRP), and secondary endpoint event-free survival rates in patients with SSS ≥ 4 and 3VD. In multivariate analysis, Cox proportional hazards regression analysis revealed HRP (HR = 8.02; P = 0.006) and myocardial ischemia (HR = 11.487; P = 0.025) were significant predictors of primary endpoints, and 3VD of secondary endpoints (HR = 4.981; P = 0.008). Combined ischemia and HRP resulted in the significant increase of the model Chi square in prediction of primary end points from ischemia or HRP alone (17.4 vs. 9.41; P = 0.005, 17.4 vs. 9.39; P = 0.005, respectively). Coronary CT angiography may provide additional

  7. Sites of Latest Mechanical Activation as Assessed by SPECT Myocardial Perfusion Imaging in Ischemic and Dilated Cardiomyopathy Patients with LBBB

    PubMed Central

    Lin, Xianhe; Xu, Huiqin; Zhao, Xuefeng; Chen, Ji

    2014-01-01

    Objective Sites of latest mechanical activation (SOLA) have been recognized as optimal left-ventricular (LV) lead positions for cardiac resynchronization therapy (CRT). This study was aimed to investigate SOLA in ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) patients with left bundle branch block (LBBB). Methods Sixty-four consecutive LBBB patients (47 DCM, 17 ICM), who met the standard indications for CRT and underwent resting SPECT myocardial perfusion imaging (MPI), were selected. Phase analysis was used to assess LV dyssynchrony and SOLA. The Emory Cardiac Toolbox was used to measure perfusion defects. LV dyssynchrony and SOLA were compared between the DCM patients with wide (≥150 ms) and moderate (120–150 ms) QRS durations (QRSd). The relationship between SOLA and perfusion defects was analyzed in the ICM patients. Results The DCM patients with wide QRSd had significantly more LV dyssynchrony than those with moderate QRSd. Lateral SOLA were significantly more frequent in the DCM patients with wide QRSd than those with moderate QRSd (96% vs. 62%, p=0.010). In the ICM patients, SOLA were either in the scar segments (82%) or in the segments immediately adjacent to the scar segments (18%), regardless of QRSd. Conclusion Lateral SOLA were more frequent in the DCM patients with wide QRSd than those with moderate QRSd. Such relationship was not observed in the ICM patients, where SOLA were associated with scar location rather than QRSd. These findings support the use of SPECT MPI to aid the selection of potential CRT responders and guide LV lead placement. PMID:24577952

  8. Comparison of Channelized Hotelling and Human Observers inDetermining Optimum OS-EM Reconstruction Parameters for MyocardialSPECT

    SciTech Connect

    Gilland, Karen L.; Tsui, Benjamin M.W.; Qi, Yujin; Gullberg,Grant T.

    2005-07-01

    The performance of the Channelized Hotelling Observer (CHO)was compared to that of human observers for determining optimumparameters for the iterative OS-EM image reconstruction method for thetask of defect detection in myocardial SPECT images. The optimumparameters were those that maximized defect detectability in the SPECTimages. Low noise, parallel SPECT projection data, with and without ananterior, inferior or lateral LV wall defect, were simulated using theMonte Carlo method. Poisson noise was added to generate noisyrealizations. Data were reconstructed using OS-EM at 1&4subsets/iteration and at 1, 3, 5, 7&9 iterations. Images wereconverted to 2D short-axis slices with integer pixel values. The CHO used3 radially-symmetric, 2D channels, with varying levels of internalobserver noise. For each parameter setting, 600 defect-present and 600defect-absent image vectors were used to calculate the detectabilityindex (dA). The human observers rated the likelihood that a defect waspresent in a specified location. For each parameter setting, the AUC wasestimated from 48 defect-present and 48 defect-absent images. Thecombined human observer results showed the optimum parameter settingcould be in the range 5-36 updates ([number of subsets]/iteration enumber of iterations). The CHO results showed the optimum parametersetting to be 4-5 updates. The performance of the CHO was much moresensitive to the reconstruction parameter setting than was that of thehuman observers. The rankings of the CHO detectability values did notchange with varying levels of internal noise.

  9. Development of 4D mathematical observer models for the task-based evaluation of gated myocardial perfusion SPECT.

    PubMed

    Lee, Taek-Soo; Frey, Eric C; Tsui, Benjamin M W

    2015-04-07

    This paper presents two 4D mathematical observer models for the detection of motion defects in 4D gated medical images. Their performance was compared with results from human observers in detecting a regional motion abnormality in simulated 4D gated myocardial perfusion (MP) SPECT images. The first 4D mathematical observer model extends the conventional channelized Hotelling observer (CHO) based on a set of 2D spatial channels and the second is a proposed model that uses a set of 4D space-time channels. Simulated projection data were generated using the 4D NURBS-based cardiac-torso (NCAT) phantom with 16 gates/cardiac cycle. The activity distribution modelled uptake of (99m)Tc MIBI with normal perfusion and a regional wall motion defect. An analytical projector was used in the simulation and the filtered backprojection (FBP) algorithm was used in image reconstruction followed by spatial and temporal low-pass filtering with various cut-off frequencies. Then, we extracted 2D image slices from each time frame and reorganized them into a set of cine images. For the first model, we applied 2D spatial channels to the cine images and generated a set of feature vectors that were stacked for the images from different slices of the heart. The process was repeated for each of the 1,024 noise realizations, and CHO and receiver operating characteristics (ROC) analysis methodologies were applied to the ensemble of the feature vectors to compute areas under the ROC curves (AUCs). For the second model, a set of 4D space-time channels was developed and applied to the sets of cine images to produce space-time feature vectors to which the CHO methodology was applied. The AUC values of the second model showed better agreement (Spearman's rank correlation (SRC) coefficient = 0.8) to human observer results than those from the first model (SRC coefficient = 0.4). The agreement with human observers indicates the proposed 4D mathematical observer model provides a good predictor of the

  10. Development of 4D mathematical observer models for the task-based evaluation of gated myocardial perfusion SPECT

    NASA Astrophysics Data System (ADS)

    Lee, Taek-Soo; Frey, Eric C.; Tsui, Benjamin M. W.

    2015-04-01

    This paper presents two 4D mathematical observer models for the detection of motion defects in 4D gated medical images. Their performance was compared with results from human observers in detecting a regional motion abnormality in simulated 4D gated myocardial perfusion (MP) SPECT images. The first 4D mathematical observer model extends the conventional channelized Hotelling observer (CHO) based on a set of 2D spatial channels and the second is a proposed model that uses a set of 4D space-time channels. Simulated projection data were generated using the 4D NURBS-based cardiac-torso (NCAT) phantom with 16 gates/cardiac cycle. The activity distribution modelled uptake of 99mTc MIBI with normal perfusion and a regional wall motion defect. An analytical projector was used in the simulation and the filtered backprojection (FBP) algorithm was used in image reconstruction followed by spatial and temporal low-pass filtering with various cut-off frequencies. Then, we extracted 2D image slices from each time frame and reorganized them into a set of cine images. For the first model, we applied 2D spatial channels to the cine images and generated a set of feature vectors that were stacked for the images from different slices of the heart. The process was repeated for each of the 1,024 noise realizations, and CHO and receiver operating characteristics (ROC) analysis methodologies were applied to the ensemble of the feature vectors to compute areas under the ROC curves (AUCs). For the second model, a set of 4D space-time channels was developed and applied to the sets of cine images to produce space-time feature vectors to which the CHO methodology was applied. The AUC values of the second model showed better agreement (Spearman’s rank correlation (SRC) coefficient = 0.8) to human observer results than those from the first model (SRC coefficient = 0.4). The agreement with human observers indicates the proposed 4D mathematical observer model provides a good predictor of the

  11. Usefulness of the novel risk estimation software, Heart Risk View, for the prediction of cardiac events in patients with normal myocardial perfusion SPECT.

    PubMed

    Sakatani, Tomohiko; Shimoo, Satoshi; Takamatsu, Kazuaki; Kyodo, Atsushi; Tsuji, Yumika; Mera, Kayoko; Koide, Masahiro; Isodono, Koji; Tsubakimoto, Yoshinori; Matsuo, Akiko; Inoue, Keiji; Fujita, Hiroshi

    2016-12-01

    Myocardial perfusion single-photon emission-computed tomography (SPECT) can predict cardiac events in patients with coronary artery disease with high accuracy; however, pseudo-negative cases sometimes occur. Heart Risk View, which is based on the prospective cohort study (J-ACCESS), is a software for evaluating cardiac event probability. We examined whether Heart Risk View was useful to evaluate the cardiac risk in patients with normal myocardial perfusion SPECT (MPS). We studied 3461 consecutive patients who underwent MPS to detect myocardial ischemia and those who had normal MPS were enrolled in this study (n = 698). We calculated cardiac event probability by Heart Risk View and followed-up for 3.8 ± 2.4 years. The cardiac events were defined as cardiac death, non-fatal myocardial infarction, and heart failure requiring hospitalization. During the follow-up period, 21 patients (3.0 %) had cardiac events. The event probability calculated by Heart Risk View was higher in the event group (5.5 ± 2.6 vs. 2.9 ± 2.6 %, p < 0.001). According to the receiver-operating characteristics curve, the cut-off point of the event probability for predicting cardiac events was 3.4 % (sensitivity 0.76, specificity 0.72, and AUC 0.85). Kaplan-Meier curves revealed that a higher event rate was observed in the high-event probability group by the log-rank test (p < 0.001). Although myocardial perfusion SPECT is useful for the prediction of cardiac events, risk estimation by Heart Risk View adds more prognostic information, especially in patients with normal MPS.

  12. Blood oxygen level-dependent (BOLD) MRI: A novel technique for the assessment of myocardial ischemia as identified by nuclear imaging SPECT.

    PubMed

    Egred, M; Waiter, G D; Redpath, T W; Semple, S K I; Al-Mohammad, A; Walton, S

    2007-12-01

    The different levels of deoxyhemoglobin in the ischemic myocardium, induced by stressors such as dipyridamole, can be detected by blood oxygen level-dependent (BOLD) MRI and may be used to diagnose myocardial ischemia. The aim of this study was to assess the signal change in the myocardium on BOLD MRI as well as wall thickening between rest and dipyridamole stress images in ischemic and non-ischemic myocardium as identified on SPECT imaging. Twelve patients with stress-induced myocardial ischemia on SPECT underwent rest and dipyridamole stress MRI using a double breath-hold, T2()-weighted, ECG-gated sequence to produce BOLD contrast images as well as cine-MRI for wall thickening assessment in 10 of the 12 patients. Signal change on BOLD MRI and wall thickening were compared between rest and stress images in ischemic and non-ischemic myocardial segments as identified on SPECT. In each patient, two MRI slices containing 16 segments per slice were analysed. In total, there were 384 segments for BOLD analysis and 320 for wall thickening. For BOLD signal 137 segments correlated to segments with reversible ischemia on SPECT and 247 to normal segments, while for wall thickening 112 segments correlated to segments with reversible ischemia and 208 to normal segments. The average BOLD MRI signal intensity change was -13.8 (+/-16.3)% in the ischemic segments compared to -10.3 (+/-14.7)% in the non-ischemic segments (p=0.05). The average wall thickening was 6.4 (+/-3.4) mm in the ischemic segments compared to 8.7 (+/-3.8) mm in the non-ischemic segments (p<0.0001). Stress-induced ischemic myocardium has a different signal change and wall thickening than non-ischemic myocardium and may be differentiated on BOLD MRI. Larger studies are needed to define a threshold for detection and to determine the sensitivity and specificity of this technique.

  13. Contributions of subdiaphragmatic activity, attenuation, and diaphragmatic motion to inferior wall artifact in attenuation-corrected Tc-99m myocardial perfusion SPECT.

    PubMed

    Pitman, Alexander G; Kalff, Victor; Van Every, Bruce; Risa, Borghild; Barnden, Leighton R; Kelly, Michael J

    2005-01-01

    Subdiaphragmatic activity and diaphragmatic motion both contribute to inferior wall artifacts in technetium 99m myocardial perfusion single photon emission computed tomography (SPECT). We used an anthropomorphic phantom with ventricular wall activity, liver/spleen inserts containing variable Tc-99m activity, and variable vertical (diaphragmatic) motion amplitude. SPECT and transmission scans were obtained on a GE Optima NX camera. Data were processed by use of filtered backprojection or attenuation correction (AC). Resulting myocardial activity maps were analyzed with standardized inferior-anterior and anterior-lateral wall ratios. At a subdiaphragmatic-myocardial activity ratio of 0.5:1, inferior wall attenuation predominates, producing a cold artifact. AC corrects inferior wall activity to the level of the anterior wall irrespective of diaphragmatic motion. At a subdiaphragmatic-myocardial activity ratio of 1:1, inferior wall counts vary widely depending on the proximity of subdiaphragmatic activity to the ventricle. With increasing diaphragmatic amplitude, the overlap of subdiaphragmatic activity and inferior wall worsens, leading to a complex mixture of cold and hot artifacts, not corrected by AC. Concentration and proximity of subdiaphragmatic Tc-99m activity relative to myocardium comprise a major factor in the nature and severity of inferior wall artifacts. If the subdiaphragmatic Tc-99m concentration is equivalent to that in the myocardium, complex, potentially uninterpretable hot and cold inferior wall artifacts are produced.

  14. Automatic Valve Plane Localization in Myocardial Perfusion SPECT/CT by Machine Learning: Anatomic and Clinical Validation.

    PubMed

    Betancur, Julian; Rubeaux, Mathieu; Fuchs, Tobias A; Otaki, Yuka; Arnson, Yoav; Slipczuk, Leandro; Benz, Dominik C; Germano, Guido; Dey, Damini; Lin, Chih-Jen; Berman, Daniel S; Kaufmann, Philipp A; Slomka, Piotr J

    2017-06-01

    Precise definition of the mitral valve plane (VP) during segmentation of the left ventricle for SPECT myocardial perfusion imaging (MPI) quantification often requires manual adjustment, which affects the quantification of perfusion. We developed a machine learning approach using support vector machines (SVM) for automatic VP placement. Methods: A total of 392 consecutive patients undergoing (99m)Tc-tetrofosmin stress (5 min; mean ± SD, 350 ± 54 MBq) and rest (5 min; 1,024 ± 153 MBq) fast SPECT MPI attenuation corrected (AC) by CT and same-day coronary CT angiography were studied; included in the 392 patients were 48 patients who underwent invasive coronary angiography and had no known coronary artery disease. The left ventricle was segmented with standard clinical software (quantitative perfusion SPECT) by 2 experts, adjusting the VP if needed. Two-class SVM models were computed from the expert placements with 10-fold cross validation to separate the patients used for training and those used for validation. SVM probability estimates were used to compute the best VP position. Automatic VP localizations on AC and non-AC images were compared with expert placement on coronary CT angiography. Stress and rest total perfusion deficits and detection of per-vessel obstructive stenosis by invasive coronary angiography were also compared. Results: Bland-Altman 95% confidence intervals (CIs) for VP localization by SVM and experts for AC stress images (bias, 1; 95% CI, -5 to 7 mm) and AC rest images (bias, 1; 95% CI, -7 to 10 mm) were narrower than interexpert 95% CIs for AC stress images (bias, 0; 95% CI, -8 to 8 mm) and AC rest images (bias, 0; 95% CI, -10 to 10 mm) (P < 0.01). Bland-Altman 95% CIs for VP localization by SVM and experts for non-AC stress images (bias, 1; 95% CI, -4 to 6 mm) and non-AC rest images (bias, 2; 95% CI, -7 to 10 mm) were similar to interexpert 95% CIs for non-AC stress images (bias, 0; 95% CI, -6 to 5 mm) and non-AC rest images (bias, -1; 95% CI

  15. Comparison of SPECT using technetium-99m agents and thallium-201 and PET for the assessment of myocardial perfusion and viability

    SciTech Connect

    Berman, D.S.; Kiat, H.; Van Train, K.F.; Friedman, J.; Garcia, E.V.; Maddahi, J. )

    1990-10-16

    This report reviews the applications of tomographic imaging with current and new tracers in assessing myocardial perfusion and viability. Multiple studies with thallium-201 (TI-201) single photon emission computed tomography (SPECT) imaging for the detection of coronary artery disease (CAD) have demonstrated high sensitivity, high rates of normalcy and high reproducibility. In assessing viability, fixed defects are frequently detected in viable zones in 4-hour studies with TI-201 imaging. Redistribution imaging performed 18 to 72 hours after injection or reinjection of TI-201 before 4-hour redistribution imaging has been shown to improve accuracy of viability assessment. TI-201 SPECT studies are limited by the suboptimal physical properties of TI-201, which result in variable image quality. The 2 new technetium-99m (Tc-99m) - labeled myocardial perfusion tracers offer the ability to inject much higher amounts of radioactivity, making it possible to assess ventricular function as well as myocardial perfusion from the same injection of radiotracer. Tc-99m sestamibi has very slow myocardial clearance, which allows for prolonged imaging time and results in image quality superior to that obtained with TI-201 and Tc-99m teboroxime. The combination of minimal redistribution of Tc-99m sestamibi and high count rates makes gated SPECT imaging feasible, and also permits assessment of patients with acute ischemic syndromes by uncoupling the time of injection from the time of imaging. The combination of high image quality and first-pass exercise capabilities may lead to a choice of this agent over TI-201 for assessment of chronic CAD.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Measurement of absolute myocardial blood flow in humans using dynamic cardiac SPECT and 99mTc-tetrofosmin: Method and validation

    DOE PAGES

    Shrestha, Uttam; Sciammarella, Maria; Alhassen, Fares; ...

    2015-12-29

    The objective of this study was to measure myocardial blood flow (MBF) in humans using 99mTc-tetrofosmin and dynamic single-photon emission computed tomography (SPECT). Dynamic SPECT using 99mTc-tetrofosmin and dynamic positron emission tomography (PET) was performed on a group of 16 patients. The SPECT data were reconstructed using a 4D-spatiotemporal iterative reconstruction method. The data corresponding to 9 patients were used to determine the flow-extraction curve for 99mTc-tefrofosmin while data from the remaining 7 patients were used for method validation. The nonlinear tracer correction parameters A and B for 99mTc-tefrofosmin were estimated for the 9 patients by fitting the flow-extraction curvemore » K1 = F(1–Aexp(–B/F)) for K1 values estimated with 99mTc-tefrofosmin using SPECT and MBF values estimated with 13N-NH3 using PET. These parameters were then used to calculate MBF and coronary flow reserve (CFR) in three coronary territories (LAD, RCA, and LCX) using SPECT for an independent cohort of 7 patients. The results were then compared with that estimated with 13N-NH3 PET. The flow-dependent permeability surface-area product (PS) for 99mTc-tefrofosmin was also estimated. The estimated flow-extraction parameters for 99mTc-tefrofosmin were found to be A = 0.91 ± 0.11, B = 0.34 ± 0.20 (R2 = 0.49). The range of MBF in LAD, RCA, and LCX was 0.44-3.81 mL/min/g. The MBF between PET and SPECT in the group of independent cohort of 7 patients showed statistically significant correlation, r = 0.71 (P < .001). However, the corresponding CFR correlation was moderate r = 0.39 yet statistically significant (P = .037). The PS for 99mTc-tefrofosmin was (0.019 ± 0.10)*MBF + (0.32 ± 0.16). Dynamic cardiac SPECT using 99mTc-tetrofosmin and a clinical two-headed SPECT/CT scanner can be a useful tool for estimation of MBF.« less

  17. Measurement of absolute myocardial blood flow in humans using dynamic cardiac SPECT and 99mTc-tetrofosmin: Method and validation

    SciTech Connect

    Shrestha, Uttam; Sciammarella, Maria; Alhassen, Fares; Yeghiazarians, Yerem; Ellin, Justin; Verdin, Emily; Boyle, Andrew; Seo, Youngho; Botvinick, Elias H.; Gullberg, Grant T.

    2015-12-29

    The objective of this study was to measure myocardial blood flow (MBF) in humans using 99mTc-tetrofosmin and dynamic single-photon emission computed tomography (SPECT). Dynamic SPECT using 99mTc-tetrofosmin and dynamic positron emission tomography (PET) was performed on a group of 16 patients. The SPECT data were reconstructed using a 4D-spatiotemporal iterative reconstruction method. The data corresponding to 9 patients were used to determine the flow-extraction curve for 99mTc-tefrofosmin while data from the remaining 7 patients were used for method validation. The nonlinear tracer correction parameters A and B for 99mTc-tefrofosmin were estimated for the 9 patients by fitting the flow-extraction curve K1 = F(1–Aexp(–B/F)) for K1 values estimated with 99mTc-tefrofosmin using SPECT and MBF values estimated with 13N-NH3 using PET. These parameters were then used to calculate MBF and coronary flow reserve (CFR) in three coronary territories (LAD, RCA, and LCX) using SPECT for an independent cohort of 7 patients. The results were then compared with that estimated with 13N-NH3 PET. The flow-dependent permeability surface-area product (PS) for 99mTc-tefrofosmin was also estimated. The estimated flow-extraction parameters for 99mTc-tefrofosmin were found to be A = 0.91 ± 0.11, B = 0.34 ± 0.20 (R2 = 0.49). The range of MBF in LAD, RCA, and LCX was 0.44-3.81 mL/min/g. The MBF between PET and SPECT in the group of independent cohort of 7 patients showed statistically significant correlation, r = 0.71 (P < .001). However, the corresponding CFR correlation was moderate r = 0.39 yet statistically significant (P = .037). The PS for 99mTc-tefrofosmin was (0.019 ± 0.10)*MBF + (0.32 ± 0.16). Dynamic cardiac SPECT using 99mTc-tetrofosmin and a clinical two-headed SPECT/CT scanner can be a useful tool

  18. Measurement of Absolute Myocardial Blood Flow in Humans Using Dynamic Cardiac SPECT and 99mTc-tetrofosmin: Method and Validation

    PubMed Central

    Shrestha, Uttam; Sciammarella, Maria; Alhassen, Fares; Yeghiazarians, Yerem; Ellin, Justin; Verdin, Emily; Boyle, Andrew; Seo, Youngho; Botvinick, Elias H.; Gullberg, Grant T.

    2015-01-01

    Background The objective of this study was to measure myocardial blood flow (MBF) in humans using 99mTc-tetrofosmin and dynamic single photon emission computed tomography (SPECT). Methods Dynamic SPECT using 99mTc-tetrofosmin and dynamic positron emission tomography (PET) was performed on a group of 16 patients. The SPECT data were reconstructed using a 4D-spatiotemporal iterative reconstruction method. The data corresponding to 9 patients were used to determine the flow-extraction curve for 99mTc-tefrofosmin while data from the remaining 7 patients were used for method validation. The nonlinear tracer correction parameters A and B for 99mTc-tefrofosmin were estimated for the 9 patients by fitting the flow-extraction curve K1=F(1−Aexp(−BF)) for K1 values estimated with 99mTc-tefrofosmin using SPECT and MBF values estimated with 13N-NH3 using PET. These parameters were then used to calculate MBF and coronary flow reserve (CFR) in three coronary territories (LAD, RCA, and LCX) using SPECT for an independent cohort of 7 patients. The results were then compared with that estimated with 13N-NH3 PET. The flow dependent permeability surface-area product (PS) for 99mTc-tefrofosmin was also estimated. Results The estimated flow extraction parameters for 99mTc-tefrofosmin was found to be A=0.91±0.11, B=0.34±0.20 (R2 = 0.49). The range of MBF in LAD, RCA, and LCX was 0.44 ml/min/g to 3.81 ml/min/g. The MBF between PET and SPECT in the group of independent cohort of 7 patients showed statistically significant correlation, r = 0.71 (p < 0.001). However, the corresponding CFR correlation was moderate r = 0.39 yet statistically significant (p = 0.037). The PS for 99mTc-tefrofosmin was (0.091 ± 0.10) * MBF = (0.32 ± 0.16). Conclusions Dynamic cardiac SPECT using 99mTc-tetrofosmin and a clinical two-headed SPECT/CT scanner can be a useful tool for estimation of MBF. PMID:26715603

  19. Superior diagnostic performance of perfusion-cardiovascular magnetic resonance versus SPECT to detect coronary artery disease: The secondary endpoints of the multicenter multivendor MR-IMPACT II (Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary Artery Disease Trial)

    PubMed Central

    2012-01-01

    Background Perfusion-cardiovascular magnetic resonance (CMR) is generally accepted as an alternative to SPECT to assess myocardial ischemia non-invasively. However its performance vs gated-SPECT and in sub-populations is not fully established. The goal was to compare in a multicenter setting the diagnostic performance of perfusion-CMR and gated-SPECT for the detection of CAD in various populations using conventional x-ray coronary angiography (CXA) as the standard of reference. Methods In 33 centers (in US and Europe) 533 patients, eligible for CXA or SPECT, were enrolled in this multivendor trial. SPECT and CXA were performed within 4 weeks before or after CMR in all patients. Prevalence of CAD in the sample was 49% and 515 patients received MR contrast medium. Drop-out rates for CMR and SPECT were 5.6% and 3.7%, respectively (ns). The study was powered for the primary endpoint of non-inferiority of CMR vs SPECT for both, sensitivity and specificity for the detection of CAD (using a single-threshold reading), the results for the primary endpoint were reported elsewhere. In this article secondary endpoints are presented, i.e. the diagnostic performance of CMR versus SPECT in subpopulations such as multi-vessel disease (MVD), in men, in women, and in patients without prior myocardial infarction (MI). For diagnostic performance assessment the area under the receiver-operator-characteristics-curve (AUC) was calculated. Readers were blinded versus clinical data, CXA, and imaging results. Results The diagnostic performance (= area under ROC = AUC) of CMR was superior to SPECT (p = 0.0004, n = 425) and to gated-SPECT (p = 0.018, n = 253). CMR performed better than SPECT in MVD (p = 0.003 vs all SPECT, p = 0.04 vs gated-SPECT), in men (p = 0.004, n = 313) and in women (p = 0.03, n = 112) as well as in the non-infarct patients (p = 0.005, n = 186 in 1–3 vessel disease and p = 0.015, n = 140 in MVD). Conclusion

  20. Comparison of image quality, myocardial perfusion, and left ventricular function between standard imaging and single-injection ultra-low-dose imaging using a high-efficiency SPECT camera: the MILLISIEVERT study.

    PubMed

    Einstein, Andrew J; Blankstein, Ron; Andrews, Howard; Fish, Mathews; Padgett, Richard; Hayes, Sean W; Friedman, John D; Qureshi, Mehreen; Rakotoarivelo, Harivony; Slomka, Piotr; Nakazato, Ryo; Bokhari, Sabahat; Di Carli, Marcello; Berman, Daniel S

    2014-09-01

    SPECT myocardial perfusion imaging plays a central role in coronary artery disease diagnosis, but concerns exist regarding its radiation burden. Compared with standard Anger SPECT (A-SPECT) cameras, new high-efficiency (HE) cameras with specialized collimators and solid-state cadmium-zinc-telluride detectors offer potential to maintain image quality (IQ), while reducing administered activity and thus radiation dose to patients. No previous study has compared IQ, interpretation, total perfusion deficit (TPD), or ejection fraction (EF) in patients receiving both ultra-low-dose (ULD) imaging on an HE SPECT camera and standard low-dose (SLD) A-SPECT imaging. We compared ULD HE SPECT with SLD A-SPECT imaging by dividing the rest dose in 101 patients at 3 sites scheduled to undergo clinical A-SPECT myocardial perfusion imaging using a same day rest-stress (99m)Tc protocol. Patients underwent HE SPECT imaging after an initial approximately 130-MBq (3.5 mCi) dose and SLD-A-SPECT imaging after the remainder of the planned dose. Images were scored visually by 2 masked readers for IQ and summed rest score. TPD and EF were assessed quantitatively. Mean activity was 134 MBq (3.62 mCi) for ULD HE SPECT (effective dose, 1.15 mSv) and 278 MBq (7.50 mCi, 2.39 mSv) for SLD A-SPECT. Overall IQ was superior for ULD HE SPECT (P < 0.0001), with twice as many studies graded excellent quality. Extracardiac activity and overall perfusion assessment were similar. Between-method correlations were high for summed rest score (r = 0.87), TPD (r = 0.91), and EF (r = 0.88). ULD HE SPECT rest imaging correlates highly with SLD A-SPECT. It has improved image quality, comparable extracardiac activity, and achieves radiation dose reduction to 1 mSv for a single injection. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  1. Review: comparison of PET rubidium-82 with conventional SPECT myocardial perfusion imaging

    PubMed Central

    Ghotbi, Adam A; Kjær, Andreas; Hasbak, Philip

    2014-01-01

    Nuclear cardiology has for many years been focused on gamma camera technology. With ever improving cameras and software applications, this modality has developed into an important assessment tool for ischaemic heart disease. However, the development of new perfusion tracers has been scarce. While cardiac positron emission tomography (PET) so far largely has been limited to centres with on-site cyclotron, recent developments with generator produced perfusion tracers such as rubidium-82, as well as an increasing number of PET scanners installed, may enable a larger patient flow that may supersede that of gamma camera myocardial perfusion imaging. PMID:24028171

  2. Validation and evaluation of model-based crosstalk compensation method in simultaneous /sup 99m/Tc stress and /sup 201/Tl rest myocardial perfusion SPECT

    NASA Astrophysics Data System (ADS)

    Song, X.; Frey, E. C.; Wang, W. T.; Du, Y.; Tsui, B. M. W.

    2004-02-01

    Simultaneous acquisition of /sup 99m/Tc stress and /sup 201/Tl rest myocardial perfusion SPECT has several potential advantages, but the image quality is degraded by crosstalk between the Tc and Tl data. We have previously developed a crosstalk model that includes estimates of the downscatter and Pb X-ray for use in crosstalk compensation. In this work, we validated the model by comparing the crosstalk from /sup 99m/Tc to the Tl window calculated using a combination of the SimSET-MCNP Monte Carlo simulation codes. We also evaluated the model-based crosstalk compensation method using both simulated data from the 3-D MCAT phantom and experimental data from a physical phantom with a myocardial defect. In these studies, the Tl distributions were reconstructed from crosstalk contaminated data without crosstalk compensation, with compensation using the model-based crosstalk estimate, and with compensation using the known true crosstalk, and were compared with the Tl distribution reconstructed from uncontaminated Tl data. Results show that the model gave good estimates of both the downscatter photons and Pb X-rays in the simultaneous dual-isotopes myocardial perfusion SPECT. The model-based compensation method provided image quality that was significantly improved as compared to no compensation and was very close to that from the separate acquisition.

  3. [The Optimal Reconstruction Parameters by Scatter and Attenuation Corrections Using Multi-focus Collimator System in Thallium-201 Myocardial Perfusion SPECT Study].

    PubMed

    Shibutani, Takayuki; Onoguchi, Masahisa; Funayama, Risa; Nakajima, Kenichi; Matsuo, Shinro; Yoneyama, Hiroto; Konishi, Takahiro; Kinuya, Seigo

    2015-11-01

    The aim of this study was to reveal the optimal reconstruction parameters of ordered subset conjugates gradient minimizer (OSCGM) by no correction (NC), attenuation correction (AC), and AC+scatter correction (ACSC) using IQ-single photon emission computed tomography (SPECT) system in thallium-201 myocardial perfusion SPECT. Myocardial phantom acquired two patterns, with or without defect. Myocardial images were performed 5-point scale visual score and quantitative evaluations using contrast, uptake, and uniformity about the subset and update (subset×iteration) of OSCGM and the full width at half maximum (FWHM) of Gaussian filter by three corrections. We decided on optimal reconstruction parameters of OSCGM by three corrections. The number of subsets to create suitable images were 3 or 5 for NC and AC, 2 or 3 for ACSC. The updates to create suitable images were 30 or 40 for NC, 40 or 60 for AC, and 30 for ACSC. Furthermore, the FWHM of Gaussian filters were 9.6 mm or 12 mm for NC and ACSC, 7.2 mm or 9.6 mm for AC. In conclusion, the following optimal reconstruction parameters of OSCGM were decided; NC: subset 5, iteration 8 and FWHM 9.6 mm, AC: subset 5, iteration 8 and FWHM 7.2 mm, ACSC: subset 3, iteration 10 and FWHM 9.6 mm.

  4. Free Triiodothyronine Level Correlates with Myocardial Injury and Prognosis in Idiopathic Dilated Cardiomyopathy: Evidence from Cardiac MRI and SPECT/PET Imaging

    PubMed Central

    Wang, Wenyao; Guan, Haixia; Fang, Wei; Zhang, Kuo; Gerdes, A. Martin; Iervasi, Giorgio; Tang, Yi-Da

    2016-01-01

    Thyroid dysfunction is associated with poor prognosis in heart failure, but theories of mechanisms are mainly based on animal experiments, not on human level. We aimed to explore the relation between thyroid function and myocardial injuries in idiopathic dilated cardiomyopathy (IDCM) using cardiac magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Myocardial fibrosis was detected by late gadolinium enhancement (LGE) MRI, and myocardial perfusion/metabolism was evaluated by 99mTc-MIBI SPECT /18F-FDG PET imaging. Across the quartiles of FT3, decreased percentage of segments with LGE and perfusion/metabolism abnormalities were found. As for FT4 and TSH levels, no significant distribution trend of myocardial injuries could be detected. In logistic analysis, FT3 was independently associated with the presence of LGE (OR: 0.140, 95% CI: 0.035–0.567), perfusion abnormalities (OR: 0.172, 95% CI: 0.040–0.738) and metabolism abnormalities (OR: 0.281, 95% CI: 0.081–0.971). After a median follow-up of 46 months, LGE-positive and FT3 < 2.77 pg/mL was identified as the strongest predictor of cardiac events (HR: 8.623, 95% CI: 3.626–16.438). Low FT3 level is associated with myocardial fibrosis and perfusion/metabolism abnormalities in patients with IDCM. The combination of FT3 level and LGE provides useful information for assessing the prognosis of IDCM. PMID:28004791

  5. 3D fusion of LV venous anatomy on fluoroscopy venograms with epicardial surface on SPECT myocardial perfusion images for guiding CRT LV lead placement.

    PubMed

    Zhou, Weihua; Hou, Xiaofeng; Piccinelli, Marina; Tang, Xiangyang; Tang, Lijun; Cao, Kejiang; Garcia, Ernest V; Zou, Jiangang; Chen, Ji

    2014-12-01

    The aim of this study was to develop a 3-dimensional (3D) fusion tool kit to integrate left ventricular (LV) venous anatomy on fluoroscopy venograms with LV epicardial surface on single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) for guiding cardiac resynchronization therapy (CRT) LV lead placement. LV lead position is important for CRT response. For LV lead placement into viable regions with late activation, it is important to visualize both LV venous anatomy and myocardium. Major LV veins were manually identified on fluoroscopic venograms and automatically reconstructed into a 3D anatomy. 3D LV epicardial surface was extracted from SPECT MPI. SPECT-vein fusion that consisted of geometric alignment, landmark-based registration, and vessel-surface overlay was developed to fuse the 3D venous anatomy with the epicardial surface. The accuracy of this tool was evaluated using computed tomography (CT) venograms. LV epicardial surfaces and veins were manually identified on the CT images and registered with the SPECT image by an independent operator. The locations of the fluoroscopic and CT veins on the SPECT epicardial surfaces were compared using absolute distances on SPECT short-axis slice and the 17-segment model. Ten CRT patients were enrolled. The distance between the corresponding fluoroscopic and CT veins on the short-axis epicardial surfaces was 4.6 ± 3.6 mm (range 0 to 16.9 mm). The presence of the corresponding fluoroscopic and CT veins in the 17-segment model agreed well with a kappa value of 0.87 (95% confidence interval: 0.82 to 0.93). The tool kit was used to guide LV lead placement in a catheter laboratory and showed clinical feasibility and benefit to the patient. A tool kit has been developed to reconstruct 3D LV venous anatomy from dual-view fluoroscopic venograms and to fuse it with LV epicardial surface on SPECT MPI. It is technically accurate for guiding LV lead placement by the 17-segment model and is feasible

  6. Regularized image reconstruction algorithms for dual-isotope myocardial perfusion SPECT (MPS) imaging using a cross-tracer prior.

    PubMed

    He, Xin; Cheng, Lishui; Fessler, Jeffrey A; Frey, Eric C

    2011-06-01

    In simultaneous dual-isotope myocardial perfusion SPECT (MPS) imaging, data are simultaneously acquired to determine the distributions of two radioactive isotopes. The goal of this work was to develop penalized maximum likelihood (PML) algorithms for a novel cross-tracer prior that exploits the fact that the two images reconstructed from simultaneous dual-isotope MPS projection data are perfectly registered in space. We first formulated the simultaneous dual-isotope MPS reconstruction problem as a joint estimation problem. A cross-tracer prior that couples voxel values on both images was then proposed. We developed an iterative algorithm to reconstruct the MPS images that converges to the maximum a posteriori solution for this prior based on separable surrogate functions. To accelerate the convergence, we developed a fast algorithm for the cross-tracer prior based on the complete data OS-EM (COSEM) framework. The proposed algorithm was compared qualitatively and quantitatively to a single-tracer version of the prior that did not include the cross-tracer term. Quantitative evaluations included comparisons of mean and standard deviation images as well as assessment of image fidelity using the mean square error. We also evaluated the cross tracer prior using a three-class observer study with respect to the three-class MPS diagnostic task, i.e., classifying patients as having either no defect, reversible defect, or fixed defects. For this study, a comparison with conventional ordered subsets-expectation maximization (OS-EM) reconstruction with postfiltering was performed. The comparisons to the single-tracer prior demonstrated similar resolution for areas of the image with large intensity changes and reduced noise in uniform regions. The cross-tracer prior was also superior to the single-tracer version in terms of restoring image fidelity. Results of the three-class observer study showed that the proposed cross-tracer prior and the convergent algorithms improved the

  7. Review: comparison of PET rubidium-82 with conventional SPECT myocardial perfusion imaging.

    PubMed

    Ghotbi, Adam A; Kjaer, Andreas; Hasbak, Philip

    2014-05-01

    Nuclear cardiology has for many years been focused on gamma camera technology. With ever improving cameras and software applications, this modality has developed into an important assessment tool for ischaemic heart disease. However, the development of new perfusion tracers has been scarce. While cardiac positron emission tomography (PET) so far largely has been limited to centres with on-site cyclotron, recent developments with generator produced perfusion tracers such as rubidium-82, as well as an increasing number of PET scanners installed, may enable a larger patient flow that may supersede that of gamma camera myocardial perfusion imaging. © 2013 The Authors. Clinical Physiology and Functional Imaging published by John Wiley & Sons Ltd on behalf of the Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  8. Purification of a low molecular weight fucoidan for SPECT molecular imaging of myocardial infarction.

    PubMed

    Saboural, Pierre; Chaubet, Frédéric; Rouzet, Francois; Al-Shoukr, Faisal; Azzouna, Rana Ben; Bouchemal, Nadia; Picton, Luc; Louedec, Liliane; Maire, Murielle; Rolland, Lydia; Potier, Guy; Guludec, Dominique Le; Letourneur, Didier; Chauvierre, Cédric

    2014-09-23

    Fucoidans constitute a large family of sulfated polysaccharides with several biochemical properties. A commercial fucoidan from brown algae, containing low molecular weight polysaccharidic species constituted of l-fucose, uronic acids and sulfate groups, was simply treated here with calcium acetate solution. This treatment led to a purified fraction with a yield of 45%. The physicochemical characterizations of the purified fucoidan using colorimetric assay, MALLS, dRI, FT-IR, NMR, exhibited molecular weight distributions and chemical profiles similar for both fucoidans whereas the sulfate and l-fucose contents increased by 16% and 71%, respectively. The biodistribution study in rat of both compounds labeled with 99mTc evidenced a predominant renal elimination of the purified fucoidan, but the crude fucoidan was mainly retained in liver and spleen. In rat myocardial ischemia-reperfusion, we then demonstrated the better efficiency of the purified fucoidan. This purified sulfated polysaccharide appears promising for the development of molecular imaging in acute coronary syndrome.

  9. Quantitative myocardial-perfusion SPECT: comparison of three state-of-the-art software packages.

    PubMed

    Wolak, Arik; Slomka, Piotr J; Fish, Mathews B; Lorenzo, Santiago; Acampa, Wanda; Berman, Daniel S; Germano, Guido

    2008-01-01

    We aimed to compare the automation and diagnostic performance in the detection of coronary artery disease (CAD) of the 4DMSPECT (4DM), Emory Cardiac Toolbox (EMO), and QPS systems for automated quantification of myocardial perfusion. We studied 328 patients referred for rest/stress Tc-99m sestamibi imaging, 140 low-likelihood patients and 188 with angiography. Contours were corrected when necessary. All other processing was fully automated. A 17-segment analysis was performed, and a summed stress score (SSS) > or =4 was considered abnormal. The average SSSs (+/-SD) for 4DM, EMO, and QPS were 10.5 +/- 9.4, 11.1 +/- 8.3, and 10.1 +/- 8.9, respectively (P = .02 for QPS versus EMO). The receiver operator characteristics areas-under-the-curve for the detection of CAD (+/-SEM) were 0.84 +/- 0.03, 0.76 +/- 0.04, and 0.88 +/- 0.03 for 4DM, EMO, and QPS, respectively (P = .001 for QPS versus EMO, and P = .03 for 4DM versus EMO). Normalcy rate was higher for QPS and 4DM versus EMO, at 91% and 94% versus 77%, respectively (P = .02). Sensitivity was higher for QPS (87%) versus 4DM (80%) (P = .045). Specificity was higher for QPS (71%) versus EMO (49%) (P = .01). The accuracy rate was higher for QPS versus 4DM and EMO, at 83% versus 77% and 76%, respectively (P = .05). There are differences in myocardial-perfusion quantification, diagnostic performance, and degree of automation of software packages.

  10. Modeling of myocardial contractility using parameterized super-quadric SPECT images.

    PubMed

    Lee, Byeong-Il; Son, Byong-Hwan; Choi, Hyun-Ju; Hwang, Hae-Gil; Kim, Hye-Young; Choi, Heung-Kook

    2006-01-01

    We developed methods to represent cardiac motility. Using an innovative model, we estimated several parameters of cardiac features. We implemented the parameterized super quadric model to visualize the motion of a left ventricle (LV) with OpenGL and Visual C++. We displayed myocardial wall thickening with a super-ellipsoidal model. The time frames in this model changed the measured thickening count. We also parameterized motility using the parameterized super quadric model. We analyzed the motility of the LV myocardium and tested its criteria using a validation study of seven normal subjects and 26 patients with prior myocardial infarction. To analyze motility, we used mean and variance of total motion during a cardiac cycle. The average of a normal subject was 0.46 and variance was 0.02. For patients, average and variance of motility were 0.59 and 0.08 respectively. Although the average value did not differ between normal subjects and patients, the variance differed significantly. Thus, we were able to estimate the difference between normal subjects and patients. In patients, motility was 128% higher than in normal subjects, and the variance was 328% higher. In the patient study, quantity of motion decreased rapidly in a stressed state. The visualization for contractility displayed 15 segment variables; we were able to rotate the locations of all points with a mouse interface. We were able to visualize most of the factors for cardiac motility and cardiac features. We expect that this model can distinguish between normal subjects and abnormal subjects, and that we can produce an exact analysis of momentum using this model.

  11. Prediction of Revascularization after Myocardial Perfusion SPECT by Machine Learning in a Large Population

    PubMed Central

    Arsanjani, Reza; Dey, Damini; Khachatryan, Tigran; Shalev, Aryeh; Hayes, Sean W.; Fish, Mathews; Nakanishi, Rine; Germano, Guido; Berman, Daniel S.; Slomka, Piotr

    2016-01-01

    Objective We aimed to investigate if early revascularization in patients with suspected coronary artery disease (CAD) can be effectively predicted by integrating clinical data and quantitative image features derived from perfusion SPECT (MPS) by machine learning (ML) approach. Methods 713 rest 201Thallium/stress 99mTechnetium MPS studies with correlating invasive angiography (372 revascularization events (275 PCI / 97 CABG) within 90 days after MPS (91% within 30 days) were considered. Transient ischemic dilation (TID), stress combined supine/prone total perfusion deficit (TPD), quantitative rest and stress TPD, exercise ejection fraction, and end-systolic volume along with clinical parameters including patient gender, history of hypertension and diabetes mellitus, ST-depression on baseline ECG, ECG and clinical response during stress, and post-ECG probability by boosted ensemble ML algorithm (LogitBoost) to predict revascularization events. These features were selected using an automated feature selection algorithm from all available clinical and quantitative data (33 parameters). 10-fold cross-validation was utilized to train and test the prediction model. The prediction of revascularization by ML algorithm was compared to standalone measures of perfusion and visual analysis by two experienced readers utilizing all imaging, quantitative, and clinical data. Results The sensitivity of machine learning (73.6±4.3%) for prediction of revascularization was similar to one reader (73.9±4.6%) and standalone measures of perfusion (75.5±4.5%). The specificity of machine learning (74.7±4.2%) was also better than both expert readers (67.2±4.9% and 66.0±5.0%, P < 0.05), but was similar to ischemic TPD (68.3±4.9%, P < 0.05). The Receiver-Operator-Characteristics areas-under-curve for machine learning (0.81±0.02) was similar to reader 1 (0.81±0.02) but superior to reader 2 (0.72±0.02, P < 0.01) and standalone measure of perfusion (0.77±0.02, P < 0.01). Conclusion ML

  12. Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population.

    PubMed

    Arsanjani, Reza; Dey, Damini; Khachatryan, Tigran; Shalev, Aryeh; Hayes, Sean W; Fish, Mathews; Nakanishi, Rine; Germano, Guido; Berman, Daniel S; Slomka, Piotr

    2015-10-01

    We aimed to investigate if early revascularization in patients with suspected coronary artery disease can be effectively predicted by integrating clinical data and quantitative image features derived from perfusion SPECT (MPS) by machine learning (ML) approach. 713 rest (201)Thallium/stress (99m)Technetium MPS studies with correlating invasive angiography with 372 revascularization events (275 PCI/97 CABG) within 90 days after MPS (91% within 30 days) were considered. Transient ischemic dilation, stress combined supine/prone total perfusion deficit (TPD), supine rest and stress TPD, exercise ejection fraction, and end-systolic volume, along with clinical parameters including patient gender, history of hypertension and diabetes mellitus, ST-depression on baseline ECG, ECG and clinical response during stress, and post-ECG probability by boosted ensemble ML algorithm (LogitBoost) to predict revascularization events. These features were selected using an automated feature selection algorithm from all available clinical and quantitative data (33 parameters). Tenfold cross-validation was utilized to train and test the prediction model. The prediction of revascularization by ML algorithm was compared to standalone measures of perfusion and visual analysis by two experienced readers utilizing all imaging, quantitative, and clinical data. The sensitivity of machine learning (ML) (73.6% ± 4.3%) for prediction of revascularization was similar to one reader (73.9% ± 4.6%) and standalone measures of perfusion (75.5% ± 4.5%). The specificity of ML (74.7% ± 4.2%) was also better than both expert readers (67.2% ± 4.9% and 66.0% ± 5.0%, P < .05), but was similar to ischemic TPD (68.3% ± 4.9%, P < .05). The receiver operator characteristics areas under curve for ML (0.81 ± 0.02) was similar to reader 1 (0.81 ± 0.02) but superior to reader 2 (0.72 ± 0.02, P < .01) and standalone measure of perfusion (0.77 ± 0.02, P < .01). ML approach is comparable or better than

  13. Simultaneous assessment of left ventricular wall motion and myocardial perfusion with technetium-99m-methoxy isobutyl isonitrile at stress and rest in patients with angina: Comparison with thallium-201 SPECT

    SciTech Connect

    Villanueva-Meyer, J.; Mena, I.; Narahara, K.A. )

    1990-04-01

    The newly developed technetium-99m ({sup 99m}Tc) isonitriles can be used for the simultaneous evaluation of ventricular function and myocardial perfusion. We compared technetium-99m hexakis-2-methoxy isobutyl isonitrile (({sup 99m}Tc) MIBI) derived first-pass left ventricular wall motion at stress and rest with simultaneous myocardial perfusion defined by ({sup 99m}Tc)MIBI SPECT. These results were then compared with {sup 201}TI SPECT. We examined 28 patients with coronary artery disease; 25 had a previous myocardial infarction. We found concordance between segmental wall motion and myocardial perfusion imaging in defining normal, ischemic, and infarcted myocardium in 68% and 69% of segments using ({sup 99m}Tc)MIBI and {sup 201}TI respectively. The best agreement between wall motion and myocardial perfusion was seen in the inferior wall, while most of the discrepancies were found at the apex. Agreement between ({sup 99m}Tc)MIBI and {sup 201}TI SPECT myocardial perfusion was seen in 93% of segments. Technetium-99m-MIBI appears to be an ideal radiopharmaceutical for the simultaneous evaluation of ventricular function and myocardial perfusion during stress and at rest.

  14. Purification of a Low Molecular Weight Fucoidan for SPECT Molecular Imaging of Myocardial Infarction

    PubMed Central

    Saboural, Pierre; Chaubet, Frédéric; Rouzet, Francois; Al-Shoukr, Faisal; Ben Azzouna, Rana; Bouchemal, Nadia; Picton, Luc; Louedec, Liliane; Maire, Murielle; Rolland, Lydia; Potier, Guy; Le Guludec, Dominique; Letourneur, Didier; Chauvierre, Cédric

    2014-01-01

    Fucoidans constitute a large family of sulfated polysaccharides with several biochemical properties. A commercial fucoidan from brown algae, containing low molecular weight polysaccharidic species constituted of l-fucose, uronic acids and sulfate groups, was simply treated here with calcium acetate solution. This treatment led to a purified fraction with a yield of 45%. The physicochemical characterizations of the purified fucoidan using colorimetric assay, MALLS, dRI, FT-IR, NMR, exhibited molecular weight distributions and chemical profiles similar for both fucoidans whereas the sulfate and l-fucose contents increased by 16% and 71%, respectively. The biodistribution study in rat of both compounds labeled with 99mTc evidenced a predominant renal elimination of the purified fucoidan, but the crude fucoidan was mainly retained in liver and spleen. In rat myocardial ischemia-reperfusion, we then demonstrated the better efficiency of the purified fucoidan. This purified sulfated polysaccharide appears promising for the development of molecular imaging in acute coronary syndrome. PMID:25251032

  15. Importance of correct patient positioning in myocardial perfusion SPECT when using a CZT camera.

    PubMed

    Hindorf, Cecilia; Oddstig, Jenny; Hedeer, Fredrik; Hansson, Magnus J; Jögi, Jonas; Engblom, Henrik

    2014-08-01

    Myocardial perfusion single photon emission computed tomography (MPS) is one of the most widely used diagnostic methods in patients with suspected ischemic heart disease (IHD). Recently, a novel technique based on cadmium-zinc-telluride (CZT) detectors, pinhole collimators, and a stationary gantry was introduced for MPS. The aim of this work was to investigate how patient positioning affects the reconstructed MPS images using this novel technique. Eighteen patients referred for a clinical MPS due to suspected IHD were included in the study. All patients underwent MPS imaging on a GE Discovery NM 530c CZT camera. After image acquisition with the heart positioned in the center of the quality field of view (QFOV), the patients were re-imaged in different positions 5-20 mm off-center. The heart was still positioned within the limits of the QFOV during the off-center scans. The summed stress score and/or the summed rest score (SSS and/or SRS) for the acquisition performed in the center was compared to the same parameter for the acquisitions performed off-center. There was a statistically significant increase in SSS and/or SRS when imaging was performed with the heart 5-20 mm outside the center of the QFOV compared to optimal positioning (7.7 ± 1.3 vs 6.6 ± 1.3, P = .006). The SSS and/or SRS increased with ≥2 U in 35% (14/40) of the off-center examinations. It is important to carefully position the patient's heart within the center of the QFOV when performing MPS with the Discovery NM 530c CZT camera to avoid positioning-related image artifacts that could affect the diagnostic accuracy.

  16. Collimator optimization in myocardial perfusion SPECT using the ideal observer and realistic background variability for lesion detection and joint detection and localization tasks

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Du, Yong; Links, Jonathan M.; Frey, Eric C.

    2016-03-01

    In SPECT imaging, collimators are a major factor limiting image quality and largely determine the noise and resolution of SPECT images. In this paper, we seek the collimator with the optimal tradeoff between image noise and resolution with respect to performance on two tasks related to myocardial perfusion SPECT: perfusion defect detection and joint detection and localization. We used the Ideal Observer (IO) operating on realistic background-known-statistically (BKS) and signal-known-exactly (SKE) data. The areas under the receiver operating characteristic (ROC) and localization ROC (LROC) curves (AUCd, AUCd+l), respectively, were used as the figures of merit for both tasks. We used a previously developed population of 54 phantoms based on the eXtended Cardiac Torso Phantom (XCAT) that included variations in gender, body size, heart size and subcutaneous adipose tissue level. For each phantom, organ uptakes were varied randomly based on distributions observed in patient data. We simulated perfusion defects at six different locations with extents and severities of 10% and 25%, respectively, which represented challenging but clinically relevant defects. The extent and severity are, respectively, the perfusion defect’s fraction of the myocardial volume and reduction of uptake relative to the normal myocardium. Projection data were generated using an analytical projector that modeled attenuation, scatter, and collimator-detector response effects, a 9% energy resolution at 140 keV, and a 4 mm full-width at half maximum (FWHM) intrinsic spatial resolution. We investigated a family of eight parallel-hole collimators that spanned a large range of sensitivity-resolution tradeoffs. For each collimator and defect location, the IO test statistics were computed using a Markov Chain Monte Carlo (MCMC) method for an ensemble of 540 pairs of defect-present and -absent images that included the aforementioned anatomical and uptake variability. Sets of test statistics were

  17. Collimator optimization in myocardial perfusion SPECT using the ideal observer and realistic background variability for lesion detection and joint detection and localization tasks

    PubMed Central

    Ghaly, Michael; Du, Yong; Links, Jonathan M; Frey, Eric C

    2016-01-01

    In SPECT imaging, collimators are a major factor limiting image quality and largely determine the noise and resolution of SPECT images. In this paper, we seek the collimator with the optimal tradeoff between image noise and resolution with respect to performance on two tasks related to myocardial perfusion SPECT: perfusion defect detection and joint detection and localization. We used the Ideal Observer (IO) operating on realistic background-known-statistically (BKS) and signal-known-exactly (SKE) data. The areas under the receiver operating characteristic (ROC) and localization ROC (LROC) curves (AUCd, AUCd+l), respectively, were used as the figures of merit for both tasks. We used a previously developed population of 54 phantoms based on the eXtended Cardiac Torso Phantom (XCAT) that included variations in gender, body size, heart size and subcutaneous adipose tissue level. For each phantom, organ uptakes were varied randomly based on distributions observed in patient data. We simulated perfusion defects at six different locations with extents and severities of 10% and 25%, respectively, which represented challenging but clinically relevant defects. The extent and severity are, respectively, the perfusion defect's fraction of the myocardial volume and reduction of uptake relative to the normal myocardium. Projection data were generated using an analytical projector that modeled attenuation, scatter, and collimator-detector response effects, a 9% energy resolution at 140 keV, and a 4 mm full-width at half maximum (FWHM) intrinsic spatial resolution. We investigated a family of eight parallel-hole collimators that spanned a large range of sensitivity-resolution tradeoffs. For each collimator and defect location, the IO test statistics were computed using a Markov Chain Monte Carlo (MCMC) method for an ensemble of 540 pairs of defect-present and -absent images that included the aforementioned anatomical and uptake variability. Sets of test statistics were computed

  18. Creation of an ensemble of simulated cardiac cases and a human observer study: tools for the development of numerical observers for SPECT myocardial perfusion imaging

    NASA Astrophysics Data System (ADS)

    O'Connor, J. Michael; Pretorius, P. Hendrik; Gifford, Howard C.; Licho, Robert; Joffe, Samuel; McGuiness, Matthew; Mehurg, Shannon; Zacharias, Michael; Brankov, Jovan G.

    2012-02-01

    Our previous Single Photon Emission Computed Tomography (SPECT) myocardial perfusion imaging (MPI) research explored the utility of numerical observers. We recently created two hundred and eighty simulated SPECT cardiac cases using Dynamic MCAT (DMCAT) and SIMIND Monte Carlo tools. All simulated cases were then processed with two reconstruction methods: iterative ordered subset expectation maximization (OSEM) and filtered back-projection (FBP). Observer study sets were assembled for both OSEM and FBP methods. Five physicians performed an observer study on one hundred and seventy-nine images from the simulated cases. The observer task was to indicate detection of any myocardial perfusion defect using the American Society of Nuclear Cardiology (ASNC) 17-segment cardiac model and the ASNC five-scale rating guidelines. Human observer Receiver Operating Characteristic (ROC) studies established the guidelines for the subsequent evaluation of numerical model observer (NO) performance. Several NOs were formulated and their performance was compared with the human observer performance. One type of NO was based on evaluation of a cardiac polar map that had been pre-processed using a gradient-magnitude watershed segmentation algorithm. The second type of NO was also based on analysis of a cardiac polar map but with use of a priori calculated average image derived from an ensemble of normal cases.

  19. Prediction of 14-year cardiovascular outcomes by dobutamine stress (99m)Tc-tetrofosmin myocardial perfusion SPECT in elderly patients unable to perform exercise testing.

    PubMed

    Roest, Stefan; Boiten, Hendrik J; van Domburg, Ron T; Valkema, Roelf; Schinkel, Arend F L

    2016-07-05

    Dobutamine stress myocardial perfusion imaging (MPI) is a useful alternative for the evaluation of coronary artery disease (CAD) in elderly patients who are unable to perform an exercise stress test. However, data on the long-term prognostic value of stress MPI in elderly patients are lacking. Therefore, this study evaluated the long-term prognostic value of dobutamine stress MPI in elderly patients unable to perform an exercise test. The study population consisted of 247 elderly patients (mean age 71 ± 5 years) who underwent dobutamine stress single-photon emission computed tomography (SPECT) MPI. An abnormal SPECT study was defined as the presence of fixed and/or reversible perfusion defects. A summed stress score (SSS) was obtained to estimate the extent and severity of perfusion defects. End points during follow-up were all-cause mortality, cardiac mortality, and nonfatal myocardial infarction (MI). During a median follow-up of 14 years (range 12-16), 168 (68%) patients died (all-cause mortality), of which 56 (23%) were due to cardiac causes. Nonfatal MI occurred in 19 (8%) patients. Kaplan-Meier survival curves showed that MPI provided optimal risk stratification in patients with normal and abnormal MPI. Multivariable analysis identified an abnormal MPI as a strong significant predictor of all-cause mortality and cardiac events. A multivariable analysis also revealed that a reversible defect and SSS were strong long-term predictors of cardiac mortality and hard cardiac events. Dobutamine stress (99m)Tc-tetrofosmin SPECT provides incremental prognostic information for the prediction of long-term cardiovascular outcomes in elderly patients, unable to perform exercise testing. Dobutamine stress MPI is useful in risk classifying elderly patients.

  20. The Development and Initial Evaluation of a Realistic Simulated SPECT Dataset with Simultaneous Respiratory and Cardiac Motion for Gated Myocardial Perfusion SPECT

    PubMed Central

    Lee, Taek-Soo; Tsui, Benjamin M. W.

    2015-01-01

    We developed a realistic simulation dataset for simultaneous respiratory and cardiac (R&C) gated SPECT/CT using the 4D NURBS-based Cardiac-Torso (NCAT) Phantom and Monte Carlo simulation methods, and evaluated it for a sample application study. The 4D NCAT phantom included realistic respiratory motion and beating heart motion based on respiratory gated CT and cardiac tagged MRI data of normal human subjects. To model the respiratory motion, a set of 24 separate 3D NCAT phantoms excluding the heart was generated over a respiratory cycle. The beating heart motion was modelled separately with 48 frames per cardiac cycle for each of the 24 respiratory phases. The resultant set of 24×48 3D NCAT phantoms provides a realistic model of a normal human subject at different phases of combined R&C motions. An almost noise-free SPECT projection dataset for each of the 1,152 3D NCAT phantoms was generated using Monte Carlo simulation techniques and the radioactivity uptake distribution of 99mTc sestamibi in different organs. By grouping and summing the separate projection datasets, separate or simultaneous R&C gated acquired data with different gating schemes could be simulated. In the initial evaluation, we combined the projection datasets into no gating, 6 respiratory-gates only, 8 cardiac-gates only, and combined 6 respiratory-gates & 8 cardiac-gates projection datasets. Each dataset was reconstructed using 3D OS-EM without and with attenuation correction using the averaged and respiratory-gated attenuation maps, and the resulting reconstructed images were compared. These results were used to demonstrate the effects of R&C motions and the reduction of image artifact due to R&C motions by gating and attenuation corrections. We concluded that the realistic 4D NCAT phantom and Monte Carlo simulated SPECT projection datasets with R&C motions are powerful tools in the study of the effects of R&C motions, as well as in the development of R&C gating schemes and motion correction

  1. The development and initial evaluation of a realistic simulated SPECT dataset with simultaneous respiratory and cardiac motion for gated myocardial perfusion SPECT

    NASA Astrophysics Data System (ADS)

    Lee, Taek-Soo; Tsui, Benjamin M. W.

    2015-02-01

    We developed a realistic simulation dataset for simultaneous respiratory and cardiac (R&C) gated SPECT/CT using the 4D NURBS-based Cardiac-Torso (NCAT) Phantom and Monte Carlo simulation methods, and evaluated it for a sample application study. The 4D NCAT phantom included realistic respiratory motion and beating heart motion based on respiratory gated CT and cardiac tagged MRI data of normal human subjects. To model the respiratory motion, a set of 24 separate 3D NCAT phantoms excluding the heart was generated over a respiratory cycle. The beating heart motion was modeled separately with 48 frames per cardiac cycle for each of the 24 respiratory phases. The resultant set of 24  ×  48 3D NCAT phantoms provides a realistic model of a normal human subject at different phases of combined R&C motions. An almost noise-free SPECT projection dataset for each of the 1152 3D NCAT phantoms was generated using Monte Carlo simulation techniques and the radioactivity uptake distribution of 99mTc sestamibi in different organs. By grouping and summing the separate projection datasets, separate or simultaneous R&C gated acquired data with different gating schemes could be simulated. In the initial evaluation, we combined the projection datasets into ungated, 6 respiratory-gates only, 8 cardiac-gates only, and combined 6 respiratory-gates & 8 cardiac-gates projection datasets. Each dataset was reconstructed using 3D OS-EM without and with attenuation correction using the averaged and respiratory-gated attenuation maps, and the resulting reconstructed images were compared. These results were used to demonstrate the effects of R&C motions and the reduction of image artifact due to R&C motions by gating and attenuation corrections. We concluded that the realistic 4D NCAT phantom and Monte Carlo simulated SPECT projection datasets with R&C motions are powerful tools in the study of the effects of R&C motions, as well as in the development of R&C gating schemes and motion

  2. The development and initial evaluation of a realistic simulated SPECT dataset with simultaneous respiratory and cardiac motion for gated myocardial perfusion SPECT.

    PubMed

    Lee, Taek-Soo; Tsui, Benjamin M W

    2015-02-21

    We developed a realistic simulation dataset for simultaneous respiratory and cardiac (R&C) gated SPECT/CT using the 4D NURBS-based Cardiac-Torso (NCAT) Phantom and Monte Carlo simulation methods, and evaluated it for a sample application study. The 4D NCAT phantom included realistic respiratory motion and beating heart motion based on respiratory gated CT and cardiac tagged MRI data of normal human subjects. To model the respiratory motion, a set of 24 separate 3D NCAT phantoms excluding the heart was generated over a respiratory cycle. The beating heart motion was modeled separately with 48 frames per cardiac cycle for each of the 24 respiratory phases. The resultant set of 24  ×  48 3D NCAT phantoms provides a realistic model of a normal human subject at different phases of combined R&C motions. An almost noise-free SPECT projection dataset for each of the 1152 3D NCAT phantoms was generated using Monte Carlo simulation techniques and the radioactivity uptake distribution of (99m)Tc sestamibi in different organs. By grouping and summing the separate projection datasets, separate or simultaneous R&C gated acquired data with different gating schemes could be simulated. In the initial evaluation, we combined the projection datasets into ungated, 6 respiratory-gates only, 8 cardiac-gates only, and combined 6 respiratory-gates & 8 cardiac-gates projection datasets. Each dataset was reconstructed using 3D OS-EM without and with attenuation correction using the averaged and respiratory-gated attenuation maps, and the resulting reconstructed images were compared. These results were used to demonstrate the effects of R&C motions and the reduction of image artifact due to R&C motions by gating and attenuation corrections. We concluded that the realistic 4D NCAT phantom and Monte Carlo simulated SPECT projection datasets with R&C motions are powerful tools in the study of the effects of R&C motions, as well as in the development of R&C gating schemes and motion

  3. Improved Accuracy of Myocardial Perfusion SPECT for the Detection of Coronary Artery Disease by Utilizing a Support Vector Machines Algorithm

    PubMed Central

    Arsanjani, Reza; Xu, Yuan; Dey, Damini; Fish, Matthews; Dorbala, Sharmila; Hayes, Sean; Berman, Daniel; Germano, Guido; Slomka, Piotr

    2012-01-01

    We aimed to improve the diagnostic accuracy of automatic myocardial perfusion SPECT (MPS) interpretation analysis for prediction of coronary artery disease (CAD) by integrating several quantitative perfusion and functional variables for non-corrected (NC) data by support vector machines (SVM), a computer method for machine learning. Methods 957 rest/stress 99mtechnetium gated MPS NC studies from 623 consecutive patients with correlating invasive coronary angiography and 334 with low likelihood of CAD (LLK < 5% ) were assessed. Patients with stenosis ≥ 50% in left main or ≥ 70% in all other vessels were considered abnormal. Total perfusion deficit (TPD) was computed automatically. In addition, ischemic changes (ISCH) and ejection fraction changes (EFC) between stress and rest were derived by quantitative software. The SVM was trained using a group of 125 pts (25 LLK, 25 0-, 25 1-, 25 2- and 25 3-vessel CAD) using above quantitative variables and second order polynomial fitting. The remaining patients (N = 832) were categorized based on probability estimates, with CAD defined as (probability estimate ≥ 0.50). The diagnostic accuracy of SVM was also compared to visual segmental scoring by two experienced readers. Results Sensitivity of SVM (84%) was significantly better than ISCH (75%, p < 0.05) and EFC (31%, p < 0.05). Specificity of SVM (88%) was significantly better than that of TPD (78%, p < 0.05) and EFC (77%, p < 0.05). Diagnostic accuracy of SVM (86%) was significantly better than TPD (81%), ISCH (81%), or EFC (46%) (p < 0.05 for all). The Receiver-operator-characteristic area-under-the-curve (ROC-AUC) for SVM (0.92) was significantly better than TPD (0.90), ISCH (0.87), and EFC (0.60) (p < 0.001 for all). Diagnostic accuracy of SVM was comparable to the overall accuracy of both visual readers (85% vs. 84%, p < 0.05). ROC-AUC for SVM (0.92) was significantly better than that of both visual readers (0.87 and 0.88, p < 0.03). Conclusion Computational

  4. Comparison of single-photon emission computed tomographic (SPECT) myocardial perfusion imaging with thallium-201 and technetium-99m sestamibi in dogs.

    PubMed

    Leon, A R; Eisner, R L; Martin, S E; Schmarkey, L S; Aaron, A M; Boyers, A S; Burnham, K M; Oh, D J; Patterson, R E

    1992-12-01

    The purpose of the present study was to compare single-photon emission computed tomographic (SPECT) myocardial images of technetium-99m (Tc-99m) sestamibi and thallium-201 (Tl-201) isotopes in the same dog undergoing partial coronary occlusion during pharmacologic vasodilation. To date, no controlled study has been reported comparing SPECT Tc-99m sestamibi with SPECT Tl-201 imaging during stress with anatomic and physiologic standards. Mongrel dogs were anesthetized with chloralose and instrumented to record left anterior descending coronary blood flow and aortic pressure. Partial coronary occlusion with a hydraulic cuff reduced coronary vascular conductance, which is equal to the coronary blood flow normalized to aortic pressure during peak vasodilation with intravenous adenosine. Each dog received 5 mCi of Tl-201, then 30 mCi of Tc-99m sestamibi during partial coronary occlusion at peak vasodilation. Tomographic myocardial imaging was performed in a 180 degrees anterior arc scan for 33.5 min, first with Tl-201, and later, without moving the dog, for 33.5 min with Tc-99m sestamibi. Postmortem staining defined the region underperfused because of its dependence on the artery that was partially occluded. In seven dogs with moderate reduction in coronary blood flow, coronary vascular conductance decreased with partial coronary occlusion (47 +/- 12%) during Tl-201 imaging and (47 +/- 8%, p = NS) during Tc-99m sestamibi imaging. The underperfused region was 23.9 +/- 6.4% of total left ventricular mass. Counts in the defects were 39% higher (0.86 +/- 0.08 of normal counts) for Tc-99m sestamibi than for Tl-201 (0.64 +/- 0.09 of normal counts, p < 0.001), and the defect on SPECT Tc-99m sestamibi images occupied only a fraction (0.37 +/- 0.30) of the area of the defect on the Tl-201 images of the same dog. Bull's-eye displays constructed from the pathologic slices showed that the Tl-201 defect size was closer to the underperfused region of the left ventricular mass

  5. Real-time cine and myocardial perfusion with treadmill exercise stress cardiovascular magnetic resonance in patients referred for stress SPECT

    PubMed Central

    2010-01-01

    Background To date, stress cardiovascular magnetic resonance (CMR) has relied on pharmacologic agents, and therefore lacked the physiologic information available only with exercise stress. Methods 43 patients age 25 to 81 years underwent a treadmill stress test incorporating both Tc99m SPECT and CMR. After rest Tc99m SPECT imaging, patients underwent resting cine CMR. Patients then underwent in-room exercise stress using a partially modified treadmill. 12-lead ECG monitoring was performed throughout. At peak stress, Tc99m was injected and patients rapidly returned to their prior position in the magnet for post-exercise cine and perfusion imaging. The patient table was pulled out of the magnet for recovery monitoring. The patient was sent back into the magnet for recovery cine and resting perfusion followed by delayed post-gadolinium imaging. Post-CMR, patients went to the adjacent SPECT lab to complete stress nuclear imaging. Each modality's images were reviewed blinded to the other's results. Results Patients completed on average 9.3 ± 2.4 min of the Bruce protocol. Stress cine CMR was completed in 68 ± 14 sec following termination of exercise, and stress perfusion CMR was completed in 88 ± 8 sec. Agreement between SPECT and CMR was moderate (κ = 0.58). Accuracy in eight patients who underwent coronary angiography was 7/8 for CMR and 5/8 for SPECT (p = 0.625). Follow-up at 6 months indicated freedom from cardiovascular events in 29/29 CMR-negative and 33/34 SPECT-negative patients. Conclusions Exercise stress CMR including wall motion and perfusion is feasible in patients with suspected ischemic heart disease. Larger clinical trials are warranted based on the promising results of this pilot study to allow comparative effectiveness studies of this stress imaging system vs. other stress imaging modalities. PMID:20624294

  6. Optimization of energy window and evaluation of scatter compensation methods in myocardial perfusion SPECT using the ideal observer with and without model mismatch and an anthropomorphic model observer

    PubMed Central

    Ghaly, Michael; Links, Jonathan M.; Frey, Eric

    2015-01-01

    Abstract. We used the ideal observer (IO) and IO with model mismatch (IO-MM) applied in the projection domain and an anthropomorphic channelized Hotelling observer (CHO) applied to reconstructed images to optimize the acquisition energy window width and to evaluate various scatter compensation methods in the context of a myocardial perfusion single-photon emission computed tomography (SPECT) defect detection task. The IO has perfect knowledge of the image formation process and thus reflects the performance with perfect compensation for image-degrading factors. Thus, using the IO to optimize imaging systems could lead to suboptimal parameters compared with those optimized for humans interpreting SPECT images reconstructed with imperfect or no compensation. The IO-MM allows incorporating imperfect system models into the IO optimization process. We found that with near-perfect scatter compensation, the optimal energy window for the IO and CHO was similar; in its absence, the IO-MM gave a better prediction of the optimal energy window for the CHO using different scatter compensation methods. These data suggest that the IO-MM may be useful for projection-domain optimization when MM is significant and that the IO is useful when followed by reconstruction with good models of the image formation process. PMID:26029730

  7. New method for tuning hyperparameter for the total variation norm in the maximum a posteriori ordered subsets expectation maximization reconstruction in SPECT myocardial perfusion imaging

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoxia; Krol, Andrzej; Xu, Yuesheng; Feiglin, David H.

    2011-03-01

    In order to improve the tradeoff between noise and bias, and to improve uniformity of the reconstructed myocardium while preserving spatial resolution in parallel-beam collimator SPECT myocardial perfusion imaging (MPI) we investigated the most advantageous approach to provide reliable estimate of the optimal value of hyperparameter for the Total Variation (TV) norm in the iterative Bayesian Maximum A Posteriori Ordered Subsets Expectation Maximization (MAP-OSEM) one step late tomographic reconstruction with Gibbs prior. Our aim was to find the optimal value of hyperparameter corresponding to the lowest bias at the lowest noise while maximizing uniformity and spatial resolution for the reconstructed myocardium in SPECT MPI. We found that the L-curve method that is by definition a global technique provides good guidance for selection of the optimal value of the hyperparameter. However, for a heterogeneous object such as human thorax the fine-tuning of the hyperparameter's value can be only accomplished by means of a local method such as the proposed bias-noise distance (BND) curve. We established that our BND-curve method provides accurate optimized hyperparameter's value estimation as long as the region of interest volume for which it is defined is sufficiently large and is located sufficiently close to the myocardium.

  8. Angina Relief by Ranolazine Identifies False-Negative SPECT Myocardial Perfusion Scans in Patients with Coronary Disease Demonstrated by Coronary Angiography

    PubMed Central

    Murray, Gary L.

    2014-01-01

    Normal myocardial perfusion imaging (MPI) reduces intermediate- or high-risk pretest probability patients to low- or intermediate-risk posttest probability, respectively, for coronary disease (CD). Since ranolazine (RAN) relieves only angina, anginal patients with normal MPI whose angina is relieved by RAN present a significant dilemma. The purpose of this retrospective chart review was to confirm the impression that coronary angiography (CA) is indicated in patients whose class 3 to 4 angina is relieved by RAN, but have normal myocardial single-photon emission computed tomography (SPECT) MPIs. Charts of patients with stable class 3 to 4 angina (typical and atypical) and normal MPIs (left ventricular ejection fraction [LVEF] ≥50% and segmental score = 0) were reviewed. CA was done on all the patients with complete angina relief taking RAN, as well as nonresponders whose anginal etiology could not be explained. Stenoses were considered flow-restrictive when more than 70% diameter stenosis is observed by quantitative CA, or, when 50 to 70%, fractional flow reserve (FFR) measured ≤0.80. RAN relieved angina in 36 of 54 (67%) patients. Of the known cases, 25 of these 36 (69%) had 43 stenoses ≥50% (mean = 66%): 15 (60%) had 1 vessel disease; 9 (36%) had multivessel disease; 18 (72%) had left anterior descending (LAD) disease; 1 (4%) had left main disease. Twenty one of 43 (49%) stenosis were > 70%; 22 (51%) stenoses were 50 to 70% and required FFR measurement. Twenty nine of 43 stenoses (67%) were considered flow-restrictive in 18 of these 25 (72%) patients. Eight RAN nonresponders with no explanation for angina had no CD at CA. RAN angina relief is invaluable in identifying falsely negative SPECT MPI, and 50% of these patients have flow-restrictive stenoses. PMID:25317027

  9. No evidence of myocardial restoration following transplantation of mononuclear bone marrow cells in coronary bypass grafting surgery patients based upon cardiac SPECT and 18F-PET

    PubMed Central

    Tossios, Paschalis; Müller-Ehmsen, Jochen; Schmidt, Matthias; Scheid, Christof; Ünal, Nermin; Moka, Detlef; Schwinger, Robert HG; Mehlhorn, Uwe

    2006-01-01

    Background We tested the hypothesis, that intramyocardial injection of mononuclear bone marrow cells combined with coronary artery bypass grafting (CABG) surgery improves tissue viability or function in infarct regions with non-viable myocardium as assessed by nuclear imaging techniques. Methods Thus far, 7 patients (60 ± 10 [SD] years) undergoing elective CABG surgery after a myocardial infarction were included in this study. Prior to sternotomy, bone marrow was harvested by sternal puncture. Mononuclear bone marrow cells were isolated by gradient centrifugation and resuspended in 2 ml volume of Hank's buffered salt solution. At the end of CABG surgery 10 injections of 0.2 ml each were applied to the core area and borderzones of the infarct. Global and regional perfusion and viability were evaluated by ECG-gated 99mTc-tetrofosmin myocardial single-photon emission computed tomograph (SPECT) imaging and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) in all study patients < 6 days before and 3 months after the intervention. Results Non-viable segments indicating transmural defects were identified in 5 patients. Two patients were found to have non-transmural defects before surgery. Concomitant surgical revascularisation and bone marrow cell injection was performed in all patients without major complications. The median total injected mononuclear cell number was 7.0 × 107 (range: 0.8–20.4). At 3 months 99mTc-tetrofosmin SPECT and 18F-FDG-PET scanning showed in 5 patients (transmural defect n = 4; non-transmural defect n = 1) no change in myocardial viability and in two patients (transmural defect n = 1, non-transmural defect n = 1) enhanced myocardial viability by 75%. Overall, global and regional LV ejection fraction was not significantly increased after surgery compared with the preoperative value. Conclusion In CABG surgery patients with non-viable segments the concurrent use of intramyocardial cell transfer did not show any clear improvement in

  10. [An approach for comparative quantification of myocardial blood flow (O-15-H2O-PET), perfusion (Tc-99m-tetrofosmin-SPECT) and metabolism (F-18-FDG-PET)].

    PubMed

    Schäfer, W M; Nowak, B; Kaiser, H J; Block, S; Koch, K C; vom Dahl, J; Büll, U

    2001-10-01

    In the present study a new approach has been developed for comparative quantification of absolute myocardial blood flow (MBF), myocardial perfusion, and myocardial metabolism in short-axis slices. 42 patients with severe CAD, referred for myocardial viability diagnostics, were studied consecutively with 0-15-H2O PET (H2O-PET) (twice), Tc-99m-Tetrofosmin SPECT (TT-SPECT) and F-18-FDG PET (FDG-PET). All data sets were reconstructed using attenuation correction and reoriented into short axis slices. Each heart was divided into three representative slices (base, midventricular, apex) and 18 ROIs were defined on the FDG PET images and transferred to the corresponding H2O-PET and TT-SPECT slices. TT-SPECT and FDG-PET data were normalized to the ROI showing maximum perfusion. MBF was calculated for all left-ventricular ROIs using a single-compartment-model fitting the dynamic H2O-PET studies. Microsphere equivalent MBF (MBF_micr) was calculated by multiplying MBF and tissue-fraction, a parameter which was obtained by fitting the dynamic H2O-PET studies. To reduce influence of viability only well perfused areas (> 70% TT-SPECT) were used for comparative quantification. First and second mean global MBF values were 0.85 ml x min-1 x g-1 and 0.84 ml x min-1 x g-1, respectively, with a repeatability coefficient of 0.30 ml x min-1 x g-1. After sectorization mean MBF_micr was between 0.58 ml x min-1 x ml-1 and 0.68 ml x min-1 x ml-1 in well perfused areas. Corresponding TT-SPECT values ranged from 83% to 91%, and FDG-PET values from 91% to 103%. All procedures yielded higher values for the lateral than the septal regions. Comparative quantification of MBF, MBF_micr, TT-SPECT perfusion and FDG-PET metabolism can be done with the introduced method in short axis slices. The obtained values agree well with experimentally validated values of MBF and MBF_micr.

  11. The significance of post-stress decrease in left ventricular ejection fraction in patients undergoing regadenoson stress gated SPECT myocardial perfusion imaging.

    PubMed

    Gomez, Javier; Golzar, Yasmeen; Fughhi, Ibtihaj; Olusanya, Adebayo; Doukky, Rami

    2017-02-08

    The significance of post-stress decrease in left ventricular ejection fraction (LVEF) with regadenoson stress gated SPECT (GSPECT) myocardial perfusion imaging (MPI) has not been studied. Consecutive patients who underwent rest/regadenoson stress GSPECT-MPI followed by coronary angiography within 6 months were analyzed. Change in LVEF by GSPECT-MPI was calculated as stress LVEF minus rest LVEF; a significant decrease was tested at 5% and 10% thresholds. In a diagnostic cohort of 793 subjects, LVEF change was not predictive of severe/extensive coronary artery disease (area under the curve, 0.50; 95% confidence interval, 0.44-0.57; P = 0.946). There was no significant difference in the rates of severe/extensive coronary artery disease in patients with or without a decrease in LVEF, irrespective of MPI findings. In an outcome cohort of the 929 subjects followed for 30 ± 16 months, post-regadenoson stress decrease in LVEF was not associated with increased risk of the composite endpoint of cardiac death or myocardial infarction or in the risk of coronary revascularization. In patients selected to undergo coronary angiography following regadenoson stress GSPECT-MPI, a decrease in LVEF after regadenoson stress is not predictive of severe/extensive CAD or adverse clinical outcomes, irrespective of MPI findings.

  12. Prognostic value of myocardial perfusion single photon emission computed tomography for major adverse cardiac cerebrovascular and renal events in patients with chronic kidney disease: results from first year of follow-up of the Gunma-CKD SPECT multicenter study.

    PubMed

    Kasama, Shu; Toyama, Takuji; Sato, Makito; Sano, Hirokazu; Ueda, Tetsuya; Sasaki, Toyoshi; Nakahara, Takehiro; Higuchi, Tetsuya; Tsushima, Yoshito; Kurabayashi, Masahiko

    2016-02-01

    Patients with chronic kidney disease (CKD) have an increased risk of adverse cardio-cerebrovascular events. We examined whether stress myocardial perfusion single photon emission computed tomography (SPECT) provides reliable prognostic markers for these patients. In this multicenter, prospective cohort trial from the Gunma-CKD SPECT study protocol, patients with CKD [estimated glomerular filtration rate (eGFR) < 60 min/ml per 1.73 m(2)] undergoing stress (99m)Tc-tetrofosmin SPECT for suspected or possible ischemic heart disease were initially followed for 1 year, with the following study endpoints: primary, the occurrence of cardiac deaths (CDs), and secondary, major adverse cardiac, cerebrovascular, and renal events (MACCREs). The summed stress score (SSS), summed rest score, and summed difference score (SDS) were estimated with the standard 17-segment, 5-point scoring model. Left ventricular end-diastolic volume, end-systolic volume (ESV), and ejection fraction were measured using electrocardiogram-gated SPECT. During the first year of follow-up, 69 of 299 patients experienced MACCREs (CD, n = 7; non-fatal myocardial infarction, n = 3; hospitalization for heart failure, n = 13; cerebrovascular accident, n = 1; need for revascularization, n = 38; and renal failure, i.e., hemodialysis initiation, n = 7). ESV and SSS were associated with CDs (p < 0.05), and eGFR and SDS were associated with MACCREs (p < 0.05), in multivariate logistic analysis. Patients with high ESV and high SSS had a significantly higher CD rate during the first year than the other CKD patient subgroups (p < 0.05). Patients with low eGFR and high SDS had a significantly higher MACCRE rate than the other subgroups (p < 0.05). Myocardial perfusion SPECT can provide reliable prognostic markers for patients with CKD.

  13. Task-Based Evaluation of a 4D MAP-RBI-EM Image Reconstruction Method for Gated Myocardial Perfusion SPECT using a Human Observer Study

    PubMed Central

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M.; Tsui, Benjamin M. W.

    2015-01-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  14. Task-based evaluation of a 4D MAP-RBI-EM image reconstruction method for gated myocardial perfusion SPECT using a human observer study

    NASA Astrophysics Data System (ADS)

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M.; Tsui, Benjamin M. W.

    2015-09-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  15. Comparison of myocardial perfusion imaging using thallium-201 between a new cadmium-zinc-telluride cardiac camera and a conventional SPECT camera.

    PubMed

    Songy, Bernard; Lussato, David; Guernou, Mohamed; Queneau, Mathieu; Geronazzo, Ricardo

    2011-09-01

    Cadmium zinc telluride (CZT) solid-state detectors have been recently introduced in myocardial perfusion imaging. However, they had not been yet validated with thallium-201. This study compares the clinical performances of the CZT ultrafast camera GE DNM 530c with a conventional SPECT camera (CC) using thallium-201. We prospectively studied with thallium-201 a total of 153 consecutive patients referred for myocardial perfusion imaging at exercise (3-4 mCi) then redistribution (with 1 mCi reinjection). Sequential acquisitions were performed first with a conventional dual-head tomographic Anger camera (CC) in 10 to 15 minutes and then with a CZT camera (CZT) in 5 minutes, in prone position. In all, 9 patients were excluded: 1 for mispositioning, 3 for camera failure, 3 for delayed acquisition after exercise, 1 for nonacceptance of redistribution, 1 for motion. Acquisition was more comfortable with CZT for all patients. Global counts rate was higher with CZT than with CC (3.6±0.57 KCts/s vs. 1.14±0.16). CZT has a 5-fold increased myocardial counts rate compared with CC (448±69 Kcts in 5 minutes vs. 209±40 Kcts in 12.5±1.8 minutes). Quality of CZT images was considered as better in 40%, equal in 56%, and worse in 4% of cases; we found less artifacts with CZT; diagnostic conclusions were the same in 140 of 144 cases (97%); discordances were 2 artifacts with CC and 2 small ischemia (less than 2 segments) missed by CZT. This new dedicated cardiac CZT camera allows with thallium-201 five minutes acquisitions with an increased image quality and a reliable diagnosis quality.

  16. Effects of CT-based attenuation correction of rat microSPECT images on relative myocardial perfusion and quantitative tracer uptake

    SciTech Connect

    Strydhorst, Jared H. Ruddy, Terrence D.; Wells, R. Glenn

    2015-04-15

    Purpose: Our goal in this work was to investigate the impact of CT-based attenuation correction on measurements of rat myocardial perfusion with {sup 99m}Tc and {sup 201}Tl single photon emission computed tomography (SPECT). Methods: Eight male Sprague-Dawley rats were injected with {sup 99m}Tc-tetrofosmin and scanned in a small animal pinhole SPECT/CT scanner. Scans were repeated weekly over a period of 5 weeks. Eight additional rats were injected with {sup 201}Tl and also scanned following a similar protocol. The images were reconstructed with and without attenuation correction, and the relative perfusion was analyzed with the commercial cardiac analysis software. The absolute uptake of {sup 99m}Tc in the heart was also quantified with and without attenuation correction. Results: For {sup 99m}Tc imaging, relative segmental perfusion changed by up to +2.1%/−1.8% as a result of attenuation correction. Relative changes of +3.6%/−1.0% were observed for the {sup 201}Tl images. Interscan and inter-rat reproducibilities of relative segmental perfusion were 2.7% and 3.9%, respectively, for the uncorrected {sup 99m}Tc scans, and 3.6% and 4.3%, respectively, for the {sup 201}Tl scans, and were not significantly affected by attenuation correction for either tracer. Attenuation correction also significantly increased the measured absolute uptake of tetrofosmin and significantly altered the relationship between the rat weight and tracer uptake. Conclusions: Our results show that attenuation correction has a small but statistically significant impact on the relative perfusion measurements in some segments of the heart and does not adversely affect reproducibility. Attenuation correction had a small but statistically significant impact on measured absolute tracer uptake.

  17. Reproducibility of area at risk assessment in acute myocardial infarction by T1- and T2-mapping sequences in cardiac magnetic resonance imaging in comparison to Tc99m-sestamibi SPECT.

    PubMed

    Langhans, Birgit; Nadjiri, Jonathan; Jähnichen, Christin; Kastrati, Adnan; Martinoff, Stefan; Hadamitzky, Martin

    2014-10-01

    Area at risk (AAR) is an important parameter for the assessment of the salvage area after revascularization in acute myocardial infarction (AMI). By combining AAR assessment by T2-weighted imaging and scar quantification by late gadolinium enhancement imaging cardiovascular magnetic resonance (CMR) offers a promising alternative to the "classical" modality of Tc99m-sestamibi single photon emission tomography (SPECT). Current T2 weighted sequences for edema imaging in CMR are limited by low contrast to noise ratios and motion artifacts. During the last years novel CMR imaging techniques for quantification of acute myocardial injury, particularly the T1-mapping and T2-mapping, have attracted rising attention. But no direct comparison between the different sequences in the setting of AMI or a validation against SPECT has been reported so far. We analyzed 14 patients undergoing primary coronary revascularization in AMI in whom both a pre-intervention Tc99m-sestamibi-SPECT and CMR imaging at a median of 3.4 (interquartile range 3.3-3.6) days after the acute event were performed. Size of AAR was measured by three different non-contrast CMR techniques on corresponding short axis slices: T2-weighted, fat-suppressed turbospin echo sequence (TSE), T2-mapping from T2-prepared balanced steady state free precession sequences (T2-MAP) and T1-mapping from modified look locker inversion recovery (MOLLI) sequences. For each CMR sequence, the AAR was quantified by appropriate methods (absolute values for mapping sequences, comparison with remote myocardium for other sequences) and correlated with Tc99m-sestamibi-SPECT. All measurements were performed on a 1.5 Tesla scanner. The size of the AAR assessed by CMR was 28.7 ± 20.9 % of left ventricular myocardial volume (%LV) for TSE, 45.8 ± 16.6 %LV for T2-MAP, and 40.1 ± 14.4 %LV for MOLLI. AAR assessed by SPECT measured 41.6 ± 20.7 %LV. Correlation analysis revealed best correlation with SPECT for T2-MAP at a T2-threshold of 60 ms

  18. Development and validation of an automatic method to detect the latest contracting viable left ventricular segments to assist guide CRT therapy from gated SPECT myocardial perfusion imaging.

    PubMed

    Zhou, Weihua; Tao, Ningchao; Hou, Xiaofeng; Wang, Yao; Folks, Russell D; Cooke, David C; Moncayo, Valeria M; Garcia, Ernest V; Zou, Jiangang

    2017-03-28

    The purpose of this study is to use ECG-gated SPECT MPI to detect the latest contracting viable left ventricular (LV) segments to help guide the LV probe placement used in CRT therapy and to validate segment selection against the visual integration method by experts. For each patient, the resting ECG-gated SPECT MPI short-axis images were sampled in 3D to generate a polar map of the perfusion distribution used to determine LV myocardial viability, and to measure LV synchronicity using our phase analysis tool. In the visual integration method, two experts visually interpreted the LV viability and mechanical dyssynchrony from the short-axis images and polar maps of viability and phase, to determine the latest contracting viable segments using the 17-segment model. In the automatic method, the apical segments, septal segments, and segments with more than 50% scar were excluded as these are not candidates for CRT LV probe placement. Amongst the remaining viable segments, the segments, whose phase angles were within 10° of the latest phase angle (the most delayed contracting segment), were identified for potential CRT LV probe placement and ranked based on the phase angles of the segments. Both methods were tested in 36 pre-CRT patients who underwent ECG-gated SPECT MPI. The accuracy was determined as the percent agreement between the visual integration and automatic methods. The automatic method was performed by a second independent operator to evaluate the inter-operator processing reproducibility. In all the 36 patients, the LV lead positions of the 1st choices recommended by the automatic and visual integration methods were in the same segments in 35 patients, which achieved an agreement rate of 97.2%. In the inter-operator reproducibility test, the LV lead positions of the 1st choices recommended by the two operators were in the same segments in 25 patients, and were in the adjacent segments in 7 patients, which achieved an overall agreement of 88.8%. An automatic

  19. SPECT myocardial perfusion imaging as an adjunct to coronary calcium score for the detection of hemodynamically significant coronary artery stenosis

    PubMed Central

    2012-01-01

    Background Coronary artery calcifications (CAC) are markers of coronary atherosclerosis, but do not correlate well with stenosis severity. This study intended to evaluate clinical situations where a combined approach of coronary calcium scoring (CS) and nuclear stress test (SPECT-MPI) is useful for the detection of relevant CAD. Methods Patients with clinical indication for invasive coronary angiography (ICA) were included into our study during 08/2005-09/2008. At first all patients underwent CS procedure as part of the study protocol performed by either using a multidetector computed tomography (CT) scanner or a dual-source CT imager. CAC were automatically defined by dedicated software and the Agatston score was semi-automatically calculated. A stress-rest SPECT-MPI study was performed afterwards and scintigraphic images were evaluated quantitatively. Then all patients underwent ICA. Thereby significant CAD was defined as luminal stenosis ≥75% in quantitative coronary analysis (QCA) in ≥1 epicardial vessel. To compare data lacking Gaussian distribution an unpaired Wilcoxon-Test (Mann–Whitney) was used. Otherwise a Students t-test for unpaired samples was applied. Calculations were considered to be significant at a p-value of <0.05. Results We consecutively included 351 symptomatic patients (mean age: 61.2±12.3 years; range: 18–94 years; male: n=240) with a mean Agatston score of 258.5±512.2 (range: 0–4214). ICA verified exclusion of significant CAD in 66/67 (98.5%) patients without CAC. CAC was detected in remaining 284 patients. In 132/284 patients (46.5%) with CS>0 significant CAD was confirmed by ICA, and excluded in 152/284 (53.5%) patients. Sensitivity for CAD detection by CS alone was calculated as 99.2%, specificity was 30.3%, and negative predictive value was 98.5%. An additional SPECT in patients with CS>0 increased specificity to 80.9% while reducing sensitivity to 87.9%. Diagnostic accuracy was 84.2%. Conclusions In patients without CS=0

  20. Diagnosis of myocardial involvement in patients with systemic myopathies with 15-(p-(I-123)iodophenyl) pentadecanoic acid (IPPA) SPECT

    SciTech Connect

    Kropp, J.; Briele, B.; Smekal, A.V.; Hotze, A.L.; Biersack, H.J.; Koehler, U.; Zierz, St. ); Knapp, F.F. )

    1992-01-01

    Involvement of the myocardium in non-infectious myopathies presents in most cases as systolic dysfunction or a disturbed cardiac rhythm. We are interested in exploring how often cardiac involvement can be evaluated with various diagnostic techniques in patients with proven myopathy. We investigated 41 patients with myopathies of various etiology, including mitochondrial and congenital myopathies, Curshmann-Steinert disease, muscular dystrophy, and others. Myopathy was proven by muscular biopsy usually from the bicep. Fatty acid imaging was performed with 15-(p-(I-123)iodophenyl)pentadecanoic acid (IP-PA) and sequential SPECT-scintigraphy with a 180 deg. rotation starting at the 45 deg. RAO position. 190 MBq were injected at the maximal stage of a submaximal exercise. Filtered backprojection and reorientation of the slices were achieved by standard techniques. The quantitative comparison of the oblique slices (bulls-eye technique) of the SPECT-studies revealed turnover-rates as a qualitative measure of {beta}-oxidation. Serum levels of lactate (L), pyruvate (P), glucose (G) and triglycerides (TG) were measured at rest and stress. Ventricular function was investigated by radionuclide ventriculography (MUGA) at rest and under stress with Tc-99m labeled red blood cells. In addition, ECG, 24 hour-ECG, and echocardiography were also performed with standard techniques.

  1. Diagnosis of myocardial involvement in patients with systemic myopathies with 15-(p-[I-123]iodophenyl) pentadecanoic acid (IPPA) SPECT

    SciTech Connect

    Kropp, J.; Briele, B.; Smekal, A.V.; Hotze, A.L.; Biersack, H.J.; Koehler, U.; Zierz, St.; Knapp, F.F.

    1992-03-01

    Involvement of the myocardium in non-infectious myopathies presents in most cases as systolic dysfunction or a disturbed cardiac rhythm. We are interested in exploring how often cardiac involvement can be evaluated with various diagnostic techniques in patients with proven myopathy. We investigated 41 patients with myopathies of various etiology, including mitochondrial and congenital myopathies, Curshmann-Steinert disease, muscular dystrophy, and others. Myopathy was proven by muscular biopsy usually from the bicep. Fatty acid imaging was performed with 15-(p-[I-123]iodophenyl)pentadecanoic acid (IP-PA) and sequential SPECT-scintigraphy with a 180 deg. rotation starting at the 45 deg. RAO position. 190 MBq were injected at the maximal stage of a submaximal exercise. Filtered backprojection and reorientation of the slices were achieved by standard techniques. The quantitative comparison of the oblique slices (bulls-eye technique) of the SPECT-studies revealed turnover-rates as a qualitative measure of {beta}-oxidation. Serum levels of lactate (L), pyruvate (P), glucose (G) and triglycerides (TG) were measured at rest and stress. Ventricular function was investigated by radionuclide ventriculography (MUGA) at rest and under stress with Tc-99m labeled red blood cells. In addition, ECG, 24 hour-ECG, and echocardiography were also performed with standard techniques.

  2. Importance of 123I-ioflupane SPECT and Myocardial MIBG Scintigraphy to Determine the Candidate of Deep Brain Stimulation for Parkinson’s Disease

    PubMed Central

    ASAHI, Takashi; KASHIWAZAKI, Daina; YONEYAMA, Tatsuya; NOGUCHI, Kyo; KURODA, Satoshi

    2016-01-01

    123I-ioflupane SPECT (DaTscan) is an examination that detects presynaptic dopamine neuronal dysfunction, and has been used as a diagnostic tool to identify degenerative parkinsonism. Additionally, myocardial 123I-metaiodobenzyl guanidine (MIBG) scintigraphy measures the concentration of cardiac sympathetic nerve fibers and is used to diagnose Parkinson’s disease (PD). These exams are used as adjuncts in the diagnosis of parkinsonism, however, the relationship of these two examinations are not well-known. We investigated the relationship of these two scanning results specifically for determining the use of deep brain stimulation therapy (DBS). Subjects were Japanese patients with suspected striatonigral degeneration, including PD; DaTscans and myocardial MIBG scintigraphy were performed. The mean values of the left-right specific binding ratios (SBRs) from the DaTscan, and the early/delayed heart-to-mediastinum ratios (HMRs) from the MIBG scintigraphy were calculated. Using simple linear regression analysis, we compared the SBR and early/delayed HMR values. Twenty-four patients were enrolled in this study. Twenty-one patients were positive via the DaTscan, and the MIBG scintigraphy results showed 14 patients were positive. SBR and both early and delayed HMR were positively correlated in cases of PD, but negative in non-PD cases. A mean SBR value less than 3.0 and a delayed HMR value less than 1.7 indicated a Hoehn-Yahr stage 3 or 4 for PD, which is commonly regarded as a level appropriate for initiating DBS therapy. Our results indicate that performing both DaTscan and MIBG scintigraphy is useful for the evaluation of surgical intervention in PD. PMID:26794041

  3. Effect of caffeine on SPECT myocardial perfusion imaging during regadenoson pharmacologic stress: rationale and design of a prospective, randomized, multicenter study.

    PubMed

    Tejani, Furqan H; Thompson, Randall C; Iskandrian, Ami E; McNutt, Bruce E; Franks, Billy

    2011-02-01

    Caffeine attenuates the coronary hyperemic response to adenosine by competitive A₂(A) receptor blockade. This study aims to determine whether oral caffeine administration compromises diagnostic accuracy in patients undergoing vasodilator stress myocardial perfusion imaging (MPI) with regadenoson, a selective adenosine A(2A) agonist. This multicenter, randomized, double-blind, placebo-controlled, parallel-group study includes patients with suspected coronary artery disease who regularly consume caffeine. Each participant undergoes three SPECT MPI studies: a rest study on day 1 (MPI-1); a regadenoson stress study on day 3 (MPI-2), and a regadenoson stress study on day 5 with double-blind administration of oral caffeine 200 or 400 mg or placebo capsules (MPI-3; n = 90 per arm). Only participants with ≥ 1 reversible defect on the second MPI study undergo the subsequent stress MPI test. The primary endpoint is the difference in the number of reversible defects on the two stress tests using a 17-segment model. Pharmacokinetic/pharmacodynamic analyses will evaluate the effect of caffeine on the regadenoson exposure-response relationship. Safety will also be assessed. The results of this study will show whether the consumption of caffeine equivalent to 2-4 cups of coffee prior to an MPI study with regadenoson affects the diagnostic validity of stress testing (ClinicalTrials.gov number, NCT00826280).

  4. Examining a hypothetical quantitative model for better approximation of culprit coronary artery and site of stenosis on 99mTc-sestamibi gated myocardial perfusion SPECT.

    PubMed

    Pal, Sushanta; Sen, Srabani; Das, Debasis; Basu, Sandip

    2016-10-01

    A hypothetical quantitative model of analyzing gated myocardial perfusion SPECT is proposed and examined for the feasibility of its use as a predictor of diseased coronary artery and approximating the site of stenosis to determine whether it could serve as a useful noninvasive complement for coronary angiography. The extent and severity of perfusion defects on rest gated myocardial perfusion imaging SPECT-images were assessed on a five-point scale in a standard 17-segment model and total perfusion deficit was quantified by automated software. The first step was to locate the diseased coronary artery using a quantitative method: for this, the score of each segment belonging to a particular coronary artery was determined using a systematic presumptive approach. After determination of specific coronary artery segments, the scores of the contiguous segments in three short axis slices (apical, middle, and basal) were summed for six subdivisions (anterior, anterolateral, inferolateral, inferior, anteroseptal, and inferoseptal). The site of stenosis was determined from (a) the initial approximation of the involved segments with a defect score of 2-4 and (b) subsequent calculation of the defect score of each of the six subdivisions and allocating the site through a preassigned number for each coronary artery. For each coronary artery, only the subdivision with the highest defect score was considered. Proximal, middle, and distal segments of left anterior descending artery (LAD) were considered to be represented when the summed value of a subdivision within a particular arterial territory was more than or equal to 7, between 5 and 7, 5 and 3, respectively. For the left circumflex and right coronary artery, summed scores (of respective subdivisions) of more than or equal to 5 and between 3 and 5 were preassigned to proximal and distal stenosis, respectively. The results were then correlated with the coronary angiographic data. On coronary angiography, proximal LAD occlusion

  5. Does perfusion pattern influence stress-induced changes in left ventricular mechanical dyssynchrony on thallium-201-gated SPECT myocardial perfusion imaging?

    PubMed

    Singh, Harmandeep; Patel, Chetan D; Sharma, Punit; Naik, Nitish; Singh, Sandeep; Narang, Rajiv

    2015-02-01

    The relationship between perfusion pattern and stress-induced changes in left ventricular mechanical dyssynchrony (LVMD) on stress-rest thallium-201-gated SPECT myocardial perfusion imaging (Tl-201 SPECT MPI) is not clear. The aim of the study is to assess the relation of perfusion pattern with stress-induced changes in LVMD on Tl-201 MPI. Data of 194 patients who underwent exercise-rest Tl-201 MPI between January to December 2012 at our institute was retrospectively evaluated. Institute Ethical committee approval was obtained. Fifty patients who underwent Tl-201 MPI for suspected CAD and had normal LV perfusion and function on MPI were taken as normal group. Patients with perfusion abnormalities (n = 144) were divided into three groups: ischemia (n = 66), infarct (n = 32), and mixed group (n = 46; ischemia and infarct both). Summed stress score, summed rest score, summed difference score (SDS), and LV ejection fraction (EF) were evaluated. Two LVMD parameters, phase standard deviation (PSD) and phase histogram bandwidth (PHB), were assessed in post-stress and rest MPI images. ΔPSD (post-stress PSD - rest PSD) and ΔPHB (post-stress PHB - rest PHB) were calculated to measure stress-induced changes in LVMD. In all the groups, mean post-stress LVMD parameters were lower as compared to LVMD parameters at rest. Post-stress PSD was significantly lower than rest PSD in all groups. Similar trend was noted with PHB values also, but it was statistically significant in the normal and ischemia group only. Post-stress worsening of at least one of the LVMD parameters was noted in 28 patients and all these patients had perfusion abnormalities. But on subgroup analysis, no difference was found in proportion of patients showing post-stress worsening of LVMD between ischemia (13.6%), infarct (25%), and mixed (23.6%) groups. No significant correlation was found between ΔPSD/ΔPHB and ΔLVEF/SDS in any group. LV mechanical dyssynchrony parameters are smaller in post-exercise stress

  6. Assessment of cardiac function using myocardial perfusion imaging technique on SPECT with 99mTc sestamibi

    NASA Astrophysics Data System (ADS)

    Gani, M. R. A.; Nazir, F.; Pawiro, S. A.; Soejoko, D. S.

    2016-03-01

    Suspicion on coronary heart disease can be confirmed by observing the function of left ventricle cardiac muscle with Myocardial Perfusion Imaging techniques. The function perfusion itself is indicated by the uptake of radiopharmaceutical tracer. The 31 patients were studied undergoing the MPI examination on Gatot Soebroto Hospital using 99mTc-sestamibi radiopharmaceutical with stress and rest conditions. Stress was stimulated by physical exercise or pharmacological agent. After two hours, the patient did rest condition on the same day. The difference of uptake percentage between stress and rest conditions will be used to determine the malfunction of perfusion due to ischemic or infarct. Degradation of cardiac function was determined based on the image-based assessment of five segments of left ventricle cardiac. As a result, 8 (25.8%) patients had normal myocardial perfusion and 11 (35.5%) patients suspected for having partial ischemia. Total ischemia occurred to 8 (25.8%) patients with reversible and irreversible ischemia and the remaining 4 (12.9%) patients for partial infarct with characteristic the percentage of perfusion ≤50%. It is concluded that MPI technique of image-based assessment on uptake percentage difference between stress and rest conditions can be employed to predict abnormal perfusion as complementary information to diagnose the cardiac function.

  7. Application of Three-Class ROC Analysis to Task-Based Image Quality Assessment of Simultaneous Dual-Isotope Myocardial Perfusion SPECT (MPS)

    PubMed Central

    He, Xin; Song, Xiyun; Frey, Eric C.

    2009-01-01

    The diagnosis of cardiac disease using dual-isotope myocardial perfusion SPECT (MPS) is based on the defect status in both stress and rest images, and can be modeled as a three-class task of classifying patients as having no, reversible, or fixed perfusion defects. Simultaneous acquisition protocols for dual-isotope MPS imaging have gained much interest due to their advantages including perfect registration of the 201Tl and 99mTc images in space and time, increased patient comfort, and higher clinical throughput. As a result of simultaneous acquisition, however, crosstalk contamination, where photons emitted by one isotope contribute to the image of the other isotope, degrades image quality. Minimizing the crosstalk is important in obtaining the best possible image quality. One way to minimize the crosstalk is to optimize the injected activity of the two isotopes by considering the three-class nature of the diagnostic problem. To effectively do so, we have previously developed a three-class receiver operating characteristic (ROC) analysis methodology that extends and unifies the decision theoretic, linear discriminant analysis, and psychophysical foundations of binary ROC analysis in a three-class paradigm. In this work, we applied the proposed three-class ROC methodology to the assessment of the image quality of simultaneous dual-isotope MPS imaging techniques and the determination of the optimal injected activity combination. In addition to this application, the rapid development of diagnostic imaging techniques has produced an increasing number of clinical diagnostic tasks that involve not only disease detection, but also disease characterization and are thus multiclass tasks. This paper provides a practical example of the application of the proposed three-class ROC analysis methodology to medical problems. PMID:18955172

  8. The radiation dose to overweighted patients undergoing myocardial perfusion SPECT can be significantly reduced: validation of a linear weight-adjusted activity administration protocol.

    PubMed

    Oddstig, Jenny; Hindorf, Cecilia; Hedeer, Fredrik; Jögi, Jonas; Arheden, Håkan; Hansson, Magnus J; Engblom, Henrik

    2016-08-09

    Large body size can cause a higher proportion of emitted photons being attenuated within the patient. Therefore, clinical myocardial perfusion SPECT (MPS) protocols often include unproportionally higher radioisotope activity to obese patients. The aim was to evaluate if a linear weight-adjusted low-dose protocol can be applied to obese patients and thereby decrease radiation exposure. Two hundred patients (>110 kg, BMI 18-41, [n = 69], ≤ 110 kg, BMI 31-58, [n = 131]) underwent (99m)Tc-tetrofosmin stress examination on a Cadmium Zinc Telluride or a conventional gamma camera using new generations of reconstruction algorithm (Resolution Recovery). Patients <110 kg were administered 2.5 MBq/kg, patients between 110 and 120 kg received 430 MBq and patients >120 kg received 570 MBq according to clinical routine. Patients >110 kg had 130% total number of counts in the images compared to patients <110 kg. Recalculating the counts to correspond to an administered activity of 2.5 MBq/kg resulted in similar number of counts across the groups. Image analyses in a subgroup with images corresponding to high activity and 2.5 MBq/kg showed no difference in image quality or ischemia quantification. Linear low-dose weight-adjusted protocol of 2.5 MBq/kg in MPS can be applied over a large weight span without loss of counts or image quality, resulting in a significant reduction in radiation exposure to obese patients.

  9. Left ventricular dyssynchrony assessed by two three-dimensional imaging modalities: phase analysis of gated myocardial perfusion SPECT and tri-plane tissue Doppler imaging

    PubMed Central

    Ajmone Marsan, Nina; Henneman, Maureen M.; Chen, Ji; Ypenburg, Claudia; Dibbets, Petra; Ghio, Stefano; Bleeker, Gabe B.; Stokkel, Marcel P.; van der Wall, Ernst E.; Tavazzi, Luigi; Garcia, Ernest V.

    2007-01-01

    Purpose To compare left ventricular (LV) dyssynchrony assessment by phase analysis from gated myocardial perfusion SPECT (GMPS) with LV dyssynchrony assessment by tri-plane tissue Doppler imaging (TDI). Baseline LV dyssynchrony assessed with standard deviation (SD) of time-to-peak systolic velocity of 12 LV segments (Ts-SD) with TDI has proven to be a powerful predictor of response to CRT. Information on LV dyssynchrony can also be provided by GMPS with phase analysis of regional LV maximal count changes throughout the cardiac cycle. Methods Forty heart failure patients, referred for evaluation of potential eligibility for CRT, underwent both 3D echocardiography, with tri-plane TDI, and resting GMPS. From tri-plane TDI, Ts-SD was used as a validated parameter of LV dyssynchrony and compared with different indices (histogram bandwidth, phase SD, histogram skewness and kurtosis) derived from phase analysis of GMPS. Results Histogram bandwidth and phase SD showed good correlation with Ts-SD (r=0.77 and r=0.74, p<0.0001, respectively). Patients with substantial LV dyssynchrony assessed with tri-plane TDI (Ts-SD ≥33 ms) had also significantly higher values of histogram bandwidth and phase SD. Conclusions The results of this study support the use of phase analysis by GMPS to evaluate LV dyssynchrony. Histogram bandwidth and phase SD showed the best correlation with Ts-SD assessed with tri-plane TDI and appeared the most optimal variables for assessment of LV dyssynchrony with GMPS. PMID:17874098

  10. Three-class ROC analysis: a sequential decision model developed for the diagnostic task rest-stress myocardial perfusion SPECT imaging

    NASA Astrophysics Data System (ADS)

    He, Xin; Frey, Eric C.

    2008-03-01

    Previously we have developed a decision model for three-class ROC analysis where classification is made three simultaneously, i.e., with a single decision. In this paper, an alternative sequential decision model was developed for the specific three-class diagnostic procedure of rest-stress myocardial perfusion SPECT (MPS) imaging. This sequential decision model was developed based on the fact that sometimes this diagnostic task is performed using a two-step process. First, the stress ( 99m Tc) image is read to determine whether a patient is normal or abnormal based on the presence of a defect in the stress image. If a defect is found, the rest ( 201Tl) image is then read to determine whether this is a reversible defect or a fixed defect based on the presence of defect on the rest image. In fact, in some MPS protocols where sequential stress/rest imaging is performed, the rest imaging is not performed if there is no defect in the stress image. Therefore, the three-class task is decomposed to a sequence of two two-class tasks. For this task we determined, by maximizing the expected utility of both steps of the decision process, that log likelihood ratios were the optimal decision variables and provide the optimal ROC surface under the assumption that incorrect decisions have equal utilities under the same hypothesis. The properties of the sequential decision model were then studied. We found that the sequential decision model shares most of the features of a 2-class ROC curve. While this model was developed in the context of rest-stress MPS, it may have applications to other two-step diagnostic tasks.

  11. NOTE: Comparison of correction techniques for simultaneous 201Tl/99mTc myocardial perfusion SPECT imaging: a dog study

    NASA Astrophysics Data System (ADS)

    Knesaurek, Karin; Machac, Josef

    2000-11-01

    We compared two correction methods for simultaneous 201Tl/99mTc dual-isotope single-photon emission computed tomography (SPECT). Both approaches use the information from the third energy window placed between the photopeak windows of the 201Tl and 99mTc. The first approach, described by Moore et al, corrects only for the contribution of the 99mTc to the 201Tl primary 70 keV window. We developed the three-window transformation dual-isotope correction method, which is a simultaneous cross-talk correction. The two correction methods were compared in a simultaneous 201Tl/99mTc sestamibi cardiac dog study. Three separate acquisitions were performed in this dog study: two single-isotope and one dual-isotope acquisition. The 201Tl single-isotope images were used as references. The total number of counts, and the contrast between the left ventricular cavity (LVC) and the myocardium, were used in 70 keV short-axis slices as parameters for evaluating the results of the dual-isotope correction methods. Three consecutive short-axis slices were used to calculate averaged contrast and the averaged total number of counts. The total number of the counts was 667 000 ± 500 and 414 500 ± 400 counts for the dual-isotope (201Tl + 99mTc) and single-isotope (201Tl-only) 70 keV images, respectively. The corrected dual-isotope images had 514 700 ± 700 and 368 000 ± 600 counts for Moore's correction and our approach, respectively. Moore's method improved contrast in the dual-isotope 70 keV image to 0.14 ± 0.03 from 0.11 ± 0.02, which was the value in the 70 keV non-corrected dual-isotope image. Our method improved the same contrast to 0.22 ± 0.03. The contrast in the 201Tl single-isotope 70 keV image was 0.28 ± 0.02. Both methods improved the 70 keV dual-isotope images. However, our approach provided slightly better images than Moore's correction when compared with 201Tl-only 70 keV images.

  12. Prediction of cardiac events in patients with transient left ventricle dilation on stress myocardial perfusion SPECT images.

    PubMed

    Fukuda, Hiroshi; Moroi, Masao

    2005-10-01

    The purpose of this study was to investigate cardiac events in patients with transient left ventricle (LV) dilation on stress myocardial perfusion single-photon emission computed tomography images (MPI). Consecutive patients (n=53, 31 males, mean age 71 years) with transient LV dilation on thallium-201 stress MPI (treadmill: 21, pharmacologic: 32) were followed for 17 months. Follow-up time was censored at the occurrence of cardiac death, congestive heart failure, acute coronary syndrome, or revascularization. Images were scored and then the summed stress score (SSS), summed rest score, and summed difference score were calculated. Cardiac death occurred in 3 patients, hospitalization occurred in 8 patients, and revascularization occurred in 20 patients. The combined cardiac event rate was 59% (76% for exercise stress vs 47% for pharmacologic stress, p=0.034). Cox regression analysis demonstrated that a combination of higher SSS and slow washout rate was the best predictor of cardiac events (hazard ratio =3.3, p=0.029). A high cardiac event rate is associated with transient LV dilation on thallium-201 stress MPI. The event rate is particularly high for exercise stress MPI. Furthermore, a combination of the SSS and thallium-201 slow washout is the best predictor of cardiac events in patients with transient LV dilation.

  13. Specificity and sensitivity of SPECT myocardial perfusion studies at the Nuclear Medicine Department of the Limassol General Hospital in Cyprus

    NASA Astrophysics Data System (ADS)

    Koumna, S.; Yiannakkaras, Ch; Avraamides, P.; Demetriadou, O.

    2011-09-01

    The aim is to determine the sensitivity and specificity of Myocardial Perfusion Imaging (MPI) performed at the Nuclear Medicine Department of the Limassol General Hospital in Cyprus. Through a retrospective analysis, patient results obtained by MPI were compared to results obtained by Invasive Angiography. We analyzed data from 96 patients that underwent both MPI and Angiography during the years 2009-2010, with a maximum time interval of ± 9 months between the two types of medical exams. For 51 patients, the indication was the detection of CAD. For 45 patients, the indication was to assess viability and/or ischemia after MI, PCI or CABG. Out of 84 patients with CAD confirmed by angiography, 80 patients resulted in abnormal MPI (sensitivity of 95% and positive predictive value of 98%). Out of 12 patients with normal coronaries, 10 patients resulted in normal MPI (specificity of 83% and negative predictive value of 71%).In conclusion, for the patients with abnormal MPI and confirmed CAD, MPI was a useful aid for further therapy management.

  14. The Benefits of Prone SPECT Myocardial Perfusion Imaging in Reducing Both Artifact Defects and Patient Radiation Exposure

    PubMed Central

    Stathaki, Maria; Koukouraki, Sophia; Papadaki, Emmanouela; Tsaroucha, Angeliki; Karkavitsas, Nikolaos

    2015-01-01

    Background Prone imaging has been demonstrated to minimize diaphragmatic and breast tissue attenuation. Objectives To determine the role of prone imaging on the reduction of unnecessary rest perfusion studies and coronary angiographies performed, thus decreasing investigation time and radiation exposure. Methods We examined 139 patients, 120 with an inferior wall and 19 with an anterior wall perfusion defect that might represented attenuation artifact. Post-stress images were acquired in both the supine and prone position. Coronary angiography was used as the “gold standard” for evaluating coronary artery patency. The study was terminated and rest imaging was obviated in the presence of complete improvement of the defect in the prone position. Quantitative interpretation was performed. Results were compared with clinical data and coronary angiographic findings. Results Prone acquisition correctly revealed defect improvement in 89 patients (89/120) with inferior wall and 12 patients (12/19) with anterior wall attenuation artifact. Quantitative analysis demonstrated statistically significant difference in the mean summed stress scores (SSS) of supine and mean SSS of prone studies in patients with disappearing inferior wall defect in the prone position and patent right coronary artery (true negative results). The mean difference between SSS in supine and in prone position was higher with disappearing than with remaining defects. Conclusion Technetium-99m (Tc-99m) tetrofosmin myocardial perfusion imaging with the patient in the prone position overcomes soft tissue attenuation; moreover it provides an inexpensive, accurate approach to limit the number of unnecessary rest perfusion studies and coronary angiographies performed. PMID:26559981

  15. Silent myocardial ischemia detected by single photon emission computed tomography (SPECT) and risk of cardiac events among asymptomatic patients with type 2 diabetes: a meta-analysis of prospective studies.

    PubMed

    Zhang, Lihua; Li, Hong; Zhang, Simin; Jaacks, Lindsay M; Li, Yufeng; Ji, Linong

    2014-01-01

    To assess the value of detecting silent myocardial ischemia (SMI) by single photon emission computed tomography (SPECT) in predicting risk of cardiac events among patients with type 2 diabetes mellitus (T2DM) who do not have overt cardiac symptoms. Electronic databases (PubMed, Cochrane Library, EMBASE, and others) and original article references were systematically searched through February 1, 2013. A fixed-effects model was applied to pooled data to estimate relative risks (RR) and 95% confidence intervals (CI). Ten prospective studies with follow-up ranging from 1 to 6 years were identified. Among the total of 1360 asymptomatic patients with T2DM screened by SPECT, the cumulative prevalence rate of SMI was 26.1%. Patients with SMI were at increased risk of experiencing endpoints relative to patients without SMI: RR (95% CI) for cardiac death, 4.60 (1.78-11.84); non-fatal cardiac events, 3.48 (2.30-5.28); total cardiac events, 3.48 (2.59-4.68); and all-cause mortality, 2.20 (1.14-4.25). The risk of cardiac death and non-fatal cardiac events increased with increasing severity of SPECT-detected abnormalities. SMI detected by SPECT is associated with increased risk of cardiac death, all-cause mortality, and non-fatal cardiac events in T2DM patients without overt cardiac symptoms. Advanced intervention procedures including intensive drug management should be implemented to reduce the risk of cardiac events for SMI-positive T2DM patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Combined supine and prone quantitative myocardial perfusion SPECT: method development and clinical validation in patients with no known coronary artery disease.

    PubMed

    Nishina, Hidetaka; Slomka, Piotr J; Abidov, Aiden; Yoda, Shunichi; Akincioglu, Cigdem; Kang, Xingping; Cohen, Ishac; Hayes, Sean W; Friedman, John D; Germano, Guido; Berman, Daniel S

    2006-01-01

    Acquisition in the prone position has been demonstrated to improve the specificity of visually analyzed myocardial perfusion SPECT (MPS) for detecting coronary artery disease (CAD). However, the diagnostic value of prone imaging alone or combined acquisition has not been previously described using quantitative analysis. A total of 649 patients referred for MPS comprised the study population. Separate supine and prone normal limits were derived from 40 males and 40 females with a low likelihood (LLk) of CAD using a 3 average-deviation cutoff for all pixels on the polar map. These limits were applied to the test population of 369 consecutive patients (65% males; age, 65 +/- 13 y; 49% exercise stress) without known CAD who had diagnostic coronary angiography within 3 mo of MPS. Total perfusion deficit (TPD), defined as a product of defect extent and severity scores, was obtained for supine (S-TPD), prone (P-TPD), and combined supine-prone datasets (C-TPD). The angiographic group was randomly divided into 2 groups for deriving and validating optimal diagnostic cutoffs. Normalcy rates were validated in 2 additional groups of consecutive LLk patients: unselected patients (n = 100) and patients with body mass index >30 (n = 100). C-TPD had a larger area under the receiver-operating-characteristic (ROC) curve than S-TPD or P-TPD for identification of stenosis >or=70% (0.86, 0.88, and 0.90 for S-TPD, P-TPD, and C-TPD, respectively; P < 0.05). In the validation group, sensitivity for P-TPD was lower than for S- or C-TPD (P < 0.05). C-TPD yielded higher specificity than S-TPD and a trend toward higher specificity than P-TPD (65%, 83%, and 86% for S-, P-, and C-TPD, respectively, P < 0.001; vs. S-TPD and P = 0.06 vs. P-TPD). Normalcy rates for C-TPD were higher than for S-TPD in obese LLk patients (78% vs. 95%, P < 0.001). Combined supine-prone quantification significantly improves the area under the ROC curve and specificity of MPS in the identification of obstructive CAD

  17. Collimator optimization and collimator-detector response compensation in myocardial perfusion SPECT using the ideal observer with and without model mismatch and an anthropomorphic model observer

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Links, Jonathan M.; Frey, Eric C.

    2016-03-01

    The collimator is the primary factor that determines the spatial resolution and noise tradeoff in myocardial perfusion SPECT images. In this paper, the goal was to find the collimator that optimizes the image quality in terms of a perfusion defect detection task. Since the optimal collimator could depend on the level of approximation of the collimator-detector response (CDR) compensation modeled in reconstruction, we performed this optimization for the cases of modeling the full CDR (including geometric, septal penetration and septal scatter responses), the geometric CDR, or no model of the CDR. We evaluated the performance on the detection task using three model observers. Two observers operated on data in the projection domain: the Ideal Observer (IO) and IO with Model-Mismatch (IO-MM). The third observer was an anthropomorphic Channelized Hotelling Observer (CHO), which operated on reconstructed images. The projection-domain observers have the advantage that they are computationally less intensive. The IO has perfect knowledge of the image formation process, i.e. it has a perfect model of the CDR. The IO-MM takes into account the mismatch between the true (complete and accurate) model and an approximate model, e.g. one that might be used in reconstruction. We evaluated the utility of these projection domain observers in optimizing instrumentation parameters. We investigated a family of 8 parallel-hole collimators, spanning a wide range of resolution and sensitivity tradeoffs, using a population of simulated projection (for the IO and IO-MM) and reconstructed (for the CHO) images that included background variability. We simulated anterolateral and inferior perfusion defects with variable extents and severities. The area under the ROC curve was estimated from the IO, IO-MM, and CHO test statistics and served as the figure-of-merit. The optimal collimator for the IO had a resolution of 9-11 mm FWHM at 10 cm, which is poorer resolution than typical collimators

  18. Stress-first protocol for myocardial perfusion SPECT imaging with semiconductor cameras: high diagnostic performances with significant reduction in patient radiation doses.

    PubMed

    Perrin, Mathieu; Djaballah, Wassila; Moulin, Frédéric; Claudin, Marine; Veran, Nicolas; Imbert, Laetitia; Poussier, Sylvain; Morel, Olivier; Besseau, Cyril; Verger, Antoine; Boutley, Henri; Karcher, Gilles; Marie, Pierre-Yves

    2015-06-01

    Effective doses of 14 mSv or higher are currently being attained in patients having stress and rest myocardial perfusion imaging (MPI) single photon emission computed tomography (SPECT) performed on the same day with conventional protocols. This study aimed to assess the actual reduction in effective doses as well as diagnostic performances for MPI routinely planned with: (1) high-sensitivity cadmium zinc telluride (CZT) cameras, (2) very low injected activities and (3) a stress-first protocol where the normality of stress images may lead to avoiding rest imaging. During a 1-year period, 2,845 patients had MPI on a CZT camera, a single-day stress-first protocol and low injected activities (120 MBq of (99m)Tc-sestamibi at stress for 75 kg body weight and threefold higher at rest). The ability to detect > 50% coronary stenosis was assessed in a subgroup of 149 patients who also had coronary angiography, while the normalcy rate was assessed in a subgroup of 128 patients with a low pretest likelihood of coronary artery disease (<10%). Overall, 33% of patients had abnormal MPI of which 34% were women and 34% were obese. The mean effective doses and the percentage of exams involving only stress images were: (1) 3.53 ± 2.10 mSv and 37% in the overall population, (2) 4.83 ± 1.56 mSv and 5% in the subgroup with angiography and (3) 1.96 ± 1.52 mSv and 71 % in the low-probability subgroup. Sensitivity and global accuracy for identifying the 106 patients with coronary stenosis were 88 and 80%, respectively, while the normalcy rate was 97 %. When planned with a low-dose stress-first protocol on a CZT camera, MPI provides high diagnostic performances and a dramatic reduction in patient radiation doses. This reduction is even greater in low-risk subgroups with high rates of normal stress images, thus allowing the mean radiation dose to be balanced against cardiac risk in targeted populations.

  19. Left-ventricular systolic and diastolic dyssynchrony as assessed by multi-harmonic phase analysis of gated SPECT myocardial perfusion imaging in patients with end-stage renal disease and normal LVEF

    PubMed Central

    Chen, Ji; Kalogeropoulos, Andreas P.; Verdes, Liudmila; Butler, Javed; Garcia, Ernest V.

    2011-01-01

    Background The purpose of this study was to develop a multi-harmonic phase analysis method to measure diastolic dyssynchrony from conventional gated SPECT myocardial perfusion imaging(MPI) data and to compare it with systolic dyssynchrony in normal subjects and in patients with end-stage renal disease (ESRD) and normal left-ventricular ejection fraction (LVEF). Methods 121 consecutive patients with ESRD and normal LVEF and 30 consecutive normal controls were enrolled. Diastolic dyssynchrony parameters were calculated using 3-harmonic phase analysis. Systolic dyssynchrony parameters were calculated using the established 1-harmonic phase analysis. Results The systolic and diastolic dyssynchrony parameters were correlated, but significantly different in both control and ESRD groups, indicating they were physiologically related but measured different LV mechanisms. The systolic and diastolic dyssynchrony parameters were each significantly different between the control and the ESRD groups. Significant systolic and diastolic dyssynchrony were found in 47% and 65% of the entire ESRD group. Conclusion Multi-harmonic phase analysis has been developed to assess diastolic dyssynchrony, which measured a new LV mechanism of regional function from gated SPECT MPI and showed a significantly higher prevalence rate than systolic dyssynchrony in patients with ESRD and normal LVEF. PMID:21229401

  20. Adaptive SPECT

    PubMed Central

    Barrett, Harrison H.; Furenlid, Lars R.; Freed, Melanie; Hesterman, Jacob Y.; Kupinski, Matthew A.; Clarkson, Eric; Whitaker, Meredith K.

    2008-01-01

    Adaptive imaging systems alter their data-acquisition configuration or protocol in response to the image information received. An adaptive pinhole single-photon emission computed tomography (SPECT) system might acquire an initial scout image to obtain preliminary information about the radiotracer distribution and then adjust the configuration or sizes of the pinholes, the magnifications, or the projection angles in order to improve performance. This paper briefly describes two small-animal SPECT systems that allow this flexibility and then presents a framework for evaluating adaptive systems in general, and adaptive SPECT systems in particular. The evaluation is in terms of the performance of linear observers on detection or estimation tasks. Expressions are derived for the ideal linear (Hotelling) observer and the ideal linear (Wiener) estimator with adaptive imaging. Detailed expressions for the performance figures of merit are given, and possible adaptation rules are discussed. PMID:18541485

  1. Surveillance study for creating the national clinical database relating to ECG-gated myocardial perfusion SPECT of asymptomatic ischemic heart disease in patients with type-2 diabetes mellitus: J-ACCESS 2 study design.

    PubMed

    Kusuoka, Hideo; Yamasaki, Yoshimitsu; Izumi, Tohru; Kashiwagi, Atsunori; Kawamori, Ryuzo; Shimamoto, Kazuaki; Yamada, Nobuhiro; Nishimura, Tsunehiko

    2008-01-01

    Diabetes mellitus is an independent risk factor for acute myocardial infarction. Thus, a surveillance study was conducted as part of studies to create a national database related to electrocardiogram (ECG)-gated myocardial perfusion single-photon emission computed tomography (SPECT) of ischemic heart disease. Single-photon emission computed tomography was conducted in patients with type 2 diabetes mellitus and their prognoses will be followed for 3 years, stratified by patients' clinical background and SPECT findings. A total of 513 patients from 50 institutions were enrolled in this study, 297 of whom were men (age 66.2 +/- 0.4 years, mean +/- SEM) and 261 women (age 67.8 +/- 0.5 years). They have a history of retinopathy (25.3%), neuropathy (19.9%), cerebrovascular disorder, chronic obstructive pulmonary disease, and photocoagulation. Major risk factors for present disease were hypertension (82.3%) and hyperlipidemia (79.7%). In 244 patients (129 men and 115 women), body mass index (BMI) was 25 or more. Fifty-two of them (10.1%) underwent coronary angiography; of these, 26 (50.0%) had no coronary artery lesions with 75% or more stenosis, and only 1 (1.9%) had a left main trunk with 50% or more stenosis. An overwhelming majority of patients (94.3%) underwent SPECT imaging by a 1-day stress-followed-by-rest procedure. Stress procedure was exercise in most (70.8%) patients, followed by dipyridamole infusion in 14.6%, adenosine infusion in 6.6%, and adenosine triphosphate infusion in 5.7%. Endpoint of stress examination was most often fatigue in lower limbs (40.7%), followed by completion of pharmacological stress protocol (28.7%), and achievement of target heart rate (26.3%). The largest number of patients (198, 38.6%) received (99m)Tc-tetrofosmin at an initial dosage of 200-300 MBq (mean 331 +/- 3 MBq) followed by a second dosage of 700-800 MBq (mean 748 +/- 8 MBq). Among them, 491 (95.7%) received some kind of therapeutic drug: hypoglycemic drugs were used by the

  2. Technological Development and Advances in SPECT/CT

    PubMed Central

    Seo, Youngho; Aparici, Carina Mari; Hasegawa, Bruce H

    2010-01-01

    SPECT/CT has emerged over the past decade as a means of correlating anatomical information from CT with functional information from SPECT. The integration of SPECT and CT in a single imaging device facilitates anatomical localization of the radiopharmaceutical to differentiate physiological uptake from that associated with disease and patient-specific attenuation correction to improve the visual quality and quantitative accuracy of the SPECT image. The first clinically available SPECT/CT systems performed emission-transmission imaging using a dual-headed SPECT camera and a low-power x-ray CT sub-system. Newer SPECT/CT systems are available with high-power CT sub-systems suitable for detailed anatomical diagnosis, including CT coronary angiography and coronary calcification that can be correlated with myocardial perfusion measurements. The high-performance CT capabilities also offer the potential to improve compensation of partial volume errors for more accurate quantitation of radionuclide measurement of myocardial blood flow and other physiological processes and for radiation dosimetry for radionuclide therapy. In addition, new SPECT technologies are being developed that significantly improve the detection efficiency and spatial resolution for radionuclide imaging of small organs including the heart, brain, and breast, and therefore may provide new capabilities for SPECT/CT imaging in these important clinical applications. PMID:18396178

  3. An investigation of the trade-off between the count level and image quality in myocardial perfusion SPECT using simulated images: the effects of statistical noise and object variability on defect detectability

    NASA Astrophysics Data System (ADS)

    He, Xin; Links, Jonathan M.; Frey, Eric C.

    2010-09-01

    Quantum noise as well as anatomic and uptake variability in patient populations limits observer performance on a defect detection task in myocardial perfusion SPECT (MPS). The goal of this study was to investigate the relative importance of these two effects by varying acquisition time, which determines the count level, and assessing the change in performance on a myocardial perfusion (MP) defect detection task using both mathematical and human observers. We generated ten sets of projections of a simulated patient population with count levels ranging from 1/128 to around 15 times a typical clinical count level to simulate different levels of quantum noise. For the simulated population we modeled variations in patient, heart and defect size, heart orientation and shape, defect location, organ uptake ratio, etc. The projection data were reconstructed using the OS-EM algorithm with no compensation or with attenuation, detector response and scatter compensation (ADS). The images were then post-filtered and reoriented to generate short-axis slices. A channelized Hotelling observer (CHO) was applied to the short-axis images, and the area under the receiver operating characteristics (ROC) curve (AUC) was computed. For each noise level and reconstruction method, we optimized the number of iterations and cutoff frequencies of the Butterworth filter to maximize the AUC. Using the images obtained with the optimal iteration and cutoff frequency and ADS compensation, we performed human observer studies for four count levels to validate the CHO results. Both CHO and human observer studies demonstrated that observer performance was dependent on the relative magnitude of the quantum noise and the patient variation. When the count level was high, the patient variation dominated, and the AUC increased very slowly with changes in the count level for the same level of anatomic variability. When the count level was low, however, quantum noise dominated, and changes in the count level

  4. Comparison of (99m)Tc-MIBI SPECT/18F-FDG PET imaging and cardiac magnetic resonance imaging in patients with idiopathic dilated cardiomyopathy: assessment of cardiac function and myocardial injury.

    PubMed

    Wang, Lei; Yan, Chaowu; Zhao, Shihua; Fang, Wei

    2012-12-01

    The aim of this study is to evaluate the agreement between myocardial F-FDG PET imaging and cardiac magnetic resonance imaging (cMRI) in assessing cardiac function and relationship of cMRI late gadolinium enhancement (cMRI-LGE) and myocardial perfusion/metabolism pattern in patients with idiopathic dilated cardiomyopathy (IDCM). Forty-two consecutive patients diagnosed with IDCM were enrolled. All patients underwent Tc-MIBI SPECT, gated F-FDG PET imaging, and cMRI within 3-7 days. Cardiac function parameters were calculated using PET and cMRI. The segments analysis was performed using a 17-segment model. Patterns of perfusion/metabolism were classified as normal, mismatch, mild-to-moderate match, and severe match, and cMRI-LGE was classified into 3 categories (non-LGE, mid-wall LGE, and transmural LGE). The correlation between gated PET and cMRI was excellent for end-diastolic volume (EDV; r = 0.948, P < 0.001), end-systolic volume (ESV; r = 0.939, P < 0.001), and left ventricular ejection fraction (LVEF; r = 0.685, P < 0.001). EDV and ESV were underestimated, whereas LVEF was slightly overestimated by gated PET in comparison to cMRI. Perfusion/metabolism patterns varied in 3 different categories of non-LGE, mid-wall LGE, and transmural LGE (χ = 14.276, P < 0.001). Also, 71.0% (44/62) segments with mid-wall LGE had normal perfusion/metabolism patterns, and 75.9% (63/83) perfusion/metabolism mismatch segments were shown as non-LGE. The incidence of LGE was significantly higher in segments with severe match than the other 3 segment groups (χ = 112.53, P < 0.001). There is an excellent agreement between gated PET and cMRI in assessment of cardiac function. LGE-cMRI is much more sensitive in detecting moderate fibrosis, while PET could detect more impaired but viable myocardium. Combining the 2 imaging modalities is useful for providing more comprehensive evaluations of myocardial injury in patients with IDCM.

  5. Tc-99m SPECT sestamibi for the measurement of infarct size.

    PubMed

    Gibbons, Raymond J

    2011-01-01

    There are a variety of approaches to assess the efficacy of reperfusion therapy, and myocardial protection, in acute myocardial infarction. This review summarizes the available evidence validating the use of technetium-99m sestamibi single-photon emission computed tomography (SPECT) for this purpose. Multiple lines of evidence have validated its clinical utility. SPECT sestamibi infarct size has been used as an endpoint in multiple randomized clinical trials. A smaller number of clinical trials have used both early and later imaging with SPECT sestamibi to assess myocardium at risk and myocardial salvage. SPECT sestamibi has a number of limitations which must be recognized. Nevertheless, SPECT sestamibi infarct size is a well-validated measurement with a long track record of performance as an endpoint in multicenter, randomized clinical trials.

  6. Diagnostic accuracy of gated Tc-99m sestamibi stress myocardial perfusion SPECT with combined supine and prone acquisitions to detect coronary artery disease in obese and nonobese patients.

    PubMed

    Berman, Daniel S; Kang, Xingping; Nishina, Hidetaka; Slomka, Piotr J; Shaw, Leslee J; Hayes, Sean W; Cohen, Ishac; Friedman, John D; Gerlach, James; Germano, Guido

    2006-01-01

    The diagnostic value of gated myocardial perfusion single-photon emission computed tomography (MPS) with combined supine and prone acquisitions to detect coronary artery disease (CAD) in obese and nonobese patients has not been defined. We studied 1511 patients without prior myocardial infarction or coronary revascularization who either had coronary angiography within 3 months of MPS (n = 785) or had a low pretest likelihood of CAD (n = 726). All patients underwent rest thallium 201/gated exercise or adenosine stress technetium 99m sestamibi MPS in both the supine and prone positions. According to body mass index (BMI), patients were categorized as normal weight (BMI of 18.5-24.9 kg/m2), overweight (BMI of 25.0-29.9 kg/m2), or obese (BMI > or = 30.0 kg/m2). There were no significant differences in stress, fixed, or ischemic defects among patients in different weight categories. The sensitivity of MPS was 85%, 86%, and 89% for detecting patients with 50% or greater coronary stenosis and 89%, 91%, and 92% for detecting those with 70% or greater coronary stenosis in the normal-weight, overweight, and obese groups, respectively. Normalcy rates were nearly identical among the 3 weight groups (99%, 98%, and 99%, respectively). Multivariate logistic regression analysis further confirmed that BMI was a nonsignificant predictor for the detection of CAD. In a subset of 290 patients, automated quantitative MPS analysis confirmed that combined supine and prone MPS increased specificity (86%) in identifying CAD, without a significant reduction in sensitivity (83% for > or = 50% stenosis and 88% for > or = 70% stenosis). The findings of this study suggest that MPS performed with gating and combined supine and prone acquisitions without attenuation correction had a similar diagnostic accuracy for the detection of CAD in normal-weight, overweight, and obese patients.

  7. Relation between the kinetics of thallium-201 in myocardial scintigraphy and myocardial metabolism in patients with acute myocardial infarction

    PubMed Central

    Yamagishi, H; Akioka, K; Takagi, M; Tanaka, A; Takeuchi, K; Yoshikawa, J; Ochi, H

    1998-01-01

    Objective—To investigate the relations between myocardial metabolism and the kinetics of thallium-201 in myocardial scintigraphy.
Methods—46 patients within six weeks after the onset of acute myocardial infarction underwent resting myocardial dual isotope, single acquisition, single photon emission computed tomography (SPECT) using radioiodinated 15-iodophenyl 3-methyl pentadecaenoic acid (BMIPP) and thallium-201, exercise thallium-201 SPECT, and positron emission tomography (PET) using nitrogen-13 ammonia (NH3) and [F18]fluorodeoxyglucose (FDG) under fasting conditions. The left ventricle was divided into nine segments, and the severity of defects was assessed visually.
Results—In the resting SPECT, less BMIPP uptake than thallium-201 uptake was observed in all of 40 segments with reverse redistribution of thallium-201, and in 21 of 88 segments with a fixed defect of thallium-201 (p < 0.0001); and more FDG uptake than NH3 uptake (NH3-FDG mismatch) was observed in 35 of 40 segments with reverse redistribution and in 38 of 88 segments with fixed defect (p < 0.0001). Less BMIPP uptake in the resting SPECT was observed in 49 of 54 segments with slow stress redistribution in exercise SPECT, and in nine of 17 segments with rapid stress redistribution (p < 0.0005); NH3-FDG mismatch was observed in 42 of 54 segments with slow stress redistribution and in five of 17 segments with rapid stress redistribution (p < 0.0005).
Conclusions—Thallium-201 myocardial scintigraphy provides information about not only myocardial perfusion and viability but also about myocardial metabolism in patients with acute myocardial infarction.

 Keywords: thallium-201 SPECT;  BMIPP SPECT;  FDG PET;  myocardial infarction;  redistribution PMID:9764055

  8. Cardiac sarcoidosis demonstrated by Tl-201 and Ga-67 SPECT imaging

    SciTech Connect

    Taki, J.; Nakajima, K.; Bunko, H.; Ohguchi, M.; Tonami, N.; Hisada, K. )

    1990-09-01

    Ga-67 and Tl-201 SPECT was performed to evaluate cardiac sarcoidosis in a 15-year-old boy. Tl-201 SPECT imaging showed decreased uptake in the inferior to lateral wall and Ga-67 accumulation in the area of decreased Tl-201 uptake. These findings suggested cardiac sarcoidosis, and cardiac biopsy confirmed this diagnosis. After corticosteroid therapy, myocardial uptake of Ga-67 disappeared and myocardial TI-201 uptake became more homogeneous.

  9. SPECT and PET in ischemic heart failure.

    PubMed

    Angelidis, George; Giamouzis, Gregory; Karagiannis, Georgios; Butler, Javed; Tsougos, Ioannis; Valotassiou, Varvara; Giannakoulas, George; Dimakopoulos, Nikolaos; Xanthopoulos, Andrew; Skoularigis, John; Triposkiadis, Filippos; Georgoulias, Panagiotis

    2017-02-02

    Heart failure is a common clinical syndrome associated with significant morbidity and mortality worldwide. Ischemic heart disease is the leading cause of heart failure, at least in the industrialized countries. Proper diagnosis of the syndrome and management of patients with heart failure require anatomical and functional information obtained through various imaging modalities. Nuclear cardiology techniques play a main role in the evaluation of heart failure. Myocardial single photon emission computed tomography (SPECT) with thallium-201 or technetium-99 m labelled tracers offer valuable data regarding ventricular function, myocardial perfusion, viability, and intraventricular synchronism. Moreover, positron emission tomography (PET) permits accurate evaluation of myocardial perfusion, metabolism, and viability, providing high-quality images and the ability of quantitative analysis. As these imaging techniques assess different parameters of cardiac structure and function, variations of sensitivity and specificity have been reported among them. In addition, the role of SPECT and PET guided therapy remains controversial. In this comprehensive review, we address these controversies and report the advances in patient's investigation with SPECT and PET in ischemic heart failure. Furthermore, we present the innovations in technology that are expected to strengthen the role of nuclear cardiology modalities in the investigation of heart failure.

  10. Generating Dynamic System Matrices for Dynamic SPECT

    SciTech Connect

    2011-02-01

    The purpose of the computer program is to generate system matrices that model data acquisition process in dynamic single photon emission computed tomography (SPECT). The application is for the reconstruction of dynamic data from projection measurements that provide the time evolution of activity uptake and wash out in an organ of interest. The measurement of the time activity in the blood and organ tissue provide time-activity curves (TACs) that are used to estimate kinetic parameters. The program provides a correct model of the in vivo spatial and temporal distribution of radioactive in organs. The model accounts for the attenuation of the internal emitting radioactivity, it accounts for the vary point response of the collimators, and correctly models the time variation of the activity in the organs. One important application where the software is being used in a measuring the arterial input function (AIF) in a dynamic SPECT study where the data are acquired from a slow camera rotation. Measurement of the arterial input function (AIF) is essential to deriving quantitative estimates of regional myocardial blood flow using kinetic models. A study was performed to evaluate whether a slowly rotating SPECT system could provide accurate AIF's for myocardial perfusion imaging (MPI). Methods: Dynamic cardiac SPECT was first performed in human subjects at rest using a Phillips Precedence SPECT/CT scanner. Dynamic measurements of Tc-99m-tetrofosmin in the myocardium were obtained using an infusion time of 2 minutes. Blood input, myocardium tissue and liver TACs were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K1. Results: The spatiotemporal 4D ML-EM reconstructions gave more accurate reconstructions that did standard frame-by-frame 3D ML-EM reconstructions. From additional computer simulations and phantom studies, it was determined that a 1 minute infusion with a SPECT system rotation speed

  11. Recent advances in SPECT

    SciTech Connect

    Tsui, Benjamin M. W.

    1998-08-28

    Single photon emission computed tomography (SPECT) is a medical imaging modality that combines conventional nuclear medicine imaging technique and methods of computed tomography (CT). From images that represent the biodistribution of the injected radiopharmaceutical in the patient, SPECT provides functional information that is unique. The first SPECT system was developed in the sixties. However, early progress of SPECT was hampered by the lack of adequate image reconstruction methods. The development of x-ray CT and image reconstruction methods in the seventies spurred a renewed interest in SPECT. In 1981, the first commercial SPECT system based on a single rotating camera was available for clinical use. Today, most modern SPECT systems consist of multiple cameras that rotate around the patients. They have better spatial resolution and higher detection efficiency as compared to the earlier single camera systems. Recently, a new generation of dual camera systems allowing for coincidence imaging of positron emitting radiopharmaceuticals has emerged in the commercial market. Additionally, new quantitative image reconstruction methods are under development. They compensate for image degrading factors including attenuation, collimator-detector blurring and scatter. Also, they result in SPECT images with improved image quality and more accurately represent the three-dimensional radioactivity distribution in the patient. Such advances in radiopharmaceuticals, instrumentation, image reconstruction, compensation methods, and clinical applications have fueled a steady growth of SPECT as an important diagnostic tool in patient management.

  12. A combined static-dynamic single-dose imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT.

    PubMed

    Sciammarella, Maria; Shrestha, Uttam M; Seo, Youngho; Gullberg, Grant T; Botvinick, Elias H

    2017-08-03

    SPECT myocardial perfusion imaging (MPI) is a clinical mainstay that is typically performed with static imaging protocols and visually or semi-quantitatively assessed for perfusion defects based upon the relative intensity of myocardial regions. Dynamic cardiac SPECT presents a new imaging technique based on time-varying information of radiotracer distribution, which permits the evaluation of regional myocardial blood flow (MBF) and coronary flow reserve (CFR). In this work, a preliminary feasibility study was conducted in a small patient sample designed to implement a unique combined static-dynamic single-dose one-day visit imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT for improving the diagnosis of coronary artery disease (CAD). Fifteen patients (11 males, four females, mean age 71 ± 9 years) were enrolled for a combined dynamic and static SPECT (Infinia Hawkeye 4, GE Healthcare) imaging protocol with a single dose of (99m)Tc-tetrofosmin administered at rest and a single dose administered at stress in a one-day visit. Out of 15 patients, eleven had selective coronary angiography (SCA), 8 within 6 months and the rest within 24 months of SPECT imaging, without intervening symptoms or interventions. The extent and severity of perfusion defects in each myocardial region was graded visually. Dynamically acquired data were also used to estimate the MBF and CFR. Both visually graded images and estimated CFR were tested against SCA as a reference to evaluate the validity of the methods. Overall, conventional static SPECT was normal in ten patients and abnormal in five patients, dynamic SPECT was normal in 12 patients and abnormal in three patients, and CFR from dynamic SPECT was normal in nine patients and abnormal in six patients. Among those 11 patients with SCA, conventional SPECT was normal in 5, 3 with documented CAD on SCA with an overall accuracy of 64%, sensitivity of 40% and specificity of 83%. Dynamic SPECT image

  13. SPECT radiopharmaceuticals for dementia.

    PubMed

    Guidotti, Claudio; Farioli, Daniela; Gaeta, Maria Chiara; Giovannini, Elisabetta; Lazzeri, Patrizia; Meniconi, Martina; Ciarmiello, Andrea

    2013-12-01

    Over the last decade the interest towards functional neuroimaging has gradually increased, especially in the field of neurodegenerative diseases. At present, diagnosis of dementia is mostly clinical. Numerous modalities of neuroimaging are today available, each of them allowing a different aspect of neurodegeneration to be investigated. Although during the last period many have predicted a forthcoming disappearance of SPECT imaging in favour of the PET imaging, many new radiotracers SPECT, dual-SPECT tracers techniques and receptor targeting designed radiopharmaceuticals are currently at study. Besides, last decade has also assisted to the development of new SPECT imaging systems, most of them integrated with other imaging modalities (MRI, CT, ultrasound techniques), granting improved imaging capabilities. All these improved conditions, especially appealing for the neuroimaging, together with the new radiopharmaceuticals in development may renovate the interest for SPECT clinical applications.

  14. Neuroreceptor imaging with SPECT.

    PubMed

    Innis, R B

    1992-11-01

    Single photon emission computed tomography (SPECT) imaging can provide useful measurements of brain receptors and endogenous neurotransmitters and may have significant experimental and clinical applications. This presentation reviews the use of SPECT for neuroreceptor imaging. Studies of receptors for benzodiazepines, dopamine D2 agents, and dopamine reuptake sites will be used to exemplify the capabilities of SPECT. Tracers labeled with the radioisotope 125I have high affinity, high brain uptake, and high ratios of specific to nonspecific binding. Imaging studies of human and nonhuman primate brain will be presented, and the potential clinical applicability of these agents will be discussed.

  15. A multiresolution restoration method for cardiac SPECT

    NASA Astrophysics Data System (ADS)

    Franquiz, Juan Manuel

    Single-photon emission computed tomography (SPECT) is affected by photon attenuation and image blurring due to Compton scatter and geometric detector response. Attenuation correction is important to increase diagnostic accuracy of cardiac SPECT. However, in attenuation-corrected scans, scattered photons from radioactivity in the liver could produce a spillover of counts into the inferior myocardial wall. In the clinical setting, blurring effects could be compensated by restoration with Wiener and Metz filters. Inconveniences of these procedures are that the Wiener filter depends upon the power spectra of the object image and noise, which are unknown, while Metz parameters have to be optimized by trial and error. This research develops an alternative restoration procedure based on a multiresolution denoising and regularization algorithm. It was hypothesized that this representation leads to a more straightforward and automatic restoration than conventional filters. The main objective of the research was the development and assessment of the multiresolution algorithm for compensating the liver spillover artifact. The multiresolution algorithm decomposes original SPECT projections into a set of sub-band frequency images. This allows a simple denoising and regularization procedure by discarding high frequency channels and performing inversion only in low and intermediate frequencies. The method was assessed in bull's eye polar maps and short- axis attenuation-corrected reconstructions of a realistic cardiac-chest phantom with a custom-made liver insert and different 99mTc liver-to-heart activity ratios. Inferior myocardial defects were simulated in some experiments. The cardiac phantom in free air was considered as the gold standard reference. Quantitative analysis was performed by calculating contrast of short- axis slices and the normalized chi-square measure, defect size and mean and standard deviation of polar map counts. The performance of the multiresolution

  16. Design and assessment of cardiac SPECT systems

    NASA Astrophysics Data System (ADS)

    Lee, Chih-Jie

    Single-photon emission computed tomography (SPECT) is a modality widely used to detect myocardial ischemia and myocardial infarction. Objectively assessing and comparing different SPECT systems is important so that the best detectability of cardiac defects can be achieved. Whitaker, Clarkson, and Barrett's study on the scanning linear observer (SLO) shows that the SLO can be used to estimate the location and size of signals. One major advantage of the SLO is that it can be used with projection data rather than reconstruction data. Thus, this observer model assesses overall hardware performance independent by any reconstruction algorithm. In addition, we will show that the run time of image-quality studies is significantly reduced. Several systems derived from the GE CZT-based dedicated cardiac SPECT camera Discovery 530c design, which is officially named the Alcyone Technology: Discovery NM 530c, were assessed using the performance of the SLO for the task of detecting cardiac defects and estimating the properties of the defects. Clinically, hearts can be virtually segmented into three coronary artery territories: left anterior descending artery (LAD), left circumflex artery (LCX), and right coronary artery (RCA). One of the most important functions of a cardiac SPECT system is to produce images from which a radiologist can correctly predict in which territory the defect exists. A good estimation of the defect extent from the images is also very helpful for determining the seriousness of the myocardial ischemia. In this dissertation, both locations and extent of defects were estimated by the SLO, and system performance was assessed using localization receiver operating characteristic (LROC) / estimation receiver operating characteristic (EROC) curves. Area under LROC curve (AULC) / area under EROC curve (AUEC) and true positive fraction (TPF) at specific false positive fraction (FPF) can be treated as the gures of merit (FOMs). As the results will show, a

  17. Abdominal SPECT imaging

    SciTech Connect

    Van Heertum, R.L.; Brunetti, J.C.; Yudd, A.P.

    1987-07-01

    Over the past several years, abdominal single photon emission computed tomography (SPECT) imaging has evolved from a research tool to an important clinical imaging modality that is helpful in the diagnostic assessment of a wide variety of disorders involving the abdominal viscera. Although liver-spleen imaging is the most popular of the abdominal SPECT procedures, blood pool imaging is becoming much more widely utilized for the evaluation of cavernous hemangiomas of the liver as well as other vascular abnormalities in the abdomen. Adjunctive indium leukocyte and gallium SPECT studies are also proving to be of value in the assessment of a variety of infectious and neoplastic diseases. As more experience is acquired in this area, SPECT should become the primary imaging modality for both gallium and indium white blood cells in many institutions. Renal SPECT, on the other hand, has only recently been used as a clinical imaging modality for the assessment of such parameters as renal depth and volume. The exact role of renal SPECT as a clinical tool is, therefore, yet to be determined. 79 references.

  18. The AAPM/RSNA physics tutorial for residents. Physics of SPECT.

    PubMed

    Tsui, B M

    1996-01-01

    Single-photon emission computed tomography (SPECT) provides three-dimensional (3D) image information about the distribution of a radiopharmaceutical injected into the patient for diagnostic purposes. By combining conventional scintigraphic and computed tomographic methods, SPECT images present 3D functional information about the patient in more detail and higher contrast than found in planar scintigrams. A typical SPECT system consists of one or more scintillation cameras that acquire multiple two-dimensional planar projection images around the patient. The projection data are reconstructed into 3D images. The collimator of the scintillation camera has substantial effects on the spatial resolution and detection efficiency of the SPECT system. Physical factors such as photon attenuation and scatter affect the quantitative accuracy and quality of SPECT images, and various methods have been developed to compensate for these image-degrading effects. In myocardial SPECT, an important application of SPECT, recent use of attenuation compensation methods has provided images with reduced artifacts and distortions caused by the non-uniform attenuation in the chest region and by the diaphragmatic and breast attenuation. Attenuation-compensated myocardial SPECT images have the potential to improve clinical diagnosis by reducing the false-positive and false-negative detection of myocardial defects. In the future, further improvement in SPECT images will be realized from the continuous development of new radio-pharmaceuticals for new clinical applications, instrumentation with high spatial resolution and detection efficiency, and image reconstruction algorithms and compensation methods that reduce the image-degrading effects of the collimator-detector, attenuation, and scatter.

  19. SPECT attenuation correction: an essential tool to realize nuclear cardiology's manifest destiny.

    PubMed

    Garcia, Ernest V

    2007-01-01

    Single photon emission computed tomography (SPECT) myocardial perfusion imaging has attained widespread clinical acceptance as a standard of care for cardiac patients. Yet, physical phenomena degrade the accuracy of how our cardiac images are visually interpreted or quantitatively analyzed. This degradation results in cardiac images in which brightness or counts are not necessarily linear with tracer uptake or myocardial perfusion. Attenuation correction (AC) is a methodology that has evolved over the last 30 years to compensate for this degradation. Numerous AC clinical trials over the last 10 years have shown increased diagnostic accuracy over non-AC SPECT for detecting and localizing coronary artery disease, particularly for significantly increasing specificity and normalcy rate. This overwhelming evidence has prompted our professional societies to issue a joint position statement in 2004 recommending the use of AC to maximize SPECT diagnostic accuracy and clinical usefulness. Phantom and animal studies have convincingly shown how SPECT AC recovers the true regional myocardial activity concentration, while non-AC SPECT does not. Thus, AC is also an essential tool for extracting quantitative parameters from all types of cardiac radionuclide distributions, and plays an important role in establishing cardiac SPECT for flow, metabolic, innervation, and molecular imaging, our manifest destiny.

  20. Comparison of conventional and cadmium-zinc-telluride single-photon emission computed tomography for analysis of thallium-201 myocardial perfusion imaging: an exploratory study in normal databases for different ethnicities.

    PubMed

    Ishihara, Masaru; Onoguchi, Masahisa; Taniguchi, Yasuyo; Shibutani, Takayuki

    2017-06-29

    The aim of this study was to clarify the differences in thallium-201-chloride (thallium-201) myocardial perfusion imaging (MPI) scans evaluated by conventional anger-type single-photon emission computed tomography (conventional SPECT) versus cadmium-zinc-telluride SPECT (CZT SPECT) imaging in normal databases for different ethnic groups. MPI scans from 81 consecutive Japanese patients were examined using conventional SPECT and CZT SPECT and analyzed with the pre-installed quantitative perfusion SPECT (QPS) software. We compared the summed stress score (SSS), summed rest score (SRS), and summed difference score (SDS) for the two SPECT devices. For a normal MPI reference, we usually use Japanese databases for MPI created by the Japanese Society of Nuclear Medicine, which can be used with conventional SPECT but not with CZT SPECT. In this study, we used new Japanese normal databases constructed in our institution to compare conventional and CZT SPECT. Compared with conventional SPECT, CZT SPECT showed lower SSS (p < 0.001), SRS (p = 0.001), and SDS (p = 0.189) using the pre-installed SPECT database. In contrast, CZT SPECT showed no significant difference from conventional SPECT in QPS analysis using the normal databases from our institution. Myocardial perfusion analyses by CZT SPECT should be evaluated using normal databases based on the ethnic group being evaluated.

  1. Evaluation of SPECT quantification of radiopharmaceutical distribution in canine myocardium

    SciTech Connect

    Li, Jianying; Jaszczak, R.L.; Greer, K.L.

    1995-02-01

    This study evaluates the quantitative accuracy of SPECT for in vivo distributions of {sup 99m}Tc radiopharmaceuticals using fanbeam (FB) and parallel-beam (PB) collimators and compares uniform and nouniform attenuation correction methods in terms of quantitative accuracy. SPECT quantification of canine myocardial radioactivity was performed followed by well counter measurements of extracted myocardial tissue samples. Transmission scans using a line source and an FB collimator were performed to generate nonuniform attenuation maps of the canine thorax. Emission scans with two energy windows were acquired. Images were reconstructed using a filtered backprojection algorithm, with a dual-window scatter subtraction combined with either no attenuation compensation or single iteration Chang attenuation compensation based on a uniform attenuation map {mu}=0.152 cm{sup -1} or the nonuniform transmission map. The measured mean counts from the SPECT images were converted using the well counter. The experimental results demonstrate that, compared with well counter values, the in vivo distributions of {sup 99m}Tc were most accurately determined in FB and PB SPECT reconstructions with nonuniform attenuation compensation, under-estimated without attenuation compensation and overestimated with uniform attenuation compensation. 37 refs., 9 figs., 10 tabs.

  2. Implementation of technetium-99m MIBI SPECT imaging guidelines: optimizing the two day stress-rest protocol.

    PubMed

    Lavalaye, J M; Schroeder-Tanka, J M; Tiel-van Buul, M M; van der Wall, E E; Lie, K I; van Royen, E A

    1997-08-01

    In a previous study in 460 patients, we found that in patients with suspected or known coronary artery disease undergoing stress-rest technetium-99m sestamibi (MIBI) SPECT myocardial perfusion imaging, rest SPECT imaging could be withhold in approximately 20% of patients because of a completely normal stress study. The present study was set up to evaluate the consequences of the implementation of this finding in a subsequent population of patients, and to set standards for the variety of protocols now used for MIBI SPECT imaging. Within a period of 4 months, 235 consecutive patients referred for MIBI SPECT scintigraphy were studied. All patients had stable cardiac chest pain and underwent symptom-limited exercise MIBI SPECT perfusion imaging. The stress SPECT images were reconstructed and evaluated immediately after acquisition of the images. In case of a clearly normal stress SPECT study, rest imaging was cancelled. Twenty-six of 235 patients (11%) had a completely normal stress MIBI SPECT study and the rest SPECT imaging procedure could be subsequently cancelled. In 20 patients (9%) the stress SPECT was inconclusive, and in 189 (80%) of patients stress imaging was clearly abnormal. In the first month of the study, the nuclear medicine physicians and cardiologists would interprete only 6% of the stress images as normal, while this number increased to 13% after 9 weeks, with a mean of 11% for the whole investigation period of 4 months. In patients undergoing stress MIBI SPECT imaging, it was found justified to cancel rest MIBI SPECT imaging in at least 11% of patients because of a completely normal stress SPECT. As 9% of the images were inconclusive, the number of normal stress images could theoretically increase to 20% if reliable measures are taken to improve reading accuracy. This number is in close agreement with the number of normal stress studies previously reported by our institution and would lead to a considerable reduction of radiation dose, costs, and

  3. Proceedings of the cardiac PET summit meeting 12 may 2014: Cardiac PET and SPECT instrumentation.

    PubMed

    Garcia, Ernest V

    2015-06-01

    Advances in PET and SPECT and imaging hardware and software are vastly improving the noninvasive evaluation of myocardial perfusion and function. PET perfusion imaging has benefitted from the introduction of novel detectors that now allow true 3D imaging, and precise attenuation correction (AC). These developments have also resulted in perfusion images with higher spatial and contrast resolution that may be acquired in shorter protocols and/or with less patient radiation exposure than traditional PET or SPECT studies. Hybrid PET/CT cameras utilize transmission computed tomographic (CT) scans for AC, and offer the additional clinical advantages of evaluating coronary calcium and myocardial anatomy but at a higher cost than PET scanners that use (68)Ge radioactive line sources. As cardiac PET systems continue to improve, dedicated cardiac SPECT systems are also undergoing a profound change in their design. The scintillation camera general purpose design is being replaced with systems with multiple detectors focused on the heart yielding 5 to 10 times the sensitivity of conventional SPECT. As a result, shorter acquisition times and/or lower tracer doses produce higher quality SPECT images than were possible before. This article reviews these concepts and compares the attributes of PET and SPECT instrumentation.

  4. Bayesian learning for cardiac SPECT image interpretation.

    PubMed

    Sacha, Jarosław P; Goodenday, Lucy S; Cios, Krzysztof J

    2002-01-01

    In this paper, we describe a system for automating the diagnosis of myocardial perfusion from single-photon emission computerized tomography (SPECT) images of male and female hearts. Initially we had several thousand of SPECT images, other clinical data and physician-interpreter's descriptions of the images. The images were divided into segments based on the Yale system. Each segment was described by the physician as showing one of the following conditions: normal perfusion, reversible perfusion defect, partially reversible perfusion defect, fixed perfusion defect, defect showing reverse redistribution, equivocal defect or artifact. The physician's diagnosis of overall left ventricular (LV) perfusion, based on the above descriptions, categorizes a study as showing one or more of eight possible conditions: normal, ischemia, infarct and ischemia, infarct, reverse redistribution, equivocal, artifact or LV dysfunction. Because of the complexity of the task, we decided to use the knowledge discovery approach, consisting of these steps: problem understanding, data understanding, data preparation, data mining, evaluating the discovered knowledge and its implementation. After going through the data preparation step, in which we constructed normal gender-specific models of the LV and image registration, we ended up with 728 patients for whom we had both SPECT images and corresponding diagnoses. Another major contribution of the paper is the data mining step, in which we used several new Bayesian learning classification methods. The approach we have taken, namely the six-step knowledge discovery process has proven to be very successful in this complex data mining task and as such the process can be extended to other medical data mining projects.

  5. Molecular SPECT Imaging: An Overview

    PubMed Central

    Khalil, Magdy M.; Tremoleda, Jordi L.; Bayomy, Tamer B.; Gsell, Willy

    2011-01-01

    Molecular imaging has witnessed a tremendous change over the last decade. Growing interest and emphasis are placed on this specialized technology represented by developing new scanners, pharmaceutical drugs, diagnostic agents, new therapeutic regimens, and ultimately, significant improvement of patient health care. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) have their signature on paving the way to molecular diagnostics and personalized medicine. The former will be the topic of the current paper where the authors address the current position of the molecular SPECT imaging among other imaging techniques, describing strengths and weaknesses, differences between SPECT and PET, and focusing on different SPECT designs and detection systems. Radiopharmaceutical compounds of clinical as well-preclinical interest have also been reviewed. Moreover, the last section covers several application, of μSPECT imaging in many areas of disease detection and diagnosis. PMID:21603240

  6. Feasibility and safety of exercise stress testing using an anti-gravity treadmill with Tc-99m tetrofosmin single-photon emission computed tomography (SPECT) myocardial perfusion imaging: A pilot non-randomized controlled study.

    PubMed

    Daly, Patrick; Kayse, Regina; Rudick, Steven; Robbins, Nathan; Scheler, Jennifer; Harris, David; O'Donnell, Robert; Dwivedi, Alok K; Gerson, Myron C

    2017-08-31

    Exercise is the AHA/ACC guideline-recommended stress modality for myocardial perfusion imaging, but many patients are unable to exercise to target heart rate on a conventional treadmill. We examined the feasibility and safety of stress imaging using an anti-gravity treadmill in patients with perceived poor exercise capacity. 49 patients were recruited for stress testing by anti-gravity treadmill (n = 29) or to a regadenoson control group (n = 20). Seventeen anti-gravity test patients (59%) reached target heart rate obviating the need for a pharmacologic stress agent. Adverse effects of the anti-gravity treadmill were limited to minor muscle aches in 5 subjects. Stress myocardial perfusion image quality judged by 3 blinded readers on a 5-point scale was comparable for the anti-gravity treadmill (4.30 ± SD 0.87) vs pharmacologic stress (4.28 ± SD 0.66). Stress testing using an anti-gravity treadmill is feasible and may help some patients safely achieve target heart rate.

  7. Quantification of myocardium at risk in myocardial perfusion SPECT by co-registration and fusion with delayed contrast-enhanced magnetic resonance imaging--an experimental ex vivo study.

    PubMed

    Ugander, Martin; Soneson, Helen; Engblom, Henrik; van der Pals, Jesper; Erlinge, David; Heiberg, Einar; Arheden, Håkan

    2012-01-01

    Myocardial perfusion single-photon emission computed tomography (MPS) can be used to assess myocardium at risk in occlusive coronary ischaemia. The aim was to develop a method to quantify myocardium at risk as perfusion defect size on ex vivo MPS using co-registration and fusion with ex vivo magnetic resonance imaging (MRI). Pigs (n = 19) were injected 99mTc-tetrofosmin prior to concluding 40 min of coronary artery occlusion, followed by reperfusion and MRI contrast injection. The excised heart was imaged with T1-weighted MRI and MPS, and images were co-registered using freely available software (Segment v1.8, http://segment.heiberg.se). The left ventricle was semi-automatically delineated in MRI and copied to MPS. The threshold for a MPS perfusion defect was defined as the mean counts in the MPS image at the MRI-determined border between remote myocardium and air. The threshold was measured using count maxima set to the 100th-95th percentile of counts within the myocardium. The count maximum that gave the lowest threshold variability (SD) was considered the most robust. A count maximum using the 100th percentile yielded a threshold of (mean ± SD) 55 ± 6·2%. This method showed the lowest SD compared to 99th-95th percentile count maxima (6·6-7·2%). We describe a method for objective quantification of myocardium at risk as perfusion defect size on MPS using knowledge of the anatomy of the myocardium from co-registered MRI. This enables simultaneous quantification of myocardium at risk by MPS and infarct size by MRI for the evaluation of treatments for myocardial infarction. © 2011 The Authors. Clinical Physiology and Functional Imaging © 2011 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  8. Filters in 2D and 3D Cardiac SPECT Image Processing.

    PubMed

    Lyra, Maria; Ploussi, Agapi; Rouchota, Maritina; Synefia, Stella

    2014-01-01

    Nuclear cardiac imaging is a noninvasive, sensitive method providing information on cardiac structure and physiology. Single photon emission tomography (SPECT) evaluates myocardial perfusion, viability, and function and is widely used in clinical routine. The quality of the tomographic image is a key for accurate diagnosis. Image filtering, a mathematical processing, compensates for loss of detail in an image while reducing image noise, and it can improve the image resolution and limit the degradation of the image. SPECT images are then reconstructed, either by filter back projection (FBP) analytical technique or iteratively, by algebraic methods. The aim of this study is to review filters in cardiac 2D, 3D, and 4D SPECT applications and how these affect the image quality mirroring the diagnostic accuracy of SPECT images. Several filters, including the Hanning, Butterworth, and Parzen filters, were evaluated in combination with the two reconstruction methods as well as with a specified MatLab program. Results showed that for both 3D and 4D cardiac SPECT the Butterworth filter, for different critical frequencies and orders, produced the best results. Between the two reconstruction methods, the iterative one might be more appropriate for cardiac SPECT, since it improves lesion detectability due to the significant improvement of image contrast.

  9. Filters in 2D and 3D Cardiac SPECT Image Processing

    PubMed Central

    Ploussi, Agapi; Synefia, Stella

    2014-01-01

    Nuclear cardiac imaging is a noninvasive, sensitive method providing information on cardiac structure and physiology. Single photon emission tomography (SPECT) evaluates myocardial perfusion, viability, and function and is widely used in clinical routine. The quality of the tomographic image is a key for accurate diagnosis. Image filtering, a mathematical processing, compensates for loss of detail in an image while reducing image noise, and it can improve the image resolution and limit the degradation of the image. SPECT images are then reconstructed, either by filter back projection (FBP) analytical technique or iteratively, by algebraic methods. The aim of this study is to review filters in cardiac 2D, 3D, and 4D SPECT applications and how these affect the image quality mirroring the diagnostic accuracy of SPECT images. Several filters, including the Hanning, Butterworth, and Parzen filters, were evaluated in combination with the two reconstruction methods as well as with a specified MatLab program. Results showed that for both 3D and 4D cardiac SPECT the Butterworth filter, for different critical frequencies and orders, produced the best results. Between the two reconstruction methods, the iterative one might be more appropriate for cardiac SPECT, since it improves lesion detectability due to the significant improvement of image contrast. PMID:24804144

  10. First Results of Small Animal Imaging Spect Detector for Cardiovascular Disease Studies on Mice

    NASA Astrophysics Data System (ADS)

    Magliozzi, M. L.; Ballerini, M.; Cisbani, E.; Colilli, S.; Cusanno, F.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Santavenere, F.; Torrioli, S.; Veneroni, P.; Majewsky, S.; Mok, S. P. G.; Tsui, B. M. W.; Wang, Y.; Marano, G.; Musumeci, M.; Palazzesi, S.; Ciccariello, G.; de Vincentis, G.; Accorsi, R.

    2008-06-01

    We have developed a compact, open, Dual Head pinhole SPECT system for high resolution molecular imaging with radionuclides of mice, dedicated mainly to preclinical study of stem cells capability to recover myocardial infarction. The gamma detector is made of pinhole tungsten collimators, pixellated scintillators, matrix of multi-anode PMTs and individual channel readout. Measurements have been performed on phantoms and live mice devoted initially to test and calibrate the system and to optimize protocols. The implemented system and the first results will be presented, demonstrating the effectiveness of our dedicated SPECT detector for small animal imaging.

  11. Investigation of dynamic SPECT measurements of the arterial input function in human subjects using simulation, phantom and human studies

    NASA Astrophysics Data System (ADS)

    Winant, Celeste D.; Aparici, Carina Mari; Zelnik, Yuval R.; Reutter, Bryan W.; Sitek, Arkadiusz; Bacharach, Stephen L.; Gullberg, Grant T.

    2012-01-01

    Computer simulations, a phantom study and a human study were performed to determine whether a slowly rotating single-photon computed emission tomography (SPECT) system could provide accurate arterial input functions for quantification of myocardial perfusion imaging using kinetic models. The errors induced by data inconsistency associated with imaging with slow camera rotation during tracer injection were evaluated with an approach called SPECT/P (dynamic SPECT from positron emission tomography (PET)) and SPECT/D (dynamic SPECT from database of SPECT phantom projections). SPECT/P simulated SPECT-like dynamic projections using reprojections of reconstructed dynamic 94Tc-methoxyisobutylisonitrile (94Tc-MIBI) PET images acquired in three human subjects (1 min infusion). This approach was used to evaluate the accuracy of estimating myocardial wash-in rate parameters K1 for rotation speeds providing 180° of projection data every 27 or 54 s. Blood input and myocardium tissue time-activity curves (TACs) were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K1. For the second method (SPECT/D), an anthropomorphic cardiac torso phantom was used to create real SPECT dynamic projection data of a tracer distribution derived from 94Tc-MIBI PET scans in the blood pool, myocardium, liver and background. This method introduced attenuation, collimation and scatter into the modeling of dynamic SPECT projections. Both approaches were used to evaluate the accuracy of estimating myocardial wash-in parameters for rotation speeds providing 180° of projection data every 27 and 54 s. Dynamic cardiac SPECT was also performed in a human subject at rest using a hybrid SPECT/CT scanner. Dynamic measurements of 99mTc-tetrofosmin in the myocardium were obtained using an infusion time of 2 min. Blood input, myocardium tissue and liver TACs were estimated using the same spatiotemporal splines. The spatiotemporal maximum

  12. Investigation of dynamic SPECT measurements of the arterial input function in human subjects using simulation, phantom and human studies

    PubMed Central

    Winant, Celeste D; Aparici, Carina Mari; Zelnik, Yuval R; Reutter, Bryan W; Sitek, Arkadiusz; Bacharach, Stephen L; Gullberg, Grant T

    2012-01-01

    Computer simulations, a phantom study and a human study were performed to determine whether a slowly rotating single-photon computed emission tomography (SPECT) system could provide accurate arterial input functions for quantification of myocardial perfusion imaging using kinetic models. The errors induced by data inconsistency associated with imaging with slow camera rotation during tracer injection were evaluated with an approach called SPECT/P (dynamic SPECT from positron emission tomography (PET)) and SPECT/D (dynamic SPECT from database of SPECT phantom projections). SPECT/P simulated SPECT-like dynamic projections using reprojections of reconstructed dynamic 94Tc-methoxyisobutylisonitrile (94Tc-MIBI) PET images acquired in three human subjects (1 min infusion). This approach was used to evaluate the accuracy of estimating myocardial wash-in rate parameters K1 for rotation speeds providing 180° of projection data every 27 or 54 s. Blood input and myocardium tissue time-activity curves (TACs) were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K1. For the second method (SPECT/D), an anthropomorphic cardiac torso phantom was used to create real SPECT dynamic projection data of a tracer distribution derived from 94Tc-MIBI PET scans in the blood pool, myocardium, liver and background. This method introduced attenuation, collimation and scatter into the modeling of dynamic SPECT projections. Both approaches were used to evaluate the accuracy of estimating myocardial wash-in parameters for rotation speeds providing 180° of projection data every 27 and 54 s. Dynamic cardiac SPECT was also performed in a human subject at rest using a hybrid SPECT/CT scanner. Dynamic measurements of 99mTc-tetrofosmin in the myocardium were obtained using an infusion time of 2 min. Blood input, myocardium tissue and liver TACs were estimated using the same spatiotemporal splines. The spatiotemporal maximum

  13. Investigation of dynamic SPECT measurements of the arterial input function in human subjects using simulation, phantom and human studies.

    PubMed

    Winant, Celeste D; Aparici, Carina Mari; Zelnik, Yuval R; Reutter, Bryan W; Sitek, Arkadiusz; Bacharach, Stephen L; Gullberg, Grant T

    2012-01-21

    Computer simulations, a phantom study and a human study were performed to determine whether a slowly rotating single-photon computed emission tomography (SPECT) system could provide accurate arterial input functions for quantification of myocardial perfusion imaging using kinetic models. The errors induced by data inconsistency associated with imaging with slow camera rotation during tracer injection were evaluated with an approach called SPECT/P (dynamic SPECT from positron emission tomography (PET)) and SPECT/D (dynamic SPECT from database of SPECT phantom projections). SPECT/P simulated SPECT-like dynamic projections using reprojections of reconstructed dynamic (94)Tc-methoxyisobutylisonitrile ((94)Tc-MIBI) PET images acquired in three human subjects (1 min infusion). This approach was used to evaluate the accuracy of estimating myocardial wash-in rate parameters K(1) for rotation speeds providing 180° of projection data every 27 or 54 s. Blood input and myocardium tissue time-activity curves (TACs) were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K(1). For the second method (SPECT/D), an anthropomorphic cardiac torso phantom was used to create real SPECT dynamic projection data of a tracer distribution derived from (94)Tc-MIBI PET scans in the blood pool, myocardium, liver and background. This method introduced attenuation, collimation and scatter into the modeling of dynamic SPECT projections. Both approaches were used to evaluate the accuracy of estimating myocardial wash-in parameters for rotation speeds providing 180° of projection data every 27 and 54 s. Dynamic cardiac SPECT was also performed in a human subject at rest using a hybrid SPECT/CT scanner. Dynamic measurements of (99m)Tc-tetrofosmin in the myocardium were obtained using an infusion time of 2 min. Blood input, myocardium tissue and liver TACs were estimated using the same spatiotemporal splines. The

  14. Radiopharmaceuticals for SPECT cancer detection

    NASA Astrophysics Data System (ADS)

    Chernov, V. I.; Medvedeva, A. A.; Zelchan, R. V.; Sinilkin, I. G.; Stasyuk, E. S.; Larionova, L. A.; Slonimskaya, E. M.; Choynzonov, E. L.

    2016-08-01

    The purpose of the study was to assess the efficacy of single photon emission computed tomography (SPECT) with 199Tl and 99mTc-MIBI in the detection of breast, laryngeal and hypopharyngeal cancers. A total of 220 patients were included into the study: 120 patients with breast lesions (100 patients with breast cancer and 20 patients with benign breast tumors) and 100 patients with laryngeal/hypopharyngeal diseases (80 patients with laryngeal/hypopharyngeal cancer and 20 patients with benign laryngeal/hypopharyngeal lesions). No abnormal 199Tl uptake was seen in all patients with benign breast and laryngeal lesions, indicating a 100% specificity of 199Tl SPECT. In the breast cancer patients, the increased 199Tl uptake in the breast was visualized in 94.8% patients, 99mTc-MIBI—in 93.4% patients. The increased 199Tl uptake in axillary lymph nodes was detected in 60% patients, and 99mTc-MIBI—in 93.1% patients. In patients with laryngeal/hypopharyngeal cancer, the sensitivity of SPECT with 199Tl and 99mTc-MIBI was 95%. The 199Tl SPECT sensitivity in identification of regional lymph node metastases in the patients with laryngeal/hypopharyngeal cancer was 75% and the 99mTc-MIBI SPECT sensitivity was 17%. The data obtained showed that SPECT with 199Tl and 99mTc-MIBI can be used as one of the additional imaging methods in detection of tumors.

  15. Radiopharmaceuticals for SPECT Cancer Detection

    NASA Astrophysics Data System (ADS)

    Chernov, V. I.; Medvedeva, A. A.; Zelchan, R. V.; Sinilkin, I. G.; Stasyuk, E. S.; Larionova, L. A.; Slonimskaya, E. M.; Choynzonov, E. L.

    2016-06-01

    The purpose of the study was to assess the efficacy of single photon emission computed tomography (SPECT) with 199Tl and 99mTc-MIBI in the detection of breast, laryngeal and hypopharyngeal cancers. Materials and Methods: a total of 220 patients were included into the study. Of them, there were 120 patients with breast lesions (100 patients with breast cancer and 20 patients with benign breast tumors) and '00 patients with laryngeal/hypopharyngeal diseases (80 patients with laryngeal/hypopharyngeal cancer and 20 patients with benign laryngeal/hypopharyngeal lesions). Results: no abnormal 199Tl uptake was seen in all patients with benign breast and laryngeal lesions, indicating a 100% specificity of 199Tl SPECT. In breast cancer patients, increased 199Tl uptake in the breast was visualized in 94.8% patients, 99mTc-MIBI in 93.4% patients. Increased 199Tl uptake in axillary lymph nodes was detected in 60% patients and 99mTc-MIBI in 93.1% patients. In patients with laryngeal/hypopharyngeal cancer, sensitivity of SPECT with 199Tl and 99mTc-MIBI were 95%. The 199Tl SPECT sensitivity in identification of regional lymph node metastases in patients with laryngeal/hypopharyngeal cancer was 75% and the 99mTc-MIBI SPECT sensitivity was 17%. Conclusion: the data obtained show that SPECT with 199Tl and 99mTc-MIBI can be used as one of the additional imaging methods in detection of tumors.

  16. Validation of a Patient-reported Outcome (PRO) Measure and a Clinician-reported Outcome (CRO) Measure to Assess Satisfaction with Pharmacologic Stress Agents for Single-photon Emission Computed Tomography (SPECT) Myocardial Perfusion Imaging (MPI).

    PubMed

    Hudgens, Stacie; Spalding, James; Chaudhari, Paresh

    2016-05-01

    The objective of this study was to develop and validate clinician and patient measures of satisfaction for pharmacologic stress agents (PSAs) used in single-photon emission computed tomography myocardial perfusion imaging procedures. Two questionnaires were developed: the Clinician Satisfaction and Preference Questionnaire (CSPQ) and the Patient Satisfaction and Preference Questionnaire (PSPQ). Items were developed, and the content validity of the questionnaires was ensured by participants' involvement in the item generation (5 clinician and 18 patient face-to-face concept elicitation interviews) and item modification phases (5 clinician and 10 patient face-to-face cognitive debriefing interviews). Psychometric validation of the satisfaction component of the questionnaires was conducted in a sample of 9 clinicians and 90 patients. After initial patient interviews and cognitive interviews, two 8-item instruments were developed with each containing an optional PSA preference question. The PSPQ assessed patients' receptiveness and satisfaction with the PSA that they received. The CSPQ assessed clinicians' satisfaction with the time and ease of PSA preparation, administration, and monitoring of the PSA. The optional preference question in both instruments assesses preference among PSAs. In a multicenter observational study of 88 patients and 9 clinicians, the PSPQ Preparation and Reaction to Agent scales elicited reliability coefficients of 0.90 and 0.87, respectively. In addition, the test-retest reliability was acceptable for all PSPQ scales (intraclass correlation coefficient range, 0.73-0.86). Concurrent validity with the Treatment Satisfaction Questionnaire for Medication (TSQM) indicates low-to-moderate correlations between the Effectiveness, Convenience, and Global Satisfaction scales of the TSQM with the PSPQ Satisfaction with Administration, Satisfaction with Effects, and Overall Satisfaction items (range, 0.46-0.78). Analysis of the CSPQ found that both the

  17. Dynamic heart-in-thorax phantom for functional SPECT

    SciTech Connect

    Celler, A.; Lyster, D.; Farncombe, T.

    1996-12-31

    We have designed and built a dynamic heart-in-thorax phantom to be used as a primary tool during the experimental verification of the performance of the quantitative dynamic functional imaging method we are developing for standard rotating single photon emission computed tomography (SPECT) cameras. The phantom consists of two independent parts (i) a dynamic heart model with the possibility of mounting {open_quotes}defects{close_quotes} inside it and (ii) a non-uniform thorax model with lungs and spinal cord, and uses the fact that the washout of a tracer by dilution is governed by a linear first order equation, the same type of equation as is used to model time-activity distribution in myocardial viability studies. Tests of the dynamic performance of the phantom in planar scanning mode have confirmed the validity of these assumptions. Also the preliminary results obtained in SPECT mode show that the values of characteristic times could be experimentally determined and that these values agreed well with the values preset on the phantom. We consider that the phantom is ready for extensive use in studies into development of the dynamic SPECT method.

  18. Effects of hemoglobin level on myocardial washout rate of thallium-201 in patients with normal myocardial perfusion assessed by single-photon emission computed tomography.

    PubMed

    Kurisu, Satoshi; Sumimoto, Yoji; Ikenaga, Hiroki; Watanabe, Noriaki; Ishibashi, Ken; Dohi, Yoshihiro; Fukuda, Yukihiro; Kihara, Yasuki

    2017-04-05

    Myocardial perfusion single-photon emission computed tomography (SPECT) is often performed even in patients with suspected coronary artery disease complicated by anemia. We assessed the effects of hemoglobin level on myocardial washout rate of Thallium-201 (Tl-201) in patients with normal myocardial perfusion assessed by SPECT. The study population consisted of 231 patients with summed stress score of zero on SPECT. The mean myocardial washout rate of Tl-201 in the left ventricle was calculated from the stress and the redistribution Bull's eye map. Hematological test was performed within 2 weeks before gated SPECT. There were 135 male and 96 female patients with a mean age of 72.6 ± 9.0 years. The mean hemoglobin was 12.9 ± 1.9 mg/dl; the median was 13.2 mg/dl and the range was 8.0-16.5 mg/dl. There was a significant inverse correlation between hemoglobin level and myocardial washout rate of Tl-201 (r = -0.45, p < 0.001). Univariate linear regression analysis showed that age, female, body mass index, serum creatinine, hemoglobin, end-diastolic volume, and ejection fraction were associated with myocardial washout rate of Tl-201. Multivariate analysis showed that only hemoglobin was the independent predictor of myocardial washout rate of Tl-201 (β = -0.35, p < 0.001). Our data suggested that anemia was a major determinant of increased myocardial washout rate of Tl-201 in patients with normal myocardial perfusion on SPECT.

  19. Comparison of I-123 MIBG planar imaging and SPECT for the detection of decreased heart uptake in Parkinson disease.

    PubMed

    Oh, Jin-Kyoung; Choi, Eun-Kyoung; Song, In-Uk; Kim, Joong-Seok; Chung, Yong-An

    2015-10-01

    Decreased myocardial uptake of I-123 metaiodobenzylguanidine (MIBG) is an important finding for diagnosis of Parkinson's disease (PD). This study compared I-123 MIBG SPECT and planar imaging with regard to their diagnostic yield for PD. 52 clinically diagnosed PD patients who also had decreased striatal uptake on FP-CIT PET/CT were enrolled. 16 normal controls were also included. All underwent cardiac MIBG planar scintigraphy and SPECT separately. Myocardial I-123 MIBG uptake was interpreted on planar and SPECT/CT images separately by visual and quantitative analysis. The final diagnosis was made by consensus between two readers. Kappa analyses were performed to determine inter-observer agreement for both methods. Sensitivity, specificity, and accuracy were compared with McNemar's test. The sensitivity, specificity, and accuracy were 84.6, 100, and 88.2% for planar images and 96.2, 100 and 97.1% for SPECT, respectively, with a significant difference between the two imaging methods (p < 0.031). All inter-observer agreements were almost perfect (planar scintigraphy: κ = 0.82; SPECT: κ = 0.93). Heart-to-mediastinum ratios from PD patients with negative planar and positive SPECT scans (group A) and patients with positive planar and positive SPECT scans (group B) were 1.69 ± 0.16 (1.59-1.85) and 1.41 ± 0.15 (1.20-1.53), respectively, and showed significant difference (p = 0.023). Lung-to-mediastinum ratios for groups A and B were 2.16 ± 0.20 (1.96-2.37) and 1.6 ± 0.19 (1.3-1.78), respectively, and were significantly higher in the former (p = 0.001). I-123 MIBG SPECT has a significantly higher diagnostic performance for PD than planar images. Increased lung uptake may cause false-negative results on planar imaging.

  20. SPECT Imaging of 2-D and 3-D Distributed Sources with Near-Field Coded Aperture Collimation: Computer Simulation and Real Data Validation.

    PubMed

    Mu, Zhiping; Dobrucki, Lawrence W; Liu, Yi-Hwa

    The imaging of distributed sources with near-field coded aperture (CA) remains extremely challenging and is broadly considered unsuitable for single-photon emission computerized tomography (SPECT). This study proposes a novel CA SPECT reconstruction approach and evaluates the feasibilities of imaging and reconstructing distributed hot sources and cold lesions using near-field CA collimation and iterative image reconstruction. Computer simulations were designed to compare CA and pinhole collimations in two-dimensional radionuclide imaging. Digital phantoms were created and CA images of the phantoms were reconstructed using maximum likelihood expectation maximization (MLEM). Errors and the contrast-to-noise ratio (CNR) were calculated and image resolution was evaluated. An ex vivo rat heart with myocardial infarction was imaged using a micro-SPECT system equipped with a custom-made CA module and a commercial 5-pinhole collimator. Rat CA images were reconstructed via the three-dimensional (3-D) MLEM algorithm developed for CA SPECT with and without correction for a large projection angle, and 5-pinhole images were reconstructed using the commercial software provided by the SPECT system. Phantom images of CA were markedly improved in terms of image quality, quantitative root-mean-squared error, and CNR, as compared to pinhole images. CA and pinhole images yielded similar image resolution, while CA collimation resulted in fewer noise artifacts. CA and pinhole images of the rat heart were well reconstructed and the myocardial perfusion defects could be clearly discerned from 3-D CA and 5-pinhole SPECT images, whereas 5-pinhole SPECT images suffered from severe noise artifacts. Image contrast of CA SPECT was further improved after correction for the large projection angle used in the rat heart imaging. The computer simulations and small-animal imaging study presented herein indicate that the proposed 3-D CA SPECT imaging and reconstruction approaches worked reasonably

  1. Progress in BazookaSPECT.

    PubMed

    Miller, Brian W; Barber, H Bradford; Furenlid, Lars R; Moore, Stephen K; Barrett, Harrison H

    2009-01-01

    Recent progress on a high-resolution, photon-counting gamma-ray and x-ray imager called BazookaSPECT is presented. BazookaSPECT is an example of a new class of scintillation detectors based on integrating detectors such as CCD(charge-coupled device) or CMOS(complementary metal-oxide semiconductor) sensors. BazookaSPECT is unique in that it makes use of a scintillator in close proximity to a microchannel plate-based image intensifier for up-front optical amplification of scintillation light. We discuss progress made in bringing about compact BazookaSPECT modules and in real-time processing of event data using graphics processing units (GPUs). These advances are being implemented in the design of a high-resolution rodent brain imager called FastSPECT III. A key benefit of up-front optical gain is that any CCD/CMOS sensor can now be utilized for photon counting. We discuss the benefits and feasibility of using CMOS sensors as photon-counting detectors for digital radiography, with application in mammography and computed tomography (CT). We present as an appendix a formal method for comparing various photon-counting integrating detectors using objective statistical criteria.

  2. Progress in BazookaSPECT

    PubMed Central

    Miller, Brian W.; Barber, H. Bradford; Furenlid, Lars R.; Moore, Stephen K.; Barrett, Harrison H.

    2010-01-01

    Recent progress on a high-resolution, photon-counting gamma-ray and x-ray imager called BazookaSPECT is presented. BazookaSPECT is an example of a new class of scintillation detectors based on integrating detectors such as CCD(charge-coupled device) or CMOS(complementary metal-oxide semiconductor) sensors. BazookaSPECT is unique in that it makes use of a scintillator in close proximity to a microchannel plate-based image intensifier for up-front optical amplification of scintillation light. We discuss progress made in bringing about compact BazookaSPECT modules and in real-time processing of event data using graphics processing units (GPUs). These advances are being implemented in the design of a high-resolution rodent brain imager called FastSPECT III. A key benefit of up-front optical gain is that any CCD/CMOS sensor can now be utilized for photon counting. We discuss the benefits and feasibility of using CMOS sensors as photon-counting detectors for digital radiography, with application in mammography and computed tomography (CT). We present as an appendix a formal method for comparing various photon-counting integrating detectors using objective statistical criteria. PMID:21297897

  3. Prognostic evaluation in obese patients using a dedicated multipinhole cadmium-zinc telluride SPECT camera.

    PubMed

    De Lorenzo, Andrea; Peclat, Thais; Amaral, Ana Carolina; Lima, Ronaldo S L

    2016-02-01

    The purpose of this study is to evaluate the prognostic value of myocardial perfusion SPECT obtained in CZT cameras (CZT-SPECT) with multipinhole collimation in obese patients. CZT-SPECT may be technically challenging in the obese, and its prognostic value remains largely unknown. Patients underwent single-day, rest/stress (supine and prone) imaging. Images were visually inspected and graded as poor, fair or good/excellent. Summed stress and difference scores (SSS and SDS, respectively) were converted into percentages of total perfusion defect and of ischemic defect by division by the maximum possible score. Obesity was defined as a body mass index (BMI) ≥ 30 kg/m(2) and classified as class I (BMI 30-34.9 kg/m(2)), II (BMI 35-39.9 kg/m(2)), or III (BMI ≥ 40 kg/m(2)). Patients were followed-up by telephone interview for the occurrence of all-cause death, myocardial infarction or revascularization. A Cox proportional hazards analysis was used to assess the independent predictors of death. Among 1396 patients, 365 (26.1 %) were obese (mean BMI 33.9 ± 3.6; 17.5 % class I, 3.4 % class II, and 3.4 % class III). Image quality was good/excellent in 94.5 % of the obese patients. The annualized mortality rates were not significantly different among obese and non-obese patients, being <1 % with normal CZT-SPECT, and increased with the degree of scan abnormality in both obese and non-obese patients. Age, the use of pharmacologic stress and an abnormal CZT-SPECT, but not obesity, were independent predictors of death. In obese patients, single-day rest/stress CZT-SPECT with a multipinhole camera provides prognostic discrimination with high image quality.

  4. [Interest in myocardial scintigraphy following the arterial switch procedure for transposition of the great vessels].

    PubMed

    Acar, P; Maunoury, C; Bonnet, D; Sébahoun, S; Bonhoeffer, P; Hallaj, I; Aggoun, Y; Iserin, F; Sidi, D; Kachaner, J

    2001-05-01

    Coronary artery obstruction is the main late complication of the so-called arterial switch operation designed to repair transpositions of the great arteries in newborn infants by switching the great vessels and transferring the coronary ostia onto the posterior vessel. Our aim was to study the links between myocardial perfusion and coronary artery anatomy after the arterial switch operation. Forty-five patients (5.863 years) underwent a 201Tl myocardial SPECT and a selective coronary artery angiography. The latter was normal in 20 children: 13 had also a normal myocardial scan but 7 had myocardial perfusion defects including 2 with angina who had a very low coronary reserve at positron emission tomography. Twenty-five patients had severe coronary artery lesions: 5 with a normal myocardial scan and 20 with perfusion defects. Twelve out of these 20 underwent surgical revascularization and the SPECT images went back to normal in all within 6 months after surgery. Specificity and sensitivity of myocardial SPECT in detecting coronary artery lesions were 78% and 69% whereas positive and negative predictive values were 74 and 73%. We conclude that myocardial SPECT imaging is not the right way to detect late post arterial switch coronary artery lesions. It is helpful in decision making as to submit these children to surgical revascularization and in assessing its postoperative effectiveness.

  5. Impact of image processing in the detection of ischaemia using CZT-SPECT/CT.

    PubMed

    Koopman, Daniëlle; van Dalen, Jorn A; Slump, Cornelis H; Lots, Dimitri; Timmer, Jorik R; Jager, Pieter L

    2015-01-01

    The new multipinhole cardiac single photon emission computed tomography/computed tomography (SPECT/CT) cameras with cadmium-zinc-telluride (CZT) detectors are highly sensitive and produce images of high quality but rely on complex dedicated reconstruction algorithms. The aim of this study was to determine the impact of various processing steps on image formation and in the detection of ischaemia in CZT-SPECT/CT both with and without attenuation correction (AC). Data on 20 consecutive patients who underwent a 1-day protocol stress-rest SPECT/CT using 99mTc-tetrofosmin were processed twice by three experienced operators, yielding 120 AC and 120 noncorrected (NC) data sets. Processing steps included selection and determination of myocardial axes, manual SPECT/CT coregistration for AC and myocardial masking. Using the 17-segment cardiac model, differences between stress and rest segmental uptake (%) were calculated for NC and AC image sets. Both interoperator and intraoperator variations were considered significant for the diagnosis of ischaemia when greater than 5%. The mean interoperator variations were 2.4±1.4% (NC) and 3.8±1.9% (AC) (P<0.01). In 6% (NC) and 23% (AC) of the 120 processed cases, operator variation was larger than 5% and therefore potentially clinically interfering with the diagnosis of ischaemia. Differences between interoperator and intraoperator variations were nonsignificant. Operator variations in the processing of myocardial perfusion image data using CZT-SPECT/CT are significant and may influence the diagnosis of ischaemia, especially when AC is applied. Clearer guidelines for image processing are necessary to improve the reproducibility of the studies and to obtain a more reliable diagnosis of ischaemia.

  6. SPECT imaging with resolution recovery

    SciTech Connect

    Bronnikov, A. V.

    2011-07-01

    Single-photon emission computed tomography (SPECT) is a method of choice for imaging spatial distributions of radioisotopes. Many applications of this method are found in nuclear industry, medicine, and biomedical research. We study mathematical modeling of a micro-SPECT system by using a point-spread function (PSF) and implement an OSEM-based iterative algorithm for image reconstruction with resolution recovery. Unlike other known implementations of the OSEM algorithm, we apply en efficient computation scheme based on a useful approximation of the PSF, which ensures relatively fast computations. The proposed approach can be applied with the data acquired with any type of collimators, including parallel-beam fan-beam, cone-beam and pinhole collimators. Experimental results obtained with a micro SPECT system demonstrate high efficiency of resolution recovery. (authors)

  7. Radiopharmaceuticals for SPECT cancer detection

    SciTech Connect

    Chernov, V. I. Medvedeva, A. A. Zelchan, R. V. Sinilkin, I. G.; Stasyuk, E. S.; Larionova, L. A.; Slonimskaya, E. M.; Choynzonov, E. L.

    2016-08-02

    The purpose of the study was to assess the efficacy of single photon emission computed tomography (SPECT) with {sup 199}Tl and {sup 99}mTc-MIBI in the detection of breast, laryngeal and hypopharyngeal cancers. A total of 220 patients were included into the study: 120 patients with breast lesions (100 patients with breast cancer and 20 patients with benign breast tumors) and 100 patients with laryngeal/hypopharyngeal diseases (80 patients with laryngeal/hypopharyngeal cancer and 20 patients with benign laryngeal/hypopharyngeal lesions). No abnormal {sup 199}Tl uptake was seen in all patients with benign breast and laryngeal lesions, indicating a 100% specificity of {sup 199}Tl SPECT. In the breast cancer patients, the increased {sup 199}Tl uptake in the breast was visualized in 94.8% patients, {sup 99m}Tc-MIBI—in 93.4% patients. The increased {sup 199}Tl uptake in axillary lymph nodes was detected in 60% patients, and {sup 99m}Tc-MIBI—in 93.1% patients. In patients with laryngeal/hypopharyngeal cancer, the sensitivity of SPECT with {sup 199}Tl and {sup 99m}Tc-MIBI was 95%. The {sup 199}Tl SPECT sensitivity in identification of regional lymph node metastases in the patients with laryngeal/hypopharyngeal cancer was 75% and the {sup 99m}Tc-MIBI SPECT sensitivity was 17%. The data obtained showed that SPECT with {sup 199}Tl and {sup 99m}Tc-MIBI can be used as one of the additional imaging methods in detection of tumors.

  8. Role of myocardial perfusion single photon emission computed tomography in pediatric cardiology practice

    PubMed Central

    Sundaram, P Shanmuga; Padma, S

    2009-01-01

    Diagnostic and prognostic power of myocardial perfusion imaging in patients with coronary artery disease has been demonstrated with planar imaging which was further improvised with addition of gated SPECT and newer Technetium labeled myocardial perfusion tracers like SestaMIBI, Tetrofosmin. Myocardial perfusion abnormalities at rest and after stress are considered to be the best predictors of cardiac event–free survival in adults with ischemic heart disease. This article highlights various myocardial perfusion imaging (MPI) radiopharmaceuticals, exercise procedures, pharmacological stress protocols, indications for MPI and myocardial perfusion patterns in children with some of the common congenital and acquired heart diseases. PMID:20808625

  9. Myocardial Ischemia

    MedlinePlus

    ... pectoris: Chest pain caused by myocardial ischemia. www.uptodate.com/home. Accessed June 1, 2015. Deedwania PC. Silent myocardial ischemia: Epidemiology and pathogenesis. www.uptodate.com/home. Accessed June 1, 2015. Mann DL, ...

  10. [Utility of SPECT in gallium scintigraphy].

    PubMed

    Uto, Tomoyuki

    2002-11-01

    Whole-body gallium planar scintigraphy is a mainstay for the detection of tumors and inflammatory lesions. Recently, gallium SPECT (single photon emission computed tomography) has become more common in the clinical setting. This diagnostic modality is widely employed in our hospital, and lesions are actually detected by SPECT in some cases. Although the contrast of SPECT images is better than that of planar images, spatial resolution is limited by the limited matrix size. Thus, the overall diagnostic utility of SPECT remains to be confirmed. The usefulness of SPECT for the detection of gallium-accumulated lesions was evaluated in a phantom. In this study, we showed that SPECT is able to detect more smaller and lower gallium accumulations than planar imaging. Thus, SPECT imaging is useful in gallium scintigraphy.

  11. Temporal trends in the frequency of inducible myocardial ischemia during cardiac stress testing: 1991 to 2009.

    PubMed

    Rozanski, Alan; Gransar, Heidi; Hayes, Sean W; Min, James; Friedman, John D; Thomson, Louise E J; Berman, Daniel S

    2013-03-12

    This study sought to assess whether the frequency of inducible myocardial ischemia during stress-rest single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) has changed over time. The prevalence of cardiac death and other clinical cardiac events have declined in recent decades, but heretofore no study has examined if there has been a temporal change in the frequency of inducible myocardial ischemia during cardiac stress testing. We assessed 39,515 diagnostic patients undergoing stress-rest MPI between 1991 and 2009. Patients were assessed for change in demographics, clinical symptoms, risk factors, and frequency of abnormal and ischemic SPECT-MPI. There was a marked progressive decline in the prevalence of abnormal SPECT studies, from 40.9% in 1991 to 8.7% in 2009 (p < 0.001). Similarly, the prevalence of ischemic SPECT-MPI declined, from 29.6% to 5.0% (p < 0.001), as did the prevalence of severe ischemia. The decline of SPECT-MPI abnormality occurred among all age and symptom subgroups, falling to only 2.9% among recent exercising patients without typical angina. We also noted a progressive trend toward performing more pharmacological rather than exercise stress in all age and weight groups, and pharmacological stress was more likely than exercise to be associated with SPECT-MPI abnormality (odds ratio: 1.43, 95% confidence interval: 1.3 to 1.5; p < 0.001). Over the past 2 decades, the frequency and severity of abnormal stress SPECT-MPI studies has progressively decreased. Notably, the frequency of abnormal SPECT-MPI is now very low among exercising patients without typical angina. These findings suggest the need for developing more cost-effective strategies for the initial work-up of patients who are presently at low risk for manifesting inducible myocardial ischemia during cardiac imaging procedures. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  12. Nuclear cardiac imaging for the assessment of myocardial viability

    PubMed Central

    Slart, R.H.J.A.; Bax, J.J.; van der Wall, E.E.; van Veldhuisen, D.J.; Jager, P.L.; Dierckx, R.A.

    2005-01-01

    An important aspect of the diagnostic and prognostic work-up of patients with ischaemic cardiomyopathy is the assessment of myocardial viability. Patients with left ventricular dysfunction who have viable myocardium are the patients at highest risk because of the potential for ischaemia but at the same time benefit most from revascularisation. It is important to identify viable myocardium in these patients, and radionuclide myocardial scintigraphy is an excellent tool for this. Single-photon emission computed tomography perfusion scintigraphy (SPECT), whether using 201thallium, 99mTc-sestamibi, or 99mTc- tetrofosmin, in stress and/or rest protocols, has consistently been shown to be an effective modality for identifying myocardial viability and guiding appropriate management. Metabolic and perfusion imaging with positron emission tomography radiotracers frequently adds additional information and is a powerful tool for predicting which patients will have an improved outcome from revascularisation. New techniques in the nuclear cardiology field, such as attenuation corrected SPECT, dual isotope simultaneous acquisition (DISA) SPECT and gated FDG PET are promising and will further improve the detection of myocardial viability. Also the combination of multislice computed tomography scanners with PET opens possibilities of adding coronary calcium scoring and noninvasive coronary angiography to myocardial perfusion imaging and quantification. ImagesFigure 1Figure 2Figure 3 PMID:25696432

  13. Filtering in SPECT Image Reconstruction

    PubMed Central

    Lyra, Maria; Ploussi, Agapi

    2011-01-01

    Single photon emission computed tomography (SPECT) imaging is widely implemented in nuclear medicine as its clinical role in the diagnosis and management of several diseases is, many times, very helpful (e.g., myocardium perfusion imaging). The quality of SPECT images are degraded by several factors such as noise because of the limited number of counts, attenuation, or scatter of photons. Image filtering is necessary to compensate these effects and, therefore, to improve image quality. The goal of filtering in tomographic images is to suppress statistical noise and simultaneously to preserve spatial resolution and contrast. The aim of this work is to describe the most widely used filters in SPECT applications and how these affect the image quality. The choice of the filter type, the cut-off frequency and the order is a major problem in clinical routine. In many clinical cases, information for specific parameters is not provided, and findings cannot be extrapolated to other similar SPECT imaging applications. A literature review for the determination of the mostly used filters in cardiac, brain, bone, liver, kidneys, and thyroid applications is also presented. As resulting from the overview, no filter is perfect, and the selection of the proper filters, most of the times, is done empirically. The standardization of image-processing results may limit the filter types for each SPECT examination to certain few filters and some of their parameters. Standardization, also, helps in reducing image processing time, as the filters and their parameters must be standardised before being put to clinical use. Commercial reconstruction software selections lead to comparable results interdepartmentally. The manufacturers normally supply default filters/parameters, but these may not be relevant in various clinical situations. After proper standardisation, it is possible to use many suitable filters or one optimal filter. PMID:21760768

  14. Left ventricular wall function abnormalities in patients with ankylosing spondylitis evaluated by gated myocardial perfusion scintigraphy.

    PubMed

    Yalcin, H; Guler, H; Gunay, E; Yeral, N; Turhanoglu, A; Bolaç, E; Yalcin, F

    2011-01-01

    Ankylosing spondilitis (AS) is a chronic inflammatory disease with prominent inflammation in joints and extraarticular organs. AS patients have approximately two times more risk of mortality than the normal population. One reason for this increase in mortality is increased cardiovascular risk. In this study, we have aimed to evaluate myocardial perfusion and left ventricular function using (99m)Tc-MIBI gated myocardial perfusion single photon emission computed tomography (SPECT). The study group consisted of 28 AS patients (19 men, 9 women), and mean age 39.46±10.98 years. All patients underwent (99m)Tc-MIBI gated myocardial perfusion SPECT with the same day protocol. We detected various risk factors including smoking habits in 12, family history of cardiovascular disease in 12, hypertension in 3, hyperlipidemia in 9 patients. We performed a myocardial perfusion SPECT for each patient and found normal perfusion pattern in SPECT images. Out of 28 patients, eight patients had normal perfusion but wall motion abnormalities. We detected that myocardial perfusion is preserved in the patients with AS. However, left ventricular wall motion abnormalities are seen. We concluded that ankylosing spondylitis may be associated with microvascular dysfunction and gated myocardial perfusion scintigraphy could be valuable in AS patients for the evaluation of LV function even if the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) score are low and the disease duration shorter. Copyright © 2010 Elsevier España, S.L. and SEMNIM. All rights reserved.

  15. The Value of Attenuation Correction in Hybrid Cardiac SPECT/CT on Inferior Wall According to Body Mass Index

    PubMed Central

    Tamam, Muge; Mulazimoglu, Mehmet; Edis, Nurcan; Ozpacaci, Tevfik

    2016-01-01

    The purpose of this study was to evaluate the diagnostic value of attenuation-corrected single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) on the inferior wall compared to uncorrected (NC) SPECT MPI between obese and nonobese patients. A total of 157 consecutive patients (122 males and 35 females, with median age: 57.4 ± 11 years) who underwent AC technetium 99m-methoxyisobutylisonitrile (AC Tc99m-sestamibi) SPECT MPI were included to the study. A hybrid SPECT and transmission computed tomography (CT) system was used for the diagnosis with 1-day protocol, and stress imaging was performed first. During attenuation correction (AC) processing on a Xeleris Workstation using Myovation cardiac software with ordered subset expectation maximization (OSEM), iterative reconstruction with attenuation correction (IRAC) and NC images filtered back projection (FBP) were used. For statistical purposes, P < 0.05 was considered significant. This study included 73 patients with body mass index (BMI) <30 and 84 patients with BMI ≥ 30. In patients with higher BMI, increased amount of both visual and semiquantitative attenuation of the inferior wall was detected. IRAC reconstruction corrects the diaphragm attenuation of the inferior wall better than FBP. AC with OSEM iterative reconstruction significantly improves the diagnostic value of stress-only SPECT MPI in patients with normal weight and those who are obese, but the improvements are significantly greater in obese patients. Stress-only SPECT imaging with AC provides shorter and lower radiation exposure. PMID:26912974

  16. The Value of Attenuation Correction in Hybrid Cardiac SPECT/CT on Inferior Wall According to Body Mass Index.

    PubMed

    Tamam, Muge; Mulazimoglu, Mehmet; Edis, Nurcan; Ozpacaci, Tevfik

    2016-01-01

    The purpose of this study was to evaluate the diagnostic value of attenuation-corrected single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) on the inferior wall compared to uncorrected (NC) SPECT MPI between obese and nonobese patients. A total of 157 consecutive patients (122 males and 35 females, with median age: 57.4 ± 11 years) who underwent AC technetium 99m-methoxyisobutylisonitrile (AC Tc99m-sestamibi) SPECT MPI were included to the study. A hybrid SPECT and transmission computed tomography (CT) system was used for the diagnosis with 1-day protocol, and stress imaging was performed first. During attenuation correction (AC) processing on a Xeleris Workstation using Myovation cardiac software with ordered subset expectation maximization (OSEM), iterative reconstruction with attenuation correction (IRAC) and NC images filtered back projection (FBP) were used. For statistical purposes, P < 0.05 was considered significant. This study included 73 patients with body mass index (BMI) <30 and 84 patients with BMI ≥ 30. In patients with higher BMI, increased amount of both visual and semiquantitative attenuation of the inferior wall was detected. IRAC reconstruction corrects the diaphragm attenuation of the inferior wall better than FBP. AC with OSEM iterative reconstruction significantly improves the diagnostic value of stress-only SPECT MPI in patients with normal weight and those who are obese, but the improvements are significantly greater in obese patients. Stress-only SPECT imaging with AC provides shorter and lower radiation exposure.

  17. SPECT (Single-Photon Emission Computerized Tomography) Scan

    MedlinePlus

    SPECT scan Overview By Mayo Clinic Staff A single-photon emission computerized tomography (SPECT) scan lets your doctor analyze the function of some of your internal organs. A SPECT scan is a type of nuclear imaging test, ...

  18. [SPECT radiopharmaceuticals -- novelties and new possibilities].

    PubMed

    Balogh, Lajos; Polyák, András; Pöstényi, Zita; Haász, Veronika; Dabasi, Gabriella; Jóba, Róbert; Bús, Katalin; Jánoki, Gergely; Thuróczy, Julianna; Zámbó, Katalin; Garai, Ildikó; Környei, József; Jánoki, Gyõzõ

    2014-12-01

    Actual state of affairs and future perspectives of SPECT radiopharmaceuticals regarding local and international data were summarized. Beyond conventional gamma-emitting radioisotopes, localization studies with beta emitting therapeutic radiopharmaceuticals hold increasing importance. Extension of hybrid (SPECT/CT) equipments has modified conventional scintigraphic and SPECT methods as well but more important changes come into the world through novel ligands for specific diagnoses and therapy.

  19. New Trends in Radionuclide Myocardial Perfusion Imaging

    PubMed Central

    Hung, Guang-Uei; Wang, Yuh-Feng; Su, Hung-Yi; Hsieh, Te-Chun; Ko, Chi-Lun; Yen, Ruoh-Fang

    2016-01-01

    Radionuclide myocardial perfusion imaging (MPI) with single photon emission computed tomography (SPECT) has been widely used clinically as one of the major functional imaging modalities for patients with coronary artery disease (CAD) for decades. Ample evidence has supported the use of MPI as a useful and important tool in the diagnosis, risk stratification and treatment planning for CAD. Although popular in the United States, MPI has become the most frequently used imaging modality among all nuclear medicine tests in Taiwan. However, it should be acknowledged that MPI SPECT does have its limitations. These include false-positive results due to certain artifacts, false-negative due to balanced ischemia, complexity and adverse reaction arising from current pharmacological stressors, time consuming nature of the imaging procedure, no blood flow quantitation and relatively high radiation exposure. The purpose of this article was to review the recent trends in nuclear cardiology, including the utilization of positron emission tomography (PET) for MPI, new stressor, new SPECT camera with higher resolution and higher sensitivity, dynamic SPECT protocol for blood flow quantitation, new software of phase analysis for evaluation of LV dyssynchrony, and measures utilized for reducing radiation exposure of MPI. PMID:27122946

  20. Clinical value of stress-only Tc-99m SPECT imaging: importance of attenuation correction.

    PubMed

    Mathur, Shishir; Heller, Gary V; Bateman, Timothy M; Ruffin, Richard; Yekta, Arshad; Katten, Deborah; Alluri, Nitya; Ahlberg, Alan W

    2013-02-01

    In selected patients, stress-only SPECT imaging has been proposed as an alternative to rest-stress SPECT imaging to improve laboratory efficiency and reduce radiation exposure. The impact of attenuation correction (AC) upon interpretation, post-test patient management and cardiac risk stratification in relation to stress-only imaging is not well understood. The purpose of this study was to determine the clinical value for laboratory throughput and predicting outcomes of normal and abnormal stress-only SPECT imaging with AC in a consecutive series of clinically referred patients. A retrospective analysis of 1,383 consecutive patients who were scheduled for stress-only SPECT imaging for symptom assessment of suspected myocardial ischemia was performed. All images had been interpreted and categorized using the standard 17-segment model without AC followed by AC. Follow-up data for 2.1 ± 1.3 years after SPECT imaging for the occurrence of cardiac events (non-fatal MI, cardiac death, and cardiac revascularization) previously collected by routine methods were reviewed. Non-AC SPECT image interpretation revealed that 58% (802/1383) of patients had abnormal stress images. AC image interpretation of the abnormal non-AC images re-classified 83% (666/802) of these as normal. Among patients with abnormal stress images after AC (136/1383), 63% (86/136) returned for additional rest scans, while the remaining 37% (50/136) were clinically managed without further rest images. The incidence of cardiac death or non-fatal MI was very low in patients with normal stress-only scans (0.7%). A strategy of stress-only imaging with AC in symptomatic patients is an efficient method which appropriately identifies at risk and low-risk patients yielding a low percentage requiring rest imaging. Clinical decisions can be made based on abnormal stress-only imaging without further rest imaging if clinically appropriate.

  1. Organ volume estimation using SPECT

    SciTech Connect

    Zaidi, H.

    1996-06-01

    Knowledge of in vivo thyroid volume has both diagnostic and therapeutic importance and could lead to a more precise quantification of absolute activity contained in the thyroid gland. In order to improve single-photon emission computed tomography (SPECT) quantitation, attenuation correction was performed according to Chang`s algorithm. The dual window method was used for scatter subtraction. The author used a Monte Carlo simulation of the SPECT system to accurately determine the scatter multiplier factor k. Volume estimation using SPECT was performed by summing up the volume elements (voxels) lying within the contour of the object, determined by a fixed threshold and the gray level histogram (GLH) method. Thyroid phantom and patient studies were performed and the influence of (1) fixed thresholding, (2) automatic thresholding, (3) attenuation, (4) scatter, and (5) reconstruction filter were investigated. This study shows that accurate volume estimation of the thyroid gland is feasible when accurate corrections are performed. The relative error is within 7% for the GLH method combined with attenuation and scatter corrections.

  2. Assessment of left ventricular volumes, ejection fraction and mass. Comparison of model-based analysis of ECG-gated (⁹⁹m)Tc-SPECT and ¹⁸F-FDG-PET.

    PubMed

    Khorsand, A; Gyöngyösi, M; Sochor, H; Maurer, G; Karanikas, G; Dudczak, R; Schuster, E; Porenta, G; Graf, S

    2011-01-01

    We compared and delineated possible differences of model-based analysis of ECG-gated SPECT using (⁹⁹m)Tc-sestamibi (Tc-SPECT) with ECG-gated ¹⁸F-fluorodeoxyglucose-PET (FDG-PET) for determination of end-diastolic (EDV) and end-systolic (ESV) cardiac volumes, left ventricular ejection fraction (LVEF), and myocardial mass (LVMM). 24 patients (21 men; age: 54±12years) with coronary artery disease underwent Tc-SPECT and FDG-PET imaging for evaluation of myocardial perfusion and viability. By using model-based analysis EDV, ESV, LVEF and LVMM were calculated from short axis images of both Tc-SPECT and FDG-PET. Left ventricular volumes by Tc-SPECT and FDG-PET were 176±60 ml and 181±59 ml for EDV, and 97±44 ml and 103±45 ml for ESV respectively, LVEF was 47±8% by Tc-SPECT and 45±9% by FDG-PET. The LVMM was 214±40 g (Tc-SPECT) and 202±43 g (FDG-PET) (all p = NS, paired t-test). A significant correlation was observed between Tc-SPECT and FDG-PET imaging for calculation of EDV (r = 0.93), ESV (r = 0.93), LVEF (r = 0.83) and LVMM (r = 0.72). ECG-gated Tc-SPECT and FDG-PET using two tracers with different characteristics (perfusion versus metabolism) showed close agreement concerning measurements of left ventricular volumes, contractile function and myocardial mass by using a model-based analysis.

  3. Myocardial ischaemia in systemic lupus erythematosus: detection and clinical relevance.

    PubMed

    Płazak, Wojciech; Gryga, Krzysztof; Sznajd, Jan; Pasowicz, Mieczysław; Musiał, Jacek; Podolec, Piotr

    2011-01-01

    Severe cardiovascular complications are among the most important causes of mortality in systemic lupus erythematosus (SLE) patients. To assess the usefulness of echocardiography, ECG, and coronary artery calcium scoring (CACS) in the detection of myocardial ischaemia in SLE patients compared to single photon emission computerised tomography (SPECT) and to assess their five-year follow-up. In 50 consecutive SLE patients (mean age 39.2 ± 12.9 years, 90% female), clinical assessment, resting and exercise ECG and echocardiography, multidetector computed tomography - based CACS and SPECT studies (Tc-99m sestamibi) were performed. Patients were then followed for five years. SPECT revealed perfusion defects in 25 (50%) patients; persistent defects in 18 (36%) and exercise-induced defects in seven (14%) subjects. No typical ischaemic heart disease clinical symptoms, signs of ischaemia in resting ECG, or left ventricular contractility impairment in echocardiography were observed. Signs of ischaemia in exercise ECG were found in 17 (34%) patients. The CACS ranged from 1 to 843.2 (median 23.15), and coronary calcifications were observed in 12 (24%) patients. Compared to the SPECT study, exercise ECG had 68% sensitivity and 100% specificity in detecting myocardial ischaemia, while CACS had only 28% sensitivity and 58% specificity. During follow-up, one patient who showed myocardial perfusion defects and the highest calcium score (843.2) at baseline, developed CCS II class symptoms of myocardial ischaemia. Coronary angiography was not performed because of severe anaemia; the patient died three months later. In two other patients with perfusion defects and calcium deposits at baseline, CCS I class symptoms were observed; coronary angiography showed only thin calcified coronary plaques that were haemodynamically insignificant. In about half of relatively young, mostly female, SLE patients, SPECT shows myocardial perfusion defects, with coronary calcifications present in one

  4. New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease

    PubMed Central

    Sogbein, Oyebola O.; Pelletier-Galarneau, Matthieu; Schindler, Thomas H.; Wei, Lihui; Wells, R. Glenn; Ruddy, Terrence D.

    2014-01-01

    Nuclear cardiology has experienced exponential growth within the past four decades with converging capacity to diagnose and influence management of a variety of cardiovascular diseases. Single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) with technetium-99m radiotracers or thallium-201 has dominated the field; however new hardware and software designs that optimize image quality with reduced radiation exposure are fuelling a resurgence of interest at the preclinical and clinical levels to expand beyond MPI. Other imaging modalities including positron emission tomography (PET) and magnetic resonance imaging (MRI) continue to emerge as powerful players with an expanded capacity to diagnose a variety of cardiac conditions. At the forefront of this resurgence is the development of novel target vectors based on an enhanced understanding of the underlying pathophysiological process in the subcellular domain. Molecular imaging with novel radiopharmaceuticals engineered to target a specific subcellular process has the capacity to improve diagnostic accuracy and deliver enhanced prognostic information to alter management. This paper, while not comprehensive, will review the recent advancements in radiotracer development for SPECT and PET MPI, autonomic dysfunction, apoptosis, atherosclerotic plaques, metabolism, and viability. The relevant radiochemistry and preclinical and clinical development in addition to molecular imaging with emerging modalities such as cardiac MRI and PET-MR will be discussed. PMID:24901002

  5. Systolic and diastolic assessment by 3D-ASM segmentation of gated-SPECT Studies: a comparison with MRI

    NASA Astrophysics Data System (ADS)

    Tobon-Gomez, C.; Bijnens, B. H.; Huguet, M.; Sukno, F.; Moragas, G.; Frangi, A. F.

    2009-02-01

    Gated single photon emission tomography (gSPECT) is a well-established technique used routinely in clinical practice. It can be employed to evaluate global left ventricular (LV) function of a patient. The purpose of this study is to assess LV systolic and diastolic function from gSPECT datasets in comparison with cardiac magnetic resonance imaging (CMR) measurements. This is achieved by applying our recently implemented 3D active shape model (3D-ASM) segmentation approach for gSPECT studies. This methodology allows for generation of 3D LV meshes for all cardiac phases, providing volume time curves and filling rate curves. Both systolic and diastolic functional parameters can be derived from these curves for an assessment of patient condition even at early stages of LV dysfunction. Agreement of functional parameters, with respect to CMR measurements, were analyzed by means of Bland-Altman plots. The analysis included subjects presenting either LV hypertrophy, dilation or myocardial infarction.

  6. Electrocardiographic infarct size assessment after thrombolysis: insights from the Acute Myocardial Infarction STudy ADenosine (AMISTAD) trial.

    PubMed

    Barbagelata, Alejandro; Di Carli, Marcelo F; Califf, Robert M; Garg, Jyotsna; Birnbaum, Yochai; Grinfeld, Liliana; Gibbons, Raymond J; Granger, Christopher B; Goodman, Shaun G; Wagner, Galen S; Mahaffey, Kenneth W

    2005-10-01

    Noninvasive methods are needed to evaluate reperfusion success in patients with acute myocardial infarction (MI). The AMISTAD trial was analyzed to compare MI size and myocardial salvage determined by electrocardiogram (ECG) with technetium Tc 99m sestamibi single-photon emission computerized tomography (SPECT) imaging. Of 236 patients enrolled in AMISTAD, 166 (70 %) with no ECG confounding factors and no prior MI were included in this analysis. Of these, group 1 (126 patients, 53%) had final infarct size (FIS) available by both ECG and SPECT. Group 2 (56 patients, 24%) had myocardium at risk, FIS, and salvage index (SI) assessed by both SPECT and ECG techniques. Aldrich/Clemmensen scores for myocardium at risk and the Selvester QRS score for final MI size were used. Salvage index was calculated as follows: SI = (myocardium at risk-FIS)/(myocardium at risk). In group 1, FIS was 15% (6, 24) as measured by ECG and 11% (2, 27) as measured by SPECT. In the adenosine group, FIS was 12% (6, 21) and 11% (2, 22). In the placebo group, FIS was 16.5% (7.5, 24) and 11.5% (3.0, 38.5) by ECG and SPECT, respectively. The overall correlation between SPECT and ECG for FIS was 0.58 (P = .0001): 0.60 in the placebo group (P = .0001) and 0.54 (P = .0001) in the adenosine group. In group 2, myocardium at risk was 23% (17, 30) and 26% (10, 50) with ECG and SPECT, respectively (P = .0066). Final infarct size was 17% (6, 21) and 12% (1, 24) (P < .0001). The SI was 29% (-7, 57) and 46% (15, 79) with ECG and SPECT, respectively (P = .0510). The ECG measurement of infarct size has a moderate relationship with SPECT infarct size measurements in the population with available assessments. This ECG algorithm must further be validated on clinical outcomes.

  7. Impact of Follow-Up Ischemia on Myocardial Perfusion Single-Photon Emission Computed Tomography in Patients with Coronary Artery Disease

    PubMed Central

    Kang, Se Hun; Choi, Hyo In; Lee, Eun Young; Ahn, Jung-Min; Han, Seungbong; Lee, Pil Hyung; Roh, Jae-Hyung; Yun, Sung-Han; Park, Duk-Woo; Kang, Soo-Jin; Lee, Seung-Whan; Lee, Cheol Whan; Moon, Dae Hyuk; Park, Seong-Wook; Park, Seung-Jung

    2017-01-01

    Purpose Few studies have reported on predicting prognosis using myocardial perfusion single-photon emission computed tomography (SPECT) during coronary artery disease (CAD) treatment. Therefore, we aimed to assess the clinical implications of myocardial perfusion SPECT during follow-up for CAD treatment. Materials and Methods We enrolled 1153 patients who had abnormal results at index SPECT and underwent follow-up SPECT at intervals ≥6 months. Major adverse cardiac events (MACE) were compared in overall and 346 patient pairs after propensity-score (PS) matching. Results Abnormal SPECT was associated with a significantly higher risk of MACE in comparison with normal SPECT over the median of 6.3 years (32.3% vs. 19.8%; unadjusted p<0.001). After PS matching, abnormal SPECT posed a higher risk of MACE [32.1% vs. 19.1%; adjusted hazard ratio (HR)=1.73; 95% confidence interval (CI)=1.27–2.34; p<0.001] than normal SPECT. After PS matching, the risk of MACE was still higher in patients with abnormal follow-up SPECT in the revascularization group (30.2% vs. 17.9%; adjusted HR=1.73; 95% CI=1.15–2.59; p=0.008). Low ejection fraction [odds ratio (OR)=5.33; 95% CI=3.39–8.37; p<0.001] and medical treatment (OR=2.68; 95% CI=1.93–3.72; p<0.001) were independent clinical predictors of having an abnormal result on follow-up SPECT. Conclusion Abnormal follow-up SPECT appears to be associated with a high risk of MACE during CAD treatment. Follow-up SPECT may play a potential role in identifying patients at high cardiovascular risk. PMID:28792136

  8. Impact of Follow-Up Ischemia on Myocardial Perfusion Single-Photon Emission Computed Tomography in Patients with Coronary Artery Disease.

    PubMed

    Kang, Se Hun; Choi, Hyo In; Kim, Young Hak; Lee, Eun Young; Ahn, Jung Min; Han, Seungbong; Lee, Pil Hyung; Roh, Jae Hyung; Yun, Sung Han; Park, Duk Woo; Kang, Soo Jin; Lee, Seung Whan; Lee, Cheol Whan; Moon, Dae Hyuk; Park, Seong Wook; Park, Seung Jung

    2017-09-01

    Few studies have reported on predicting prognosis using myocardial perfusion single-photon emission computed tomography (SPECT) during coronary artery disease (CAD) treatment. Therefore, we aimed to assess the clinical implications of myocardial perfusion SPECT during follow-up for CAD treatment. We enrolled 1153 patients who had abnormal results at index SPECT and underwent follow-up SPECT at intervals ≥6 months. Major adverse cardiac events (MACE) were compared in overall and 346 patient pairs after propensity-score (PS) matching. Abnormal SPECT was associated with a significantly higher risk of MACE in comparison with normal SPECT over the median of 6.3 years (32.3% vs. 19.8%; unadjusted p<0.001). After PS matching, abnormal SPECT posed a higher risk of MACE [32.1% vs. 19.1%; adjusted hazard ratio (HR)=1.73; 95% confidence interval (CI)=1.27-2.34; p<0.001] than normal SPECT. After PS matching, the risk of MACE was still higher in patients with abnormal follow-up SPECT in the revascularization group (30.2% vs. 17.9%; adjusted HR=1.73; 95% CI=1.15-2.59; p=0.008). Low ejection fraction [odds ratio (OR)=5.33; 95% CI=3.39-8.37; p<0.001] and medical treatment (OR=2.68; 95% CI=1.93-3.72; p<0.001) were independent clinical predictors of having an abnormal result on follow-up SPECT. Abnormal follow-up SPECT appears to be associated with a high risk of MACE during CAD treatment. Follow-up SPECT may play a potential role in identifying patients at high cardiovascular risk.

  9. Lymphoma: evaluation with Ga-67 SPECT

    SciTech Connect

    Tumeh, S.S.; Rosenthal, D.S.; Kaplan, W.D.; English, R.J.; Holman, B.L.

    1987-07-01

    To determine the value of gallium-67 single photon emission computed tomography (SPECT) in imaging patients with lymphoma, the authors compared Ga-67 planar images and SPECT images in 40 consecutive patients, using radiologic examinations and/or medical records to confirm the presence or absence of disease. Thirty-three patients had Hodgkin disease, and seven had non-Hodgkin lymphoma. Fifty-four examinations were performed. Of 57 sites of lymphoma in the chest, planar imaging depicted 38, while SPECT depicted 55, resulting in sensitivities of 0.66 and 0.96 for planar and SPECT imaging, respectively. In eight sites, both modalities were truly negative, but SPECT was negative in four additional sites that were equivocal on planar imaging, resulting in specificities of 0.66 and 1.00 for planar and SPECT imaging, respectively. In the abdomen, the sensitivities of planar and SPECT imaging were 0.69 and 0.85, and the specificities 0.87 and 1.00, respectively. SPECT was more accurate in depicting foci of gallium-avid lymphoma in the chest and abdomen and in excluding disease when planar imaging was equivocal.

  10. Silent myocardial ischemia in patients with symptomatic intracranial atherosclerosis: associated factors.

    PubMed

    Arenillas, Juan F; Candell-Riera, Jaume; Romero-Farina, Guillermo; Molina, Carlos A; Chacón, Pilar; Aguadé-Bruix, Santiago; Montaner, Joan; de León, Gustavo; Castell-Conesa, Joan; Alvarez-Sabín, José

    2005-06-01

    Optimization of coronary risk evaluation in stroke patients has been encouraged. The relationship between symptomatic intracranial atherosclerosis and occult coronary artery disease (CAD) has not been evaluated sufficiently. We aimed to investigate the prevalence of silent myocardial ischemia in patients with symptomatic intracranial atherosclerosis and to identify factors associated with its presence. From 186 first-ever transient ischemic attack or ischemic stroke patients with intracranial stenoses, 65 fulfilled selection criteria, including angiographic confirmation of a symptomatic atherosclerotic stenosis and absence of known CAD. All patients underwent a maximal-stress myocardial perfusion single-photon emission computed tomography (SPECT). Lipoprotein(a) [Lp(a)], C-reactive protein, and homocysteine (Hcy) levels were determined before SPECT. Stress-rest SPECT detected reversible myocardial perfusion defects in 34 (52%) patients. Vascular risk factors associated with a pathologic SPECT were hypercholesterolemia (P=0.045), presence of >2 risk factors (P=0.004) and high Lp(a) (P=0.023) and Hcy levels (P=0.018). Ninety percent of patients with high Lp(a) and Hcy levels had a positive SPECT. Existence of a stenosed intracranial internal carotid artery (ICA; odds ratio [OR], 7.22, 2.07 to 25.23; P=0.002) and location of the symptomatic stenosis in vertebrobasilar arteries (OR, 4.89, 1.19 to 20.12; P=0.027) were independently associated with silent myocardial ischemia after adjustment by age, sex, and risk factors. More than 50% of the patients with symptomatic intracranial atherosclerosis and not overt CAD show myocardial perfusion defects on stress-rest SPECT. Stenosed intracranial ICA, symptomatic vertebrobasilar stenosis and presence of high Lp(a) and Hcy levels may characterize the patients at a higher risk for occult CAD.

  11. SIMULTANEOUS DUAL-RADIONUCLIDE MYOCARDIAL PERFUSION IMAGING WITH A SOLID-STATE DEDICATED CARDIAC CAMERA

    PubMed Central

    Ben-Haim, S.; Kacperski, K.; Hain, S.; Van Gramberg, D.; Hutton, B.F.; Waddington, W.A.; Sharir, T.; Roth, N.; Berman, D.S.; Ell, P.J.

    2011-01-01

    We compared simultaneous dual-radionuclide stress and rest myocardial perfusion imaging (MPI) with a novel solid-state cardiac camera and a conventional SPECT camera with separate stress and rest acquisitions. Methods 24 consecutive patients (64.5 ± 11.8 years, 16 men) were injected with 74 MBq of 201Tl (rest) and 250 MBq 99mTc-MIBI (stress). Conventional MPI acquisition times for stress and rest were 21 min and 16 min, respectively. A simultaneous dual-radionuclide (DR) 15 minute list mode gated acquisition was performed on D-SPECT (Spectrum-dynamics, Caesarea, Israel). The DR D-SPECT data were processed using a spillover and scatter correction method. We compared DR D-SPECT images with conventional SPECT images by visual analysis employing the 17-segment model and a 5-point scale (0=normal, 4=absent) to calculate the summed stress and rest scores (SSS and SRS, respectively) and the % visual perfusion defect (TPD) at stress and rest, by dividing the stress and rest scores, respectively, by 68 and multiplying by 100. TPD <5% was considered normal. Image quality was assessed on a 4-point scale (1=poor, 4=very good) and gut activity was assessed on a 4-point scale (0=none, 3=high). Results Conventional MPI was abnormal at stress in 17 patients and at rest in 9 patients. In the 17 abnormal stress studies DR D-SPECT MPI was abnormal in 113 vs. 93 abnormal segments by conventional MPI. In the nine abnormal rest studies DR D-SPECT was abnormal in 45 vs. 48 segments abnormal by conventional MPI. SSS, SRS, TPD stress and TPD rest on conventional SPECT and DR D-SPECT highly correlated (r=0.9790, 0.9694, 0.9784, 0.9710, respectively; p<0.0001 for all). In addition, 6 patients had significantly larger perfusion defects on DR D-SPECT stress images, including five of 11 patients who were imaged earlier on D-SPECT than conventional SPECT. Conclusion D-SPECT enables fast and high quality simultaneous DR MPI in a single imaging session with comparable diagnostic performance and

  12. Panic attack triggering myocardial ischemia documented by myocardial perfusion imaging study. A case report

    PubMed Central

    2012-01-01

    Background Chest pain, a key element in the investigation of coronary artery disease is often regarded as a benign prognosis when present in panic attacks. However, panic disorder has been suggested as an independent risk factor for long-term prognosis of cardiovascular diseases and a trigger of acute myocardial infarction. Objective Faced with the extreme importance in differentiate from ischemic to non-ischemic chest pain, we report a case of panic attack induced by inhalation of 35% carbon dioxide triggering myocardial ischemia, documented by myocardial perfusion imaging study. Discussion Panic attack is undoubtedly a strong component of mental stress. Patients with coronary artery disease may present myocardial ischemia in mental stress response by two ways: an increase in coronary vasomotor tone or a sympathetic hyperactivity leading to a rise in myocardial oxygen consumption. Coronary artery spasm was presumed to be present in cases of cardiac ischemia linked to panic disorder. Possibly the carbon dioxide challenge test could trigger myocardial ischemia by the same mechanisms. Conclusion The use of mental stress has been suggested as an alternative method for myocardial ischemia investigation. Based on translational medicine objectives the use of CO2 challenge followed by Sestamibi SPECT could be a useful method to allow improved application of research-based knowledge to the medical field, specifically at the interface of PD and cardiovascular disease. PMID:22999016

  13. End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system.

    PubMed

    Chan, Chung; Harris, Mark; Le, Max; Biondi, James; Grobshtein, Yariv; Liu, Yi-Hwa; Sinusas, Albert J; Liu, Chi

    2014-10-21

    Respiratory and cardiac motions can degrade myocardial perfusion SPECT (MPS) image quality and reduce defect detection and quantitative accuracy. In this study, we developed a dual respiratory and cardiac gating system for a high-resolution fully stationary cardiac SPECT scanner in order to improve the image quality and defect detection. Respiratory motion was monitored using a compressive sensor pillow connected to a dual respiratory-cardiac gating box, which sends cardiac triggers only during end-expiration phases to the single cardiac trigger input on the SPECT scanners. The listmode data were rebinned retrospectively into end-expiration frames for respiratory motion reduction or eight cardiac gates only during end-expiration phases to compensate for both respiratory and cardiac motions. The proposed method was first validated on a motion phantom in the presence and absence of multiple perfusion defects, and then applied on 11 patient studies with and without perfusion defects. In the normal phantom studies, the end-expiration gated SPECT (EXG-SPECT) reduced respiratory motion blur and increased myocardium to blood pool contrast by 51.2% as compared to the ungated images. The proposed method also yielded an average of 11.2% increase in myocardium to defect contrast as compared to the ungated images in the phantom studies with perfusion defects. In the patient studies, EXG-SPECT significantly improved the myocardium to blood pool contrast (p < 0.005) by 24% on average as compared to the ungated images, and led to improved perfusion uniformity across segments on polar maps for normal patients. For a patient with defect, EXG-SPECT improved the defect contrast and definition. The dual respiratory-cardiac gating further reduced the blurring effect, increased the myocardium to blood pool contrast significantly by 36% (p < 0.05) compared to EXG-SPECT, and further improved defect characteristics and visualization of fine structures at the expense of increased noise

  14. End-expiration Respiratory Gating for a High Resolution Stationary Cardiac SPECT system

    PubMed Central

    Chan, Chung; Harris, Mark; Le, Max; Biondi, James; Grobshtein, Yariv; Liu, Yi-Hwa; Sinusas, Albert J.; Liu, Chi

    2014-01-01

    Respiratory and cardiac motions can degrade myocardial perfusion SPECT (MPS) image quality and reduce defect detection and quantitative accuracy. In this study, we developed a dual-respiratory and cardiac gating system for a high resolution fully stationary cardiac SPECT scanner in order to improve the image quality and defect detection. Respiratory motion was monitored using a compressive sensor pillow connected to a dual respiratory-cardiac gating box, which sends cardiac triggers only during end-expiration phases to the single cardiac trigger input on the SPECT scanners. The listmode data were rebinned retrospectively into end-expiration frames for respiratory motion reduction or 8 cardiac gates only during end-expiration phases to compensate for both respiratory and cardiac motions. The proposed method was first validated on a motion phantom in the presence and absence of multiple perfusion defects, and then applied on 11 patient studies with and without perfusion defects. In the normal phantom studies, the end-expiration gated SPECT (EXG-SPECT) reduced respiratory motion blur and increased myocardium to blood pool contrast by 51.2% as compared to the ungated images. The proposed method also yielded an average of 11.2% increase in myocardium to defect contrast as compared to the ungated images in the phantom studies with perfusion defects. In the patient studies, EXG-SPECT significantly improved the myocardium to blood pool contrast (p<0.005) by 24% on average as compared to the ungated images, and led to improved perfusion uniformity across segments on polar maps for normal patients. For a patient with defect, EXG-SPECT improved the defect contrast and definition. The dual respiratory-cardiac gating further reduced the blurring effect, increased the myocardium to blood pool contrast significantly by 36% (p<0.05) compared to EXG SPECT, and further improved defect characteristics and visualization of fine structures at the expense of increased noise on the

  15. End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system

    NASA Astrophysics Data System (ADS)

    Chan, Chung; Harris, Mark; Le, Max; Biondi, James; Grobshtein, Yariv; Liu, Yi-Hwa; Sinusas, Albert J.; Liu, Chi

    2014-10-01

    Respiratory and cardiac motions can degrade myocardial perfusion SPECT (MPS) image quality and reduce defect detection and quantitative accuracy. In this study, we developed a dual respiratory and cardiac gating system for a high-resolution fully stationary cardiac SPECT scanner in order to improve the image quality and defect detection. Respiratory motion was monitored using a compressive sensor pillow connected to a dual respiratory-cardiac gating box, which sends cardiac triggers only during end-expiration phases to the single cardiac trigger input on the SPECT scanners. The listmode data were rebinned retrospectively into end-expiration frames for respiratory motion reduction or eight cardiac gates only during end-expiration phases to compensate for both respiratory and cardiac motions. The proposed method was first validated on a motion phantom in the presence and absence of multiple perfusion defects, and then applied on 11 patient studies with and without perfusion defects. In the normal phantom studies, the end-expiration gated SPECT (EXG-SPECT) reduced respiratory motion blur and increased myocardium to blood pool contrast by 51.2% as compared to the ungated images. The proposed method also yielded an average of 11.2% increase in myocardium to defect contrast as compared to the ungated images in the phantom studies with perfusion defects. In the patient studies, EXG-SPECT significantly improved the myocardium to blood pool contrast (p < 0.005) by 24% on average as compared to the ungated images, and led to improved perfusion uniformity across segments on polar maps for normal patients. For a patient with defect, EXG-SPECT improved the defect contrast and definition. The dual respiratory-cardiac gating further reduced the blurring effect, increased the myocardium to blood pool contrast significantly by 36% (p < 0.05) compared to EXG-SPECT, and further improved defect characteristics and visualization of fine structures at the expense of increased noise on

  16. Subacute cardiac rubidium-82 positron emission tomography ((82)Rb-PET) to assess myocardial area at risk, final infarct size, and myocardial salvage after STEMI.

    PubMed

    Ghotbi, Adam Ali; Kjaer, Andreas; Nepper-Christensen, Lars; Ahtarovski, Kiril Aleksov; Lønborg, Jacob Thomsen; Vejlstrup, Niels; Kyhl, Kasper; Christensen, Thomas Emil; Engstrøm, Thomas; Kelbæk, Henning; Holmvang, Lene; Bang, Lia E; Ripa, Rasmus Sejersten; Hasbak, Philip

    2016-10-14

    Determining infarct size and myocardial salvage in patients with ST-segment elevation myocardial infarction (STEMI) is important when assessing the efficacy of new reperfusion strategies. We investigated whether rest (82)Rb-PET myocardial perfusion imaging can estimate area at risk, final infarct size, and myocardial salvage index when compared to cardiac SPECT and magnetic resonance (CMR). Twelve STEMI patients were injected with (99m)Tc-Sestamibi intravenously immediate prior to reperfusion. SPECT, (82)Rb-PET, and CMR imaging were performed post-reperfusion and at a 3-month follow-up. An automated algorithm determined area at risk, final infarct size, and hence myocardial salvage index. SPECT, CMR, and PET were performed 2.2 ± 0.5, 34 ± 8.5, and 32 ± 24.4 h after reperfusion, respectively. Mean (± SD) area at risk were 35.2 ± 16.6%, 34.7 ± 11.3%, and 28.1 ± 16.1% of the left ventricle (LV) in SPECT, CMR, and PET, respectively, P = 0.04 for difference. Mean final infarct size estimates were 12.3 ± 15.4%, 13.7 ± 10.4%, and 11.9 ± 14.6% of the LV in SPECT, CMR, and PET imaging, respectively, P = .72. Myocardial salvage indices were 0.64 ± 0.33 (SPECT), 0.65 ± 0.20 (CMR), and 0.63 ± 0.28 (PET), (P = .78). (82)Rb-PET underestimates area at risk in patients with STEMI when compared to SPECT and CMR. However, our findings suggest that PET imaging seems feasible when assessing the clinical important parameters of final infarct size and myocardial salvage index, although with great variability, in a selected STEMI population with large infarcts. These findings should be confirmed in a larger population.

  17. C-SPECT - a Clinical Cardiac SPECT/Tct Platform: Design Concepts and Performance Potential

    PubMed Central

    Chang, Wei; Ordonez, Caesar E.; Liang, Haoning; Li, Yusheng; Liu, Jingai

    2013-01-01

    Because of scarcity of photons emitted from the heart, clinical cardiac SPECT imaging is mainly limited by photon statistics. The sub-optimal detection efficiency of current SPECT systems not only limits the quality of clinical cardiac SPECT imaging but also makes more advanced potential applications difficult to be realized. We propose a high-performance system platform - C-SPECT, which has its sampling geometry optimized for detection of emitted photons in quality and quantity. The C-SPECT has a stationary C-shaped gantry that surrounds the left-front side of a patient’s thorax. The stationary C-shaped collimator and detector systems in the gantry provide effective and efficient detection and sampling of photon emission. For cardiac imaging, the C-SPECT platform could achieve 2 to 4 times the system geometric efficiency of conventional SPECT systems at the same sampling resolution. This platform also includes an integrated transmission CT for attenuation correction. The ability of C-SPECT systems to perform sequential high-quality emission and transmission imaging could bring cost-effective high-performance to clinical imaging. In addition, a C-SPECT system could provide high detection efficiency to accommodate fast acquisition rate for gated and dynamic cardiac imaging. This paper describes the design concepts and performance potential of C-SPECT, and illustrates how these concepts can be implemented in a basic system. PMID:23885129

  18. Detection of coronary artery stenosis in children with Kawasaki disease. Usefulness of pharmacologic stress sup 201 Tl myocardial tomography

    SciTech Connect

    Kondo, C.; Hiroe, M.; Nakanishi, T.; Takao, A. )

    1989-09-01

    This study determined the feasibility and accuracy of quantitative 201Tl myocardial single-photon emission computed tomography (SPECT) after dipyridamole infusion to detect coronary obstructive lesions in children with Kawasaki disease. 201Tl distribution after dipyridamole infusion was measured in 23 normal children, and with these normal values, quantitative analysis of SPECT was performed in 49 patients. Thirty-four patients had coronary stenosis 90% or greater on angiograms. Side effects resulting from systemic vasodilation were observed in about 70%. Angina pectoris and ischemic ST changes were observed only in patients with coronary stenosis. These symptoms disappeared after aminophylline infusion. Results of visual and quantitative analysis of SPECT were compared. SPECT data were shown on two-dimensional polar maps, and the extent and severity scores were calculated. The sensitivity of SPECT for detection of overall coronary stenosis was 91% (visual analysis) and 88% (quantitative analysis). The specificity of SPECT was 60% visually and 93% quantitatively. The sensitivity of quantitative analysis to detect individual coronary stenosis was similar to that of visual analysis. However, the specificity of visual analysis to detect individual coronary artery stenosis was significantly less than that of quantitative analysis. From these data, we conclude that quantitative analysis of myocardial SPECT after dipyridamole infusion is a safe and accurate diagnostic method for identifying coronary stenosis in children with Kawasaki disease.

  19. Comparison between segmental wall motion and wall thickening in patients with coronary artery disease using quantitative gated SPECT software.

    PubMed

    Imran, M B; Morita, K; Adachi, I; Konno, M; Kubo, N; Mochizuki, T; Katoh, C; Kohya, T; Kitabatake, A; Tsukamoto, E; Tamaki, N

    2000-08-01

    This study was performed to evaluate regional wall motion (WM) and wall thickening (WT) using gated myocardial perfusion single photon emission computed tomography (SPECT) and to determine their similarity and disparity in patients with coronary artery disease (CAD). A total of 44 patients underwent 1 day stress/rest (MIBI) gated SPECT. Commercially available quantitative analysis of gated SPECT (QGS) software was used to generate 3D surface display and cine-mode SPECT display. Left ventricle was divided into nine segments to score WM and WT from 0 (no abnormality) to 4 (severe abnormality) by six independent observers. Finally a mean score was calculated for each segment from the scores of six observers. There was fairly good correlation between WM and WT of individual segments (r = 0.62, p < 0.0001). Concordance rate (IWM - WTI < 1) was 85%. A large difference between WM and WT (WM - WT > or = 2) was observed in 15 segments, including 12 segments with greater WM abnormalities and 3 segments with greater WT abnormalities (lateral and inferior walls). Greater WM abnormalities were most commonly observed in anteroseptal segments especially in post coronary artery bypass grafting (CABG) patients. In conclusion, WM and WT showed similarity on QGS studies. However, these two parameters may be determined separately in gated SPECT studies for comprehensive and robust evaluation of the functional status of myocardium. Analyses based on WM assessment alone may lead to erroneous results especially in septal regions.

  20. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease

    SciTech Connect

    Stewart, R.E.; Schwaiger, M.; Molina, E.; Popma, J.; Gacioch, G.M.; Kalus, M.; Squicciarini, S.; al-Aouar, Z.R.; Schork, A.; Kuhl, D.E. )

    1991-06-15

    The diagnostic performance of rubidium-82 (Rb-82) positron emission tomography (PET) and thallium-201 (Tl-201) single-photon emission-computed tomography (SPECT) for detecting coronary artery disease was investigated in 81 patients (52 men, 29 women). PET studies using 60 mCi of Rb-82 were performed at baseline and after intravenous infusion of 0.56 mg/kg dipyridamole in conjunction with handgrip stress. Tl-201 SPECT was performed after dipyridamole-handgrip stress and, in a subset of patients, after treadmill exercise. Sensitivity, specificity and overall diagnostic accuracy were assessed using both visually and quantitatively interpreted coronary angiograms. The overall sensitivity, specificity and accuracy of PET for detection of coronary artery disease (greater than 50% diameter stenosis) were 84, 88 and 85%, respectively. In comparison, the performance of SPECT revealed a sensitivity of 84%, specificity of 53% (p less than 0.05 vs PET) and accuracy of 79%. Similar results were obtained using either visual or quantitative angiographic criteria for severity of coronary artery disease. In 43 patients without prior myocardial infarction, the sensitivity for detection of disease was 71 and 73%, respectively, similar for both PET and SPECT. There was no significant difference in diagnostic performance between imaging modalities when 2 different modes of stress (exercise treadmill vs intravenous dipyridamole plus handgrip) were used with SPECT imaging. Thus, Rb-82 PET provides improved specificity compared with Tl-201 SPECT for identifying coronary artery disease, most likely due to the higher photon energy of Rb-82 and attenuation correction provided by PET. However, post-test referral cannot be entirely excluded as a potential explanation for the lower specificity of Tl-201 SPECT.

  1. Prognostic Implications of Discordant Results of Myocardial Perfusion Single-Photon Emission Computed Tomography and Exercise ECG Test in Patients with Stable Angina.

    PubMed

    Kowalczyk, Ewelina; Filipiak-Strzecka, Dominika; Hamala, Piotr; Śmiech, Nina; Kasprzak, Jarosław D; Kuśmierek, Jacek; Płachcińska, Anna; Lipiec, Piotr

    2015-01-01

    ECG exercise treadmill test (ExT) and myocardial perfusion SPECT (single photon emission computed tomography) study are widely used for the non-invasive evaluation of patients with coronary artery disease (CAD). To assess long-term prognosis in patients with suspected or known coronary artery disease (CAD), in whom ECG exercise treadmill test (ExT) and myocardial perfusion single photon emission computed tomography (SPECT) provided discordant results are lacking. Four hundred eighty three patients with suspected or known stable CAD underwent 99mTc-methoxyisobutylisonitrile SPECT and ExT. SPECT was considered positive (+) if inducible or mixed perfusion defects were detected. ExT was evaluated using widely accepted criteria. Based on the results of both examinations the patients were divided into 4 subgroups: group 1 - SPECT (+) and ExT (+), group 2 - SPECT (+) and ExT (-), group 3 - SPECT (-) and ExT (+), group 4 - SPECT (-) and ExT (-). After a mean follow-up of 59 ± 7 months, major cardiac events (cardiac death and nonfatal myocardial infarction combined) and revascularizations were more prevalent in groups 1 and 2 than in groups 3 and 4. However, the statistical significance (p ≤ 0.01) was reached only for the following differences: in major cardiac events - group 1 vs group 3 and group 1 vs group 4; in revascularizations - group 1 vs. group 3, group 1 vs. group 4 and group 2 vs group 4 and in cardiac hospitalizations - group 1 vs. group 4 and group 2 vs. group 4. Positive myocardial perfusion SPECT result is associated with similar clinical outcome irrespectively of ExT result in long-term follow-up.

  2. The AdaptiSPECT Imaging Aperture

    PubMed Central

    Chaix, Cécile; Moore, Jared W.; Van Holen, Roel; Barrett, Harrison H.; Furenlid, Lars R.

    2015-01-01

    In this paper, we present the imaging aperture of an adaptive SPECT imaging system being developed at the Center for Gamma Ray Imaging (AdaptiSPECT). AdaptiSPECT is designed to automatically change its configuration in response to preliminary data, in order to improve image quality for a particular task. In a traditional pinhole SPECT imaging system, the characteristics (magnification, resolution, field of view) are set by the geometry of the system, and any modification can be accomplished only by manually changing the collimator and the distance of the detector to the center of the field of view. Optimization of the imaging system for a specific task on a specific individual is therefore difficult. In an adaptive SPECT imaging system, on the other hand, the configuration can be conveniently changed under computer control. A key component of an adaptive SPECT system is its aperture. In this paper, we present the design, specifications, and fabrication of the adaptive pinhole aperture that will be used for AdaptiSPECT, as well as the controls that enable autonomous adaptation. PMID:27019577

  3. SPECT in the diagnosis of hepatic hemangioma

    SciTech Connect

    Brunetti, J.C.; Van Heertum, R.L.; Yudd, A.P.

    1985-05-01

    Tc99m labeled red blood cell blood flow and delayed static blood pool imaging is widely accepted as a reliable, accurate method for the diagnosis of hepatic hemangiomata. The purpose of this study is to assess the relative value of SPECT blood pool imaging in the evaluation of hepatic hemangionata. A total of 68 patients, including 21 patients with proven hepatic cavernous hemangiomas, were studied using both planar and SPECT imaging techniques. All patients underwent multi-phase evaluation which included a hepatic flow study, immediate planar images of the liver, followed by a 360/sup 0/ tomographic (SPECT) study and subsequent 60 minute delayed static planar hepatic blood pool images. All 21 patients with proven hepatic hemangiomas had a positive SPECT exam and 17 of the 21 (81%) patients had a positive planar exam. In the 21 patients, there were a total of 36 hemangiomas ranging in size from .7 cm to 13 cm. The SPECT imaging technique correctly identified all 36 lesions (100%) where as planar imaging detected 25 of the 36 lesions (69.4%). In all the remaining patients (10-normal, 17-metastatic disease, 12-hepatocellular disease, 6-hepatoma, 2-liver cysts), both the planar and SPECT imaging techniques were interpreted as showing no evidence of focal sequestration of red blood cells. SPECT hepatic blood pool imaging represents an improvement in the evaluation of hepatic hemangioma as a result of a reduction in imaging time (less than thirty minutes), improved spatial resolution and greater overall accuracy.

  4. Myocardial viability.

    PubMed Central

    Birnbaum, Y; Kloner, R A

    1996-01-01

    Left ventricular function is a major predictor of outcome in patients with coronary artery disease. Acute ischemia, postischemic dysfunction (stunning), myocardial hibernation, or a combination of these 3 are among the reversible forms of myocardial dysfunction. In myocardial stunning, dysfunction occurs despite normal myocardial perfusion, and function recovers spontaneously over time. In acute ischemia and hibernation, there is regional hypoperfusion. Function improves only after revascularization. Evidence of myocardial viability usually relies on the demonstration of uptake of various metabolic tracers, such as thallium (thallous chloride TI 201) or fludeoxyglucose F 18, by dysfunctional myocardium or by the demonstration of contractile reserve in a dysfunctional region. This can be shown as an augmentation of function during the infusion of various sympathomimetic agents. The response of ventricular segments to increasing doses of dobutamine may indicate the underlying mechanism of dysfunction. Stunned segments that have normal perfusion show dose-dependent augmentation of function. If perfusion is reduced as in hibernating myocardium, however, a biphasic response usually occurs: function improves at low doses of dobutamine, whereas higher doses may induce ischemia and, hence, dysfunction. But in patients with severely impaired perfusion, even low doses may cause ischemia. Myocardial regions with subendocardial infarction or diffuse scarring may also have augmented contractility during catecholamine infusion due to stimulation of the subepicardial layers. In these cases, augmentation of function after revascularization is not expected. Because the underlying mechanism, prognosis, and therapy may differ among these conditions, it is crucial to differentiate among dysfunctional myocardial segments that are nonviable and have no potential to regain function, hibernating or ischemic segments in which recovery of function occurs only after revascularization, and

  5. Effects of chronic kidney disease on myocardial washout rate of thallium-201 in patients with normal myocardial perfusion on single photon emission computed tomography.

    PubMed

    Kurisu, Satoshi; Sumimoto, Yoji; Ikenaga, Hiroki; Ishibashi, Ken; Fukuda, Yukihiro; Kihara, Yasuki

    2017-09-06

    Myocardial perfusion single photon emission computed tomography (SPECT) is often performed even in patients with chronic kidney disease (CKD). We assessed the effects of CKD on myocardial washout rate (WR) of thallium (Tl)-201 in patients with normal myocardial perfusion on SPECT. Two hundred and fifty-six patients with normal myocardial perfusion were enrolled in this study. CKD was defined as estimated glomerular filtration rate (eGFR) <60 ml/min/1.73 m(2). Patients with eGFR ≥ 60 ml/min/1.73 m(2) were assigned to a control group. The mean myocardial WR of Tl-201 was calculated from the stress and the redistribution Bull's eye maps. With progressive CKD stages, systolic blood pressure and incindence of hypertension were increased. All patients in CKD stage 5 group were being treated with hemodialysis. Myocardial WR of Tl-201 was significantly higher in all of the CKD groups than control group. With progressive CKD stages, myocardial WR of Tl-201 was increased (stage 3, 52.2 ± 9.2%; stage 4, 55.5 ± 8.1%; and stage 5, 58.9 ± 5.6%). Multivariate analysis showed that hemoglobin (β = -0.24, p < 0.001) and eGFR (β = -0.24, p = 0.002) were the major determinants of myocardial WR of Tl-201, but hemodialysis was not. Our data suggest that CKD is associated with increased myocardial WR of Tl-201 in patients with normal perfusion on SPECT.

  6. Integration of AdaptiSPECT, a small-animal adaptive SPECT imaging system

    PubMed Central

    Chaix, Cécile; Kovalsky, Stephen; Kosmider, Matthew; Barrett, Harrison H.; Furenlid, Lars R.

    2015-01-01

    AdaptiSPECT is a pre-clinical adaptive SPECT imaging system under final development at the Center for Gamma-ray Imaging. The system incorporates multiple adaptive features: an adaptive aperture, 16 detectors mounted on translational stages, and the ability to switch between a non-multiplexed and a multiplexed imaging configuration. In this paper, we review the design of AdaptiSPECT and its adaptive features. We then describe the on-going integration of the imaging system. PMID:26347197

  7. SPECT Imaging: Basics and New Trends

    NASA Astrophysics Data System (ADS)

    Hutton, Brian F.

    Single Photon Emission Computed Tomography (SPECT) is widely used as a means of imaging the distribution of administered radiotracers that have single-photon emission. The most widely used SPECT systems are based on the Anger gamma camera, usually involving dual detectors that rotate around the patient. Several factors affect the quality of SPECT images (e.g., resolution and noise) and the ability to perform absolute quantification (e.g., attenuation, scatter, motion, and resolution). There is a trend to introduce dual-modality systems and organ-specific systems, both developments that enhance diagnostic capability.

  8. The value of myocardial perfusion scintigraphy in the diagnosis and management of angina and myocardial infarction: a probabilistic economic analysis.

    PubMed

    Hernández, Rodolfo; Vale, Luke

    2007-01-01

    Coronary heart disease (CHD) is the most common cause of death in the United Kingdom, accounting for more than 120,000 deaths in 2001, among the highest rates in the world. This study reports an economic evaluation of single photon emission computed tomography myocardial perfusion scintigraphy (SPECT) for the diagnosis and management of coronary artery disease (CAD). Strategies involving SPECT with and without stress electrocardiography (ECG) and coronary angiography (CA) were compared to diagnostic strategies not involving SPECT. The diagnosis decision was modeled with a decision tree model and long-term costs and consequences using a Markov model. Data to populate the models were obtained from a series of systematic reviews. Unlike earlier evaluations, a probabilistic analysis was included to assess the statistical imprecision of the results. The results are presented in terms of incremental cost per quality-adjusted life year (QALY). At prevalence levels of CAD of 10.5%, SPECT-based strategies are cost-effective; ECG-CA is highly unlikely to be optimal. At a ceiling ratio of Pound 20,000 per QALY, SPECT-CA has a 90% likelihood of being optimal. Beyond this threshold, this strategy becomes less likely to be cost-effective. At more than Pound 75,000 per QALY, coronary angiography is most likely to be optimal. For higher levels of prevalence (around 50%) and more than a Pound 10,000 per QALY threshold, coronary angiography is the optimal decision. SPECT-based strategies are likely to be cost-effective when risk of CAD is modest (10.5%). Sensitivity analyses show these strategies dominated non-SPECT-based strategies for risk of CAD up to 4%. At higher levels of prevalence, invasive strategies may become worthwhile. Finally, sensitivity analyses show stress echocardiography as a potentially cost-effective option, and further research to assess the relative cost-effectiveness of echocardiography should also be performed.

  9. [Estimation of I-123 metaiodobenzylguanidine (MIBG) myocardial washout].

    PubMed

    Saito, T; Watanabe, N; Saitoh, T; Asakura, T; Kanke, M; Owada, K; Hoshi, K; Kimura, K; Maruyama, Y

    1990-11-01

    A crosstalk from I-123 to Tl-201 (Tl) window was 35 +/- 30% (mean +/- SD) and 30 +/- 10% in a myocardial phantom and the images of 6 patients respectively. However, the crosstalk from Tl to I-123 was approximately 1% in each. I-123 MIBG (MIBG) and Tl myocardial SPECT images were recorded in 3 normal volunteers (N), 10 patients with myocardial infarction (MI), and 4 with dilated cardiomyopathy (DCM). The MIBG and Tl imagings were performed on the other day to avoid the crosstalk. Myocardial washout rates (WR) of Tl and MIBG were derived from 15 min and 4 hour images. WR of Tl was approximately 36% in each group. On the other hand, WR of MIBG in DCM (52 +/- 7%) and MI (41 +/- 14%) groups were statistically higher than in N (24 +/- 7%) group. Thus WR of MIBG would be useful to detect abnormalities in adrenergic nervous system.

  10. Attenuation correction using asymmetric fanbeam transmission CT on two-head SPECT system.

    PubMed

    Kojima, Akihiro; Tomiguchi, Seiji; Kawanaka, Koichi; Utsunomiya, Daisuke; Shiraishi, Shinya; Nakaura, Takeshi; Katsuda, Noboru; Matsumoto, Masanori; Yamashita, Yasuyuki; Motomura, Nobutoku; Ichihara, Takashi

    2004-06-01

    For transmission computed tomography (TCT) systems using a centered transmission source with a fan-beam collimator, the transmission projection data are truncated. To achieve sufficiently large imaging field of view (FOV), we have designed the combination of an asymmetric fan-beam (AsF) collimator and a small uncollimated sheet-source for TCT, and implemented AsF sampling on a two-head SPECT system. The purpose of this study is to evaluate the feasibility of our TCT method for quantitative emission computed tomography (ECT) in clinical application. Sequential Tc-99m transmission and Tl-201 emission data acquisition were performed in a cardiac phantom (30 cm in width) with a myocardial chamber and a patient study. Tc-99m of 185 MBq was used as the transmission source. Both the ECT and TCT images were reconstructed with the filtered back-projection method after scatter correction with the triple energy window (TEW) method. The attenuation corrected transaxial images were iteratively reconstructed with the Chang algorithm utilizing the attenuation coefficient map computed from the TCT data. In this AsF sampling geometry, an imaging FOV of 50 cm was yielded. The attenuated regions appeared normal on the scatter and attenuation corrected (SAC) images in the phantom and patient study. The good quantitative accuracy on the SAC images was also confirmed by the measurement of the Tl-201 radioactivity in the myocardial chamber in the phantom study. The AsF collimation geometry that we have proposed in this study makes it easy to realize TCT data acquisition on the two-head SPECT system and to perform quantification on Tl-201 myocardial SPECT.

  11. Awake animal SPECT: Overview and initial results

    SciTech Connect

    Weisenberger, A G; Majewski, S; McKisson, J; Popov, V; Proffitt, J; Stolin, A; Baba, J S; Goddard, J S; Lee, S J; Smith, M F; Tsui, B; Pomper, M

    2009-02-01

    A SPECT / X-ray CT system configured at Johns Hopkins University to image the biodistribution of radiopharmaceuticals in unrestrained, un-anesthetized mice has been constructed and tested on awake mice. The system was built by Thomas Jefferson National Accelerator Facility and Oak Ridge National Laboratory. SPECT imaging is accomplished using two gamma cameras, 10 cm × 20 cm in size based on a 2 × 4 array of Hamamatsu H8500 flat panel position sensitive photomultiplier tubes. A real-time optical tracking system utilizing three infrared cameras provides time stamped pose data of an awake mouse head during a SPECT scan. The six degrees of freedom (three translational and three rotational) pose data are used for motion correction during 3-D tomographic list-mode iterative image reconstruction. SPECT reconstruction of awake, unrestrained mice with motion compensation for head movement has been accomplished.

  12. SPECT assay of radiolabeled monoclonal antibodies

    SciTech Connect

    Jaszczak, R.J.

    1992-02-01

    The long-term goal of this research project is to develop methods to improve the utility of single photon emission computed tomography (SPECI) to quantify the biodistribution of monoclonal antibodies (MoAbs) labeled with clinically relevant radionuclides ({sup 123}I, {sup 131}I, and {sup 111}In) and with another radionuclide,{sup 211}At, recently used in therapy. We describe here our progress in developing quantitative SPECT methodology for {sup 111}In and {sup 123}I. We have focused our recent research thrusts on the following aspects of SPECT: (1) The development of improved SPECT hardware, such as improved acquisition geometries. (2) The development of better reconstruction methods that provide accurate compensation for the physical factors that affect SPECT quantification. (3) The application of carefully designed simulations and experiments to validate our hardware and software approaches.

  13. High-Efficiency SPECT MPI: Comparison of Automated Quantification, Visual Interpretation, and Coronary Angiography

    PubMed Central

    Duvall, W. Lane; Slomka, Piotr J.; Gerlach, Jim R.; Sweeny, Joseph M.; Baber, Usman; Croft, Lori B.; Guma, Krista A.; George, Titus; Henzlova, Milena J.

    2013-01-01

    Background Recently introduced high-efficiency (HE) SPECT cameras with solid-state CZT detectors have been shown to decrease imaging time and reduce radiation exposure to patients. An automated, computer derived quantification of HE MPI has been shown to correlate well with coronary angiography on one HE SPECT camera system (D-SPECT), but has not been compared to visual interpretation on any of the HE SPECT platforms. Methods Patients undergoing a clinically indicated Tc-99m sestamibi HE SPECT (GE Discovery 530c with supine and prone imaging) study over a one year period followed by a coronary angiogram within 2 months were included. Only patients with a history of CABG surgery were excluded. Both MPI studies and coronary angiograms were reinterpreted by blinded readers. One hundred and twenty two very low (risk of CAD < 5%) or low (risk of CAD < 10%) likelihood subjects with normal myocardial perfusion were used to create normal reference limits. Computer derived quantification of the total perfusion deficit (TPD) at stress and rest was obtained with QPS software. The visual and automated MPI quantification were compared to coronary angiography (≥ 70% luminal stenosis) by receiver operating curve (ROC) analysis. Results Of the 3,111 patients who underwent HE SPECT over a one year period, 160 patients qualified for the correlation study (66% male, 52% with a history of CAD). The ROC area under the curve (AUC) was similar for both the automated and visual interpretations using both supine only and combined supine and prone images (0.69-0.74). Using thresholds determined from sensitivity and specificity curves, the automated reads showed higher specificity (59-67% versus 27-60%) and lower sensitivity (71-72% versus 79-93%) than the visual reads. By including prone images sensitivity decreased slightly but specificity increased for both. By excluding patients with known CAD and cardiomyopathies, AUC and specificity increased for both techniques (0.72-0.82). The use

  14. Hypoglycaemic hemiplegia: a repeat SPECT study.

    PubMed Central

    Shintani, S; Tsuruoka, S; Shiigai, T

    1993-01-01

    During a hypoglycaemic right hemiplegia induced by a deliberate overdose of oral hypoglycaemics, brain CT and angiography revealed no abnormalities. SPECTs made one day and six days later showed relative hypoperfusion in the left hemisphere. Repeat SPECT study suggested that the left hemisphere was more vulnerable than the right in the cerebral blood perfusion. This vulnerability might provoke the right hemiplegia in a critical condition, such as severe hypoglycaemia. Images PMID:8509788

  15. Cerebral SPECT imaging: Impact on clinical management

    SciTech Connect

    Bloom, M.; Jacobs, S.; Pozniakof, T.

    1994-05-01

    Although cerebral SPECT has been reported to be of value in a variety of neurologic disorders, there is limited data available on the value of SPECT relative to clinical management decisions. The purpose of this study was to determine the effect of cerebral SPECT imaging on patient management. A total of 94 consecutive patients referred for clinical evaluation with brain SPECT were included in this study. Patients were assigned to one of nine groups depending on the clinical indication for the study. These groups included transient ischemia (16), stroke (20), dementia (18), seizures (5), hemorrhage (13), head trauma (6), arteriovenous malformations (6), encephalopathy (6) and a miscellaneous (4) group. All patients were injected with 99mTc HMPAO in doses ranging from 15 mCi to 22 mCi (555 MBq to 814 MBq) and scanned on a triple headed SPECT gamma camera. Two weeks after completion of the study, a standardized interview was conducted between the nuclear and referring physicians to determine if the SPECT findings contributed to an alteration in patient management. Overall, patient management was significantly altered in 47% of the cases referred. The greatest impact on patient management occurred in the group evaluated for transient ischemia, where a total of 13/16 (81%) of patients had their clinical management altered as a result of the cerebral SPECT findings. Clinical management was altered in 61% of patients referred for evaluation of dementia, 67% of patients evaluated for arteriovenous malformations, and 50% of patients with head trauma. In the remainder of the patients, alteration in clinical management ranged from 17% to 50% of patients. This study demonstrates the clinical utility of cerebral SPECT imaging since in a significant number of cases clinical management was altered as a result of the examination. Long term follow up will be necessary to determine patient outcome.

  16. ADAPTIVE SMALL-ANIMAL SPECT/CT

    PubMed Central

    Furenlid, L.R.; Moore, J.W.; Freed, M.; Kupinski, M.A.; Clarkson, E.; Liu, Z.; Wilson, D.W.; Woolfenden, J.M.; Barrett, H.H.

    2015-01-01

    We are exploring the concept of adaptive multimodality imaging, a form of non-linear optimization where the imaging configuration is automatically adjusted in response to the object. Preliminary studies suggest that substantial improvement in objective, task-based measures of image quality can result. We describe here our work to add motorized adjustment capabilities and a matching CT to our existing FastSPECT II system to form an adaptive small-animal SPECT/CT. PMID:26617457

  17. Quantification of myocardial infarction: a comparison of single photon-emission computed tomography with pyrophosphate to serial plasma MB-creatine kinase measurements

    SciTech Connect

    Jansen, D.E.; Corbett, J.R.; Wolfe, C.L.; Lewis, S.E.; Gabliani, G.; Filipchuk, N.; Redish, G.; Parkey, R.W.; Buja, L.M.; Jaffe, A.S.

    1985-08-01

    Single photon-emission computed tomography (SPECT) with /sup 99m/Tc-pyrophosphate (PPi) has been shown to estimate size of myocardial infarction accurately in animals. The authors tested the hypothesis that SPECT with /sup /sup 99m//Tc-PPi and blood pool subtraction can provide prompt and accurate estimates of size of myocardial infarction in patients. SPECT estimates are potentially available early after the onset of infarction and should correlate with estimates of infarct size calculated from serial measurements of plasma MB-creatine kinase (CK) activity. Thirty-three patients with acute myocardial infarction and 16 control patients without acute myocardial infarction were studied. Eleven of the patients had transmural anterior myocardial infarction, 16 had transmural inferior myocardial infarction, and six had nontransmural myocardial infarction. SPECT was performed with a commercially available rotating gamma camera. Identical projection images of the distribution of 99mTc-PPi and the ungated cardiac blood pool were acquired sequentially over 180 degrees. Reconstructed sections were color coded and superimposed for purposes of localization of infarct. Areas of increased PPi uptake within myocardial infarcts were thresholded at 65% of peak activity. The blood pool was thresholded at 50% and subtracted to determine the endocardial border for the left ventricle. Myocardial infarcts ranged in size from 1 to 126 gram equivalents (geq) MB-CK. The correlation of MB-CK estimates of size of infarct with size determined by SPECT (both in geq) was good (r = .89 with a regression line of y = 13.1 + 1.5x).

  18. Dipyridamole stress and rest transmural myocardial perfusion ratio evaluation by 64 detector-row computed tomography.

    PubMed

    Cury, Roberto C; Magalhães, Tiago A; Paladino, Antonio T; Shiozaki, Afonso A; Perini, Marcela; Senra, Tiago; Lemos, Pedro A; Cury, Ricardo C; Rochitte, Carlos E

    2011-01-01

    Myocardial stress CT perfusion (CTP) can detect myocardial ischemia. We evaluated the transmural perfusion ratio (TPR) of dipyridamole stress CTP to detect significant coronary stenosis (>70%) defined by quantitative invasive coronary angiography (ICA). Twenty-six patients (61.6 ± 8.0 years old; 14 males), without prior myocardial infarction, with positive single-photon emission computed tomography (SPECT; <2 months) and clinical indication for ICA, underwent a customized multidetector-row CT (MDCT) protocol with rest/stress myocardial perfusion evaluation and coronary CT angiography. TPR was defined as mean subendocardial divided by mean subepicardial attenuation and quantified on rest and stress MDCT images. Abnormal TPR was defined as 2 SDs below the mean rest TPR. All 26 patients completed the CT protocol with no adverse events. Rest TPR was measured in all patients with a mean of 1.06 ± 0.11, and abnormal TPR was considered <0.85. For 6 patients with normal coronary arteries by ICA, the mean TPR of territories with a previous positive perfusion defect in SPECT was 1.02 ± 0.18 (95% CI, 0.86-1.18; n = 6), and mean TPR of territories without perfusion defect in SPECT was 1.03 ± 0.09 (95% CI, -0.95 to 1.11; n = 12; P = 0.83). Mean stress TPR in territories with positive SPECT and significant coronary artery disease by quantitative ICA was 0.71 ± 0.13 (95% CI, -0.64 to 0.77) and in the remote myocardial was 1.01 ± 0.09 (95% CI, -0.96 to 1.06; P < 0001). In these territories, a significant Pearson's correlation was observed (r = -0.74, P < 0.001). TPR has a good correlation with SPECT and ICA to detect significant coronary stenosis. Copyright © 2011 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  19. Brain SPECT quantitation in clinical diagnosis

    SciTech Connect

    Hellman, R.S.

    1991-12-31

    Methods to quantitate SPECT data for clinical diagnosis should be chosen so that they take advantage of the lessons learned from PET data. This is particularly important because current SPECT high-resolution brain imaging systems now produce images that are similar in resolution to those generated by the last generation PET equipment (9 mm FWHM). These high-resolution SPECT systems make quantitation of SPECT more problematic than earlier. Methodology validated on low-resolution SPECT systems may no longer be valid for data obtained with the newer SPECT systems. For example, in patients with dementia, the ratio of parietal to cerebellar activity often was studied. However, with new instruments, the cerebellum appears very different: discrete regions are more apparent. The large cerebellar regions usually used with older instrumentation are of an inappropriate size for the new equipment. The normal range for any method of quantitation determined using older equipment probably changes for data obtained with new equipment. It is not surprising that Kim et al. in their simulations demonstrated that because of the finite resolution of imaging systems, the ability to measure pure function is limited, with {open_quotes}anatomy{close_quotes} and {open_quotes}function{close_quotes} coupled in a {open_quotes}complex nonlinear way{close_quotes}. 11 refs.

  20. Estimation of the total effective dose from low-dose CT scans and radiopharmaceutical administrations delivered to patients undergoing SPECT/CT explorations.

    PubMed

    Montes, Carlos; Tamayo, Pilar; Hernandez, Jorge; Gomez-Caminero, Felipe; García, Sofia; Martín, Carlos; Rosero, Angela

    2013-08-01

    Hybrid imaging, such as SPECT/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose.

  1. Superimposed display of coronary artery on gated myocardial perfusion scintigraphy.

    PubMed

    Nishimura, Yoshihiro; Fukuchi, Kazuki; Katafuchi, Tetsuro; Sagou, Masayoshi; Oka, Hisashi; Ishida, Yoshio; Murase, Kenya

    2004-09-01

    Fusion of images of vascular anatomy and of myocardial perfusion images might be helpful for understanding the relationship between ischemia and the responsible vessels. The aim of this study was to develop a simple means of superimposing the images obtained from coronary angiography and gated myocardial perfusion SPECT. Right and left oblique views from conventional coronary angiography and left ventriculography (LVG) were stored as 512 x 512 x 8-bit digital datasets and combined. We reconstructed images from routine gated myocardial perfusion imaging (MPI) by using (99m)Tc-tetrofosmin to match the oblique positions between the image from MPI and combined angiographic images. We then generated a 3-dimensional (3D) surface map by using the quantitative gated SPECT (QGS)/quantitative perfusion SPECT (QPS) program. Both the combined angiographic images and the 3D surface map were rescaled and unified by registering the internal landmarks between the 2 images. After subtraction of the LVG image, the coronary angiogram and the 3D surface map were fused into 1 image. All processes were performed with the QGS/QPS program and commercially available graphic software. We applied this method to datasets from a cardiac phantom and from several patients with coronary artery disease. In the phantom study, our technique could obtain a 3D surface map in which the oblique angle was identified as that of radiography and could realize image registration and superimposition of radiography on scintigraphy. The preliminary results from the patients indicated that the markedly stenotic vessels showed good coincidence with the regional myocardial perfusion abnormalities on the unified images. In addition, these images could show the relationship between the coronary artery and regional wall motion in the gated mode. We developed a simple method of superimposing the image of the coronary artery tree on images from gated MPI. The technique yielded useful information about myocardial

  2. Abnormal 201Tl myocardial single photon emission computed tomography in energetic male patients with myocardial bridge.

    PubMed

    Huang, W S; Chang, H D; Yang, S P; Tsao, T P; Cheng, C Y; Cherng, S C

    2002-11-01

    Myocardial bridge is a relatively benign condition where a major coronary artery is bridged by a band of muscle and narrows during systole, particularly during rapid heart rates. Its clinical presentation and electrocardiogram (ECG) changes overlap with that of coronary artery disease. 201Tl myocardial perfusion imaging is thus frequently prescribed for further evaluation. This retrospective study was carried out to determine the 201Tl image patterns in patients with myocardial bridge. A total of 17 male patients (aged from 30 to 63 years) who had a positive exercise ECG and angiographic evidence of myocardial bridge in the mid-third of the left anterior descending coronary artery were recruited. Most of them were robust and received routine physical check-ups. They had no known heart disease or medication that affected cardiac function. The patients' clinical presentations, echocardiograph and exercise ECG findings were analysed. 201Tl single photon emission computed tomography (SPECT) was performed by intravenous injection of 201Tl (111 MBq) immediately following stress (treadmill or dipyridamole induced) and 4 h after stress, using a fixed, right angle camera equipped with a low energy, general purpose collimator. The images were interpreted independently by two experienced nuclear medicine physicians. Nine of the 17 patients had anterior chest pain during exercise. All patients had an abnormal ECG during exercise, including ST-T wave depression in leads II, III and aVF, and v4-6. Except for eight patients revealing reversible perfusion defect (R), 16 of the 17 patients also exhibited a partial reversible perfusion defect (PR) or a significant reverse redistribution (RR) scan pattern in the anterior or inferior walls of the left ventricle. Myocardial bridge should be taken into consideration in energetic male patients who had abnormal exercise ECGs and the corresponding patterns of Tl SPECT abnormalities including R, PR and RR.

  3. Characteristics of single- and dual-photopeak energy window acquisitions with thallium-201 IQ-SPECT/CT system.

    PubMed

    Shibutani, Takayuki; Onoguchi, Masahisa; Yoneyama, Hiroto; Konishi, Takahiro; Matsuo, Shinro; Nakajima, Kenichi; Kinuya, Seigo

    2017-08-01

    Although dual-energy (DE) acquisition with conventional (201)Tl myocardial perfusion SPECT has several advantages such as improved attenuation of the inferior wall and increased acquisition counts, the characteristics of IQ-SPECT have not been fully evaluated. We evaluate the difference of characteristics between single-energy (SE) and dual-energy (DE) imaging using (201)Tl myocardial IQ-SPECT. Two myocardial phantoms were created simulating normal myocardium and infarction of the inferior wall. Energy windows were set at 70 keV ± 10% for SE, and an additional 167 keV ± 7.5% for DE. SPECT images were reconstructed using the ordered subset conjugates gradient minimizer (OSCGM) method. We visually and quantitatively compared short-axis images of correction for no (NC), for attenuation (AC) or for both AC and scatter (ACSC) images. The average counts of SE and DE projection data were 17.5 and 20.3 counts/pixel, respectively. The DE data increased acquisition counts by approximately 16% compared with the SE data. The average visual score of normal myocardium did not differ significantly between the SE and DE images. However, the DE image of defective myocardium showed a significantly lower score in AC than SE images. The % uptake values of DE image with both NC and AC were significantly higher than those of SE images. The DE images of the inferior defective areas (segments 4 and 10) showed approximately 5-10% higher uptake compared with the SE images. The DE image with NC improved attenuation of the inferior wall. However, DE image with AC showed low defect detectability. Thus, AC should be used with SE rather than DE. Furthermore, while the SE image with ACSC can be used to detect perfusion defects, it must be interpreted carefully including the possibility of artificial inhomogeneity even in the normal myocardium.

  4. Small-animal SPECT and SPECT/CT: application in cardiovascular research

    PubMed Central

    Golestani, Reza; Wu, Chao; Tio, René A.; Zeebregts, Clark J.; Petrov, Artiom D.; Beekman, Freek J.; Dierckx, Rudi A. J. O.; Slart, Riemer H. J. A.

    2010-01-01

    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstruction have led to sub-millimetre and sub-half-millimetre resolution SPECT in rats and mice, respectively. In this article we review applications of microSPECT in cardiovascular research in which information about the function and pathology of the myocardium, vessels and neurons is obtained. We give examples on how diagnostic tracers, new therapeutic interventions, pre- and postcardiovascular event prognosis, and functional and pathophysiological heart conditions can be explored by microSPECT, using small-animal models of cardiovascular disease. PMID:20069298

  5. Myocardial CT perfusion for the prediction of obstructive coronary artery disease, valuable or not?

    PubMed

    van Rosendael, Alexander R; de Graaf, Michiel A; Scholte, Arthur J

    2015-02-01

    Adenosine stress myocardial computed tomography perfusion (CTP) is a relatively new myocardial perfusion imaging technique. Together with coronary CT angiography (CTA) it provides anatomic and functional information of coronary artery disease (CAD). In previous studies, the combination of these techniques demonstrated to be valuable for identifying hemodynamically significant stenoses. George et al., performed a secondary analysis on the CORE320 study and compared the diagnostic performance of CTP to single positron emission computed tomography (SPECT) myocardial perfusion imaging (MPI) to diagnose obstructive CAD (defined as ≥50% luminal stenosis). In this editorial the results and limitations of the study are discussed, as well as opportunities that this new perfusion technique brings with it.

  6. Differentiation of myocardial ischemia and infarction assessed by dynamic computed tomography perfusion imaging and comparison with cardiac magnetic resonance and single-photon emission computed tomography.

    PubMed

    Tanabe, Yuki; Kido, Teruhito; Uetani, Teruyoshi; Kurata, Akira; Kono, Tamami; Ogimoto, Akiyoshi; Miyagawa, Masao; Soma, Tsutomu; Murase, Kenya; Iwaki, Hirotaka; Mochizuki, Teruhito

    2016-11-01

    To evaluate the feasibility of myocardial blood flow (MBF) by computed tomography from dynamic CT perfusion (CTP) for detecting myocardial ischemia and infarction assessed by cardiac magnetic resonance (CMR) or single-photon emission computed tomography (SPECT). Fifty-three patients who underwent stress dynamic CTP and either SPECT (n = 25) or CMR (n = 28) were retrospectively selected. Normal and abnormal perfused myocardium (ischemia/infarction) were assessed by SPECT/CMR using 16-segment model. Sensitivity and specificity of CT-MBF (mL/g/min) for detecting the ischemic/infarction and severe infarction were assessed. The abnormal perfused myocardium and severe infarction were seen in SPECT (n = 90 and n = 19 of 400 segments) and CMR (n = 223 and n = 36 of 448 segments). For detecting the abnormal perfused myocardium, sensitivity and specificity were 80 % (95 %CI, 71-90) and 86 % (95 %CI, 76-91) in SPECT (cut-off MBF, 1.23), and 82 % (95 %CI, 76-88) and 87 % (95 %CI, 80-92) in CMR (cut-off MBF, 1.25). For detecting severe infarction, sensitivity and specificity were 95 % (95 %CI, 52-100) and 72 % (95 %CI, 53-91) in SPECT (cut-off MBF, 0.92), and 78 % (95 %CI, 67-97) and 80 % (95 %CI, 58-86) in CMR (cut-off MBF, 0.98), respectively. Dynamic CTP has a potential to detect abnormal perfused myocardium and severe infarction assessed by SPECT/CMR using comparable cut-off MBF. • CT-MBF accurately reflects the severity of myocardial perfusion abnormality. • CT-MBF provides good diagnostic accuracy for detecting myocardial perfusion abnormalities. • CT-MBF may assist in stratifying severe myocardial infarction in abnormal perfusion myocardium.

  7. Noninvasive quantitative assessment of pacing induced ischemia in coronary artery disease patients using SPECT imaging with thallium-201

    SciTech Connect

    Summerville, D.A.; Polak, J.F.; Holman, B.L.; Jaski, B.E.; Nesto, R.W.

    1984-01-01

    The authors have investigated the use of a quantification algorithm which measures total myocardial mass using thallium-201 and single photon emission computed tomography (SPECT). Myocardial and lung uptake ratios were determined from the early and redistribution scintigrams of twelve coronary artery disease patients who had received intraventricular thallium-201 during pacing induced ischemia. The Iowa heart phantom placed in an Alderson chest phantom were imaged tomographically for the obtained range in target-to-background ratios. Tomographic acquisitions were made over 180/sup 0/. 30/sup 0/ RAO to 60/sup 0/ LPO for 64 projections. All reconstructions were made using attenuation compensation. Transverse tomographic slices were formulated into oblique data sets. The slices perpendicular to the left ventricular long axis (typically 16 to 19, .62 cm thick) were processed by a previously described algorithm which estimates volumes above certain threshold count values in contiguous slices and then sums according to Simpson's rule. Calibration curves for different target-to-background values and different threshold values were obtained. In the phantom, changes in the refillable chambers were accurately quantifiable. When applied to six patient studies, estimates of the change in myocardial mass correlated with the amount of ischemia (elevation in left ventricular EDP, r = .93). The authors conclude that SPECT can be used to make accurate estimates of myocardial mass using such algorithms if care is taken to adjust for individual variations in the uptake of thallium-201.

  8. Noninvasive quantitative assessment of pacing induced ischemia in coronary artery disease patients using spect imaging with thallium-201

    SciTech Connect

    Summerville, D.A.; Polak, J.F.; Holman, B.L.; Jaski, B.E.; Nesto, R.W.

    1984-01-01

    The authors have investigated the use of a quantification algorithm which measures total myocardial mass using thallium-201 and single photon emission computed tomography (SPECT). Myocardial and lung uptake ratios were determined from the early and redistribution scintigrams of twelve coronary artery disease patients who had received intraventricular thallium-201 during pacing induced ischemia. The Iowa heart phantom placed in an Alderson chest phantom were imaged tomographically for the obtained range in target-to-background ratios. Tomographic acquisitions were made over 180/sup 0/: 30/sup 0/ RAO to 60/sup 0/ LPO for 64 projections. All reconstructions were made using attenuation compensation. Transverse tomographic slices were formatted into oblique data sets. The slices perpendicular to the left ventricular long axis (typically 16 to 19, .62 cm thick) were processed by a previously described algorithm which estimates volumes above certain threshold count values in contiguous slices and then sums according to Simpson's rule. Calibration curves for different target-to-background values and different threshold values were obtained. In the phantom, changes in the refillable chambers were accurately quantifiable. When applied to six patient studies, estimates of the change in myocardial mass correlated with the amount of ischemia (elevation in left ventricular EDP, r = .93). The authors conclude that SPECT can be used to make accurate estimates of myocardial mass using such algorithms if care is taken to adjust for individual variations in the uptake of tahallium-201.

  9. Clinical significance of right ventricular activity on treadmill thallium-201 myocardial single-photon emission computerized tomography using cadmium-zinc-telluride cameras.

    PubMed

    Ko, Kuan-Yin; Wu, Yen-Wen; Liu, Chia-Ju; Cheng, Mei-Fang; Yen, Ruoh-Fang; Tzen, Kai-Yuan

    2016-06-01

    Identification of right ventricular (RV) abnormalities is important in patients with suspected coronary artery disease (CAD). RV activity can be better visualized on myocardial single-photon emission computerized tomography (SPECT) using a higher sensitivity cadmium-zinc-telluride (CZT) detector. The aim of this study was to investigate the clinical significance of RV/left ventricular (LV) uptake ratios during exercise thallium-201 SPECT using CZT detectors. A total of 102 patients underwent treadmill ECG-gated SPECT, coronary angiography, and echocardiography. SPECT myocardial perfusion was interpreted using a 17-segment model and a 0-4-point scale. RV/LV uptake ratios were calculated on the basis of maximum counts per pixel within the entire RV and LV walls. The relationships between RV/LV uptake ratio and gated SPECT, presence of CAD (≥50% stenosis in the left main or ≥70% in the main branches), demographics, and echocardiographic parameters were analyzed. Stress RV/LV ratios correlated positively with the presence of left main or multivessel disease, and tricuspid regurgitation maximum pressure gradient. After multivariate regression, stress/rest RV/LV ratios correlated positively with mitral flow deceleration time, age, female sex, and use of β-blockers. RV/LV uptake ratios on the basis of exercise myocardial perfusion SPECT imaging using CZT cameras are useful for the detection of severe CAD and could serve as an indicator of pulmonary hypertension and LV diastolic dysfunction.

  10. Investigation of the use of X-ray CT images for attenuation compensation in SPECT

    SciTech Connect

    LaCroix, K.J.; Tsui, B.M.W. ); Hasegawa, B.H.; Brown, J.K. )

    1994-12-01

    This study investigates the general use of single-beam X-ray computed tomography (CT) images for generating attenuation maps for compensation of photon attenuation in SPECT images. A 3D mathematical thorax phantom is used to simulate both emission and transmission projection data for monoenergetic and polyenergetic sources. Polyenergetic transmission projection data are simulated for a standard X-ray spectrum and fan-beam geometry. The projection data are reconstructed using filtered backprojection to form an X-ray CT image which is then scaled to produce an estimate of the attenuation map at the energy of the emission radionuclide. Emission projection data are simulated for a fan-beam geometry at the energies of [sup 201]Tl and [sup 99m]Tc, two radionuclides commonly used in cardiac SPECT. Detector response and scatter are not included in the model. Noiseless, emission projection data are iteratively reconstructed using the ML-EM algorithm with nonuniform attenuation compensation and attenuation maps derived from both the simulated X-ray CT image and from a simulated monoenergetic transmission CT image. The attenuation maps generated from the X-ray CT images accurately estimate the attenuation coefficient for muscle and lung tissues, but not for bone tissues, which show error in the attenuation coefficient of 21--42% for spinal bone and 34--58% for rib bone. However, despite the inaccurate estimate of bone attenuation, the reconstructed SPECT images provide estimates of myocardial radioactivity concentration to within 9% and show few artifacts.

  11. Cardiac SPECT/CCTA hybrid imaging : One answer to two questions?

    PubMed

    Kaufmann, P A; Buechel, R R

    2016-08-01

    Noninvasive cardiac imaging has witnessed tremendous advances in the recent past, particularly with regard to coronary computed tomography angiography (CCTA) where substantial improvements in image quality have been achieved while at the same time patients' radiation dose exposure has been reduced to the sub-millisievert range. Similarly, for single-photon emission computed tomography (SPECT) the introduction of novel cadmium-zinc-telluride-based semiconductor detectors has significantly improved system sensitivity and image quality, enabling fast image acquisition within less than 2-3 min or reduction of radiation dose exposure to less than 5 mSv. However, neither imaging modality alone is able to fully cover the two aspects of coronary artery disease (CAD), that is, morphology and function. Both modalities have distinct advantages and shortcomings: While CCTA may prove a superb modality for excluding CAD through its excellent negative predictive value, it does not allow for assessment of hemodynamic relevance if obstructive coronary lesions are detected. Conversely, SPECT myocardial perfusion imaging cannot provide any information on the presence or absence of subclinical coronary atherosclerosis. This article aims to highlight the great potential of cardiac hybrid imaging that allows for a comprehensive evaluation of CAD through combination of both morphological and functional information by fusing SPECT with CCTA.

  12. Prognostic utility of ischemic response in functional imaging tests (SPECT or stress echocardiography) in low-risk unstable angina patients.

    PubMed

    Trivi, Marcelo; Ronderos, Ricardo; Meretta, Alejandro; Conde, Diego; Avegliano, Gustavo

    2015-01-01

    The aim of this study is to determine the ability of ischemic response in imaging stress tests (single-photon emission computed tomography [SPECT] or stress echocardiography [SE]) to predict events in low-risk unstable angina patients. Three hundred and fifty-nine patients with unstable angina (< 24 h), asymptomatic at admission, without ST-segment elevation or depression, normal troponins, and undergoing SPECT (n = 188) or SE (n = 171) during hospitalization (median = 1 day) were included. A positive imaging test (IMAGING+) was defined as the presence of reversible perfusion defects or wall motion abnormalities in at least 2 contiguous segments. Multivariate models were constructed using these results and clinical variables to predict events at 6 months. Ninety-nine (27%) patients had IMAGING+, 72/188 (38%) in SPECT and 27/17 (16%) in SE (p < 0.0001). Events occurred in 84 (23%) patients: 4 had myocardial infarction, 47 new hospitalizations due to angina and 33 coronary artery revascularizations. Independent predictors of coronary artery disease were: IMAGING+ (OR: 6.4, 95% CI: 3.4-11.8, p < 0.0001), history of coronary artery disease (OR: 2.5, 95% CI: 1.2-5.2, p < 0.02) and TIMI risk (OR: 1.5, 95% CI: 1.1-2.2, p < 0.03). In low-risk unstable angina patients, an ischemic response in functional stress tests (SPECT or SE) was associated with adverse events and severe coronary artery disease.

  13. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction.

    PubMed

    Elschot, Mattijs; Smits, Maarten L J; Nijsen, Johannes F W; Lam, Marnix G E H; Zonnenberg, Bernard A; van den Bosch, Maurice A A J; Viergever, Max A; de Jong, Hugo W A M

    2013-11-01

    Quantitative imaging of the radionuclide distribution is of increasing interest for microsphere radioembolization (RE) of liver malignancies, to aid treatment planning and dosimetry. For this purpose, holmium-166 ((166)Ho) microspheres have been developed, which can be visualized with a gamma camera. The objective of this work is to develop and evaluate a new reconstruction method for quantitative (166)Ho SPECT, including Monte Carlo-based modeling of photon contributions from the full energy spectrum. A fast Monte Carlo (MC) simulator was developed for simulation of (166)Ho projection images and incorporated in a statistical reconstruction algorithm (SPECT-fMC). Photon scatter and attenuation for all photons sampled from the full (166)Ho energy spectrum were modeled during reconstruction by Monte Carlo simulations. The energy- and distance-dependent collimator-detector response was modeled using precalculated convolution kernels. Phantom experiments were performed to quantitatively evaluate image contrast, image noise, count errors, and activity recovery coefficients (ARCs) of SPECT-fMC in comparison with those of an energy window-based method for correction of down-scattered high-energy photons (SPECT-DSW) and a previously presented hybrid method that combines MC simulation of photopeak scatter with energy window-based estimation of down-scattered high-energy contributions (SPECT-ppMC+DSW). Additionally, the impact of SPECT-fMC on whole-body recovered activities (A(est)) and estimated radiation absorbed doses was evaluated using clinical SPECT data of six (166)Ho RE patients. At the same noise level, SPECT-fMC images showed substantially higher contrast than SPECT-DSW and SPECT-ppMC+DSW in spheres ≥ 17 mm in diameter. The count error was reduced from 29% (SPECT-DSW) and 25% (SPECT-ppMC+DSW) to 12% (SPECT-fMC). ARCs in five spherical volumes of 1.96-106.21 ml were improved from 32%-63% (SPECT-DSW) and 50%-80% (SPECT-ppMC+DSW) to 76%-103% (SPECT-fMC). Furthermore

  14. The influence of number of counts in the myocardium in the determination of reproducible functional parameters in gated-SPECT studies simulated with GATE.

    PubMed

    Vieira, L; Costa, D C; Almeida, P

    2015-01-01

    Myocardial perfusion gated-single photon emission computed tomography (gated-SPECT) imaging is used for the combined evaluation of myocardial perfusion and left ventricular (LV) function. The aim of this study is to analyze the influence of counts/pixel and concomitantly the total counts in the myocardium for the calculation of myocardial functional parameters. Gated-SPECT studies were performed using a Monte Carlo GATE simulation package and the NCAT phantom. The simulations of these studies use the radiopharmaceutical (99m)Tc-labeled tracers (250, 350, 450 and 680 MBq) for standard patient types, effectively corresponding to the following activities of myocardium: 3, 4.2, 5.4-8.2 MBq. All studies were simulated using 15 and 30s/projection. The simulated data were reconstructed and processed by quantitative-gated-SPECT software, and the analysis of functional parameters in gated-SPECT images was done by using Bland-Altman test and Mann-Whitney-Wilcoxon test. In studies simulated using different times (15 and 30s/projection), it was noted that for the activities for full body: 250 and 350 MBq, there were statistically significant differences in parameters Motility and Thickness. For the left ventricular ejection fractio n (LVEF), end-systolic volume (ESV) it was only for 250 MBq, and 350 MBq in the end-diastolic volume (EDV), while the simulated studies with 450 and 680MBq showed no statistically significant differences for global functional parameters: LVEF, EDV and ESV. The number of counts/pixel and, concomitantly, the total counts per simulation do not significantly interfere with the determination of gated-SPECT functional parameters, when using the administered average activity of 450 MBq, corresponding to the 5.4 MBq of the myocardium, for standard patient types. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  15. Machine-learning model observer for detection and localization tasks in clinical SPECT-MPI

    NASA Astrophysics Data System (ADS)

    Parages, Felipe M.; O'Connor, J. Michael; Pretorius, P. Hendrik; Brankov, Jovan G.

    2016-03-01

    In this work we propose a machine-learning MO based on Naive-Bayes classification (NB-MO) for the diagnostic tasks of detection, localization and assessment of perfusion defects in clinical SPECT Myocardial Perfusion Imaging (MPI), with the goal of evaluating several image reconstruction methods used in clinical practice. NB-MO uses image features extracted from polar-maps in order to predict lesion detection, localization and severity scores given by human readers in a series of 3D SPECT-MPI. The population used to tune (i.e. train) the NB-MO consisted of simulated SPECT-MPI cases - divided into normals or with lesions in variable sizes and locations - reconstructed using filtered backprojection (FBP) method. An ensemble of five human specialists (physicians) read a subset of simulated reconstructed images, and assigned a perfusion score for each region of the left-ventricle (LV). Polar-maps generated from the simulated volumes along with their corresponding human scores were used to train five NB-MOs (one per human reader), which are subsequently applied (i.e. tested) on three sets of clinical SPECT-MPI polar maps, in order to predict human detection and localization scores. The clinical "testing" population comprises healthy individuals and patients suffering from coronary artery disease (CAD) in three possible regions, namely: LAD, LcX and RCA. Each clinical case was reconstructed using three reconstruction strategies, namely: FBP with no SC (i.e. scatter compensation), OSEM with Triple Energy Window (TEW) SC method, and OSEM with Effective Source Scatter Estimation (ESSE) SC. Alternative Free-Response (AFROC) analysis of perfusion scores shows that NB-MO predicts a higher human performance for scatter-compensated reconstructions, in agreement with what has been reported in published literature. These results suggest that NB-MO has good potential to generalize well to reconstruction methods not used during training, even for reasonably dissimilar datasets (i

  16. Rodent brain imaging with SPECT/CT

    SciTech Connect

    Seo, Youngho; Gao, D.-W.; Hasegawa, Bruce H.; Dae, Michael W.; Franc, Benjamin L.

    2007-04-15

    We evaluated methods of imaging rat models of stroke in vivo using a single photon emission computed tomography (SPECT) system dedicated to small animal imaging (X-SPECT{sup TM}, Gamma Medica-Ideas, Northridge, CA). An animal model of ischemic stroke was developed for in vivo SPECT/CT imaging using the middle cerebral artery occlusion (MCAO) technique. The presence of cerebral ischemia was verified in ex vivo studies using triphenyltetrazolium chloride (TTC) staining. In vivo radionuclide imaging of cerebral blood flow was performed in rats following MCAO using dynamic planar imaging of {sup 99m}Tc-exametazime with parallel hole collimation. This was followed immediately by in vivo radionuclide imaging of cerebral blood flow with {sup 99m}Tc-exametazime in the same animals using 1-mm pinhole SPECT. Correlated computed tomography imaging was performed to localize radiopharmaceutical uptake. The animals were allowed to recover and ex vivo autoradiography was performed with separate administration of {sup 99m}Tc-exametazime. Time activity curve of {sup 99m}Tc-exametazime showed that the radiopharmaceutical uptake could be maintained for over 9 min. The activity would be expected to be relatively stable for a much longer period, although the data were only obtained for 9 min. TTC staining revealed sizable infarcts by visual observation of inexistence of TTC stain in infracted tissues of MCAO rat brains. In vivo SPECT imaging showed cerebral blood flow deficit in the MCAO model, and the in vivo imaging result was confirmed with ex vivo autoradiography. We have demonstrated a capability of imaging regions of cerebral blood flow deficit in MCAO rat brains in vivo using a pinhole SPECT dedicated to small animal imaging.

  17. The importance of the incidental thyroid gland uptake during Tc-99m MIBI myocardial perfusion scintigraphy.

    PubMed

    Karacavus, S; Ede, H; Sarikaya, S; Delibas, N; Kaya, E; Erbay, A R

    2015-08-01

    The purpose of study was to investigate whether incidental thyroid gland uptake had an important during Tc-99m sestamibi (MIBI) myocardial perfusion scintigraphy (SPECT). In the presented study, 968 consecutive patients were evaluated for the presence or absence of thyroid gland uptake in the raw data of the Tc-99m MIBI SPECT. All of the patients had thyroid gland uptake of the Tc-99m MIBI underwent laboratory evaluation of thyroid function, ultrasonographic imaging, and hystopathological examination. The thyroid gland uptake was detected in 14 of 968 (1.4%) consecutive patients during the evaluation of raw images of Tc-99m MIBI SPECT studies. Among these 14 patients, 4 had subacute thyroiditis, 7 multinodular goiter, 3 Graves disease by ultrasonographic imaging and hystopathological examination. TSH levels of all of these patients were < 0.01 U/ml. Tc-99m MIBI uptake by thyroid gland has been explained with associated clinical thyrotoxicosis. Although the primary goal of myocardial perfusion imaging is the evaluation of myocardial perfusion, the interpretation of myocardial perfusion imaging should not be limited to the heart. Because, it is possible to observe extracardiac radioactivity accumulation, which may then lead to the diagnosis of a noncardiac disease during this detailed examination.

  18. [Specific features of interpretation of myocardial perfusion single-photon emission computed tomography with computed tomographic absorption correction].

    PubMed

    Ansheles, A A

    2014-01-01

    To study the capabilities of a hybrid single-photon emission computed tomography/computed tomography (SPECT/CT) system during myocardial perfusion imaging study, to evaluate the impact of absorption correction (AC), and to reveal factors influencing the contribution of AC to the diagnostic result of the study. The study included 167 patients who underwent myocardial perfusion SPECT with and without CT AC. Differences between AC and non-AC studies were visually analyzed; the results of the analysis were used to form groups of visual differences. The supposed factors influencing the contribution of AC were studied, by assigning visual differences to a particular group. The possible variants of the impact of AC were described in the baseline scintigrams. AC made a significant contribution in 68% of cases. With AC, the perfusion defects visible during non-AC study recovered in 80% of these cases. The factors predicting substantial differences between the AC and non-AC studies included weight, end diastolic volume, male sex, patients with small focal perfusion defects and transient ischemia, and inadequate injected activity. Factors, such as body mass index, large perfusion defects, CT subsystem and orbit settings, and time from the injection of a radiotracer to the initiation of a study, had no substantial impact on the contribution of AC. During AC studies, SRS and transient ischemic dilatation were significantly higher than during non-AC studies, requiring a shift of standard criteria. There were some methodical features of interpretation of myocardial perfusion SPECT using CT correction. Myocardial SPECT with AC enhances the diagnostic value of the technique, simplifies the interpretation of myocardial perfusion SPECT, and reduces the number of false-positive and questionable results.

  19. Noninvasive quantification of coronary endothelial function by SPECT imaging in children with a history of Kawasaki disease.

    PubMed

    Cicala, Silvana; Pellegrino, Teresa; Storto, Giovanni; Caprio, Maria Grazia; Paladini, Rodolfo; Mainolfi, Ciro; de Leva, Francesco; Cuocolo, Alberto

    2010-12-01

    The feasibility of coronary function estimation by single photon emission computed tomography (SPECT) has been recently demonstrated. The aim of this study was to apply SPECT imaging in patients with previous Kawasaki disease (KD) to assess the coronary functional status at long-term follow-up of the acute phase of the disease. Sixteen children with a history of KD underwent 99mTc-sestamibi imaging at rest and during the cold pressor test (CPT). Myocardial blood flow (MBF) was estimated by measuring first transit counts in the pulmonary artery and myocardial counts from SPECT images. Coronary endothelial function was expressed as the ratio of the CPT to rest MBF. Six KD patients without coronary artery lesions served as controls and ten with coronary artery aneurysms during the acute phase of the disease were separated into two groups: group 1 (n=4) with regressed and group 2 (n=6) with persistent aneurysm at follow-up. The estimated coronary endothelial function was higher in controls compared to patients with coronary artery aneurysms (2.5±0.3 vs 1.7±0.7, p<0.05). A significant difference in coronary endothelial function among groups was found (F=5.21, p<0.02). Coronary endothelial function was higher in patients of group 1 than in those of group 2 (1.9±0.6 vs 1.4±0.7, p<0.02). SPECT may be applied as a noninvasive method for assessing coronary vascular function in children with a history of KD, demonstrating an impaired response to the CPT, an endothelial-dependent vasodilator stimulus. These findings reinforce the concept that coronary endothelial dysfunction may represent a long-term sequela of KD.

  20. Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology

    NASA Astrophysics Data System (ADS)

    Erlandsson, Kjell; Kacperski, Krzysztof; van Gramberg, Dean; Hutton, Brian F.

    2009-05-01

    D-SPECT (Spectrum Dynamics, Israel) is a novel SPECT system for cardiac perfusion studies. Based on CZT detectors, region-centric scanning, high-sensitivity collimators and resolution recovery, it offers potential advantages over conventional systems. A series of measurements were made on a β-version D-SPECT system in order to evaluate its performance in terms of energy resolution, scatter fraction, sensitivity, count rate capability and resolution. Corresponding measurements were also done on a conventional SPECT system (CS) for comparison. The energy resolution of the D-SPECT system at 140 keV was 5.5% (CS: 9.25%), the scatter fraction 30% (CS: 34%), the planar sensitivity 398 s-1 MBq-1 per head (99mTc, 10 cm) (CS: 72 s-1 MBq-1), and the tomographic sensitivity in the heart region was in the range 647-1107 s-1 MBq-1 (CS: 141 s-1 MBq-1). The count rate increased linearly with increasing activity up to 1.44 M s-1. The intrinsic resolution was equal to the pixel size, 2.46 mm (CS: 3.8 mm). The average reconstructed resolution using the standard clinical filter was 12.5 mm (CS: 13.7 mm). The D-SPECT has superior sensitivity to that of a conventional system with similar spatial resolution. It also has excellent energy resolution and count rate characteristics, which should prove useful in dynamic and dual radionuclide studies.

  1. Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology.

    PubMed

    Erlandsson, Kjell; Kacperski, Krzysztof; van Gramberg, Dean; Hutton, Brian F

    2009-05-07

    D-SPECT (Spectrum Dynamics, Israel) is a novel SPECT system for cardiac perfusion studies. Based on CZT detectors, region-centric scanning, high-sensitivity collimators and resolution recovery, it offers potential advantages over conventional systems. A series of measurements were made on a beta-version D-SPECT system in order to evaluate its performance in terms of energy resolution, scatter fraction, sensitivity, count rate capability and resolution. Corresponding measurements were also done on a conventional SPECT system (CS) for comparison. The energy resolution of the D-SPECT system at 140 keV was 5.5% (CS: 9.25%), the scatter fraction 30% (CS: 34%), the planar sensitivity 398 s(-1) MBq(-1) per head ((99m)Tc, 10 cm) (CS: 72 s(-1) MBq(-1)), and the tomographic sensitivity in the heart region was in the range 647-1107 s(-1) MBq(-1) (CS: 141 s(-1) MBq(-1)). The count rate increased linearly with increasing activity up to 1.44 M s(-1). The intrinsic resolution was equal to the pixel size, 2.46 mm (CS: 3.8 mm). The average reconstructed resolution using the standard clinical filter was 12.5 mm (CS: 13.7 mm). The D-SPECT has superior sensitivity to that of a conventional system with similar spatial resolution. It also has excellent energy resolution and count rate characteristics, which should prove useful in dynamic and dual radionuclide studies.

  2. Diagnostic advantage of stress computed tomography myocardial perfusion over single-photon emission computed tomography for the assessment of myocardial ischemia.

    PubMed

    Ueki, Yasushi; Izawa, Atsushi; Kashiwagi, Daisuke; Nishiyama, Shigeki; Aso, Shinichi; Suzuki, Chihiro; Sakurai, Shumpei; Oguchi, Kazuhiro; Yazaki, Yoshikazu; Ikeda, Uichi; Kuwahara, Koichiro

    2017-08-01

    This study compared adenosine stress computed tomography myocardial perfusion (CTP) with single-photon emission computed tomography (SPECT) in the diagnosis of functionally significant coronary artery stenosis using fractional flow reserve (FFR) as reference standard. We included a total of 93 coronary arteries from 31 patients in whom at least one vessel with ≥50% stenosis was detected with computed tomography coronary angiography. All patients underwent both SPECT and adenosine stress CTP, followed by invasive coronary angiography (ICA) and FFR. Diagnostic accuracy between CTP and SPECT was compared according to positive findings of either ≥99% stenosis on ICA or FFR ≤0.8. Among 78 vessels eligible for the quantitative analyses, significant coronary artery disease (CAD) was diagnosed in 22 vessels of 19 patients. Comparison of CTP vs. SPECT for sensitivity, specificity, positive predictive value (PPV), negative predictive value, and accuracy in detecting significant CAD were 59% vs. 18%, 96% vs. 93%, 87% vs. 50%, 86% vs. 74%, and 86% vs. 72%, respectively. CTP demonstrated a significant diagnostic advantage over SPECT in the identification of significant CAD, especially in terms of sensitivity and PPV. Adenosine stress CTP is useful for the noninvasive diagnosis of functionally significant CAD. Copyright © 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  3. Freehand SPECT in low uptake situations

    NASA Astrophysics Data System (ADS)

    Lasser, Tobias; Ziegler, Sibylle I.; Navab, Nassir

    2011-03-01

    3D functional imaging in the operating room can be extremely useful for some procedures like SLN mapping or SLN biopsies. Freehand SPECT is an example of such an imaging modality, combining manually scanned, hand-held 1D gamma detectors with spatial positioning systems in order to reconstruct localized 3D SPECT images, for example in the breast or neck region. Standard series expansion methods are applied together with custom physical models of the acquisition process and custom filtering procedures to perform 3D tomographic reconstruction from sparse, limited-angle and irregularly sampled data. A Freehand SPECT system can easily be assembled on a mobile cart suitable for use in the operating room. This work addresses in particular the problem of objects with low uptake (like sentinel lymph nodes), where reconstruction tends to be difficult due to low signal to noise ratio. In a neck-like phantom study, we show that four simulated nodes of 250 microliter volume with 0.06% respectively 0.03% uptake of a virtual 70MBq injection of Tc99m (the typical activity for SLN procedures at our hospital) in a background of water can be reconstructed successfully using careful filtering procedures in the reconstruction pipeline. Ten independent Freehand SPECT scans of the phantom were performed by several different operators, with an average scan duration of 5.1 minutes. The resulting reconstructions show an average spatial accuracy within voxel dimensions (2.5mm) compared to CT and exhibit correct relative quantification.

  4. PET and SPECT imaging in veterinary medicine.

    PubMed

    LeBlanc, Amy K; Peremans, Kathelijne

    2014-01-01

    Veterinarians have gained increasing access to positron emission tomography (PET and PET/CT) imaging facilities, allowing them to use this powerful molecular imaging technique for clinical and research applications. SPECT is currently being used more in Europe than in the United States and has been shown to be useful in veterinary oncology and in the evaluation of orthopedic diseases. SPECT brain perfusion and receptor imaging is used to investigate behavioral disorders in animals that have interesting similarities to human psychiatric disorders. This article provides an overview of the potential applications of PET and SPECT. The use of commercially available and investigational PET radiopharmaceuticals in the management of veterinary disease has been discussed. To date, most of the work in this field has utilized the commercially available PET tracer, (18)F-fluorodeoxyglucose for oncologic imaging. Normal biodistribution studies in several companion animal species (cats, dogs, and birds) have been published to assist in lesion detection and interpretation for veterinary radiologists and clinicians. Studies evaluating other (18)F-labeled tracers for research applications are underway at several institutions and companion animal models of human diseases are being increasingly recognized for their value in biomarker and therapy development. Although PET and SPECT technologies are in their infancy for clinical veterinary medicine, increasing access to and interest in these applications and other molecular imaging techniques has led to a greater knowledge and collective body of expertise for veterinarians worldwide. Initiation and fostering of physician-veterinarian collaborations are key components to the forward movement of this field.

  5. SPECT gallium imaging in abdominal lymphoma

    SciTech Connect

    Adcock, K.A.; Friefeld, G.D.; Waldron, J.A. Jr.

    1986-05-01

    A case of non-Hodgkin's lymphoma of the abdomen studied by gallium SPECT imaging is reported. The tomographic slices accurately demonstrated the location of residual disease after chemotherapy in the region of the transverse mesocolon. Previous transmission CT had shown considerable persistent retroperitoneal lymphadenopathy, but was not helpful in determining the presence of viable lymphoma.

  6. Towards personalized interventional SPECT-CT imaging.

    PubMed

    Gardiazabal, José; Esposito, Marco; Matthies, Philipp; Okur, Asli; Vogel, Jakob; Kraft, Silvan; Frisch, Benjamin; Lasser, Tobias; Navab, Nassir

    2014-01-01

    The development of modern robotics and compact imaging detectors allows the transfer of diagnostic imaging modalities to the operating room, supporting surgeons to perform faster and safer procedures. An intervention that currently suffers from a lack of interventional imaging is radioembolization, a treatment for hepatic carcinoma. Currently, this procedure requires moving the patient from an angiography suite for preliminary catheterization and injection to a whole-body SPECT/CT for leakage detection, necessitating a second catheterization back in the angiography suite for the actual radioembolization. We propose an imaging setup that simplifies this procedure using a robotic approach to directly acquire an interventional SPECT/CT in the angiography suite. Using C-arm CT and a co-calibrated gamma camera mounted on a robotic arm, a personalized trajectory of the gamma camera is generated from the C-arm CT, enabling an interventional SPECT reconstruction that is inherently co-registered to the C-arm CT. In this work we demonstrate the feasibility of this personalized interventional SPECT/CT imaging approach in a liver phantom study.

  7. Adenosine stress thallium-201 myocardial perfusion imaging for detecting coronary artery disease at an early stage.

    PubMed

    Chen, Gui-Bing; Wu, Hua; He, Xiao-Jiang; Huang, Jin-Xiong; Yu, Dan; Xu, Wei-Yi; Yu, Hao

    2013-01-01

    The aims of this study were to evaluate the diagnostic value of adenosine thallium-201 myocardial perfusion imaging and to compare it with exercise stress thallium-201 myocardial perfusion imaging for detecting coronary artery disease (CAD) at an early stage. Forty-one patients suspected with CAD were randomly divided into two groups. In Group 1 (n=21) adenosine stress was undertaken; the exercise stress myocardial perfusion imaging was performed in Group 2 (n=20). Coronary angiography (CAG) was performed in each patient within 2 weeks before or after single photon emission computed tomography (SPECT). Adenosine stress group vs. exercise stress group, the sensitivity was 92.86% vs. 100.0%, specificity 57.14% vs. 60.0%, positive predictive value 81.25% vs. 71.43%, negative predictive value 80.0% vs. 100.0%, accuracy 80.95% vs. 80.0% respectively. Detection rates of vessels of coronary artery lesions were 66.67% in Group 1 and 72.22% in Group 2 (P> 0.05). The side effects were mild and transient. Our results demonstrated that adenosine stress myocardial perfusion imaging is a safe and reliable diagnostic method for an early stage of CAD. As a comparative sensitivity and accuracy with exercise stress thallium-201 myocardial perfusion imaging, adenosine stress testing may provide a feasible alternative pharmacological stress method in myocardial SPECT for detection of CAD.

  8. MR-IMPACT II: Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary artery disease Trial: perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial.

    PubMed

    Schwitter, Juerg; Wacker, Christian M; Wilke, Norbert; Al-Saadi, Nidal; Sauer, Ekkehart; Huettle, Kalman; Schönberg, Stefan O; Luchner, Andreas; Strohm, Oliver; Ahlstrom, Hakan; Dill, Thorsten; Hoebel, Nadja; Simor, Tamas

    2013-03-01

    Perfusion-cardiac magnetic resonance (CMR) has emerged as a potential alternative to single-photon emission computed tomography (SPECT) to assess myocardial ischaemia non-invasively. The goal was to compare the diagnostic performance of perfusion-CMR and SPECT for the detection of coronary artery disease (CAD) using conventional X-ray coronary angiography (CXA) as the reference standard. In this multivendor trial, 533 patients, eligible for CXA or SPECT, were enrolled in 33 centres (USA and Europe) with 515 patients receiving MR contrast medium. Single-photon emission computed tomography and CXA were performed within 4 weeks before or after CMR in all patients. The prevalence of CAD in the sample was 49%. Drop-out rates for CMR and SPECT were 5.6 and 3.7%, respectively (P = 0.21). The primary endpoint was non-inferiority of CMR vs. SPECT for both sensitivity and specificity for the detection of CAD. Readers were blinded vs. clinical data, CXA, and imaging results. As a secondary endpoint, the safety profile of the CMR examination was evaluated. For CMR and SPECT, the sensitivity scores were 0.67 and 0.59, respectively, with the lower confidence level for the difference of +0.02, indicating superiority of CMR over SPECT. The specificity scores for CMR and SPECT were 0.61 and 0.72, respectively (lower confidence level for the difference: -0.17), indicating inferiority of CMR vs. SPECT. No severe adverse events occurred in the 515 patients. In this large multicentre, multivendor study, the sensitivity of perfusion-CMR to detect CAD was superior to SPECT, while its specificity was inferior to SPECT. Cardiac magnetic resonance is a safe alternative to SPECT to detect perfusion deficits in CAD.

  9. Monte Carlo scatter correction for SPECT

    NASA Astrophysics Data System (ADS)

    Liu, Zemei

    The goal of this dissertation is to present a quantitatively accurate and computationally fast scatter correction method that is robust and easily accessible for routine applications in SPECT imaging. A Monte Carlo based scatter estimation method is investigated and developed further. The Monte Carlo simulation program SIMIND (Simulating Medical Imaging Nuclear Detectors), was specifically developed to simulate clinical SPECT systems. The SIMIND scatter estimation (SSE) method was developed further using a multithreading technique to distribute the scatter estimation task across multiple threads running concurrently on multi-core CPU's to accelerate the scatter estimation process. An analytical collimator that ensures less noise was used during SSE. The research includes the addition to SIMIND of charge transport modeling in cadmium zinc telluride (CZT) detectors. Phenomena associated with radiation-induced charge transport including charge trapping, charge diffusion, charge sharing between neighboring detector pixels, as well as uncertainties in the detection process are addressed. Experimental measurements and simulation studies were designed for scintillation crystal based SPECT and CZT based SPECT systems to verify and evaluate the expanded SSE method. Jaszczak Deluxe and Anthropomorphic Torso Phantoms (Data Spectrum Corporation, Hillsborough, NC, USA) were used for experimental measurements and digital versions of the same phantoms employed during simulations to mimic experimental acquisitions. This study design enabled easy comparison of experimental and simulated data. The results have consistently shown that the SSE method performed similarly or better than the triple energy window (TEW) and effective scatter source estimation (ESSE) methods for experiments on all the clinical SPECT systems. The SSE method is proven to be a viable method for scatter estimation for routine clinical use.

  10. System calibration and image reconstruction for a new small-animal SPECT system

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chun

    as the Gauss-Seidel (GS) iteration and the algebraic reconstruction technique (ART). These algorithms were compared in terms of their computational cost, data-agreement measures and subjective assessment of image quality. The spatial resolution of the imaging system was visualized through a miniature Derenzo hot-rod phantom. The smallest rods with 1-mm diameters and 3-mm center-to-center distance were clearly resolved. Mouse bone, kidney and cardiac images illustrated the ability of FastSPECT II to provide high-quality small-animal images. The dynamic-imaging capability was demonstrated via rat myocardial studies. FastSPECT II can be modified to achieve higher angular sampling and higher magnification. Fourier crosstalk analysis and synthetic phantom studies showed that higher angular sampling improved the spatial resolution and image quality along two transverse axes. Line-phantom and mouse-femur images demonstrated the sub-millimeter resolution of FastSPECT II in the high-magnification (18X) configuration.

  11. Design and evaluation of a mobile bedside PET/SPECT imaging system

    NASA Astrophysics Data System (ADS)

    Studenski, Matthew Thomas

    Patients confined to an intensive care unit, the emergency room, or a surgical suite are managed without nuclear medicine procedures such as positron emission tomography (PET) or single photon emission computed tomography (SPECT). These studies have diagnostic value which can greatly benefit the physician's treatment of the patient but require that the patient is moved to a scanner. This dissertation examines the feasibility of an economical PET/SPECT system that can be brought to the bedside of an immobile patient for imaging. We chose to focus on cardiac SPECT imaging including perfusion imaging using 99mTc tracers and viability imaging using 18F tracers first because of problems arising from positioning a detector beneath a patient's bed, a requirement for the opposed detector orientation in PET imaging. Second, SPECT imaging acquiring over the anterior 180 degrees of the patient results in reduced attenuation effects due to the heart's location in the anterior portion of the body. Four studies were done to assess the clinical feasibility of the mobile system; 1) the performance of the system was evaluated in SPECT mode at both 140 keV (99mTc tracers) and 511 keV (positron emitting tracers), 2) a dynamic cardiac phantom was used to develop and test image acquisition and processing methods for the system at both energies, 3) a high energy pinhole collimator was designed to reduce the effects of high energy photon penetration through the parallel hole collimator, and 4) we estimated the radiation dose to persons that would be in the vicinity of a patient to ensure that the effective dose is below the regulatory limit. With these studies, we show that the mobile system provides an economical means of bringing nuclear medicine to an immobile patient while staying below the regulatory dose limit to other persons. The system performed well at both 140 keV and 511 keV and provided viable images of a phantom myocardium at both energies. The system does not achieve the

  12. Patient position alters attenuation effects in multipinhole cardiac SPECT

    SciTech Connect

    Timmins, Rachel; Ruddy, Terrence D.; Wells, R. Glenn

    2015-03-15

    Purpose: Dedicated cardiac cameras offer improved sensitivity over conventional SPECT cameras. Sensitivity gains are obtained by large numbers of detectors and novel collimator arrangements such as an array of multiple pinholes that focus on the heart. Pinholes lead to variable amounts of attenuation as a source is moved within the camera field of view. This study evaluated the effects of this variable attenuation on myocardial SPECT images. Methods: Computer simulations were performed for a set of nine point sources distributed in the left ventricular wall (LV). Sources were placed at the location of the heart in both an anthropomorphic and a water-cylinder computer phantom. Sources were translated in x, y, and z by up to 5 cm from the center. Projections were simulated with and without attenuation and the changes in attenuation were compared. A LV with an inferior wall defect was also simulated in both phantoms over the same range of positions. Real camera data were acquired on a Discovery NM530c camera (GE Healthcare, Haifa, Israel) for five min in list-mode using an anthropomorphic phantom (DataSpectrum, Durham, NC) with 100 MBq of Tc-99m in the LV. Images were taken over the same range of positions as the simulations and were compared based on the summed perfusion score (SPS), defect width, and apparent defect uptake for each position. Results: Point sources in the water phantom showed absolute changes in attenuation of ≤8% over the range of positions and relative changes of ≤5% compared to the apex. In the anthropomorphic computer simulations, absolute change increased to 20%. The changes in relative attenuation caused a change in SPS of <1.5 for the water phantom but up to 4.2 in the anthropomorphic phantom. Changes were larger for axial than for transverse translations. These results were supported by SPS changes of up to six seen in the physical anthropomorphic phantom for axial translations. Defect width was also seen to significantly increase. The

  13. Investigation of optimal acquisition time of myocardial perfusion scintigraphy using cardiac focusing-collimator

    NASA Astrophysics Data System (ADS)

    Niwa, Arisa; Abe, Shinji; Fujita, Naotoshi; Kono, Hidetaka; Odagawa, Tetsuro; Fujita, Yusuke; Tsuchiya, Saki; Kato, Katsuhiko

    2015-03-01

    Recently myocardial perfusion SPECT imaging acquired using the cardiac focusing-collimator (CF) has been developed in the field of nuclear cardiology. Previously we have investigated the basic characteristics of CF using physical phantoms. This study was aimed at determining the acquisition time for CF that enables to acquire the SPECT images equivalent to those acquired by the conventional method in 201TlCl myocardial perfusion SPECT. In this study, Siemens Symbia T6 was used by setting the torso phantom equipped with the cardiac, pulmonary, and hepatic components. 201TlCl solution were filled in the left ventricular (LV) myocardium and liver. Each of CF, the low energy high resolution collimator (LEHR), and the low medium energy general purpose collimator (LMEGP) was set on the SPECT equipment. Data acquisitions were made by regarding the center of the phantom as the center of the heart in CF at various acquisition times. Acquired data were reconstructed, and the polar maps were created from the reconstructed images. Coefficient of variation (CV) was calculated as the mean counts determined on the polar maps with their standard deviations. When CF was used, CV was lower at longer acquisition times. CV calculated from the polar maps acquired using CF at 2.83 min of acquisition time was equivalent to CV calculated from those acquired using LEHR in a 180°acquisition range at 20 min of acquisition time.

  14. SPECT (single photon emission computed tomography) in pediatrics.

    PubMed

    Chiron, Catherine

    2013-01-01

    Surgery of focal epilepsies in childhood has largely benefited from the recent advances of the noninvasive functional imaging techniques, particularly SPECT which presurgically contributes to the localization of the seizure onset zone, in order to select the patients, decide the optimal placement of intracranial electrodes, and plan the resection. Peri-ictal SPECT (ictal and postictal) proved especially useful when video-EEG is not contributory, when MRI looks normal or shows multiple abnormalities, or in cases of discrepant findings within the presurgery workup. Because of a poor temporal resolution, peri-ictal SPECT must be coupled with video-EEG. Multimodal imaging so-called SISCOM (peri-ictal - interictal SPECT subtraction image superimposed on MRI) increases the sensitivity of peri-ictal SPECT by about 70% and makes it a good predictor of seizure-free outcome after surgery. In addition, interictal SPECT occasionally provides some interesting results regarding functional cortical maturation and learning disorders in childhood.

  15. Murine cardiac images obtained with focusing pinhole SPECT are barely influenced by extra-cardiac activity

    NASA Astrophysics Data System (ADS)

    Branderhorst, Woutjan; van der Have, Frans; Vastenhouw, Brendan; Viergever, Max A.; Beekman, Freek J.

    2012-02-01

    Ultra-high-resolution SPECT images can be obtained with focused multipinhole collimators. Here we investigate the influence of unwanted high tracer uptake outside the scan volume on reconstructed tracer distributions inside the scan volume, for 99mTc-tetrofosmin myocardial perfusion scanning in mice. Simulated projections of a digital mouse phantom (MOBY) in a focusing multipinhole SPECT system (U-SPECT-II, MILabs, The Netherlands) were generated. With this system differently sized user-defined scan volumes can be selected, by translating the animal in 3D through the focusing collimators. Scan volume selections were set to (i) a minimal volume containing just the heart, acquired without translating the animal during scanning, (ii) a slightly larger scan volume as is typically applied for the heart, requiring only small XYZ translations during scanning, (iii) same as (ii), but extended further transaxially, and (iv) same as (ii), but extended transaxially to cover the full thorax width (gold standard). Despite an overall negative bias that is significant for the minimal scan volume, all selected volumes resulted in visually similar images. Quantitative differences in the reconstructed myocardium between gold standard and the results from the smaller scan volume selections were small; the 17 standardized myocardial segments of a bull's eye plot, normalized to the myocardial mean of the gold standard, deviated on average 6.0%, 2.5% and 1.9% for respectively the minimal, the typical and the extended scan volume, while maximum absolute deviations were respectively 18.6%, 9.0% and 5.2%. Averaged over ten low-count noisy simulations, the mean absolute deviations were respectively 7.9%, 3.2% and 1.9%. In low-count noisy simulations, the mean and maximum absolute deviations for the minimal scan volume could be reduced to respectively 4.2% and 12.5% by performing a short survey scan of the exterior activity and focusing the remaining scan time at the organ of interest. We

  16. Variable activation of the DNA damage response pathways in patients undergoing single-photon emission computed tomography myocardial perfusion imaging.

    PubMed

    Lee, Won Hee; Nguyen, Patricia; Hu, Shijun; Liang, Grace; Ong, Sang-Ging; Han, Leng; Sanchez-Freire, Veronica; Lee, Andrew S; Vasanawala, Minal; Segall, George; Wu, Joseph C

    2015-02-01

    Although single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI) has improved the diagnosis and risk stratification of patients with suspected coronary artery disease, it remains a primary source of low-dose radiation exposure for cardiac patients. To determine the biological effects of low-dose radiation from SPECT MPI, we measured the activation of the DNA damage response pathways using quantitative flow cytometry and single-cell gene expression profiling. Blood samples were collected from patients before and after SPECT MPI (n=63). Overall, analysis of all recruited patients showed no marked differences in the phosphorylation of proteins (H2AX, protein 53, and ataxia telangiectasia mutated) after SPECT. The majority of patients also had either downregulated or unchanged expression in DNA damage response genes at both 24 and 48 hours post-SPECT. Interestingly, a small subset of patients with increased phosphorylation had significant upregulation of genes associated with DNA damage, whereas those with no changes in phosphorylation had significant downregulation or no difference, suggesting that some patients may potentially be more sensitive to low-dose radiation exposure. Our findings showed that SPECT MPI resulted in a variable activation of the DNA damage response pathways. Although only a small subset of patients had increased protein phosphorylation and elevated gene expression postimaging, continued care should be taken to reduce radiation exposure to both the patients and operators. © 2015 American Heart Association, Inc.

  17. Estimation of dynamic time activity curves from dynamic cardiac SPECT imaging

    NASA Astrophysics Data System (ADS)

    Hossain, J.; Du, Y.; Links, J.; Rahmim, A.; Karakatsanis, N.; Akhbardeh, A.; Lyons, J.; Frey, E. C.

    2015-04-01

    Whole-heart coronary flow reserve (CFR) may be useful as an early predictor of cardiovascular disease or heart failure. Here we propose a simple method to extract the time-activity curve, an essential component needed for estimating the CFR, for a small number of compartments in the body, such as normal myocardium, blood pool, and ischemic myocardial regions, from SPECT data acquired with conventional cameras using slow rotation. We evaluated the method using a realistic simulation of 99mTc-teboroxime imaging. Uptake of 99mTc-teboroxime based on data from the literature were modeled. Data were simulated using the anatomically-realistic 3D NCAT phantom and an analytic projection code that realistically models attenuation, scatter, and the collimator-detector response. The proposed method was then applied to estimate time activity curves (TACs) for a set of 3D volumes of interest (VOIs) directly from the projections. We evaluated the accuracy and precision of estimated TACs and studied the effects of the presence of perfusion defects that were and were not modeled in the estimation procedure. The method produced good estimates of the myocardial and blood-pool TACS organ VOIs, with average weighted absolute biases of less than 5% for the myocardium and 10% for the blood pool when the true organ boundaries were known and the activity distributions in the organs were uniform. In the presence of unknown perfusion defects, the myocardial TAC was still estimated well (average weighted absolute bias <10%) when the total reduction in myocardial uptake (product of defect extent and severity) was ≤5%. This indicates that the method was robust to modest model mismatch such as the presence of moderate perfusion defects and uptake nonuniformities. With larger defects where the defect VOI was included in the estimation procedure, the estimated normal myocardial and defect TACs were accurate (average weighted absolute bias ≈5% for a defect with 25% extent and 100% severity).

  18. Prognostic Utility of Calcium Scoring as an Adjunct to Stress Myocardial Perfusion Scintigraphy in End-Stage Renal Disease.

    PubMed

    Moody, William E; Lin, Erica L S; Stoodley, Matthew; McNulty, David; Thomson, Louise E; Berman, Daniel S; Edwards, Nicola C; Holloway, Benjamin; Ferro, Charles J; Townend, Jonathan N; Steeds, Richard P

    2016-05-01

    Coronary artery calcium score (CACS) is a strong predictor of adverse cardiovascular events in the general population. Recent data confirm the prognostic utility of single-photon emission computed tomographic (SPECT) imaging in end-stage renal disease, but whether performing CACS as part of hybrid imaging improves risk prediction in this population is unclear. Consecutive patients (n = 284) were identified after referral to a university hospital for cardiovascular risk stratification in assessment for renal transplantation. Participants underwent technetium-99m SPECT imaging after exercise or standard adenosine stress in those unable to achieve 85% maximal heart rate; multislice CACS was also performed (Siemens Symbia T16, Siemens, Erlangen, Germany). Subjects with known coronary artery disease (n = 88) and those who underwent early revascularization (n = 2) were excluded. The primary outcome was a composite of death or first myocardial infarction. An abnormal SPECT perfusion result was seen in 22% (43 of 194) of subjects, whereas 45% (87 of 194) had at least moderate CACS (>100 U). The frequency of abnormal perfusion (summed stress score ≥4) increased with increasing CACS severity (p = 0.049). There were a total of 15 events (8 deaths, and 7 myocardial infarctions) after a median duration of 18 months (maximum follow-up 3.4 years). Univariate analysis showed diabetes mellitus (Hazard ratio [HR] 3.30, 95% CI 1.14 to 9.54; p = 0.028), abnormal perfusion on SPECT (HR 5.32, 95% CI 1.84 to 15.35; p = 0.002), and moderate-to-severe CACS (HR 3.55, 95% CI 1.11 to 11.35; p = 0.032) were all associated with the primary outcome. In a multivariate model, abnormal perfusion on SPECT (HR 4.18, 95% CI 1.43 to 12.27; p = 0.009), but not moderate-to-severe CACS (HR 2.50, 95% CI 0.76 to 8.20; p = 0.130), independently predicted all-cause death or myocardial infarction. The prognostic value of CACS was not incremental to clinical and SPECT perfusion data (global chi-square change

  19. Influence of typical angina versus inducible myocardial ischemia in the contemporary management of stable coronary artery disease.

    PubMed

    De Lorenzo, Andrea; Oliveira, Gabriel; Naue, Vania M; Lima, Ronaldo S L

    2014-08-01

    To investigate, in patients with known or suspected coronary artery disease (CAD) undergoing myocardial perfusion single-photon emission computed tomography (MPS),the interaction between patient symptoms and single-photon emission computed tomography (SPECT) results, and their effects on patient outcomes. Previous data have shown that medical treatment may be as beneficial as invasive treatment for most patients with stable CAD. Nonetheless, patient presentation with typical angina (TA) seems to still lead to more aggressive management, regardless of the amount of myocardial ischemia detected by noninvasive methods. Over 33 ± 20 months, 2958 patients undergoing stress/rest cardiac SPECT were followed. Summed stress, rest and difference scores (SSS, SRS and SDS, respectively) were analyzed. Abnormal SPECT was defined as a SSS>3, and ischemic SPECT as a SDS>1. During follow up, cardiac catheterization (CATH), myocardial revascularization (either percutaneous or surgical), myocardial infarction (MI) and all-cause death were evaluated. TA was found in 228 patients (7.7%). Comparing patients with TA with those without it, the former more often had had abnormal (43.0% versus 34.3%, p < 0.001) and ischemic SPECT (25.9% versus 13.6%, p < 0.001). Also, higher rates of MI (2.0% versus 0.6%, p < 0.001), CATH (10.1% versus 4.7%, p < 0.001) and revascularization (7.8% versus 3.0%, p < 0.001) were observed, while death was not significantly different (1.5% versus 1.0%, p = 0.2). Even in the absence of ischemia in SPECT, patients with TA had higher CATH and revascularization rates; death, again, was not significantly increased. Although patients with TA more often had ischemic SPECT, all-cause death was not significantly increased. Nonetheless, TA was associated with more frequent referrals for CATH and revascularization, even with nonischemic SPECT. This may suggest that despite current evidence, the management of stable patients with known or suspected CAD is influenced by

  20. Functional neuroimaging in epilepsy: FDG PET and ictal SPECT.

    PubMed Central

    Lee, D. S.; Lee, S. K.; Lee, M. C.

    2001-01-01

    Epileptogenic zones can be localized by F-18 fluorodeoxyglucose positron emission tomography (FDG PET) and ictal single-photon emission computed tomography(SPECT). In medial temporal lobe epilepsy, the diagnostic sensitivity of FDG PET or ictal SPECT is excellent, however, the sensitivity of MRI is so high that the incremental sensitivity by FDG PET or ictal SPECT has yet to be proven. When MRI findings are ambiguous or normal, or discordant with those of ictal EEG, FDG PET and ictal SPECT are helpful for localization without the need for invasive ictal EEG. In neocortical epilepsy, the sensitivities of FDG PET or ictal SPECT are fair. However, because almost a half of the patients are normal on MRI, FDG PET and ictal SPECT are helpful for localization or at least for lateralization in these non-lesional epilepsies in order to guide the subdural insertion of electrodes. Interpretation of FDG PET has been recently advanced by voxel-based analysis and automatic volume of interest analysis based on a population template. Both analytical methods confirmed the performance of previous visual interpretation results. Ictal SPECT was analyzed using subtraction methods(coregistered to MRI) and voxel-based analysis. Rapidity of injection of tracers, HMPAO versus ECD, and repeated ictal SPECT, which remain the technical issues of ictal SPECT, are detailed. PMID:11748346

  1. I-123 Iofetamine SPECT scan in children with neurological disorders

    SciTech Connect

    Flamini, J.R.; Konkol, R.J.; Wells, R.G.; Sty, J.R. )

    1990-10-01

    I-123 Iofetamine (IMP) single photon emission computed tomography (SPECT) imaging of the brain in 42 patients (ages 14 days to 23 years) was compared with other localizing studies in children with neurological diseases. All had an EEG and at least one imaging study of the brain (computed tomography (CT) or magnetic resonance imaging (MRI), or both). Seventy-eight percent of the patients had an EEG within 24-72 hours of the IMP-SPECT scan. Thirty-five (83%) had a history of seizures, and the remainder had other neurological conditions without a history of seizures. In most cases, a normal EEG reading with normal CT or MRI result predicted a normal SPECT study. When the EEG was abnormal the majority of the IMP-SPECT scans were abnormal and localized the abnormality to the same region. A comparison with CT and MRI showed that structural abnormalities involving the cortex were usually well demonstrated with IMP-SPECT imaging. Structural lesions confined to the white matter were generally not detectable with IMP-SPECT. In a few cases, SPECT scans revealed abnormalities in deep brain areas not identified by EEG. IMP-SPECT imaging is a valuable technique for the detection and localization of abnormal cerebral metabolic activity in children with seizure disorders. A correlation with CT or MRI is essential for proper interpretation of abnormalities detected with IMP SPECT imaging.

  2. Regadenoson-stress myocardial CT perfusion and single-photon emission CT: rationale, design, and acquisition methods of a prospective, multicenter, multivendor comparison.

    PubMed

    Cury, Ricardo C; Kitt, Therese M; Feaheny, Kathleen; Akin, Jamie; George, Richard T

    2014-01-01

    Pharmacologic stress myocardial CT perfusion (CTP) has been reported to be a viable imaging modality for detection of myocardial ischemia compared with single-photon emission CT (SPECT) in several single-center studies. However, regadenoson-stress CTP has not previously been compared with SPECT in a multicenter, multivendor study. The rationale and design of a phase 2, randomized, cross-over study of regadenoson-stress myocardial perfusion imaging by CTP compared with SPECT are described herein. The study will be conducted at approximately 25 sites by using 6 different CT scanner models, including 64-, 128-, 256-, and 320-slice systems. Subjects with known/suspected coronary artery disease will be randomly assigned to 1 of 2 imaging procedure sequences; rest and regadenoson-stress SPECT on day 1, then regadenoson-stress CTP and rest CTP/coronary CT angiography (same acquisition) on day 2; or regadenoson-stress CTP and rest CTP/CT angiography on day 1, then rest and regadenoson-stress SPECT on day 2. The prespecified primary analysis examines the agreement rate between CTP and SPECT for detecting or excluding ischemia (≥2 or 0-1 reversible defects, respectively), as assessed by 3 independent blinded readers for each modality. Non-inferiority will be indicated if the lower boundary of the 95% CI for the agreement rate is within 0.15 of 0.78 (the observed agreement rate in the regadenoson pivotal trials). The protocol described herein will support the first evaluation of regadenoson-stress CTP by using multiple scanner types compared with SPECT.

  3. Silicon Detectors for PET and SPECT

    NASA Astrophysics Data System (ADS)

    Cochran, Eric R.

    Silicon detectors use state-of-the-art electronics to take advantage of the semiconductor properties of silicon to produce very high resolution radiation detectors. These detectors have been a fundamental part of high energy, nuclear, and astroparticle physics experiments for decades, and they hold great potential for significant gains in both PET and SPECT applications. Two separate prototype nuclear medicine imaging systems have been developed to explore this potential. Both devices take advantage of the unique properties of high resolution pixelated silicon detectors, designed and developed as part of the CIMA collaboration and built at The Ohio State University. The first prototype is a Compton SPECT imaging system. Compton SPECT, also referred to as electronic collimation, is a fundamentally different approach to single photon imaging from standard gamma cameras. It removes the inherent coupling of spatial resolution and sensitivity in mechanically collimated systems and provides improved performance at higher energies. As a result, Compton SPECT creates opportunities for the development of new radiopharmaceuticals based on higher energy isotopes as well as opportunities to expand the use of current isotopes such as 131I due to the increased resolution and sensitivity. The Compton SPECT prototype consists of a single high resolution silicon detector, configured in a 2D geometry, in coincidence with a standard NaI scintillator detector. Images of point sources have been taken for 99mTc (140 keV), 131I (364keV), and 22Na (511 keV), demonstrating the performance of high resolution silicon detectors in a Compton SPECT system. Filtered back projection image resolutions of 10 mm, 7.5 mm, and 6.7 mm were achieved for the three different sources respectively. The results compare well with typical SPECT resolutions of 5-15 mm and validate the claims of improved performance in Compton SPECT imaging devices at higher source energies. They also support the potential of

  4. Validation of left ventricular function from gated single photon computed emission tomography by using a scintillator-photodiode camera: a dynamic myocardial phantom study.

    PubMed

    Kubo, N; Mabuchi, M; Katoh, C; Arai, H; Morita, K; Tsukamoto, E; Morita, Y; Tamaki, N

    2002-07-01

    A scintillator-photodiode camera is able to acquire single photon emission computed tomography (SPECT) images by using a rotating chair system. We validated the left ventricular (LV) parameters of this camera system utilizing a dynamic myocardial phantom. Gated myocardial SPECT of a dynamic myocardial phantom (Hokkaido University type; end diastolic volume (EDV), 143 ml; end systolic volume (ESV), 107 ml; ejection fraction (EF), 25%) was performed with this scintillation camera. LV parameters were calculated using pre-installed software (Mirage Myocardial Perfusion SPECT) (study 1) and the other software (QGS; Cedars-Sinai) (study 2). For comparison, SPECT from a traditional Anger camera were processed by the QGS software (study 3). The estimated volumes were similar among the three studies (EDV, 110+/-8 ml in study 1, 112+/-2 ml in study 2 and 111+/-1 ml in study 3; ESV, 86+/-8 ml in study 1, 93+/-4 ml in study 2 and 91+/-2 ml in study 3). The estimated EFs were 23+/-3%, 17+/-2%, and 18+/-1%, respectively. The calculated volume within each study was underestimated by approximately the same degree. However, each estimated EF value for each study was close to the actual value. The estimated LV function using the scintillator-photodiode camera system may be considered as a suitable alternative to the traditional Anger camera system.

  5. Exercise four hour redistribution thallium-201 single photon emission computed tomography and exercise induced ST segment elevation in detecting the viable myocardium in patients with acute myocardial infarction

    PubMed Central

    Yamagishi, H; Akioka, K; Takagi, M; Tanaka, A; Takeuchi, K; Yoshikawa, J; Ochi, H

    1999-01-01

    Objective—To investigate the specificity and sensitivity of the combination of redistribution in exercise thallium-201 single photon emission computed tomography (SPECT) and exercise induced ST elevation for detecting the viable myocardium in patients with acute myocardial infarction.
Design—37 patients were studied within seven weeks of onset of Q wave myocardial infarction (anterior in 22, inferior in 15). All patients underwent exercise four hour redistribution thallium-201 SPECT and positron emission tomography using fluorine-18-fluorodeoxyglucose (FDG) and nitrogen-13 ammonia under fasting conditions.
Results—Sixteen patients showed exercise induced ST elevation ⩾ 1.5 mm, and 15 of these had increased FDG uptake in the infarct region. Eleven of 16 patients (10 of 11 patients with anterior infarctions) with irreversible thallium-201 defects and increased FDG uptake showed exercise induced ST elevation. The sensitivity, specificity, and predictive accuracy of redistribution, exercise induced ST segment elevation, or both for detecting increased FDG uptake were 82%, 75%, and 67% (94%, 75%, and 91% for anterior infarctions), respectively. 
Conclusions—In patients with acute Q wave myocardial infarction, the combination of redistribution in exercise thallium-201 SPECT and exercise induced ST elevation can detect the viable myocardium in the infarct region with high sensitivity and specificity, especially in patients with anterior infarctions.

 Keywords: acute myocardial infarction;  viability;  exercise induced ST elevation;  exercise thallium-201 SPECT PMID:10220539

  6. New Approaches in SPECT Breast Imaging

    DTIC Science & Technology

    2005-07-01

    the use of their breast and torso phantoms. The software package, "SPECTER", developed by Tim Turkington, was used to analyze and display the phantom...breast images. The software package, "SPECT-MAP", developed by James Bowsher, was used for reconstructions. VI. REFERENCES [1] Tornai MP, Bowsher JE...based software . and standard errors of the mean. No attenuation or scatter corrections were taken into account in For a given statistical ensemble of

  7. Accelerated GPU based SPECT Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-01

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: 99m Tc, 111In and 131I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency

  8. Accelerated GPU based SPECT Monte Carlo simulations.

    PubMed

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-07

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational

  9. Reconstruction of dynamic gated cardiac SPECT

    SciTech Connect

    Jin Mingwu; Yang Yongyi; King, Michael A.

    2006-11-15

    In this paper we propose an image reconstruction procedure which aims to unify gated single photon emission computed tomography (SPECT) and dynamic SPECT into a single method. We divide the cardiac cycle into a number of gate intervals as in gated SPECT, but treat the tracer distribution for each gate as a time-varying signal. By using both dynamic and motion-compensated temporal regularization, our reconstruction procedure will produce an image sequence that shows both cardiac motion and time-varying tracer distribution simultaneously. To demonstrate the proposed reconstruction method, we simulated gated cardiac perfusion imaging using the gated mathematical cardiac-torso (gMCAT) phantom with Tc99m-Teboroxime as the imaging agent. Our results show that the proposed method can produce more accurate reconstruction of gated dynamic images than independent reconstruction of individual gate frames with spatial smoothness alone. In particular, our results show that the former could improve the contrast to noise ratio of a simulated perfusion defect by as much as 100% when compared to the latter.

  10. SPECT and PET Imaging of Meningiomas

    PubMed Central

    Valotassiou, Varvara; Leondi, Anastasia; Angelidis, George; Psimadas, Dimitrios; Georgoulias, Panagiotis

    2012-01-01

    Meningiomas arise from the meningothelial cells of the arachnoid membranes. They are the most common primary intracranial neoplasms and represent about 20% of all intracranial tumors. They are usually diagnosed after the third decade of life and they are more frequent in women than in men. According to the World Health Organization (WHO) criteria, meningiomas can be classified into grade I meningiomas, which are benign, grade II (atypical) and grade III (anaplastic) meningiomas, which have a much more aggressive clinical behaviour. Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are routinely used in the diagnostic workup of patients with meningiomas. Molecular Nuclear Medicine Imaging with Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) could provide complementary information to CT and MRI. Various SPECT and PET tracers may provide information about cellular processes and biological characteristics of meningiomas. Therefore, SPECT and PET imaging could be used for the preoperative noninvasive diagnosis and differential diagnosis of meningiomas, prediction of tumor grade and tumor recurrence, response to treatment, target volume delineation for radiation therapy planning, and distinction between residual or recurrent tumour from scar tissue. PMID:22623896

  11. SPECT and PET imaging of meningiomas.

    PubMed

    Valotassiou, Varvara; Leondi, Anastasia; Angelidis, George; Psimadas, Dimitrios; Georgoulias, Panagiotis

    2012-01-01

    Meningiomas arise from the meningothelial cells of the arachnoid membranes. They are the most common primary intracranial neoplasms and represent about 20% of all intracranial tumors. They are usually diagnosed after the third decade of life and they are more frequent in women than in men. According to the World Health Organization (WHO) criteria, meningiomas can be classified into grade I meningiomas, which are benign, grade II (atypical) and grade III (anaplastic) meningiomas, which have a much more aggressive clinical behaviour. Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are routinely used in the diagnostic workup of patients with meningiomas. Molecular Nuclear Medicine Imaging with Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) could provide complementary information to CT and MRI. Various SPECT and PET tracers may provide information about cellular processes and biological characteristics of meningiomas. Therefore, SPECT and PET imaging could be used for the preoperative noninvasive diagnosis and differential diagnosis of meningiomas, prediction of tumor grade and tumor recurrence, response to treatment, target volume delineation for radiation therapy planning, and distinction between residual or recurrent tumour from scar tissue.

  12. SPECT detectors: the Anger Camera and beyond.

    PubMed

    Peterson, Todd E; Furenlid, Lars R

    2011-09-07

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic.

  13. SPECT detectors: the Anger Camera and beyond

    PubMed Central

    Peterson, Todd E.; Furenlid, Lars R.

    2011-01-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous NaI(Tl) scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic. PMID:21828904

  14. SPECT detectors: the Anger Camera and beyond

    NASA Astrophysics Data System (ADS)

    Peterson, Todd E.; Furenlid, Lars R.

    2011-09-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic.

  15. Imaging of acute myocardial infarction in pigs with Indium-111 monoclonal antimyosin scintigraphy and MRI

    SciTech Connect

    ten Kate, C.I.; van Kroonenburgh, M.J.; Schipperheyn, J.J.; Doornbos, J.; Hoedemaeker, P.J.; Maes, A.; v.d. Nat, K.H.; Camps, J.A.; Huysmans, H.A.; Pauwels, E.K. )

    1990-07-01

    Indium-111 antimyosin F(ab')2 was used in a series of scintigraphic studies on experimentally induced myocardial infarctions in pigs. Antimyosin distribution recorded by planar images of in vivo pigs and by single photon emission computed tomography (SPECT) of excised hearts delineated areas of myocardial necrosis if infarct volume exceeded 3.3 cm3. Scintigraphic images were compared with magnetic resonance images (MRI) obtained from excised hearts and with photographs of slices of the hearts. Infarct size and localization determined with antimyosin were compared. The MR images, with or without gadolinium-DTPA (Gd-DTPA), of the in vivo pigs were all false-negative; some myocardial wall thinning and high bloodpool signals were visible. Results show that both the antimyosin and the MR technique are specific methods for the visualization of induced myocardial necrosis in this animal model. However, the use of antimyosin is limited to a period ranging from 24 to 72 hours after infarction.

  16. Noninvasive quantification of jeopardized myocardial mass in dogs using 2-dimensional echocardiography and thallium-201 tomography

    SciTech Connect

    Weiss, R.J.; Buda, A.J.; Pasyk, S.; O'Neill, W.W.; Keyes, J.W. Jr.; Pitt, B.

    1983-12-01

    The evaluation of jeopardized myocardial mass is important in defining the effect of interventions during myocardial infarction. To quantitate the in vivo mass at risk, 2-dimensional echocardiography (2-D echo) and thallium-201 single-photon emission computed tomography (SPECT) was performed in 10 closed-chest dogs after circumflex coronary artery occlusion. The 2-D images were manually digitized to compute left ventricular (LV) mass using a modified Simpson's rule algorithm. This measure of LV mass correlated well with the actual LV mass (r . 0.97). Perfused myocardial mass was estimated from thallium SPECT images 4 hours after occlusion using a region-growing algorithm. After the dogs were killed, the jeopardized mass was outlined using a dual perfusion staining technique using triphenyltetrazolium chloride and Evans blue dye. The actual perfused mass was well estimated by the thallium images (r . 0.96). The noninvasively determined mass at risk was calculated as: 2-D mass--thallium SPECT mass, and correlated well with the pathologically determined mass at risk (r . 0.91). Thus, the jeopardized mass may be determined noninvasively by using 2-D echo and thallium-201 tomography. This approach may provide further information regarding the effect of intervention therapy on jeopardized myocardium.

  17. Biological factors and overestimation of left ventricular ejection fraction by gated SPECT.

    PubMed

    Oliveira, Marco Antônio Condé de; Duarte, Paulo Schiavom; Gonzalez, Maria Margarita C; Moises, Valdir Ambrósio; Alonso, Gilberto; Lima, Eduardo Vilaça; Smanio, Paola Emanuela; Martins, Luiz Roberto Fernandes; Oliveira, Carlos A R; Mastrocolla, Luiz Eduardo

    2008-05-01

    Some patients present an overestimated left ventricular ejection fraction (LVEF) on electrocardiogram-gated myocardial scintigraphy (gated SPECT). To establish the relationship between biological factors and overestimated LVEF. We selected 3838 patients who underwent gated SPECT between May 20, 2000 and September 16, 2005 with normal perfusion images and LVEF > or =50%. The following variables were analyzed: gender (29.4% females and 70.6% males), age (from 20 to 94 years - mean: 56 years), weight (from 33.5 to 150 kg - mean: 79.6 kg), height (from 138 to 220 cm - mean: 171 cm) and BMI (from 13.9 to 54 - mean: 27.2). In a subgroup of 1002 patients who underwent echocardiogram, the diastolic diameter (from 36 to 68 mm - mean 47.5 mm) and systolic diameter (from 22 to 41 mm - mean 29.8 mm) variables were included. The patients were divided into two groups: normal LVEF (< or =80%) and overestimated LVEF (>80%). The odds ratio (OR) for presenting an overestimated LVEF was calculated for each variable using logistic regression. The following odds ratios were found (p < 0.005): female gender OR = 3.585 (95%CI: 2.745 to 4.683), age in years OR = 1.020 (95%CI: 1.011 to 1.029) and height in cm OR = 0.893 (95%CI: 0.829 to 0.962). Weight and BMI were not significantly associated with LVEF (p>0.2). In the subgroup of 1002 patients, a statistically significant influence was found in overestimated LVEF values for the systolic diameter, gender and height variables. Although systolic diameter influences the overestimation of LVEF, the gender and height variables have an independent influence on LVEF overestimation by gated SPECT.

  18. [Myocardial ischemia and ventricular arrhythmia].

    PubMed

    Vester, E G

    1998-01-01

    A relation between myocardial ischemia and induction of ventricular arrhythmias can be demonstrated in patients with coronary heart disease--in contrast to patients with primary non ischemic cardiac diseases--using a combined metabolic-electrophysiological investigation protocol consisting of programmed atrial and ventricular stimulation with simultaneous measurement of the arterio/coronary venous difference for lactate, pyruvate, free fatty acids and amino acids. There are significant metabolic distinctions between both ischemic and non ischemic heart disease under pacing stress conditions as well as at rest. Areas of "hibernating myocardium" resp. "mismatch" zones in the myocardium showing reduced or abolished perfusion and preserved metabolism during scintographic SPECT/PET studies, may be found more often in patients with ventricular tachycardias (VT) or ventricular fibrillation (VF) in the chronic post myocardial infarction state than in patients without VT/VF. The proof of such zones may be considered a possible risk factor for arrhythmic events and sudden cardiac death after myocardial infarction. Hereby the concept of an interaction between acute and chronic ischemia triggering the onset of polymorphic VT or VF gaines increasing acceptance. In contrast, monomorphic reentrant VT are usually generated in the border zone of scarred areas where islands of vital fibers are surrounded by fibrotic tissue. These arrhythmogenic origin regions are characterized by a "match" pattern presenting a comparably severe reduction of perfusion and metabolism. Under those circumstances a control resp. suppression of the VT focus can only be provided by interventional techniques like catheter ablation, antitachycardiac surgery or implantation of a cardioverter/defibrillator beyond antiarrhythmic drug therapy. An antiischemic causal treatment (bypass surgery or angioplasty) represents for maximal 40% of patients with ischemically induced ventricular arrhythmias an adequate and

  19. Quantitation of left ventricular ejection fraction reserve from early gated regadenoson stress Tc-99m high efficiency SPECT

    PubMed Central

    Brodov, Yafim; Fish, Mathews; Rubeaux, Mathieu; Otaki, Yuka; Gransar, Heidi; Lemley, Mark; Gerlach, Jim; Berman, Daniel; Germano, Guido; Slomka, Piotr

    2016-01-01

    Background Ejection fraction (EF) reserve has been found to be a useful adjunct for identifying high risk coronary artery disease in cardiac positron emission tomography (PET). We aimed to evaluate EF reserve obtained from technetium-99m sestamibi (Tc-99m) high-efficiency (HE) SPECT. Methods Fifty patients (mean age 69 y) undergoing regadenoson same-day rest (8–11 mCi)/stress (32–42mCi) Tc-99m gated HE SPECT were enrolled. Stress imaging was started one min after sequential intravenous regadenoson 0.4mg and Tc-99m injection, and was composed of five 2 min supine gated acquisitions followed by two 4 min supine and upright images. Ischemic total perfusion deficit (ITPD) ≥ 5 % was considered as significant ischemia. Results Significantly lower mean EF reserve was obtained in the 5th and 9th min after regadenoson bolus in patients with significant ischemia versus patients without (5th min: −4.2 ± 4.6% vs. 1.3 ± 6.6%, p = 0.006; 9th min: −2.7 ± 4.8% vs. 2.0 ± 6.6%, p = 0.03). Conclusions Negative EF reserve obtained between 5th and 9th min of regadenoson stress demonstrated best concordance with significant ischemia and may be a promising tool for detection of myocardial stunning with Tc-99m HE-SPECT. PMID:27387521

  20. Postoperative myocardial infarction documented by technetium pyrophosphate scan using single-photon emission computed tomography: Significance of intraoperative myocardial ischemia and hemodynamic control

    SciTech Connect

    Cheng, D.C.; Chung, F.; Burns, R.J.; Houston, P.L.; Feindel, C.M. )

    1989-12-01

    The aim of this prospective study was to document postoperative myocardial infarction (PMI) by technetium pyrophosphate scan using single-photon emission computed tomography (TcPPi-SPECT) in 28 patients undergoing elective coronary bypass grafting (CABG). The relationships of intraoperative electrocardiographic myocardial ischemia, hemodynamic responses, and pharmacological requirements to this incidence of PMI were correlated. Radionuclide cardioangiography and TcPPi-SPECT were performed 24 h preoperatively and 48 h postoperatively. A standard high-dose fentanyl anesthetic protocol was used. Twenty-five percent of elective CABG patients were complicated with PMI, as documented by TcPPi-SPECT with an infarcted mass of 38.0 +/- 5.5 g. No significant difference in demographic, preoperative right and left ventricular function, number of coronary vessels grafted, or aortic cross-clamp time was observed between the PMI and non-PMI groups. The distribution of patients using preoperative beta-adrenergic blocking drugs or calcium channel blocking drugs was found to have no correlation with the outcome of PMI. As well, no significant differences in hemodynamic changes or pharmacological requirements were observed in the PMI and non-PMI groups during prebypass or postbypass periods, indicating careful intraoperative control of hemodynamic indices did not prevent the outcome of PMI in these patients. However, the incidence of prebypass ischemia was 39.3% and significantly correlated with the outcome of positive TcPPi-SPECT, denoting a 3.9-fold increased risk of developing PMI. Prebypass ischemic changes in leads II and V5 were shown to correlate with increased CPK-MB release (P less than 0.05) and tends to occur more frequently with lateral myocardial infarction.

  1. 4D maximum a posteriori reconstruction in dynamic SPECT using a compartmental model-based prior.

    PubMed

    Kadrmas, D J; Gullberg, G T

    2001-05-01

    A 4D ordered-subsets maximum a posteriori (OSMAP) algorithm for dynamic SPECT is described which uses a temporal prior that constrains each voxel's behaviour in time to conform to a compartmental model. No a priori limitations on kinetic parameters are applied; rather, the parameter estimates evolve as the algorithm iterates to a solution. The estimated parameters and time-activity curves are used within the reconstruction algorithm to model changes in the activity distribution as the camera rotates, avoiding artefacts due to inconsistencies of data between projection views. This potentially allows for fewer, longer-duration scans to be used and may have implications for noise reduction. The algorithm was evaluated qualitatively using dynamic 99mTc-teboroxime SPECT scans in two patients, and quantitatively using a series of simulated phantom experiments. The OSMAP algorithm resulted in images with better myocardial uniformity and definition, gave time-activity curves with reduced noise variations, and provided wash-in parameter estimates with better accuracy and lower statistical uncertainty than those obtained from conventional ordered-subsets expectation-maximization (OSEM) processing followed by compartmental modelling. The new algorithm effectively removed the bias in k21 estimates due to inconsistent projections for sampling schedules as slow as 60 s per timeframe, but no improvement in wash-out parameter estimates was observed in this work. The proposed dynamic OSMAP algorithm provides a flexible framework which may benefit a variety of dynamic tomographic imaging applications.

  2. Respiratory motion correction in gated cardiac SPECT using quaternion-based, rigid-body registration.

    PubMed

    Parker, Jason G; Mair, Bernard A; Gilland, David R

    2009-10-01

    In this article, a new method is introduced for estimating the motion of the heart due to respiration in gated cardiac SPECT using a rigid-body model with rotation parametrized by a unit quaternion. The method is based on minimizing the sum of squared errors between the reference and the deformed frames resulting from the usual optical flow constraint by using an optimized conjugate gradient routine. This method does not require any user-defined parameters or penalty terms, which simplifies its use in a clinical setting. Using a mathematical phantom, the method was quantitatively compared to the principal axis method, as well as an iterative method in which the rotation matrix was represented by Euler angles. The quaternion-based method was shown to be substantially more accurate and robust across a wide range of extramyocardial activity levels than the principal axis method. Compared with the Euler angle representation, the quaternion-based method resulted in similar accuracy but a significant reduction in computation times. Finally, the quaternion-based method was investigated using a respiratory-gated cardiac SPECT acquisition of a human subject. The motion-corrected image has increased sharpness and myocardial uniformity compared to the uncorrected image.

  3. Respiratory motion correction in gated cardiac SPECT using quaternion-based, rigid-body registration

    PubMed Central

    Parker, Jason G.; Mair, Bernard A.; Gilland, David R.

    2009-01-01

    In this article, a new method is introduced for estimating the motion of the heart due to respiration in gated cardiac SPECT using a rigid-body model with rotation parametrized by a unit quaternion. The method is based on minimizing the sum of squared errors between the reference and the deformed frames resulting from the usual optical flow constraint by using an optimized conjugate gradient routine. This method does not require any user-defined parameters or penalty terms, which simplifies its use in a clinical setting. Using a mathematical phantom, the method was quantitatively compared to the principal axis method, as well as an iterative method in which the rotation matrix was represented by Euler angles. The quaternion-based method was shown to be substantially more accurate and robust across a wide range of extramyocardial activity levels than the principal axis method. Compared with the Euler angle representation, the quaternion-based method resulted in similar accuracy but a significant reduction in computation times. Finally, the quaternion-based method was investigated using a respiratory-gated cardiac SPECT acquisition of a human subject. The motion-corrected image has increased sharpness and myocardial uniformity compared to the uncorrected image. PMID:19928105

  4. Computational tools and methods for objective assessment of image quality in x-ray CT and SPECT

    NASA Astrophysics Data System (ADS)

    Palit, Robin

    Computational tools of use in the objective assessment of image quality for tomography systems were developed for computer processing units (CPU) and graphics processing units (GPU) in the image quality lab at the University of Arizona. Fast analytic x-ray projection code called IQCT was created to compute the mean projection image for cone beam multi-slice helical computed tomography (CT) scanners. IQCT was optimized to take advantage of the massively parallel architecture of GPUs. CPU code for computing single photon emission computed tomography (SPECT) projection images was written calling upon previous research in the image quality lab. IQCT and the SPECT modeling code were used to simulate data for multi-modality SPECT/CT observer studies. The purpose of these observer studies was to assess the benefit in image quality of using attenuation information from a CT measurement in myocardial SPECT imaging. The observer chosen for these studies was the scanning linear observer. The tasks for the observer were localization of a signal and estimation of the signal radius. For the localization study, area under the localization receiver operating characteristic curve (A LROC) was computed as AMeasLROC = 0.89332 ± 0.00474 and ANoLROC = 0.89408 ± 0.00475, where "Meas" implies the use of attenuation information from the CT measurement, and "No" indicates the absence of attenuation information. For the estimation study, area under the estimation receiver operating characteristic curve (AEROC) was quantified as AMeasEROC = 0.55926 ± 0.00731 and ANoEROC = 0.56167 ± 0.00731. Based on these results, it was concluded that the use of CT information did not improve the scanning linear observer's ability to perform the stated myocardial SPECT tasks. The risk to the patient of the CT measurement was quantified in terms of excess effective dose as 2.37 mSv for males and 3.38 mSv for females. Another image quality tool generated within this body of work was a singular value

  5. Heterogeneity of SPECT bull`s-eyes in normal dogs: Comparison of attenuation compensation algorithms

    SciTech Connect

    DiBella, E.V.R.; Eisner, R.L.; Schmarkey, L.S.; Barclay, A.B.; Patterson, R.E.; Nowak, D.J.; Lalush, D.S.; Tsui, B.M.W. ||

    1995-08-01

    In normal dogs, SPECT {sup 99m}Tc Sestamibi (MIBI) and {sup 201}Tl myocardial perfusion images reconstructed with filtered backprojection (FBP) show a large decrease of counts in the septal wall (S) compared to the lateral wall (L). The authors evaluated the iterative method of Chang at 0 and 1 iterations (Chang0 and Chang1), and the Maximum Likelihood-Expectation Maximization with attenuation compensation (ML-EM-ATN) algorithm on data acquired from 5 normal dogs and from simulated projection data using a homogeneous count-density model of a normal canine myocardium in the attenuation field measured in one dog. Mean counts in the S and L regions were calculated from maximum-count circumferential profile arrays. Their results demonstrate that ML-EM-ATN and Chang1 result in improved uniformity, as measured by the S/L ratio.

  6. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction

    SciTech Connect

    Elschot, Mattijs; Smits, Maarten L. J.; Nijsen, Johannes F. W.; Lam, Marnix G. E. H.; Zonnenberg, Bernard A.; Bosch, Maurice A. A. J. van den; Jong, Hugo W. A. M. de; Viergever, Max A.

    2013-11-15

    Purpose: Quantitative imaging of the radionuclide distribution is of increasing interest for microsphere radioembolization (RE) of liver malignancies, to aid treatment planning and dosimetry. For this purpose, holmium-166 ({sup 166}Ho) microspheres have been developed, which can be visualized with a gamma camera. The objective of this work is to develop and evaluate a new reconstruction method for quantitative {sup 166}Ho SPECT, including Monte Carlo-based modeling of photon contributions from the full energy spectrum.Methods: A fast Monte Carlo (MC) simulator was developed for simulation of {sup 166}Ho projection images and incorporated in a statistical reconstruction algorithm (SPECT-fMC). Photon scatter and attenuation for all photons sampled from the full {sup 166}Ho energy spectrum were modeled during reconstruction by Monte Carlo simulations. The energy- and distance-dependent collimator-detector response was modeled using precalculated convolution kernels. Phantom experiments were performed to quantitatively evaluate image contrast, image noise, count errors, and activity recovery coefficients (ARCs) of SPECT-fMC in comparison with those of an energy window-based method for correction of down-scattered high-energy photons (SPECT-DSW) and a previously presented hybrid method that combines MC simulation of photopeak scatter with energy window-based estimation of down-scattered high-energy contributions (SPECT-ppMC+DSW). Additionally, the impact of SPECT-fMC on whole-body recovered activities (A{sup est}) and estimated radiation absorbed doses was evaluated using clinical SPECT data of six {sup 166}Ho RE patients.Results: At the same noise level, SPECT-fMC images showed substantially higher contrast than SPECT-DSW and SPECT-ppMC+DSW in spheres ≥17 mm in diameter. The count error was reduced from 29% (SPECT-DSW) and 25% (SPECT-ppMC+DSW) to 12% (SPECT-fMC). ARCs in five spherical volumes of 1.96–106.21 ml were improved from 32%–63% (SPECT-DSW) and 50%–80

  7. Effect of caffeine on myocardial perfusion imaging using single photon emission computed tomography during adenosine pharmacologic stress.

    PubMed

    Kovacs, Daniela; Pivonka, Robert; Khosla, Pam G; Khosla, Sandeep

    2008-01-01

    Approximately 6 million cardiac stress tests are performed annually in the United States, of which 2.4 million are pharmacologic stress tests using agents such as adenosine. Adenosine induces differential coronary hyperemia in normal coronary arteries versus coronary arteries with atherosclerosis, allowing single photon emission computed tomography (SPECT) imaging to identify reduced coronary flow in segments subtended by diseased coronary arteries. The potential attenuation of pharmacologic effects of adenosine in the presence of caffeine is why patients are routinely instructed to abstain from caffeine for 12 to 24 hours prior to administration of an adenosine stress test. Failure to abstain from caffeine results in cancellation or delaying of cardiac stress testing, resulting in procedural delays and its impact on patient throughput. Recent studies have evaluated such interaction and suggested a lack of clinically significant effect of caffeine on adenosine-induced hyperemia during myocardial SPECT imaging. This article reviews the clinical pharmacology of caffeine, adenosine, and dipyridamole and effect of caffeine on myocardial stress testing using adenosine and dipyridamole in clinical cardiovascular medicine. The limited published data are conflicting, but some recent publications suggest that myocardial perfusion SPECT imaging using adenosine may not be clinically significantly altered by routine consumption of caffeine, such as a cup of coffee. Although prospective randomized studies would be required to obtain a definitive answer to this question, it appears on the basis of some of the studies reviewed in this article that caffeine consumption prior to myocardial perfusion imaging may not necessitate cancellation or rescheduling of adenosine stress testing.

  8. A small-animal imaging system capable of multipinhole circular/helical SPECT and parallel-hole SPECT

    PubMed Central

    Qian, Jianguo; Bradley, Eric L.; Majewski, Stan; Popov, Vladimir; Saha, Margaret S.; Smith, Mark F.; Weisenberger, Andrew G.; Welsh, Robert E.

    2008-01-01

    We have designed and built a small animal single photon emission computed tomography (SPECT) imaging system equipped with parallel-hole and multipinhole collimators and capable of circular or helical SPECT. Copper-beryllium parallel-hole collimators suitable for imaging the ~35 keV photons from the decay of 125I have been built and installed to achieve useful spatial resolution over a range of object-detector distances and to reduce imaging time on our dual-detector array. To address the resolution limitations in the parallel-hole SPECT and the sensitivity and limited field of view of single-pinhole SPECT, we have incorporated multipinhole circular and helical SPECT in addition to expanding the parallel-hole SPECT capabilities. The pinhole SPECT system is based on a 110 mm diameter circular detector equipped with a pixellated NaI(Tl) scintillator array (1×1×5 mm3/pixel). The helical trajectory is accomplished by two stepping motors controlling the rotation of the detector-support gantry and displacement of the animal bed along the axis of rotation of the gantry. Results obtained in SPECT studies of various phantoms show an enlarged field of view, very good resolution and improved sensitivity using multipinhole circular or helical SPECT. Collimators with one, three and five 1 mm diameter pinholes have been implemented and compared in these tests. Our objective is to develop a system on which one may readily select a suitable mode of either parallel-hole SPECT or pinhole circular or helical SPECT for a variety of small animal imaging applications. PMID:19701447

  9. Patient doses from hybrid SPECT-CT procedures.

    PubMed

    Avramova-Cholakova, S; Dimcheva, M; Petrova, E; Garcheva, M; Dimitrova, M; Palashev, Y; Vassileva, J

    2015-07-01

    The aim of this work is to estimate patient doses from hybrid single-photon emission computed tomography (SPECT) and computed tomography (CT) procedures. The study involved all four SPECT-CT systems in Bulgaria. Effective dose was estimated for about 100 patients per system. Ten types of examinations were considered, representing all diagnostic procedures performed in the SPECT-CT systems. Effective doses from the SPECT component were calculated applying the ICRP 53 and ICRP 80 conversion coefficients. Computed tomography dose index and dose length product were retrospectively obtained from the archives of the systems, and effective doses from the CT component were calculated with CT-Expo software. Parallel estimation of CT component contribution with the National Radiological Protection Board (NRPB) conversion coefficients was performed where applicable. Large variations were found in the current practice of SPECT-CT imaging. Optimisation actions and diagnostic reference levels were proposed.

  10. Single photon emission computed tomography (SPECT) in epilepsy

    SciTech Connect

    Leroy, R.F.

    1991-12-31

    Epilepsy is a common neurologic disorder which has just begun to be studied with single photon emission computerized tomography (SPECT). Epilepsy usually is studied with electroencephalographic (EEG) techniques that demonstrate the physiologic changes that occur during seizures, and with neuroimaging techniques that show the brain structures where seizures originate. Neither method alone has been adequate to describe the pathophysiology of the patient with epilepsy. EEG techniques lack anatomic sensitivity, and there are no structural abnormalities shown by neuroimaging which are specific for epilepsy. Functional imaging (FI) has developed as a physiologic tool with anatomic sensitivity, and SPECT has been promoted as a FI technique because of its potentially wide availability. However, SPECT is early in its development and its clinical utility for epilepsy still has to be demonstrated. To understand this role of SPECT, consideration must be given to the pathophysiology of epilepsy, brain physiology, types of seizure, epileptic syndromes, and the SPECT technique itself. 44 refs., 2 tabs.

  11. Dipyridamole stress myocardial perfusion by computed tomography in patients with left bundle branch block

    PubMed Central

    Cabeda, Estêvan Vieira; Falcão, Andréa Maria Gomes; Soares Jr., José; Rochitte, Carlos Eduardo; Nomura, César Higa; Ávila, Luiz Francisco Rodrigues; Parga, José Rodrigues

    2015-01-01

    Background Functional tests have limited accuracy for identifying myocardial ischemia in patients with left bundle branch block (LBBB). Objective To assess the diagnostic accuracy of dipyridamole-stress myocardial computed tomography perfusion (CTP) by 320-detector CT in patients with LBBB using invasive quantitative coronary angiography (QCA) (stenosis ≥ 70%) as reference; to investigate the advantage of adding CTP to coronary computed tomography angiography (CTA) and compare the results with those of single photon emission computed tomography (SPECT) myocardial perfusion scintigraphy. Methods Thirty patients with LBBB who had undergone SPECT for the investigation of coronary artery disease were referred for stress tomography. Independent examiners performed per-patient and per-coronary territory assessments. All patients gave written informed consent to participate in the study that was approved by the institution’s ethics committee. Results The patients’ mean age was 62 ± 10 years. The mean dose of radiation for the tomography protocol was 9.3 ± 4.6 mSv. With regard to CTP, the per-patient values for sensitivity, specificity, positive and negative predictive values, and accuracy were 86%, 81%, 80%, 87%, and 83%, respectively (p = 0.001). The per-territory values were 63%, 86%, 65%, 84%, and 79%, respectively (p < 0.001). In both analyses, the addition of CTP to CTA achieved higher diagnostic accuracy for detecting myocardial ischemia than SPECT (p < 0.001). Conclusion The use of the stress tomography protocol is feasible and has good diagnostic accuracy for assessing myocardial ischemia in patients with LBBB. PMID:26421532

  12. Predictors for functionally significant in-stent restenosis: an integrated analysis using coronary angiography, IVUS, and myocardial perfusion imaging.

    PubMed

    Kang, Soo-Jin; Cho, Young-Rak; Park, Gyung-Min; Ahn, Jung-Min; Han, Seung-Bong; Lee, Jong-Young; Kim, Won-Jang; Park, Duk-Woo; Lee, Seung-Whan; Kim, Young-Hak; Lee, Cheol Whan; Park, Seong-Wook; Mintz, Gary S; Park, Seung-Jung

    2013-11-01

    The aim of this study was to assess the clinical and morphological predictors for functionally significant in-stent restenosis (ISR). Although they have been studied de novo in native coronary artery lesions, the relationships between clinical and morphological characteristics and the hemodynamic significance of ISR are not well understood. In 175 patients with ISR of a single coronary artery (angiographic stenosis >50%), we compared quantitative coronary angiography and intravascular ultrasound (IVUS) with stress myocardial single-photon emission computed tomography (SPECT). A positive SPECT was a reversible perfusion defect in the territory of the ISR artery. Overall, 103 (59%) patients had a positive SPECT. In-segment IVUS minimal lumen area (MLA) was significantly smaller in lesions with positive SPECT compared with negative SPECT (1.7 ± 0.5 mm(2) vs. 2.4 ± 0.8 mm(2), p < 0.001). Stent underexpansion (minimal stent area <5.0 mm(2)) was more common in the positive SPECT group than in the negative SPECT group (52% vs. 32%, p = 0.010). A positive SPECT was seen in 54% (65 of 121) of focal ISR lesions compared with 70% (38 of 54) of multifocal or diffuse ISR lesions as assessed by IVUS (p = 0.039). Independent determinants for a positive SPECT were diabetes (odds ratio [OR]: 2.41; 95% confidence interval [CI]: 1.02 to 5.68; p = 0.046), in-segment angiographic diameter stenosis (OR: 1.06; 95% CI: 1.03 to 1.09; p < 0.001), in-segment IVUS-MLA (OR: 0.30; 95% CI: 0.14 to 0.63; p = 0.001), stent underexpansion (minimal stent area <5.0 mm(2)), (OR: 2.91; 95% CI: 1.19 to 7.07; p = 0.019), proximal location of the IVUS-MLA (OR: 4.62; 95% CI: 1.75 to 12.18; p = 0.002), and a multifocal or diffuse ISR pattern (OR: 2.50; 95% CI: 0.99 to 6.28; p = 0.050). An in-segment angiographic diameter stenosis ≥69.5% (72% sensitivity, 74% specificity, area under the curve = 0.793) and an IVUS-MLA ≤1.9 mm(2) (67% sensitivity, 75% specificity, area under the curve = 0.756) best

  13. (99m)Tc-labelled nanosystem as tumour imaging agent for SPECT and SPECT/CT modalities.

    PubMed

    Polyák, András; Hajdu, István; Bodnár, Magdolna; Trencsényi, György; Pöstényi, Zita; Haász, Veronika; Jánoki, Gergely; Jánoki, Győző A; Balogh, Lajos; Borbély, János

    2013-06-05

    We report the synthesis, in vitro and in vivo investigation of folate-targeted, biocompatible, biodegradable self-assembled nanoparticles radiolabelled with (99m)Tc, as potential new SPECT or SPECT/CT imaging agent. Nanoparticles with hydrodynamic size in the range of 75-200 nm were prepared by self-assembly of chitosan and folated poly-γ-glutamic acid, and then radiolabelled with (99m)Tc. The nanoparticles target tumour cells overexpressing folate receptors and internalize specifically into them to realize early tumour diagnosis detected by SPECT and SPECT/CT modalities. Rat hepatocellular carcinoma cells were used as model system. Cell specificity and tumour targeting efficacy of these nanosystems were investigated in vitro, and in vivo using SPECT and fusion nanoSPECT/CT imaging. In vitro results showed that the radiolabeled nanosystem was efficiently internalized by tumour cells. Whole-body biodistribution of the new radiolabelled, folate-targeted nanoparticles revealed higher uptake in the tumorous kidney compared to the non-tumorous contralateral side. Uptake by the lungs and thyroids was negligible, which confirmed the stability of the nanoparticles in vivo. In vivo SPECT and SPECT/CT imaging visually reinforced the uptake results and were in accordance with the biodistribution data: the new nanoparticles as a targeted contrast agent improve tumour targeting and are able to detect folate-receptor-overexpressing tumours in animal models with enhanced contrast.

  14. Impact of acute propranolol administration on dobutamine-induced myocardial ischemia as evaluated by myocardial perfusion imaging and echocardiography.

    PubMed

    Shehata, A R; Gillam, L D; Mascitelli, V A; Herman, S D; Ahlberg, A W; White, M P; Chen, C; Waters, D D; Heller, G V

    1997-08-01

    Beta-blocker therapy may delay or completely prevent myocardial ischemia during exercise testing, as assessed by ST-segment shifts, myocardial perfusion defects, or echocardiographic wall motion abnormalities. However, the impact of beta-blocker therapy on these end points during dobutamine stress testing has not been well established. The purpose of this study was to determine the impact of propranolol on dobutamine stress testing with ST-segment monitoring, technetium-99m (Tc-99m) sestamibi single-photon emission computed tomography (SPECT) imaging, and echocardiography. In 17 patients with known reversible perfusion defects, dobutamine stress tests with and without propranolol were performed in randomized order and on separate days, following discontinuation of oral beta blockers and calcium antagonists. Propronolol was administered intravenously to a cumulative dose of 8 mg or to a maximum heart rate reduction of 25% and dobutamine was infused in graded doses in 3 minute stages until a standard clinical end point or the maximum dose of 40 microg/kg/min was achieved. The dobutamine stress test after propranolol was associated with a lower maximum heart rate (83 +/- 18 vs 125 +/- 17, p <0.001) and rate pressure product (14,169 +/- 4,248 vs 19,894 +/- 3,985, p <0.001) despite a higher infusion dose. The SPECT myocardial ischemia score was also lower (6.9 +/- 5.8 vs 10.1 +/- 7.1, p = 0.047) and fewer echocardiographic segments were abnormal (3.4 +/- 3.0 vs 4.6 +/- 3.4, p = 0.042). In 4 of 17 patients, reversible perfusion defects and echocardiographic wall motion abnormalities were detected during the control but not during the propranolol test. Thus, during dobutamine stress testing, beta-blocker therapy attenuates, and in some cases eliminates, evidence of myocardial ischemia.

  15. Temporal Trends of Single-Photon Emission Computed Tomography Myocardial Perfusion Imaging in Patients With Coronary Artery Disease: A 22-Year Experience From a Tertiary Academic Medical Center.

    PubMed

    Jouni, Hayan; Askew, J Wells; Crusan, Daniel J; Miller, Todd D; Gibbons, Raymond J

    2017-07-01

    There has been a gradual decline in the prevalence of abnormal stress single-photon emission computed tomography (SPECT) myocardial perfusion imaging studies among patients without history of coronary artery disease (CAD). The trends of SPECT studies among patients with known CAD have not been evaluated previously. We assessed the Mayo Clinic nuclear cardiology database for all stress SPECT tests performed between January 1991 and December 2012 in patients with history of CAD defined as having previous myocardial infarction, percutaneous coronary intervention, and coronary artery bypass grafting. The study cohort was divided into 5 time periods: 1991 to 1995, 1996 to 2000, 2001 to 2005, 2006 to 2010, and 2011 to 2012. There were 19 373 patients with a history of CAD who underwent SPECT between 1991 and 2012 (mean age, 66.2±10.9 years; 75.4% men). Annual utilization of SPECT in these patients increased from an average of 495 tests per year in 1991 to 1995 to 1425 in 2003 and then decreased to 552 tests in 2012 without evidence for substitution with other stress modalities. Asymptomatic patients initially increased until 2006 and then decreased. Patients with typical angina decreased, whereas patients with dyspnea and atypical angina increased. High-risk SPECT tests significantly decreased, and the percentage of low-risk SPECT tests increased despite decreased SPECT utilization between 2003 and 2012. Almost 80% of all tests performed in 2012 had a low-risk summed stress score compared with 29% in 1991 (P<0.001). In Mayo Clinic, Rochester, annual SPECT utilization in patients with previous CAD increased between 1992 and 2003, but then decreased after 2003. High-risk SPECT tests declined, whereas low-risk tests increased markedly. Our results suggest that among patients with a history of CAD, SPECT was being increasingly utilized in patients with milder CAD. This trend parallels reduced utilization of other stress modalities, coronary angiography, reduced smoking, and

  16. Higher event rate in patients with known CAD despite a normal myocardial perfusion scan

    PubMed Central

    Fatima, Nosheen; Zaman, Unaiza; Zaman, Areeba; Balcoh, Dad J.; Rasheed, S Zahed

    2014-01-01

    Objective The negative predictive value of a normal single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is very high. However, prognostic implication of a normal SPECT MPI in patients with known coronary artery disease (CAD) is not clear. Objective of this study was to evaluate the cardiac event rate in patients with known CAD who had a normal stress SPECT MPI. Methods This prospective study accrued 428 consecutive patients with a history of CAD [revascularization or previous myocardial infarction (MI)] who had a normal stress (dynamic exercise or dipyridamole intervention) and rest Tc-99m-MIBI SPECT MPI. These patients were followed for 2-5 years (median: 3.1 years) for all-cause and cardiac mortality and non-fatal MI. Univariate and multivariate analyses were performed to identify predictors of outcome. Results During a follow-up period, all-cause mortality was found in 60 patients (14%) and 41 (10%) died of cardiac reasons. Non-fatal MI was found in 77 (18%) patients. Annualized cardiac mortality and non-fatal MI rates were 2% and 3.6% respectively. Smoking, congestive heart failure (CHF) and failure to achieve 85% age predicted heart rate were found to be predictors for all-cause and cardiac mortality. Diabetes, dyslipidemia, smoking and limited functional capacity (<7 METS) were found to be predictors for non-fatal MI. Conclusions Patients with known CAD had higher cardiac event rates despite a normal stress SPECT MPI. Diabetes, dyslipidemia, smoking and limited functional capacity were the predictors for fatal and non-fatal cardiac events. A cost effective but comprehensive surveillance strategy is warranted. PMID:25009792

  17. Myocardial imaging. Coxsackie myocarditis

    SciTech Connect

    Wells, R.G.; Ruskin, J.A.; Sty, J.R.

    1986-09-01

    A 3-week-old male neonate with heart failure associated with Coxsackie virus infection was imaged with Tc-99m PYP and TI-201. The abnormal imaging pattern suggested myocardial infarction. Autopsy findings indicated that the cause was myocardial necrosis secondary to an acute inflammatory process. Causes of abnormal myocardial uptake of Tc-99m PYP in pediatrics include infarction, myocarditis, cardiomyopathy, bacterial endocarditis, and trauma. Myocardial imaging cannot provide a specific cause diagnosis. Causes of myocardial infarction in pediatrics are listed in Table 1.

  18. Radiation dose in cardiac SPECT/CT: An estimation of SSDE and effective dose.

    PubMed

    Abdollahi, Hamid; Shiri, Isaac; Salimi, Yazdan; Sarebani, Maghsoud; Mehdinia, Reza; Deevband, Mohammad Reza; Mahdavi, Seied Rabi; Sohrabi, Ahmad; Bitarafan-Rajabi, Ahmad

    2016-12-01

    The dose levels for Computed Tomography (CT) localization and attenuation correction of Single Photon Emission Computed Tomography (SPECT) are limited and reported as Volume Computed Tomography Dose Index (CTDIvol) and Dose-Length Product (DLP). This work presents CT dose estimation from Cardiac SPECT/CT based on new American Association of Physicists in Medicine (AAPM) Size Specific Dose Estimation (SSDE) parameter, effective dose, organ doses and also emission dose from nuclear issue. Myocardial perfusion SPECT/CT for 509 patients was included in the study. SSDE, effective dose and organ dose were calculated using AAPM guideline and Impact-Dose software. Data were analyzed using R and SPSS statistical software. Spearman-Pearson correlation test and linear regression models were used for finding correlations and relationships among parameters. The mean CTDIvol was 1.34 mGy±0.19 and the mean SSDE was 1.7 mGy±0.16. The mean±SD of effective dose from emission, CT and total dose were 11.5±1.4, 0.49±0.11 and 12.67±1.73 (mSv) respectively. The mean±SD of effective dose from emission, CT and total dose were 11.5±1.4, 0.49±0.11 and 12.67±1.73 (mSv) respectively. The spearman test showed that correlation between body size and organ doses is significant except thyroid and red bone marrow. CTDIvol was strongly dependent on patient size, but SSDE was not. Emission dose was strongly dependent on patient weight, but its dependency was lower to effective diameter. The dose parameters including CTDIvol, DLP, SSDE, effective dose values reported here are very low and below the reference level. This data suggest that appropriate CT acquisition parameters in SPECT/CT localization and attenuation correction are very beneficial for patients and lowering cancer risks. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Optimization of the angle between detector modules in a dual-head cardiac SPECT

    NASA Astrophysics Data System (ADS)

    An, Su Jung; Kim, Hyun-Il; Lee, Chae Young; Jo, Woo Jin; Chung, Yong Hyun

    2013-01-01

    In recent years, dedicated cardiac single photon emission computed tomography (SPECT) systems have been undergoing a profound change in design with multiple detectors and various angles between the modules to improve the sensitivity and the resolution by reducing the distance between the heart and the detector. The performance of a dual-head cardiac SPECT for small-animal imaging was characterized as a function of the angle between two detector heads by using GATE simulations, and simulation data were validated with experimental results. Each detector head consists of 50 × 50 × 6 mm3 NaI(Tl) optically coupled to a Hamamatsu H8500 position sensitive photomultiplier (PSPMT) and a low-energy high-resolution parallel-hole collimator (LEHR, septal thickness: 0.2 mm, diameter: 1.9 mm). The distance between the collimator surface and the center of rotation was set as 20, 20, 20, 25, or 31.5 mm for 70°, 80°, 90°, 100°, or 110°, respectively, based on a 40-mm field of view (FOV). A point source and a rat cardiac phantom of Tc-99m in scattering media were simulated. Projection data were acquired for 180 angular views in steps of 2° and were reconstructed by using a filtered back-projection algorithm. Results demonstrated that the angle between the detector heads did not make a big difference in the image quality when scattering media were not presented, but the dual heads in the 80° geometry provided the best spatial resolution in the cardiac phantom study. The peak-to-valley ratio between the myocardial wall and the cavity was measured as 1.87, 11.01, 3.28, 3.40, or 2.46 for 70°, 80°, 90°, 100°, or 110°, respectively. Experiments were performed with a dual-head SPECT in the 80° geometry, and the results agreed well with these from the simulations. In this study, the impact of the angle between dual detector heads on the imaging performance was evaluated, and the optimal angle was derived for a dedicated cardiac SPECT.

  20. System Integration of FastSPECT III, a Dedicated SPECT Rodent-Brain Imager Based on BazookaSPECT Detector Technology

    PubMed Central

    Miller, Brian W.; Furenlid, Lars R.; Moore, Stephen K.; Barber, H. Bradford; Nagarkar, Vivek V.; Barrett, Harrison H.

    2010-01-01

    FastSPECT III is a stationary, single-photon emission computed tomography (SPECT) imager designed specifically for imaging and studying neurological pathologies in rodent brain, including Alzheimer’s and Parkinsons’s disease. Twenty independent BazookaSPECT [1] gamma-ray detectors acquire projections of a spherical field of view with pinholes selected for desired resolution and sensitivity. Each BazookaSPECT detector comprises a columnar CsI(Tl) scintillator, image-intensifier, optical lens, and fast-frame-rate CCD camera. Data stream back to processing computers via firewire interfaces, and heavy use of graphics processing units (GPUs) ensures that each frame of data is processed in real time to extract the images of individual gamma-ray events. Details of the system design, imaging aperture fabrication methods, and preliminary projection images are presented. PMID:21218137

  1. Assessing Cardiac Injury in Mice With Dual Energy-MicroCT, 4D-MicroCT, and MicroSPECT Imaging After Partial Heart Irradiation

    SciTech Connect

    Lee, Chang-Lung; Min, Hooney; Befera, Nicholas; Clark, Darin; Qi, Yi; Das, Shiva; Johnson, G. Allan; Badea, Cristian T.; Kirsch, David G.

    2014-03-01

    Purpose: To develop a mouse model of cardiac injury after partial heart irradiation (PHI) and to test whether dual energy (DE)-microCT and 4-dimensional (4D)-microCT can be used to assess cardiac injury after PHI to complement myocardial perfusion imaging using micro-single photon emission computed tomography (SPECT). Methods and Materials: To study cardiac injury from tangent field irradiation in mice, we used a small-field biological irradiator to deliver a single dose of 12 Gy x-rays to approximately one-third of the left ventricle (LV) of Tie2Cre; p53{sup FL/+} and Tie2Cre; p53{sup FL/−} mice, where 1 or both alleles of p53 are deleted in endothelial cells. Four and 8 weeks after irradiation, mice were injected with gold and iodinated nanoparticle-based contrast agents, and imaged with DE-microCT and 4D-microCT to evaluate myocardial vascular permeability and cardiac function, respectively. Additionally, the same mice were imaged with microSPECT to assess myocardial perfusion. Results: After PHI with tangent fields, DE-microCT scans showed a time-dependent increase in accumulation of gold nanoparticles (AuNp) in the myocardium of Tie2Cre; p53{sup FL/−} mice. In Tie2Cre; p53{sup FL/−} mice, extravasation of AuNp was observed within the irradiated LV, whereas in the myocardium of Tie2Cre; p53{sup FL/+} mice, AuNp were restricted to blood vessels. In addition, data from DE-microCT and microSPECT showed a linear correlation (R{sup 2} = 0.97) between the fraction of the LV that accumulated AuNp and the fraction of LV with a perfusion defect. Furthermore, 4D-microCT scans demonstrated that PHI caused a markedly decreased ejection fraction, and higher end-diastolic and end-systolic volumes, to develop in Tie2Cre; p53{sup FL/−} mice, which were associated with compensatory cardiac hypertrophy of the heart that was not irradiated. Conclusions: Our results show that DE-microCT and 4D-microCT with nanoparticle-based contrast agents are novel imaging approaches

  2. Evaluation of myocardial infarction size with three-dimensional speckle tracking echocardiography: a comparison with single photon emission computed tomography.

    PubMed

    Wang, Qiushuang; Zhang, Chunhong; Huang, Dangsheng; Zhang, Liwei; Yang, Feifei; An, Xiuzhi; Ouyang, Qiaohong; Zhang, Meiqing; Wang, Shuhua; Guo, Jiarui; Ji, Dongdong

    2015-12-01

    To assess whether global and regional myocardial strains from three-dimensional speckle tracking echocardiography (3D-STE) correlate with myocardial infarction size (MIS) detected by single photon emission computed tomography (SPECT). Fifty-seven patients with a history of ST-segment elevation myocardial infarction (MI) within 3-6 months were enrolled, alongside 24 healthy volunteers. Left ventricular (LV) global area strain, global longitudinal strain (GLS), global radial strain, global circumferential strain, left ventricular ejection fraction (LVEF) and wall motion score index (WMSI) were measured and compared with the corresponding SPECT-detected MISs. Patients were sub-grouped into massive MIS group (MIS ≥ 12%) and small MIS group (MIS < 12%). Myocardial strains of all the LV segments were compared with the corresponding MIS. Global myocardial strain parameters, LVEF and WMSI of the patients were significantly different from the control group (all P < 0.05) and correlated well with MISs, most significantly for GLS (r = 0.728, P < 0.01). Significant differences in myocardial strain parameters were found between the massive and small MIS groups (all P < 0.05). Receiver operating characteristic curve analysis indicated that GLS had a highest diagnostic value and when the cutoff was -13.8%, the area under the curve was 0.84, with the 70.6% sensitivity and 87.5% specificity. Significant differences of myocardial strain parameters were observed between segments with and without transmural MIs (P < 0.01). 3D-STE myocardial strain parameters evaluated LV global MIS, 3D GLS had the highest diagnostic value. It also preliminarily gauged the degree of ischemia and necrosis of regional myocardial segments.

  3. Journey in evolution of nuclear cardiology: will there be another quantum leap with the F-18-labeled myocardial perfusion tracers?

    PubMed

    Dilsizian, Vasken; Taillefer, Raymond

    2012-12-01

    The field of nuclear cardiac imaging has evolved from being rather subjective, more "art than a science," to a more objective, digital-based quantitative technique, providing insight into the physiological processes of cardiovascular disorders and predicting patient outcome. In a mere 4 decades of its clinical use, the technology used to image myocardial perfusion has made quantum leaps from planar to single-photon emission computed tomography (SPECT) and now to a more contemporary rapid SPECT, positron emission tomography (PET), and hybrid SPECT-computed tomography (CT) and PET-CT techniques. Meanwhile, radiotracers have flourished from potassium-43 and red blood cell-tagged blood pool imaging to thallium-201 and technetium-99m-labeled SPECT perfusion tracers along with rubidium-82, ammonia N-13, and more recently F-18 fluorine-labeled PET perfusion tracers. Concurrent with this expansion is the introduction of new quantitative methods and software for image processing, evaluation, and data interpretation. Technical advances, particularly in obtaining quantitative data, have led to a better understanding of the physiological mechanisms underlying cardiovascular diseases beyond discrete epicardial coronary artery disease to coronary vasomotor function in the early stages of the development of coronary atherosclerosis, hypertrophic cardiomyopathy, and dilated nonischemic cardiomyopathy. Progress in the areas of molecular and hybrid imaging are equally important areas of growth in nuclear cardiology. However, this paper focuses on the past and future of nuclear myocardial perfusion imaging and particularly perfusion tracers. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  4. Proceedings of clinical SPECT (single photon emission computed tomography) symposium

    SciTech Connect

    Not Available

    1986-09-01

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base. (TEM)

  5. Analytically based photon scatter modeling for a multipinhole cardiac SPECT camera.

    PubMed

    Pourmoghaddas, Amir; Wells, R Glenn

    2016-11-01

    Dedicated cardiac SPECT scanners have improved performance over standard gamma cameras allowing reductions in acquisition times and/or injected activity. One approach to improving performance has been to use pinhole collimators, but this can cause position-dependent variations in attenuation, sensitivity, and spatial resolution. CT attenuation correction (AC) and an accurate system model can compensate for many of these effects; however, scatter correction (SC) remains an outstanding issue. In addition, in cameras using cadmium-zinc-telluride-based detectors, a large portion of unscattered photons is detected with reduced energy (low-energy tail). Consequently, application of energy-based SC approaches in these cameras leads to a higher increase in noise than with standard cameras due to the subtraction of true counts detected in the low-energy tail. Model-based approaches with parallel-hole collimator systems accurately calculate scatter based on the physics of photon interactions in the patient and camera and generate lower-noise estimates of scatter than energy-based SC. In this study, the accuracy of a model-based SC method was assessed using physical phantom studies on the GE-Discovery NM530c and its performance was compared to a dual energy window (DEW)-SC method. The analytical photon distribution (APD) method was used to calculate the distribution of probabilities that emitted photons will scatter in the surrounding scattering medium and be subsequently detected. APD scatter calculations for (99m)Tc-SPECT (140 ± 14 keV) were validated with point-source measurements and 15 anthropomorphic cardiac-torso phantom experiments and varying levels of extra-cardiac activity causing scatter inside the heart. The activity inserted into the myocardial compartment of the phantom was first measured using a dose calibrator. CT images were acquired on an Infinia Hawkeye (GE Healthcare) SPECT/CT and coregistered with emission data for AC. For comparison, DEW scatter

  6. Motion-frozen Imaging by Gated Myocardial Perfusion Single Photon Emission Computed Tomography Using Multi-focus Fan Beam Collimator in Thallium-201 Study.

    PubMed

    Takahashi, Kaito; Takeuchi, Takashi; Hosokai, Yoshiyuki; Odagiri, Hayato; Saito, Haruo

    This study aimed to evaluate the statistical noise of motion-frozen (MF) image generated by gated myocardial perfusion single photon emission computed tomography (SPECT) imaging using IQ · SPECT and to determine the optimal acquisition and reconstruction parameters for MF image using IQ · SPECT. A movement cardiac phantom and static cardiac phantom were used to acquire the MF images. The acquisition times used were different in 8 and 16 frames per R-R interval, and varying reconstruction parameters (subset and iteration) were used. We determined the %CV value, contrast, and normalized mean square error (NMSE) to evaluate the image quality. The %CV value for a MF image with IQ · SPECT was lower than that for a conventional non-gated myocardial perfusion SPECT (MPS) image with low energy high resolution (LEHR). With regard to the acquisition parameters, the contrast did not change when the acquisition time was increased in 8 and 16 frames per R-R interval. NMSE converged in 56 beats/view in 8 frames per R-R interval. With regard to the reconstruction parameters, the contrast and the %CV value of the anterior and septal wall converged in update 40. The minimum NMSE in subsets 1, 2, and 3 were almost similar. Uniformity in the MF image with IQ · SPECT was higher than that in the conventional image. The results of this MF image with IQ · SPECT study suggest that the optimal acquisition parameter should be 56 beats/view in 8 frames per R-R interval, and the optimal reconstruction parameters should be subset 3 and iteration 14.

  7. Impaired Coronary Flow Reserve Is the Most Important Marker of Viable Myocardium in the Myocardial Segment-Based Analysis of Dual-Isotope Gated Myocardial Perfusion Single-Photon Emission Computed Tomography

    PubMed Central

    Lee, Won Woo; So, Young; Kim, Ki-Bong

    2014-01-01

    Objective The aim of this study was to investigate the most robust predictor of myocardial viability among stress/rest reversibility (coronary flow reserve [CFR] impairment), 201Tl perfusion status at rest, 201Tl 24 hours redistribution and systolic wall thickening of 99mTc-methoxyisobutylisonitrile using a dual isotope gated myocardial perfusion single-photon emission computed tomography (SPECT) in patients with coronary artery disease (CAD) who were re-vascularized with a coronary artery bypass graft (CABG) surgery. Materials and Methods A total of 39 patients with CAD was enrolled (34 men and 5 women), aged between 36 and 72 years (mean 58 ± 8 standard in years) who underwent both pre- and 3 months post-CABG myocardial SPECT. We analyzed 17 myocardial segments per patient. Perfusion status and wall motion were semi-quantitatively evaluated using a 4-point grading system. Viable myocardium was defined as dysfunctional myocardium which showed wall motion improvement after CABG. Results The left ventricular ejection fraction (LVEF) significantly increased from 37.8 ± 9.0% to 45.5 ± 12.3% (p < 0.001) in 22 patients who had a pre-CABG LVEF lower than 50%. Among 590 myocardial segments in the re-vascularized area, 115 showed abnormal wall motion before CABG and 73.9% (85 of 115) had wall motion improvement after CABG. In the univariate analysis (n = 115 segments), stress/rest reversibility (p < 0.001) and 201Tl rest perfusion status (p = 0.024) were significant predictors of wall motion improvement. However, in multiple logistic regression analysis, stress/rest reversibility alone was a significant predictor for post-CABG wall motion improvement (p < 0.001). Conclusion Stress/rest reversibility (impaired CFR) during dual-isotope gated myocardial perfusion SPECT was the single most important predictor of wall motion improvement after CABG. PMID:24642696

  8. Prediction of left main or 3-vessel disease using myocardial perfusion reserve on dynamic thallium-201 single-photon emission computed tomography with a semiconductor gamma camera.

    PubMed

    Shiraishi, Shinya; Sakamoto, Fumi; Tsuda, Noriko; Yoshida, Morikatsu; Tomiguchi, Seiji; Utsunomiya, Daisuke; Ogawa, Hisao; Yamashita, Yasuyuki

    2015-01-01

    Myocardial perfusion imaging (MPI) may fail to detect balanced ischemia. We evaluated myocardial perfusion reserve (MPR) using Tl dynamic single-photon emission computed tomography (SPECT) and a novel cadmium zinc telluride (CZT) camera for predicting 3-vessel or left main coronary artery disease (CAD). METHODS AND RESULTS: A total of 55 consecutive patients with suspected CAD underwent SPECT-MPI and coronary angiography. The MPR index was calculated using the standard 2-compartment kinetic model. We analyzed the utility of MPR index, other SPECT findings, and various clinical variables. On multivariate analysis, MPR index and history of previous myocardial infarction (MI) predicted left main and 3-vessel disease. The area under the receiver operating characteristic curve was 0.81 for MPR index, 0.699 for history of previous MI, and 0.86 for MPR index plus history of previous MI. MPR index ≤1.5 yielded the highest diagnostic accuracy. Sensitivity, specificity, and accuracy were 86%, 78%, and 80%, respectively, for MPR index, 64%, 76%, 73% for previous MI, and 57%, 93%, and 84% for MPR index plus history of previous MI. Quantification of MPR using dynamic SPECT and a novel CZT camera may identify balanced ischemia in patients with left main or 3-vessel disease.

  9. PET and SPECT studies in Parkinson's disease.

    PubMed

    Brooks, D J

    1997-04-01

    Positron emission tomography (PET) and single photon emission tomography (SPECT) provide sensitive means for quantifying the loss of nigrostriatal dopaminergic fibres in Parkinson's disease and for detecting the presence of dopaminergic dysfunction in asymptomatic at-risk relatives and patients with isolated tremor. Functional imaging can also be used to follow the rate of disease progression objectively, determine the efficacy of putative neuroprotective agents, and monitor the viability of transplants of fetal tissue. Additionally, in vivo pharmacological changes associated with development of treatment complications (fluctuations, dyskinesias) can be studied. Loss of dopaminergic projections produces profound changes in resting and activated brain metabolism. PET and SPECT activation studies have suggested that the akinesia of Parkinson's disease is associated with failure to activate the supplementary motor and dorsal pre-frontal areas. Activation of these cortical areas is restored towards normal by the use of dopaminergic medication, striatal transplantation with fetal mesencephalic tissue, and pallidotomy. The aim of this chapter is to review the insight which functional imaging has given us into the pathophysiology of parkinsonism.

  10. Advances in SPECT and PET Hardware.

    PubMed

    Slomka, Piotr J; Pan, Tinsu; Berman, Daniel S; Germano, Guido

    2015-01-01

    There have been significant recent advances in single photon emission computed tomography (SPECT) and positron emission tomography (PET) hardware. Novel collimator designs, such as multi-pinhole and locally focusing collimators arranged in geometries that are optimized for cardiac imaging have been implemented to reduce imaging time and radiation dose. These new collimators have been coupled with solid state photon detectors to further improve image quality and reduce scanner size. The new SPECT scanners demonstrate up to a 7-fold increase in photon sensitivity and up to 2 times improvement in image resolution. Although PET scanners are used primarily for oncological imaging, cardiac imaging can benefit from the improved PET sensitivity of 3D systems without inter-plane septa and implementation of the time-of-flight reconstruction. Additionally, resolution recovery techniques are now implemented by all major PET vendors. These new methods improve image contrast, image resolution, and reduce image noise. Simultaneous PET/magnetic resonance (MR) hybrid systems have been developed. Solid state detectors with avalanche photodiodes or digital silicon photomultipliers have also been utilized in PET. These new detectors allow improved image resolution, higher count rate, as well as a reduced sensitivity to electromagnetic MR fields. Copyright © 2015. Published by Elsevier Inc.

  11. MLEM algorithm adaptation for improved SPECT scintimammography

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Feiglin, David H.; Lee, Wei; Kunniyur, Vikram R.; Gangal, Kedar R.; Coman, Ioana L.; Lipson, Edward D.; Karczewski, Deborah A.; Thomas, F. Deaver

    2005-04-01

    Standard MLEM and OSEM algorithms used in SPECT Tc-99m sestamibi scintimammography produce hot-spot artifacts (HSA) at the image support peripheries. We investigated a suitable adaptation of MLEM and OSEM algorithms needed to reduce HSA. Patients with suspicious breast lesions were administered 10 mCi of Tc-99m sestamibi and SPECT scans were acquired for patients in prone position with uncompressed breasts. In addition, to simulate breast lesions, some patients were imaged with a number of breast skin markers each containing 1 mCi of Tc-99m. In order to reduce HSA in reconstruction, we removed from the backprojection step the rays that traverse the periphery of the support region on the way to a detector bin, when their path length through this region was shorter than some critical length. Such very short paths result in a very low projection counts contributed to the detector bin, and consequently to overestimation of the activity in the peripheral voxels in the backprojection step-thus creating HSA. We analyzed the breast-lesion contrast and suppression of HSA in the images reconstructed using standard and modified MLEM and OSEM algorithms vs. critical path length (CPL). For CPL >= 0.01 pixel size, we observed improved breast-lesion contrast and lower noise in the reconstructed images, and a very significant reduction of HSA in the maximum intensity projection (MIP) images.

  12. Quantitative SPECT of uptake of monoclonal antibodies

    SciTech Connect

    DeNardo, G.L.; Macey, D.J.; DeNardo, S.J.; Zhang, C.G.; Custer, T.R.

    1989-01-01

    Absolute quantitation of the distribution of radiolabeled antibodies is important to the efficient conduct of research with these agents and their ultimate use for imaging and treatment, but is formidable because of the unrestricted nature of their distribution within the patient. Planar imaging methods have been developed and provide an adequate approximation of the distribution of radionuclide for many purposes, particularly when there is considerable specificity of targeting. This is not currently the case for antibodies and is unlikely in the future. Single photon emission computed tomography (SPECT) provides potential for greater accuracy because it reduces problems caused by superimposition of tissues and non-target contributions to target counts. SPECT measurement of radionuclide content requires: (1) accurate determination of camera sensitivity; (2) accurate determination of the number of counts in a defined region of interest; (3) correction for attenuation; (4) correction for scatter and septal penetration; (5) accurate measurement of the administered dose; (6) adequate statistics; and (7) accurate definition of tissue mass or volume. The major impediment to each of these requirements is scatter of many types. The magnitude of this problem can be diminished by improvements in tomographic camera design, computer algorithms, and methodological approaches. 34 references.

  13. SPECT-US image fusion and clinical applications

    NASA Astrophysics Data System (ADS)

    Hummel, Johann; Kaar, Marcus; Hoffmann, Rainer; Birkfellner, Wolfgang; Beyer, Thomas; Staudenherz, Anton; Figl, Michael

    2014-03-01

    Because scintigraphic images lack anatomical information, single photon emission tomography (SPECT) and positron emission tomography systems (PET) are combined physically with CTs to compensate for this drawback. In our work, we present a method where the CT is replaced by a 3D ultrasound device. Because in this case a mechanical linkage is not possible, we use an additional optical tracking system (OTS) for spatial correlation of the SPECT or PET information and the US. To enable image fusion between the functional SPECT and the anatomical US we first calibrate the SPECT by means of the optical tracking system. This is done by imaging a phantom with SPECT and scanning the surface of the phantom using a calibrated stylus of the OTS. Applying an iterative closest point (ICP) algorithm results in the transformation between the optical coordinate system and the SPECT coordinate system. When a patient undergoes a SPECT scan, a 3D US image is taken immediately after the scan. Since the scan head of the US is also tracked by the OTS, the transformation between OTS and SPECT can be calculated straight forward. For clinical intervention, the patient is again imaged with the US and a 3D/3D registration between the two US volumes allows to transform the functional information of the SPECT to the current US image in real time. We found a mean distance between the point cloud of the optical stylus and the segmented surface of the phantom of 2.3 mm while the maximum distance was found to be 6.9 mm. The 3D3D registration between the two US images was accomplished with an error of 2.1 mm.

  14. Fabrication of the pinhole aperture for AdaptiSPECT

    PubMed Central

    Kovalsky, Stephen; Kupinski, Matthew A.; Barrett, Harrison H.; Furenlid, Lars R.

    2015-01-01

    AdaptiSPECT is a pre-clinical pinhole SPECT imaging system under final construction at the Center for Gamma-Ray Imaging. The system is designed to be able to autonomously change its imaging configuration. The system comprises 16 detectors mounted on translational stages to move radially away and towards the center of the field-of-view. The system also possesses an adaptive pinhole aperture with multiple collimator diameters and pinhole sizes, as well as the possibility to switch between multiplexed and non-multiplexed imaging configurations. In this paper, we describe the fabrication of the AdaptiSPECT pinhole aperture and its controllers. PMID:26146443

  15. Fractured osteophyte demonstrated on SPECT and computed tomography.

    PubMed

    Spieth, Michael E; Schmitz, Stacey L

    2003-08-01

    ABSTRACT We present an interesting case of a fractured osteophyte causing back pain that was demonstrated both on bone single photon emission computed tomography (SPECT) and computed tomography (CT). The magnetic resonance images, thoracic anterior spine plain radiograph, whole-body bone scan passes, and thoracic spot view were not impressive. Bone SPECT was the impetus for getting the CT scan. The CT scan not only demonstrated the osteophyte but a pseudarthrosis that was probably causing the pain. If it were not for the positive SPECT bone scan, the CT scan would not have been ordered after unimpressive magnetic resonance imaging.

  16. [Myocardial single photon emission tomography imaging of reporter gene expression in rabbits].

    PubMed

    Liu, Ying; Lan, Xiao-li; Zhang, Liang; Wu, Tao; Jiang, Ri-feng; Zhang, Yong-xue

    2009-06-01

    To explore the feasibility of single photon emission computed tomography (SPECT) detection of heart reporter gene expression and observed the optimal transfecting titer and imaging time by using herpes simplex virus 1-thymidine kinase (HSV1-tk) as reporter gene and 131I-2'-fluoro-2'-deoxy-1-beta-D-arabinofuranosyl-5-iodouracil (131I-FIAU) as reporter probe in rabbit myocardium. The recombinant Ad-tk carrying HSV1-tk gene and adenovirus (Ad) as vector was constructed and intramyocardially injected to rabbits at various concentrations (1 x 10(9) pfu, 5 x 10(8) pfu, 1 x 10(8) pfu, 5 x 10(7) pfu, 1 x 10(7) pfu). Two days later, rabbits were injected with 600 microCi 131I-FIAU in ear-margin vein and then underwent SPECT myocardium imaging for detection of HSV1-tk expression at 6 h, 24 h, 48 h and 72 h after injection, rabbits with 1 x 10(9) pfu Ad-tk injection were imaged at 96 h and 120 h. Rabbits were sacrificed after imaging and the total myocardial 131I-FIAU accumulation was quantified in percent of injected dose per gram myocardium (% ID/g). The myocardial Ad-tk expression was determined with RT-PCR. Reporter gene was detected by SPECT imaging in the injection site while not detected in the control myocardium and site remote from injection. RT-PCR results also evidenced HSV1-tk express in the injection site. The SPECT target/nontarget ratio was correlated with ex vivo gamma-counting (r2 = 0.933, P<0.01) and expression of HSV1-tk (r2 = 0.877, P<0.01). Myocardial accumulation could be identified at viral titers as low as 1 x 10(7) pfu by SPECT imaging. The cardiac SPECT reporter gene imaging with HSV1-tk as reporter gene and 131I-FIAU as reporter probe is feasible.

  17. [Obtaining myo-cardial perfusion images synchronized with the ECG (gated-SPEC) after injecting MIBI during exertion: comparative study with echocardiography in 95 patients for the assessment of left ventricular function].

    PubMed

    Fraile, M; Pereferrer, D; Luque, M T; Larrouse, E; Rubio, L; Valle, V; Riba, J

    1998-01-01

    Technical innovation has recently resulted in the routine use of gated-SPECT in myocardial perfusion imaging. In the present work we compare estimates of left ventricular function (LV cavity) by gated-SPECT with those of conventional echocardiography in a group of 95 ischemic patients, 49 of whom had previous myocardial infarction. Kappa analysis showed correlation coefficients of 0.67 for global function in the whole group and of 0.68 in patients with MI, as well as of 0.56 in the anterior wall, and 0.55 in the inferior wall. With these data, we believe that the technique is useful and it adds to the conventional perfusion SPECT imaging. Also, it is conveniently validated against echocardiography in our hands.

  18. Ventilation/perfusion SPECT or SPECT/CT for lung function imaging in patients with pulmonary emphysema?

    PubMed

    Froeling, Vera; Heimann, Uwe; Huebner, Ralf-Harto; Kroencke, Thomas J; Maurer, Martin H; Doellinger, Felix; Geisel, Dominik; Hamm, Bernd; Brenner, Winfried; Schreiter, Nils F

    2015-07-01

    To evaluate the utility of attenuation correction (AC) of V/P SPECT images for patients with pulmonary emphysema. Twenty-one patients (mean age 67.6 years) with pulmonary emphysema who underwent V/P SPECT/CT were included. AC/non-AC V/P SPECT images were compared visually and semiquantitatively. Visual comparison of AC/non-AC images was based on a 5-point likert scale. Semiquantitative comparison assessed absolute counts per lung (aCpLu) and lung lobe (aCpLo) for AC/non-AC images using software-based analysis; percentage counts (PC = (aCpLo/aCpLu) × 100) were calculated. Correlation between AC/non-AC V/P SPECT images was analyzed using Spearman's rho correlation coefficient; differences were tested for significance with the Wilcoxon rank sum test. Visual analysis revealed high conformity for AC and non-AC V/P SPECT images. Semiquantitative analysis of PC in AC/non-AC images had an excellent correlation and showed no significant differences in perfusion (ρ = 0.986) or ventilation (ρ = 0.979, p = 0.809) SPECT/CT images. AC of V/P SPECT images for lung lobe-based function imaging in patients with pulmonary emphysema do not improve visual or semiquantitative image analysis.

  19. Effect of reconstruction parameters on defect detection in fan-beam SPECT

    NASA Astrophysics Data System (ADS)

    Gregoriou, George K.

    2002-05-01

    The effect of reconstruction parameters on the fan-beam filtered backprojection method in myocardial defect detection was investigated using an observer performance study and receiver operating characteristics (ROC) analysis. A mathematical phantom of the human torso was used to model the anatomy and Thallium-201 (Tl-201) uptake in humans. Half-scan fan-beam realistic projections were simulated using a low-energy high resolution (LEHR) collimator that incorporated the effects of photon attenuation, spatially varying detector response, scatter, and Poison noise. A focal length of 55 cm and a radius of rotation of 25 cm were used, which resulted to a magnification of two at the center of rotation and a maximum magnification of three in the reconstructed region of interest. By changing the reconstruction pixel size, five different projection bin width to reconstruction pixel size (PBWRPS) ratios were obtained which resulted in five classes of reconstructed images. Myocardial defects were simulated as Gaussian-shaped decreases in Tl-201 uptake distribution. The total projection count per 3 mm image slice was 44,000. A total of 96 reconstructed transaxial images from each one of the five classes were shown to eight observers for evaluation. The results indicate that the reconstruction pixel size has a significant effect on the quality of fan-beam SPECT images. Moreover, the study indicated that in order to ensure best image quality the PBWRPS ratio should be at least as large as the maximum possible magnification inside the reconstructed image array.

  20. Incremental value of (99m)Tc-HYNIC-TOC SPECT/CT over whole-body planar scintigraphy and SPECT in patients with neuroendocrine tumours.

    PubMed

    Trogrlic, Mate; Težak, Stanko

    2017-06-12

    The aim of this study was to evaluate the additional value of (99m)Tc-HYNIC-TOC SPECT/CT over planar whole-body (WB) scintigraphy and SPECT alone in the detection and accurate localisation of neuroendocrine tumour (NET) lesions. This study included 65 patients with a definitive histological diagnosis of NET prior to scintigraphy. Planar WB scintigraphy, SPECT, and SPECT/CT images were acquired at 4 h post-administration of 670 MBq (99m)Tc-HYNIC-TOC. Additional SPECT images at 10 min after tracer administration were also acquired. Clinical and imaging follow-up findings were considered as the reference standards (minimum follow-up period, 15 months). Patient and lesion-based analyses of the efficacies of the imaging modalities were performed. While 38 patients exhibited metastasis of NETs, 27 presented no evidence of metastasis. Upon patient-based analysis, the sensitivity and specificity of SPECT/CT were found to be 88.9 and 79.3 %, respectively. The diagnostic accuracies of WB scintigraphy, 4h-SPECT, and SPECT/CT were 72.3, 73.8, and 84.6 %, respectively. The area under curve (AUC) value for SPECT/CT (0.84) was the highest, followed by those for 4h-SPECT (0.75) and WB scintigraphy (0.74). The accuracy and AUC values of SPECT/CT were significantly better compared to those of WB scintigraphy (p < 0.001), 10 min-SPECT (p < 0.001), and 4 h-SPECT (p = 0.001). The findings of SPECT/CT led to the change in treatment plan of 11 patients (16.9 %). The sensitivity and diagnostic accuracy of SPECT/CT in the evaluation of NET lesions outperforms planar WB imaging or SPECT alone.

  1. Assessment of a Monte-Carlo simulation of SPECT recordings from a new-generation heart-centric semiconductor camera: from point sources to human images.

    PubMed

    Imbert, Laetitia; Galbrun, Ernest; Odille, Freddy; Poussier, Sylvain; Noel, Alain; Wolf, Didier; Karcher, Gilles; Marie, Pierre-Yves

    2015-02-07

    Geant4 application for tomographic emission (GATE), a Monte-Carlo simulation platform, has previously been used for optimizing tomoscintigraphic images recorded with scintillation Anger cameras but not with the new-generation heart-centric cadmium-zinc-telluride (CZT) cameras. Using the GATE platform, this study aimed at simulating the SPECT recordings from one of these new CZT cameras and to assess this simulation by direct comparison between simulated and actual recorded data, ranging from point sources to human images. Geometry and movement of detectors, as well as their respective energy responses, were modeled for the CZT 'D.SPECT' camera in the GATE platform. Both simulated and actual recorded data were obtained from: (1) point and linear sources of (99m)Tc for compared assessments of detection sensitivity and spatial resolution, (2) a cardiac insert filled with a (99m)Tc solution for compared assessments of contrast-to-noise ratio and sharpness of myocardial borders and (3) in a patient with myocardial infarction using segmented cardiac magnetic resonance imaging images. Most of the data from the simulated images exhibited high concordance with the results of actual images with relative differences of only: (1) 0.5% for detection sensitivity, (2) 6.7% for spatial resolution, (3) 2.6% for contrast-to-noise ratio and 5.0% for sharpness index on the cardiac insert placed in a diffusing environment. There was also good concordance between actual and simulated gated-SPECT patient images for the delineation of the myocardial infarction area, although the quality of the simulated images was clearly superior with increases around 50% for both contrast-to-noise ratio and sharpness index. SPECT recordings from a new heart-centric CZT camera can be simulated with the GATE software with high concordance relative to the actual physical properties of this camera. These simulations may be conducted up to the stage of human SPECT-images even if further refinement is needed

  2. Design and development of MR-compatible SPECT systems for simultaneous SPECT-MR imaging of small animals

    NASA Astrophysics Data System (ADS)

    Tsui, Benjamin M. W.; Hugg, James W.; Xu, Jingyan; Chen, Si; Meier, Dirk; Edelstein, William; El-Sharkawy, Abdel; Wagenaar, Douglas J.; Patt, Bradley E.

    2011-03-01

    We describe a continuing design and development of MR-compatible SPECT systems for simultaneous SPECT-MR imaging of small animals. A first generation prototype SPECT system was designed and constructed to fit inside a MRI system with a gradient bore inner diameter of 12 cm. It consists of 3 angularly offset rings of 8 detectors (1"x1", 16x16 pixels MR-compatible solid-state CZT). A matching 24-pinhole collimator sleeve, made of a tungsten-compound, provides projections from a common FOV of ~25 mm. A birdcage RF coil for MRI data acquisition surrounds the collimator. The SPECT system was tested inside a clinical 3T MRI system. Minimal interference was observed on the simultaneously acquired SPECT and MR images. We developed a sparse-view image reconstruction method based on accurate modeling of the point response function (PRF) of each of the 24 pinholes to provide artifact-free SPECT images. The stationary SPECT system provides relatively low resolution of 3-5 mm but high geometric efficiency of 0.5- 1.2% for fast dynamic acquisition, demonstrated in a SPECT renal kinetics study using Tc-99m DTPA. Based on these results, a second generation prototype MR-compatible SPECT system with an outer diameter of 20 cm that fits inside a mid-sized preclinical MRI system is being developed. It consists of 5 rings of 19 CZT detectors. The larger ring diameter allows the use of optimized multi-pinhole collimator designs, such as high system resolution up to ~1 mm, high geometric efficiency, or lower system resolution without collimator rotation. The anticipated performance of the new system is supported by simulation data.

  3. Assessment of myocardial viability in patients with acute myocardial infarction by two-dimensional speckle tracking echocardiography combined with low-dose dobutamine stress echocardiography.

    PubMed

    Gong, Lei; Li, Dongye; Chen, Junhong; Wang, Xiaoping; Xu, Tongda; Li, Wenhua; Ren, Shaoyang; Wang, Cheng

    2013-06-01

    It is clinically important to determine the myocardial viability of regional wall motion abnormality segments in patients with acute myocardial infarction (AMI). The purpose of this study was to ascertain the ability and value of a combination of speckle tracking echocardiography (STE) and low dose dobutamine stress echocardiography (LDDSE) for the evaluation of viable myocardium in patients with AMI. Forty-two hospitalized patients with AMI and left ventricular systolic dysfunction (left ventricular ejection fraction <50%) were underwent STE in conjunction with LDDSE and dual isotope simultaneous acquisition single photon emission computed tomography (DISA-SPECT). Percutaneous coronary intervention (PCI) was performed subsequently in all patients. STE was used to measure radial, circumferential, and longitudinal end-systolic strain and peak systolic strain rate. The movement of each segment was observed by routine echocardiography 1, 3, and 6 months after PCI, and its improvement over time was the criterion of viable myocardium. The sensitivity, specificity and accuracy of DISA-SPECT for the assessment of viable myocardium were 83.6, 74.4, and 80.7%, respectively. Among the radial, circumferential, and longitudinal strain and strain rate parameters, only longitudinal strain (LS) and longitudinal strain rate (LSr) at rest and LDDSE emerged as independent predictors of viable myocardium, When combining LS and LSr at LDDSE, the sensitivity, specificity and accuracy for the assessment of viable myocardium rose to 89.8, 90.2 and 89.9%, respectively. The sensitivity of STE in conjunction with LDDSE was similar to DISA-SPECT for detecting viable myocardium in patients with AMI, but the specificity and accuracy of STE performed with LDDSE were higher than DISA-SPECT.

  4. Impact of hypertension on the accuracy of exercise stress myocardial perfusion imaging for the diagnosis of coronary artery disease

    PubMed Central

    Elhendy, A; van Domburg, R T; Sozzi, F; Poldermans, D; Bax, J; Roelandt, J

    2001-01-01

    AIM—To compare the accuracy of exercise stress myocardial perfusion single photon emission computed tomography (SPECT) imaging for the diagnosis of coronary artery disease in patients with and without hypertension.
METHODS—A symptom limited bicycle exercise stress test in conjunction with 99m technetium sestamibi or tetrofosmin SPECT imaging was performed in 332 patients (mean (SD) age, 57 (10) years; 257 men, 75 women) without previous myocardial infarction who underwent coronary angiography. Of these, 137 (41%) had hypertension. Rest SPECT images were acquired 24 hours after the stress test. An abnormal scan was defined as one with reversible or fixed perfusion defects.
RESULTS—In hypertensive patients, myocardial perfusion abnormalities were detected in 79 of 102 patients with significant coronary artery disease and in nine of 35 patients without. In normotensive patients, myocardial perfusion abnormalities were detected in 104 of 138 patients with significant coronary artery disease and in 16 of 57 patients without. There were no differences between normotensive and hypertensive patients in sensitivity (77% (95% confidence interval (CI) 69% to 86%) v 75% (95% CI 68% to 83%)), specificity (74% (95% CI 60% to 89%) v 72% (95% CI 60% to 84%)), and accuracy (77% (95% CI 70% to 84%) v 74% (95% CI 68% to 80%)) of exercise SPECT for diagnosing coronary artery disease. The accuracy of SPECT was greater than electrocardiography, both in hypertensive patients (p = 0.005) and in normotensive patients (p = 0.0001). For the detection of coronary artery disease in individual vessels, sensitivity was 58% (95% CI 51% to 65%) v 57% (95% CI 51% to 64%), specificity was 86% (95% CI 82% to 90%) v 85% (95% CI 81% to 89%), and accuracy was 74% (95% CI 70% to 78%) v 74% (95% CI 70% to 78%) in patients with and without hypertension (NS).
CONCLUSIONS—In the usual clinical setting, the value of exercise myocardial perfusion scintigraphy for diagnosing

  5. Association between aortic valve calcification and myocardial ischemia, especially in asymptomatic patients.

    PubMed

    Yamazato, Ryo; Yamamoto, Hideya; Tadehara, Futoshi; Teragawa, Hiroki; Kurisu, Satoshi; Dohi, Yoshihiro; Ishibashi, Ken; Kunita, Eiji; Utsunomiya, Hiroto; Oka, Toshiharu; Kihara, Yasuki

    2012-08-01

    Aortic valve calcification (AVC) is recognized as a manifestation of systemic arteriosclerosis. However, it is unclear whether AVC is associated with myocardial ischemia. Stress myocardial perfusion SPECT (MPS) is widely used for the diagnosis of myocardial ischemia. However, routine MPS is not recommended, particularly in asymptomatic patients. Accordingly, we investigated the hypothesis that the presence of AVC is strongly associated with inducible myocardial ischemia, even among asymptomatic patients. We investigated 669 consecutive patients who underwent both adenosine stress (201)Tl MPS and echocardiography. We evaluated the extent and severity of myocardial ischemia by the summed difference score (SDS). We defined the presence of myocardial ischemia as SDS ≥ 3 and moderate to severe ischemia as SDS ≥ 8. We classified the severity of AVC according to the number of affected aortic leaflets. We also compared the mean SDS and the prevalence of SDS ≥ 3 and SDS ≥ 8 among patients stratified by the severity of AVC. The presence of AVC was significantly associated with myocardial ischemia (odds ratio [OR], 1.56; 95% confidence interval [CI], 1.10-2.23; P = 0.013) and moderate to severe ischemia (OR, 2.16; 95% CI, 1.26-3.80; P = 0.0061). In 311 asymptomatic patients, AVC was strongly associated with moderate to severe ischemia (OR, 4.31; 95% CI, 1.67-12.8; P = 0.0043). However, the SDS value and the prevalence of SDS ≥ 3 and SDS ≥ 8 did not increase with increasing number of affected aortic leaflets. The presence of AVC may be associated with the presence of myocardial ischemia, particularly in asymptomatic patients. However, we found no association between the extent of AVC and inducible myocardial ischemia. The presence of AVC may be a useful anatomic marker to help identify patients at high risk of myocardial ischemia, particularly asymptomatic patients.

  6. Role of 123I-Iobenguane Myocardial Scintigraphy in Predicting Short-term Left Ventricular Functional Recovery: An Interesting Image

    PubMed Central

    Feola, Mauro; Chauvie, Stephane; Biggi, Alberto; Testa, Marzia

    2015-01-01

    123I-iobenguane myocardial scintigraphy (MIBG) has been shown to be a predictor of sudden cardiac mortality in patients with heart failure. One patient with recent anterior myocardial infarction (MI) treated with coronary angioplasty and having left ventricular ejection fraction (LVEF) of 30% underwent early MIBG myocardial scintigraphy/tetrofosmin single-photon emission computed tomography (SPECT) in order to help evaluate his eligibility for implantable cardioverter defibrillator (ICD). The late heart/mediastinum (H/M) ratio was calculated to be 1.32% and the washout rate was 1%. At 40-day follow-up after angioplasty, LVEF proved to be 32%, New York Heart Association (NYHA) class was still II–III, and an ICD was placed in order to reduce mortality from ventricular arrhythmias. MIBG myocardial scintigraphy might be a promising method for evaluating left ventricular recovery in post-MI patients. PMID:26664773

  7. Three-dimensional quantification of myocardial perfusion during regadenoson stress computed tomography.

    PubMed

    Mor-Avi, Victor; Kachenoura, Nadjia; Maffessanti, Francesco; Bhave, Nicole M; Port, Steven; Lodato, Joseph A; Chandra, Sonal; Freed, Benjamin H; Lang, Roberto M; Patel, Amit R

    2016-05-01

    There is no accepted methodology for CT-based vasodilator stress myocardial perfusion imaging and analysis. We developed a technique for quantitative 3D analysis of CT images, which provides several indices of myocardial perfusion. We sought to determine the ability of these indices during vasodilator stress to identify segments supplied by coronary arteries with obstructive disease and to test the accuracy of the detection of perfusion abnormalities against SPECT. We studied 93 patients referred for CT coronary angiography (CTCA) who underwent regadenoson stress. 3D analysis of stress CT images yielded segmental perfusion indices: mean X-ray attenuation, severity of defect and relative defect volume. Each index was averaged for myocardial segments, grouped by severity of stenosis: 0%, <50%, 50-70%, and >70%. Objective detection of perfusion abnormalities was optimized in 47 patients and then independently tested in the remaining 46 patients. CTCA depicted normal coronary arteries or non-obstructive disease in 62 patients and stenosis of >50% in 31. With increasing stenosis, segmental attenuation showed a 7% decrease, defect severity increased 11%, but relative defect volume was 7-fold higher in segments with obstructive disease (p<0.001). In the test group, detection of perfusion abnormalities associated with stenosis >50% showed sensitivity 0.78, specificity 0.54, accuracy 0.59. When compared to SPECT in a subset of 21 patients (14 with abnormal SPECT), stress CT perfusion analysis showed sensitivity 0.79, specificity 0.71, accuracy 0.76. 3D analysis of vasodilator stress CT images provides quantitative indices of myocardial perfusion, of which relative defect volume was most robust in identifying segments supplied by arteries with obstructive disease. This study may have implications on how CT stress perfusion imaging is performed and analyzed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Myocardial CT perfusion for the prediction of obstructive coronary artery disease, valuable or not?

    PubMed Central

    van Rosendael, Alexander R.; de Graaf, Michiel A.

    2015-01-01

    Adenosine stress myocardial computed tomography perfusion (CTP) is a relatively new myocardial perfusion imaging technique. Together with coronary CT angiography (CTA) it provides anatomic and functional information of coronary artery disease (CAD). In previous studies, the combination of these techniques demonstrated to be valuable for identifying hemodynamically significant stenoses. George et al., performed a secondary analysis on the CORE320 study and compared the diagnostic performance of CTP to single positron emission computed tomography (SPECT) myocardial perfusion imaging (MPI) to diagnose obstructive CAD (defined as ≥50% luminal stenosis). In this editorial the results and limitations of the study are discussed, as well as opportunities that this new perfusion technique brings with it. PMID:25774350

  9. [The development and application in clinical programme of SPECT].

    PubMed

    Sun, Li-ming; Liu, Chen-bin

    2002-11-01

    On the base of original computer software of Elscint Apex 609 RG SPECT, two clinical application programmes are successfully designed for clinical engineers to explore and practise by using the CLIP (The Clinical Interpreter Programming) language.

  10. Performance evaluation of advanced industrial SPECT system with diverging collimator.

    PubMed

    Park, Jang Guen; Jung, Sung-Hee; Kim, Jong Bum; Moon, Jinho; Yeom, Yeon Soo; Kim, Chan Hyeong

    2014-12-01

    An advanced industrial SPECT system with 12-fold-array diverging collimator was developed for flow visualization in industrial reactors and was discussed in the previous study. The present paper describes performance evaluation of the SPECT system under both static- and dynamic- flow conditions. Under static conditions, the movement of radiotracer inside the test reactor was compared with that of color tracer (blue ink) captured with a high-speed camera. The comparison of the reconstructed images obtained with the radiotracer and the SPECT system showed fairly good agreement with video-frames of the color tracer obtained with the camera. Based on the results of the performance evaluation, it is concluded that the SPECT system is suitable for investigation and visualization of flows in industrial flow reactors.

  11. Initial Investigation of Preclinical Integrated SPECT and MR Imaging

    PubMed Central

    Hamamura, Mark J.; Ha, Seunghoon; Roeck, Werner W.; Wagenaar, Douglas J.; Meier, Dirk; Patt, Bradley E.; Nalcioglu, Orhan

    2014-01-01

    Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a specialized radiofrequency (RF) coil that was placed within a whole-body 4 T MRI system. The importance of proper corrections for non-uniform detector sensitivity and Lorentz force effects was demonstrated. MRI data were utilized for attenuation correction (AC) of the nuclear projection data and optimized Wiener filtering of the SPECT reconstruction for improved image accuracy. Finally, simultaneous dual-imaging of a nude mouse was performed to demonstrated the utility of co-registration for accurate localization of a radioactive source. PMID:20082527

  12. Sequential SPECT/CT imaging starting with stress SPECT in patients with left bundle branch block suspected for coronary artery disease.

    PubMed

    Engbers, Elsemiek M; Timmer, Jorik R; Mouden, Mohamed; Knollema, Siert; Jager, Pieter L; Ottervanger, Jan Paul

    2017-01-01

    To investigate the impact of left bundle branch block (LBBB) on sequential single photon emission computed tomography (SPECT)/ CT imaging starting with stress-first SPECT. Consecutive symptomatic low- to intermediate-risk patients without a history of coronary artery disease (CAD) referred for SPECT/CT were included from an observational registry. If stress SPECT was abnormal, additional rest SPECT and, if feasible, coronary CT angiography (CCTA) were acquired. Of the 5,018 patients, 218 (4.3 %) demonstrated LBBB. Patients with LBBB were slightly older than patients without LBBB (65±12 vs. 61±11 years, p<0.001). Stress SPECT was more frequently abnormal in patients with LBBB (82 % vs. 46 %, p<0.001). After reviewing stress and rest images, SPECT was normal in 43 % of the patients with LBBB, compared to 77 % of the patients without LBBB (p<0.001). Sixty-four of the 124 patients with LBBB and abnormal stress-rest SPECT underwent CCTA (52 %), which could exclude obstructive CAD in 46 of the patients (72 %). Sequential SPECT/CT imaging starting with stress SPECT is not the optimal imaging protocol in patients with LBBB, as the majority of these patients have potentially false-positive stress SPECT. First-line testing using CCTA may be more appropriate in low- to intermediate-risk patients with LBBB. • Stress-first SPECT imaging is attractive if many patients demonstrate normal stress perfusion. • The majority of left bundle branch block patients have abnormal stress-first SPECT. • Coronary CT excluded obstructive CAD in many LBBB patients with abnormal SPECT. • Stress-first SPECT imaging is not the optimal imaging protocol in LBBB patients. • In LBBB patients imaging with initial coronary CT may be more appropriate.

  13. Iterative restoration of SPECT projection images

    NASA Astrophysics Data System (ADS)

    Glick, S. J.; Xia, Weishi

    1997-04-01

    Photon attenuation and the limited nonstationary spatial resolution of the detector can reduce both qualitative and quantitative image quality in single photon emission computed tomography (SPECT). In this paper, a reconstruction approach is described which can compensate for both of these degradations. The approach involves processing the projection data with Bellini's method for attenuation compensation followed by an iterative deconvolution technique which uses the frequency distance principle (FDP) to model the distance-dependent camera blur. Modeling of the camera blur with the FDP allows an efficient implementation using fast Fourier transform (FFT) methods. After processing of the projection data, reconstruction is performed using filtered backprojection. Simulation studies using two different brain phantoms show that this approach gives reconstructions with a favorable bias versus noise tradeoff, provides no visually undesirable noise artifacts, and requires a low computational load.

  14. Cervical SPECT Camera for Parathyroid Imaging

    SciTech Connect

    None, None

    2012-08-31

    Primary hyperparathyroidism characterized by one or more enlarged parathyroid glands has become one of the most common endocrine diseases in the world affecting about 1 per 1000 in the United States. Standard treatment is highly invasive exploratory neck surgery called Parathyroidectomy. The surgery has a notable mortality rate because of the close proximity to vital structures. The move to minimally invasive parathyroidectomy is hampered by the lack of high resolution pre-surgical imaging techniques that can accurately localize the parathyroid with respect to surrounding structures. We propose to develop a dedicated ultra-high resolution (~ 1 mm) and high sensitivity (10x conventional camera) cervical scintigraphic imaging device. It will be based on a multiple pinhole-camera SPECT system comprising a novel solid state CZT detector that offers the required performance. The overall system will be configured to fit around the neck and comfortably image a patient.

  15. Motion detection and amelioration in a dedicated cardiac solid-state CZT SPECT device.

    PubMed

    Kennedy, John A; William Strauss, H

    2017-04-01

    A solid-state cadmium zinc tellurium (CZT) dedicated multipinhole cardiac camera which acquires all views simultaneously has been introduced for myocardial SPECT acquisition. We report a method to detect and ameliorate patient motion artifacts in myocardial perfusion imaging (MPI) studies recorded with this device. To detect motion, a myocardial phantom study was recorded, and at mid-scan, the phantom was moved stepwise along each of 6 orthogonal directions, causing MPI artifacts. Using QPS software (Cedars-Sinai) and an in-house normal database, displacements giving artifactual perfusion defects (total perfusion deficit score, TPD, >5 %) were all 1.5 cm or greater (11.2 ± 1.3 % for 1.5 cm). List mode data were reframed into 10-s steps, and the norm of the changes in center of mass among the 19 projections (32 × 32 matrix, pixel size 2.46 mm) was used as a motion index. Rejection of misregistered data gave artifact-free reconstructions (TPD = 1.0 ± 0.8 %) in phantom scans and reduced blur in a rest/stress clinical study. Blur on the patient's stress scan was consistent with increased motion compared to rest (motion index of 4.4 vs. 3.0 pixels, respectively). For CZT cameras that acquire data from multiple views simultaneously, motion during MPI can cause clinically significant artifacts. Reframing acquisitions into discrete time intervals enables the detection of motion and its amelioration, improving diagnostic accuracy.

  16. ACR testing of a dedicated head SPECT unit.

    PubMed

    Sensakovic, William F; Hough, Matthew C; Kimbley, Elizabeth A

    2014-07-08

    Physics testing necessary for program accreditation is rigorously defined by the ACR. This testing is easily applied to most conventional SPECT systems based on gamma camera technology. The inSPira HD is a dedicated head SPECT system based on a rotating dual clamshell design that acquires data in a dual-spiral geometry. The unique geometry and configuration force alterations of the standard ACR physics testing protocol. Various tests, such as intrinsic planar uniformity and/or resolution, do not apply. The Data Spectrum Deluxe Phantom used for conventional SPECT testing cannot fit in the inSPira HD scanner bore, making (currently) unapproved use of the Small Deluxe SPECT Phantom necessary. Matrix size, collimator type, scanning time, reconstruction method, and attenuation correction were all varied from the typically prescribed ACR instructions. Visible spheres, sphere contrast, visible rod groups, uniformity, and root mean square (RMS) noise were measured. The acquired SPECT images surpassed the minimum ACR requirements for both spatial resolution (9.5 mm spheres resolved) and contrast (6.4 mm rod groups resolved). Sphere contrast was generally high. Integral uniformity was 4% and RMS noise was 1.7%. Noise appeared more correlated than in images from a conventional SPECT scanner. Attenuation-corrected images produced from direct CT scanning of the phantom and a manufacturer supplied model of the phantom demonstrated negligible differences.

  17. Review and current status of SPECT scatter correction

    NASA Astrophysics Data System (ADS)

    Hutton, Brian F.; Buvat, Irène; Beekman, Freek J.

    2011-07-01

    Detection of scattered gamma quanta degrades image contrast and quantitative accuracy of single-photon emission computed tomography (SPECT) imaging. This paper reviews methods to characterize and model scatter in SPECT and correct for its image degrading effects, both for clinical and small animal SPECT. Traditionally scatter correction methods were limited in accuracy, noise properties and/or generality and were not very widely applied. For small animal SPECT, these approximate methods of correction are often sufficient since the fraction of detected scattered photons is small. This contrasts with patient imaging where better accuracy can lead to significant improvement of image quality. As a result, over the last two decades, several new and improved scatter correction methods have been developed, although often at the cost of increased complexity and computation time. In concert with (i) the increasing number of energy windows on modern SPECT systems and (ii) excellent attenuation maps provided in SPECT/CT, some of these methods give new opportunities to remove degrading effects of scatter in both standard and complex situations and therefore are a gateway to highly quantitative single- and multi-tracer molecular imaging with improved noise properties. Widespread implementation of such scatter correction methods, however, still requires significant effort.

  18. Evidence of exercise-induced myocardial ischemia in patients with primary aldosteronism: the Cross-sectional Primary Aldosteronism and Heart Italian Multicenter Study.

    PubMed

    Napoli, C; Di Gregorio, F; Leccese, M; Abete, P; Ambrosio, G; Giusti, R; Casini, A; Ferrara, N; De Matteis, C; Sibilio, G; Donzelli, R; Montemarano, A; Mazzeo, C; Rengo, F; Mansi, L; Liguori, A

    1999-05-01

    Primary aldosteronism (PA) is a disease associated with hypersecretion of aldosterone caused by an aldosterone-producing adrenal adenoma, bilateral adrenal hyperplasia, and, although rarely, by adrenal carcinoma. Arterial hypertension induces several cardiovascular alterations that yield a high cardiovascular risk. It has been shown that reduced myocardial perfusion at rest, assessed by thallium-201 myocardial scintigraphy, was greater in PA than in essential hypertension (EH). However, it is still unknown whether reduced myocardial perfusion at rest and/or regional function abnormalities are present during exercise-induced myocardial stress. We addressed the impact of PA on myocardial ischemia and sought to identify signs of exercise-induced myocardial ischemia (assessed by MIBI-SPECT and echocardiography) in patients with PA compared to patients with EH. Patients with consistent signs of myocardial ischemia on all of the tests were studied by coronary arteriography. We studied 72 patients with PA and an age/sex-matched group of 72 patients with EH enrolled in the cross-sectional Primary Aldosteronism and Heart Italian Multicenter Study (PAHIMS). Regional function was detected from echocardiographic measurement of wall motion done at baseline and immediately after exercise. Myocardial perfusion was evaluated by SPECT imaging after injecting 99mTc-MIBI with the same-day protocol using the rest-stress sequence. Although the conditions of arterial pressure, duration of hypertension, and target organ damage were equivalent, the patients with PA had greater incidence of both reversible perfusion defects and abnormalities of regional function. Moreover, multiple regression analysis showed that the high plasma aldosterone level was highly predictive for SPECT ischemic score and wall motion index, suggesting that PA contributes to cardiovascular risk over and above that associated with ventricular hypertrophy. Exercise-induced myocardial ischemia in PA was not segmental

  19. Angina pectoris during daily activities and exercise stress testing: The role of inducible myocardial ischemia and psychological distress.

    PubMed

    Sullivan, Mark D; Ciechanowski, Paul S; Russo, Joan E; Spertus, John A; Soine, Laurie A; Jordan-Keith, Kier; Caldwell, James H

    2008-10-31

    Physicians often consider angina pectoris to be synonymous with myocardial ischemia. However, the relationship between angina and myocardial ischemia is highly variable and we have little insight into the sources of this variability. We investigated the relationship of inducible myocardial ischemia on SPECT stress perfusion imaging to angina reported with routine daily activities during the previous four weeks (N=788) and to angina reported during an exercise stress test (N=371) in individuals with confirmed or suspected coronary disease referred for clinical testing. We found that angina experienced during daily life is more strongly and consistently associated with psychological distress and the personal threat associated with angina than with inducible myocardial ischemia. In multivariable models, the presence of any angina during routine activities over the prior month was significantly associated with age, perceived risk of myocardial infarction, and anxiety when compared to those with no reported angina in the past month. Angina during daily life was not significantly associated with inducible myocardial ischemia on stress perfusion imaging in bivariate or multivariable models. In contrast, angina experienced during exercise stress testing was significantly related to image and ECG ischemia, though it was also significantly associated with anxiety. These results suggest that angina frequency over the previous four weeks is more strongly associated with personal threat and psychosocial distress than with inducible myocardial ischemia. These results lend support to angina treatment strategies that aim to reduce threat and distress as well as to reduce myocardial ischemia.

  20. Quantitatively accurate activity measurements with a dedicated cardiac SPECT camera: Physical phantom experiments

    SciTech Connect

    Pourmoghaddas, Amir Wells, R. Glenn

    2016-01-15

    Purpose: Recently, there has been increased interest in dedicated cardiac single photon emission computed tomography (SPECT) scanners with pinhole collimation and improved detector technology due to their improved count sensitivity and resolution over traditional parallel-hole cameras. With traditional cameras, energy-based approaches are often used in the clinic for scatter compensation because they are fast and easily implemented. Some of the cardiac cameras use cadmium-zinc-telluride (CZT) detectors which can complicate the use of energy-based scatter correction (SC) due to the low-energy tail—an increased number of unscattered photons detected with reduced energy. Modified energy-based scatter correction methods can be implemented, but their level of accuracy is unclear. In this study, the authors validated by physical phantom experiments the quantitative accuracy and reproducibility of easily implemented correction techniques applied to {sup 99m}Tc myocardial imaging with a CZT-detector-based gamma camera with multiple heads, each with a single-pinhole collimator. Methods: Activity in the cardiac compartment of an Anthropomorphic Torso phantom (Data Spectrum Corporation) was measured through 15 {sup 99m}Tc-SPECT acquisitions. The ratio of activity concentrations in organ compartments resembled a clinical {sup 99m}Tc-sestamibi scan and was kept consistent across all experiments (1.2:1 heart to liver and 1.5:1 heart to lung). Two background activity levels were considered: no activity (cold) and an activity concentration 1/10th of the heart (hot). A plastic “lesion” was placed inside of the septal wall of the myocardial insert to simulate the presence of a region without tracer uptake and contrast in this lesion was calculated for all images. The true net activity in each compartment was measured with a dose calibrator (CRC-25R, Capintec, Inc.). A 10 min SPECT image was acquired using a dedicated cardiac camera with CZT detectors (Discovery NM530c, GE

  1. Left ventricular energy model predicts adverse events in women with suspected myocardial ischemia: results from the NHLBI-sponsored women’s ischemia syndrome evaluation (WISE) study

    PubMed Central

    Weinberg, Nicole; Pohost, Gerald M.; Bairey Merz, C. Noel; Shaw, Leslee J.; Sopko, George; Fuisz, Anthon; Rogers, William J.; Walsh, Edward G.; Johnson, B. Delia; Sharaf, Barry L.; Pepine, Carl J.; Mankad, Sunil; Reis, Steven E.; Rayarao, Geetha; Vido, Diane A.; Bittner, Vera; Tauxe, Lindsey; Olson, Marian B.; Kelsey, Sheryl F.; Biederman, Robert WW

    2013-01-01

    Objectives To assess the prognostic value of a left ventricular energy-model in women with suspected myocardial ischemia. Background The prognostic value of internal energy utilization (IEU) of the left ventricle in women with suspected myocardial ischemia is unknown. Methods Women [n=227, mean age 59±12 years (range, 31-86 years)], with symptoms of myocardial ischemia, underwent myocardial perfusion imaging (MPI) assessment for regional perfusion defects along with measurement of ventricular volumes separately by gated Single Photon Emission Computed Tomography (SPECT) (n=207) and magnetic resonance imaging (MRI) (n=203). During follow-up (40±17 months), time to first major adverse cardiovascular event (MACE, death, myocardial infarction or hospitalization for congestive heart failure) was analyzed using MRI and gated SPECT variables. Results Adverse events occurred in 31 (14%). Multivariable Cox models were formed for each modality: IEU and wall thickness by MRI (Chi-squared 34, P<0.005) and IEU and systolic blood pressure by gated SEPCT (Chi-squared 34, P<0.005). The models remained predictive after adjustment for age, disease history and Framingham risk score. For each Cox model, patients were categorized as high-risk if the model hazard was positive and not high-risk otherwise. Kaplan-Meier analysis of time to MACE was performed for high-risk vs. not high-risk for MR (log rank 25.3, P<0.001) and gated SEPCT (log rank 18.2, P<0.001) models. Conclusions Among women with suspected myocardial ischemia a high internal energy utilization has higher prognostic value than either a low EF or the presence of a myocardial perfusion defect assessed using two independent modalities of MR or gated SPECT. PMID:24015377

  2. Comparison of sulfur hexafluoride microbubble (SonoVue)-enhanced myocardial contrast echocardiography with gated single-photon emission computed tomography for detection of significant coronary artery disease: a large European multicenter study.

    PubMed

    Senior, Roxy; Moreo, Antonella; Gaibazzi, Nicola; Agati, Luciano; Tiemann, Klaus; Shivalkar, Bharati; von Bardeleben, Stephan; Galiuto, Leonarda; Lardoux, Hervé; Trocino, Giuseppe; Carrió, Ignasi; Le Guludec, Dominique; Sambuceti, Gianmario; Becher, Harald; Colonna, Paolo; Ten Cate, Folkert; Bramucci, Ezio; Cohen, Ariel; Bezante, Gianpaolo; Aggeli, Costantina; Kasprzak, Jaroslaw D

    2013-10-08

    The purpose of this study was to compare sulfur hexafluoride microbubble (SonoVue)-enhanced myocardial contrast echocardiography (MCE) with single-photon emission computed tomography (SPECT) relative to coronary angiography (CA) for assessment of coronary artery disease (CAD). Small-scale studies have shown that myocardial perfusion assessed by SonoVue-enhanced MCE is a viable alternative to SPECT for CAD assessment. However, large multicenter studies are lacking. Patients referred for myocardial ischemia testing at 34 centers underwent rest/vasodilator SonoVue-enhanced flash-replenishment MCE, standard (99m)Tc-labeled electrocardiography-gated SPECT, and quantitative CA within 1 month. Myocardial ischemia assessments by 3 independent, blinded readers for MCE and 3 readers for SPECT were collapsed into 1 diagnosis per patient per technique and were compared to CA (reference standard) read by 1 independent blinded reader. Of 628 enrolled patients who received SonoVue (71% males; mean age: 64 years; >1 cardiovascular [CV] risk factor in 99% of patients) 516 patients underwent all 3 examinations, of whom 161 (31.2%) had ≥70% stenosis (131 had single-vessel disease [SVD]; 30 had multivessel disease), and 310 (60.1%) had ≥50% stenosis. Higher sensitivity was obtained with MCE than with SPECT (75.2% vs. 49.1%, respectively; p < 0.0001), although specificity was lower (52.4% vs. 80.6%, respectively; p < 0.0001) for ≥70% stenosis. Similar findings were obtained for patients with ≥50% stenosis. Sensitivity levels for detection of SVD and proximal disease for ≥70% stenosis were higher for MCE (72.5% vs. 42.7%, respectively; p < 0.0001; 80% vs. 58%, respectively; p = 0.005, respectively). SonoVue-enhanced MCE demonstrated superior sensitivity but lower specificity for detection of CAD compared to SPECT in a population with a high incidence of CV risk factors and intermediate-high prevalence of CAD. (A phase III study to compare SonoVue® enhanced myocardial

  3. The usefulness of combined brain perfusion single-photon emission computed tomography, Dopamine-transporter single-photon emission computed tomography, and (123) I-metaiodobenzylguanidine myocardial scintigraphy for the diagnosis of dementia with Lewy bodies.

    PubMed

    Kobayashi, Seiju; Makino, Kanae; Hatakeyama, Shigeki; Ishii, Takao; Tateno, Masaru; Iwamoto, Tomo; Tsujino, Hanako; Kawasaki, Kazuhito; Mikuni, Kouhei; Ukai, Wataru; Murayama, Tomonori; Hashimoto, Eri; Utsumi, Kumiko; Kawanishi, Chiaki

    2017-07-01

    Current diagnostic criteria recommend neuroimaging as a diagnostic support tool for the clinical diagnosis of dementia with Lewy bodies (DLB). Because DLB causes characteristic impairments and disabilities, such as neuroleptic hypersensitivity, which may significantly increase morbidity and mortality, its prompt and correct diagnosis is very important. The aim of this study was to evaluate the extent to which diagnostic accuracy can be increased by using different combinations of brain perfusion single-photon emission computed tomography (bp-SPECT), (123) I-metaiodobenzylguanidine myocardial scintigraphy (MIBG scintigraphy), and DAT-SPECT. Taking finances and patient burden into consideration, we compared the tests to determine priority. Thirty-four patients with probable DLB (75.0 ± 8.3 years old; 14 men, 20 women) underwent bp-SPECT, MIBG scintigraphy, and DAT-SPECT. Our comparison of three functional imaging techniques indicated that MIBG scintigraphy (79%) and Dopamine-transporter (DAT) SPECT (79%) had better sensitivity for characteristic abnormalities in DLB than bp-SPECT (53%). The combination of the three modalities could increase sensitivity for diagnosis of DLB to 100%. Additionally, the ratio of patients with rapid eye movement sleep behaviour disorder was significantly higher in the positive finding group on MIBG scintigraphy than in the negative finding group. In terms of stand-alone diagnostic means, priority should be placed on MIBG scintigraphy or DAT-SPECT for the diagnosis of DLB. However, our results suggest that the combination of bp-SPECT, MIBG scintigraphy, and DAT-SPECT increased the accuracy of the clinical diagnosis of DLB. © 2017 Japanese Psychogeriatric Society.

  4. Dynamic molecular imaging of cardiac innervation using a dual headpinhole SPECT system

    SciTech Connect

    Hu, Jicun; Boutchko, Rostyslav; Sitek, Arkadiusz; Reutter, BryanW.; Huesman, Ronald H.; Gullberg, Grant T.

    2008-03-29

    Typically 123I-MIBG is used for the study of innervation andfunction of the sympathetic nervous system in heart failure. The protocolinvolves two studies: first a planar or SPECT scan is performed tomeasure initial uptake of the tracer, followed some 3-4 hours later byanother study measuring the wash-out of the tracer from the heart. A fastwash-out is indicative of a compromised heart. In this work, a dual headpinhole SPECT system was used for imaging the distribution and kineticsof 123I-MIBG in the myocardium of spontaneous hypertensive rats (SHR) andnormotensive Wistar Kyoto (WKY) rats. The system geometry was calibratedbased on a nonlinear point projection fitting method using a three-pointsource phantom. The angle variation effect of the parameters was modeledwith a sinusoidal function. A dynamic acquisition was performed byinjecting 123I-MIBG into rats immediately after starting the dataacquisition. The detectors rotated continuously performing a 360o dataacquisition every 90 seconds. We applied the factor analysis (FA)methodand region of interest (ROI) sampling method to obtain time activitycurves (TACs)in the blood pool and myocardium and then appliedtwo-compartment modeling to estimate the kinetic parameters. Since theinitial injection bolus is too fast for obtaining a consistenttomographic data set in the first few minutes of the study, we appliedthe FA method directly to projections during the first rotation. Then thetime active curves for blood and myocardial tissue were obtained from ROIsampling. The method was applied to determine if there were differencesin the kinetics between SHR and WKY rats and requires less time byreplacing the delayed scan at 3-4 hours after injection with a dynamicacquisition over 90 to 120 minutes. The results of a faster washout and asmaller distribution volume of 123IMIBG near the end of life in the SHRmodel of hypertrophic cardiomyopthy may be indicative of a failing heartin late stages of heart failure.

  5. Prognostic value of stress-only and stress-rest normal gated SPECT imaging: higher incidence of cardiac hard events in diabetic patients who underwent full stress-rest imaging.

    PubMed

    Kaminek, Milan; Metelkova, Iva; Budikova, Miroslava; Henzlova, Lenka; Koranda, Pavel; Kincl, Vladimir; Drozdova, Adela

    2015-09-01

    The European procedural guidelines for cardiac gated SPECT imaging demonstrate considerable variability in recommended administered radiopharmaceutical activity and imaging protocols. This study compared stress-only and stress-rest protocols to evaluate the safety of stress-only imaging, and to identify characteristics of patients who need full stress-rest imaging. Patients referred for a chest pain were scheduled for stress-rest gated SPECT imaging. If the stress images were interpreted as normal according to the perfusion and left ventricular function, the examination of patients was finished and patients did not undergo the rest imaging. A total number of 1063 patients was included (mean age 61 ± 11 years). These patients have been followed for hard cardiac events, i.e. cardiac deaths or nonfatal myocardial infarction. During a follow-up of 3.2 ± 2.5 years, hard events occurred in 12 patients with normal SPECT and 59 with abnormal SPECT had hard events (0.7 vs. 3.6% /year, P < 0.001). Among the 536 patients with normal study, there was no significantly lower incidence of hard events in the subgroup of patients with stress-only imaging (0.6 vs. 0.8% /year, P = 0.641). Diabetes mellitus was an independent predictor of hard events in patients with normal SPECT (1.3 vs. 0.5%/year, P < 0.001). We found a higher incidence of hard events in diabetic patients with normal study with the necessity of full stress-rest imaging in comparison with those with stress-only imaging (1.7 vs. 0.7% /year, P < 0.001). Our results support the good prognosis of normal stress-only study. Diabetes mellitus was an independent predictor of hard events in patients with normal SPECT. Diabetic patients with normal results who required additional rest imaging had significant adverse outcome.

  6. Diagnostic role of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for early and atypical bone metastases.

    PubMed

    Chen, Xiao-Liang; Li, Qian; Cao, Lin; Jiang, Shi-Xi

    2014-01-01

    The bone metastasis appeared early before the bone imaging for most of the above patients. (99)Tc(m)-MDP ((99)Tc(m) marked methylene diphosphonate) bone imaging could diagnosis the bone metastasis with highly sensitivity, but with lower specificity. The aim of this study is to explore the diagnostic value of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for the early period atypical bone metastases. 15 to 30 mCi (99)Tc(m)-MDP was intravenously injected to the 34 malignant patients diagnosed as doubtful early bone metastases. SPECT, CT and SPECT/CT images were captured and analyzed consequently. For the patients diagnosed as early period atypical bone metastases by SPECT/CT, combining the SPECT/CT and MRI together as the SPECT/MRI integrated image. The obtained SPECT/MRI image was analyzed and compared with the pathogenic results of patients. The results indicated that 34 early period doubtful metastatic focus, including 34 SPECT positive focus, 17 focus without special changes by using CT method, 11 bone metastases focus by using SPECT/CT method, 23 doubtful bone metastases focus, 8 doubtful bone metastases focus, 14 doubtful bone metastases focus and 2 focus without clear image. Totally, SPECT/CT combined with SPECT/MRI method diagnosed 30 bone metastatic focus and 4 doubtfully metastatic focus. In conclusion, (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging shows a higher diagnostic value for the early period bone metastases, which also enhances the diagnostic accuracy rate.

  7. A Multimodal Imaging Protocol, (123)I/(99)Tc-Sestamibi, SPECT, and SPECT/CT, in Primary Hyperparathyroidism Adds Limited Benefit for Preoperative Localization.

    PubMed

    Lee, Grace S; McKenzie, Travis J; Mullan, Brian P; Farley, David R; Thompson, Geoffrey B; Richards, Melanie L

    2016-03-01

    Focused parathyroidectomy in primary hyperparathyroidism (1°HPT) is possible with accurate preoperative localization and intraoperative PTH monitoring (IOPTH). The added benefit of multimodal imaging techniques for operative success is unknown. Patients with 1°HPT, who underwent parathyroidectomy in 2012-2014 at a single institution, were retrospectively reviewed. Only the patients who underwent the standardized multimodal imaging workup consisting of (123)I/(99)Tc-sestamibi subtraction scintigraphy, SPECT, and SPECT/CT were assessed. Of 360 patients who were identified, a curative operation was performed in 96%, using pre-operative imaging and IOPTH. Imaging analysis showed that (123)I/(99)Tc-sestamibi had a sensitivity of 86% (95% CI 82-90%), positive predictive value (PPV) 93%, and accuracy 81%, based on correct lateralization. SPECT had a sensitivity of 77% (95% CI 72-82%), PPV 92% and accuracy 72%. SPECT/CT had a sensitivity of 75% (95% CI 70-80%), PPV of 94%, and accuracy 71%. There were 3 of 45 (7%) patients with negative sestamibi imaging that had an accurate SPECT and SPECT/CT. Of 312 patients (87%) with positive uptake on sestamibi (93% true positive, 7% false positive), concordant findings were present in 86% SPECT and 84% SPECT/CT. In cases where imaging modalities were discordant, but at least one method was true-positive, (123)I/(99)Tc-sestamibi was significantly better than both SPECT and SPECT/CT (p < 0.001). The inclusion of SPECT and SPECT/CT in 1°HPT imaging protocol increases patient cost up to 2.4-fold. (123)I/(99)Tc-sestamibi subtraction imaging is highly sensitive for preoperative localization in 1°HPT. SPECT and SPECT/CT are commonly concordant with (123)I/(99)Tc-sestamibi and rarely increase the sensitivity. Routine inclusion of multimodality imaging technique adds minimal clinical benefit but increases cost to patient in high-volume setting.

  8. Story of Rubidium-82 and Advantages for Myocardial Perfusion PET Imaging.

    PubMed

    Chatal, Jean-François; Rouzet, François; Haddad, Ferid; Bourdeau, Cécile; Mathieu, Cédric; Le Guludec, Dominique

    2015-01-01

    Rubidium-82 has a long story, starting in 1954. After preclinical studies in dogs showing that myocardial uptake of this radionuclide was directly proportional to myocardial blood flow (MBF), clinical studies were performed in the 80s leading to an approval in the USA in 1989. From that time, thousands of patients have been tested and their results have been reported in three meta-analyses. Pooled patient-based sensitivity and specificity were, respectively, 0.91 and 0.90. By comparison with (99m)Tc-SPECT, (82)Rb PET had a much better diagnostic accuracy, especially in obese patients with body mass index ≥30 kg/m(2) (85 versus 67% with SPECT) and in women with large breasts. A great advantage of (82)Rb PET is its capacity to accurately quantify MBF. Quite importantly, it has been recently shown that coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity. Moreover, coronary flow reserve is a functional parameter particularly useful in the estimate of microvascular dysfunction, such as in diabetes mellitus. Due to the very short half-life of rubidium-82, the effective dose calculated for a rest/stress test is roughly equivalent to the annual natural exposure and even less when stress-only is performed with a low activity compatible with a good image quality with the last generation 3D PET scanners. There is still some debate on the relative advantages of (82)Rb PET with regard to (99m)Tc-SPECT. For the last 10 years, great technological advances substantially improved performances of SPECT with its accuracy getting closer to this of (82)Rb/PET. Currently, the main advantages of PET are its capacity to accurately quantify MBF and to deliver a low radiation exposure.

  9. Story of Rubidium-82 and Advantages for Myocardial Perfusion PET Imaging

    PubMed Central

    Chatal, Jean-François; Rouzet, François; Haddad, Ferid; Bourdeau, Cécile; Mathieu, Cédric; Le Guludec, Dominique

    2015-01-01

    Rubidium-82 has a long story, starting in 1954. After preclinical studies in dogs showing that myocardial uptake of this radionuclide was directly proportional to myocardial blood flow (MBF), clinical studies were performed in the 80s leading to an approval in the USA in 1989. From that time, thousands of patients have been tested and their results have been reported in three meta-analyses. Pooled patient-based sensitivity and specificity were, respectively, 0.91 and 0.90. By comparison with 99mTc-SPECT, 82Rb PET had a much better diagnostic accura