Science.gov

Sample records for 9c borehole seismic

  1. Borehole seismic modeling

    NASA Astrophysics Data System (ADS)

    Zhen, Tao

    In many borehole seismic experiments, the velocity of the tube wave is higher than that of the surrounding rock shear wave. This fast tube wave creates a strong conical shear wave in the surrounding rock, similar to the Mach wave in supersonic aviation and the Cherenkov radiation in electrodynamics. Many geophysicists have tried to utilize the conical signal in VSP (vertical seismic profiling) and cross borehole data interpretation, using quasi static approximations to model the borehole effect. Two popular quasi static approximations are: the effective source array method for source borehole modeling and the squeeze strain method for receiver borehole modeling. These quasi static approximations are sensible as they qualitatively conform to Hueygen's principle and the typical wavelength of a VSP or a cross borehole seismic experiment is much larger than the borehole radius. However, they have not been quantitatively benchmarked against other non approximation method such as the frequency wave number method. The frequency wave number method is a rigorous, non approximation method for modeling straight boreholes without lengthwise variation. The boreholes may consist of many coaxial, homogeneous and axially symmetric shells. In this thesis, the results of the quasi static approximations are compared to the results obtained from the frequency wave number method. The comparison demonstrates that both the effective source array method and squeeze strain method gives the correct arrival time. The effective source array method gives incorrect amplitude and waveform for direct arrivals and tube waves due to its arbitrary assumption of the elementary source radiation pattern. The squeeze strain method gives fairly accurate amplitude and waveform for P and S direct arrivals but it fails to match the tube wave results obtained from the frequency wave number method. The omission of tube wave dispersion and amplitude loss by the quasi static approximation methods also

  2. 3D, 9-C anisotropic seismic modeling and inversion

    NASA Astrophysics Data System (ADS)

    Rusmanugroho, Herurisa

    The most complete representation of an elastic medium consists of an elastic tensor with 21 independent moduli. All 21 can be estimated from compressional and shear wave polarization and slowness vectors corresponding to wide apertures of polar and azimuth angles. In isotropic media, when seismic source and receiver components have the same orientation (such as XX and YY), the reflection amplitude contours align approximately perpendicular to the particle motions. The mixed components (such as XY and YX) have amplitude patterns that are in symmetrical pairs of either the same, or of opposite, polarity on either side of the diagonal of the 9-C response matrix. In anisotropic media, amplitude variations with azimuth show the same basic patterns and symmetries as for isotropic, but with a superimposed tendency for alignment parallel to the strike of the vertical cracks. Solutions for elastic tensor elements from synthetic slowness and polarization data calculated directly from the Christoffel equation are more sensitive to the polar angle aperture than to the azimuth aperture. Nine-component synthetic elastic vertical seismic profile data for a model with triclinic symmetry calculated by finite-differencing allows estimation of the elastic 21 tensor elements in the vicinity of a three-component borehole receiver. Wide polar angle and azimuth apertures are needed for accurately estimating the elastic tensor elements. The tensor elements become less independent as the data apertures decrease. Results obtained by extracting slowness and polarization data from the corresponding synthetic seismograms show similar results. The inversion algorithm has produced good results from field vertical seismic profile data set from the Weyburn Field in Southern Saskatchewan in Canada. Synthetic nine-component seismograms calculated from the extracted tensor are able to explain most of the significant features in the field data. The inverted stiffness elastic tensor shows orthorhombic

  3. Piezotube borehole seismic source

    SciTech Connect

    Daley, Tom M; Solbau, Ray D; Majer, Ernest L

    2014-05-06

    A piezoelectric borehole source capable of permanent or semipermanent insertion into a well for uninterrupted well operations is described. The source itself comprises a series of piezoelectric rings mounted to an insulative mandrel internally sized to fit over a section of well tubing, the rings encased in a protective housing and electrically connected to a power source. Providing an AC voltage to the rings will cause expansion and contraction sufficient to create a sonic pulse. The piezoelectric borehole source fits into a standard well, and allows for uninterrupted pass-through of production tubing, and other tubing and electrical cables. Testing using the source may be done at any time, even concurrent with well operations, during standard production.

  4. Advanced motor driven clamped borehole seismic receiver

    DOEpatents

    Engler, Bruce P.; Sleefe, Gerard E.; Striker, Richard P.

    1993-01-01

    A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  5. Advanced motor driven clamped borehole seismic receiver

    DOEpatents

    Engler, B.P.; Sleefe, G.E.; Striker, R.P.

    1993-02-23

    A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  6. Borehole Summary Report for Core Hole C4998 – Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect

    Barnett, D. BRENT; Garcia, Benjamin J.

    2006-12-15

    Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.

  7. Development of a hydraulic borehole seismic source

    SciTech Connect

    Cutler, R.P.

    1998-04-01

    This report describes a 5 year, $10 million Sandia/Industry project to develop an advanced borehole seismic source for use in oil and gas exploration and production. The development Team included Sandia, Chevron, Amoco, Conoco, Exxon, Raytheon, Pelton, and GRI. The seismic source that was developed is a vertically oriented, axial point force, swept frequency, clamped, reaction-mass vibrator design. It was based on an early Chevron prototype, but the new tool incorporates a number of improvements which make it far superior to the original prototype. The system consists of surface control electronics, a special heavy duty fiber optic wireline and draw works, a cablehead, hydraulic motor/pump module, electronics module, clamp, and axial vibrator module. The tool has a peak output of 7,000 lbs force and a useful frequency range of 5 to 800 Hz. It can operate in fluid filled wells with 5.5-inch or larger casing to depths of 20,000 ft and operating temperatures of 170 C. The tool includes fiber optic telemetry, force and phase control, provisions to add seismic receiver arrays below the source for single well imaging, and provisions for adding other vibrator modules to the tool in the future. The project yielded four important deliverables: a complete advanced borehole seismic source system with all associated field equipment; field demonstration surveys funded by industry showing the utility of the system; industrial sources for all of the hardware; and a new service company set up by their industrial partner to provide commercial surveys.

  8. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P Paulsson

    2002-05-01

    Borehole seismology is the highest resolution geophysical imaging technique available to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This proposal takes direct aim at this shortcoming. P/GSI is developing a 400 level 3C clamped downhole seismic receiver array for borehole seismic 3D imaging. This array will remove the acquisition barrier to record the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. By using 3C surface seismic or borehole seismic sources the 400 level receiver array will furthermore facilitate 9C reservoir imaging. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

  9. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P. Paulsson

    2002-09-01

    Borehole seismology is the highest resolution geophysical imaging technique available to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This proposal takes direct aim at this shortcoming. P/GSI is developing a 400 level 3C clamped downhole seismic receiver array for borehole seismic 3D imaging. This array will remove the acquisition barrier to record the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore facilitate 9C reservoir imaging. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

  10. The Plate Boundary Observatory Borehole Seismic Network

    NASA Astrophysics Data System (ADS)

    Hasting, M.; Eakins, J.; Anderson, G.; Hodgkinson, K.; Johnson, W.; Mencin, D.; Smith, S.; Jackson, M.; Prescott, W.

    2006-12-01

    As part of the NSF-funded EarthScope Plate Boundary Observatory, UNAVCO will install and operate 103 borehole seismic stations throughout the western United States. These stations continuously record three- component seismic data at 100 samples per second, using Geo-Space HS-1-LT 2-HZ geophones in a sonde developed by SONDI and Consultants (Duke University). Each seismic package is connected to an uphole Quanterra Q330 data logger and Marmot external buffer, from which UNAVCO retrieves data in real time. UNAVCO uses the Antelope software suite from Boulder Real-Time Technologies (BRTT) for all data collection and transfer, metadata generation and distribution, and monitoring of the network. The first stations were installed in summer 2005, with 19 stations installed by September 2006, and a total of 28 stations expected by December 2006. In a prime example of cooperation between the PBO and USArray components of EarthScope, the USArray Array Network Facility (ANF), operated by UC San Diego, handled data flow and network monitoring for the PBO seismic stations in the initial stages of network operations. We thank the ANF staff for their gracious assistance over the last several months. Data flow in real time from the remote stations to the UNAVCO Boulder Network Operations Center, from which UNAVCO provides station command and control; verification and distribution of metadata; and basic quality control for all data. From Boulder, data flow in real time to the IRIS DMC for final quality checks, archiving, and distribution. Historic data are available from June 2005 to the present, and are updated in real time with typical latencies of less than ten seconds. As of 1 September 2006, the PBO seismic network had returned 60 GB of raw data. Please visit http://pboweb.unavco.org for additional information on the PBO seismic network.

  11. Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4993

    SciTech Connect

    Rust, Colleen F.; Barnett, D. BRENT; Bowles, Nathan A.; Horner, Jake A.

    2007-02-28

    A core hole (C4998) and three boreholes (C4993, C4996, and C4997) were drilled to acquire stratigraphic and downhole seismic data to model potential seismic impacts and to refine design specifications and seismic criteria for the Waste Treatment Plant (WTP) under construction on the Hanford Site. Borehole C4993 was completed through the Saddle Mountains Basalt, the upper portion of the Wanapum Basalt, and associated sedimentary interbeds, to provide a continuous record of the rock penetrated by all four holes and to provide access to the subsurface for geophysical measure¬ment. Presented and compiled in this report are field-generated records for the deep mud rotary borehole C4993 at the WTP site. Material for C4993 includes borehole logs, lithologic summary, and record of rock chip samples collected during drilling through the months of August through early October. The borehole summary report also includes documentation of the mud rotary drilling, borehole logging, and sample collection.

  12. Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4996

    SciTech Connect

    Adams , S. C.; Ahlquist, Stephen T.; Fetters, Jeffree R.; Garcia, Ben; Rust, Colleen F.

    2007-01-28

    This report presents the field-generated borehole log, lithologic summary, and the record of samples collected during the recent drilling and sampling of the basalt interval of borehole C4996 at the Waste Treatment Plant (WTP) on the Hanford Site. Borehole C4996 was one of four exploratory borings, one core hole and three boreholes, drilled to investigate and acquire detailed stratigraphic and down-hole seismic data. This data will be used to define potential seismic impacts and refine design specifications for the Hanford Site WTP.

  13. Development of a magnetostrictive borehole seismic source

    SciTech Connect

    Cutler, R.P.; Sleefe, G.E.; Keefe, R.G.

    1997-04-01

    A magnetostrictive borehole seismic source was developed for use in high resolution crosswell surveys in environmental applications. The source is a clamped, vertical-shear, swept frequency, reaction-mass shaker design consisting of a spring pre-loaded magnetostrictive rod with permanent magnet bias, drive coils to induce an alternating magnetic field, and an integral tungsten reaction mass. The actuator was tested extensively in the laboratory. It was then incorporated into an easily deployable clamped downhole tool capable of operating on a standard 7 conductor wireline in borehole environments to 10,000{degrees} deep and 100{degrees}C. It can be used in either PVC or steel cased wells and the wells can be dry or fluid filled. It has a usable frequency spectrum of {approx} 150 to 2000 Hz. The finished tool was successfully demonstrated in a crosswell test at a shallow environmental site at Hanford, Washington. The source transmitted signals with a S/N ratio of 10-15 dB from 150-720 Hz between wells spaced 239 feet apart in unconsolidated gravel. The source was also tested successfully in rock at an oil field test site, transmitting signals with a S/N ratio of 5-15 dB over the full sweep spectrum from 150-2000 Hz between wells spaced 282 feet apart. And it was used successfully on an 11,000{degrees} wireline at a depth of 4550{degrees}. Recommendations for follow-on work include improvements to the clamp, incorporation of a higher sample rate force feedback controller, and increases in the force output of the tool.

  14. Three-component borehole wall-locking seismic detector

    DOEpatents

    Owen, Thomas E.

    1994-01-01

    A seismic detector for boreholes is described that has an accelerometer sensor block for sensing vibrations in geologic formations of the earth. The density of the seismic detector is approximately matched to the density of the formations in which the detector is utilized. A simple compass is used to orient the seismic detector. A large surface area shoe having a radius approximately equal to the radius of the borehole in which the seismic detector is located may be pushed against the side of the borehole by actuating cylinders contained in the seismic detector. Hydraulic drive of the cylinders is provided external to the detector. By using the large surface area wall-locking shoe, force holding the seismic detector in place is distributed over a larger area of the borehole wall thereby eliminating concentrated stresses. Borehole wall-locking forces up to ten times the weight of the seismic detector can be applied thereby ensuring maximum detection frequency response up to 2,000 hertz using accelerometer sensors in a triaxial array within the seismic detector.

  15. Reversible rigid coupling apparatus and method for borehole seismic transducers

    SciTech Connect

    Owen, T.E.; Parra, J.O.

    1992-01-14

    This patent describes a seismic detector for high resolution reverse vertical seismic profile measurements when placed in a shallow borehole in a geological formation of interest that contains a seismic source and connected to a seismograph. It comprises a framework; accelerometer sensors for X, Y, and Z axis, means for electrically connecting the accelerometers to the seismograph to record seismic waves received by the accelerometer sensors form the seismic source; heating elements secured to, but electrically insulated from, the framework; power means for supplying power to the heating elements; and meltable substance encapsulating the seismic detector.

  16. Methods for use in detecting seismic waves in a borehole

    DOEpatents

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2007-02-20

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  17. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P. Paulsson

    2004-12-31

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of

  18. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P. Paulsson

    2005-03-31

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of

  19. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P. Paulsson

    2004-06-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the

  20. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P. Paulsson

    2002-12-01

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the

  1. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P. Paulsson

    2004-05-31

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the

  2. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P Paulsson

    2003-09-01

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the

  3. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS.

    SciTech Connect

    Bjorn N.P Paulsson

    2003-01-01

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the

  4. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P. Paulsson

    2004-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of

  5. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P. Paulsson

    2003-12-01

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the

  6. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P Paulsson

    2003-07-01

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the

  7. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P. Paulsson

    2004-05-01

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the

  8. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect

    Bjorn N.P. Paulsson

    2005-08-21

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of

  9. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect

    Bjorn N. P. Paulsson

    2005-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of

  10. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect

    Bjorn N.P Paulsson

    2006-05-05

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of

  11. Entry Boreholes Summary Report for the Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect

    Horner, Jake A.

    2007-02-28

    This report describes the 2006 fiscal year field activities associated with the installation of four cable-tool-drilled boreholes located within the boundary of the Waste Treatment Plant (WTP), DOE Hanford site, Washington. The cable-tool-drilled boreholes extend from surface to ~20 ft below the top of basalt and were utilized as cased entry holes for three deep boreholes (approximately 1400 ft) that were drilled to support the acquisition of sub-surface geophysical data, and one deep corehole (1400 ft) that was drilled to acquire continuous core samples from underlying basalt and sedimentary interbeds. The geophysical data acquired from these boreholes will be integrated into a seismic response model that will provide the basis for defining the seismic design criteria for the WTP facilities.

  12. Evaluation of borehole electromagnetic and seismic detection of fractures

    SciTech Connect

    Chang, H.T.; Suhler, S.A.; Owen, T.E.

    1984-02-01

    Experiments were conducted to establish the feasibility of downhole high-frequency techniques for location of fractures in the vicinity of boreholes. An existing flame-cut slot in granite was filled with salt water to simulate a brine-filled fracture. The first method used an electromagnetic wave at 30 to 300 MHz, vhf frequencies. A transmitter consisting of a phased dual-dipole array arranged to provide a directional signal toward the fracture was installed in a borehole opposite the fracture. A receiver was also located in the same borehole. The radar returns from the simulated fracture were detectable in boreholes located at distances of up to 12 meters from the fracture. These results indicate for the first time the feasibility of a downhole vhf radar for use in a single borehole for detection of fractures located away from the borehole. Similar experiments were also conducted using seismic waves at 4.5 to 6 KHz. The transmitter and the receiver in this case were located in separate boreholes. During this experiment, reflections from the slot were obtained only with the transducers oriented for shear wave illumination and detection. These results suggest that a high-frequency shear wave can also be used to detect fractures away from a borehole.

  13. Borehole Summary Report for C4997 Rotary Drilling, WTP Seismic Boreholes Project, CY 2006

    SciTech Connect

    Difebbo, Thomas J.

    2007-02-28

    The following Final Geologic Borehole Report briefly describes the drilling of a single borehole at the Waste Treatment Plant (WTP) on the Hanford, Washington, U.S. Department of Energy (DOE) reservation. The location of the WTP is illustrated in Figure 1-1. The borehole was designated as “C4997”, and was drilled to obtain seismic and lithologic data for the Pretreatment Facility and High-Level Waste Vitrification Plant in the WTP. Borehole C4997 was drilled and logged to a total depth of 1428 ft below ground surface (bgs) on October 8, 2006, and was located approximately 150 ft from a recently cored borehole, designated as “C4998”. Pacific Northwest National Laboratory (PNNL) determined the locations for C4997, C4998, and other boreholes at the WTP in cooperation with the U.S. Army Corps of Engineers (USACE) Review Panel, and the Defense Nuclear Facilities Safety Board (DNFSB). The total depth of Borehole C4997 was also determined by PNNL.

  14. Optical instruments for a combined seismic and geodetic borehole observatory

    NASA Astrophysics Data System (ADS)

    Zumberge, Mark; Agnew, Duncan; Berger, Jonathan; Hatfield, William; Wyatt, Frank

    2016-04-01

    Optical interferometry offers displacement sensing with the unusual combination of high sensitivity, linearity, and wide dynamic range, and it can be adapted to high temperature environments. We have applied interferometric technology to inertial seismic instruments and to optical fibers for strain measurements. When combining these methods into a single borehole package the result is a system that provides three components of observatory quality seismic recordings, two components of tilt, gravity, and vertical strain. The borehole package is entirely passive with the need for only optical fibers to connect the sensor sonde with surface electronics. One of the sensors in the system is an optical fiber strainmeter, which consists of an optical fiber cable elastically stretched between two borehole anchor points separated by 100 m or more. The fiber's length is recorded optically, enabling sub-nanostrain detection of crustal deformations. A second sensor system uses laser interferometry to record the displacements of inertial mechanical suspensions - spring-mass for the vertical component and pendulums for the horizontal components - housed in a borehole sonde. The combined system is able to measure vertical and horizontal ground velocities, gravity, and tilt with sensitivities that compare favorably with any existing borehole system over time scales from 10 Hz to many days; because the downhole components are entirely passive, the instrument will have a long lifetime and could be made usable at high downhole temperatures. The simplicity and longevity of the metal and glass borehole sonde make it suitable for permanent cementation into a borehole to achieve good coupling and stability. Several versions of the borehole inertial system have been deployed on land with excellent results, and a number of our optical fiber strainmeters have been deployed - both onshore and offshore. The combined system is currently under development.

  15. Third Party Borehole Seismic Experiments During the Ocean Drilling Program

    NASA Astrophysics Data System (ADS)

    Swift, S. A.; Stephen, R. A.; Hoskins, H.; Bolmer, T.

    2003-12-01

    Third party borehole seismic experiments on the Ocean Drilling Program began with an oblique seismic experiment on Leg 102 at Site 418 in the Western Atlantic. Upper ocean crust here is characterized by a normal seismic layer 2 vertical velocity gradient, lateral velocity variations, azimuthal anisotropy, and azimuth dependent scattering. A normal incidence VSP was run on Leg 118 in the gabbro sequence at Hole 735B on the Southwest Indian Ridge. The vertical seismic velocity inferred from arrival times is similar to that observed horizontally by refraction in ocean layer 3, but attenuation is anomalously high, which prompted the hypothesis that the gabbro cored may not actually represent the bulk of Layer 3 material. The VSP data acquired at Hole 504B in the eastern equatorial Pacific on Legs 111 and 148 helped to constrain the P and S velocity structure at the site and showed that upper layer 3 at this site, at a depth of over 2 km into the crust, consisted of the lower portion of the sheeted dikes rather than gabbro. Both offset and normal incidence VSPs were run on Leg 164 to study the seismic velocity structure of gas hydrates on the Blake Ridge. A new innovation on ODP was the deployment of broadband seismometers in boreholes. Whereas the conventional VSPs and offset VSPs mentioned above operate in the frequency range from 1 to 100Hz, broadband seismometers are used in earthquake seismology and operate in the range from 0.001 to 10Hz. The first broadband seismometer test was carried out from the drill ship on Leg 128 in the Japan Sea. Subsequently 4 permanent broadband borehole seismic observatories were installed in the Western Pacific and Japan Trench on Legs 186, 191 and 195. The ODP era also saw the development of systems for re-entering boreholes from conventional research vessels after the drill ship left the site. Borehole seismic experiments and installations that used this wireline re-entry technology were carried out in DSDP Holes 534 (Blake

  16. Borehole prototype for seismic high-resolution exploration

    NASA Astrophysics Data System (ADS)

    Giese, Rüdiger; Jaksch, Katrin; Krauß, Felix; Krüger, Kay; Groh, Marco; Jurczyk, Andreas

    2014-05-01

    Target reservoirs for the exploitation of hydrocarbons or hot water for geothermal energy supply can comprise small layered structures, for instance thin layers or faults. The resolution of 2D and 3D surface seismic methods is often not sufficient to determine and locate these structures. Borehole seismic methods like vertical seismic profiling (VSP) and seismic while drilling (SWD) use either receivers or sources within the borehole. Thus, the distance to the target horizon is reduced and higher resolution images of the geological structures can be achieved. Even these methods are limited in their resolution capabilities with increasing target depth. To localize structures more accuracy methods with higher resolution in the range of meters are necessary. The project SPWD -- Seismic Prediction While Drilling aims at s the development of a borehole prototype which combines seismic sources and receivers in one device to improve the seismic resolution. Within SPWD such a prototype has been designed, manufactured and tested. The SPWD-wireline prototype is divided into three main parts. The upper section comprises the electronic unit. The middle section includes the upper receiver, the upper clamping unit as well as the source unit and the lower clamping unit. The lower section consists of the lower receiver unit and the hydraulic unit. The total length of the prototype is nearly seven meters and its weight is about 750 kg. For focusing the seismic waves in predefined directions of the borehole axis the method of phased array is used. The source unit is equipped with four magnetostrictive vibrators. Each can be controlled independently to get a common wave front in the desired direction of exploration. Source signal frequencies up to 5000 Hz are used, which allows resolutions up to one meter. In May and September 2013 field tests with the SPWD-wireline prototype have been carried out at the KTB Deep Crustal Lab in Windischeschenbach (Bavaria). The aim was to proof the

  17. Phase Identification of Seismic Borehole Samples

    SciTech Connect

    Crum, Jarrod V.; Riley, Brian J.

    2006-11-01

    This report documents the phase identification results obtained by x-ray diffraction (XRD) analysis of samples taken from borehole C4998 drilled at the Waste Treatment Plant (WTP) on the Hanford Site (REF). XRD samples were taken from fractures and vesicles or are minerals of interest at areas of interest within the basalt formations cored. The samples were powder mounted and analyzed. Search-match software was used to select the best match from the ICDD mineral database based on peak locations and intensities.

  18. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect

    Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

    2007-02-28

    In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the

  19. Borehole Measurements of Interfacial and Co-seismic Seismoelectric Effects

    NASA Astrophysics Data System (ADS)

    Butler, K. E.; Dupuis, J. C.; Kepic, A. W.; Harris, B. D.

    2006-12-01

    We have recently carried out a series of seismoelectric field experiments employing various hammer seismic sources on surface and a multi-electrode `eel' lowered into slotted PVC-cased boreholes penetrating porous sediments. Deploying grounded dipole receivers in boreholes has a number of advantages over surface-based measurements. Ambient noise levels are reduced because earth currents from power lines and other sources tend to flow horizontally, especially near the surface. The earth also provides natural shielding from higher frequency spherics and radio frequency interference while the water-filled borehole significantly decreases the electrode contact impedance which in turn reduces Johnson noise and increases resilience to capacitively- coupled noise sources. From a phenomenological point of view, the potential for measuring seismoelectric conversions from various geological or pore fluid contacts at depth can be assessed by lowering antennas directly through those interfaces. Furthermore, co-seismic seismoelectric signals that are normally considered to be noise in surface measurements are of interest for well logging in the borehole environment. At Fredericton, Canada, broadband co-seismic effects, having a dominant frequency of 350-400 Hz were measured at quarter meter intervals in a borehole penetrating glacial sediments including tills, sands, and a silt/clay aquitard. Observed signal strengths of a few microvolts/m were found to be consistent with the predictions of a simplified theoretical model for the co-seismic effect expected to accompany the regular `fast' P-wave. In Australia we have carried out similar vertical profiling experiments in hydrogeological monitoring boreholes that pass through predominantly sandy sediments containing fresh to saline water near Ayr, QLD and Perth, WA. While co-seismic effects are generally seen to accompany P-wave and other seismic arrivals, the most interesting result has been the observation, at three sites, of

  20. Reversible rigid coupling apparatus and method for borehole seismic transducers

    DOEpatents

    Owen, Thomas E.; Parra, Jorge O.

    1992-01-01

    An apparatus and method of high resolution reverse vertical seismic profile (VSP) measurements is shown. By encapsulating the seismic detector and heaters in a meltable substance (such as wax), the seismic detector can be removably secured in a borehole in a manner capable of measuring high resolution signals in the 100 to 1000 hertz range and higher. The meltable substance is selected to match the overall density of the detector package with the underground formation, yet still have relatively low melting point and rigid enough to transmit vibrations to accelerometers in the seismic detector. To minimize voids in the meltable substance upon solidification, the meltable substance is selected for minimum shrinkage, yet still having the other desirable characteristics. Heaters are arranged in the meltable substance in such a manner to allow the lowermost portion of the meltable substance to cool and solidify first. Solidification continues upwards from bottom-to-top until the top of the meltable substance is solidified and the seismic detector is ready for use. To remove, the heaters melt the meltable substance and the detector package is pulled from the borehole.

  1. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect

    Bjorn N. P. Paulsson

    2006-09-30

    level receiver array can be used to obtain 3D 9C data. These 9C borehole seismic data provide both compressional wave and shear wave information that can be used for quantitative prediction of rock and pore fluid types. The 400-level borehole receiver array has been deployed successfully in a number of oil and gas wells during the course of this project, and each survey has resulted in marked improvements in imaging of geologic features that are critical for oil or gas production but were previously considered to be below the limits of seismic resolution. This added level of reservoir detail has resulted in improved well placement in the oil and gas fields that have been drilled using the Massive 3D VSP{reg_sign} images. In the future, the 400-level downhole seismic receiver array is expected to continue to improve reservoir characterization and drilling success in deep and complex oil and gas reservoirs.

  2. A combined surface and borehole seismic survey at the COSC-1 borehole

    NASA Astrophysics Data System (ADS)

    Simon, Helge; Krauß, Felix; Hedin, Peter; Buske, Stefan; Giese, Rüdiger; Juhlin, Christopher

    2015-04-01

    The ICDP project COSC (Collisional Orogeny in the Scandinavian Caledonides) focuses on the mid Paleozoic Caledonide Orogen in Scandinavia in order to better understand orogenic processes, from the past and in recent active mountain belts. The Scandinavian Caledonides provide a well preserved example of a Paleozoic continent-continent collision. Surface geology in combination with geophysical data provide control of the geometry of the Caledonian structure, including the allochthon and the underlying autochthon, as well as the shallow W-dipping décollement surface that separates the two and consist of a thin skin of Cambrian black shales. During spring/summer 2014 the COSC-1 borehole was drilled to approx. 2.5 km depth near the town of Åre (western Jämtland/Sweden) with nearly 100 % of core recovery and cores in best quality. After the drilling was finished, a major seismic survey was conducted in and around the COSC-1 borehole which comprised both seismic reflection and transmission experiments. Besides a high resolution zero-offset VSP (Vertical Seismic Profiling) experiment also a multi-azimuthal walkaway VSP survey took place. For the latter the source points were distributed along three profile lines centered radially around the borehole. For the central part up to 2.5 km away from the borehole, a hydraulic hammer source was used, which hits the ground for about 20 s with an linear increasing hit rate. For the far offset shots up to 5 km, explosive sources were used. The wavefield of both source types was recorded in the borehole using an array of 15 three-component receivers with a geophone spacing of 10 m. This array was deployed at 7 different depth levels during the survey. At the same time the wavefield was also recorded at the surface by 180 standalone three-component receivers placed along each of the three up to 10 km long lines, as well as with a 3D array of single-component receivers in the central part of the survey area around the borehole. Here

  3. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect

    Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

    2007-05-11

    In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of

  4. Sampling and Analysis Plan Waste Treatment Plant Seismic Boreholes Project.

    SciTech Connect

    Brouns, Thomas M.

    2007-07-15

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the Saddle Mountains Basalt, up to three new deep rotary boreholes through the Saddle Mountains Basalt and sedimentary interbeds, and one corehole through the Saddle Mountains Basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities. Revision 3 incorporates all interim change notices (ICN) that were issued to Revision 2 prior to completion of sampling and analysis activities for the WTP Seismic Boreholes Project. This revision also incorporates changes to the exact number of samples submitted for dynamic testing as directed by the U.S. Army Corps of Engineers. Revision 3 represents the final version of the SAP.

  5. Borehole-to-tunnel seismic measurements for monitoring radioactive waste

    NASA Astrophysics Data System (ADS)

    Manukyan, Edgar; Maurer, Hansruedi; Marelli, Stefano; Greenhalgh, Stewart A.; Green, Alan A.

    2010-05-01

    Countries worldwide are seeking solutions for the permanent removal of high-level radioactive waste (HLRW) from the environment. A critical aspect of the disposal process is the need to be confident that the deposited waste is safely isolated from the biosphere. Seismic monitoring represents a potentially powerful option for non-intrusive monitoring. We conducted a series of seismic experiments in the Mont Terri underground rock laboratory, where a 1-m-diameter microtunnel simulates a HLRW repository downsized by a factor of ~2.5. The host rock at the laboratory is Opalinus clay. We had access to two water-filled boreholes, each approximately 25 m long (diameter 85 mm), with one inclined upwards and the other downwards. Both were oriented perpendicular to the microtunnel axis. Seismic signals were generated in the down-dipping borehole with a high frequency P-wave sparker source every 25 cm and received every 25 cm in the upward-dipping borehole on a multi-channel hydrophone chain. Additionally, the seismic waves were recorded on eight (100 Hz natural frequency) vertical-component geophones, mounted and distributed around the circumference of the microtunnel wall within the plane of the boreholes. The experiment was repeated with different material filling the microtunnel and under different physical conditions. So far, six experiments have been performed when the microtunnel was: a. air-filled with a dry excavation damage zone (EDZ), b. dry sand-filled with a dry EDZ, c. 50 % water-saturated sand-filled with partially water-saturated EDZ (experiments were conducted immediately after half water-saturation), d. water-saturated sand-filled with partially water-saturated EDZ (immediately after full water-saturation), e. water-saturated sand-filled with water-saturated EDZ (water was in the microtunnel for about 9.5 months), and f. water-saturated sand-filled and pressurized to 6 bars with water-saturated EDZ. The results of our seismic experiments yield several

  6. Seismic monitoring with a shallow borehole-geophone array at the COSC-1 drilling site

    NASA Astrophysics Data System (ADS)

    Schmelzbach, Cedric; Juhlin, Christopher; Giese, Rüdiger; Malin, Peter; Maurer, Hansruedi; Robertsson, Johan; Reiser, Fabienne; Greenhalgh, Stewart; Bärlocher, Christoph

    2015-04-01

    An array of borehole geophones was installed at the COSC-1 drilling site with the aim to continuously monitor seismic signals originating from controlled source experiments, ambient and drill-bit noise as well as natural seismicity. These seismic data can provide detailed information on the structure of the elastic parameter distribution around the COSC-1 borehole at the 10's to 100's of meter scale. For this monitoring experiment, nine three-component seismic sensors were deployed in the depth interval from 20 to 100 m below the surface in two shallow boreholes next to the COSC-1 main borehole and the output signals were continuously recorded over five months from late April to late September 2014. This time period includes a short 'quiet' time interval just before the start of the drilling in May, the entire drilling activities until August, and the subsequent vertical-seismic profiling (VSP) experiment in September. In total, around 2.6 terabytes of seismic data were recorded and will be jointly analyzed with other seismic data and supporting geological information. The seismic-data analysis of the five-month records will focus on several aspects. For example, we will explore, what information on the geological structure along the main borehole can be extracted by continuously listening to the drill-bit noise. The data acquired with the shallow monitoring array during the VSP experiments complements the VSP recordings with a geophone chain located at greater depths in the main borehole. The VSP data recorded with the monitoring array can aid in, for example, the seismic-reflection and seismic-refraction processing to image the shallow structure around the borehole (top most few 100's of meters). In addition, recordings of ambient noise from the borehole array may provide information on the shallow subsurface structure at the COSC-1 drilling site. Finally, signals from local earthquakes may be identified, providing information on the natural seismicity of the

  7. In-situ borehole seismic monitoring of injected CO2 at the FrioSite

    SciTech Connect

    Daley, Thomas M.; Korneev, Valeri A.

    2006-06-01

    The U.S. Dept. of Energy funded Frio Brine Pilot provided an opportunity to test borehole seismic monitoring techniques in a saline formation in southeast Texas. A relatively small amount of CO{sub 2} was injected (about 1600 tons) into a thin injection interval (about 6 m thick at 1500 m depth). Designed tests included time-lapse vertical seismic profile (VSP) and crosswell surveys which investigated the detectability of CO{sub 2} with surface-to-borehole and borehole-to-borehole measurement.

  8. Breakthroughs in Seismic and Borehole Characterization of Basalt Sequestration Targets

    SciTech Connect

    Sullivan, E. C.; Hardage, Bob A.; McGrail, B. Peter; Davis, Klarissa N.

    2011-04-01

    Mafic continental flood basalts form a globally important, but under-characterized CO2 sequestration target. The Columbia River Basalt Group (CRBG) in the northwestern U.S. is up to 5 km thick and covers over 168,000 km2. In India, flood basalts are 3 km thick and cover greater than 500,000 km2. Laboratory experiments demonstrate that the CRBG and other basalts react with formation water and super critical (sc) CO2 to precipitate carbonates, thus adding a potential mineral trapping mechanism to the standard trapping mechanisms of most other types of CO2 sequestration reservoirs. Brecciated tops of individual basalt flows in the CRBG form regional aquifers that locally have greater than 30% porosity and three Darcies of permeability. Porous flow tops are potential sites for sequestration of gigatons of scCO2 in areas where the basalts contain unpotable water and are at depths greater than 800 m. In this paper we report on the U.S. DOE Big Sky Regional Carbon Sequestration Partnership surface seismic and borehole geophysical characterization that supports a field test of capacity, integrity, and geochemical reactivity of CRBG reservoirs in eastern Washington, U.S.A. Traditional surface seismic methods have had little success in imaging basalt features in on-shore areas where the basalt is thinly covered by sediment. Processing of the experimental 6.5 km, 5 line 3C seismic swath included constructing an elastic wavefield model, identifying and separating seismic wave modes, and processing the swath as a single 2D line. Important findings include: (1) a wide variety of shear wave energy modes swamp the P-wave seismic records; (2) except at very short geophone offsets, ground roll overprints P-wave signal; and (3) because of extreme velocity contrasts, P-wave events are refracted at incidence angles greater than 7-15 degrees. Subsequent removal of S-wave and other noise during processing resulted in tremendous improvement in image quality. The application of wireline

  9. Method and apparatus for coupling seismic sensors to a borehole wall

    DOEpatents

    West, Phillip B.

    2005-03-15

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  10. SHEAR WAVE SEISMIC STUDY COMPARING 9C3D SV AND SH IMAGES WITH 3C3D C-WAVE IMAGES

    SciTech Connect

    John Beecherl; Bob A. Hardage

    2004-07-01

    The objective of this study was to compare the relative merits of shear-wave (S-wave) seismic data acquired with nine-component (9-C) technology and with three-component (3-C) technology. The original proposal was written as if the investigation would be restricted to a single 9-C seismic survey in southwest Kansas (the Ashland survey), on the basis of the assumption that both 9-C and 3-C S-wave images could be created from that one data set. The Ashland survey was designed as a 9-C seismic program. We found that although the acquisition geometry was adequate for 9-C data analysis, the source-receiver geometry did not allow 3-C data to be extracted on an equitable and competitive basis with 9-C data. To do a fair assessment of the relative value of 9-C and 3-C seismic S-wave data, we expanded the study beyond the Ashland survey and included multicomponent seismic data from surveys done in a variety of basins. These additional data were made available through the Bureau of Economic Geology, our research subcontractor. Bureau scientists have added theoretical analyses to this report that provide valuable insights into several key distinctions between 9-C and 3-C seismic data. These theoretical considerations about distinctions between 3-C and 9-C S-wave data are presented first, followed by a discussion of differences between processing 9-C common-midpoint data and 3-C common-conversion-point data. Examples of 9-C and 3-C data are illustrated and discussed in the last part of the report. The key findings of this study are that each S-wave mode (SH-SH, SV-SV, or PSV) involves a different subsurface illumination pattern and a different reflectivity behavior and that each mode senses a different Earth fabric along its propagation path because of the unique orientation of its particle-displacement vector. As a result of the distinct orientation of each mode's particle-displacement vector, one mode may react to a critical geologic condition in a more optimal way than do

  11. Borehole seismic monitoring of seismic stimulation at OccidentalPermian Ltd's -- South Wason Clear Fork Unit

    SciTech Connect

    Daley, Tom; Majer, Ernie

    2007-04-30

    Seismic stimulation is a proposed enhanced oil recovery(EOR) technique which uses seismic energy to increase oil production. Aspart of an integrated research effort (theory, lab and field studies),LBNL has been measuring the seismic amplitude of various stimulationsources in various oil fields (Majer, et al., 2006, Roberts,et al.,2001, Daley et al., 1999). The amplitude of the seismic waves generatedby a stimulation source is an important parameter for increased oilmobility in both theoretical models and laboratory core studies. Theseismic amplitude, typically in units of seismic strain, can be measuredin-situ by use of a borehole seismometer (geophone). Measuring thedistribution of amplitudes within a reservoir could allow improved designof stimulation source deployment. In March, 2007, we provided in-fieldmonitoring of two stimulation sources operating in Occidental (Oxy)Permian Ltd's South Wasson Clear Fork (SWCU) unit, located near DenverCity, Tx. The stimulation source is a downhole fluid pulsation devicedeveloped by Applied Seismic Research Corp. (ASR). Our monitoring used aborehole wall-locking 3-component geophone operating in two nearbywells.

  12. 9C-3D seismic interpretation of the Bakken Formation, Banner Field, North Dakota

    NASA Astrophysics Data System (ADS)

    Comegys, Lillian R.

    The Bakken Petroleum System is a multi-reservoir play with estimated total undiscovered resources of 3.649 BBO oil and 1.85 TCF natural gas in the United States portion of the Williston Basin (Pollastro 2008). The presence of natural fractures in all three members of the Bakken Formation have been linked to high initial production (IP) and cumulative production from the Antelope Field and better reservoir potential in the Elm Coulee Field and Sanish Fields (Sturm and Gomez 2009; Honsberger 2012; Theloy 2011). Therefore, the ability of seismic data to determine the presence, orientation, and density of natural fractures is an important achievement for petroleum exploration and exploitation. The STAMPEDE 9-component seismic survey is located in Mountrail County, North Dakota, in the Banner Field, southeast of the Parshall and Sanish Fields. It is the goal of the Reservoir Characterization Project to analyze the structural influences on reservoir properties in the STAMPEDE survey area using the compressional and pure shear seismic volumes supplemented by the public well information available on the North Dakota Industrial Commission website. Fracturing induced by basement faulting and lithology changes is detectable using multicomponent seismic data in the Stampede seismic survey. Shear wave splitting analysis delineates zones of different fracture orientation and density. These areas correlate to interpreted fault intersections and the predicted area of increased fracture frequency based on facies changes in the Middle Bakken Member and its mechanical stratigraphy. Wrench fault mechanics are at work in the study area, creating isolated convergent and divergent stress regimes in the separate fault blocks. Main fault interpretations are based on shear wave isochron mapping, wireline log mapping, seismic panel observations. Fracture interpretations were made on the analysis of shear time and amplitude anisotropy maps and the correlation of a P-wave Velocity Variation

  13. Development of the Borehole 2-D Seismic Tomography Software Using MATLAB

    NASA Astrophysics Data System (ADS)

    Nugraha, A. D.; Syahputra, A.; Fatkhan, F.; Sule, R.; Hendriyana, A.

    2011-12-01

    We developed 2-D borehole seismic tomography software that we called "EARTHMAX-2D TOMOGRAPHY" to image subsurface physical properties including P-wave and S-wave velocities between two boreholes. We used Graphic User Interface (GUI) facilities of MATLAB programming language to create the software. In this software, we used travel time of seismic waves from source to receiver by using pseudo bending ray tracing method as input for tomography inversion. We can also set up a model parameterization, initial velocity model, ray tracing processes, conduct borehole seismic tomography inversion, and finally visualize the inversion results. The LSQR method was applied to solve of tomography inversion solution. We provided the Checkerboard Test Resolution (CTR) to evaluate the model resolution of the tomography inversion. As validation of this developed software, we tested it for geotechnical purposes. We then conducted data acquisition in the "ITB X-field" that is located on ITB campus. We used two boreholes that have a depth of 39 meters. Seismic wave sources were generated by impulse generator and sparker and then they were recorded by borehole hydrophone string type 3. Later on, we analyzed and picked seismic arrival time as input for tomography inversion. As results, we can image the estimated weathering layer, sediment layer, and basement rock in the field depicted by seismic wave structures. More detailed information about the developed software will be presented. Keywords: borehole, tomography, earthmax-2D, inversion

  14. Methods and apparatus for use in detecting seismic waves in a borehole

    DOEpatents

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2006-05-23

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  15. Characterization of magnetized ore bodies based on three-component borehole magnetic and directional borehole seismic measurements

    NASA Astrophysics Data System (ADS)

    Virgil, Christopher; Neuhaus, Martin; Hördt, Andreas; Giese, Rüdiger; Krüger, Kay; Jurczyk, Andreas; Juhlin, Christopher; Juhojuntti, Niklas

    2016-04-01

    In the last decades magnetic prospecting using total field data was used with great success for localization and characterization of ferromagnetic ore bodies. Especially borehole magnetic measurements reveal important constraints on the extent and depth of potential mining targets. However, due to the inherent ambiguity of the interpretation of magnetic data, the resulting models of the distribution of magnetized material, such as iron ore bodies, are not entirely reliable. Variations in derived parameters like volume and estimated ore content of the expected body have significant impact on the economic efficiency of a planned mine. An important improvement is the introduction of three-component borehole magnetic sondes. Modern tools comprise orientation modules which allow the continuous determination of the tool's heading regardless of the well inclination and independent of the magnetic field. Using the heading information the recorded three-component magnetic data can be transferred from the internal tool's frame to the geographic reference frame. The vector information yields a more detailed and reliable description of the ore bodies compared to total field or horizontal and vertical field data. Nevertheless complementary information to constrain the model is still advisable. The most important supplementary information for the interpretation of magnetic data is the knowledge of the structural environment of the target regions. By discriminating dissimilar rock units, a geometrical starting model can be derived, constraining the magnetic interpretation and leading to a more robust estimation of the rock magnetizations distribution. The most common approach to reveal the lithological setting rests upon seismic measurements. However, for deep drilling targets surface seismic and VSP lack the required spatial resolution of 10s of meters. A better resolution is achieved by using directed sources and receivers inside the borehole. Here we present the application of

  16. Rapid acquisition of high resolution full wave-field borehole seismic data

    SciTech Connect

    Sleefe, G.E.; Harding, R.S. Jr.; Fairborn, J.W.; Paulsson, B.N.P.

    1993-04-01

    An essential requirement for both Vertical Seismic Profiling (VSP) and Cross-Hole Seismic Profiling (CHSP) is the rapid acquisition of high resolution borehole seismic data. Additionally, full wave-field recording using three-component receivers enables the use of both transmitted and reflected elastic wave events in the resulting seismic images of the subsurface. To this end, an advanced three- component multi-station borehole seismic receiver system has been designed and developed by Sandia National Laboratory (SNL) and OYO Geospace. The system requires data from multiple three-component wall-locking accelerometer packages and telemeters digital data to the surface in real-time. Due to the multiplicity of measurement stations and the real-time data link, acquisition time for the borehole seismic survey is significantly reduced. The system was tested at the Chevron La Habra Test Site using Chevron`s clamped axial borehole vibrator as the seismic source. Several source and receiver fans were acquired using a four-station version of the advanced system. For comparison purposes, an equivalent data set was acquired using a standard analog wall-locking geophone receiver. The test data indicate several enhancements provided by the multi-station receiver relative to the standard, drastically improved signal-to-noise ratio, increased signal bandwidth, the detection of multiple reflectors, and a true 4:1 reduction in survey time.

  17. Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect

    Reidel, Steve P.

    2006-05-26

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

  18. Seismic Readings from the Deepest Borehole in the New Madrid Seismic Zone

    SciTech Connect

    Woolery, Edward W; Wang, Zhenming; Sturchio, Neil C

    2006-03-01

    Since the 1980s, the research associated with the UK network has been primarily strong-motion seismology of engineering interest. Currently the University of Kentucky operates a strong-motion network of nine stations in the New Madrid Seismic Zone. A unique feature of the network is the inclusions of vertical strong-motion arrays, each with one or two downhole accelerometers. The deepest borehole array is 260 m below the surfaces at station VASA in Fulton County, Kentucky. A preliminary surface seismic refraction survey was conducted at the site before drilling the hole at VSAS (Woolery and Wang, 2002). The depth to the Paleozoic bedrock at the site was estimated to be approximately 595 m, and the depth to the first very stiff layer (i.e. Porters Creek Clay) was found to be about 260 m. These depths and stratigraphic interpretation correlated well with a proprietary seismic reflection line and the Ken-Ten Oil Exploration No. 1 Sanger hole (Schwalb, 1969), as well as our experience in the area (Street et al., 1995; Woolery et al., 1999).

  19. Summary Report of Geophysical Logging For The Seismic Boreholes Project at the Hanford Site Waste Treatment Plant.

    SciTech Connect

    Gardner, Martin G.; Price, Randall K.

    2007-02-01

    During the period of June through October 2006, three deep boreholes and one corehole were drilled beneath the site of the Waste Treatment Plant (WTP) at the U.S. Department of Energy (DOE) Hanford Site near Richland, Washington. The boreholes were drilled to provide information on ground-motion attenuation in the basalt and interbedded sediments underlying the WTP site. This report describes the geophysical logging of the deep boreholes that was conducted in support of the Seismic Boreholes Project, defined below. The detailed drilling and geological descriptions of the boreholes and seismic data collected and analysis of that data are reported elsewhere.

  20. Mapping permeable fractures at depth in crystalline metamorphic shield rocks using borehole seismic, logging, and imaging

    NASA Astrophysics Data System (ADS)

    Chan, J.; Schmitt, D. R.; Nieuwenhuis, G.; Poureslami Ardakani, E.; Kueck, J.; Abasolo, M. R.

    2012-04-01

    The presence of major fluid pathways in subsurface exploration can be identified by understanding the effects of fractures, cracks, and microcracks in the subsurface. Part of a feasibility study of geothermal development in Northern Alberta consists of the investigation of subsurface fluid pathways in the Precambrian basement rocks. One of the selected sites for this study is in the Fort McMurray area, where the deepest well drilled in the oilsands region in Northeastern Alberta is located. This deep borehole has a depth of 2.3 km which offers substantial depth coverage to study the metamorphic rocks in the Precambrian crystalline basement of this study area. Seismic reflection profiles adjacent to the borehole reveal NW-SE dipping reflectors within the metamorphic shield rocks some of which appear to intersect the wellbore. An extensive logging and borehole seismic program was carried out in the borehole in July, 2011. Gamma ray, magnetic susceptibility, acoustic televiewer, electrical resistivity, and full-waveform sonic logs were acquired to study the finer scale structure of the rock formations, with vertical resolutions in the range of 0.05 cm to 80 cm. These logs supplement earlier electrical microscanner images obtained by the well operator when it was drilled. In addition, we are also interested in identifying other geological features such as zones of fractures that could provide an indication of enhanced fluid flow potential - a necessary component for any geothermal systems to be viable. The interpretation of the borehole logs reveals a highly conductive 13 m thick zone at 1409 m depth that may indicate communication of natural brines in fractures with the wellbore fluid. The photoelectric factor and magnetic susceptibility also appear anomalous in this zone. Formation MicroImager (FMI) log was used to verify the presence of fractures in the borehole in this conductive zone. This fracture zone may coincide with the dipping seismic reflectors in the

  1. Chemical energy system for a borehole seismic source. [Final report

    SciTech Connect

    Engelke, R.; Hedges, R.O.

    1996-03-01

    We describe a detonation system that will be useful in the seismological examination of geological structures. The explosive component of this system is produced by the mixing of two liquids; these liquids are classified as non-explosive materials by the Department of Transportation. This detonation system could be employed in a borehole tool in which many explosions are made to occur at various points in the borehole. The explosive for each explosion would be mixed within the tool immediately prior to its being fired. Such an arrangement ensures that no humans are ever in proximity to explosives. Initiation of the explosive mixture is achieved with an electrical slapper detonator whose specific parameters are described; this electrical initiation system does not contain any explosive. The complete electrical/mechanical/explosive system is shown to be able to perform correctly at temperatures {le}120{degrees}C and at depths in a water-filled borehole of {le} 4600 ft (i.e., at pressures of {le}2000 psig).

  2. Near-surface velocity structure from borehole and refraction seismic surveys

    SciTech Connect

    Parry, D.; Lawton, D.C.

    1994-12-31

    Seismic refraction and borehole reflection data have been used in conjunction with other geophysical tools to characterize the near-surface geology in the vicinity of a shallow well near Calgary, Alberta. The investigated section is comprised primarily of glacial tills and gravels. Seismic waves generated in the lower gravel units travel as compressional waves up to the till/gravel interface, where they are converted to shear waves upon transmission. Velocity structure from a reverse vertical seismic profile (RVSP) survey agrees closely with that from refraction surveying.

  3. Stochastic estimation of aquifer geometry using seismic refraction data with borehole depth constraints

    SciTech Connect

    Chen, Jinsong; Hubbard, Susan S; Korneev, V.; Gaines, David; Baker, Gregory S.; Watson, David

    2010-11-01

    We develop a Bayesian model to invert surface seismic refraction data with depth constraints from boreholes for characterization of aquifer geometry and apply it to seismic and borehole data sets collected at the contaminated Oak Ridge National Laboratory site in Tennessee. Rather than the traditional approach of first inverting the seismic arrival times for seismic velocity and then using that information to aid in the spatial interpolation of wellbore data, we jointly invert seismic first arrival time data and wellbore based information, such as depths of key lithological boundaries. We use a staggered grid finite difference algorithm with second order accuracy in time and fourth order accuracy in space to model seismic full waveforms and use an automated method to pick the first arrival times. We use Markov Chain Monte Carlo methods to draw many samples from the joint posterior probability distribution, on which we can estimate the key interfaces and their associated uncertainty as a function of horizontal location and depth. We test the developed method on both synthetic and field case studies. The synthetic studies show that the developed method is effective at rigorous incorporation of multiscale data and the Bayesian inversion reduces uncertainty in estimates of aquifer zonation. Applications of the approach to field data, including two surface seismic profiles located 620 m apart from each other, reveal the presence of a low velocity subsurface zone that is laterally persistent. This geophysically defined feature is aligned with the plume axis, suggesting it may serve as an important regional preferential flow pathway.

  4. A comprehensive approach for evaluating network performance in surface and borehole seismic monitoring

    NASA Astrophysics Data System (ADS)

    Stabile, T. A.; Iannaccone, G.; Zollo, A.; Lomax, A.; Ferulano, M. F.; Vetri, M. L. V.; Barzaghi, L. P.

    2013-02-01

    The accurate determination of locations and magnitudes of seismic events in a monitored region is important for many scientific, industrial and military studies and applications; for these purposes a wide variety of seismic networks are deployed throughout the world. It is crucial to know the performance of these networks not only in detecting and locating seismic events of different sizes throughout a specified source region, but also by evaluating their location errors as a function of the magnitude and source location. In this framework, we have developed a method for evaluating network performance in surface and borehole seismic monitoring. For a specified network geometry, station characteristics and a target monitoring volume, the method determines the lowest magnitude of events that the seismic network is able to detect (Mwdetect), and locate (Mwloc) and estimates the expected location and origin time errors for a specified magnitude. Many of the features related to the seismic signal recorded at a single station are considered in this methodology, including characteristics of the seismic source, the instrument response, the ambient noise level, wave propagation in a layered, anelastic medium and uncertainties on waveform measures and the velocity model. We applied this method to two different network typologies: a local earthquake monitoring network, Irpinia Seismic Network (ISNet), installed along the Campania-Lucania Apennine chain in Southern Italy, and a hypothetic borehole network for monitoring microfractures induced during the hydrocarbon extraction process in an oil field. The method we present may be used to aid in enhancing existing networks and/or understanding their capabilities, such as for the ISNet case study, or to optimally design the network geometry in specific target regions, as for the borehole network example.

  5. Initial seismic observations from a deep borehole drilled into the Canadian Shield in northeast Alberta

    NASA Astrophysics Data System (ADS)

    Chan, Judith; Schmitt, Douglas R.

    2015-09-01

    The availability of a deep borehole in northeastern Alberta provides an unprecedented opportunity to study the in situ metamorphic craton rocks. This borehole reaches a depth of 2.4 km, with 1.8 km in the crystalline rocks, and is the only known borehole allowing access into the deeper rocks of the metamorphic Canadian Shield. In 2011, a zero-offset vertical seismic profile (VSP) was acquired to assist in the interpretation of seismic reflection data and geophysical logs. Three sets of upgoing tube waves interpreted from the raw profile correspond to the small-scale fluctuations in the borehole diameters and fracture zone in the crystalline rocks. A comparison between sonic log velocities and VSP velocities reveals a zone with increased velocity that could be due to the change in rock composition and texture in the basement rocks. The final processed profile is used to generate corridor stacks for differentiating between primary reflections and multiples in the seismic reflection profile. Analysis of the zero-offset VSP verifies existing log interpretation on the presence of fractures and the possible lithological changes in the metamorphic rocks of the Canadian Shield.

  6. Borehole Seismic Monitoring of Injected CO2 at the Frio Site

    SciTech Connect

    Daley, Thomas M.; Myer, Larry R.; Hoversten, G.M.; Peterson, JohnE.; Korneev, Valeri A.

    2006-04-21

    As part of a small scale sequestration test (about 1500 tonsof CO2) in a saline aquifer, time-lapse borehole seismic surveys wereconducted to aid in characterization of subsurface CO2 distribution andmaterial property changes induced by the injected CO2. A VSP surveydemonstrated a large increase (about 75 percent) in seismic reflectivitydue to CO2 injection and allowed estimation of the spatial extent of CO2induced changes. A crosswell survey imaged a large seismic velocitydecrease (up to 500 m/s) within the injection interval and provided ahigh resolution image of this velocity change which maps the subsurfacedistribution of CO2 between two wells. Numerical modeling of the seismicresponse uses the crosswell measurements to show that this small CO2volume causes a large response in the seismic reflectivity. This resultdemonstrates that seismic detection of small CO2 volumes in salineaquifers is feasible and realistic.

  7. A Robust MEMS Based Multi-Component Sensor for 3D Borehole Seismic Arrays

    SciTech Connect

    Paulsson Geophysical Services

    2008-03-31

    The objective of this project was to develop, prototype and test a robust multi-component sensor that combines both Fiber Optic and MEMS technology for use in a borehole seismic array. The use such FOMEMS based sensors allows a dramatic increase in the number of sensors that can be deployed simultaneously in a borehole seismic array. Therefore, denser sampling of the seismic wave field can be afforded, which in turn allows us to efficiently and adequately sample P-wave as well as S-wave for high-resolution imaging purposes. Design, packaging and integration of the multi-component sensors and deployment system will target maximum operating temperature of 350-400 F and a maximum pressure of 15000-25000 psi, thus allowing operation under conditions encountered in deep gas reservoirs. This project aimed at using existing pieces of deployment technology as well as MEMS and fiber-optic technology. A sensor design and analysis study has been carried out and a laboratory prototype of an interrogator for a robust borehole seismic array system has been assembled and validated.

  8. Microseismic Monitoring Using Surface and Borehole Seismic Stations in an Oil Field, North Oman

    NASA Astrophysics Data System (ADS)

    El-Hussain, I.; Al-Hashmi, S.; Al-Shijbi, Y.; Al-Saifi, M.; Al-Toubi, K.; Al-Lazki, A.; Al-Kindy, F.

    2009-05-01

    Five shallow borehole seismic stations were installed to monitor microearthquake activities in a carbonate oil field in northern Oman since 1999. This shallow network of seismic station operated continuously until 2002 after which intermittent seismic recording took place due to lack of maintenance and failure of some stations. The objectives of the study are to determine the microseismic parameters in the oil field and to determine the spatial and temporal distribution of these events to evaluate possible triggering mechanism. Well over 400 microearthquakes per year were recorded in the first three years of operation and after that the level of seismic recording fell to less than 200 microearthquakes per year due to failure of some stations. In March 2008, temporary seismic experiment consisting of five near surface seismic stations were installed in the oil field to augment the shallow network station and to evaluate surface installment of seismic instrument to monitor microseismic activities. It has been recognized that microearthquakes data such as size, spatial, and temporal distribution provide information on the pressure waves initiated by either production of or injection of fluids into reservoirs. A total of 44 local microearthquake events were analyzed and located during the temporary seismic stations deployment using a non-linear location software that allows the use of variable accurate velocity model of the subsurface. The events location is confined to oil field reservoir boundary during the recording period and more events occurring at shallow depth. The correlation coefficient between gas production and number of events is the higher compared with the oil production or water injection. The focal plane solution for the largest event in the sequence indicates normal faulting with extensional stress consistent with the existing mapped normal faults in the oil field. Microseismic signal clearly detected by the collocated sensors of the near surface

  9. Lecture notes on nonlinear inversion and tomography: 1, Borehole seismic tomography. Revision 1

    SciTech Connect

    Berryman, J.G.

    1991-10-01

    The main topic of these lectures is seismic traveltime inversion in 2- and 3-dimensional heterogeneous media. A typical problem is to infer the (isotropic) compressional-wave slowness (reciprocal of velocity) distribution of a medium, given a set of observed first-arrival traveltime between sources and receivers of known location within the medium. This problem is common for crosshole seismic transmission tomography imaging a 2-D region between vertical boreholes in oil field applications. We also consider the problem of inverting for wave slowness when the absolute traveltimes are not known, as is normally the case in earthquake seismology.

  10. Borehole seismic data processing and interpretation: New free software

    NASA Astrophysics Data System (ADS)

    Farfour, Mohammed; Yoon, Wang Jung

    2015-12-01

    Vertical Seismic Profile (VSP) surveying is a vital tool in subsurface imaging and reservoir characterization. The technique allows geophysicists to infer critical information that cannot be obtained otherwise. MVSP is a new MATLAB tool with a graphical user interface (GUI) for VSP shot modeling, data processing, and interpretation. The software handles VSP data from the loading and preprocessing stages to the final stage of corridor plotting and integration with well and seismic data. Several seismic and signal processing toolboxes are integrated and modified to suit and enrich the processing and display packages. The main motivation behind the development of the software is to provide new geoscientists and students in the geoscience fields with free software that brings together all VSP modules in one easy-to-use package. The software has several modules that allow the user to test, process, compare, visualize, and produce publication-quality results. The software is developed as a stand-alone MATLAB application that requires only MATLAB Compiler Runtime (MCR) to run with full functionality. We present a detailed description of MVSP and use the software to create synthetic VSP data. The data are then processed using different available tools. Next, real data are loaded and fully processed using the software. The data are then integrated with well data for more detailed analysis and interpretation. In order to evaluate the software processing flow accuracy, the same data are processed using commercial software. Comparison of the processing results shows that MVSP is able to process VSP data as efficiently as commercial software packages currently used in industry, and provides similar high-quality processed data.

  11. Combination of surface and borehole seismic data for robust target-oriented imaging

    NASA Astrophysics Data System (ADS)

    Liu, Yi; van der Neut, Joost; Arntsen, Børge; Wapenaar, Kees

    2016-05-01

    A novel application of seismic interferometry (SI) and Marchenko imaging using both surface and borehole data is presented. A series of redatuming schemes is proposed to combine both data sets for robust deep local imaging in the presence of velocity uncertainties. The redatuming schemes create a virtual acquisition geometry where both sources and receivers lie at the horizontal borehole level, thus only a local velocity model near the borehole is needed for imaging, and erroneous velocities in the shallow area have no effect on imaging around the borehole level. By joining the advantages of SI and Marchenko imaging, a macrovelocity model is no longer required and the proposed schemes use only single-component data. Furthermore, the schemes result in a set of virtual data that have fewer spurious events and internal multiples than previous virtual source redatuming methods. Two numerical examples are shown to illustrate the workflow and to demonstrate the benefits of the method. One is a synthetic model and the other is a realistic model of a field in the North Sea. In both tests, improved local images near the boreholes are obtained using the redatumed data without accurate velocities, because the redatumed data are close to the target.

  12. Simulation of poro-elastic seismic wave propagation in axis-symmetric open and cased boreholes

    NASA Astrophysics Data System (ADS)

    Sidler, R.; Holliger, K.; Carcione, J. M.

    2012-04-01

    Geophysical constraints with regard to permeability are particularly valuable because they tend to bridge the gap in terms of spatial coverage and resolution that exists for corresponding conventional hydrological techniques, such as laboratory measurements and pumping tests. A prominent geophysical technique for estimating the permeability along boreholes is based on the inversion of Stoneley waves. This technique is by now well established for the hydrocarbon exploration purposes, where the corresponding measurements are carried out in open boreholes and in consolidated sediments. Conversely, the sensitivity and potential of Stoneley-wave-based permeability estimates for shallow hydrological applications is still largely unknown. As opposed to their counterparts in hydrocarbon exploration, shallow boreholes tend to be located in unconsolidated alluvial sediments and hence tend to be cased with perforated or non-perforated plastic tubes. The corresponding effects on Stoneley wave attenuation and its sensitivity to in situ permeability of the formation behind the casing are largely unknown and can only be assessed through realistic modeling. To this end, we present a pseudo-spectral numerical modeling code in cylindrical coordinates that allows for the accurate simulation of complex seismic wave propagation phenomena in realistic surficial borehole environments. We employ Fourier operators along the borehole axis and Chebyshev operators in the radial direction. The Chebyshev operators allows for the use of individual computational sub-domains for the fluid-filled, acoustic borehole, the poro-elastic casing, and the poro-elastic formation surrounding the borehole. These computational sub-domains are connected through a domain decomposition method, which is needed to correctly account for the governing boundary conditions and also allows for substantially enhancing the computational efficiency of our simulations.

  13. Borehole seismic in crystalline environment at the COSC-project in Central Sweden

    NASA Astrophysics Data System (ADS)

    Krauß, Felix; Hedin, Peter; Almqvist, Bjarne; Simon, Helge; Giese, Rüdiger; Buske, Stefan; Juhlin, Christopher; Lorenz, Henning

    2016-04-01

    As support for the COSC drilling project (Collisional Orogeny in the Scandinavian Caledonides), an extensive seismic survey took place during September and October 2014 in and around the newly drilled 2.5 km deep COSC-1 borehole. The main aim of the COSC project is to better understand orogenic processes in past and recently active mountain belts. For this, the Scandinavian Caledonides provide a well preserved case of Paleozoic collision of the Laurentia and Baltica continental plates. Surface geology and geophysical data provide knowledge about the geometry of the Caledonian structure. The reflectivity geometry of the upper crust was imaged by regional seismic data and the resistivity structure by magnetotelluric methods. The crustal model was refined by seismic pre-site surveys in 2010 and 2011 to define the exact position of the first borehole, COSC-1. The completely cored COSC-1 borehole was drilled in Central Sweden through the Seve Nappe Complex, a part of the Middle Allochthon of the Scandinavian Caledonides that comprises units originating from the outer margin of Baltica. The upper 2350 m consist of alternating layers of highly strained felsic and calc-silicate gneisses and amphibolites. Below 1710 m the mylonite content increases successively and indicates a high strain zone of at least 800 m thickness. At ca. 2350 m, the borehole leaves the Seve Nappe Complex and enters underlying mylonitised lower grade metasedimentary units of unknown tectonostratigraphic position. The seismic survey consisted of three parts: a limited 3D-survey, a high resolution zero-offset VSP (vertical seismic profile) and a multi-azimuthal walkaway VSP (MSP) experiment with sources and receivers along three surface profiles and receivers at seven different depth levels of the borehole. For the zero-offset VSP (ZVSP) a hydraulic hammer source was used and activated over a period of 20 s as a sequence of impacts with increasing hit frequency. The wave field was recorded with 3

  14. Stochastic estimation of aquifer geometry using seismic refraction data with borehole depth constraints

    SciTech Connect

    Chen, J.; Hubbard, S.S.; Gaines, D.; Korneev, V.; Baker, G.; Watson, D.

    2010-09-01

    We develop a Bayesian model to invert surface seismic refraction data with depth constraints from boreholes for characterization of aquifer geometry and apply it to seismic and borehole datasets collected at the contaminated Oak Ridge National Laboratory site in Tennessee. Rather than the traditional approach of first inverting the seismic arrival times for seismic velocity and then using that information to aid in the spatial interpolation of wellbore data, we jointly invert seismic first arrival time data and wellbore-based information, such as depths of key lithological boundaries. We use a staggered-grid finite-difference algorithm with second order accuracy in time and fourth order accuracy in space to model seismic full waveforms and use an automated method to pick the first arrival times. We use Markov Chain Monte Carlo methods to draw many samples from the joint posterior probability distribution, on which we can estimate the key interfaces and their associated uncertainty as a function of horizontal location and depth. We test the developed method on both synthetic and field case studies. The synthetic studies show that the developed method is effective at rigorous incorporation of multiscale data and the Bayesian inversion reduces uncertainty in estimates of aquifer zonation. Applications of the approach to field data, including two surface seismic profiles located 620 m apart from each other, reveal the presence of a low-velocity subsurface zone that is laterally persistent. This geophysically-defined feature is aligned with the plume axis, suggesting it may serve as an important regional preferential flow pathway.

  15. Single-well wideband borehole seismics in the UNIWELL configurations: An approach to monitoring hydrocarbon production

    SciTech Connect

    Peveraro, R.C.A.; Leavy, P.C.; Crampin, S.

    1994-12-31

    The authors present the technical basis for bridging the wide structure data-gap at the heart of the oil and gas production business: the scale of geological detail in the range between a few tens of centimeters to a few meters. This scale range is at least an order of magnitude smaller than is resolvable with current means. Many reservoir properties such as permeabilities are largely determined by the microscale behavior of pore geometries and pore throats in the range down to millimeters or less. The underlying unifying concept is that broadband vector seismic data contain a wealth of information regarding rock fabric and fluid content. Careful seismic field experiments, observation and data analysis can bridge the gap in the spatial knowledge of the reservoir between the very detailed, but laterally very limited information provided by borehole logging data and the spatially extensive but diffuse structural information provided by 3D seismic data. Measurements obtained in boreholes and aimed specifically at capturing certain elastic formation parameters are related through the geophysical model to reservoir parameters of direct engineering and economic interest in a series of snapshots of in situ distributions of fluids and rock masses, taken at opportune moments in the life of the reservoir and representing a substantial amount of reservoir volume in centimeter to meter detail.

  16. Preliminary results of a seismic borehole test using downhole shaped charges at the DOE Hanford Site

    SciTech Connect

    Narbutovskih, S.M.; Michelsen, F.

    1994-02-01

    Geophysical site characterization studies can be important steps in the process of designing and monitoring remediation at hazardous waste storage facilities. Use of seismic techniques for subsurface characterization at the DOE Hanford Site has been limited. One reason is the lack of borehole velocity control, and low-velocity sediments are highly attenuative. Consequently, standard techniques to provide velocity control are not adequate. Both Vertical Seismic Profiling and reversed VSP surveys are currently being investigated to provide velocity control and for subsurface imaging capabilities. Recently a jet perforating gun was used to perforate a doubled-cased borehole in the 200 West Area. Acoustic emissions were recorded from numerous depths to obtain velocity control for a previous surface survey conducted in the same area. Both P- and S-wave data were recorded simultaneously from multiple horizons using the DAS-1 seismograph and 3-component geophones. The data were analyzed for a variety of uses besides velocity control. Signal attenuation was studied as a function of source depth and offset distance to evaluate formation absorption while vertical resolution was determined from the frequency spectrum. Preliminary results indicate that adequate P-wave velocity control can be obtained even though the near-surface sediments are very attenuative. However, we conclude that the perforating gun produces little SH energy. Preliminary velocities indicate that reflection coefficients should be great enough to use surface techniques. Results from the frequency study suggest that a swept source for both surface and borehole surveys may be necessary to obtain required resolutions. Finally, signal attenuation as a function of formation facies suggest that seismic techniques may be useful in mapping perched water zones and for long term vadose zone monitoring.

  17. Method Apparatus And System For Detecting Seismic Waves In A Borehole

    DOEpatents

    West, Phillip B.; Sumstine, Roger L.

    2006-03-14

    A method, apparatus and system for detecting seismic waves. A sensing apparatus is deployed within a bore hole and may include a source magnet for inducing a magnetic field within a casing of the borehole. An electrical coil is disposed within the magnetic field to sense a change in the magnetic field due to a displacement of the casing. The electrical coil is configured to remain substantially stationary relative to the well bore and its casing along a specified axis such that displacement of the casing induces a change within the magnetic field which may then be sensed by the electrical coil. Additional electrical coils may be similarly utilized to detect changes in the same or other associated magnetic fields along other specified axes. The additional sensor coils may be oriented substantially orthogonally relative to one another so as to detect seismic waves along multiple orthogonal axes in three dimensional space.

  18. Local fluid flow and borehole strain in the South Iceland Seismic Zone

    NASA Astrophysics Data System (ADS)

    Jónsson, S.; Segall, P.; Ágústsson, K.; Agnew, D.

    2003-12-01

    Installation of 175 borehole strainmeters is planned for PBO. It is therefore vital to understand the behavior of existing strainmeter installations. We investigate signals recorded by three borehole dilatometers in the south Iceland seismic zone following two Mw6.5 earthquakes in June 2000. Poroelastic relaxation has been documented following these events based on InSAR and water level data [Jónsson et al., 2003, Nature]. According to poroelastic theory for a homogeneous isotropic (unfractured) medium, the anticipated post-seismic volumetric strain has the same sign as the coseismic strain step. For example, coseismic compression results in pore-pressure increases; post-earthquake fluid drainage causes additional compression. However, we find that observed strain changes vary considerably between different instruments after the earthquakes. One instrument (HEL) behaves as expected with transient strain increasing with the same sign as the coseismic strain step. Another instrument (SAU) shows partial strain relaxation, opposite in sign to the coseismic signal. The third (BUR) exhibits complete strain relaxation by 3-4 days after the earthquakes (i.e., BUR does not record any permanent strain). BUR has responded in the same fashion to three different earthquakes and two volcanic eruptions, demonstrating conclusively that the transient response is due to processes local to the borehole. Fluid drainage from cracks can explain these observations. Rapid straining results in compression (extension) of the rock and strainmeter. Fluid filled fractures near the borehole transmit normal stress, due to the relative incompressibility of water. Thus, at short time scales the instrument records a coseismic strain step. With time, however, fluid flows out of (in to) the fractures, and the normal stress transmitted across the fractures decreases (increases). As the stress relaxes the strainmeter expands (contracts), reversing the coseismic strain. Barometric responses are

  19. Comparison of high-resolution wax-embedded and pneumatically coupled borehole seismic detectors

    SciTech Connect

    Owen, T.E.; Parra, J.O. )

    1993-01-01

    High quality seismic measurements at frequencies up to about 2,000 Hz are needed if projected resolution limits on the order of 1m in spatial dimension are to be realized in reservoir structure delineation, cross-well sonic logging, and shallow reverse VSP applications. While sources and detectors are critical to this goal, the authors have investigated detector requirements in an objective way to demonstrate a successful design philosophy capable of achieving unprecedented wide-band frequency response and data quality in three-component shallow-borehole sensors. Two prototype detectors were developed: a nearly ideal responding wax-embedded reference'' detector and a pneumatically coupled detector exhibiting closely comparable performance. Their approach uses a three-axis accelerometer sensor assembly installed in a borehole drilled through the weathered surface to a depth at which the ground is competent enough to support practical kilohertz wave propagation. The wax-coupled detector is planted using a meltable wax embedment to achieve a rigid, stress-free, conformal coupling at the bottom of the hole. Experimental test results show this wax-embedded detector to have excellent broadband three-component response at frequencies up to 2,500 Hz; a range heretofore unexplored for seismic applications. The pneumatically coupled detector, although limited by modal resonance distortion effects in the highest range of frequencies, demonstrated useful three-component response at frequencies up to 1,500 Hz. Tests of the two coupling techniques under identical conditions illustrate their high-quality responses and their differences. Field tests of the prototype pneumatically coupled detector in shallow reverse vertical seismic profiling (VSP) measurements demonstrate the practical effectiveness of the basic high-resolution probe design concepts.

  20. Processing, inversion, and interpretation of 9C-3D seismic data for characterizing the Morrow A sandstone, Postle Field, Oklahoma

    NASA Astrophysics Data System (ADS)

    Singh, Paritosh

    Detection of Morrow A sandstones is a major problem in the exploration of new fields and the characterization of existing fields because they are very thin and laterally discontinuous. The present research shows the advantages of S-wave data in detecting and characterizing the Morrow A sandstone. Full-waveform modeling is done to understand the sandstone signature in P-, PS- and S-wave gathers. The sandstone shows a distinct high-amplitude event in pure S-wave reflections as compared to the weaker P- and PS-wave events. Modeling also helps in understanding the effect of changing sandstone thickness, interbed multiples (generated by shallow high-velocity anhydrite layers) and sidelobe interference effect (due to Morrow shale) at the Morrow A level. Multicomponent data need proper care while processing, especially the S-wave data which are aected by the near-surface complexity. Cross-spread geometry and 3D FK filtering are effective in removing the low-velocity noise trends. The S-wave data obtained after stripping the S-wave splitting in the overburden show improvement for imaging and reservoir property determination. Individual P- and S-wave attributes as well as their combinations have been analyzed to predict the A sandstone thickness. A multi-attribute map and collocated cokriging procedure is used to derive the seismic-guided isopach of the A sandstone. Postle Field is undergoing CO2 flooding and it is important to understand the characteristics of the reservoir for successful flood management. Density can play an important role in finding and monitoring high-quality reservoirs, and to predict reservoir porosity. prestack P- and S-wave AVO inversion and joint P- and S-wave inversion provide density estimates along with the P- and S-impedance for better characterization of the Morrow A sandstone. The research provides a detailed multicomponent processing, inversion and interpretation work flow for reservoir characterization, which can be used for exploration in

  1. Exploring anisotropic seismic property of the seismogenic plate boundary in the Nankai Trough using a seafloor borehole observatory

    NASA Astrophysics Data System (ADS)

    Araki, E.; Kimura, T.; Kodaira, S.; Miura, S.; Takaesu, M.; Takahashi, N.; Nakano, M.; Kaneda, Y.

    2014-12-01

    Stress state in the vicinity of a seismogenic fault would be a key parameter governing its fault dynamics. Stress analysis in a borehole such as breakout may give stress information, but drilling seismogenic fault at depth is still challenging and it is even more difficult to perform repeated stress measurements for temporal evolution of stress state. Here we consider applying seismic anisotropy as an index of stress state and by observing its temporal change to identify change of stress around the seismogenic fault. In this study, we explored techniques to assess seismic anisotropy in the Nankai Trough accretionary prism, using a borehole seismometer deployed in IODP borehole C0002G, which is located just above the Tonankai earthquake fault. The borehole seismometer is situated at about 900 m below 1966 m deep seafloor, and is operational since January 2013 when the observatory was connected to DONET seafloor cable network. We developed a technique to analyze seismic anisotropy on converted S-wave from microseismic noise records and applied the technique on the borehole seismometer records, by which we expect to evaluate temporal change of anisotropy continuously. We obtained anisotropy of a few percent. We further evaluated depth dependency of anisotropy direction and obtained the difference between the uppermost sedimentary basin and accretionary prism near the plate boundary. We also performed airgun array shooting around the borehole in November 2013 to check validity of the anisotropy result. We applied two different analysis on the airgun records, the one was P-wave seismic anisotropy from the travel time, and the other was S-wave anisotropy using converted S-wave from airgun P-wave. Preliminary results from these analysis were consistent with the microseismic noise analysis. Repeated airgun shooting is planned at the interval of a year or so to evaluate our ability to detect its temporal change.

  2. Microearthquake Observations in a 7-level Vertical Seismic Array in the TCDP Borehole, Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Wu, H.; Ma, K.; Oye, V.; Tanaka, H.

    2007-12-01

    In order to obtain in-situ information on slip zones of the 1999 Chi-Chi earthquake, the Taiwan Chelungpu-fault drilling project (TCDP) drilled two vertical boreholes (A, B) and a branch hole (C) through the fault where a displacement of 12 m had occurred. The TCDP hole A is 2 km deep, and a slip zone was identified at a depth of 1111 m. Hole B (with side track, hole C) is 1.3 km deep with an identified slip zone at 1138 m. In July 2006, a 7- level vertical borehole seismic array (TCDP BHS) was installed in hole A covering a depth from 946 m to 1274 m with 50- 60 m depth intervals. For this layout, three seismometers were placed in the hanging wall and footwall, respectively. The forth one is located at the depth of 1110.28 m, close to the identified slip zone. Microearthquakes with magnitude down to -0.5 were detected by the TCDP BHS. A temporary seismic array with 10 short period seismometers around the TCDP drill site was also installed to incorporate with the TCDP BHS for the precise locations of the microearthquakes. A real-time location software (MIMO) (Oye and Roth, 2003) was used to automatically determine P- and S-wave onset times, incidence and azimuth angles and locations of the microearthquakes. Regardless of the large co-seismic slip of 12 m at the drill site during the 1999 Chi-Chi earthquake, our preliminary studies do not show any close-by seismicity near the drill site after almost 8 years since the large earthquake happened. The microearthquakes clustered at a depth of 8-10 km, where the 30 degree dipping of the Chelungpu thrust fault becomes flat to a decollement of the Taiwan fold-and-thrust tectonic structure. As a continuous GPS survey did not observe post-slip at the large slip region, and as no seismicity was observed near the drill site, we suggest that the thrust belt above the decollement during the interseismic period seems to be locked. A Fluid Injection Test (FIT), pumping high pressure fluid into hole B and C with hole A as

  3. Characterizing the Weeks Island Salt Dome drilling of and seismic measurements from boreholes

    SciTech Connect

    Sattler, A.R.; Harding, R.S.; Jacobson, R.D.; Finger, J.T.; Keefe, R.; Neal, J.T.

    1996-10-01

    A sinkhole 36 ft across, 30 ft deep was first observed in the alluvium over the Weeks Island Salt Dome (salt mine converted for oil storage by US Strategic Petroleum Reserve) May 1992. Four vertical, two slanted boreholes were drilled for diagnostics. Crosswell seismic data were generated; the velocity images suggest that the sinkhole collapse is complicated, not a simple vertical structure. The coring operation was moderately difficult; limited core was obtained through the alluvium, and the quality of the salt core from the first two vertical wells was poor. Core quality improved with better bit selection, mud, and drilling method. The drilling fluid program provided fairly stable holes allowing open hole logs to be run. All holes were cemented successfully (although it took 3 attempts in one case).

  4. An Integrated Multi-component Processing and Interpretation Framework for 3D Borehole Seismic Data

    SciTech Connect

    M. Karrenbach

    2004-04-01

    This report covers the October 2003 until March 2004 time period. Work has continued successfully on several tasks 1 through 7. Most of these tasks have been executed independently. Due to availability of manpower during that time period we progressed steadily and completed some of the tasks, while others are still on going. We achieved the goals that we had set up in the task schedule. Reviewing the results of this work period indicates that our plan is on schedule and we did not encounter any unforeseen problems. The work plan will continue as projected. Several independent tasks pursuant the statement of project objectives have been executed simultaneously and are still on-going. This report summarizes the selection, test processing and test flow generation of a relevant 3D borehole seismic high-resolution test dataset. This multi-component data set is suitable for future use in this project due to data quality and unique acquisition characteristics. This report shows initial processing results that supported the data selection scheduled for Task 1. Use of real data is augmented by the creating a 3D layered synthetic geologic model in which multi-component 3D borehole seismic data were generated using 3D ray tracing. A gridded surface representation of the reflection interfaces as well as fully populated velocity grids were generated and archived. The model consists of a moderately dipping geologic setting with horizon undulations. A realistic velocity variation is used in between the three layers. Acquisition was simulated from a set of equidistant source locations at the surface of the model, while a close to vertical VSP well was used to capture the wave field data. The source pattern was close to a staggered grid pattern. Multi-component particle displacements were recorded every 50 ft down with an array length of 4,000 ft. P-P as well as P-S reflections were specified in the resulting wave field. We ensured a large enough aperture with enough fine sampling

  5. Change in Seismic Attenuation of the Nojima Fault Zone Measured Using Spectral Ratios from Borehole Seismometers

    NASA Astrophysics Data System (ADS)

    Kano, Y.; Tadokoro, K.; Nishigami, K.; Mori, J.

    2006-12-01

    We measured the seismic attenuation of the rock mass surrounding the Nojima fault, Japan, by estimating the P-wave quality factor, Qp, using spectral ratios derived from a multi-depth (800 m and 1800 m) seismometer array. We detected an increase of Qp in 2003-2006 compared to 1999-2000. Following the 1995 Kobe earthquake, the project "Fault Zone Probe" drilled three boreholes to depths of 500 m, 800 m, 1800 m, in Toshima, along the southern part of the Nojima fault. The 1800-m borehole was reported to reach the fault surface. One seismometer (TOS1) was installed at the bottom of the 800-m borehole in 1996 and another (TOS2) at the bottom of 1800-m borehole in 1997. The sampling rate of the seismometers is 100 Hz. The slope of the spectral ratios for the two stations plotted on a linear-log plot is -π t^{*}, where t^{*} is the travel time divided by the Qp for the path difference between the stations. For the estimation of Qp, we used events recorded by both TOS1 and TOS2 for periods of 1999-2000 and 2003-2006. To improve the signal-to-noise ratio of the spectral ratios, we first calculated spectra ratios between TOS1 and TOS2 for each event and averaged the values over the earthquakes for each period. We used the events that occurred within 10 km from TOS2, and the numbers of events are 74 for 1999-2000 and 105 for 2003-2006. Magnitudes of the events range from M0.5 to M3.1. The average value of Qp for 1999-2000 increased significantly compared to 2003-2006. The attenuation of rock mass surrounding the fault in 2003-2006 is smaller than that in 1999-2000, which suggests that the fault zone became stiffer after the earthquake. At the Nojima fault, permeability measured by repeated pumping tests decreased with time from the Kobe earthquake, infering the closure of cracks and a fault healing process occurred The increase of Qp is another piece of evidence for the healing process of the Nojima fault zone. u.ac.jp/~kano/

  6. Recordings from the deepest borehole in the New Madrid Seismic Zone

    USGS Publications Warehouse

    Wang, Z.; Woolery, E.W.

    2006-01-01

    The recordings at the deepest vertical strong-motion array (VSAS) from three small events, the 21 October 2004 Tiptonville, Tennessee, earthquake; the 10 February 2005 Arkansas earthquake; and the 2 June 2005 Ridgely, Tennessee, earthquake show some interesting wave-propagation phenomena through the soils: the S-wave is attenuated from 260 m to 30 m depth and amplified from 30 m to the surface. The S-wave arrival times from the three events yielded different shear-wave velocity estimates for the soils. These different estimates may be the result of different incident angles of the S-waves due to different epicentral distances. The epicentral distances are about 22 km, 110 km, and 47 km for the Tiptonville, Arkansas, and Ridgely earthquakes, respectively. These recordings show the usefulness of the borehole strong-motion array. The vertical strong-motion arrays operated by the University of Kentucky have started to accumulate recordings that will provide a database for scientists and engineers to study the effects of the near-surface soils on the strong ground motion in the New Madrid Seismic Zone. More information about the Kentucky Seismic and Strong-Motion Network can be found at www.uky.edu/KGS/geologichazards. The digital recordings are available at ftp://kgsweb.uky.edu.

  7. 3D seismic imaging around the 2.5 km deep COSC-1 scientific borehole, central Sweden

    NASA Astrophysics Data System (ADS)

    Hedin, Peter; Juhlin, Christopher; Buske, Stefan

    2015-04-01

    Following the successful completion of the COSC-1 drilling campaign, a number of geophysical investigations have been performed in and around the 2.5 km deep borehole. Three different seismic experiments were conducted simultaneously in the fall of 2014 to take advantage of the same source points; 1) a Vertical Seismic Profile (VSP) in the borehole, 2) three 2D seismic profiles across the borehole, and 3) a limited 3D seismic survey (presented here). The latter is the first 3D seismic survey on land in Scandinavia to target the Caledonian Nappes and will allow mapping a small part of the Seve Nappe Complex (SNC) in 3D. Furthermore, it will allow extrapolation of results from downhole logging, core analysis and other seismic surveys to structures surrounding the borehole. A total number of 429 receivers (10 Hz single component geophones) were planted with 20 m separation along 7 lines spaced 200 m apart. The total area with receivers covered approximately 1.5 km2 and was centered on the drill site. A combination of a mechanical source (a rock breaking hydraulic hammer, near offsets) and explosive charges (0.5 kg fired at 3.5 - 5 m depth, far offsets) were used. The source points were activated along roads radiating outwards from the COSC-1 drill site in a star pattern. The nominal shot spacing was 20 m (vibrating source) or 80 m (explosives) and maximum horizontal offset was about 5.75 km. The high-grade metamorphic SNC is well known from previous 2D seismic studies to be a highly reflective unit. However, due to the complex 3D geometry and lithological variation within the unit, it has not been clearly imaged. The new 3D data provide a means to image these structures in more detail and to follow the lithological and structural interfaces observed in the core into the surrounding unit. Preliminary results from the 3D processing and correlation with borehole data will be presented.

  8. Integrating Ground Penetrating Radar, Electrical Resistivity, Seismic Refraction, and Borehole Data to Image an Alluvial Aquifer in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Bailey, B. L.; Marshall, S. T.; Anderson, W. P.

    2010-12-01

    In this study we image the subsurface of a mountain stream floodplain in order to determine the three-dimensional aquifer geometry and degree of hydrologic connectivity. On site borehole data provides detailed information about the subsurface including direct measurements of depth to the water table; however, boreholes are not cost effective over a large area, the existing boreholes only have a penetration depth of ~3 meters, and subsurface stratigraphic features may only be locally present. We therefore combine borehole data with ground-penetrating radar (GPR), electrical resistivity, and seismic refraction data collected in linear transects perpendicular to the stream in order to effectively image a larger portion of the subsurface in three-dimensions. GPR data images several buried/abandoned channels, but no significant hydrologic barriers, such as clay lenses, have been found. Strong shallow reflectors in GPR data correlate to borehole measurements of water table depth and indicate a relatively flat water table surface. Furthermore, the GPR data show strong reflectors at the bedrock/sedimentary basin interface, which appears to dip towards the river mimicking the nearby surface topography. Resistivity transects also clearly delineate the water table and bedrock interface, reinforcing the GPR results. Seismic refraction data successfully resolves the dipping nature of the bedrock interface beyond the GPR penetration depth. Because bedrock was only encountered in one borehole, integrating the geophysical data provides constraints on overall aquifer volume. Future modeling studies of groundwater dynamics will better represent realistic aquifer properties by utilizing the data gathered here. Our continuing work will involve comparing the effectiveness of each geophysical technique for specific geologic targets, determining which techniques have the best resolution, and expanding the survey region.

  9. Seismic velocities and geologic logs from boreholes at three downhole arrays in San Francisco, California

    USGS Publications Warehouse

    Gibbs, James F.; Fumal, Thomas E.; Borcherdt, Roger D.; Warrick, Richard E.; Liu, Hsi-Ping; Westerlund, Robert E.

    1994-01-01

    The Loma Prieta earthquake of October 17, 1989 (1704 PST), has reinforced observations made by Wood and others (1908) after the 1906 San Francisco earthquake, that poor ground conditions (soft soil) increase the likelihood of shaking damage to structures. Since 1908 many studies (for example Borcherdt, 1970, Borcherdt and Gibbs, 1976, Borcherdt and Glassmoyer, 1992) have shown that soft soils amplify seismic waves at frequencies that can be damaging to structures. Damage in the City of San Francisco from the Loma Prieta earthquake was concentrated in the Marina District, the Embarcadero, and the China Basin areas. Each of these areas, to some degree, is underlain by soft soil deposits. These concentrations of damage raise important questions regarding the amplification effects of such deposits at damaging levels of motion. Unfortunately, no strong-motion recordings were obtained in these areas during the Loma Prieta earthquake and only a limited number (< 10) have been obtained on other soft soil sites in the United States. Consequently, important questions exist regarding the response of such deposits during damaging earthquakes, especially questions regarding the nonlinear soil response. Towards developing a data set to address these important questions, borehole strong-motion arrays have been installed at three locations. These arrays consist of groups of wide-dynamic-range pore-pressure transducers and three-component accelerometers, the outputs of which are recorded digitally. The arrays are designed to provide an integrated set of data on ground shaking, liquifaction-induced ground failure, and structural response. This report describes the detailed geologic, seismic, and material-property determinations derived at each of these sites.

  10. Development and Test of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon Sequestration

    SciTech Connect

    Paulsson, Bjorn N.P.

    2015-02-28

    To address the critical site characterization and monitoring needs for CCS programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2010 a contract to design, build and test a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor pod design and most important – a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-2.3 at frequencies up to 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The fibers used for the seismic sensors in the system are used to record Distributed Temperature Sensor (DTS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.

  11. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume V S-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (V), all S-wave measurements are presented that were performed in Borehole C4996 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  12. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume VI S-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (VI), all S-wave measurements are presented that were performed in Borehole C4997 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  13. Investigation on the real-time prediction of ground motions using seismic records observed in deep boreholes

    NASA Astrophysics Data System (ADS)

    Miyakoshi, H.; Tsuno, S.

    2013-12-01

    The present method of the EEW system installed in the railway field of Japan predicts seismic ground motions based on the estimated earthquake information about epicentral distances and magnitudes using initial P-waves observed on the surface. In the case of local earthquakes beneath the Tokyo Metropolitan Area, however, a method to directly predict seismic ground motions using P-waves observed in deep boreholes could issue EEWs more simply and surely. Besides, a method to predict seismic ground motions, using S-waves observed in deep boreholes and S-wave velocity structures beneath seismic stations, could show planar distributions of ground motions for train operation control areas in the aftermath of earthquakes. This information is available to decide areas in which the emergency inspection of railway structures should be performed. To develop those two methods, we investigated relationships between peak amplitudes on the surface and those in deep boreholes, using seismic records of KiK-net stations in the Kanto Basin. In this study, we used earthquake accelerograms observed in boreholes whose depths are deeper than the top face of Pre-Neogene basement and those on the surface at 12 seismic stations of KiK-net. We selected 243 local earthquakes whose epicenters are located around the Kanto Region. Those JMA magnitudes are in the range from 4.5 to 7.0. We picked the on-set of P-waves and S-waves using a vertical component and two horizontal components, respectively. Peak amplitudes of P-waves and S-waves were obtained using vertical components and vector sums of two horizontal components, respectively. We estimated parameters which represent site amplification factors beneath seismic stations, using peak amplitudes of S-waves observed in the deep borehole and those on the surface, to minimize the residuals between calculations by the theoretical equation and observations. Correlation coefficients between calculations and observations are high values in the range

  14. Seismically Initiated Carbon Dioxide Gas Bubble Growth in Groundwater: A Mechanism for Co-seismic Borehole Water Level Rise and Remotely Triggered Secondary Seismicity

    NASA Astrophysics Data System (ADS)

    Crews, Jackson B.

    of freshwater. Co-seismic borehole water level increases of the same magnitude were observed in Parkfield, California, and Long Valley caldera, California, in response to the propagation of a Rayleigh wave in the same amplitude and frequency range produced by the June 28, 1992 MW 7.3 Landers, California, earthquake. Co-seismic borehole water level rise is well documented in the literature, but the mechanism is not well understood, and the results of core-scale experiments indicate that seismically initiated CO2 gas bubble nucleation and growth in groundwater is a reasonable mechanism. Remotely triggered secondary seismicity is also well documented, and the reduction of effective stress due to CO2 bubble nucleation and growth in critically loaded faults may potentially explain how, for example, the June 28, 1992 MW 7.3 Landers, California, earthquake triggered seismicity as far away as Yellowstone, Wyoming, 1250 km from the hypocenter. A numerical simulation was conducted using Euler's method and a first-order kinetic model to compute the pore fluid pressure response to confining stress excursions on a Berea sandstone core flooded with initially under-saturated aqueous CO2. The model was calibrated on the pore pressure response to a rapid drop and later recovery of the confining stress. The model predicted decreasing overpressure as the confining stress oscillation frequency increased from 0.05 Hz to 0.30 Hz, in contradiction with the experimental results and field observations, which exhibit larger excess pore fluid pressure in response to higher frequency oscillations. The limitations of the numerical model point to the important influence of non-ideal behavior arising from a discontinuous gas phase and complex dynamics at the gas-liquid interface.

  15. An Integrated Multi-component Processing and Interpretation Framework for 3D Borehole Seismic Data

    SciTech Connect

    M. Karrenbach

    2004-10-15

    in normal processing. We improved functionality by adding multiple windowing options to each of the display items. The windows can be docked or un-docked, which is advantageous in a practical sense, since the display real estate can be spread across multiple display monitors. All windows transparently tie into the same item tree and views get updated dynamically and transparently. Each display item can be associated with a particular display widget as is the case for the multi-component hodogram display widget. All tasks were performed successfully, ensuring the continued progress of this project as outlined in the original proposal. Deliverables generated during this time period consist of reporting details and synthetically modeled seismic data for a 3D layered geological model. The numerically modeled SEGY data, as well as the model representation data, are ready to be sent out to DOE facilities for archiving. Based on the successful conclusion of work performed during this three month period we continue to occasionally generate synthetically modeled 3D borehole seismic data, according to Tasks 2 and 3. At the same time we proceed to design, implement and test according to the original plan the basic data classes and the basic framework outlined in Tasks 5 through 11, as well as 16.

  16. Seismic imaging in the eastern Scandinavian Caledonides: siting the 2.5 km deep COSC-2 borehole, central Sweden

    NASA Astrophysics Data System (ADS)

    Juhlin, Christopher; Hedin, Peter; Gee, David G.; Lorenz, Henning; Kalscheuer, Thomas; Yan, Ping

    2016-05-01

    The Collisional Orogeny in the Scandinavian Caledonides (COSC) project, a contribution to the International Continental Scientific Drilling Program (ICDP), aims to provide a deeper understanding of mountain belt dynamics. Scientific investigations include a range of topics, from subduction-related tectonics to the present-day hydrological cycle. COSC investigations and drilling activities are focused in central Scandinavia, where rocks from the middle to lower crust of the orogen are exposed near the Swedish-Norwegian border. Here, rock units of particular interest occur in the Seve Nappe Complex (SNC) of the so-called Middle Allochthon and include granulite facies migmatites (locally with evidence of ultra-high pressures) and amphibolite facies gneisses and mafic rocks. This complex overlies greenschist facies metasedimentary rocks of the dolerite-intruded Sarv Nappes and underlying, lower grade Jamtlandian Nappes (Lower Allochthon). Reflection seismic profiles have been an important component in the activities to image the subsurface structure in the area. Subhorizontal reflections in the upper 1-2 km are underlain and interlayered with strong west- to northwest-dipping reflections, suggesting significant east-vergent thrusting. Two 2.5 km deep fully cored boreholes are a major component of the project, which will improve our understanding of the subsurface structure and tectonic history of the area. Borehole COSC-1 (IGSN: http://hdl.handle.net/10273/ICDP5054EEW1001), drilled in the summer of 2014, targeted the subduction-related Seve Nappe Complex and the contact with the underlying allochthon. The COSC-2 borehole will be located further east and will investigate the lower grade, mainly Cambro-Silurian rocks of the Lower Allochthon, the Jamtlandian decollement, and penetrate into the crystalline basement rocks to identify the source of some of the northwest-dipping reflections. A series of high-resolution seismic profiles have been acquired along a composite ca

  17. Experimental evidence for seismically initiated gas bubble nucleation and growth in groundwater as a mechanism for coseismic borehole water level rise and remotely triggered seismicity

    NASA Astrophysics Data System (ADS)

    Crews, Jackson B.; Cooper, Clay A.

    2014-09-01

    Changes in borehole water levels and remotely triggered seismicity occur in response to near and distant earthquakes at locations around the globe, but the mechanisms for these phenomena are not well understood. Experiments were conducted to show that seismically initiated gas bubble growth in groundwater can trigger a sustained increase in pore fluid pressure consistent in magnitude with observed coseismic borehole water level rise, constituting a physically plausible mechanism for remote triggering of secondary earthquakes through the reduction of effective stress in critically loaded geologic faults. A portion of the CO2 degassing from the Earth's crust dissolves in groundwater where seismic Rayleigh and P waves cause dilational strain, which can reduce pore fluid pressure to or below the bubble pressure, triggering CO2 gas bubble growth in the saturated zone, indicated by a spontaneous buildup of pore fluid pressure. Excess pore fluid pressure was measured in response to the application of 0.1-1.0 MPa, 0.01-0.30 Hz confining stress oscillations to a Berea sandstone core flooded with initially subsaturated aqueous CO2, under conditions representative of a confined aquifer. Confining stress oscillations equivalent to the dynamic stress of the 28 June 1992 Mw 7.3 Landers, California, earthquake Rayleigh wave as it traveled through the Long Valley caldera, and Parkfield, California, increased the pore fluid pressure in the Berea core by an average of 36 ± 15 cm and 23 ± 15 cm of equivalent freshwater head, respectively, in agreement with 41.8 cm and 34 cm rises recorded in wells at those locations.

  18. A pseudospectral method for the simulation of 3-D ultrasonic and seismic waves in heterogeneous poroelastic borehole environments

    NASA Astrophysics Data System (ADS)

    Sidler, Rolf; Carcione, José M.; Holliger, Klaus

    2014-02-01

    We present a novel approach for the comprehensive, flexible and accurate simulation of poroelastic wave propagation in 3-D cylindrical coordinates. An important application of this method is the realistic modelling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, as of yet largely unresolved, problem in exploration geophysics. To this end, we consider a numerical mesh consisting of three concentric domains representing the borehole fluid in the centre followed by the mudcake and/or casing, and the surrounding porous formation. The spatial discretization is based on a Chebyshev expansion in the radial direction and Fourier expansions in the vertical and azimuthal directions as well as a Runge-Kutta integration scheme for the time evolution. Trigonometric interpolation and a domain decomposition method based on the method of characteristics are used to match the boundary conditions at the fluid/porous-solid and porous-solid/porous-solid interfaces as well as to reduce the number of gridpoints in the innermost domain for computational efficiency. We apply this novel modelling approach to the particularly challenging scenario of near-surface borehole environments. To this end, we compare 3-D heterogeneous and corresponding rotationally invariant simulations, assess the sensitivity of Stoneley waves to formation permeability in the presence of a casing and evaluate the effects of an excavation damage zone behind a casing on sonic log recordings. Our results indicate that only first arrival times of fast modes are reasonably well described by rotationally invariant approximations of 3-D heterogenous media. We also find that Stoneley waves are indeed remarkably sensitive to the average permeability behind a perforated PVC casing, and that the presence of an excavation damage zone behind a casing tends to dominate the overall signature of recorded seismograms.

  19. The multi-parameter borehole system and high resolution seismic studies in the western part of the main Marmara Fault in the frame of MARSITE Project.

    NASA Astrophysics Data System (ADS)

    Ozel, Oguz; Guralp, Cansun; Tunc, Suleyman; Yalcinkaya, Esref

    2016-04-01

    The main objective of this study is to install a multi-parameter borehole system and surface array as close to the main Marmara Fault (MMF) in the western Marmara Sea as possible, and measure continuously the evolution of the state of the fault zone surrounding the MMF and to detect any anomaly or change, which may occur before earthquakes by making use of the data from the arrays already running in the eastern part of the Marmara Sea. The multi-parameter borehole system is composed of very wide dynamic range and stable borehole (VBB) broad band seismic sensor, and incorporate strain meter, tilt meter, and temperature and local hydrostatic pressure measuring devices. The borehole seismic station uses the latest update technologies and design ideas to record "Earth tides" signals to the smallest magnitude -3 events. Additionally, a surface microearthquake observation array, consisting of 8-10 seismometers around the borehole is established to obtain continuous high resolution locations of micro-seismicity and to better understand the existing seismically active structures and their roles in local tectonic settings.Bringing face to face the seismograms of microearthquakes recorded by borehole and surface instruments portrays quite different contents. The shorter recording duration and nearly flat frequency spectrum up to the Nyquist frequencies of borehole records are faced with longer recording duration and rapid decay of spectral amplitudes at higher frequencies of a surface seismogram. The main causative of the observed differences are near surface geology effects that mask most of the source related information the seismograms include, and that give rise to scattering, generating longer duration seismograms. In view of these circumstances, studies on microearthquakes employing surface seismograms may bring on misleading results. Particularly, the works on earthquake physics and nucleation process of earthquakes requires elaborate analysis of tiny events. It is

  20. Seismic velocities and attenuation from borehole measurements near the Parkfield prediction zone, Central California

    USGS Publications Warehouse

    Gibbs, James F.; Roth, Edward F.

    1989-01-01

    Shear (S)- and compressional (P)- wave velocities were measured to a depth of 195 m in a borehole near the San Andreas fault where a recurrence of a moderate Parkfield earthquake is predicted. S-wave velocities determined from orthogonal directions of the S-wave source show velocity differences of approximately 20 percent. An average shear-wave Q of 4 was determined in relatively unconsolidated sands and gravels of the Paso Robles Formation in the depth interval 57.5-102.5 m.

  1. Borehole Seismic Monitoring at Otway Using the Naylor-1 Instrument String

    SciTech Connect

    Daley, T.M.; Sharma, Sandeep; Dzunic, Aleksander; Urosevic, Milovan; Kepic, Anton; Sherlock, Don

    2009-06-01

    The Naylor-1 monitoring completion, a unique and innovative instrumentation package, was designed and fabricated in FY 2007 at Berkeley Laboratory. Tom Daley, Barry Freifeld and Duo Wang (all from Berkeley Lab) were on site at the Otway Project between September 26 and October 14, 2007, working with CO2CRC and their subcontractors, AGR Asia Pacific and Eastern Well Services to complete Naylor-1 and initiate baseline data collection. Figure 1 shows a schematic of Naylor-1's sensor layout. There are three U-tube geochemical samplers, with one located near the top of the residual CH{sub 4} gas cap and two located beneath the gas-water contact. The 21 geophones are used for performing three distinct seismic measurements, high resolution travel time (HRTT), walkaway vertical seismic profiling (WVSP), and microseismic monitoring. These activities are separated in to active source seismic and microseismic monitoring, and will be described separately.

  2. Combined Borehole Seismic and Electromagnetic Inversion For High-Resolution Petrophysical Assessment Of Hydocarbon Reservoirs

    SciTech Connect

    Carlos Torres-Verdin; G. Michael Hoversten; Ki Ha Lee; Gregory Newman; Kurt Nihei

    2008-12-31

    This report summarizes the work performed between January 2005 and December 2007, under DOE research contract DE-FC26-04NT15507. The project is was performed by the Center for Petroleum and Geosystems Engineering of The University of Texas at Austin and Lawrence Berkeley National Laboratory under the auspices of the National Energy Technology Office (NETL) and the Strategic Center for Natural Gas and Oil (SCNGO). During the three-year project, we developed new methods to combine borehole sonic and electromagnetic (EM) measurements for the improved assessment of elastic and petrophysical properties of rock formations penetrated by a well. Sonic measurements consisted of full waveform acoustic amplitudes acquired with monopole and dipole sources, whereas EM measurements consisted of frequency-domain voltages acquired with multi-coil induction systems. The combination of sonic and EM measurements permitted the joint estimation of elastic and petrophysical properties in the presence of mud-filtrate invasion. It was conclusively shown that the combined interpretation of sonic and EM measurements reduced non-uniqueness in the estimation of elastic and petrophysical properties and improved the spatial resolution of the estimations compared to estimations yielded separately from the two types of measurements. Moreover, this approach enabled the assessment of dynamic petrophysical properties such as permeability, as it incorporated the physics of mud-filtrate invasion in the interpretation of the measurements. The first part of the project considered the development of fast and reliable numerical algorithms to simulate borehole sonic waveforms in 2D, 3D, and radial 1D media. Such algorithms were subsequently used in the quantitative estimation of elastic properties jointly from borehole sonic and EM measurements. In the second part of the project we developed a new algorithm to estimate water saturation, porosity, and dry-rock elastic moduli jointly from borehole sonic and

  3. Firn air-content of Larsen C Ice Shelf, Antarctic Peninsula, from seismic velocities, borehole surveys and firn modelling

    NASA Astrophysics Data System (ADS)

    Kulessa, Bernd; Brisbourne, Alex; Booth, Adam; Kuipers Munneke, Peter; Bevan, Suzanne; Luckman, Adrian; Hubbard, Bryn; Gourmelen, Noel; Palmer, Steve; Holland, Paul; Ashmore, David; Shepherd, Andrew

    2016-04-01

    The rising surface temperature of Antarctic Peninsula ice shelves is strongly implicated in ice shelf disintegration, by exacerbating the compaction of firn layers. Firn compaction is expected to warm the ice column and, given sufficiently wet and compacted layers, to allow meltwater to penetrate into surface crevasses and thus enhance hydrofracture potential. Integrating seismic refraction surveys with borehole neutron and firn core density logging, we reveal vertical and horizontal changes in firn properties across Larsen C Ice Shelf. Patterns of firn air-content derived from seismic surveys are broadly similar to those estimated previously from airborne radar and satellite data. Specifically, these estimates show greater firn compaction in the north and landward inlets compared to the south, although spatial gradients in seismic-derived air-contents are less pronounced than those previously inferred. Firn thickness is less than 10 m in the extreme northwest of Larsen C, in Cabinet Inlet, yet exceeds 40 m in the southeast, suggesting that the inlet is a focus of firn compaction; indeed, buried layers of massive refrozen ice were observed in 200 MHz GPR data in Cabinet and Whirlwind Inlets during a field campaign in the 2014-15 austral summer. Depth profiles of firn density provide a reasonable fit with those derived from closely-located firn cores and neutron probe data. Our model of firn structure is driven by RACMO and includes a 'bucket'-type hydrological implementation, and simulates the depth-density profiles in the inlets well. Discrepancies between measured and modelled depth-density profiles become progressively greater towards the ice-shelf front. RACMO incorrectly simulates the particular leeward (sea-ice-influenced) microclimate of the shallow boundary layer, leading to excess melt and/or lack of snowfall. The spatial sampling density of our seismic observations will be augmented following a further field campaign in the 2016-17 austral summer

  4. Integration of borehole geophysical properties into surface multichannel seismic data sets: First results from the SCOPSCO ICDP project

    NASA Astrophysics Data System (ADS)

    Lindhorst, Katja; Krastel, Sebastian; Baumgarten, Henrike; Wonik, Thomas; Francke, Alexander; Wagner, Bernd

    2015-04-01

    Lake Ohrid (Macedonia/Albania), located on the Balkan Peninsula within the Dinaride-Hellenide-Albanide mountain belt is probably the oldest, continuously existing lake in Europe (2-5 Ma). Multidisciplinary studies at Lake Ohrid prove that it is an important archive to study the sedimentary and tectonic evolution of a graben system over a long time period. Within the frame of the International Continental Drilling Program (ICDP) a successful deep drilling campaign was carried out in spring 2013 with more than 2000 m of sediment cores at four sites. Downhole logging was realized at each site after coring, enabling us to integrate geophysical and sedimentological data into seismic cross sections in order to get a profound knowledge of climatic and environmental changes in the catchment area. The longest record (~569 m, site DEEP), recovered in the central part of lake Ohrid likely covers the entire lacustrine succession within Lake Ohrid Basin including several Interglacial and Glacial cycles. Sedimentological analyses are still ongoing; however, the upper 260 m of the DEEP reflecting the time period between Mid-Pleistocene Transition to present. An integration of borehole geophysical data into surface seismic lines shows that sediments, within the central part of Lake Ohrid, were deposited in a deep water environment over the last 600 ka. For the uppermost sediment cover, about 50 m of penetration, a very high resolution sediment echosounder data set allows us to identify major tephra layers and track them through the entire deep basin. Furthermore, a vertical seismic profile was carried out at site DEEP resulting in a conversion from two-way-travel-time into sediment depth. One major outcome is a corridor stack of the upgoing wave that clearly shows several reflectors linked to changes of sediment properties of cores and hence environmental and climate changes in the surrounding area of Lake Ohrid Basin. Several changes from Glacial to Interglacial, and vice versa

  5. Seismic structure of oceanic crust at ODP borehole 504B: Investigating anisotropy and layer 2 characteristics

    NASA Astrophysics Data System (ADS)

    Gregory, E. P. M.; Hobbs, R. W.; Peirce, C.; Wilson, D. J.

    2015-12-01

    Fracture and fault networks in the upper oceanic crust influence the circulation of hydrothermal fluids and heat transfer between crust and ocean. These fractures form by extensional stresses, with a predominant orientation parallel to the ridge axis, creating porosity- and permeability-derived anisotropy that can be measured in terms of seismic velocity. These properties change as the crust ages and evolves through cooling, alteration and sedimentation. The rate at which these changes occur and their effects on oceanic crustal structure and hydrothermal flow patterns are currently not well constrained. The NERC-funded OSCAR project aims to understand the development of upper oceanic crust, the extent and influence of hydrothermal circulation on the crust, and the behavior of fluids flowing in fractured rock. We show P-wave velocity models centered on DSDP/ODP Hole 504B, located ~200 km south of the Costa Rica Rift, derived from data acquired during a recent integrated geophysics and oceanography survey of the Panama Basin. The data were recorded by 25 four-component OBSs deployed in a grid, that recorded ~10,000 full azimuthal coverage shots fired by a combined high- and low-frequency seismic source. Both reflection and refraction data are integrated to reveal the seismic velocity structure of the crust within the 25 km by 25 km grid. The down-hole geological structure of 6 Ma crust at 504B comprises 571.5 m of extrusive basalts overlying a 209 m transition zone of mixed pillows and dikes containing a clear alteration boundary, which grades to >1050 m of sheeted dikes. Our model results are compared with this lithological structure and other previously published results to better understand the nature of velocity changes within seismic layer 2. The data provide a 3D framework, which together with analysis of the S-wave arrivals and particle motion studies, constrain estimates of the seismic anisotropy and permeability structure of the upper oceanic crust as it

  6. Late-stage stretching and subsidence rates in the Danakil Depression, evidenced from borehole records and seismic reflection data

    NASA Astrophysics Data System (ADS)

    Booth, Adam; Bastow, Ian; Magee, Craig; Keir, Derek; Corti, Giacomo; Jackson, Chris; Wilkinson, Jason

    2016-04-01

    The Ethiopian and Afar Rift systems provide a globally unique opportunity to study the incipient transition from continental rifting to sea-floor spreading. A consensus has emerged that a considerable proportion of plate extension in Ethiopia is accommodated by dyke intrusion, with smaller contributions from crustal thinning. However, observations of thinned crust and a pulse in Quaternary-Recent basaltic volcanism within Ethiopia's Danakil Depression have been cited (Bastow and Keir, 2011) as evidence that localised plate stretching may mark the final stages of continent-ocean transition. We explore this hypothesis using an archive of five 2-D seismic reflection profiles, each between 7-10 km in length, and ˜120 borehole records distributed over an area of 225 km2. From depth and age relationships of key marker horizons, we also suggest local subsidence and extension rates. The borehole archive reveals extensive evaporite sequences deposited in and around an asymmetric basin, bounded to the west by a network of east-dipping normal faults. West of the basin, the maximum observed thickness of evaporites is 150 m, beneath which are deposits of clastic sediment, but a sequence of evaporites at least 900 m thick is observed at the basin centre. The sedimentary architecture of these sequences suggests deposition in a shallow salt-pan environment, with seasonal - potentially diurnal - freshening of the brine supply (Warren, 2012). Isotopic analysis of reef carbonates in the basin flank dates the last marine incursion into the Danakil Depression at 24-230ka (Lalou et al., 1970; Bonatti et al., 1971; Bannert et al., 1971), therefore the evaporite sequence must be younger than this. A key marker horizon within the evaporites is the potash-bearing Houston Formation, also distinct in borehole records given its high porosity (25-40%) and radioactivity (50-250 API units). The elevation of the Houston Formation is ˜500 m deeper in the centre of the basin than on the flank

  7. Size of seismic events during borehole injections: the effects of source mechanisms, stress and pore pressure distribution

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Ondovcin, T.; Zhao, P.

    2012-12-01

    The fluid injection in boreholes is usually carried out during industrial operations targeted to permeability enhacement of hydrocarbon reservoirs and geothermal heat exchangers. Pressures in the order of 10 MPa are used in order to decrease the effective normal stress that results in shearing of preexisting fractures and/or creating new tensile fractures. A part of the deformation is brittle, which is expressed in the form of small seismic events. In most cases only microearthquakes with manitudes below 2 are generated, which is namely the case of treatments in hydrocarbon reservoirs. However, treatments of geothermal fields are often associated with small magnitude earthquakes (ML from 2 to 4), which represents a concern for the seismic risk of these operations. This happened in the Soultz (France), Basel (Switzerland) and also Berlin (Salvador) geothermal projects. Interestingly, the largest events occurred after shut-in of the well, or during the latest phase of injection. However, increased seismicity usually continues even long after bleeding-off the well. The largest events occur not only late during the injections, but also far from the injection well, at the edge of the seismically activated rock volume. Recent results of the frequency-magnitude analysis of the Basel seismicity show anticorrelation of b-value with the distance from the well, which proves the tendency of larger events to occurr far from the well. Other studies show the increase of stress drops with the distance to the injection, which might indicate a common intrinsic mechanism reposnsible for these two observations. The existing data point to two apparent discrepancies: (i) the largest events occur at larger distances where the stress field is less perturbed by the fluid injection and (ii) the largest events occur after injection when the fluid pressure in the rock volume is decreasing. We use the available results of fluid injection seismicity and apply our own analyses of frequency size

  8. Establishment of borehole observation system and high resolution seismic studies in the western part of the main Marmara Fault in the frame of MARSite Project

    NASA Astrophysics Data System (ADS)

    Ozel, A.; Yalcinkaya, E.; Guralp, C. M.; Tunc, S.; Meral Ozel, N.

    2013-12-01

    The main objective of this study is to install a multi-parameter borehole system and surface array as close to the main Marmara Fault (MMF) in the western Marmara Sea as possible, and measure continuously the evolution of the state of the fault zone surrounding the MMF and to detect any anomaly or change which may occur before earthquakes by making use of the data from the arrays already running in the eastern part of the Marmara Sea. The multi-parameter borehole system will be composed of very wide dynamic range and stable borehole (VBB) broad band seismic sensor, and incorporate 3-D strain meter, tilt meter, and temperature and local hydrostatic pressure measuring devices. The borehole seismic station will use the latest update technologies and design ideas to record 'Earth tides' signals to the smallest magnitude -3 events. Bringing face to face the seismograms of microearthquakes recorded by borehole and surface instruments portrays quite different contents. The shorter recording duration and nearly flat frequency spectrum up to the Nyquist frequencies of borehole records are faced with longer recording duration and rapid decay of spectral amplitudes at higher frequencies of a surface seismogram. The main causative of the observed differences are near surface geology effects that mask most of the source related information the seismograms include, and that give rise to scattering, generating longer duration seismograms. In view of these circumstances, studies on microearthquakes employing surface seismograms may bring on misleading results. Particularly, the works on earthquake physics and nucleation process of earthquakes requires elaborate analysis of tiny events. It is obvious from the studies on the nucleation process of the 1999 earthquake that tens of minutes before the major rupture initiate noteworthy microearthquake activity happened. The starting point of the 1999 rupture was a site of swarm activity noticed a few decades prior the main shock

  9. Anatomy of the high-frequency ambient seismic wave field at the TCDP borehole

    NASA Astrophysics Data System (ADS)

    Hillers, G.; Campillo, M.; Lin, Y.-Y.; Ma, K.-F.; Roux, P.

    2012-06-01

    The Taiwan Chelungpu-fault Drilling Project (TCDP) installed a vertical seismic array between 950 and 1270 m depth in an active thrust fault environment. In this paper we analyze continuous noise records of the TCDP array between 1 and 16 Hz. We apply multiple array processing and noise correlation techniques to study the noise source process, properties of the propagation medium, and the ambient seismic wave field. Diurnal amplitude and slowness patterns suggest that noise is generated by cultural activity. The vicinity of the recording site to the excitation region, indicated by a narrow azimuthal distribution of propagation directions, leads to a predominant ballistic propagation regime. This is evident from the compatibility of the data with an incident plane wave model, polarized direct arrivals of noise correlation functions, and the asymmetric arrival shape. Evidence for contributions from scattering comes from equilibrated earthquake coda energy ratios, the frequency dependent randomization of propagation directions, and the existence of correlation coda waves. We conclude that the ballistic and scattered propagation regime coexist, where the first regime dominates the records, but the second is weaker yet not negligible. Consequently, the wave field is not equipartitioned. Correlation signal-to-noise ratios indicate a frequency dependent noise intensity. Iterations of the correlation procedure enhance the signature of the scattered regime. Discrepancies between phase velocities estimated from correlation functions and in-situ measurements are associated with the array geometry and its relative orientation to the predominant energy flux. The stability of correlation functions suggests their applicability in future monitoring efforts.

  10. a Borehole Seismic System for Active and Passive Seimsic Studies to 3 KM at Ptrc's Aquistore Project

    NASA Astrophysics Data System (ADS)

    Schmitt, D. R.; Nixon, C.; Kofman, R.; White, D. J.; Worth, K.

    2015-12-01

    We have constructed a downhole seismic recording system for application to depths of nearly 3 km and temperatures up to 135 °C at Aquistore, an independent research and monitoring project in which liquid CO2 is being stored in a brine and sandstone water formation. The key component to this system is a set of commercially available slim-hole 3-C sondes carrying 15 Hz geophones deployable in open and cased boreholes with diameters as small as 57 mm. The system is currently hosted on a 4-conductor wireline with digital information streamed to the surface recording unit. We have further incorporated these sondes into a mobile passive monitoring unit that includes a number of redundancies such as a multiple Tbyte network accessible RAID hard-drive system (NAS) and a self-designed uninterruptible power supply. The system can be remotely controlled via the internet. The system is currently deployed covering a range of depths from 2850 m to 2910 m. Ambient temperatures at this depth are approximately 110 °C with onboard tool temperatures running at 115 °C. Data is continuously streamed to the NAS for archiving, approximately 11 GBytes of data is recorded per day at the sampling period of 0.5 ms. The lack of noise at this depth allows short data snippets to be flagged with a simple amplitude threshold criteria. The greatly reduced data volume of the snippets allows for ready access via the internet to the system for ongoing quality control. Spurious events, mostly small amplitude tube waves originating at or near the surface, are readily discounted. Active seismic measurements are carried out simultaneously but these require that an appropriately accurate independent GPS based time synchronization be used. Various experiences with event detection, orientation of sondes using both explosives and seismic vibrator, potential overheating of the surface electronics, and issues related to loss of shore power provide for a detailed case study. Aquistore, managed by the

  11. Investigations on alluvial deposits through borehole stratigraphy, radiocarbon dating and passive seismic technique (Carnic Alps, NE Italy)

    NASA Astrophysics Data System (ADS)

    Viero, Alessia; Marchi, Lorenzo; Cavalli, Marco; Crema, Stefano; Fontana, Alessandro; Mozzi, Paolo; Venturini, Corrado

    2016-04-01

    their extent and the maximum depths. Two passive seismic campaigns were carried out near the borehole site and along the But valley at different elevations. The aim was to investigate the depth of the buried bedrock and therefore to indirectly characterize the thickness of alluvial deposits. We calibrated the fundamental frequency of each site by constraining average shear velocity of the alluvial sediments close to the borehole site with known stratigraphy. Eight HVSR (Horizontal to Vertical Spectral Ratio, Nakamura, 1989) were carried out, and thus a first sketch of the buried valley floor along a longitudinal profile of about 5 km was depicted. The values of the derived bedrock depth allow to quantify the differences in thickness between the alluvial deposits and the Moscardo Torrent fan deposits. This information helps to address the contribution of the debris-flow processes in damming the upper But River during the last five centuries. The results confirm the role of debris-flow deposits from the Moscardo Torrent in shaping the morphology of the valley floor of But River and show suitability of an integrated approach, encompassing log stratigraphy, geophysical surveys and analysis of historical documents, for gaining insights on the evolution of alpine valleys. Reference Nakamura, Y., 1989. A method for dynamic characteristic estimation of subsurface using microtremor on the ground surface. Quarterly Report of Railway Technical Research Institute, 30(1): 25-33.

  12. Change Detection via Cross-Borehole and VSP Seismic Surveys for the Source Physics Experiments (SPE) at the Nevada National Security Site (NNSS)

    NASA Astrophysics Data System (ADS)

    Knox, H. A.; Abbott, R. E.; Bonal, N. D.; Aldridge, D. F.; Preston, L. A.; Ober, C.

    2012-12-01

    In support of the Source Physics Experiment (SPE) at the Nevada National Security Site (NNSS), we have conducted two cross-borehole seismic experiments in the Climax Stock. The first experiment was conducted prior to the third shot in this multi-detonation program using two available boreholes and the shot hole, while the second experiment was conducted after the shot using four of the available boreholes. The first study focused on developing a well-characterized 2D pre-explosion Vp model including two VSPs and a seismic refraction survey, as well as quantifying baseline waveform similarity at reoccupied sites. This was accomplished by recording both "sparker" and accelerated weight drop sources on a hydrophone string and surface geophones. In total more than 18,500 unique source-receiver pairs were acquired during this testing. In the second experiment, we reacquired aproximately 8,800 source-receiver pairs and performed a cross-line survey allowing for a 3D post-explosion Vp model. The data acquired from the reoccupied sites was processed using cross-correlation methods and change detection methodologies, including comparison of the tomographic images. The survey design and subsequent processing provided an opportunity to investigate seismic wave propagation through damaged rock. We also performed full waveform forward modelling for a granitic body hosting a perched aquifer. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume III P-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    In this volume (III), all P-wave measurements are presented that were performed in Borehole C4997 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 390 to 1220 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 40 ft (later relocated to 27.5 ft due to visibility in borehole after rain) in Borehole C4997, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4997, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  14. Experimental Investigations Regarding the Use of Sand as an Inhibitor of Air Convection in Deep Seismic Boreholes

    USGS Publications Warehouse

    Holcomb, L. Gary; Sandoval, Leo; Hutt, Bob

    1998-01-01

    INTRODUCTION Tilt has been the nemesis of horizontal long period seismology since its inception. Modern horizontal long period seismometers with their long natural periods are incredibly sensitive to tilt. They can sense tilts smaller than 10 -11 radians. To most readers, this is just a very very small number, so we will begin with an example, which should help to illustrate just how small 10 -11 radians is. Suppose we have an absolutely rigid rod which is approximately 4170 kilometers long; this just happens to be the Rand McNally map scaled crow flight distance between Los Angeles and Boston. Tilting this rod 10 -11 radians corresponds to raising one end of the rod 0.0000417 meters. Alas, this is just another very very small number! However, this corresponds to slipping a little less than one third a sheet of ordinary copying paper under one end of this perfectly rigid rod. To clarify, we mean, take a sheet of paper just like the paper this report is printed on and split it a little less than one third in the thickness direction, then put it under the end of the 4170 kilometer long rod! This will tilt the rod 10 -11 radians. Real world seismometers are nowhere near the length of this rod. A KS-54000 is about two meters long. Tilting a rod only two meters long 10 -11 radians corresponds to moving one end of this rod a mere 0.00000000002 meters or 0.02 millimicrons. As one of the authors old math teachers used to say, 'That's PDS' (PDS = Pretty Damn Small). Unfortunately, the long period seismologist does not have the luxury of ignoring PDS numbers when it suits him as the mathematician frequently does. He must live in the real world in which tilts this small create severe contamination of long period seismic data. At periods longer than 20 seconds, tilt noise contaminates the long period data from all instruments installed on or near the earth's surface. Many years of experimentation revealed that installing the sensors at depth in deep mines drastically reduced

  15. On Boreholes and PBO Borehole Strain

    NASA Astrophysics Data System (ADS)

    Gladwin, M. T.; Mee, M. W.

    2003-12-01

    Borehole tensor strainmeters (GTSM) installed in Australia and California have established a baseline of data spanning more than twenty years. The current baseline of data allows characterisation of a moderate number of instruments in a range of very different environments in a way which defines reasonable performance expectations for the upcoming PBO deployments. A generic understanding of effects which result from the process of installation of the instrument in a stressed rock mass emerges. This indicates that, provided due allowance is made for experimentally determined borehole recovery effects, the contribution of borehole strain meters more than adequately fills the observational gap between high stability/long term geodetic measurements of strain and strain rates and high resolution/high frequency seismic observations of earth deformation processes. The various strain relief processes associated with the installation procedures and borehole recovery effects associated with pre-existing stress fields will be documented. Procedures for calibration of the total borehole inclusion and for progressive removal of effects due to rock anisotropy and visco-elastic creep of the grout and rock close to the borehole from far field tectonic effects will be defined and illustrated with examples. Observed deviations from these processes will be shown to be small and consistent with otherwise observed or implied fault motions. Full details of these borehole induced processes are, however, difficult to determine in the early years following installation, particularly if there is significant tectonic activity at the time. Once quantified for each site, the effects can be robustly removed from data streams.

  16. Seismic structure of uppermost mantle and crust beneath West Philippine Basin and Kyusyu-Palau ridge by seafloor borehole seismometer, OBS and airgun experiment

    NASA Astrophysics Data System (ADS)

    Arisaka, M.; Shinohara, M.; Yamada, T.; Mochizuki, K.; Kaiho, Y.; Araki, E.; Nakahigashi, K.; Ito, M.; Shiobara, H.; Suehiro, K.; Kanazawa, T.

    2003-12-01

    The western Pacific area including the Philippine Sea plate is characterized by many island-arc and trench systems and back-arc basins, which are estimated to correspond to subduction of oceanic plates. The Philippine Sea plate is divided into two regions by the Kyushu-Palau Ridge running from north to south. There are the Shikoku basin and the Parece-Vela basin in the eastern part, and the West Philippine basin exists in the western part. It is important to study an uppermost mantle and crustal seismic structure of the Philippine Sea plate to consider the formation process and to estimate the development process of an island-arc and trench system. In addition, the borehole broadband seismic station (WP-1) was installed in the easternmost part of the West Philippine basin in 2001 and is in operation. To obtain the seismic structure is also important for analyses of the data retrieved from the WP-1. We conducted seismic surveys with ocean bottom seismometers (OBS), the WP-1 and controlled sources to obtain the seismic crustal structure around the WP-1 observatory March 2002, October 2002 and May 2003 using the R/V KAIREI, JAMSTEC. The total length of the profile parallel to the ridge (NS line) is about 100 km. The profile perpendicular to the ridge (EW line) has approximately 120 km long in total and crosses the ridge and the WP-1 borehole seismometer. As the controlled sources, we used a GI gun (3 liters) and Bolt 1500LL type (1500cu.in.) airguns. Number and kind of airguns differed in each experiment. Total 12 OBSs were deployed at an average interval of 10km(NS line) and 15km (EW line) for the experiments. A seismic velocity model for shallow structure is derived from using a tau-p inversion of individual OBS records. A deep structure beneath the profile is estimated by using a two-dimensional ray tracing method. The preliminary results for the NS line are obtained. P-wave velocity of the sedimentary layer is 2.7 km/s and the thickness is about 500 m. These

  17. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume I P-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-07-06

    In this volume (I), all P-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 370 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4993, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  18. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume II P-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-07-06

    In this volume (II), all P-wave measurements are presented that were performed in Borehole C4996 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 360 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1180 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4996, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4996, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  19. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume IV S-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    In this volume (IV), all S-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. S-wave measurements were performed over the depth range of 370 to 1300 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Shear (S) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition, a second average shear wave record was recorded by reversing the polarity of the motion of the T-Rex base plate. In this sense, all the signals recorded in the field were averaged signals. In all cases, the base plate was moving perpendicular to a radial line between the base plate and the borehole which is in and out of the plane of the figure shown in Figure 1.1. The definition of “in-line”, “cross-line”, “forward”, and “reversed” directions in items 2 and 3 of Section 2 was based on the moving direction of the base plate. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas (UT) was embedded near the borehole at about 1.5 ft below the ground surface. The Redpath geophone and the UT geophone were properly aligned so that one of the horizontal components in each geophone was aligned with the direction of horizontal shaking of the T-Rex base plate. This volume is organized into 12 sections as follows. Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vs Profile at Borehole C4993

  20. PBO Borehole Strainmeters

    NASA Astrophysics Data System (ADS)

    David, M.; Hasting, M.; Jackson, M.; Dittmann, S. T.; Johnson, W.; Venator, S.; Andersen, G.; Hodgkinson, K.; Mueller, B.; Prescott, W.

    2006-12-01

    UNAVCO is a non-profit, community-based organization funded by the National Science Foundation to install and operate the geodetic component of EarthScope called the Plate Boundary Observatory (PBO). UNAVCO will install 103 borehole tensor strainmeters/seismometers and 28 borehole tiltmeters These instruments will be used to study the three-dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States in hopes of increasing our understanding of the causes and mechanisms associated with earthquakes and volcanic activity. This represents almost a tripling of all installed borehole strainmeters in North America. Since the initial deployment of strainmeters in the early 1980's, borehole strainmeters have contributed valuable data at periods ranging from minutes to weeks with sensitivities two to three orders of magnitude better than continuous GPS at periods of days to weeks. Borehole strainmeters have been used to image earthquakes, slow earthquakes, creep events and volcanic eruptions in the US, Iceland and Japan. Initial PBO strainmeter deployments show promising results but there are still major hurdles to overcome in production, installation processes, data quality control, data processing and near real time delivery of calibrated strain data. PBO has made significant steps forward with the installation of 19 borehole strainmeters as of September 1st, 2006 with 28 total instruments planned by early December. In addition to strainmeters, each borehole contains a three-component geophone and a pore pressure transducer. A subset of the boreholes are also used for heat flow measurements. When completed the PBO borehole strainmeter network will be the largest network of strainmeters installed to date and one of the world's largest borehole seismic networks. These instruments will bridge the gap between seismology and space-geodetic techniques and represents the first dense

  1. A Coulomb stress model for induced seismicity distribution due to fluid injection and withdrawal in deep boreholes

    NASA Astrophysics Data System (ADS)

    Troiano, Antonio; Di Giuseppe, Maria Giulia; Troise, Claudia; Tramelli, Anna; De Natale, Giuseppe

    2013-10-01

    Fluid injection in and withdrawal from wells are basic procedures in mining activities and deep resources exploitation, such as oil and gas extraction, permeability enhancement for geothermal exploitation and waste fluid disposal. All of these activities have the potential to induce seismicity, as exemplified by the 2006 Basel earthquake (ML 3.4). Despite several decades of experience, the mechanisms of induced seismicity are not known in detail, which prevents effective risk assessment and/or mitigation. In this study, we provide an interpretation of induced seismicity based on computation of Coulomb stress changes that result from fluid injection/withdrawal at depth, mainly focused on the interpretation of induced seismicity due to stimulation of a geothermal reservoir. Seismicity is, theoretically, more likely where Coulomb stress changes are larger. For modeling purposes, we simulate the thermodynamic evolution of a system after fluid injection/withdrawal. The associated changes in pressure and temperature are subsequently considered as sources of incremental stress changes, which are then converted to Coulomb stress changes on favourably oriented faults, taking into account the background regional stress. Numerical results are applied to the water injection that was performed to create the fractured reservoir at the enhanced-geothermal-system site, Soultz-sous-Forets (France). Our approach describes well the observed seismicity, and provides an explanation for the different behaviors of a system when fluids are injected or withdrawn.

  2. Stochastic Inversion of Seismic Refraction Data With Borehole Depth Constraints for Watershed-scale Characterization of Aquifer Geometry

    NASA Astrophysics Data System (ADS)

    Chen, J.; Hubbard, S.; Korneev, V.; Gaines, D.; Baker, G. S.; Watson, D.

    2008-12-01

    Although improving the ability to characterize watershed-scale properties and processes is important for optimal management of water resources and environmental contaminants, such characterization is challenging due to the disparity in scales and mechanisms that contribute to the overall system behavior. Intensive hydrobiogeochemical studies have been conducted at the Oak Ridge National Laboratory Integrated Field Research Center (ORNL IFC) to quantify natural recharge pathways and the impact of the recharge on Uranium mobility along the plume axis. Data collected at this site indicate the presence of a fractured transition zone between the upper unconsolidated saprolite and the lower, more competent bedrock, which may serve as preferential flow and transport pathways. Our previous studies at the site suggest that seismic tomographic P-wave velocities can be used to delineate the transition zone at the local- scale and that the penetration depth of push probes can provide information about rock competency, which is related to lithofacies at the site. Although this suggests that surface seismic methods, constrained by push probe data, may be useful for delineating aquifer geometry at the plume scale, the current approach for using seismic refraction data to characterize subsurface geometry is qualitative in nature and does not take advantage of wellbore data in the inversion process. In this study, we develop a stochastic approach to quantitatively delineate the transition zone by combining large-scale surface seismic refraction data with small-scale wellbore data during the inversion procedure. Within a Bayesian framework, seismic first arrival times, not the inverted seismic slowness, and wellbore information about key interfaces are considered as input. We use a staggered finite difference method, with second order precision in time and fourth order precision in space, to forward model the full seismic waveform in 2-D with subsequent automated traveltime picking

  3. Compressional wave character in gassy, near-surface sediments in southern Louisiana determined from variable frequency cross-well, borehole logging, and surface seismic measurements

    SciTech Connect

    Thompson, M.D.; McGinnis, L.D.; Wilkey, P.L.; Fasnacht, T.

    1995-06-01

    Velocity and attenuation data were used to test theoretical equations describing the frequency dependence of compressional wave velocity and attenuation through gas-rich sediments in coastal Louisiana. The cross-well data were augmented with velocities derived from a nearby seismic refraction station using a low-frequency source. Energy at 1 and 3 kHz was successfully transmitted over distances from 3.69 to 30 m; the 5 and 7-kHz data were obtained only at distances up to 20 m. Velocity tomograms were constructed for one borehole pair and covered a depth interval of 10--50 m. Results from the tomographic modeling indicate that gas-induced low velocities are present to depths of greater than 40 m. Analysis of the velocity dispersion suggests that gas-bubble resonance must be greater than 7 kHz, which is above the range of frequencies used in the experiment. Washout of the boreholes at depths above 15 m resulted in a degassed zone containing velocities higher than those indicated in both nearby refraction and reflection surveys. Velocity and attenuation information were obtained for a low-velocity zone centered at a depth of approximately 18 m. Measured attenuations of 1.57, 2.95, and 3.24 dB/m for the 3-, 5-, and 7-kHz signals, respectively, were modeled along with the velocity data using a silt-clay sediment type. Density and porosity data for the model were obtained from the geophysical logs; the bulk and shear moduli were estimated from published relationships. Modeling results indicate that gas bubbles measuring 1 mm in diameter occupy at least 25% to 35% of the pore space.

  4. Mapping DNAPL transport contamination in sedimentary and fractured rock aquifers with high resolution borehole seismic imaging Project No. SF11SS13 FY01 Annual Report

    SciTech Connect

    Geller, J.T.; Majer, E.L.; Peterson, J.E.; Williams, K.H.; Flexser, S.

    2001-12-01

    This report covers the work performed in the first year of a three-year project funded by the USDOE's Subsurface Contaminant Focus Area (SCFA). The objectives of this project are to develop, demonstrate and evaluate, at appropriate field sites, the utility of high frequency seismic imaging methods to detect and characterize non-aqueous phase liquid (NAPL) contamination in sedimentary and fractured rock aquifers. Field tests consist of crosswell seismic tomography acquired before, during and after any remediation action that would potentially affect fluid distributions. Where feasible, other characterization data is obtained, such as crosswell radar, borehole conductivity and cone penetration testing (CPT). Crosswell data are processed to obtain tomographic images, or two-dimensional distributions, of velocity and attenuation. The interpretation of the tomograms utilizes all available site characterization data to relate the geophysical attributes to lithology and fluid phase heterogeneities. Interpretations are validated by evaluation and testing of field cores. Laboratory tests on core retrieved from surveyed locations are performed to determine the relationships between geophysical parameters and solid and fluid phase composition. In the case of sedimentary aquifers, proof of principle has been demonstrated previously in homogeneous sand-packs at the centimeter and half-meter scale (Geller and Myer, 1995; Geller et al., 2000). The field tests will provide proof-of-principle at the field-scale, by working in an unconsolidated sand aquifer with known presence of NAPL. The ability to upscale from the laboratory to the field is evaluated by conducting field measurements over a range of frequencies that overlap the lowest frequencies used in the laboratory tests. In the fractured rock case, previous field work has shown that fracture zones can be detected by crosswell seismic tomography (Daley et al., 2001; Daley et al., 2000). Laboratory studies have demonstrated

  5. Microexplosions in boreholes

    NASA Astrophysics Data System (ADS)

    Moren, P.

    1983-12-01

    At present micro explosions are the only known source that provides sufficient energy for large scale (about 0.5 to 1 km) seismic crosshole measurements. Results from a test of nondestructiveness on bore-hole walls from micro explosions are summarized. From geophysical well loggings in the holes it was found that only micro explosions with yields of 100 g and greater have a measurable effect on the bore-hole walls. However, the chemical properties of the bore-hole water changed as a result of collodial carbon of the explosive paste. Geophone-recordings from a series of shots with yields in the range 5 up to 200 g showed that the recorded maximum amplitude was linearly dependent of explosion yield.

  6. Report for borehole explosion data acquired in the 1999 Los Angeles Region Seismic Experiment (LARSE II), Southern California: Part I, description of the survey

    USGS Publications Warehouse

    Fuis, Gary S.; Murphy, Janice M.; Okaya, David A.; Clayton, Robert W.; Davis, Paul M.; Thygesen, Kristina; Baher, Shirley A.; Ryberg, Trond; Benthien, Mark L.; Simila, Gerry; Perron, J. Taylor; Yong, Alan K.; Reusser, Luke; Lutter, William J.; Kaip, Galen; Fort, Michael D.; Asudeh, Isa; Sell, Russell; Van Schaack, John R.; Criley, Edward E.; Kaderabek, Ronald; Kohler, Will M.; Magnuski, Nickolas H.

    2001-01-01

    The Los Angeles Region Seismic Experiment (LARSE) is a joint project of the U.S. Geological Survey (USGS) and the Southern California Earthquake Center (SCEC). The purpose of this project is to produce seismic images of the subsurface of the Los Angeles region down to the depths at which earthquakes occur, and deeper, in order to remedy a deficit in our knowledge of the deep structure of this region. This deficit in knowledge has persisted despite over a century of oil exploration and nearly 70 years of recording earthquakes in southern California. Understanding the deep crustal structure and tectonics of southern California is important to earthquake hazard assessment. Specific imaging targets of LARSE include (a) faults, especially blind thrust faults, which cannot be reliably detected any other way; and (b) the depths and configurations of sedimentary basins. Imaging of faults is important in both earthquake hazard assessment but also in modeling earthquake occurrence. Earthquake occurrence cannot be understood unless the earthquake-producing "machinery" (tectonics) is known (Fuis and others, 2001). Imaging the depths and configurations of sedimentary basins is important because earthquake shaking at the surface is enhanced by basin depth and by the presence of sharp basin edges (Wald and Graves, 1998, Working Group on California Earthquake Probabilities, 1995; Field and others, 2001). (Sedimentary basins are large former valleys now filled with sediment eroded from nearby mountains.) Sedimentary basins in the Los Angeles region that have been investigated by LARSE include the Los Angeles, San Gabriel Valley, San Fernando Valley, and Santa Clarita Valley basins. The seismic imaging surveys of LARSE include recording of earthquakes (both local and distant earthquakes) along several corridors (or transects) through the Los Angeles region and also recording of man-made sources along these same corridors. Man-made sources have included airguns offshore and borehole

  7. Marine Seismic System (MSS) deployment. Phase 5: An investigation of techniques and deployment scenarios for installation of triaxial seismometer in a borehole in the deep ocean

    NASA Astrophysics Data System (ADS)

    Wallerstedt, R. L.

    1984-03-01

    During the period 1979-1983, the Defense Advanced Research Projects Agency (DARPA) sponsored the Marine Seismic System (MSS) program that successfully accomplished two deepwater seismometer installations (MSS'81 Mid-Atlantic and MSS'83 South Pacific Sites) within specially emplaced seabed reentry boreholes. These deployments were accomplished by utilizing the Deep Sea Drilling Project's (DSDP) drillship, Glomar Challenger. Each of the three MSS operations contributed data, equipment refinement, and operational insight into the overall deep ocean deployment technology. Based upon this experience, large seismometers or other delicate instruments can be confidently deployed, utilizing the drillstring reentry technique, into seabed sediment or basalt formations in water depths to 6,096 m (20,000 ft). This report describes the design features, background analyses, and operational approach associated with the MSS Deployment System. All three MSS operations are reviewed but with particular emphasis on the latest MSS'83 South Pacific deployment and recovery activities. Important development problems and/or design uncertainties are also discussed. A list of references is provided as well as a detailed listing of all applicable reports and drawings.

  8. Stratigraphy of a proposed wind farm site southeast of Block Island: Utilization of borehole samples, downhole logging, and seismic profiles

    NASA Astrophysics Data System (ADS)

    Sheldon, Dane P. H.

    Seismic stratigraphy, sedimentology, lithostratigraphy, downhole geophysical logging, mineralogy, and palynology were used to study and interpret the upper 70 meters of the inner continental shelf sediments within a proposed wind farm site located approximately two to three nautical miles to the southeast of Block Island, Rhode Island. Core samples and downhole logging collected from borings drilled for geotechnical purposes at proposed wind turbine sites along with seismic surveys in the surrounding area provide the data for this study. Cretaceous coastal plain sediments that consist of non-marine to marine sand, silt, and clay are found overlying bedrock at a contact depth beyond the sampling depth of this study. The upper Cretaceous sediments sampled in borings are correlated with the Magothy/Matawan formations described regionally from New Jersey to Nantucket. An unconformity formed through sub-aerial, fluvial, marine, and glacial erosion marks the upper strata of the Cretaceous sediments separating them from the overlying deposits. The majority of Quaternary deposits overlying the unconformity represent the advance, pulsing, and retreat of the Laurentide ice sheet that reached its southern terminus in the area of Block Island approximately 25,000 to 21,000 years before present. The sequence consists of a basal glacial till overlain by sediments deposited by meltwater environments ranging from deltaic to proglacial lakefloor. A late Pleistocene to early Holocene unconformity marks the top of the glacial sequence and was formed after glacial retreat through fluvial and subaerial erosion/deposition. Overlying the glacial sequence are sediments deposited during the late Pleistocene and Holocene consisting of interbedded gravel, sand, silt, and clay. Sampling of these sediments was limited and surficial reflectors in seismic profiles were masked due to a hard bottom return. However, two depositional periods are interpreted as representing fluvial and estuarine

  9. Borehole-explosion and air-gun data acquired in the 2011 Salton Seismic Imaging Project (SSIP), southern California: description of the survey

    USGS Publications Warehouse

    Rose, Elizabeth J.; Fuis, Gary S.; Stock, Joann M.; Hole, John A.; Kell, Annie M.; Kent, Graham; Driscoll, Neal W.; Goldman, Mark; Reusch, Angela M.; Han, Liang; Sickler, Robert R.; Catchings, Rufus D.; Rymer, Michael J.; Criley, Coyn J.; Scheirer, Daniel S.; Skinner, Steven M.; Slayday-Criley, Coye J.; Murphy, Janice M.; Jensen, Edward G.; McClearn, Robert; Ferguson, Alex J.; Butcher, Lesley A.; Gardner, Max A.; Emmons, Iain; Loughran, Caleb L.; Svitek, Joseph R.; Bastien, Patrick C.; Cotton, Joseph A.; Croker, David S.; Harding, Alistair J.; Babcock, Jeffrey M.; Harder, Steven H.; Rosa, Carla M.

    2013-01-01

    earthquake energy can travel through the sediments. All of these factors determine how hard the earth will shake during a major earthquake. If we can improve on our understanding of how and where earthquakes will occur, and how strong their resultant shaking will be, then buildings can be designed or retrofitted accordingly in order to resist damage and collapse, and emergency plans can be adequately prepared. In addition, SSIP will investigate the processes of rifting and magmatism in the Salton Trough in order to better understand this important plate-boundary region. The Salton Trough is a unique rift in that subsidence is accompanied by huge influxes of infilling sediment from the Colorado River. Volcanism that accompanies the subsidence here is muted by these influxes of sediment. The Salton Trough, in the central part of the Imperial Valley, is apparently made up of entirely new crust: young sediment in the upper crust and basaltic intrusive rocks in the mid-to-lower crust (Fuis and others, 1984). Similar to the ultrasound and computed tomography (CT) scans performed by the medical industry, seismic imaging is a collection of techniques that enable scientists to obtain a picture of what is underground. The petroleum industry routinely uses these techniques to search for oil and gas at relatively shallow depths; however, the scope of this project demanded that we image as much as 30 km into the Earth’s crust. This project generated and recorded seismic waves, similar to sound waves, which move downward into the Earth and are bent (refracted) or echoed (reflected) back to the surface. SSIP acquired data in a series of intersecting lines that cover key areas of the Salton Trough. The sources of sound waves were detonations (shots) in deep boreholes, designed to create energy equivalent to magnitude 1–2 earthquakes. The study region routinely experiences earthquakes of these magnitudes, but earthquakes are not located in such a way as to permit us to create the

  10. Seismic sources

    DOEpatents

    Green, M.A.; Cook, N.G.W.; McEvilly, T.V.; Majer, E.L.; Witherspoon, P.A.

    1987-04-20

    Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Longitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements for more than about one minute. 9 figs.

  11. Structure and Stratigraphy of the Rift Basins in the Northern Gulf of California: Results from Analysis of Seismic Reflection and Borehole Data.

    NASA Astrophysics Data System (ADS)

    Martín, A.; González, M.; Helenes, J.; García, J.; Aragón, M.; Carreño, A.

    2008-12-01

    The northern Gulf of California contains two parallel, north-south trending rift basin systems separated by a basement-high. The interpretation of several exploration wells, and ~4500 km of seismic reflection data from PEMEX (Mexican national oil company) indicate that the tectonically active basins to the west (Wagner- Consag and Upper Delfin basins) may have initiated synchronously with the now abandoned Tiburón- Tepoca-Altar basins to the east in the Sonora margin. In both basin systems the lower sequence (A) is marine mudstone-siltstone, has parallel reflectors and a largely uniform thickness that reaches up to1.5 km, and gradually pinches out toward the lateral margins. This suggests that the unit was deposited prior to their segmentation by transtensional faulting. Marine microfossils from borehole samples from sequence A in the Tiburón and Consag basins indicates middle Miocene (>11.2 Ma) proto-Gulf conditions. Sequence B conformably overlies sequence A, and is characterized by up to 2 km growth strata with a fanning geometry that show a clear genetic relationship to the major transtensional faults that control the segmentation of the two basin systems. Sequence C in the Tiburón and Tepoca basins is comparatively thin (<800 m) and includes several unconformities, but is much less affected by faulting. In contrast, sequence C in the active Wagner, Consag and Upper Delfin basin is a much thicker (up to 2 km) growth sequence with abundant volcanic intrusions. Marked variations in sequence C in the different basin systems clearly demonstrate a major westward shift of deformation and subsidence at this time. The modern depocenter in Wagner-Consag basins is controlled by the Consag and Wagner faults, which trend parallel to the north ~20 km apart, and show opposite normal offset. These two faults merge at an oblique angle (70°-50°, respectively) into the Cerro Prieto transform fault to the north and likely accommodate an important amount of dextral shear. To

  12. Seismicity-induced groundwater level changes in boreholes around Mizunami Underground Research Laboratory (MIU), Japan: Effect of the 2011 off the Pacific coast of Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Niwa, M.; Takeuchi, R.; Onoe, H.; Asamori, K.; Umeda, K.; Sugihara, K.

    2011-12-01

    For improving the scientific basis for geological disposal of high-level radioactive waste, multidisciplinary researches are approached in the MIU, in which two vertical shafts are excavated in the crystalline rock mass. Groundwater levels are continuously logged in multiple boreholes, for understanding the regional groundwater flow around the MIU site. Soon after the 2011 off the Pacific coast of Tohoku Earthquake, groundwater level changes were observed in the almost boreholes. All boreholes arranged away from the MIU (approximately 1 to 5 km) showed drawdown ranging from 1 to 5 m. Several studies (e.g. Wang, 1997, JGR; Ge and Stover, 2000, JGR; Hamiel et al., 2005, EPSL) suggest that coseismic changes of groundwater level correspond to static volumetric strain changes induced by earthquakes, i.e., drawdown/elevation of groundwater level is reflected by crustal dilatation/constriction. We calculated volumetric strain changes due to the Tohoku earthquake based on the previously-reported fault models (slip models estimated by teleseismic source inversion; Yagi and Nishimura, Univ. of Tsukuba; Poiata et al., ERI, Univ. of Tokyo). We determined crustal deformation and stress change using the program Coulomb 3.0 (Lin and Stein, 2004, JGR; Toda et al., 2005, JGR). The calculation outputs approximately 2.3E-7 strain of dilatation around the MIU. Thus the drawdown observed in the boreholes arranged away from the MIU is consistent with the volumetric strain changes associated with the Tohoku earthquake. In contrast, groundwater levels were elevated up to 15 m in the boreholes localized in the vicinity of the MIU (within 600 m). These boreholes had shown successive drawdown since the shaft excavations started in the MIU, while voluminous sump water had been released successively from the shafts. Soon after the Tohoku earthquake, volume of the sump water increased approximately ten percent. Irregular elevation of water level soon after an earthquake like the case of the MIU

  13. Determination of porosity and facies trends in a complex carbonate reservoir, by using 3-D seismic, borehole tools, and outcrop geology

    SciTech Connect

    Zacharakis, T.G. Jr.; Comet, J.N.; Murillo, A.A.

    1996-08-01

    Mesozoic carbonate reservoirs are found in the Mediterranean Sea, off the east coast of Spain. A wide variation of porosities are found in the core samples and logs: vuggy, breccia, fractures, and cavern porosity. In addition, complex Tertiary carbonate geometries include olistostromes, breccia bodies, and reef buildups, which are found on top of Mesozoic carbonates. Predicting the porosity trends within these oil productive reservoirs requires an understanding of how primary porosity was further enhanced by secondary processes, including fractures, karstification, and dolomitization in burial conditions. Through an extensive investigation of field histories, outcrop geology, and seismic data, a series of basic reservoir styles have been identified and characterized by well log signature and seismic response. The distribution pattern of the different reservoirs styles is highly heterogeneous, but by integrating subsurface data and outcrop analogs, it is possible to distinguish field-scale and local patterns of both vertical and local variations in reservoir properties. Finally, it is important to quantify these reservoir properties through the study of seismic attributes, such as amplitude variations, and log responses at the reservoir interval. By incorporating 3-D seismic data, through the use of seismic inversion, it is possible to predict porosity trends. Further, the use of geostatistics can lead to the prediction of reservoir development within the carbonate facies.

  14. 3D gravity modeling of a salt structure associated to the Trozza-Labaied lineament (Central Tunisia) constrained by seismic and borehole data

    NASA Astrophysics Data System (ADS)

    Djebbi, M.; Gabtni, H.

    2015-03-01

    Gravity and seismic are two distinctive geophysical methods which are used combined in integrated geophysical studies. The rationale behind this integration is to construct a 3D gravity model for a salt structure associated to the Trozza-Labaied major tectonic deformation. The Trozza-Labaied area witnessed the occurrence of several tectonic events during the Atlassic phase resulting in the creation of various salt structures. Interpretation of the available seismic data revealed the different lithological units forming the geologic setting. Whereas the analysis of the gravity data contributed in exposing the existence of different gravity anomalies. Thus, the integrated seismic and gravity data are fundamental in constructing a 3D gravity model. The resulting model provides an accurate image of the salt body extent and its geometry and determines its effect over the surrounding sedimentary deposits.

  15. Seismic sources

    DOEpatents

    Green, Michael A.; Cook, Neville G. W.; McEvilly, Thomas V.; Majer, Ernest L.; Witherspoon, Paul A.

    1992-01-01

    Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Logitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole relative to a stator that is clamped to the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements at a power level that causes heating to over 150.degree. C. within one minute of operation, but energizing the elements for no more than about one minute.

  16. Downhole Imaging With Borehole Radar

    NASA Astrophysics Data System (ADS)

    Fokkema, J. T.; van den Berg, P. M.; van Dongen, K. W. A.; Luthi, S. M.

    We describe a directional borehole radar system. The antennas are positioned in a bi-static set-up. In order to obtain a focused radiation pattern, the transmitting and receiving dipoles are shielded with a curved reflector. The radiation pattern of this scattered wavefield is computed by solving the integral equation for the unknown elec- tric surface current at the conducting surface. Based on these numerical simulations, a prototype was built. The effective radiation pattern is in good agreement with the computed pattern. We also present a three-dimensional imaging method for this bore- hole radar. The computed radiation pattern is used in such a way that deconvolution for the angular radiation pattern can be applied. Data from preliminary laboratory and field tests under controlled conditions are promising. The applications of this method include the detection of unexploded ordinance from boreholes, the detection of objects and layers in tunnels, and the determination of the diameter of concrete columns in the Jetgrout Diameter System. With appropriate modifications, this system may be appli- cable in the oil- and gas industry for the detection of layers and fractures in borehole. It covers a gap between conventional logging measurements in boreholes, and seismic surface surveys.

  17. Report for borehole explosion data acquired in the 1999 Los Angeles Region Seismic Experiment (LARSE II), Southern California; Part II, Data tables and plots

    USGS Publications Warehouse

    Murphy, Janice M.; Fuis, Gary S.; Okaya, D.A.; Thygesen, Kristina; Baher, Shirley A.; Rybert, Trond; Kaip, Galen; Fort, Michael D.; Asudeh, Isa; Sell, Russell

    2002-01-01

    The Los Angeles Region Seismic Experiment (LARSE), a joint project of the U.S. Geological Survey (USGS) and the Southern California Earthquake Center (SCEC), was conducted to produce seismic images of the subsurface in the Los Angeles region. Primary targets were major fault systems and sedimentary basins; the goal of the project was to address the earthquake hazard posed by these geologic features. The first phase of data collection (LARSE 1) was completed in 1994; the second phase (LARSE 2) was completed in 1999. A description of the 1999 survey and an overview of both phase I and II is given in Fuis and others (2001). In this report, we present the technical details for the explosion data collected in 1999.

  18. PARTICLE DISPLACEMENTS ON THE WALL OF A BOREHOLE FROM INCIDENT PLANE WAVES.

    USGS Publications Warehouse

    Lee, M.W.

    1987-01-01

    Particle displacements from incident plane waves at the wall of a fluid-filled borehole are formulated by applying the seismic reciprocity theorem to far-field displacement fields. Such displacement fields are due to point forces acting on a fluid-filled borehole under the assumption of long wavelengths. The displacement fields are analyzed to examine the effect of the borehole on seismic wave propagation, particularly for vertical seismic profiling (VSP) measurements. When the shortest wavelength of interest is approximately 25 times longer than the borehole's diameter, the scattered displacements are proportional to the first power of incident frequency and borehole diameter. When the shortest wavelength of interest is about 40 times longer than the borehole's diameter, borehole effects on VSP measurements using a wall-locking geophone are negligible.

  19. PBO Borehole Strain and Siesmic Network

    NASA Astrophysics Data System (ADS)

    Mencin, D.; Jackson, M.; Anderson, G.; Hodgkinson, K.; Hasting, M.; Dittman, T.; Johnson, W.; Meertens, C.

    2007-05-01

    UNAVCO is a non-profit, community-based organization funded by the National Science Foundation to install and operate the geodetic component of EarthScope called the Plate Boundary Observatory (PBO). UNAVCO will install 103 borehole tensor strainmeters/seismometers and 28 borehole tiltmeters These instruments will be used to study the three-dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States in hopes of increasing our understanding of the causes and mechanisms associated with earthquakes and volcanic activity. This represents almost a tripling of all installed borehole strainmeters in North America. Since the initial deployment of strainmeters in the early 1980's, borehole strainmeters have contributed valuable data at periods ranging from minutes to weeks with sensitivities two to three orders of magnitude better than continuous GPS at periods of days to weeks. Borehole strainmeters have been used to image earthquakes, slow earthquakes, creep events and volcanic eruptions in the US, Iceland and Japan. A brief history of US BSM program is presented. Initial PBO strainmeter deployments show promising results: imaging two slow slip events in the PNW along with excellent tele-siesmic imaging. Exciting work has been done in the PBO community relating modeled strain from the GPS network to observed strain from the BSM network. PBO also plans the installation of three volcanic arrays at Mt St Helens, Yellowstone and Long Valley. In addition to strainmeters, each borehole contains a three-component geophone and a pore pressure transducer. A subset of the boreholes are also used for heat flow measurements. When completed the PBO borehole strainmeter network will be the largest network of strainmeters installed to date and one of the world's largest borehole seismic networks. These instruments will bridge the gap between seismology and space-geodetic techniques and

  20. Analysis of borehole breakouts

    SciTech Connect

    Zheng, Z.; Kemeny, J.; Cook, N. G. W.

    1989-06-10

    Boreholes drilled into rock, which is subjected to stresses that amount to a significant fraction of the strength of the rock, may cause the rock to fail adjacent to the borehole surface. Often this results in the elongation of the cross section of the borehole in the direction of the minimum principal (compressive) stress orthogonal to the borehole axis. Such breakouts are valuable indicators of the direction of the minimum compressive stress orthogonal to the axis of the borehole. Their shapes may provide information about the magnitudes of both the maximum and minimum stresses relative to the strength of the rock. Borehole breakouts also may be impediments to drilling and to in situ measurement techniques, such as hydraulic fracturing. Observations and analyses of borehole breakouts raise three important questions. First, how does the shape of the borehole breakout evolve Second, why are breakout shapes stable despite the very high compressive stress concentrations that they produce Third, how is the shape of the breakout related to the magnitudes of the stresses in the rock In this paper, extensile splitting of rock in unconfined, plane strain compression is assumed to be the process of rock failure adjacent to the circumference of the borehole, by which a breakout forms. To simulate the evolution of a borehole breakout, this process is combined with a numerical boundary element analysis of the stresses around a borehole as its cross section evolves from the originally circular shape to that of a stable breakout.

  1. Tertiary basin-and-range structure in Southern Nevada-Utah-Arizona region via borehole, seismic reflection, and Bouguer gravity data: Insights on hydrocarbon potential

    SciTech Connect

    Carpenter, D.G.

    1988-01-01

    Extension characterized by full grabens and half-grabens and tilted, folded, and faulted range blocks is geometrically and kinematically constrained by geologic and geophysical data. Rootless gravity-slide blocks are common secondary features to high-angle normal faults, which exert primary control over crustal extension. A synthetic seismogram from the only test well (Mobil Virgin River 1-A; TD = 5,962.5m), seismic reflection, and Bouguer gravity data (up to 70 mgal of relief) indicate over 7,600m of low-density Tertiary sediments in the Virgin Valley basin. Several thousand meters of sediment are within the oil-generative window. Neogene basalt flows suggest geothermal gradients higher than today. Lacustrine limestone in the Oliocene-Miocene Horse Spring Formation contains cryptalgalaminate, a potential hydrocarbon source. The Horse Spring Formation is overlain unconformably by the Miocene-Pliocene Muddy Creek Formation. These formations were deposited in association with movement on the Virgin-Beaver Dam Mountains fault, as indicated by fanning-upward reflector geometry. The formations are incorporated into a major rollover anticline. Mississippian Chainman Shale, penetrated to the west by Chevron's Colorock Quarry well, indicates a possibility for Sevier-age hydrocarbon generation by thrust loading.

  2. Low Noise Borehole Triaxial Seismometer Phase II

    SciTech Connect

    Kerr, James D; McClung, David W

    2006-11-06

    This report describes the preliminary design and the effort to date of Phase II of a Low Noise Borehole Triaxial Seismometer for use in networks of seismic stations for monitoring underground nuclear explosions. The design uses the latest technology of broadband seismic instrumentation. Each parameter of the seismometer is defined in terms of the known physical limits of the parameter. These limits are defined by the commercially available components, and the physical size constraints. A theoretical design is proposed, and a preliminary prototype model of the proposed instrument has been built. This prototype used the sensor module of the KS2000. The installation equipment (hole locks, etc.) has been designed and one unit has been installed in a borehole. The final design of the sensors and electronics and leveling mechanism is in process. Noise testing is scheduled for the last quarter of 2006.

  3. Down hole periodic seismic generator

    DOEpatents

    Hardee, Harry C.; Hills, Richard G.; Striker, Richard P.

    1989-01-01

    A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  4. Advanced downhole periodic seismic generator

    DOEpatents

    Hardee, Harry C.; Hills, Richard G.; Striker, Richard P.

    1991-07-16

    An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  5. New developments in high resolution borehole seismology and their applications to reservoir development and management

    SciTech Connect

    Paulsson, B.N.P.

    1997-08-01

    Single-well seismology, Reverse Vertical Seismic Profiles (VSP`s) and Crosswell seismology are three new seismic techniques that we jointly refer to as borehole seismology. Borehole seismic techniques are of great interest because they can obtain much higher resolution images of oil and gas reservoirs than what is obtainable with currently used seismic techniques. The quality of oil and gas reservoir management decisions depend on the knowledge of both the large and the fine scale features in the reservoirs. Borehole seismology is capable of mapping reservoirs with an order of magnitude improvement in resolution compared with currently used technology. In borehole seismology we use a high frequency seismic source in an oil or gas well and record the signal in the same well, in other wells, or on the surface of the earth.

  6. Borehole data transmission apparatus

    DOEpatents

    Kotlyar, O.M.

    1993-03-23

    A borehole data transmission apparatus is described whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  7. Borehole data transmission apparatus

    DOEpatents

    Kotlyar, Oleg M.

    1993-01-01

    A borehole data transmission apparatus whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  8. Coherent dissociation of relativistic {sup 9}C nuclei

    SciTech Connect

    Krivenkov, D. O.; Artemenkov, D. A.; Bradnova, V.; Vokal, S.; Zarubin, P. I. Zarubina, I. G.; Kondratieva, N. V.; Malakhov, A. I.; Moiseenko, A. A.; Orlova, G. I.; Peresadko, N. G.; Polukhina, N. G.; Rukoyatkin, P. A.; Rusakova, V. V.; Sarkisyan, V. R.; Stanoeva, R.; Haiduc, M.; Kharlamov, S. P.

    2010-12-15

    Results on the coherent dissociation of relativistic {sup 9}C nuclei in a nuclear track emulsion are described. These results include the charge topology and kinematical features of final states. Events of {sup 9}C {yields} 3{sup 3}He coherent dissociation are identified.

  9. Borehole induction coil transmitter

    DOEpatents

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  10. Drilling, logging, and testing information from borehole UE-25 UZ{number_sign}16, Yucca Mountain, Nevada

    SciTech Connect

    Thamir, F.; Thordarson, W.; Kume, J.; Rousseau, J.; Long, R.; Cunningham, D.M. Jr.

    1998-09-01

    Borehole UE-25 UZ{number_sign}16 is the first of two boreholes that may be used to determine the subsurface structure at Yucca Mountain by using vertical seismic profiling. This report contains information collected while this borehole was being drilled, logged, and tested from May 27, 1992, to April 22, 1994. It does not contain the vertical seismic profiling data. This report is intended to be used as: (1) a reference for drilling similar boreholes in the same area, (2) a data source on this borehole, and (3) a reference for other information that is available from this borehole. The reference information includes drilling chronology, equipment, parameters, coring methods, penetration rates, completion information, drilling problems, and corrective actions. The data sources include lithology, fracture logs, a list of available borehole logs, and depths at which water was recorded. Other information is listed in an appendix that includes studies done after April 22, 1994.

  11. Borehole temperature variability at Hoher Sonnblick, Austria

    NASA Astrophysics Data System (ADS)

    Heinrich, Georg; Schöner, Wolfgang; Prinz, Rainer; Pfeiler, Stefan; Reisenhofer, Stefan; Riedl, Claudia

    2016-04-01

    The overarching aim of the project 'Atmosphere - permafrost relationship in the Austrian Alps - atmospheric extreme events and their relevance for the mean state of the active layer (ATMOperm)' is to improve the understanding of the impacts of atmospheric extreme events on the thermal state of the active layer using a combined measurement and modeling approach as the basis for a long-term monitoring strategy. For this purpose, the Sonnblick Observatory at the summit of Hoher Sonnblick (3106 m.a.s.l) is particularly well-suited due to its comprehensive long-term atmospheric and permafrost monitoring network (i.a. three 20 m deep boreholes since 2007). In ATMOperm, a robust and accurate permanent monitoring of active layer thickness at Hoher Sonnblick will be set up using innovative monitoring approaches by automated electrical resistivity tomography (ERT). The ERT monitoring is further supplemented by additional geophysical measurements such as ground penetrating radar, refraction seismic, electromagnetic induction and transient electromagnetics in order to optimally complement the gained ERT information. On the other hand, atmospheric energy fluxes over permafrost ground and their impact on the thermal state of permafrost and active layer thickness with a particular focus on atmospheric extreme events will be investigated based on physically-based permafrost modeling. For model evaluation, the borehole temperature records will play a key role and, therefore, an in-depth quality control of the borehole temperatures is an important prerequisite. In this study we will show preliminary results regarding the borehole temperature variability at Hoher Sonnblick with focus on the active layer. The borehole temperatures will be related to specific atmospheric conditions using the rich data set of atmospheric measurements of the site in order to detect potential errors in the borehole temperature measurements. Furthermore, we will evaluate the potential of filling gaps in

  12. A borehole-to-surface electromagnetic survey

    USGS Publications Warehouse

    Tseng, H.-W.; Becker, A.; Wilt, M.J.; Deszcz-Pan, M.

    1998-01-01

    The results of a limited field trial confirm the usefulness of borehole-to-surface electromagnetic (EM) measurements for monitoring fluid extraction. A vertical EM profiling experiment was done at the University of California Richmond Field Station, where we simulated a brine spill plume by creating a saline water injection zone at a depth of 30 m. The data acquisition mode was analogous to the reverse vertical seismic profiling (VSP) configuration used for seismic measurements in that the EM transmitter traversed the PVC-cased borehole used for fluid injection and extraction while the receivers were deployed on the surface. The EM measurements were made at 9.6 kHz with an accuracy of 1% in signal amplitude and 1??in signal phase. Observations were taken at 5-m intervals along two intersecting profiles that were centered on the injection well and extended for 60 m on either side of it. The presence of the injected salt water, at the expected 30 m depth, was indicated clearly by differences between the pre-extraction and postextraction data. A limited amount of numerical modeling showed that the experimental data were consistent with the presence of two superposed saline plumes. The uppermost of these, located at 26 m depth, was 2 m thick and had an area of 30 m2. The lower plume, located at 30 m, is the major cause of the observed anomally, as it has an areal extent of 120 m2 and a thickness of 3 m. Surprisingly, the measurements were very sensitive to the presence of cultural surficial conductivity anomalies. These spurious effect were reduced by spatial filtering of the data prior to interpretation.The results of a limited field trial confirm the usefulness of borehole-to-surface electromagnetic (EM) measurements for monitoring fluid extraction. A brine spill plume is simulated by creating a saline water injection zone at a depth of 30 m. The data acquisition mode was analogous to the reverse vertical seismic profiling (VSP) configuration used for seismic

  13. Experimental studies of electrokinetic conversions in fluid-saturated borehole models

    SciTech Connect

    Zhu, Z.; Haartsen, M.W.; Toksoez, M.N.

    1999-10-01

    Experimental and theoretical studies show that there are electromagnetic (EM) fields generated by seismic waves with two kinds of conversion mechanisms in a fluid-saturated, porous medium. Within a homogeneous formation, the seismic wave generates a seismoelectric field that exists only in the area disturbed by the seismic wave and whose apparent velocity is that of the seismic wave. At an interface between differing formation properties, the generated seismoelectric wave is a propagating EM wave that can be detected everywhere, An electrode, used as a receiver on the ground surface, can detect the propagating EM wave generated at an interface, but cannot detect the seismoelectric field generated in a homogeneous formation. When the electrode is in a borehole and close to a porous formation, it can detect both the EM waves and the seismoelectric field. In this paper, electrokinetic measurements are performed with borehole models made of natural rocks or artificial materials. Experimental results show that the Stoneley wave and other acoustic modes, excited by a monopole source in the borehole models, generate seismoelectric fields in fluid-saturated formations. The electric components of the seismoelectric fields can be detected by an electrode in the borehole or on the borehole wall. The amplitude and frequency of the seismoelectric fields are related not only to the seismic wave, but also to formation properties such as permeability, conductivity, etc. Comparison between the waveforms of the seismoelectric signals and acoustic logging waves suggests that seismoelectric well logging may explore the different properties of the formation. Electroseismic measurements are also performed with these borehole models. The electric pulse through the electrode in the borehole or on the borehole wall induces Stoneley waves in fluid-saturated models that can be received by a monopole transducer in the same borehole. These measurement methods (seismoelectric logging or

  14. A borehole-to-surface electromagnetic survey

    SciTech Connect

    Tseng, Hung-Wen; Becker, A.; Wilt, M.; Descz-Pan, M.

    1995-12-31

    We have assessed the feasibility of borehole to surface electromagnetic measurements for fluid injection monitoring. To do this we performed a vertical electromagnetic profiling (VEMP) experiment at the University of California Richmond Field Station where a saline water injection zone was created at a subsurface depth of 30 meters. The methodology used is quite similar to the conventional seismic (VSP) procedure for surface to borehole measurements. In our case however, the transmitter was located in a PVC cased borehole while the receivers were deployed on the surface. With a carefully designed system operating at 9.6 kHz we were able to make measurements accurate to 1 % in amplitude and 1 degree in phase. The data profiles at surface were centered on the injection well and extended for 60 m on either side of it. Measurements were made at 5 m intervals. Although the VEMP process is quite vulnerable to near surface conductivity anomalies we readily detected the flat tabular target zone which was about 3 m thick and covered an area of about 120 M{sup 2}.

  15. Deformation Monitoring by Borehole Geodetic Strainmeter in Turkey

    NASA Astrophysics Data System (ADS)

    Ozener, Haluk; Aktug, Bahadir; Karabulut, Hayrullah; Ergintav, Semih; Dogru, Asli; Yilmaz, Onur; Mencin, David; Mattioli, Glen; Johnson, Wade; Gottlieb, Mike; Van Boskirik, Liz

    2015-04-01

    This project is aimed to study three-dimensional strain field resulting from deformation through North Anatolian Fault System (NAFS) in Marmara Region, Turkey. Within this project, two borehole observatories consisting of borehole strainmeters, borehole seismometers, tiltmeters, and pore pressure sensors have been deployed in Istanbul. These installations have been supported by Istanbul Development Agency (ISTKA) (financially) and UNAVCO (technically). Istanbul, located near the most active parts of the North Anatolian Fault, has been monitored by different observing techniques such as seismic networks and continuous/survey-mode GPS networks for decades. Borehole strainmeters are very sensitive to deformation in the range of less than a month and can capture signals with superior precision at local spatial scales. In this project, it will be possible to determine the movements precisely which can not be monitored with available measurement systems in the middle and the eastern part of Marmara Sea through NAFS. Our long term objective is to build a borehole monitoring system in the region. By integrating various data obtained from borehole observatories, we expect to get a better understanding of dynamics in the western NAF. In this presentation, we introduce data and ongoing analysis obtained with strainmeters.

  16. Optical Seismometers: Borehole and Vault Applications

    NASA Astrophysics Data System (ADS)

    Otero, J. D.; Berger, J.; Wyatt, F. K.; Zumberge, M. A.

    2009-12-01

    We have developed an interferometric seismometer which uses optics instead of electronics to infer ground motion. The sensor, assembled exclusively from glass and metal materials, could be deployed into deep boreholes where temperatures often exceed 150 °C. Our first prototype consists of a leaf-spring suspension and an optical-fiber-linked interferometer, which monitors vertical displacement of the seismic mass. Several years of testing and improvements have increased its performance at both low (e.g., tidal) and high (tens of Hz) frequencies. The prototype sensor performs as well as or better than most observatory grade seismometers and has an overall observed dynamic range of 109 or 30 bits of resolution (based on its observed noise floor and its maximum mass velocity). We have also built a simple horizontal component prototype which consists of a mass suspended from a vertical pendulum whose flexure is fabricated from a single block of material. Just as our vertical seismometer can serve as a gravity meter, the horizontal prototype can serve as a tiltmeter (both of their responses are flat to DC). Tests are currently being conducted with the new sensor in our Piñon Flat Seismic Test Facility (California). One advantage of our optical displacement transducer is its dynamic range, which relaxes the requirement that the horizontal component sensor be level, simplifying borehole installations. We have already achieved a dynamic range of ±5° and we expect that a range of ±10° is possible with some effort.

  17. Micro borehole drilling platform

    SciTech Connect

    1996-10-01

    This study by CTES, L.C. meets two main objectives. First, evaluate the feasibility of using coiled tubing (CT) to drill 1.0 inches-2.5 inches diameter directional holes in hard rocks. Second, develop a conceptual design for a micro borehole drilling platform (MBDP) meeting specific size, weight, and performance requirements. The Statement of Work (SOW) in Appendix A contains detailed specifications for the feasibility study and conceptual design.

  18. Ice-Borehole Probe

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Carsey, Frank; Lane, Arthur; Engelhardt, Herman

    2006-01-01

    An instrumentation system has been developed for studying interactions between a glacier or ice sheet and the underlying rock and/or soil. Prior borehole imaging systems have been used in well-drilling and mineral-exploration applications and for studying relatively thin valley glaciers, but have not been used for studying thick ice sheets like those of Antarctica. The system includes a cylindrical imaging probe that is lowered into a hole that has been bored through the ice to the ice/bedrock interface by use of an established hot-water-jet technique. The images acquired by the cameras yield information on the movement of the ice relative to the bedrock and on visible features of the lower structure of the ice sheet, including ice layers formed at different times, bubbles, and mineralogical inclusions. At the time of reporting the information for this article, the system was just deployed in two boreholes on the Amery ice shelf in East Antarctica and after successful 2000 2001 deployments in 4 boreholes at Ice Stream C, West Antarctica, and in 2002 at Black Rapids Glacier, Alaska. The probe is designed to operate at temperatures from 40 to +40 C and to withstand the cold, wet, high-pressure [130-atm (13.20-MPa)] environment at the bottom of a water-filled borehole in ice as deep as 1.6 km. A current version is being outfitted to service 2.4-km-deep boreholes at the Rutford Ice Stream in West Antarctica. The probe (see figure) contains a sidelooking charge-coupled-device (CCD) camera that generates both a real-time analog video signal and a sequence of still-image data, and contains a digital videotape recorder. The probe also contains a downward-looking CCD analog video camera, plus halogen lamps to illuminate the fields of view of both cameras. The analog video outputs of the cameras are converted to optical signals that are transmitted to a surface station via optical fibers in a cable. Electric power is supplied to the probe through wires in the cable at a

  19. Downhole hydraulic seismic generator

    DOEpatents

    Gregory, Danny L.; Hardee, Harry C.; Smallwood, David O.

    1992-01-01

    A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

  20. Borehole sealing method and apparatus

    DOEpatents

    Hartley, James N.; Jansen, Jr., George

    1977-01-01

    A method and apparatus is described for sealing boreholes in the earth. The borehole is blocked at the sealing level, and a sealing apparatus capable of melting rock and earth is positioned in the borehole just above seal level. The apparatus is heated to rock-melting temperature and powdered rock or other sealing material is transported down the borehole to the apparatus where it is melted, pooling on the mechanical block and allowed to cool and solidify, sealing the hole. Any length of the borehole can be sealed by slowly raising the apparatus in the borehole while continuously supplying powdered rock to the apparatus to be melted and added to the top of the column of molten and cooling rock, forming a continuous borehole seal. The sealing apparatus consists of a heater capable of melting rock, including means for supplying power to the heater, means for transporting powdered rock down the borehole to the heater, means for cooling the apparatus and means for positioning the apparatus in the borehole.

  1. Enhancement of Network Performance through Integration of Borehole Stations

    NASA Astrophysics Data System (ADS)

    Korger, Edith; Plenkers, Katrin; Clinton, John; Kraft, Toni; Diehl, Tobias; Husen, Stephan; Schnellmann, Michael

    2014-05-01

    In order to improve the detection and characterisation of weak seismic events across northern Switzerland/southern Germany, the Swiss Digital Seismic Network has installed 10 new seismic stations during 2012 and 2013. The newly densified network was funded within a 10-year project by NAGRA and is expected to monitor seismicity with a magnitude of completeness Mc (ML) below 1.3 and provide high quality locations for all these events. The goal of this project is the monitoring of areas surrounding potential nuclear waste repositories, in order to gain a thorough understanding of the seismotectonic processes and consequent evaluation of the seimsic hazard in the region. Northern Switzerland lies in a molasse basin and is densely populated. Therefore it is a major challenge in this region to find stations with noise characteristics low enough to meet the monitoring requirements. The new stations include three borehole sites equipped with 1 Hz Lennartz LE3D-BH velocity sensors (depths between 120 and 160 m), which are at critical locations for the new network but at areas where the ambient noise at the surface is too high for convential surface stations. At each borehole, a strong motion seismometer is also installed at the surface. Through placing the seismometers at depth, the ambient noise level is significantly lowered - which means detection of smaller local and larger regional events is enhanced. We present here a comparison of the performance of each of the three borehole stations, reflecting on the improvement in noise compared to surface installations at these sites, as well as with other conventional surface stations within the network. We also demonstrate the benefits in the operation network performance, in terms of earthquakes detected and located, which arise from installing borehole stations with lower background noise.

  2. Borehole survey method and apparatus for drilling substantially horizontal boreholes

    SciTech Connect

    Trowsdale, L.S.

    1982-11-30

    A borehole survey method and apparatus are claimed for use in drilling substantially horizontal boreholes through a mineral deposit wherein a dip accelerometer, a roll accelerometer assembly and a fluxgate are disposed near the drill bit, which is mounted on a bent sub, and connected to a surface computation and display unit by a cable which extends through the drill string. The dip angle of the borehole near the drill bit, the azimuth of the borehole near the drill bit and the roll angle or orientation of the bent sub are measured and selectively displayed at the surface while the drill string is in the borehole for utilization in guiding the drill bit through the mineral deposit along a predetermined path.

  3. Borehole survey instrument

    SciTech Connect

    Sharp, H.E.; Lin, J.W. III; Macha, E.S.; Smither, M.A.

    1984-12-04

    A borehole survey instrument is provided having a meniscus type floating compass member with indicia thereon for indicating azimuth and inclination. A light source is disposed below the indicia for illuminating the indicia upward through the liquid through which the meniscus type floating compass member floats. A lens system is provided for focusing the image of the illuminated compass member upon a film disposed below the compass member. This arrangement permits the centering post for the compass member to be of minimum diameter consistent with rigidity requirements and permits a high angle compass member to indicate angles of inclination approaching ninety degrees. A multiple light bulb light source is utilized and each light bulb is mounted in a manner which permits a single light bulb to illuminate the entire compass member. A hand-held programming and diagnostic unit is provided which may be momentarily electrically mated with the borehole survey tool to input a programmed timed delay and diagnostically test both the condition of the light bulbs utilized as the illumination source and the state of the batteries within the instrument. This hand-held programmable unit eliminates all the mechanical programming switches and permits the instrument to be completely sealed from the pressure, fluids and contaminants normally found in a well bore.

  4. Borehole Gravity Meter Surveys at the Waste Treatment Plant, Hanford, Washington.

    SciTech Connect

    MacQueen, Jeffrey D.; Mann, Ethan

    2007-04-06

    Microg-LaCoste (MGL) was contracted by Pacfic Northwest National Laboratories (PNNL) to record borehole gravity density data in 3 wells at the HanfordWaste Treatment Plant (WTP) site. The survey was designed to provide highly accurate density information for use in seismic modeling. The borehole gravity meter (BHGM) tool has a very large depth of investigation (hundreds of feet) compared to other density tools so it is not influenced by casing or near welbore effects, such as washouts.

  5. Uemachi flexure zone investigated by borehole database and numeical simulation

    NASA Astrophysics Data System (ADS)

    Inoue, N.; Kitada, N.; Takemura, K.

    2014-12-01

    The Uemachi fault zone extending north and south, locates in the center of the Osaka City, in Japan. The Uemachi fault is a blind reverse fault and forms the flexure zone. The effects of the Uemachi flexure zone are considered in constructing of lifelines and buildings. In this region, the geomorphological survey is difficult because of the regression of transgression. Many organizations have carried out investigations of fault structures. Various surveys have been conducted, such as seismic reflection survey in and around Osaka. Many borehole data for construction conformations have been collected and the geotechnical borehole database has been constructed. The investigation with several geological borehole data provides the subsurface geological information to the geotechnical borehole database. Various numerical simulations have been carried out to investigate the growth of a blind reverse fault in unconsolidated sediments. The displacement of the basement was given in two ways. One is based on the fault movement, such as dislocation model, the other is a movement of basement block of hanging wall. The Drucker-Prager and elastic model were used for the sediment and basement, respectively. The simulation with low and high angle fault movements, show the good agree with the actual distribution of the marine clay inferred from borehole data in the northern and southern Uemachi fault flexure zone, respectively. This research is partly funded by the Comprehensive Research on the Uemachi Fault Zone (from FY2010 to FY2012) by The Ministry of Education, Culture, Sports, Science and Technology (MEXT).

  6. Side hole drilling in boreholes

    NASA Technical Reports Server (NTRS)

    Collins, Jr., Earl R. (Inventor)

    1980-01-01

    Apparatus for use in a borehole or other restricted space to bore a side hole into the strata surrounding the borehole, including a flexible shaft with a drill at its end, and two trains of sheathing members that can be progressively locked together into a rigid structure around the flexible shaft as it is directed sidewardly into the strata.

  7. Zero-Offset VSP in the COSC-1 borehole

    NASA Astrophysics Data System (ADS)

    Krauß, Felix; Simon, Helge; Giese, Rüdiger; Buske, Stefan; Hedin, Peter; Juhlin, Christopher; Lorenz, Henning

    2015-04-01

    As support for the COSC drilling project (Collisional Orogeny in the Scandinavian Caledonides), an extensive seismic survey took place during September and October 2014 in and around the newly drilled borehole COSC-1. The main aim of the COSC project is to better understand orogenic processes in past and recently active mountain belts. For this an approx. 2.5 km deep borehole, with nearly 100% core recovery, was drilled in the Scandinavian Caledonides, close to the town of Åre in western Jämtland/Sweden. The seismic survey consisted of a high resolution zero-offset VSP (vertical seismic profiling) and a multi-azimuthal walkaway VSP experiment with receivers at the surface and in the borehole. For the zero-offset VSP (ZVSP) a hydraulic hammer source (VIBSIST 3000) was used and activated over a period of 20 seconds as a sequence of impacts with increasing hit frequency. For each source point, 25 seconds of data were recorded. The wavefield was recorded in the borehole by 15 three-component receivers using a Sercel Slimwave geophone chain with an inter-tool spacing of 10 meters. The ZVSP was designed to result in a geophone spacing of 2 meters over the whole borehole length. The source was about 30 meters away from the borehole and thus, provides a poor geometry to rotate 3C-data in greater depths. For this reason, a check shot position was defined in about 1.9 km distance to the borehole. With this offset shots, it is possible to rotate the components of the 3C receivers and to concentrate the S-wave energy on one component and thus, increase the signal-to-noise ratio of S-wave events. This offset source point was activated periodically for certain depth positions of the geophone chain. The stacked ZVSP-data show a high signal-to-noise ratio and good data quality. Frequencies up to 150 Hz were recorded. On the vertical component, clear direct P-wave arrivals are visible. Several P-wave reflections occur below 1600 meters depth. After rotating the components

  8. The detection and characterization of natural fractures using P-wave reflection data, multicomponent VSP, borehole image logs and the in-situ stress field determination

    SciTech Connect

    Hoekstra, P.

    1995-04-01

    The objectives of this project are to detect and characterize fractures in a naturally fractured tight gas reservoir, using surface seismic methods, borehole imaging logs, and in-situ stress field data. Further, the project aims to evaluate the various seismic methods as to their effectiveness in characterizing the fractures, and to formulate the optimum employment of the seismic methods as regards fracture characterization.

  9. Seismoelectric waves in a borehole excited by an external explosive source

    NASA Astrophysics Data System (ADS)

    Zhou, Jiu-Guang; Cui, Zhi-Wen; Lü, Wei-Guo; Zhang, Yu-Jun; Wang, Ke-Xie

    2014-01-01

    The conversion of energy between seismic and electromagnetic wave fields has been described by Pride's coupled equations in porous media. In this paper, the seismoelectric field excited by the explosive point source located at the outside of the borehole is studied. The scattering fields inside and outside a borehole are analyzed and deduced under the boundary conditions at the interface between fluid and porous media. The influences of the distance of the point source, multipole components of the eccentric explosive source, and the receiving position along the axis of vertical borehole, on the converted waves inside the borehole are all investigated. When the distance from the acoustic source to the axis of a borehole is far enough, the longitudinal and coseismic longitudinal wave packets dominate the acoustic and electric field, respectively. The three components of both electric field and magnetic field can be detected, and the radial electric field is mainly excited and converted by the dipole component. Owing to the existence of borehole, the electric fields and magnetic fields in the borehole are azimuthal. The distance from the point where the maximum amplitude of the axial components of electric field is recorded, to the origin of coordinate indicates the horizontal distance from the explosive source to the axis of vertical borehole.

  10. A new interpretation of the deep-part of Senegal-Mauritanian Basin in the Diourbel-Thies area by integrating seismic, magnetic, gravimetric and borehole data: Implication for petroleum exploration

    NASA Astrophysics Data System (ADS)

    Ndiaye, Matar; Ngom, Papa Malick; Gorin, Georges; Villeneuve, Michel; Sartori, Mario; Medou, Joseph

    2016-09-01

    The Diourbel-Thies area is located in the centre of the onshore part of the Senegal-Mauritanian Basin (SMB). The new interpretation of old petroleum data (2-D seismic lines and drilling data of three oil wells) in the deeppart of this poorly evaluated zone, integrating gravimetric and magnetic data, has allowed the distinction of the Hercynian ante-rift phase (U1) which is distinguished from the syn-rift phase (U2) probably of Permo-Triassic to Middle Jurassic age. The syn-rift phase resulted in a series of compartments or grabens infilling aligned in a North-South direction. Tholeiitic volcanism of the Central Atlantic Magmatic Province (CAMP) is present in the syn-rift phase of the Diourbel-Thies area. The syn-rift deposits and associated volcanics allow us to surmise that the Diourbel basin represents a deeper rift basin. In comparison with other Central Atlantic Margins (CAM), the Diourbel rift basin could be one of the numerous rift basins that formed during the Permo-Triassic age. From a petroleum exploration perspective, the existence of the Diourbel rift basin is attractive because of the presence of structures that are excellent for deep gas exploration.

  11. Preliminary results from hot-water drilling and borehole instrumentation on Store Glacier, West Greenland

    NASA Astrophysics Data System (ADS)

    Doyle, S. H.; Christoffersen, P.; Hubbard, B. P.; Young, T. J.; Hofstede, C. M.; Box, J.; Todd, J.; Bougamont, M. H.; Hubbard, A.

    2015-12-01

    As part of the Subglacial Access and Fast Ice Research Experiment (SAFIRE) pressurised hot water was used to drill four 603-616 m-long boreholes to the bed of the Greenland Ice Sheet at a site located 30 km from the calving front of fast-flowing, marine-terminating Store Glacier (70° N, ~1000 m elevation). Despite the boreholes freezing within hours, 4 wired sensor strings were successfully deployed in three of the boreholes. These included a thermistor string to obtain the englacial temperature profile installed in the same borehole as a string of tilt sensors to measure borehole deformation, and two sets of water pressure, electrical conductivity and turbidity sensors installed just above the bed in separate, adjacent boreholes. The boreholes made a strong hydrological connection to the bed during drilling, draining rapidly to ~80 m below the ice surface. The connection of subsequent boreholes was observed as a perturbation in water pressure and temperature recorded in neighbouring boreholes, indicating an effective hydrological sub- or en-glacial connection between them. The sensors, which were all connected to loggers at the surface by cables, operated for between ~30 and 80+ days before indications suggest that the cables stretched and then snapped - with the lowermost sensors failing first. The records obtained from these sensors reveal (i) high and increasing water pressure varying diurnally close to overburden albeit of a small magnitude (~ 0.3 m H2O), (ii) a minimum extrapolated englacial temperature of -21°C with above-freezing temperatures at the bed, and (iv) high rates of internal deformation and strain increasing towards the bed as evinced by increasing tilt with depth. These borehole observations are complemented by GPS measurements of ice motion, meteorological data, and seismic and radar surveys.

  12. Down-hole periodic seismic generator

    DOEpatents

    Hardee, H.C.; Hills, R.G.; Striker, R.P.

    1982-10-28

    A down hole periodic seismic generator system is disclosed for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  13. Advanced Borehole Radar for Hydrogeology

    NASA Astrophysics Data System (ADS)

    Sato, M.

    2014-12-01

    Ground Penetrating Radar is a useful tool for monitoring the hydrogeological environment. We have developed GPR systems which can be applied to these purposes, and we will demonstrate examples borehole radar measurements. In order to have longer radar detection range, frequency lower than100MHz has been normally adopted in borehole radar. Typical subsurface fractures of our interests have a few mm aperture and radar resolution is much poorer than a few cm in this frequency range. We are proposing and demonstrating to use radar polarimetry to solve this problem. We have demonstrated that a full-polarimetry borehole radar can be used for characterization of subsurface fractures. Together with signal processing for antenna characteristic compensation to equalize the signal by a dipole antenna and slot antennas, we could demonstrate that polarimetric borehole radar can estimate the surface roughness of subsurface fractures, We believe the surface roughness is closely related to water permeability through the fractures. We then developed a directional borehole radar, which uses optical field sensor. A dipole antenna in a borehole has omni-directional radiation pattern, and we cannot get azimuthal information about the scatterers. We use multiple dipole antennas set around the borehole axis, and from the phase differences, we can estimate the 3-diemnational orientation of subsurface structures. We are using optical electric field sensor for receiver of borehole radar. This is a passive sensor and connected only with optical fibers and does not require any electric power supply to operate the receiver. It has two major advantages; the first one is that the receiver can be electrically isolated from other parts, and wave coupling to a logging cable is avoided. Then, secondary, it can operate for a long time, because it does not require battery installed inside the system. It makes it possible to set sensors in fixed positions to monitor the change of environmental

  14. Location Capability and Site Characterization Installing a Borehole VBB Seismometer: the OGS Experience in Ferrara (Italy)

    NASA Astrophysics Data System (ADS)

    Pesaresi, D.; Barnaba, C.

    2014-12-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Centre) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy Seismic Network: it currently consists of 19 very sensitive broad band and 17 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS CRS data centre in Udine. The southwestern edge of the OGS seismic network stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. Following the ML=5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on May 20, 2012, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara and to the deployment of a temporary seismographic network consisting of eight portable seismological stations, to record the local earthquakes that occurred during the seismic sequence. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate seismic site responses in the area. We will introduce details of the Ferrara VBB borehole station and the OGS temporary seismographic network configuration and installation. We will then illustrate the location capability performances, and finally we will shortly describe seismic site characterization with surface/borehole comparisons in terms of seismic noise, site amplification and resonance frequencies.

  15. Site Characterization for a Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. L.; Hardin, E. L.; Freeze, G. A.; Sassani, D.; Brady, P. V.

    2015-12-01

    The US Department of Energy Office of Nuclear Energy is at the beginning of 5-year Deep Borehole Field Test (DBFT) to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages over mined repositories, including incremental construction and loading, the enhanced natural barriers provided by deep continental crystalline basement, and reduced site characterization. Site characterization efforts need to determine an eligible site that does not have the following disqualifying characteristics: greater than 2 km to crystalline basement, upward vertical fluid potential gradients, presence of economically exploitable natural resources, presence of high permeability connection to the shallow subsurface, and significant probability of future seismic or volcanic activity. Site characterization activities for the DBFT will include geomechanical (i.e., rock in situ stress state, and fluid pressure), geological (i.e., rock and fracture infill lithology), hydrological (i.e., quantity of fluid, fluid convection properties, and solute transport mechanisms), and geochemical (i.e., rock-water interaction and natural tracers) aspects. Both direct (i.e., sampling and in situ testing) and indirect (i.e., borehole geophysical) methods are planned for efficient and effective characterization of these site aspects and physical processes. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth, and interpretation of material and system parameters relevant to numerical site simulation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  16. A versatile shotgun source for engineering and groundwater seismic surveys

    SciTech Connect

    Parker, J.C. Jr.; Pelton, J.R.; Dougherty, M.E. . Center for Geophysical Investigation of the Shallow Subsurface)

    1993-10-01

    The authors describe an electrical seismic gun that is capable of firing 8-gauge blank black powder shells in a water-filled borehole under relatively high hydrostatic pressures. The new seismic gun is a modified version of the electrical shotgun source for engineering seismic surveys introduced by Pullan and MacAulay (1987). The modifications seal the firing circuit and 8-gauge shell against water entry so underwater detonation will occur reliably at depths to at least 80 m (0.9 MPa atmospheric pressure). Source energy is controlled by varying the size of the black powder load in the shell from 50 grains to 500 grains (10 kJ to 100 kJ). Although their seismic gun may be used in any seismic application suitable for modest explosive charges, it was initially developed as a versatile source for use in seismic investigations of the shallow subsurface (primarily engineering and groundwater studies). As of this writing, the gun has been used for optimum offset and CMP high-resolution seismic reflection profiling, engineering refraction surveys, fixed-source and variable-source noise tests, and vertical travel time measurements in water wells. Other potential uses include VSP and borehole-to-surface or borehole-to-borehole seismic tomography.

  17. Maine Geological Survey Borehole Temperature Profiles

    DOE Data Explorer

    Marvinney, Robert

    2013-11-06

    This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

  18. 30 CFR 75.1322 - Stemming boreholes

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Stemming boreholes 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other...

  19. 30 CFR 75.1322 - Stemming boreholes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Stemming boreholes. 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes. (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other...

  20. 30 CFR 75.1322 - Stemming boreholes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Stemming boreholes. 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes. (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other...

  1. 30 CFR 75.1322 - Stemming boreholes

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stemming boreholes 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other...

  2. 30 CFR 75.1322 - Stemming boreholes

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Stemming boreholes 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other...

  3. Waste Isolation Pilot Plant borehole data

    SciTech Connect

    1995-04-01

    Data pertaining to all the surface boreholes used at the WIPP site for site characterization hydrological testing and resource evaluation exist in numerous source documents. This project was initiated to develop a comprehensive data base that would include the data on all WIPP related surface boreholes from the Atomic Energy Commission, Waste Isolation Pilot Plant Energy Research and Development Administration, Department of Energy, and Hydrologic Test Borehole Programs. The data compiled from each borehole includes: operator, permit number, location, total depth, type of well, driller, drilling record, casing record, plugging schedule, and stratigraphic summary. There are six groups of boreholes contained in this data base, they are as follows: Commercially Drilled Potash Boreholes, Energy Department Wells, Geologic Exploration Boreholes, Hydrologic Test Boreholes, Potash Boreholes, and Subsurface Exploration Boreholes. There were numerous references which contained borehole data. In some cases the data found in one document was inconsistent with data in another document. In order to ensure consistency and accuracy in the data base, the same references were used for as many of the boreholes as possible. For example, all elevations and locations were taken from Compilation and Comparison of Test-Hole Location Surveys in the Vicinity of the WIPP Site. SAND 88-1065, Table 3-5. There are some sections where a data field is left blank. In this case, the information was either not applicable or was unavailable.

  4. Detecting a fluid-filled borehole using elastic waves from a remote borehole.

    PubMed

    Tang, Xiaoming; Cao, Jingji; Li, Zhen; Su, Yuanda

    2016-08-01

    The interaction of a fluid-filled borehole with incident elastic waves is an important topic for downhole acoustic measurements. By analyzing the wave phenomena of this problem, one can simulate the detection of a borehole target using a source-receiver system in a remote borehole. The analysis result shows that the wave signals from the target borehole are of sufficient amplitude even though the borehole size is small compared to wavelength. Consequently, the target borehole can be detected when the two boreholes are far away from each other. The result can be utilized to provide a method for testing downhole acoustic imaging tools. PMID:27586782

  5. Correlation of offshore seismic profiles with onshore New Jersey Miocene sediments

    USGS Publications Warehouse

    Monteverde, D.H.; Miller, K.G.; Mountain, Gregory S.

    2000-01-01

    The New Jersey passive continental margin records the interaction of sequences and sea-level, although previous studies linking seismically defined sequences, borehole control, and global ??18O records were hindered by a seismic data gap on the inner-shelf. We describe new seismic data from the innermost New Jersey shelf that tie offshore seismic stratigraphy directly to onshore boreholes. These data link the onshore boreholes to existing seismic grids across the outer margin and to boreholes on the continental slope. Surfaces defined by age; facies, and log signature in the onshore boreholes at the base of sequences Kw2b, Kw2a, Kw1c, and Kw0 are now tied to seismic sequence boundaries m5s, m5.2s, m5.4s, and m6s, respectively, defined beneath the inner shelf. Sequence boundaries recognized in onshore boreholes and inner shelf seismic profiles apparently correlate with reflections m5, m5.2, m5.4, and m6, respectively, that were dated at slope boreholes during ODP Leg 150. We now recognize an additional sequence boundary beneath the shelf that we name m5.5s and correlate to the base of the onshore sequence Kw1b. The new seismic data image prograding Oligocene clinoforms beneath the inner shelf, consistent with the results from onshore boreholes. A land-based seismic profile crossing the Island Beach borehole reveals reflector geometries that we tie to Lower Miocene litho- and bio-facies in this borehole. These land-based seismic profiles image well-defined sequence boundaries, onlap and downlap truncations that correlate to Transgressive Systems Tracts (TST) and Highstand Systems Tracts (HST) identified in boreholes. Preliminary analysis of CH0698 data continues these system tract delineations across the inner shelf The CH0698 seismic profiles tie seismically defined sequence boundaries with sequences identified by lithiologic and paleontologic criteria. Both can now be related to global ??18O increases and attendant glacioeustatic lowerings. This integration of core

  6. Coherent dissociation of relativistic {sup 9}C nuclei in nuclear track emulsion

    SciTech Connect

    Krivenkov, D. O.; Artemenkov, D. A.; Bradnova, V.; Kattabekov, R. R.; Kondratieva, N. V.; Mamatkulov, K. Z.; Malakhov, A. I.; Rukoyatkin, P. A.; Rusakova, V. V.; Stanoeva, R.; Zarubin, P. I.; Zarubina, I. G.; Haiduc, M.; Kharlamov, S. P.; Orlova, G. I.; Peresadko, N. G.; Polukhina, N. G.; Moiseenko, A. A.; Sarkisyan, V. R.; Vokal, S.

    2010-04-30

    For the first time nuclear track emulsion is exposed to relativistic {sup 9}C nuclei. A systematic pattern of the distributions of charge combinations of fragments in the peripheral interactions of {sup 9}C nuclei in a nuclear track emulsion has been obtained. The main conclusion is that the contribution of the channel {sup 9}C->{sup 8}B+p and {sup 9}C->{sup 7}Be+2p is most important in events that do not involve the production of target-nucleus fragments or mesons (coherent dissociation). It can be concluded that in the peripheral {sup 9}C dissociation the picture hitherto obtained for {sup 8}B and {sup 7}Be with the addition of one or two protons, respectively, is reproduced. Three coherent dissociation events {sup 9}C->3{sup 3}He accompanied by neither target fragments of the nucleus target nor charged mesons are identified.

  7. MWD tool for deep, small diameter boreholes

    SciTech Connect

    Buytaert, J.P.R.; Duckworth, A.

    1992-03-17

    This patent describes an apparatus for measuring a drilling parameters while drilling a borehole in an earth formation, wherein the borehole includes a small diameter deep borehole portion and a large diameter upper borehole portion. It includes small diameter drillstring means for drilling the deep borehole portion; sensor means, disposed within the small diameter drillstring means, for measuring a drilling parameter characteristic of the deep portion of the borehole while drilling the deep portion of the borehole and for providing sensor output signals indicative of the measured parameter; an upper drillstring portion extending between the surface of the formation and the small diameter drillstring means, the upper drillstring portion including a large diameter drillstring portion; data transmission means disposed within the large diameter drillstring portion and responsive to the sensor output.

  8. Four-Component Borehole Strain Meter: Observation and in-situ Calibration

    NASA Astrophysics Data System (ADS)

    Qiu, Z.; Shi, Y.; Ouyang, Z.

    2004-12-01

    Borehole strain meters are a key component of some important geo-scientific projects, such as PBO, to monitor seismic and aseismic tectonic strain phenomena. Observation using a four-component borehole strain meter, namely Ouyang borehole strain meter, has been kept continuous at Changping station, Beijing, for years. The plane strain changes are obtained at the depth of 120m and from 4 horizontal measurements, spaced 45 degrees apart, of the radial deformation of the borehole in which the instrument is installed. The challenge is that, according to the theory of elasticity, the sum of any two measurements perpendicular to each other should be the same as related to areal strain. The observation at Changping agrees pretty well with this rule and, with a relative in-situ calibration correction to the transducer factors based on the rule, the agreements can be yet much improved. Since the transducers were arranged well in the orientations of North, East, North West and North East, respectively, instrument shear strains can be simply given as the differences of the two correspondent perpendicular measurements. By applying theoretic Earth strain tide as a reference signal, in-situ absolute calibration can be carried out and the proportionality constants c and d, and the orientation error as well, can be calculated separately. Fore-component borehole strain meter has the advantages of giving more accurate and more reliable data for Earth strain and of easier processing as compared to three-component borehole strain meter.

  9. Borehole Effects in Triaxial Induction Logging

    SciTech Connect

    Bertete-Aguirre, H; Cherkaev, E; Tripp, A

    2000-09-15

    Traditional induction tools use source arrays in which both receiving and transmitting magnetic dipoles are oriented along the borehole axis. This orientation has been preferred for traditional isotropic formation evaluation in vertical boreholes because borehole effects are minimized by the source-receiver-borehole symmetry. However, this source-receiver geometry tends to minimize the response of potentially interesting geological features? such as bed resistivity anisotropy and fracturing which parallels the borehole. Traditional uniaxial tool responses are also ambiguous in highly deviated boreholes in horizontally layered formations. Resolution of these features would be enhanced by incorporating one or more source transmitters that are perpendicular to the borehole axis. Although these transmitters can introduce borehole effects, resistive oil-based muds minimize borehole effects for horizontal source data collection and interpretation. However, the use of oil based muds is contraindicated in environmentally sensitive areas. For this reason, it is important to be able to assess the influence of conductive water based muds on the new generation of triaxial induction tools directed toward geothermal resource evaluation and to develop means of ameliorating any deleterious effects. The present paper investigates the effects of a borehole on triaxial measurements. The literature contains a great deal of work on analytic expressions for the EM response of a magnetic dipole contained in a borehole with possible invasion zones. Moran and Gianzero (1979) for example investigate borehole effects using such an expression. They show that for conductive borehole fluids, the borehole response can easily swamp the formation response for horizontal dipoles. This is also true when the source dipoles are enclosed in a resistive cavity, as shown by Howard (1981) using a mode match modeling technique.

  10. Slant Borehole Demonstration Summary Report

    SciTech Connect

    GARDNER, M.G.

    2000-07-19

    This report provides a summary of the demonstration project for development of a slant borehole to retrieve soil samples from beneath the SX-108 single-shell tank. It provides a summary of the findings from the demonstration activities and recommendations for tool selection and methods to deploy into the SX Tank Farm. Daily work activities were recorded on Drilling and Sampling Daily Work Record Reports. The work described in this document was performed during March and April 2000.

  11. Electromagnetic fields in cased borehole

    SciTech Connect

    Lee, Ki Ha; Kim, Hee Joon; Uchida, Toshihiro

    2001-07-20

    Borehole electromagnetic (EM) measurements, using fiberglass-cased boreholes, have proven useful in oil field reservoir characterization and process monitoring (Wilt et al., 1995). It has been presumed that these measurements would be impossible in steel-cased wells due to the very large EM attenuation and phase shifts. Recent laboratory and field studies have indicated that detection of EM signals through steel casing should be possible at low frequencies, and that these data provide a reasonable conductivity image at a useful scale. Thus, we see an increased application of this technique to mature oilfields, and an immediate extension to geothermal industry as well. Along with the field experiments numerical model studies have been carried out for analyzing the effect of steel casing to the EM fields. The model used to be an infinitely long uniform casing embedded in a homogeneous whole space. Nevertheless, the results indicated that the formation signal could be accurately recovered if the casing characteristics were independently known (Becker et al., 1998; Lee el al., 1998). Real steel-cased wells are much more complex than the simple laboratory models used in work to date. The purpose of this study is to develop efficient numerical methods for analyzing EM fields in realistic settings, and to evaluate the potential application of EM technologies to cross-borehole and single-hole environment for reservoir characterization and monitoring.

  12. Geoscience experiments in boreholes: instrumentation

    SciTech Connect

    Traeger, R.K.

    1984-05-01

    Drilling is the only method available to obtain unambiguous information on processes occurring in the earth's crust. When core and virgin formation fluid samples are available, the geological state of the formation may be defined in the vicinity of the borehole with little ambiguity. Unfortunately, core recovery is expensive and often not complete, and drilling muds contaminate formation fluids. Thus, investigations turn to downhole instrumentation systems to evaluate in situ formation parameters. Some such instruments and the associated interpretative techniques are well developed, especially if they find usage in the evaluation of hydrocarbon reservoirs. Other sytems, particularly those that yield geochemical information are, at best, shallow-hole devices, but they could be engineered for deep-hole applications. Interpretations of logs obtained in igneous and metamorphic systems are not well developed. Finally, measurements away from the immediate vicinity of the borehole are possible but the technology is primitive. In situ instrumentation capabilities and needs for research in boreholes will be reviewed; the review will include details from recent US and European discussions of instrumentation needs. The capability and availability of slim hole logging tools will be summarized. Temperature limitations of the overall logging system will be discussed (current limits are 300/sup 0/C) and options for measurements to 500/sup 0/C will be described.

  13. Borehole Stability in High-Temperature Formations

    NASA Astrophysics Data System (ADS)

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang

    2014-11-01

    In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.

  14. Observation and Scaling of Microearthquakes from TCDP Borehole Seismometers

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Ma, K.; Oye, V.; Tanaka, H.

    2009-12-01

    Microearthquakes with magnitude down to 0.5 were detected by the Taiwan Chelungpu-ault Drilling Project Borehole Seismometers (TCDPBHS). A location software (MIMO) was used to determine P- and S-wave onset times, incidence and azimuth angles for the locations of the microevents. Regardless of the large co-seismic slip of 12 m at the drill site during the 1999 Chi-Chi earthquake, our studies show very less seismicity near the drill site from the TCDPBHS recording. The microevents clustered at a depth of 8-10 km, where the 30 degree dipping of the Chelungpu thrust fault becomes flat to a decollement of the Taiwan fold-and-thrust tectonic structure. As a continuous GPS survey did not observe post-slip at the large slip region, and as no seismicity was observed near the drill site, we suggest that the thrust belt above the decollement during the interseismic period is locked. A Fluid Injection Test (FIT) pumping high pressure fluid into hole C with hole A as observation well was carried out at the TCDP boreholes in November 2006, and January, March and April 2007. Compared with background seismicity in November 2007, the observation did not show significant correlation of the FIT related seismicity, despite the distinct observations on the arrival of gas and chemical monitoring through FIT. It is possible that the injected fluid rate of FIT experiments is too deficient to trigger microevents. The low fluid rate indicated the low permeability of the fault zone. We also examined the scaling of the source parameters of the small earthquakes in stress drops and seismic moments. The source parameters of 150 microevents were examined from the source spectra using Brune ω-2 model for a constant Q model. The scaling of the magnitude to the Brune stress drop is a significant positive correlation. However, there has been a debate that this positive relationship might be biased for without Q correction. Fortunately, we had observed 65 clusters showing similar waveforms. The path

  15. A Handbook for the Application of Seismic Methods for Quantifying Naturally Fractured Gas Reservoirs in the San Juan Basin, New Mexico

    SciTech Connect

    Majer, Ernest; Queen, John; Daley, Tom; Fortuna, Mark; Cox, Dale; D'Onfro, Peter; Goetz, Rusty; Coates, Richard; Nihei, Kurt; Nakagawa, Seiji; Myer, Larry; Murphy, Jim; Emmons, Charles; Lynn, Heloise; Lorenz, John; LaClair, David; Imhoff, Mathias; Harris, Jerry; Wu, Chunling; Urban, Jame; Maultzsch, Sonja; Liu, Enru; Chapman, Mark; Li, Xiang-Yang

    2004-09-28

    A four year (2000-2004) comprehensive joint industry, University and National Lab project was carried out in a 20 square mile area in a producing gas field in the Northwest part of the San Juan Basin in New Mexico to develop and apply multi-scale seismic methods for detecting and quantifying fractures in a naturally fractured gas reservoirs. 3-D surface seismic, multi-offset 9-C VSP, 3-C single well seismic, and well logging data were complemented by geologic/core studies to model, process and interpret the data. The overall objective was to determine the seismic methods most useful in mapping productive gas zones. Data from nearby outcrops, cores, and well bore image logs suggest that natural fractures are probably numerous in the subsurface reservoirs at the site selected and trend north-northeast/south-southwest despite the apparent dearth of fracturing observed in the wells logged at the site (Newberry and Moore wells). Estimated fracture spacing is on the order of one to five meters in Mesaverde sandstones, less in Dakota sandstones. Fractures are also more frequent along fault zones, which in nearby areas trend between north-northeast/south-southwest and northeast-southwest and are probably spaced a mile or two apart. The maximum, in situ, horizontal, compressive stress in the vicinity of the seismic test site trends approximately north-northeast/south-southwest. The data are few but they are consistent. The seismic data present a much more complicated picture of the subsurface structure. Faulting inferred from surface seismic had a general trend of SW - NE but with varying dip, strike and spacing. Studies of P-wave anisotropy from surface seismic showed some evidence that the data did have indications of anisotropy in time and amplitude, however, compared to the production patterns there is little correlation with P-wave anisotropy. One conclusion is that the surface seismic reflection data are not detecting the complexity of fracturing controlling the

  16. Hydraulically controlled discrete sampling from open boreholes

    USGS Publications Warehouse

    Harte, Philip T.

    2013-01-01

    Groundwater sampling from open boreholes in fractured-rock aquifers is particularly challenging because of mixing and dilution of fluid within the borehole from multiple fractures. This note presents an alternative to traditional sampling in open boreholes with packer assemblies. The alternative system called ZONFLO (zonal flow) is based on hydraulic control of borehole flow conditions. Fluid from discrete fractures zones are hydraulically isolated allowing for the collection of representative samples. In rough-faced open boreholes and formations with less competent rock, hydraulic containment may offer an attractive alternative to physical containment with packers. Preliminary test results indicate a discrete zone can be effectively hydraulically isolated from other zones within a borehole for the purpose of groundwater sampling using this new method.

  17. Compressive and Shear Wave Velocity Profiles using Seismic Refraction Technique

    NASA Astrophysics Data System (ADS)

    Aziman, M.; Hazreek, Z. A. M.; Azhar, A. T. S.; Haimi, D. S.

    2016-04-01

    Seismic refraction measurement is one of the geophysics exploration techniques to determine soil profile. Meanwhile, the borehole technique is an established way to identify the changes of soil layer based on number of blows penetrating the soil. Both techniques are commonly adopted for subsurface investigation. The seismic refraction test is a non-destructive and relatively fast assessment compared to borehole technique. The soil velocities of compressive wave and shear wave derived from the seismic refraction measurements can be directly utilised to calculate soil parameters such as soil modulus and Poisson’s ratio. This study investigates the seismic refraction techniques to obtain compressive and shear wave velocity profile. Using the vertical and horizontal geophones as well as vertical and horizontal strike directions of the transient seismic source, the propagation of compressive wave and shear wave can be examined, respectively. The study was conducted at Sejagung Sri Medan. The seismic velocity profile was obtained at a depth of 20 m. The velocity of the shear wave is about half of the velocity of the compression wave. The soil profiles of compressive and shear wave velocities were verified using the borehole data and showed good agreement with the borehole data.

  18. Shear wave transducer for boreholes

    DOEpatents

    Mao, N.H.

    1984-08-23

    A technique and apparatus is provided for estimating in situ stresses by measuring stress-induced velocity anisotropy around a borehole. Two sets each of radially and tangentially polarized transducers are placed inside the hole with displacement directions either parallel or perpendicular to the principal stress directions. With this configuration, relative travel times are measured by both a pulsed phase-locked loop technique and a cross correlation of digitized waveforms. The biaxial velocity data are used to back-calculate the applied stress.

  19. High-Resolution Fault Zone Monitoring and Imaging Using Long Borehole Arrays

    NASA Astrophysics Data System (ADS)

    Paulsson, B. N.; Karrenbach, M.; Goertz, A. V.; Milligan, P.

    2004-12-01

    Long borehole seismic receiver arrays are increasingly used in the petroleum industry as a tool for high--resolution seismic reservoir characterization. Placing receivers in a borehole avoids the distortion of reflected seismic waves by the near-surface weathering layer which leads to greatly improved vector fidelity and a much higher frequency content of 3-component recordings. In addition, a borehole offers a favorable geometry to image near-vertically dipping or overturned structure such as, e.g., salt flanks or faults. When used for passive seismic monitoring, long borehole receiver arrays help reducing depth uncertainties of event locations. We investigate the use of long borehole seismic arrays for high-resolution fault zone characterization in the vicinity of the San Andreas Fault Observatory at Depth (SAFOD). We present modeling scenarios to show how an image of the vertically dipping fault zone down to the penetration point of the SAFOD well can be obtained by recording surface sources in a long array within the deviated main hole. We assess the ability to invert fault zone reflections for rock physical parameters by means of amplitude versus offset or angle (AVO/AVA) analyzes. The quality of AVO/AVA studies depends on the ability to illuminate the fault zone over a wide range of incidence angles. We show how the length of the receiver array and the receiver spacing within the borehole influence the size of the volume over which reliable AVO/AVA information could be obtained. By means of AVO/AVA studies one can deduce hydraulic properties of the fault zone such as the type of fluids that might be present, the porosity, and the fluid saturation. Images of the fault zone obtained from a favorable geometry with a sufficient illumination will enable us to map fault zone properties in the surrounding of the main hole penetration point. One of the targets of SAFOD is to drill into an active rupture patch of an earthquake cluster. The question of whether or not

  20. Resveratrol inhibits doxorubicin-induced cardiotoxicity via sirtuin 1 activation in H9c2 cardiomyocytes

    PubMed Central

    Liu, Mi-Hua; Shan, Jian; Li, Jian; Zhang, Yuan; Lin, Xiao-Long

    2016-01-01

    Doxorubicin (DOX) is an efficient drug used in cancer therapy; however, it can induce severe cytotoxicity, which limits its clinical application. In the present study, the effects of resveratrol (RES) on sirtuin 1 (SIRT1) activation in mediating DOX-induced cytotoxicity in H9c2 cardiac cells was investigated. H9c2 cells were exposed to 5 µM DOX for 24 h to establish a model of DOX cardiotoxicity. Apoptosis of H9c2 cardiomyocytes was assessed using the MTT assay and Hoechst nuclear staining. The results demonstrated that pretreating H9c2 cells with RES prior to the exposure of DOX resulted in increased cell viability and a decreased quantity of apoptotic cells. Western blot analysis demonstrated that DOX decreased the expression level of SIRT1. These effects were significantly alleviated by co-treatment with RES. In addition, the results demonstrated that DOX administration amplified forkhead box O1 (FoxO1) and P53 expression levels in H9c2 cells. RES was also found to protect against DOX-induced increases of FoxO1 and P53 expression levels in H9c2 cells. Furthermore, the protective effects of RES were arrested by the SIRT1 inhibitor nicotinamide. In conclusion, the results demonstrated that RES protected H9c2 cells against DOX-induced injuries via SIRT1 activation. PMID:27446329

  1. Determination of Cry9C protein in processed foods made with StarLink corn.

    PubMed

    Diaz, Carmen; Fernandez, Cecilia; McDonald, Regina; Yeung, Jupiter M

    2002-01-01

    StarLink (Aventis CropScience US) hybrid corn has been genetically modified to contain a pesticidal protein, Cry9C, which makes it more resistant than traditional varieties to certain types of corn insect pests. Unlike other varieties of genetically engineered corn, the U.S. Environmental Protection Agency authorized the use of StarLink corn for animal feed and industrial use only, not for human consumption. However, some Cry9C-containing corn was mistakenly or inadvertently comingled with yellow corn intended for human food use. Because corn containing the Cry9C construct was not approved for human use, the U.S. Food and Drug Administration considers food containing it to be adulterated. Consequently, this regulatory violation resulted in hundreds of recalls of corn-based products, such as taco shells, containing cry9C DNA. Detecting the novel protein in StarLink corn is an emerging issue; therefore, there is no standardized or established analytical method for detecting Cry9C protein in processed foods. We developed a procedure for quantitation of Cry9C protein, with validation data, in processed food matrixes with a limit of quantitation at 1.7 ng/g (ppb), using a commercial polyclonal antibody-based Cry9C kit that was intended for corn grain samples. Intra- and interassay coefficients of variation were 2.8 and 11.8%, respectively. Mean recoveries were 73 and 85% at 2 and 5 ng/g Cry9C fortifications, respectively, for 19 control non-StarLink corn-based matrixes. Our data demonstrate only 0-0.5% of Cry9C protein survived the processing of tortilla chips and soft tortillas made from 100% StarLink corn, resulting in levels from below the detection limit to 45 ppb. PMID:12374406

  2. Endocytosis‒Mediated Invasion and Pathogenicity of Streptococcus agalactiae in Rat Cardiomyocyte (H9C2)

    PubMed Central

    Pooja, Sharma; Pushpanathan, Muthuirulan; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2015-01-01

    Streptococcus agalactiae infection causes high mortality in cardiovascular disease (CVD) patients, especially in case of setting prosthetic valve during cardiac surgery. However, the pathogenesis mechanism of S. agalactiae associate with CVD has not been well studied. Here, we have demonstrated the pathogenicity of S. agalactiae in rat cardiomyocytes (H9C2). Interestingly, both live and dead cells of S. agalactiae were uptaken by H9C2 cells. To further dissect the process of S. agalactiae internalization, we chemically inhibited discrete parts of cellular uptake system in H9C2 cells using genistein, chlorpromazine, nocodazole and cytochalasin B. Chemical inhibition of microtubule and actin formation by nocodazole and cytochalasin B impaired S. agalactiae internalization into H9C2 cells. Consistently, reverse‒ transcription PCR (RT‒PCR) and quantitative real time‒PCR (RT-qPCR) analyses also detected higher levels of transcripts for cytoskeleton forming genes, Acta1 and Tubb5 in S. agalactiae‒infected H9C2 cells, suggesting the requirement of functional cytoskeleton in pathogenesis. Host survival assay demonstrated that S. agalactiae internalization induced cytotoxicity in H9C2 cells. S. agalactiae cells grown with benzyl penicillin reduced its ability to internalize and induce cytotoxicity in H9C2 cells, which could be attributed with the removal of surface lipoteichoic acid (LTA) from S. agalactiae. Further, the LTA extracted from S. agalactiae also exhibited dose‒dependent cytotoxicity in H9C2 cells. Taken together, our data suggest that S. agalactiae cells internalized H9C2 cells through energy‒dependent endocytic processes and the LTA of S. agalactiae play major role in host cell internalization and cytotoxicity induction. PMID:26431539

  3. Coupled aquifer-borehole simulation.

    PubMed

    Clemo, Tom

    2010-01-01

    A model coupling fluid hydraulics in a borehole with fluid flow in an aquifer is developed in this paper. Conservation of momentum is used to create a one-dimensional steady-state model of vertical flow in an open borehole combined with radially symmetric flow in an aquifer and with inflow to the well through the wellbore screen. Both laminar and turbulent wellbore conditions are treated. The influence of inflow through the wellbore screen on vertical flow in the wellbore is included, using a relation developed by Siwoń (1987). The influence of inflow reduces the predicted vertical variation in head up to 15% compared to a calculation of head losses due to fluid acceleration and the conventional Colebrook-White formulation of friction losses in a circular pipe. The wellbore flow model is embedded into the MODFLOW-2000 ground water flow code. The nonlinear conservation of momentum equations are iteratively linearized to calculate the conductance terms for vertical flow in the wellbore. The resulting simulations agree favorably with previously published results when the model is adjusted to meet the assumptions of the previous coupled models. PMID:19682095

  4. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect

    Erik C. Westman

    2003-10-24

    Improved ground-imaging capabilities have enormous potential to increase energy, environmental, and economic benefits by improving exploration accuracy and reducing energy consumption during the mining cycle. Seismic tomography has been used successfully to monitor and evaluate geologic conditions ahead of a mining face. A primary limitation to existing seismic tomography, however, is the placement of sensors. The goal of this project is to develop an array of 24 seismic sensors capable of being mounted in either a vertical or horizontal borehole. Development of this technology reduces energy usage in excavation, transportation, ventilation, and processing phases of the mining operation because less waste is mined and the mining cycle suffers fewer interruptions. This new technology benefits all types of mines, including metal/nonmetal, coal, and quarrying. The primary research tasks focused on sensor placement method, sensor housing and clamping design, and cabling and connector selection. An initial design is described in the report. Following assembly, a prototype was tested in the laboratory as well as at a surface stone quarry. Data analysis and tool performance were used for subsequent design modifications. A final design is described, of which several components are available for patent application. Industry partners have shown clear support for this research and demonstrated an interest in commercialization following project completion.

  5. CORK Borehole Observatory Meets NEPTUNE Canada Cabled Observatory: First Experiences and Future Plans

    NASA Astrophysics Data System (ADS)

    Heesemann, M.; Davis, E. E.; Scherwath, M.

    2011-12-01

    The connection between the CORK ("Circulation Obviation Retrofit Kit") borehole observatory monitoring Ocean Drilling Program (ODP) borehole 1026B and the NEPTUNE Canada ocean network in September of 2009 marks the beginning of a new era of cabled subseafloor observations. The electrical power and real-time data access provided by cables improve the sampling rate, life time, and timing accuracy of existing borehole instrumentation. Cabled observatories also provide the opportunity to deploy advanced instruments that consume more power and produce more data than ever before. Using data from the 1026B CORK, we demonstrate how the higher sampling rate of cabled CORK observatories enables us to study phenomena like ocean weather and hydrologic responses to seismic waves. In an outlook we show how CORKs and new borehole instruments-planned for future connection to the NEPTUNE Canada ocean network-can help to yield critical information on the accumulation of stress and resulting strain of plate-scale crustal movements. In the future, these CORKs and new geodetic borehole instrumentation will provide a time-series of strain signals associated with the Cascadia subduction zone that would not have been possible with remote sensing or land-based monitoring. These CORKs will not only represent a new approach for earthquake research but the high-frequency, real-time data could also directly contribute to earthquake and tsunami early warning systems.

  6. Joint Geophysical Assessments of Geothermal Potential from a Deep Borehole in the Canadian Shield Rocks of NE Alberta

    NASA Astrophysics Data System (ADS)

    Chan, J.; Schmitt, D. R.; Kueck, J.; Moeck, I. S.

    2012-12-01

    Part of the feasibility study for geothermal development in Northern Alberta consists of investigating the presence of subsurface fluid pathways in the crystalline basement rocks. The deepest borehole drilled in Northeastern Alberta has a depth of 2350 m and offers substantial depth coverage to study the basement rocks. Due to the limited cores available for this deep borehole, a comprehensive suite of geophysical logs and borehole seismic methods are used to provide subsurface characterization of the basement in addition to the existing surface seismic reflection data. Interpretation of the geophysical logs indicate potential fracture zones at different depths that could serve as zones with enhanced fluid potential - a necessary component for any geothermal systems to be viable. Fractures within the subsurface tend to be aligned by the deviatoric stress in the subsurface and their orientations can be imaged using the Formation MicroImager (FMI) log. Two sets of vertical seismic profiles (VSP) were acquired in the deep borehole in July 2011. First, a high resolution zero-offset VSP was acquired to measure the seismic responses at the borehole. Upgoing tube waves can be identified and attributed to fracture zones interpreted from the geophysical logs. Since VSP data contains higher frequency content, the final corridor stack from the zero-offset VSP offers greater resolution in correlating seismic reflections with the primary reflectors and multiples interpreted from the surface seismic reflection data. The second set of VSP data is a multi-azimuth, multi-depth walk-away VSP acquired using three-component receivers placed at depths of 800 and 1780 m. The degree of seismic anisotropy in the crystalline basement can be revealed by analyzing the first arrivals at different geophone depths. Using an assumption that the presence of fractures causes P-wave reflection anisotropy, interpretation from the walk-away VSP can be used as a method for gross fracture detection

  7. Monitoring borehole flow dynamics using heated fiber optic DTS in a fractured rock aquifer

    NASA Astrophysics Data System (ADS)

    Coleman, Thomas; Chalari, Athena; Parker, Beth; Munn, Jonathan; Mondanos, Michael

    2014-05-01

    Temperature profiles in fractured rock have long been used to identify and characterize flow in the rock formation or in the borehole. Fiber optic distributed temperature sensing (DTS) is a tool that allows for continuous borehole temperature profiling in space and time. Recent technology advancements in the spatial, temperature, and temporal resolutions of DTS systems now allow temperature profiling methods to offer improved insight into fractured rock hydrogeologic processes. An innovation in shallow borehole temperature logging utilizes high resolution DTS temperature profiling in sealed and heated boreholes to identify fractures with natural gradient groundwater flow by creating a thermal disequilibrium and monitoring the temperature response. This technique can also be applied to open well conditions to monitor borehole flow distributions caused by hydraulic perturbations such as pumping or injection. A field trial was conducted in Guelph, Ontario, Canada to determine the capabilities of heated DTS for flow monitoring in both open and sealed wells. Intelligent distributed acoustic sensing (iDAS) measurements for vertical seismic profiling were carried out simultaneously with the DTS measurements to assist with characterization of the fractured aquifer system. DTS heat pulse tests were conducted in a single well under sealed conditions for natural gradient flow measurements and open conditions to monitor flow distributions during injection and pumping. The results of these tests indicate that borehole flow distributions can be monitored using DTS and that active heating allows for further information about the hydrogeologic system to be determined than from the passive measurements alone. Depth-continuous transmissivity data from the borehole correlate well with the DTS testing results. DTS based flow monitoring systems may be useful for monitoring transient production and injection processes for a variety of applications including groundwater remediation

  8. Stress Analysis in Boreholes Drag Bh and Leknes Bh, Nordland, North Norway

    NASA Astrophysics Data System (ADS)

    Ask, Maria V. S.; Ask, Daniel; Elvebakk, Harald; Olesen, Odleiv

    2015-07-01

    Nordland in northern Norway is characterized by enhanced seismicity and uplift that makes it the most tectonically active area in Norway. This study is part of a project entitled Neotectonics in Norway—Implications for Petroleum Exploration, which aims at enhancing the understanding of regional-scale stress and strain dynamics in Nordland, and to impact risk and hazard assessment and petroleum exploration. This paper attempts to constrain the orientation of in situ horizontal stress using high-resolution acoustic televiewer logging data. The Geological Survey of Norway has drilled two 0.8 km deep near-vertical boreholes on opposite sides of the Vestfjord in Nordland, the open bight of sea that separates the Lofoten archipelago from the Norwegian mainland. Both boreholes are drilled just North of 68°N, with borehole Leknes Bh located near the geographic center of the Lofoten archipelago, and borehole Drag Bh located on approximate equal distance from the shore, on the Norwegian mainland. The results of this study are in most practical aspects inconclusive, mainly due to poor data quality. The data analysis has revealed erroneously high-borehole diameter, and several artifacts such as eccentric logging tool, rugose borehole wall, spiral hole, tool sticking and missing data. Four intervals with passive in situ stress indicators (borehole breakout and drilling-induced fractures) were found in travel time and amplitude images of the Drag Bh, suggesting approximately N-S orientation of maximum horizontal stress. However, these intervals are not found in cross-plots. Either result yields the lowest World Stress Map ranking quality (E).

  9. Apparent break in earthquake scaling due to path and site effects on deep borehole recordings

    USGS Publications Warehouse

    Ide, S.; Beroza, G.C.; Prejean, S.G.; Ellsworth, W.L.

    2003-01-01

    We reexamine the scaling of stress drop and apparent stress, rigidity times the ratio between seismically radiated energy to seismic moment, with earthquake size for a set of microearthquakes recorded in a deep borehole in Long Valley, California. In the first set of calculations, we assume a constant Q and solve for the corner frequency and seismic moment. In the second set of calculations, we model the spectral ratio of nearby events to determine the same quantities. We find that the spectral ratio technique, which can account for path and site effects or nonconstant Q, yields higher stress drops, particularly for the smaller events in the data set. The measurements determined from spectral ratios indicate no departure from constant stress drop scaling down to the smallest events in our data set (Mw 0.8). Our results indicate that propagation effects can contaminate measurements of source parameters even in the relatively clean recording environment of a deep borehole, just as they do at the Earth's surface. The scaling of source properties of microearthquakes made from deep borehole recordings may need to be reevaluated.

  10. Induced Seismicity Monitoring System

    NASA Astrophysics Data System (ADS)

    Taylor, S. R.; Jarpe, S.; Harben, P.

    2014-12-01

    There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range

  11. 30 CFR 75.1318 - Loading boreholes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... shall be the primer cartridge with the end of the cartridge containing the detonator facing the back of... between each cartridge in the borehole. (d) When loading other boreholes— (1) The primer cartridge shall... inserted shall face the back of the borehole; and (3) The primer cartridge and other explosives shall...

  12. 30 CFR 75.1318 - Loading boreholes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... shall be the primer cartridge with the end of the cartridge containing the detonator facing the back of... between each cartridge in the borehole. (d) When loading other boreholes— (1) The primer cartridge shall... inserted shall face the back of the borehole; and (3) The primer cartridge and other explosives shall...

  13. Seismic basement in Poland

    NASA Astrophysics Data System (ADS)

    Grad, Marek; Polkowski, Marcin

    2015-09-01

    The area of contact between Precambrian and Phanerozoic Europe in Poland has complicated structure of sedimentary cover and basement. The thinnest sedimentary cover in the Mazury-Belarus anteclize is only 0.3-1 km thick, increases to 7-8 km along the East European Craton margin, and 9-12 km in the Trans-European Suture Zone (TESZ). The Variscan domain is characterized by a 1- to 2-km-thick sedimentary cover, while the Carpathians are characterized by very thick sediments, up to c. 20 km. The map of the basement depth is created by combining data from geological boreholes with a set of regional seismic refraction profiles. These maps do not provide data about the basement depth in the central part of the TESZ and in the Carpathians. Therefore, the data set is supplemented by 32 models from deep seismic sounding profiles and a map of a high-resistivity (low-conductivity) layer from magnetotelluric soundings, identified as a basement. All of these data provide knowledge about the basement depth and of P-wave seismic velocities of the crystalline and consolidated type of basement for the whole area of Poland. Finally, the differentiation of the basement depth and velocity is discussed with respect to geophysical fields and the tectonic division of the area.

  14. Seismic basement in Poland

    NASA Astrophysics Data System (ADS)

    Grad, Marek; Polkowski, Marcin

    2016-06-01

    The area of contact between Precambrian and Phanerozoic Europe in Poland has complicated structure of sedimentary cover and basement. The thinnest sedimentary cover in the Mazury-Belarus anteclize is only 0.3-1 km thick, increases to 7-8 km along the East European Craton margin, and 9-12 km in the Trans-European Suture Zone (TESZ). The Variscan domain is characterized by a 1- to 2-km-thick sedimentary cover, while the Carpathians are characterized by very thick sediments, up to c. 20 km. The map of the basement depth is created by combining data from geological boreholes with a set of regional seismic refraction profiles. These maps do not provide data about the basement depth in the central part of the TESZ and in the Carpathians. Therefore, the data set is supplemented by 32 models from deep seismic sounding profiles and a map of a high-resistivity (low-conductivity) layer from magnetotelluric soundings, identified as a basement. All of these data provide knowledge about the basement depth and of P-wave seismic velocities of the crystalline and consolidated type of basement for the whole area of Poland. Finally, the differentiation of the basement depth and velocity is discussed with respect to geophysical fields and the tectonic division of the area.

  15. Cross-borehole and surface-to-borehole electromagnetic induction for reservoir characterization

    SciTech Connect

    Wilt, M.J.; Morrison, H.F.; Becker, A.; Lee, K.H.

    1991-08-01

    Audio-frequency cross-borehole and surface-to-borehole electromagnetics (EM) are interesting alternatives to existing techniques for petroleum reservoir characterization and monitoring. With these methods signals may be propagated several hundreds of meters through typical sand/shale reservoirs and data may be collected at high accuracy with a high sensitivity to the subsurface resistivity distribution. Field systems for cross-borehole and surface-to-borehole EM measurements have been designed and built by Lawrence Livermore and Lawrence Berkeley Laboratories for reservoir evaluation and monitoring. The cross-borehole system utilizes vertical axis induction coil antennas for transmission and detection of sinusoidal signals. Data are collected in profiles with the source coil moving continuously while its signal is detected by a stationary receiver coil located in a separate well. Subsequent profiles are collected using a different receiver depth and the same transmitter span until a suite of profiles is obtained that cover the desired interval in the borehole. The surface-to-borehole system uses a large diameter surface loop transmitter and a vertical axis borehole receiver. Due to its high signal strength this system operates using a sweep frequency transmitter waveform so that data may be simultaneously collected over several decades of frequency. Surface-to-borehole profiles are equally repeatable and although this data is less sensitive than cross-borehole EM, it can be fit to a resistivity section consistent with the borehole log. 8 refs., 14 figs.

  16. Backtracking urbanization from borehole temperature

    NASA Astrophysics Data System (ADS)

    Bayer, Peter; Rivera, Jaime A.; Blum, Philipp; Rybach, Ladislaus

    2016-04-01

    The thermal regime in shallow ground is influenced by various factors such as short and long term climatic variations, atmospheric urban warming, land use change and geothermal energy use. Temperature profiles measured in boreholes represent precious archives of the past thermal conditions at the ground surface. Changes at the ground surface induce time-dependent variations in heat transfer. Consequently, instantaneous and persistent changes such as recent atmospheric climate change or paving of streets cause perturbations in temperature profiles, which now can be found in depths of hundred meters and even more. In our work, we focus on the influence of urbanization on temperature profiles. We inspect profiles measured in borehole heat exchanger (BHE) tubes before start of energy extraction. These were obtained at four locations in the city and suburbs of Zurich, Switzerland, by lowering a specifically developed temperature logging sensor in the 200-400 m long tubes. Increased temperatures indicate the existence of a subsurface urban heat island (SUHI). At the studied locations groundwater flow can be considered negligible, and thus conduction is the governing heat transport process. These locations are also favorable, as long-term land use changes and atmospheric temperature variations are well documented for more than the last century. For simulating transient land use changes and their effects on borehole temperature profiles, a novel analytical framework based on the superposition of Green's functions is presented. This allows flexible and fast computation of the long term three-dimensional evolution of the thermal regime in shallow ground. It also facilitates calibration of unknown spatially distributed parameter values and their correlation. With the given spatial and temporal discretization of land use and background atmospheric temperature variations, we are able to quantify the heat contribution by asphalt and buildings. By Bayesian inversion it is

  17. Kimama Well - Borehole Geophysics Database

    DOE Data Explorer

    Shervais, John

    2011-07-04

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimama drill site was set up to acquire a continuous record of basaltic volcanism along the central volcanic axis and to test the extent of geothermal resources beneath the Snake River aquifer. Data submitted by project collaborator Doug Schmitt, University of Alberta

  18. Kimberly Well - Borehole Geophysics Database

    DOE Data Explorer

    Shervais, John

    2011-07-04

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimberly drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama and is located near the margin of the plain. Data submitted by project collaborator Doug Schmitt, University of Alberta

  19. Evaluating Local Elastic Anisotropy of Rocks and Sediments by Means of Optoacoustics While Drilling Oil and Gas Boreholes

    NASA Astrophysics Data System (ADS)

    Gladilin, A. V.; Egerev, S. V.; Ovchinnikov, O. B.

    2014-12-01

    The optoacoustic method is used to evaluate local elastic anisotropy of rocks and sediments. The method is based on laser sound generation by irradiating a spot on the wall of the oil or gas borehole. The optoacoustic method offers an advantage of precise non-contact placing of a short-pulse point sound source. Pulses of a compression wave, shear waves, and a surface wave are induced in the formation as a result of optoacoustic conversion. The surface trace of the bulk compression wave propagating along the borehole surface has a velocity corresponding to that of a bulk wave. Hence, measurements of the trace propagation time along several predetermined paths on the surface of a borehole provide evaluation of local elastic anisotropy in situ. The pick-up is provided with a piezoelectric ceramic transducer positioned at a predetermined point on the surface of the borehole. The optoacoustic conversion regime parameters were chosen to provide separation of the trace pulse of another surface perturbance at the travel distance of about 0.1 m. The local measurements on the borehole wall are aimed to support accurate depth imaging of seismic data. Understanding these common anisotropy effects is important when interpreting seismic data where they are present.

  20. Gene Expression Profiling of H9c2 Myoblast Differentiation towards a Cardiac-Like Phenotype

    PubMed Central

    Branco, Ana F.; Pereira, Susana P.; Gonzalez, Susana; Gusev, Oleg; Rizvanov, Albert A.; Oliveira, Paulo J.

    2015-01-01

    H9c2 myoblasts are a cell model used as an alternative for cardiomyocytes. H9c2 cells have the ability to differentiate towards a cardiac phenotype when the media serum is reduced in the presence of all-trans-retinoic acid (RA), creating multinucleated cells with low proliferative capacity. In the present study, we performed for the first time a transcriptional analysis of the H9c2 cell line in two differentiation states, i.e. embryonic cells and differentiated cardiac-like cells. The results show that RA-induced H9c2 differentiation increased the expression of genes encoding for cardiac sarcomeric proteins such as troponin T, or calcium transporters and associated machinery, including SERCA2, ryanodine receptor and phospholamban as well as genes associated with mitochondrial energy production including respiratory chain complexes subunits, mitochondrial creatine kinase, carnitine palmitoyltransferase I and uncoupling proteins. Undifferentiated myoblasts showed increased gene expression of pro-survival proteins such as Bcl-2 as well as cell cycle-regulating proteins. The results indicate that the differentiation of H9c2 cells lead to an increase of transcripts and protein levels involved in calcium handling, glycolytic and mitochondrial metabolism, confirming that H9c2 cell differentiation induced by RA towards a more cardiac-like phenotype involves remodeled mitochondrial function. PI3K, PDK1 and p-CREB also appear to be involved on H9c2 differentiation. Furthermore, complex analysis of differently expressed transcripts revealed significant up-regulation of gene expression related to cardiac muscle contraction, dilated cardiomyopathy and other pathways specific for the cardiac tissue. Metabolic and gene expression remodeling impacts cell responses to different stimuli and determine how these cells are used for biochemical assays. PMID:26121149

  1. Gene Expression Profiling of H9c2 Myoblast Differentiation towards a Cardiac-Like Phenotype.

    PubMed

    Branco, Ana F; Pereira, Susana P; Gonzalez, Susana; Gusev, Oleg; Rizvanov, Albert A; Oliveira, Paulo J

    2015-01-01

    H9c2 myoblasts are a cell model used as an alternative for cardiomyocytes. H9c2 cells have the ability to differentiate towards a cardiac phenotype when the media serum is reduced in the presence of all-trans-retinoic acid (RA), creating multinucleated cells with low proliferative capacity. In the present study, we performed for the first time a transcriptional analysis of the H9c2 cell line in two differentiation states, i.e. embryonic cells and differentiated cardiac-like cells. The results show that RA-induced H9c2 differentiation increased the expression of genes encoding for cardiac sarcomeric proteins such as troponin T, or calcium transporters and associated machinery, including SERCA2, ryanodine receptor and phospholamban as well as genes associated with mitochondrial energy production including respiratory chain complexes subunits, mitochondrial creatine kinase, carnitine palmitoyltransferase I and uncoupling proteins. Undifferentiated myoblasts showed increased gene expression of pro-survival proteins such as Bcl-2 as well as cell cycle-regulating proteins. The results indicate that the differentiation of H9c2 cells lead to an increase of transcripts and protein levels involved in calcium handling, glycolytic and mitochondrial metabolism, confirming that H9c2 cell differentiation induced by RA towards a more cardiac-like phenotype involves remodeled mitochondrial function. PI3K, PDK1 and p-CREB also appear to be involved on H9c2 differentiation. Furthermore, complex analysis of differently expressed transcripts revealed significant up-regulation of gene expression related to cardiac muscle contraction, dilated cardiomyopathy and other pathways specific for the cardiac tissue. Metabolic and gene expression remodeling impacts cell responses to different stimuli and determine how these cells are used for biochemical assays. PMID:26121149

  2. EXPLORING FOR SUBTLE MISSION CANYON STRATIGRAPHIC TRAPS WITH ELASTIC WAVEFIELD SEISMIC TECHNOLOGY

    SciTech Connect

    John Beecherl

    2004-02-01

    The 9C3D seismic data that will form the principal data base needed for this research program have been successfully acquired. The seismic field data exhibit a good signal-to-noise (S/N) ratio for all elastic-wave modes. Thus the major hurdle of acquiring optimal-quality 9-C seismic data has been cleared. The stratigraphic oil-reservoir target that will be the imaging objective of the seismic data-processing effort is described in this report to indicate the challenge that now confronts the data-processing phase of the project.

  3. Basic data report: borehole WIPP-12 deepening. Waste Isolation Pilot Plant (WIPP) Project, southeastern New Mexico

    SciTech Connect

    Black, S.R.

    1982-12-01

    Borehole WIPP-12 was originally drilled in 1978 as an exploratory borehole to characterize the geology of the Waste Isolation Pilot Plant (WIPP) site in Eddy County, New Mexico. WIPP-12 was reentered and deepened in late 1981. WIPP-12 is located in Section 17, T22S, R31E, just outside the limit of Zone II, approximately one mile north of the exploratory shaft site. The deepening of WIPP-12 was undertaken for several reasons: to investigate the presence of an anticlinal or domal structure and thickening of halite indicated by surface seismic reflection surveys conducted in the area; to determine the nature and extent of deformation in the Castile Formation, in a location adjacent to the zone of anomalous seismic reflections found north of the well location (''Disturbed Zone''); and to characterize any fluid-bearing zones encountered in the Castile Formation while drilling. Field operations related to deepening of the borehole began November 16, 1981 and were completed January 1, 1982. The borehole was deepened through the Castile Formation to a total depth of 3927.5 ft by coring. Pressurized brine was encountered on November 22, 1981 at a depth of about 3016 ft. The brine reservoir is apparently related to a system of near-vertical fractures of unknown extent observed in Anhydrite III. The Halite I member is about 200 ft thicker than observed in undisturbed areas in the vicinity of WIPP (for example, Borehole DOE-1). Small-scale lithologic features such as folding of anhydrite stringers in halite and halite lineation appear to confirm the presence of a structural disturbance at this location. This Basic Data Report includes geologic information gathered during WIPP-12 deepening.

  4. Martian seismicity

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.; Grimm, Robert E.

    1991-01-01

    The design and ultimate success of network seismology experiments on Mars depends on the present level of Martian seismicity. Volcanic and tectonic landforms observed from imaging experiments show that Mars must have been a seismically active planet in the past and there is no reason to discount the notion that Mars is seismically active today but at a lower level of activity. Models are explored for present day Mars seismicity. Depending on the sensitivity and geometry of a seismic network and the attenuation and scattering properties of the interior, it appears that a reasonable number of Martian seismic events would be detected over the period of a decade. The thermoelastic cooling mechanism as estimated is surely a lower bound, and a more refined estimate would take into account specifically the regional cooling of Tharsis and lead to a higher frequency of seismic events.

  5. Empirical Study Of Tube Wave Suppression For Single Well Seismic Imaging

    SciTech Connect

    West, Phillip Bradley; Weinberg, David Michael; Fincke, James Russell

    2002-05-01

    This report addresses the Idaho National Engineering and Environmental Laboratory's portion of a collaborative effort with Lawrence Berkeley National Laboratory and Sandia National Laboratories on a borehole seismic project called Single Well Seismic Imaging. The INEEL's role was to design, fabricate, deploy, and test a number of passive devices to suppress the energy within the borehole. This energy is generally known as tube waves. Heretofore, tube waves precluded acquisition of meaningful single-well seismic data. This report addresses the INEEL tests, theories, observations, and test results.

  6. Empirical Study Of Tube Wave Suppression For Single Well Seismic Imaging

    SciTech Connect

    West, P.B.; Weinberg, D.M.; Fincke, J.R.

    2002-05-31

    This report addresses the Idaho National Engineering and Environmental Laboratory's portion of a collaborative effort with Lawrence Berkeley National Laboratory and Sandia National Laboratories on a borehole seismic project called Single Well Seismic Imaging. The INEEL's role was to design, fabricate, deploy, and test a number of passive devices to suppress the energy within the borehole. This energy is generally known as tube waves. Heretofore, tube waves precluded acquisition of meaningful single-well seismic data. This report addresses the INEEL tests, theories, observations, and test results.

  7. Estimation and 3-D modeling of seismic parameters for fluvial systems

    SciTech Connect

    Brown, R.L.; Levey, R.A.

    1994-12-31

    Borehole measurements of parameters related to seismic propagation (Vp, Vs, Qp and Qs) are seldom available at all the wells within an area of study. Well logs and other available data can be used along with certain results from laboratory measurements to predict seismic parameters at wells where these measurements are not available. Next, three dimensional interpolation techniques based upon geological constraints can then be used to estimate the spatial distribution of geophysical parameters within a given environment. The net product is a more realistic model of the distribution of geophysical parameters which can be used in the design of surface and borehole seismic methods for probing the reservoir.

  8. The Subglacial Access and Fast Ice Research Experiment (SAFIRE): 2. Preliminary outcomes from hot-water drilling and borehole instrumentation on Store Glacier, West Greenland

    NASA Astrophysics Data System (ADS)

    Doyle, Samuel; Hubbard, Bryn; Christoffersen, Poul; Young, Tun Jan; Hofstede, Coen; Todd, Joe; Bougamont, Marion; Hubbard, Alun

    2015-04-01

    As part of the SAFIRE research programme, pressurised hot water was used to drill four 603-616 m-long boreholes to the bed of the Greenland Ice Sheet at a site located 30 km from the calving front of marine-terminating Store Glacier (70° N, ~1000 m elevation). Despite the boreholes freezing within hours, 4 wired sensor strings were successfully deployed in three of the boreholes. These included a thermistor string to obtain the englacial temperature profile installed in the same borehole as a string of tilt sensors to measure borehole deformation, and two sets of water pressure, electrical conductivity and turbidity sensors installed just above the bed in separate, adjacent boreholes. The boreholes made a strong hydrological connection to the bed during drilling, draining rapidly to ~80 m below the ice surface. The connection of subsequent boreholes was observed as a perturbation in water pressure and temperature recorded in neighbouring boreholes, indicating an effective hydrological sub- or en-glacial connection between them. The short (week long) records obtained from these sensors in summer 2014 tentatively reveal (i) water pressure varying diurnally close to overburden albeit of a small magnitude (~0.3 m H2O), (ii) a minimum extrapolated englacial temperature of -21° C, (iii) and thermistors in the lowest 10 m of the borehole recorded temperatures above the pressure melting point indicating the presence of water. Data loggers were left running and longer records should become available in the near future. Differential drilling and instrument installation depths together with observations of discrete, diurnal turbidity events provisionally suggest the presence of sediment at the bed. These preliminary borehole observations will be complemented by GPS measurements of ice motion, meteorological data, and seismic and radar surveys to be undertaken over the next two years.

  9. Subsurface structure around Omi basin using borehole database

    NASA Astrophysics Data System (ADS)

    Kitada, N.; Ito, H.; Takemura, K.; Mitamura, M.

    2015-12-01

    Kansai Geo-informatics Network (KG-NET) is organized as a new system of management of GI-base in 2005. This organization collects the geotechnical and geological information of borehole data more than 60,000 data. GI-base is the database system of the KG-NET and platform to use these borehole data. Kansai Geo-informatics Research Committee (KG-R) is tried to explain the geotechnical properties and geological environment using borehole database in Kansai area. In 2014, KG-R established the 'Shin-Kansai Jiban Omi plain', and explain the subsurface geology and characteristics of geotechnical properties. In this study we introduce this result and consider the sedimental environment and characteristics in this area. Omi Basin is located in the central part of Shiga Prefecture which includes the largest lake in Japan called Lake Biwa. About 15,000 borehole data are corrected to consider the subsurface properties. The outline of topographical and geological characteristics of the basin is divided into west side and east side. The west side area is typical reverse fault called Biwako-Seigan fault zone along the lakefront. From Biwako-Seigan fault, the Omi basin is tilting down from east to west. Otherwise, the east areas distribute lowland and hilly area comparatively. The sedimentary facies are also complicate and difficult to be generally evaluated. So the discussion has been focused about mainly the eastern and western part of Lake Biwa. The widely dispersed volcanic ash named Aira-Tn (AT) deposited before 26,000-29,000 years ago (Machida and Arai, 2003), is sometimes interbedded the humic layers in the low level ground area. However, because most of the sediments are comprised by thick sand and gravels whose deposit age could not be investigated, it is difficult to widely identify the boundary of strata. Three types of basement rocks are distributed mainly (granite, sediment rock, rhyolite), and characteristics of deposit are difference of each backland basement rock

  10. Which boreholes do we need to resolve the Common Era in borehole paleoclimatology?

    NASA Astrophysics Data System (ADS)

    Rath, V.; Smerdon, J. E.; Gonzalez-Rouco, F. J.; Beltrami, H.

    2011-12-01

    The global database of borehole temperature profiles used to estimate paleoclimatic ground surface temperature histories (GSTHs) has typically focused on the last 500 years. his is mainly due to the fact that the borehole database is dominated by shallow boreholes (~200-300 m). Nevertheless, it has been shown that these boreholes may be too shallow for proper separation of the downwelling climatic transient and the long-term background steady-state signal associated with heat loss from the earth's interior. The mere inclusion of deeper boreholes, however, does not necessarily mitigate the problem. Borehole temperature profiles of any depth show the signatures of earlier climatic changes, including the strong warming following the last glacial maximum (LGM). In shallow boreholes this effect is very similar to a linear trend, usually cannot be discriminated from a steady-state geotherm, and is unlikely to strongly impact estimates of GSTHs spanning common-era timescales. In deeper boreholes, however, the signature of the LGM cannot be approximated linearly, and biases associated with the LGM may impact GSTH reconstructions during the Common Era. The combined incentive to employ deep boreholes for reliable estimation of the background steady-state signal, while limiting the LGM impacts on reconstructions of Common-Era GSTHs thus leads to an multi-objective optimization problem seeking a trade-off between the impacts of the two effects. Such an optimization of the borehole maximum depth criterion is investigated in this study using numerical models. A Monte Carlo ensemble approach is used to quantify the impact of various reconstruction decisions as temperature histories, error characteristics, thermophysical properties, and maximum borehole depths. The findings have implications for interpretations of current global reconstruction products and future efforts to analyze the global borehole database for Common-Era GSTH reconstructions.

  11. Which boreholes do we need to resolve the Common Era in borehole paleoclimatology?

    NASA Astrophysics Data System (ADS)

    Rath, V.; Smerdon, J. E.; González-Rouco, J. F.; Beltrami, H.

    2012-04-01

    The global database of borehole temperature profiles used to estimate paleoclimatic ground surface temperature histories (GSTHs) has typically focused on the last 500 years. his is mainly due to the fact that the borehole database is dominated by shallow boreholes (~200-300 m). Nevertheless, it has been shown that these boreholes may be too shallow for proper separation of the downwelling climatic transient and the long-term background steady-state signal associated with heat loss from the earth's interior. The mere inclusion of deeper boreholes, however, does not necessarily mitigate the problem. Borehole temperature profiles of any depth show the signatures of earlier climatic changes, including the strong warming following the last glacial maximum (LGM). In shallow boreholes this effect is very similar to a linear trend, usually cannot be discriminated from a steady-state geotherm, and is unlikely to strongly impact estimates of GSTHs spanning common-era timescales. In deeper boreholes, however, the signature of the LGM cannot be approximated linearly, and biases associated with the LGM may impact GSTH reconstructions during the Common Era. The combined incentive to employ deep boreholes for reliable estimation of the background steady-state signal, while limiting the LGM impacts on reconstructions of Common-Era GSTHs thus leads to an multi-objective optimization problem seeking a trade-off between the impacts of the two effects. Such an optimization of the borehole maximum depth criterion is investigated in this study using numerical models. A Monte Carlo ensemble approach is used to quantify the impact of various reconstruction decisions as temperature histories, error characteristics, thermophysical properties, and maximum borehole depths. The findings have implications for interpretations of current global reconstruction products and future efforts to analyze the global borehole database for Common-Era GSTH reconstructions. (http://palma.fis.ucm.es/~volker/)

  12. Cloning, expression, and purification of a recombinant Tat-HA-NR2B9c peptide.

    PubMed

    Zhou, Hai-Hui; Zhang, Ai-Xia; Zhang, Yu; Zhu, Dong-Ya

    2012-10-01

    To design a peptide disrupting the interaction between N-methyl-d-aspartate receptors-2B (NR2B) and postsynaptic density protein-95 (PSD-95), a gene fragment encoding a chimeric peptide was constructed using polymerase chain reaction and ligated into a novel expression vector for recombinant expression in a T7 RNA polymerase-based expression system. The chimeric peptide contained a fragment of the cell membrane transduction domain of the human immunodeficiency virus type1 (HIV-1) Tat, a influenza virus hemagglutinin (HA) epitope-tag, and the C-terminal 9 amino acids of NR2B (NR2B9c). We named the chimeric peptide Tat-HA-NR2B9c. The expression plasmid contained a gene fragment encoding the Tat-HA-NR2B9c was ligated to the C-terminal fragment of l-asparaginase (AnsB-C) via a unique acid labile Asp-Pro linker. The recombinant fusion protein was expressed in inclusion body in Escherichia coli under isopropyl β-d-1-thiogalactopyranoside (IPTG) and purified by washing with 2M urea, solubilizing in 4M urea, and then ethanol precipitation. The target chimeric peptide Tat-HA-NR2B9c was released from the fusion partner following acid hydrolysis and purified by isoelectric point precipitation and ultrafiltration. SDS-PAGE analysis and MALDI-TOF-MS analysis showed that the purified Tat-HA-NR2B9c was highly homogeneous. Furthermore, we investigated the effects of Tat-HA-NR2B9c on ischemia-induced cerebral injury in the rats subjected to middle cerebral artery occlusion (MCAO) and reperfusion, and found that the peptide reduced infarct size and improved neurological functions. PMID:22944204

  13. Applying the seismic interferometry method to vertical seismic profile data using tunnel excavation noise as source

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Teixido, Teresa; Martin, Elena; Segarra, Miguel; Segura, Carlos

    2013-04-01

    In the frame of the research conducted to develop efficient strategies for investigation of rock properties and fluids ahead of tunnel excavations the seismic interferometry method was applied to analyze the data acquired in boreholes instrumented with geophone strings. The results obtained confirmed that seismic interferometry provided an improved resolution of petrophysical properties to identify heterogeneities and geological structures ahead of the excavation. These features are beyond the resolution of other conventional geophysical methods but can be the cause severe problems in the excavation of tunnels. Geophone strings were used to record different types of seismic noise generated at the tunnel head during excavation with a tunnelling machine and also during the placement of the rings covering the tunnel excavation. In this study we show how tunnel construction activities have been characterized as source of seismic signal and used in our research as the seismic source signal for generating a 3D reflection seismic survey. The data was recorded in vertical water filled borehole with a borehole seismic string at a distance of 60 m from the tunnel trace. A reference pilot signal was obtained from seismograms acquired close the tunnel face excavation in order to obtain best signal-to-noise ratio to be used in the interferometry processing (Poletto et al., 2010). The seismic interferometry method (Claerbout 1968) was successfully applied to image the subsurface geological structure using the seismic wave field generated by tunneling (tunnelling machine and construction activities) recorded with geophone strings. This technique was applied simulating virtual shot records related to the number of receivers in the borehole with the seismic transmitted events, and processing the data as a reflection seismic survey. The pseudo reflective wave field was obtained by cross-correlation of the transmitted wave data. We applied the relationship between the transmission

  14. 40 CFR 174.517 - Bacillus thuringiensis Cry9C protein in corn; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry9C protein... Cry9C protein in corn; exemption from the requirement of a tolerance. The plant-incorporated protectant Bacillus thuringiensis Cry9C protein in corn is exempted from the requirement of a tolerance for...

  15. 40 CFR 174.517 - Bacillus thuringiensis Cry9C protein in corn; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Bacillus thuringiensis Cry9C protein... Cry9C protein in corn; exemption from the requirement of a tolerance. The plant-incorporated protectant Bacillus thuringiensis Cry9C protein in corn is exempted from the requirement of a tolerance for...

  16. 40 CFR 174.517 - Bacillus thuringiensis Cry9C protein in corn; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Bacillus thuringiensis Cry9C protein... Cry9C protein in corn; exemption from the requirement of a tolerance. The plant-incorporated protectant Bacillus thuringiensis Cry9C protein in corn is exempted from the requirement of a tolerance for...

  17. 40 CFR 174.517 - Bacillus thuringiensis Cry9C protein in corn; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Bacillus thuringiensis Cry9C protein... Cry9C protein in corn; exemption from the requirement of a tolerance. The plant-incorporated protectant Bacillus thuringiensis Cry9C protein in corn is exempted from the requirement of a tolerance for...

  18. 40 CFR 174.517 - Bacillus thuringiensis Cry9C protein in corn; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Bacillus thuringiensis Cry9C protein... Cry9C protein in corn; exemption from the requirement of a tolerance. The plant-incorporated protectant Bacillus thuringiensis Cry9C protein in corn is exempted from the requirement of a tolerance for...

  19. Using Boreholes as Windows into Groundwater Ecosystems

    PubMed Central

    Sorensen, James P. R.; Maurice, Louise; Edwards, François K.; Lapworth, Daniel J.; Read, Daniel S.; Allen, Debbie; Butcher, Andrew S.; Newbold, Lindsay K.; Townsend, Barry R.; Williams, Peter J.

    2013-01-01

    Groundwater ecosystems remain poorly understood yet may provide ecosystem services, make a unique contribution to biodiversity and contain useful bio-indicators of water quality. Little is known about ecosystem variability, the distribution of invertebrates within aquifers, or how representative boreholes are of aquifers. We addressed these issues using borehole imaging and single borehole dilution tests to identify three potential aquifer habitats (fractures, fissures or conduits) intercepted by two Chalk boreholes at different depths beneath the surface (34 to 98 m). These habitats were characterised by sampling the invertebrates, microbiology and hydrochemistry using a packer system to isolate them. Samples were taken with progressively increasing pumped volume to assess differences between borehole and aquifer communities. The study provides a new conceptual framework to infer the origin of water, invertebrates and microbes sampled from boreholes. It demonstrates that pumping 5 m3 at 0.4–1.8 l/sec was sufficient to entrain invertebrates from five to tens of metres into the aquifer during these packer tests. Invertebrates and bacteria were more abundant in the boreholes than in the aquifer, with associated water chemistry variations indicating that boreholes act as sites of enhanced biogeochemical cycling. There was some variability in invertebrate abundance and bacterial community structure between habitats, indicating ecological heterogeneity within the aquifer. However, invertebrates were captured in all aquifer samples, and bacterial abundance, major ion chemistry and dissolved oxygen remained similar. Therefore the study demonstrates that in the Chalk, ecosystems comprising bacteria and invertebrates extend from around the water table to 70 m below it. Hydrogeological techniques provide excellent scope for tackling outstanding questions in groundwater ecology, provided an appropriate conceptual hydrogeological understanding is applied. PMID:23936176

  20. Near surface characterisation of a limestone site using borehole and surface geophysics.

    NASA Astrophysics Data System (ADS)

    Sénéchal, G.; Hollender, F.; Rousset, D.

    2003-04-01

    The paper deals with the analysis of the respective performances and the optimization of geophysical methods used for the non-destructive imagery of rocks, from the surface to a depth of approximately 100 m. Different techniques, carried out from the surface or from boreholes, have been tested on the \\char`&{uml;}Médecin Hill\\char`&{uml;} (Centre d'Etude de Cadarache - 13108 St. Paul lez Durance - France). This test site consists in a low fractured limestone, crossed by several faults characterized by a near-vertical dip. The site was previously investigated by numerous other characterization methods (boreholes, surface geology, structural analysis, well logging, etc.): a well known structural 3D model is available. Each tested geophysical method is based on the determination of different physical parameters (elastic parameters, density, electrical resistivity, dielectric permittivity, etc.). In terms of resolution and depth of investigation, every geophysical method has its own drawbacks and advantages. High resolution seismic focuses between 20 and some hundred of meters of depth with a metric to decametric vertical resolution. GPR has a decimetric resolution but electromagnetic waves are strongly attenuated after a few meters of propagation. DC resistivity is a potential method so, resolution dramatically decreases with depth of investigation. The acquisition pattern of this last study leads to a depth of investigation around 15 m and a resolution of one to several meters. Several surface acquisitions have been performed within a 400 m line along which seven boreholes are located. From the high resolution reflection seismic data, we calculated a depth migrated section which displays the main interfaces affected by some near vertical faults. These results are compared to seismic data obtained from a borehole survey interpreted with the help of log data. A radar borehole survey, using tomographic and reflection pattern surveys provided improved information but

  1. Borehole stability in densely welded tuffs

    SciTech Connect

    Fuenkajorn, K.; Daemen, J.J.K.

    1992-07-01

    The stability of boreholes, or more generally of underground openings (i.e. including shafts, ramps, drifts, tunnels, etc.) at locations where seals or plugs are to be placed is an important consideration in seal design for a repository (Juhlin and Sandstedt, 1989). Borehole instability or borehole breakouts induced by stress redistribution could negate the effectiveness of seals or plugs. Breakout fractures along the wall of repository excavations or exploratory holes could provide a preferential flowpath for groundwater or gaseous radionuclides to bypass the plugs. After plug installation, swelling pressures exerted by a plug could induce radial cracks or could open or widen preexisting cracks in the rock at the bottom of the breakouts where the tangential compressive stresses have been released by the breakout process. The purpose of the work reported here is to determine experimentally the stability of a circular hole in a welded tuff sample subjected to various external boundary loads. Triaxial and biaxial borehole stability tests have been performed on densely welded Apache Leap tuff samples and Topopah Spring tuff samples. The nominal diameter of the test hole is 13.3 or 14.4 mm for triaxial testing, and 25.4 mm for biaxial testing. The borehole axis is parallel to one of the principal stress axes. The boreholes are drilled through the samples prior to applying external boundary loads. The boundary loads are progressively increased until breakouts occur or until the maximum load capacity of the loading system has been reached. 74 refs.

  2. Geophysical siting of boreholes in crystalline basement areas of Africa

    NASA Astrophysics Data System (ADS)

    Olayinka, A. I.

    1992-02-01

    This paper assesses the effectiveness of surface geophysical methods namely electrical resistivity, electromagnetic, seismic refraction, magnetic, gravity and induced polarization for groundwater exploration in crystalline basement complex areas. Most of these geophysical techniques can provide quantitative information on the characteristics of the weathered zone which relate to the occurrence of an economic aquifer. The critical factors in the choice of a particular method include the local geological setting, the initial and maintenance costs of the equipment, the speed of surveying, the manpower required as field crew, the degree of sophistication entailed in data processing to enable a geologically meaningful interpretation, and anomaly resolution. The particular advantages and limitations of each technique are highlighted. Several case histories from Nigeria and the rest of Africa indicate that electrical resistivity (both vertical sounding and horizontal profiling) is the most widely used, followed by electromagnetic traversing. These are often employed in combination to improve upon the percentage of successful boreholes. Due to the high cost of equipment, large scale of the field operations and difficulties in data interpretation, seismic refraction is not widely adopted in commercial-type surveys. Similarly, magnetic, gravity and induced polarization are used only sparingly.

  3. Borehole strainmeter measurements spanning the 2014 Mw6.0 South Napa Earthquake, California: The effect from instrument calibration

    NASA Astrophysics Data System (ADS)

    Langbein, John

    2015-10-01

    The 24 August 2014 Mw6.0 South Napa, California earthquake produced significant offsets on 12 borehole strainmeters in the San Francisco Bay area. These strainmeters are located between 24 and 80 km from the source, and the observed offsets ranged up to 400 parts per billion (ppb), which exceeds their nominal precision by a factor of 100. However, the observed offsets of tidally calibrated strains differ by up to 130 ppb from predictions based on a moment tensor derived from seismic data. The large misfit can be attributed to a combination of poor instrument calibration and better modeling of the strain field from the earthquake. Borehole strainmeters require in situ calibration, which historically has been accomplished by comparing their measurements of Earth tides with the strain tides predicted by a model. Although the borehole strainmeter accurately measures the deformation within the borehole, the long-wavelength strain signals from tides or other tectonic processes recorded in the borehole are modified by the presence of the borehole and the elastic properties of the grout and the instrument. Previous analyses of surface-mounted, strainmeter data and their relationship with the predicted tides suggest that tidal models could be in error by 30%. The poor fit of the borehole strainmeter data from this earthquake can be improved by simultaneously varying the components of the model tides up to 30% and making small adjustments to the point source model of the earthquake, which reduces the RMS misfit from 130 ppb to 18 ppb. This suggests that relying on tidal models to calibrate borehole strainmeters significantly reduces their accuracy.

  4. Borehole strainmeter measurements spanning the 2014, Mw6.0 South Napa Earthquake, California: The effect from instrument calibration

    USGS Publications Warehouse

    Langbein, John O.

    2015-01-01

    The 24 August 2014 Mw6.0 South Napa, California earthquake produced significant offsets on 12 borehole strainmeters in the San Francisco Bay area. These strainmeters are located between 24 and 80 km from the source and the observed offsets ranged up to 400 parts-per-billion (ppb), which exceeds their nominal precision by a factor of 100. However, the observed offsets of tidally calibrated strains differ by up to 130 ppb from predictions based on a moment tensor derived from seismic data. The large misfit can be attributed to a combination of poor instrument calibration and better modeling of the strain fit from the earthquake. Borehole strainmeters require in-situ calibration, which historically has been accomplished by comparing their measurements of Earth tides with the strain-tides predicted by a model. Although the borehole strainmeter accurately measure the deformation within the borehole, the long-wavelength strain signals from tides or other tectonic processes recorded in the borehole are modified by the presence of the borehole and the elastic properties of the grout and the instrument. Previous analyses of surface-mounted, strainmeter data and their relationship with the predicted tides suggest that tidal models could be in error by 30%. The poor fit of the borehole strainmeter data from this earthquake can be improved by simultaneously varying the components of the model tides up to 30% and making small adjustments to the point-source model of the earthquake, which reduces the RMS misfit from 130 ppb to 18 ppb. This suggests that relying on tidal models to calibrate borehole strainmeters significantly reduces their accuracy.

  5. Geostatistical methods for rock mass quality prediction using borehole and geophysical survey data

    NASA Astrophysics Data System (ADS)

    Chen, J.; Rubin, Y.; Sege, J. E.; Li, X.; Hehua, Z.

    2015-12-01

    For long, deep tunnels, the number of geotechnical borehole investigations during the preconstruction stage is generally limited. Yet tunnels are often constructed in geological structures with complex geometries, and in which the rock mass is fragmented from past structural deformations. Tunnel Geology Prediction (TGP) is a geophysical technique widely used during tunnel construction in China to ensure safety during construction and to prevent geological disasters. In this paper, geostatistical techniques were applied in order to integrate seismic velocity from TGP and borehole information into spatial predictions of RMR (Rock Mass Rating) in unexcavated areas. This approach is intended to apply conditional probability methods to transform seismic velocities to directly observed RMR values. The initial spatial distribution of RMR, inferred from the boreholes, was updated by including geophysical survey data in a co-kriging approach. The method applied to a real tunnel project shows significant improvements in rock mass quality predictions after including geophysical survey data, leading to better decision-making for construction safety design.

  6. Borehole Array Observations of Non-Volcanic Tremor at SAFOD

    NASA Astrophysics Data System (ADS)

    Ellsworth, W. L.; Luetgert, J. H.; Oppenheimer, D. H.

    2005-12-01

    We report on the observation of non-volcanic tremor made in the San Andreas Fault Observatory at Depth in May, 2005 during the deployment of a multi-level borehole seismic array in the SAFOD main hole. The seismic array consisted of 80 levels of hydraulically-clamped 3-component, 15 Hz omni-directional geophones spaced 15.24 m apart along a 1200 m section of the inclined borehole between 1538 and 2363 m below the ground surface. The array was provided by Paulsson Geophysical Services, Inc. (P/GSI), and recorded at a sample rate of 4000 sps on 24-bit Geode digital recorders provided by Geometrics, Inc. More than 2 TB of continuous data were recorded during the 2-week deployment. Selected local earthquakes and explosions recorded by the array are available at the Northern California Earthquake Data Center, and the entire unedited data set is available as assembled data at the IRIS Data Management Center. Both data sets are currently in the industry standard SEG2 format. Episodes of non-volcanic tremor are common along this reach of the San Andreas Fault according to Nadeau and Dolenc [2004, DOI: 10.1126/science.1107142], with many originating about 30 km southeast of SAFOD beneath the southern end of the Parkfield segment and northern end of the Simmler segment of the fault. We identified tremor episodes using spectrograms routinely produced by the Northern California Seismic Network (http://quake.usgs.gov/cgi-bin/sgrampark.pl) on which they appear as periods of elevated noise relative to the background. A particularly strong tremor episode occurred on May 10, 2005 between 19:39 and 20:00 UTC. In SAFOD, tremor spectral levels exceed the instrumental noise floor to at least 40 Hz. The spatially unaliased recording of the tremor wavefield on the P/GSI array reveal individual phases that can be tracked continuously across the array. The wavefield is composed of both up- and down-going shear waves that form quasi-stationary interference patterns in which areas of

  7. Investigation of cortical structures at Etna Volcano through the analysis of array and borehole data.

    NASA Astrophysics Data System (ADS)

    Zuccarello, Luciano; Paratore, Mario; La Rocca, Mario; Ferrari, Ferruccio; Messina, Alfio Alex; Galluzzo, Danilo; Contrafatto, Danilo; Rapisarda, Salvatore

    2015-04-01

    A continuous monitoring of seismic activity is a fundamental task to detect the most common signals possibly related with volcanic activity, such as volcano-tectonic earthquakes, long-period events, and volcanic tremor. A reliable prediction of the ray-path propagated back from the recording site to the source is strongly limited by the poor knowledge of the local shallow velocity structure. Usually in volcanic environments the shallowest few hundreds meters of rock are characterized by strongly variable mechanical properties. Therefore the propagation of seismic signals through these shallow layers is strongly affected by lateral heterogeneity, attenuation, scattering, and interaction with the free surface. Driven by these motivations, between May and October 2014 we deployed a seismic array in the area called "Pozzo Pitarrone", where two seismic stations of the local monitoring network are installed, one at surface and one borehole at a depth of about 130 meters. The Pitarrone borehole is located in the middle northeastern flank along one of the main intrusion zones of Etna volcano, the so called NE-rift. With the 3D array we recorded seismic signals coming from the summit craters, and also from the seismogenetic fault called Pernicana Fault, which is located nearby. We used array data to analyse the dispersion characteristics of ambient noise vibrations and we derived one-dimensional (1D) shallow shear-velocity profiles through the inversion of dispersion curves measured by autocorrelation methods (SPAC). We observed a one-dimensional variation of shear-velocity between 430 m/s and 700 m/s to a depth of investigation of about 130 m. An abrupt velocity variation was recorded at a depth of about 60 m, probably corresponding to the transition between two different layers. Our preliminary results suggest a good correlation between the velocity model deducted with the stratigraphic section on Etna. The analysis of the entire data set will improve our knowledge about

  8. Impaired ALDH2 activity decreases the mitochondrial respiration in H9C2 cardiomyocytes.

    PubMed

    Mali, Vishal R; Deshpande, Mandar; Pan, Guodong; Thandavarayan, Rajarajan A; Palaniyandi, Suresh S

    2016-02-01

    Reactive oxygen species (ROS)-mediated reactive aldehydes induce cellular stress. In cardiovascular diseases such as ischemia-reperfusion injury, lipid-peroxidation derived reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE) are known to contribute to the pathogenesis. 4HNE is involved in ROS formation, abnormal calcium handling and more importantly defective mitochondrial respiration. Aldehyde dehydrogenase (ALDH) superfamily contains NAD(P)(+)-dependent isozymes which can detoxify endogenous and exogenous aldehydes into non-toxic carboxylic acids. Therefore we hypothesize that 4HNE afflicts mitochondrial respiration and leads to cell death by impairing ALDH2 activity in cultured H9C2 cardiomyocyte cell lines. H9C2 cardiomyocytes were treated with 25, 50 and 75 μM 4HNE and its vehicle, ethanol as well as 25, 50 and 75 μM disulfiram (DSF), an inhibitor of ALDH2 and its vehicle (DMSO) for 4 h. 4HNE significantly decreased ALDH2 activity, ALDH2 protein levels, mitochondrial respiration and mitochondrial respiratory reserve capacity, and increased 4HNE adduct formation and cell death in cultured H9C2 cardiomyocytes. ALDH2 inhibition by DSF and ALDH2 siRNA attenuated ALDH2 activity besides reducing ALDH2 levels, mitochondrial respiration and mitochondrial respiratory reserve capacity and increased cell death. Our results indicate that ALDH2 impairment can lead to poor mitochondrial respiration and increased cell death in cultured H9C2 cardiomyocytes. PMID:26577527

  9. Seismic Ecology

    NASA Astrophysics Data System (ADS)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The paper is devoted to researches of influence of seismic actions for industrial and civil buildings and people. The seismic actions bring influence directly on the people (vibration actions, force shocks at earthquakes) or indirectly through various build- ings and the constructions and can be strong (be felt by people) and weak (be fixed by sensing devices). The great number of work is devoted to influence of violent seismic actions (first of all of earthquakes) on people and various constructions. This work is devoted to study weak, but long seismic actions on various buildings and people. There is a need to take into account seismic oscillations, acting on the territory, at construction of various buildings on urbanized territories. Essential influence, except for violent earthquakes, man-caused seismic actions: the explosions, seismic noise, emitted by plant facilities and moving transport, radiation from high-rise buildings and constructions under action of a wind, etc. can exert. Materials on increase of man- caused seismicity in a number of regions in Russia, which earlier were not seismic, are presented in the paper. Along with maps of seismic microzoning maps to be built indicating a variation of amplitude spectra of seismic noise within day, months, years. The presence of an information about amplitudes and frequencies of oscillations from possible earthquakes and man-caused oscillations in concrete regions allows carry- ing out soundly designing and construction of industrial and civil housing projects. The construction of buildings even in not seismically dangerous regions, which have one from resonance frequencies coincident on magnitude to frequency of oscillations, emitted in this place by man-caused objects, can end in failure of these buildings and heaviest consequences for the people. The practical examples of detail of engineering- seismological investigation of large industrial and civil housing projects of Siberia territory (hydro power

  10. Means and method for protecting apparatus situated in a borehole from closure of the borehole

    SciTech Connect

    Haberman, J.P.

    1983-08-16

    Apparatus, situated in a borehole traversing an earth formation, is protected from closure of the borehole by being encased in an inflatable device. Surface equipment inflates and maintains the inflatable device at a sufficient pressure so as to prevent the earth formation from closing in an contacting the apparatus.

  11. Enhanced Observations with Borehole Seismographic Networks. The Parkfield, California Experiment

    SciTech Connect

    McEvilly, T.V.; Karageorgi, E.; Nadeau, R.M.

    1997-01-02

    The data acquired in the Parkfield, California experiment are unique and they are producing results that force a new look at some conventional concepts and models for earthquake occurrence and fault-zone dynamics. No fault-zone drilling project can afford to neglect installation of such a network early enough in advance of the fault-zone penetration to have a well-defined picture of the seismicity details (probably at least 1000 microearthquakes--an easy 2-3 year goal for the M<0 detection of a borehole network). Analyses of nine years of Parkfield monitoring data have revealed significant and unambiguous departures from stationarity both in the seismicity characteristics and in wave propagation details within the S-wave coda for paths within the presumed M6 nucleation zone where we also have found a high Vp/Vs anomaly at depth, and where the three recent M4.7-5.0 sequences have occurred. Synchronous changes well above noise levels have also been seen among several independent parameters, including seismicity rate, average focal depth, S-wave coda velocities, characteristic sequence recurrence intervals, fault creep and water levels in monitoring wells. The significance of these findings lies in their apparent coupling and inter-relationships, from which models for fault-zone process can be fabricated and tested with time. The more general significance of the project is its production of a truly unique continuous baseline, at very high resolution, of both the microearthquake pathology and the subtle changes in wave propagation.

  12. Borehole velocity measurements at five sites that recorded the Cape Mendocino, California earthquake of 25 April, 1992

    USGS Publications Warehouse

    Gibbs, James F.; Tinsley, John C., III; Boore, David M.

    2002-01-01

    The U.S. Geological Survey (USGS), as part of an ongoing program to acquire seismic velocity and geologic data at locations that recorded strong-ground motions during earthquakes, has investigated five sites in the Fortuna, California region (Figure 1). We selected drill sites at strong-motion stations that recorded high accelerations (Table 1) from the Cape Mendocino earthquake (M 7.0) of 25 April 1992 (Oppenheimer et al., 1993). The boreholes were drilled to a nominal depth of 95 meters (310 ft) and cased with schedule 80 pvc-casing grouted in place at each location. S-wave and P-wave data were acquired at each site using a surface source and a borehole three-component geophone. This report contains the velocity models interpreted from the borehole data and gives reference to locations and peak accelerations at the selected strong-motion stations.

  13. Project HOTSPOT: Borehole geophysics log interpretation from the Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Lee, M. D.; Schmitt, D. R.; Chen, X.; Shervais, J. W.; Liberty, L. M.; Potter, K. E.; Kessler, J. A.

    2013-12-01

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberely, and (3) Mountain Home. The most eastern drill hole is Kimama located along the central volcanic axis of the SRP and documents basaltic volcanism. The Kimberely drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama drill hole and is located near the margin of the plain. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. A suite of ground and borehole geophysical surveys were carried out within the SRP between 2010 and 2012. The borehole geophysics logs included gamma ray (spectral and natural), neutron hydrogen index, electrical resistivity, magnetic susceptibility, ultrasonic borehole televiewer imaging, full waveform sonic, and vertical seismic profile. The borehole geophysics logs were qualitatively assessed through visual interpretation of lithological horizons and quantitatively through physical property specialized software and digital signal processing automated filtering process to identify step functions and high frequency anomalies. Preliminary results were published by Schmitt et al. (2012), Potter et al. (2012), and Shervais et al. (2013). The results are continuously being enhanced as more information is qualitatively and quantitatively delineated from the borehole geophysics logs. Each drill hole encounters three principal units: massive basalt flows, rhyolite, and sediments. Basalt has a low to moderate porosity and is

  14. Ground Water Level Measurements in Selected Boreholes Near the Site of the Proposed Repository

    SciTech Connect

    Page, H. Scott

    2007-11-29

    The Harry Reid Center for Environmental Studies (HRC) at the University of Nevada, Las Vegas (UNLV) acquired quarterly and continuous data on water levels from approximately 26 boreholes that comprise a periodic monitoring network (Table 1) between October 2003 and September 2007. During this period we continued to observe and analyze short and long-term ground water level trends in periodically monitored boreholes. In this report we summarize and discuss four key findings derived from analysis of water level data acquired during this period: 1. Rapid ground water level rise after storm events in Forty Mile Canyon; 2. Seismically-induced ground water level fluctuations; 3. A sample of synoptic observations and barometric influences on short term fluctuations; and 4. Long term ground water level trends observed from mid-2001 through late-2005.

  15. Quantifying Similarity in Seismic Polarizations

    NASA Astrophysics Data System (ADS)

    Eaton, D. W. S.; Jones, J. P.; Caffagni, E.

    2015-12-01

    Measuring similarity in seismic attributes can help identify tremor, low S/N signals, and converted or reflected phases, in addition to diagnosing site noise and sensor misalignment in arrays. Polarization analysis is a widely accepted method for studying the orientation and directional characteristics of seismic phases via. computed attributes, but similarity is ordinarily discussed using qualitative comparisons with reference values. Here we introduce a technique for quantitative polarization similarity that uses weighted histograms computed in short, overlapping time windows, drawing on methods adapted from the image processing and computer vision literature. Our method accounts for ambiguity in azimuth and incidence angle and variations in signal-to-noise (S/N) ratio. Using records of the Mw=8.3 Sea of Okhotsk earthquake from CNSN broadband sensors in British Columbia and Yukon Territory, Canada, and vertical borehole array data from a monitoring experiment at Hoadley gas field, central Alberta, Canada, we demonstrate that our method is robust to station spacing. Discrete wavelet analysis extends polarization similarity to the time-frequency domain in a straightforward way. Because histogram distance metrics are bounded by [0 1], clustering allows empirical time-frequency separation of seismic phase arrivals on single-station three-component records. Array processing for automatic seismic phase classification may be possible using subspace clustering of polarization similarity, but efficient algorithms are required to reduce the dimensionality.

  16. Development of Multi-Parameter Borehole System to Evaluate the Expected Large Earthquake in the Marmara Sea, Turkey

    NASA Astrophysics Data System (ADS)

    Ozel, Oguz; Guralp, Cansun; Parolai, Stefano; Bouchon, Michel; Karabulut, Hayrullah; Aktar, Mustafa; Meral Ozel, Nurcan

    2014-05-01

    The Istanbul-Marmara region of northwestern Turkey with a population of more than 15 million faces a high probability of being exposed to an hazardous earthquake. The 1999 Izmit earthquake in Turkey is one of the best recorded in the world. For the first time, researchers from CNRS and Kandilli Observatory (Istanbul) observed that the earthquake was preceded by a preparatory phase that lasted 44 minutes before the rupture of the fault. This phase, which was characterized by a distinctive seismic signal, corresponds to slow slip at depth along the fault. Detecting it in other earthquakes might make it possible to predict some types of earthquakes several tens of minutes before fault rupture. In an attempt to understand where and when large earthquakes will occur, and the physics of the source process prior to large earthquakes, we proposed to install multi-parameter borehole instruments in the western part of Marmara Sea in the frame of an EU project called MARSITE. This system and surrounding small-aperture surface array is planned to capable of recording small deformations and tiny seismic signals near the active seismic zone of the North Anatolian Fault passing through the Marmara Sea, which should enable us to address these issues. The objective is to design and build a multi-parameter borehole system for observing slow deformation, low-frequency noise or tremors, and high frequency signals near the epicentral area of the expected Marmara earthquake. Furthermore, it is also aimed to identify the presence of repeating earthquakes and rupture nucleation, to measure continuously the evolution of the state of stress and stress transfer from east to west with high resolution data, and to estimate the near-surface geology effects masking the source related information. The proposed location of the borehole system is right on the Ganos Fault and in a low ambient noise environment in Gazikoy in the western end of the North Anatolian Fault in the Marmara Sea, where the

  17. Seismoelectric Wave Measurements in Borehole Models

    NASA Astrophysics Data System (ADS)

    Wang, J.; Hu, H.; Guan, W.

    2014-12-01

    An experimental system was built in the laboratory based on the electrokinetic theory, which contains a small scaled seismoelectric detector and a high resolution digitizer ( 1 MS/s, 22 bits ). The electrokinetic measurements are carried out with seismoelectric well logging technique in borehole models at high frequency (90 kHz), and the localized electrokinetic fields that accompany compressional wave, shear wave and Stoneley wave are clearly observed with monopole source in two sandstone models that are saturated by tap water. The magnitudes of these seismoelectric waves are in the range of 1-100 microvolt, which is useful for designing the seismoelectric logging instruments. The experimental results also show that the seismoelectric well logging signals are related to the permeability of borehole formations. Their amplitudes become larger in the high permeability model, which can be used to measure the permeability of rock formation although no such relationship has ever been provided in existing theories. We also made seismoelectric measurements in a lucite borehole model, but no observable seismoelectric signals were recorded by the electrode. This is not out of our expectation because the lucite formation is not porous and no electrokinetic conversion occurs in such material. However, the electric signal recorded in the Lucite borehole represents the background noise of our measurement system, which is less than 0.5 microvolt. This study verifies the feasibility of seismoelectric well logging, and also presents the range of seismoelectric signals in borehole saturated by tap water that is much closer to the condition of actual formation.

  18. Inverse borehole coupling filters and their applications

    SciTech Connect

    Peng, C.

    1994-12-31

    This paper describes a new procedure for processing VSP and crosswell data acquired using an array of hydrophone. The procedure consists of three steps. In the first step the authors apply an inverse borehole coupling equation to convert hydrophone pressure data into borehole squeeze pressure data, by which the tube waves are significantly attenuated and the P-wave and S-wave are partially compensated for the borehole effects. In the second step, they make use of a partial differential equation that relates the borehole squeeze pressure to the pressure of the incident P-wave. In the third step, they show that one can also map the hydrophone pressure data into the geophone response, provided that both the P-wave and S-wave velocity profiles along the borehole are known. Several synthetic examples are used to demonstrate its accuracy. The Kent Cliffs hydrophone data are successfully processed using the above steps, and the data quality is found to be significantly improved.

  19. Preliminary Obtained Data from Borehole Geodetic Measurements in Marmara Region, Turkey

    NASA Astrophysics Data System (ADS)

    Ozener, H.; Aktug, B.; Karabulut, H.; Ergintav, S.; Dogru, A.; Yilmaz, O.; Turgut, B.; Ahiska, B.; Mencin, D.; Mattioli, G. S.

    2014-12-01

    Dense continuous GPS networks quantify the time-dependent deformation field of the earthquake cycle. However the strainmeters can capture signals with superior precision at local spatial scales, in particular in the short-period, from minutes to a month. Many relatively small-scale events (e.i. SSEs, creeps) have been successfully determined on the subduction zones. Istanbul located near the most active parts of the North Anatolian Fault (NAF) has been monitored by different observing techniques such as seismic networks and continuous/survey-mode GPS networks for decades. However, it is still essential to observe deformation in a broad range of temporal and spatial scales (from seismology to geodesy and to geology). Borehole strainmeters are very sensitive to deformation in the range of less than a month. In this study, we present a new project, financially and technically supported by Istanbul Development Agency (ISTKA) and UNAVCO, respectively, which includes the installation of two borehole strainmeters are being deployed in European side of Istanbul in Marmara Region. Since these instruments can also respond to non-tectonic processes, it is necessary to have more instruments to increase spatial coherence and to have additional sensors to detect and model noise (such as barometric pressure, tides, or precipitation). The introduced monitoring system will provide significant insight about the creeping phenomenon and the possible SSE to our understanding of seismic hazards in active zones and possible precursors. Our long term objective is to build a borehole monitoring system in the region. By integrating various data obtained from borehole observations, we expect to get a better understanding of dynamics in the western NAF. In this presentation, we introduce data and ongoing analysis obtained with strainmeters.

  20. Factors Affecting Seismic Velocity in Alluvium

    NASA Astrophysics Data System (ADS)

    Huckins-Gang, H.; Mercadante, J.; Prothro, L.

    2015-12-01

    Yucca Flat at the Nevada National Security Site has been selected as the Source Physics Experiment (SPE) Dry Alluvium Geology Phase II site. The alluvium in this part of Yucca Flat is typical of desert basin fill, with discontinuous beds that are highly variable in clast size and provenance. Detailed understanding of the subsurface geology will be needed for interpretation of the SPE seismic data. A 3D seismic velocity model, created for Yucca Flat using interval seismic velocity data, shows variations in velocity within alluvium near the SPE Phase II site beyond the usual gradual increase of density with depth due to compaction. In this study we examined borehole lithologic logs, geophysical logs, downhole videos, and laboratory analyses of sidewall core samples to understand which characteristics of the alluvium are related to these variations in seismic velocity. Seismic velocity of alluvium is generally related to its density, which can be affected by sediment provenance, clast size, gravel percentage, and matrix properties, in addition to compaction. This study presents a preliminary subdivision of the alluvial strata in the SPE Phase II area into mappable units expected to be significant to seismic modeling. Further refinements of the alluvial units may be possible when seismic data are obtained from SPE Phase II tests. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy.

  1. Gamma-ray spectral calculations for uranium borehole logging

    SciTech Connect

    Close, D.A.; Evans, M.L.; Jain, M.

    1980-06-01

    Gamma-ray transport calculations were performed to determine the energy distribution of gamma rays inside a borehole introduced into an infinite medium. The gamma rays from the naturally occurring radioactive isotopes of potassium, thorium, and uranium were uniformly distributed in a sandstone formation (having a porosity of 0.30 and a saturation of 1.0) surrounding the borehole. A sonde was placed coaxially inside the borehole. Parametric studies were done to determine how the borehole radius, borehole fluid, and borehole casing influence the gamma-ray flux inside the sonde.

  2. Expanding Conventional Seismic Stratigrphy into the Multicomponent Seismic Domain

    SciTech Connect

    Innocent Aluka

    2008-08-31

    Multicomponent seismic data are composed of three independent vector-based seismic wave modes. These wave modes are, compressional mode (P), and shear modes SV and SH. The three modes are generated using three orthogonal source-displacement vectors and then recorded using three orthogonal vector sensors. The components travel through the earth at differing velocities and directions. The velocities of SH and SV as they travel through the subsurface differ by only a few percent, but the velocities of SV and SH (Vs) are appreciably lower than the P-wave velocity (Vp). The velocity ratio Vp/Vs varies by an order of magnitude in the earth from a value of 15 to 1.5 depending on the degree of sedimentary lithification. The data used in this study were acquired by nine-component (9C) vertical seismic profile (VSP), using three orthogonal vector sources. The 9C vertical seismic profile is capable of generating P-wave mode and the fundamental S-wave mode (SH-SH and SV-SV) directly at the source station and permits the basic components of elastic wavefield (P, SH-SH and SV-SV) to be separated from one another for the purposes of imaging. Analysis and interpretations of data from the study area show that incident full-elastic seismic wavefield is capable of reflecting four different wave modes, P, SH , SV and C which can be utilized to fully understand the architecture and heterogeneities of geologic sequences. The conventional seismic stratigraphy utilizes only reflected P-wave modes. The notation SH mode is the same as SH-SH; SV mode means SV-SV and C mode which is a converted shear wave is a special SV mode and is the same as P-SV. These four wave modes image unique geologic stratigraphy and facies and at the same time reflect independent stratal surfaces because of the unique orientation of their particle-displacement vectors. As a result of the distinct orientation of individual mode's particle-displacement vector, one mode may react to a critical subsurface sequence more

  3. VTT test borehole for bedrock investigations

    NASA Astrophysics Data System (ADS)

    Okko, Olli; Hassinen, Pertti; Front, Kai

    1994-02-01

    A borehole of depth 150 m and diameter 56 mm has been drilled in the area adjacent to the premises of the Technical Research Center of Finland (VTT) at Otaniemi, Espoo, for the purposes of calibrating geophysical measurement devices. The report presents the test results obtained so far and illustrates the processing of these, in which the various measurements are plotted as curves and combinations of curves. The interpretations provided so far consist of analyses of lithological variations, bedrock fracturing, the nature and occurrence of fracture zones and groundwater flow patterns. Samples were taken from those parts of the core shown by the borehole measurements to be homogeneous and thin sections made from these for mineralogical determinations. The rock mechanical and petrophysical properties of the same points were examined. The core is in the possession of VTT, and the hole itself is available to outsiders for the calibration and testing of borehole measurement equipment.

  4. Development of a geothermal acoustic borehole televiewer

    SciTech Connect

    Heard, F.E.; Bauman, T.J.

    1983-08-01

    Most geothermal wells are drilled in hard rock formations where fluid flow is through systems of open fractures. Productivity of these wells is usually determined by the extent of intersection of the wellbore with the fracture system. A need exists for fracture mapping methods and tools which can operate in a geothermal environment. In less hostile environments, the acoustic borehole televiewer has been shown to be a useful tool for determining location, orientation, and characterization of fractures as they intersect the borehole and for general wellbore and casing inspection. The development conducted at Sandia National Laboratories to adapt an acoustic borehole televiewer for operation in a geothermal environment is described. The modified instrument has been successfully tested at temperatures as high as 280/sup 0/C and pressures up to 5000 psi, and used successfully to map fractures and casing damage in geothermal wells.

  5. Excess plutonium disposition: The deep borehole option

    SciTech Connect

    Ferguson, K.L.

    1994-08-09

    This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues related to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified.

  6. Simple, Affordable and Sustainable Borehole Observatories for Complex Monitoring Objectives

    NASA Astrophysics Data System (ADS)

    Kopf, A.; Hammerschmidt, S.; Davis, E.; Saffer, D.; Wheat, G.; LaBonte, A.; Meldrum, R.; Heesemann, M.; Villinger, H.; Freudenthal, T.; Ratmeyer, V.; Renken, J.; Bergenthal, M.; Wefer, G.

    2012-04-01

    prism during IODP Exp. 319 and successfully recovered during IODP Exp. 332, both cruises being part of NanTroSEIZE (Nankai Trough Seismogenic Zone Experiment). The 15-months long data showed transients related to the arrival of seismic waves, storms and can further be used for detection of seismogenic strain events. Moreover, based on tidal signals in the pressure data, it was possible to make assumptions regarding the elastic properties of the surrounding formation. The SmartPlug was exchanged by an enhanced version, the GeniusPlug, which provides additional fluid sampling devices and microbiological experiments during the monitoring period. Its recovery is planned for 2013. Going one step further in simplicity, a Mini-CORK has recently developed especially designed for the portable seafloor drill rig MeBo (MARUM, Univ. Bremen, Germany), which can be installed without a drillship and which, due to its telemetric unit, makes costly recovery operations obsolete. The MeBo can be operated from any re-search vessel and allows coring to a depth of 70 m, which may be followed by instrumentation of the borehole with the MeBo-CORK. Two designs are available: the first design allows in situ measurement of pressure and temperature solely, whereas the second design consists of a seafloor unit including additional mission specific sensors (osmo-samlers for geochemistry and microbiology, etc.). A first field test for the MeBo-CORKs into mud volcanoes in the Kumano forearc basin is envisaged for summer 2012 to complement IODP project NanTroSEIZE.

  7. Using borehole geophysics and cross-borehole flow testing to define hydraulic connections between fracture zones in bedrock aquifers

    USGS Publications Warehouse

    Paillet, Frederick L.

    1993-01-01

    Nearly a decade of intensive geophysical logging at fractured rock hydrology research sites indicates that geophysical logs can be used to identify and characterize fractures intersecting boreholes. However, borehole-to-borehole flow tests indicate that only a few of the apparently open fractures found to intersect boreholes conduct flow under test conditions. This paper presents a systematic approach to fracture characterization designed to define the distribution of fractures along boreholes, relate the measured fracture distribution to structure and lithology of the rock mass, and define the nature of fracture flow paths across borehole arrays. Conventional electrical resistivity, gamma, and caliper logs are used to define lithology and large-scale structure. Borehole wall image logs obtained with the borehole televiewer are used to give the depth, orientation, and relative size of fractures in situ. High-resolution flowmeter measurements are used to identify fractures conducting flow in the rock mass adjacent to the boreholes. Changes in the flow field over time are used to characterize the hydraulic properties of fracture intersections between boreholes. Application of this approach to an array of 13 boreholes at the Mirror Lake, New Hamsphire site demonstrates that the transient flow analysis can be used to distinguish between fractures communicating with each other between observation boreholes, and those that are hydraulically isolated from each other in the surrounding rock mass. The Mirror Lake results also demonstrate that the method is sensitive to the effects of boreholes on the hydraulic properties of the fractured-rock aquifer. Experiments conducted before and after the drilling of additional boreholes in the array and before and after installation of packers in existing boreholes demonstrate that the presence of new boreholes or the inflation of packers in existing boreholes has a large effect on the measured hydraulic properties of the rock mass

  8. Cardiomyocyte H9c2 cells present a valuable alternative to fish lethal testing for azoxystrobin.

    PubMed

    Rodrigues, Elsa T; Pardal, Miguel Â; Laizé, Vincent; Cancela, M Leonor; Oliveira, Paulo J; Serafim, Teresa L

    2015-11-01

    The present study aims at identifying, among six mammalian and fish cell lines, a sensitive cell line whose in vitro median inhibitory concentration (IC50) better matches the in vivo short-term Sparus aurata median lethal concentration (LC50). IC50s and LC50 were assessed after exposure to the widely used fungicide azoxystrobin (AZX). Statistical results were relevant for most cell lines after 48 h of AZX exposure, being H9c2 the most sensitive cells, as well as the ones which provided the best prediction of fish toxicity, with a LC50,96h/IC50,48h = 0.581. H9c2 cell proliferation upon 72 h of AZX exposure revealed a LC50,96h/IC50,72h = 0.998. Therefore, identical absolute sensitivities were attained for both in vitro and in vivo assays. To conclude, the H9c2 cell-based assay is reliable and represents a suitable ethical alternative to conventional fish assays for AZX, and could be used to get valuable insights into the toxic effects of other pesticides. PMID:26319055

  9. Cytoprotective effect of rhamnetin on miconazole-induced H9c2 cell damage

    PubMed Central

    Lee, Kang Pa; Kim, Jai-Eun

    2015-01-01

    BACKGROUND/OBJECTIVES Reactive oxygen species (ROS) formation is closely related to miconazole-induced heart dysfunction. Although rhamnetin has antioxidant effects, it remained unknown whether it can protect against miconazole-induced cardiomyocyte apoptosis. Thus, we investigated the effects of rhamnetin on miconazole-stimulated H9c2 cell apoptosis. MATERIALS/METHODS Cell morphology was observed by inverted microscope and cell viability was determined using a WelCount™ cell proliferation assay kit. Miconazole-induced ROS production was evaluated by fluorescence-activated cell sorting with 6-carboxy-2',7'-dichlorofluoroscein diacetate (H2DCF-DA) stain. Immunoblot analysis was used to determine apurinic/apyrimidinic endonuclease 1 (APE/Ref-1) and cleaved cysteine-aspartic protease (caspase) 3 expression. NADPH oxidase levels were measured using real-time polymerase chain reaction. RESULTS Miconazole (3 and 10 µM) induced abnormal morphological changes and cell death in H9c2 cells. Rhamnetin enhanced the viability of miconazole (3 µM)-treated cells in a dose-dependent manner. Rhamnetin (1 and 3 µM) treatment downregulated cleaved caspase 3 and upregulated APE/Ref-1 expression in miconazole-stimulated cells. Additionally, rhamnetin significantly reduced ROS generation. CONCLUSIONS Our data suggest that rhamnetin may have cytoprotective effects in miconazole-stimulated H9c2 cardiomyocytes via ROS inhibition. This effect most likely occurs through the upregulation of APE/Ref-1 and attenuation of hydrogen peroxide levels. PMID:26634046

  10. Radiation pattern of a borehole radar antenna

    USGS Publications Warehouse

    Ellefsen, K.J.; Wright, D.L.

    2002-01-01

    To understand better how a borehole antenna radiates radar waves into a formation, this phenomenon is simulated numerically using the finite-difference, time-domain method. The simulations are of two different antenna models that include features like a driving point fed by a coaxial cable, resistive loading of the antenna, and a water-filled borehole. For each model, traces are calculated in the far-field region, and then, from these traces, radiation patterns are calculated. The radiation patterns show that the amplitude of the radar wave is strongly affected by its frequency, its propagation direction, and the resistive loading of the antenna.

  11. Velocity structure near IODP Hole U1309D, Atlantis Massif, from waveform inversion of streamer data and borehole measurements

    NASA Astrophysics Data System (ADS)

    Harding, Alistair J.; Arnulf, Adrien F.; Blackman, Donna K.

    2016-06-01

    Seismic full waveform inversion (FWI) is a promising method for determining the detailed velocity structure of the igneous oceanic crust, especially for locations such as the Mid-Atlantic Ridge with significant lateral heterogeneity and seafloor topography. We examine the accuracy of FWI by inverting, after downward continuation to datum just above the seafloor, a multichannel seismic (MCS) profile from Atlantis Massif oceanic core complex at 30°N that passes close to Integrated Ocean Drilling Program (IODP) Hole U1309D and comparing the results against borehole measurements and existing on-bottom refraction data. The comparisons include the results of IODP Expedition 340T, which extended the sonic logging and vertical seismic profiling to the bottom of the borehole at 1400 m below seafloor. Compared to travel time tomography, the refinement in velocity and velocity gradient produced by FWI significantly improves the overall match to the borehole measurements, and allows the multilevel pattern of deformation and alteration of the detachment footwall seen in Hole U1309D to be extrapolated across the Central Dome. Prestack depth migration of the profile using the FWI velocities reveals the top and edges of the high-velocity, gabbroic core of the massif. It also indicates that the comparatively uniform gabbroic rocks drilled at Hole U1309D extend to ˜2.5 km below seafloor but overlie an extended, ˜2 km thick, mantle transition zone.

  12. A borehole jack for deformability, strength, and stress measurements in a 2-inch borehole

    NASA Technical Reports Server (NTRS)

    Goodman, R. E.; Hovland, H. J.; Chirapuntu, S.

    1971-01-01

    A borehole jack devised for lunar exploration is described and results of its use in simulated lunar solids are presented. A hydraulic cylinder mounted between two stiff plates acts to spread the plates apart against the borehole walls when pressured. The spreading is measured by a displacement transducer and the load is measured hydraulically. The main improvement over previous instruments is the increased stroke, which allows large deformations of the borehole. Twenty-eight pistons are used to obtain a high hydraulic efficiency, and three return pistons are also provided. Pressure-deformation curves were obtained for each test on Lunar Soil Simulant No. 2, a light gray silty basalt powder.

  13. Optical seismic sensor systems and methods

    DOEpatents

    Beal, A. Craig; Cummings, Malcolm E.; Zavriyev, Anton; Christensen, Caleb A.; Lee, Keun

    2015-12-08

    Disclosed is an optical seismic sensor system for measuring seismic events in a geological formation, including a surface unit for generating and processing an optical signal, and a sensor device optically connected to the surface unit for receiving the optical signal over an optical conduit. The sensor device includes at least one sensor head for sensing a seismic disturbance from at least one direction during a deployment of the sensor device within a borehole of the geological formation. The sensor head includes a frame and a reference mass attached to the frame via at least one flexure, such that movement of the reference mass relative to the frame is constrained to a single predetermined path.

  14. Method for isolating two aquifers in a single borehole

    DOEpatents

    Burklund, Patrick W.

    1985-10-22

    A method for isolating and individually instrumenting separate aquifers within a single borehole. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.

  15. Method for isolating two aquifers in a single borehole

    DOEpatents

    Burklund, P.W.

    1984-01-20

    A method for isolating and individually instrumenting separate aquifers within a single borehole is disclosed. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.

  16. Continuous recording of seismic signals in Alpine permafrost

    NASA Astrophysics Data System (ADS)

    Hausmann, H.; Krainer, K.; Staudinger, M.; Brückl, E.

    2009-04-01

    three different types of applications. It enabled fast and efficient field work and provided excellent seismic data at two permafrost sites. At Krummgampen Valley (Ötztal Alps, Tyrol) 13 seismic profiles were measured at altitudes ranging from 2400 to 2900 m to assess information on the permafrost occurrences. At the crest of Hoher Sonnblick (3106 m, Hohe Tauern, Salzburg) seismic signals were recorded on 15 borehole geophones deployed in three 20 m deep boreholes for the application of seismic tomography and passive monitoring of rock falls.

  17. BOREHOLE FLOWMETERS: FIELD APPLICATION AND DATA ANALYSIS

    EPA Science Inventory

    This paper reviews application of borehole flowmeters in granular and fractured rocks. asic data obtained in the field are the ambient flow log and the pumping-induced flow log. hese basic logs may then be used to calculate other quantities of interest. he paper describes the app...

  18. BOREHOLE FLOWMETERS: FIELD APPLICATION AND DATA ANALYSIS

    EPA Science Inventory

    This paper reviews application of borehole flowmeters in granular and fractured rocks. Basic data obtained in the field are the ambient flow log and the pumping-induced flow log. These basic logs may then be used to calculate other quantities of interest. The paper describes the ...

  19. Radiation pattern of a borehole radar antenna

    USGS Publications Warehouse

    Ellefsen, K.J.; Wright, D.L.

    2005-01-01

    The finite-difference time-domain method was used to simulate radar waves that were generated by a transmitting antenna inside a borehole. The simulations were of four different models that included features such as a water-filled borehole and an antenna with resistive loading. For each model, radiation patterns for the far-field region were calculated. The radiation patterns show that the amplitude of the radar wave was strongly affected by its frequency, the water-filled borehole, the resistive loading of the antenna, and the external metal parts of the antenna (e.g., the cable head and the battery pack). For the models with a water-filled borehole, their normalized radiation patterns were practically identical to the normalized radiation pattern of a finite-length electric dipole when the wavelength in the formation was significantly greater than the total length of the radiating elements of the model antenna. The minimum wavelength at which this criterion was satisfied depended upon the features of the antenna, especially its external metal parts. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  20. The Subglacial Access and Fast Ice Research Experiment (SAFIRE): 1. Borehole-based englacial and subglacial measurements from a rapidly-moving tidewater glacier: Store Glacier, Greenland

    NASA Astrophysics Data System (ADS)

    Hubbard, Bryn; Doyle, Samuel; Christoffersen, Poul; Young, Tun Jan; Hofstede, Coen; Hubbard, Alun; Box, Jason; Todd, Joe; Bougamont, Marion

    2016-04-01

    As part of the Subglacial Access and Fast Ice Research Experiment (SAFIRE) pressurised hot water was used to drill four 603-616 m-long boreholes to the bed of the Greenland Ice Sheet at a site located 30 km from the calving front of fast-flowing, marine-terminating Store Glacier (70 degrees N, ~1000 m elevation). Four wired sensor strings were successfully installed in three of the boreholes. These included a thermistor string to obtain the englacial temperature profile installed in the same borehole as a string of tilt sensors to measure borehole deformation, and two sets of combined water pressure, electrical conductivity and turbidity sensors installed just above the bed in separate, adjacent boreholes. The boreholes made a strong hydrological connection to the bed during drilling, draining rapidly to ~80 m below the ice surface. The connection of subsequent boreholes was observed as a perturbation in water pressure and temperature recorded in neighbouring boreholes, indicating an effective hydrological connection between them. The sensors, which were wired to data-loggers at the surface, operated for between ~30 and >80 days from late summer into autumn before the cables stretched and snapped, with the lowermost sensors failing first. The records obtained from these sensors reveal (i) subglacial water pressures that were close to overburden but which generally increased through the period of measurement and varied diurnally by ~0.3 m, (ii) a minimum englacial temperature of -21 degrees C underlain by a zone of temperate ice, some tens of m thick, located immediately above the bed, and (iii) high rates of internal deformation and strain that increased towards the bed. These borehole observations are complemented by GPS measurements of ice motion, meteorological data, and seismic and radar surveys.

  1. 30 CFR 75.388 - Boreholes in advance of mining.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Boreholes in advance of mining. 75.388 Section 75.388 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.388 Boreholes in advance of mining. (a) Boreholes shall be drilled...

  2. 30 CFR 75.388 - Boreholes in advance of mining.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Boreholes in advance of mining. 75.388 Section 75.388 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.388 Boreholes in advance of mining. (a) Boreholes shall be drilled...

  3. 30 CFR 75.1315 - Boreholes for explosives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Boreholes for explosives. 75.1315 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1315 Boreholes for explosives. (a) All explosives fired underground shall be confined in boreholes except— (1)...

  4. 30 CFR 75.1315 - Boreholes for explosives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boreholes for explosives. 75.1315 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1315 Boreholes for explosives. (a) All explosives fired underground shall be confined in boreholes except— (1)...

  5. 30 CFR 75.1315 - Boreholes for explosives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Boreholes for explosives. 75.1315 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1315 Boreholes for explosives. (a) All explosives fired underground shall be confined in boreholes except— (1)...

  6. 30 CFR 75.1315 - Boreholes for explosives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Boreholes for explosives. 75.1315 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1315 Boreholes for explosives. (a) All explosives fired underground shall be confined in boreholes except— (1)...

  7. 30 CFR 75.1315 - Boreholes for explosives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Boreholes for explosives. 75.1315 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1315 Boreholes for explosives. (a) All explosives fired underground shall be confined in boreholes except— (1)...

  8. Application of novel anodized titanium for enhanced recruitment of H9C2 cardiac myoblast

    PubMed Central

    Behjati, Mohaddeseh; Moradi, Iman; Kazemi, Mohammad

    2015-01-01

    Objective(s): Anodized treated titanium surfaces, have been proposed as potential surfaces with better cell attachment capacities. We have investigated the adhesion and proliferation properties of H9C2 cardiac myoblasts on anodized treated titanium surface. Materials and Methods: Surface topography and anodized tubules were examined by high-resolution scanning electron microscopy (SEM). Control and test substrates were inserted to the bottom of 24-well tissue culture plates. Culture media including H9C2 cells were loaded on the surface of substrate and control wells at the second passage. Evaluation of cell growth, proliferation, viability and surface cytotoxicity was performed using MTT test. After 48 hr, some samples were inspected by SEM. DAPI-staining was used to count attached cells. Results: MTT results for cells cultured on anodized titanium and unanodized titanium surfaces was equal to 1.56 and 0.55 fold change compared to tissue culture polystyrene (TCPS). The surface had no cytotoxic effects on cells. The average cell attachment to TCPS, unanodized and anodized titanium surface was 2497±40.16, 1250±20.11 and 4859.5±54.173, respectively. Cell adhesion to anodized titanium was showed 1.95 and 3.89 fold increase compared to TCPS and unanodized titanium, respectively (P<0.05). Conclusion: Anodized titanium surfaces can be potentially applied for enhanced recruitment of H9C2 cells. This unique property makes these inexpensive anodized surfaces as a candidate surface for attachment of cardiac cells and consequently for cardiac regeneration purposes. PMID:26526098

  9. Effect of flavonoids on daunorubicin-induced toxicity in H9c2 Cardiomyoblasts.

    PubMed

    Mojzisová, Gabriela; Sarisský, Marek; Mirossay, Ladislav; Martinka, Peter; Mojzis, Ján

    2009-01-01

    Daunorubicin (DNR) is one of the most important antitumor agents belonging to the anthracycline group. However, its use is seriously limited by the development of cardiac toxicity. The present study was designed to investigate the effects of quercetin, pycnogenol and naringenin on daunorubicin-induced cytoxicity in H9c2 cells. Protection of H9c2 cardiomyocyte cells was concentration/dose dependent for quercetin > naringenin > pycnogenol = trolox. Quercetin (10(-4)-10(-5) mol/L) after 24 h of co-incubation with DNR significantly increased the cardiomyocyte survival (p < 0.001 and p < 0.05, respectively). A protective effect of other compounds was observed only in the highest concentration/dose used (p < 0.01). After 48 h of incubation quercetin and naringenin significantly decreased daunorubicin-induced cell death at concentrations of 10(-4)-10(-5) mol/L (p < 0.001 and p < 0.01, respectively). The protective effect of pycnogenol and trolox was weaker but significant in the two highest concentrations/doses (p < 0.001 and p < 0.05, respectively). This study also investigated DNR-induced apoptosis and it was shown that both quercetin and naringenin inhibit apoptosis of H9c2 cardiomyocytes cells in vitro. The findings provide evidence that quercetin and naringenin may act as survival factors. The protective effect of flavonoids was compared with that of trolox, a known cardioprotective antioxidant. These results are consistent with the notion that the use of flavonoids may be beneficial in modulating or preventing the cardiotoxicity associated with DNR therapy. PMID:18803248

  10. Lipocalin-2 inhibits autophagy and induces insulin resistance in H9c2 cells.

    PubMed

    Chan, Yee Kwan; Sung, Hye Kyoung; Jahng, James Won Suk; Kim, Grace Ha Eun; Han, Meng; Sweeney, Gary

    2016-07-15

    Lipocalin-2 (Lcn2; also known as neutrophil gelatinase associated lipocalin, NGAL) levels are increased in obesity and diabetes and associate with insulin resistance. Correlations exist between Lcn2 levels and various forms or stages of heart failure. Insulin resistance and autophagy both play well-established roles in cardiomyopathy. However, little is known about the impact of Lcn2 on insulin signaling in cardiomyocytes. In this study, we treated H9c2 cells with recombinant Lcn2 for 1 h followed by dose- and time-dependent insulin treatment and found that Lcn2 attenuated insulin signaling assessed via phosphorylation of Akt and p70S6K. We used multiple assays to demonstrate that Lcn2 reduced autophagic flux. First, Lcn2 reduced pULK1 S555, increased pULK1 S757 and reduced LC3-II levels determined by Western blotting. We validated the use of DQ-BSA to assess autolysosomal protein degradation and this together with MagicRed cathepsin B assay indicated that Lcn2 reduced lysosomal degradative activity. Furthermore, we generated H9c2 cells stably expressing tandem fluorescent RFP/GFP-LC3 and this approach verified that Lcn2 decreased autophagic flux. We also created an autophagy-deficient H9c2 cell model by overexpressing a dominant-negative Atg5 mutant and found that reduced autophagy levels also induced insulin resistance. Adding rapamycin after Lcn2 could stimulate autophagy and recover insulin sensitivity. In conclusion, our study indicated that acute Lcn2 treatment caused insulin resistance and use of gain and loss of function approaches elucidated a causative link between autophagy inhibition and regulation of insulin sensitivity by Lcn2. PMID:27090568

  11. Cardiomyoblast (H9c2) Differentiation on Tunable Extracellular Matrix Microenvironment

    PubMed Central

    Suhaeri, Muhammad; Subbiah, Ramesh; Van, Se Young; Du, Ping; Kim, In Gul; Lee, Kangwon

    2015-01-01

    Extracellular matrices (ECM) obtained from in vitro-cultured cells have been given much attention, but its application in cardiac tissue engineering is still limited. This study investigates cardiomyogenic potential of fibroblast-derived matrix (FDM) as a novel ECM platform over gelatin or fibronectin, in generating cardiac cell lineages derived from H9c2 cardiomyoblasts. As characterized through SEM and AFM, FDM exhibits unique surface texture and biomechanical property. Immunofluorescence also found fibronectin, collagen, and laminin in the FDM. Cells on FDM showed a more circular shape and slightly less proliferation in a growth medium. After being cultured in a differentiation medium for 7 days, H9c2 cells on FDM differentiated into cardiomyocytes, as identified by stronger positive markers, such as α-actinin and cTnT, along with more elevated gene expression of Myl2 and Tnnt compared to the cells on gelatin and fibronectin. The gap junction protein connexin 43 was also significantly upregulated for the cells differentiated on FDM. A successive work enabled matrix stiffness tunable; FDM crosslinked by 2wt% genipin increased the stiffness up to 8.5 kPa, 100 times harder than that of natural FDM. The gene expression of integrin subunit α5 was significantly more upregulated on FDM than on crosslinked FDM (X-FDM), whereas no difference was observed for β1 expression. Interestingly, X-FDM showed a much greater effect on the cardiomyoblast differentiation into cardiomyocytes over natural one. This study strongly indicates that FDM can be a favorable ECM microenvironment for cardiomyogenesis of H9c2 and that tunable mechanical compliance induced by crosslinking further provides a valuable insight into the role of matrix stiffness on cardiomyogenesis. PMID:25836924

  12. Isotropic events observed with a borehole array in the Chelungpu fault zone, Taiwan.

    PubMed

    Ma, Kuo-Fong; Lin, Yen-Yu; Lee, Shiann-Jong; Mori, Jim; Brodsky, Emily E

    2012-07-27

    Shear failure is the dominant mode of earthquake-causing rock failure along faults. High fluid pressure can also potentially induce rock failure by opening cavities and cracks, but an active example of this process has not been directly observed in a fault zone. Using borehole array data collected along the low-stress Chelungpu fault zone, Taiwan, we observed several small seismic events (I-type events) in a fluid-rich permeable zone directly below the impermeable slip zone of the 1999 moment magnitude 7.6 Chi-Chi earthquake. Modeling of the events suggests an isotropic, nonshear source mechanism likely associated with natural hydraulic fractures. These seismic events may be associated with the formation of veins and other fluid features often observed in rocks surrounding fault zones and may be similar to artificially induced hydraulic fracturing. PMID:22837526

  13. Report on the Test and Evaluation of the Kinemetrics/Quanterra Q730B Borehole Digitizers

    SciTech Connect

    KROMER,RICHARD P.; MCDONALD,TIMOTHY S.

    1999-10-01

    Sandia National Laboratories has tested and evaluated the Kinemetrics/Quanterra Q730B-bb (broadband) and Q730B-sp (short period) borehole installation remote digitizers. The test results included in this report were for response to static and dynamic input signals, seismic application performance, data time-tag accuracy, and reference signal generator (calibrator) performance. Most test methodologies used were based on IEEE Standards 1057 for Digitizing Waveform Recorders and P1241 (Preliminary Draft) for Analog to Digital Converters; others were designed by Sandia specifically for seismic application evaluation and for supplementary criteria not addressed in the IEEE standards. When appropriate, test instrumentation calibration is traceable to the National Institute for Standards Technology (NIST).

  14. Using the STOMP (Seismic TOMography Program) Program for tomography with strong ray bending

    SciTech Connect

    Beatty, J.A.; Berryman, J.G.

    1987-08-31

    Accurate tomographic reconstructions of sound wave speed and attenuation are more difficult to obtain than are the corresponding reconstructions for x-rays or high frequency electromagnetic probes. The source of the difficulty is the common occurrence of large contrasts in acoustic or seismic wave speeds, leading to refraction and ray-bending effects. A new algorithm based on Fermat's principle has been developed to treat these problems. A description of the code STOMP (for Seismic TOMography Program) implementing the new algorithm is presented here together with a brief users manual for applications to borehole-to-borehole tomography. 3 refs., 3 figs.

  15. Data Acquisition and Processing with a Three-Component Borehole Magnetometer in the Outokumpu Deep Drill Hole

    NASA Astrophysics Data System (ADS)

    Virgil, C.; Ehmann, S.; Hoerdt, A.; Leven, M.; Steveling, E.

    2011-12-01

    Three-component borehole magnetics provides important additional information compared with total field or horizontal and vertical measurements. The "Göttinger Bohrloch Magnetometer" (GBM) is capable of recording the vector of magnetic field along with the orientation of the tool using fibre-optic gyros. The GBM was successfully applied in the Outokumpu Deep Drill Hole (OKU R2500), Finland in September 2008. The aim of this project was the understanding of the ore formation process in the Outokumpu mining region. Using the high precision gyro data, we can compute the vector of the magnetic anomaly with respect to the Earth's reference frame North, East and Downwards. Based on the comparison of several logs, the estimated precision is 0.75 ° in azimuthal direction and 0.2 ° in inclination. The vector information of the magnetic anomalies was used to compute models of the magnetized rock units of the environment of the borehole via numerical simulations. By differentiating between short scale (wavelength < 10 m) and long scale (wavelength > 10 m) magnetic anomalies, we developed two different models. The first concerns the drilled-through Outokumpu-assemblage in the direct vicinity (< 50 m) of the borehole. Here, we could identify a tilted layer and related the dip and dip-azimuth with the direction of fracture zones, obtained from televiewer data. The second model concerns the geological structure of the surrounding (< 1 km) of the drill site. By joint interpretation with seismic profiles we were able to link the seismic reflectivity with magnetic properties. This yields an estimate of the mineralogy for rock units away from the borehole path, which were not cored. The orientation information provided by the GBM was also used to compute the borehole path with an accuracy better than 5 m at a logging depth of 1440 m.

  16. Seismic bearing

    NASA Astrophysics Data System (ADS)

    Power, Dennis

    2009-05-01

    Textron Systems (Textron) has been using geophones for target detection for many years. This sensing capability was utilized for detection and classification purposes only. Recently Textron has been evaluating multiaxis geophones to calculate bearings and track targets more specifically personnel. This capability will not only aid the system in locating personnel in bearing space or cartesian space but also enhance detection and reduce false alarms. Textron has been involved in the testing and evaluation of several sensors at multiple sites. One of the challenges of calculating seismic bearing is an adequate signal to noise ratio. The sensor signal to noise ratio is a function of sensor coupling to the ground, seismic propagation and range to target. The goals of testing at multiple sites are to gain a good understanding of the maximum and minimum ranges for bearing and detection and to exploit that information to tailor sensor system emplacement to achieve desired performance. Test sites include 10A Site Devens, MA, McKenna Airfield Ft. Benning, GA and Yuma Proving Ground Yuma, AZ. Geophone sensors evaluated include a 28 Hz triax spike, a 15 Hz triax spike and a hybrid triax spike consisting of a 10 Hz vertical geophone and two 28 Hz horizontal geophones. The algorithm uses raw seismic data to calculate the bearings. All evaluated sensors have triaxial geophone configuration mounted to a spike housing/fixture. The suite of sensors also compares various types of geophones to evaluate benefits in lower bandwidth. The data products of these tests include raw geophone signals, seismic features, seismic bearings, seismic detection and GPS position truth data. The analyses produce Probability of Detection vs range, bearing accuracy vs range, and seismic feature level vs range. These analysis products are compared across test sites and sensor types.

  17. Advances in directional borehole radar data analysis and visualization

    USGS Publications Warehouse

    Smith, D.V.G.; Brown, P.J., II

    2002-01-01

    The U.S. Geological Survey is developing a directional borehole radar (DBOR) tool for mapping fractures, lithologic changes, and underground utility and void detection. An important part of the development of the DBOR tool is data analysis and visualization, with the aim of making the software graphical user interface (GUI) intuitive and easy to use. The DBOR software system consists of a suite of signal and image processing routines written in Research Systems' Interactive Data Language (IDL). The software also serves as a front-end to many widely accepted Colorado School of Mines Center for Wave Phenomena (CWP) Seismic UNIX (SU) algorithms (Cohen and Stockwell, 2001). Although the SU collection runs natively in a UNIX environment, our system seamlessly emulates a UNIX session within a widely used PC operating system (MicroSoft Windows) using GNU tools (Noer, 1998). Examples are presented of laboratory data acquired with the prototype tool from two different experimental settings. The first experiment imaged plastic pipes in a macro-scale sand tank. The second experiment monitored the progress of an invasion front resulting from oil injection. Finally, challenges to further development and planned future work are discussed.

  18. Comparative Tests Between Shallow Downhole Installation and Classical Seismic Vaults

    NASA Astrophysics Data System (ADS)

    Charade, Olivier; Vergne, Jérôme; Bonaimé, Sébastien; Bonnin, Mickaël; Louis-Xavier, Thierry; Beucler, Eric; Manhaval, Bertrand; Arnold, Benoît

    2016-04-01

    The French permanent broadband network is engaged in a major evolution with the installation of a hundred of new stations within the forthcoming years. Since most of them will be located in open field environments, we are looking for a standardized installation method able to provide good noise level performance at a reasonable cost. Nowadays, the use of posthole seismometers that can be deployed at the bottom of shallow boreholes appears to be an affordable and alternative solution to more traditional installation methods such as seismic vaults or dedicated underground cellars. Here we present some comparative tests performed at different sites (including two GEOSCOPE stations), spanning various geological conditions. On each site, posthole sensors were deployed for several weeks to months at various depths from 1.5m up to 20m. We compare the seismic noise levels measured in the different boreholes with the one for a reference sensor either directly buried or installed in a tunnel, a cellar or a seismic vault. Apart from the microseism frequency band, seismic noise level in most of the boreholes equals or outperforms the one obtained for the reference sensors. At periods higher than 20s we observe a strong reduction of the seismic noise on the horizontal components in the deepest boreholes compared to near surface installations. This improvement can reach up to 30dB and appears to be mostly due to a reduction in tilt noise induced by wind or local pressure variations. However, the absolute noise level that can be achieved strongly depends on the local geology.

  19. Acoustic-electromagnetic effects of tectonic movements of the crust - borehole survey

    NASA Astrophysics Data System (ADS)

    Uvarov, V. N.; Malkin, E. I.; Druzhin, G. I.; Sannikov, D. V.; Pukhov, V. M.

    2015-04-01

    Borehole radiophysical properties are briefly described. Borehole investigation of lithosphere acoustic-electromagnetic radiation was carried out in a seismically active region. Four main types of anomalies of acoustic-electromagnetic radiation were distinguished. They correspond to shear and bulk relaxations of tectonic stress. Stability of phase relations of acoustic and electromagnetic signals in the region of anomalies was detected that allows us to state their coherence. It was concluded that the reason of mutual coherence of acoustic and electromagnetic signals is the magnetoelastic effect of the casing pipe. A mechanism of generation of rock self-induced vibrations during tectonic stress relaxation causing acoustic-electromagnetic emission was suggested. It was concluded that "sigmoid" anomalies may correlate with excitation of eigen vibrations in a fracture cavity during brittle shear relaxation of rock tectonic stress. An explanation of the change of anomalous "sigmoid" signal frequency was given. It is considered to be the result of growth of rock fracture cavity and the decrease of tectonic stress relaxation. It was concluded that a borehole, cased in a steel pipe, together with a system of inductance coils and a hydrophone is the effective sounding sensor for acoustic fields of interior deep layers. It may be applied to investigate and to monitor the geodynamic activity, in particular, in earthquake forecasts and in monitoring of hydrocarbon deposits during their production.

  20. Seismic imaging through volcanic rocks of the Snake River Plain, Idaho for the ICDP Project Hotspot

    NASA Astrophysics Data System (ADS)

    Liberty, L. M.; Schmitt, D. R.; Shervais, J. W.

    2011-12-01

    New high-resolution downhole and surface seismic reflection data tied to drill holes related to the Snake River Geothermal Drilling Project (ICDP Project Hotspot) provide insights into seismic imaging in volcanic terranes. The downhole data at the Kimberly and Kimama drill sites in southern Idaho show low seismic attenuation and large seismic velocity contrasts at volcanic flow boundaries. These lithologic and seismic boundaries tie to reflections in both borehole and surface seismic images. The Kimberly site drilled through 1,958 m of mostly rhyolite, with thin sedimentary interbeds throughout the section. Sedimentary interbeds at depth correspond with slow velocity zones that relate to reflections on surface seismic profiles. The reflection observed on 360-channel vibroseis seismic profiles that relates to a flow boundary at 300-400 m depth increases in depth with increasing elevation away from the Kimberly drill site, suggesting flow volumes may be estimated with surface seismic methods. The Kimama site drilled through 1,912 m of mostly basalt with sedimentary interbeds at depth. Downhole and surface vibroseis seismic results here also suggest seismic reflection methods are useful to image flow boundaries. Ongoing drilling at a third site in Mountain Home, Idaho will tie lithologies and measured physical properties to surface seismic data. These seismic data show key lithologic boundaries related to Quaternary basalts, lake sediments related to paleo Lake Idaho, and underlying Tertiary basalts. Ongoing analysis should help clarify the limits and capabilities of surface seismic imaging in volcanic terranes.

  1. Morphine Attenuated the Cytotoxicity Induced by Arsenic Trioxide in H9c2 Cardiomyocytes.

    PubMed

    Amini-Khoei, Hossein; Hosseini, Mir-Jamal; Momeny, Majid; Rahimi-Balaei, Maryam; Amiri, Shayan; Haj-Mirzaian, Arya; Khedri, Mostafa; Jahanabadi, Samane; Mohammadi-Asl, Ali; Mehr, Shahram Ejtemaie; Dehpour, Ahmad Reza

    2016-09-01

    Arsenic trioxide (ATO) is an efficient drug for the treatment of the patients with acute promyelocytic leukemia (APL). Inhibition of proliferation as well as apoptosis, attenuation of migration, and induction of differentiation in tumor cells are the main mechanisms through which ATO acts against APL. Despite advantages of ATO in treatment of some malignancies, certain harmful side effects, such as cardiotoxicity, have been reported. It has been well documented that morphine has antioxidant, anti-apoptotic, and cytoprotective properties and is able to attenuate cytotoxicity. Therefore, in this study, we aimed to investigate the protective effects of morphine against ATO toxicity in H9c2 myocytes using multi-parametric assay including thiazolyl blue tetrazolium bromide (MTT) assay, reactive oxygen species (ROS) generation, caspase 3 activity, nuclear factor kappa B (NF-κB) phosphorylation assay, and expression of apoptotic markers. Our results showed that morphine (1 μM) attenuated cytotoxicity induced by ATO in H9c2 cells. Results of this study suggest that morphine may have protective properties in management of cardiac toxicity in patients who receive ATO as an anti-cancer treatment. PMID:26815588

  2. Electrical resistance tomography from measurements inside a steel cased borehole

    DOEpatents

    Daily, William D.; Schenkel, Clifford; Ramirez, Abelardo L.

    2000-01-01

    Electrical resistance tomography (ERT) produced from measurements taken inside a steel cased borehole. A tomographic inversion of electrical resistance measurements made within a steel casing was then made for the purpose of imaging the electrical resistivity distribution in the formation remotely from the borehole. The ERT method involves combining electrical resistance measurements made inside a steel casing of a borehole to determine the electrical resistivity in the formation adjacent to the borehole; and the inversion of electrical resistance measurements made from a borehole not cased with an electrically conducting casing to determine the electrical resistivity distribution remotely from a borehole. It has been demonstrated that by using these combined techniques, highly accurate current injection and voltage measurements, made at appropriate points within the casing, can be tomographically inverted to yield useful information outside the borehole casing.

  3. CALIPSO Borehole Instrumentation Project at Soufriere Hills Volcano, Montserrat, BWI: Overview and Prospects

    NASA Astrophysics Data System (ADS)

    Voight, B.; Mattioli, G. S.; Young, S. R.; Linde, A. T.; Sacks, I. S.; Malin, P.; Shalev, E.; Hidayat, D.; Elsworth, D.; Widiwijayanti, C.; Miller, V.; Sparks, R.; Neuberg, J.; Bass, V.; Dunkley, P.; Edmonds, M.; Herd, R.; Jolly, A.; Norton, G.; Thompson, G.

    2003-12-01

    Project CALIPSO (Caribbean Andesite Lava Island-volcano Precision Seismo-geodetic Observatory) was developed in order to investigate the magmatic system at the exceedingly active Soufriere Hills Volcano (SHV), Montserrat. The collaborative project involves a number of institutions acting in partnership with the Montserrat Volcano Observatory (MVO), and is funded by NSF with a contribution to drilling costs provided by UK NERC. SHV remains active and dynamic after 7 years and is expected to remain so for the foreseeable future. Many aspects of andesite magmatic system dynamics remain poorly understood despite significant monitoring and research efforts, and CALIPSO is expected to improve our understanding of SHV and andesite systems generally. Drilling was carried out by DOSECC, Nov 02 to Mar 03. CALIPSO uses an integrated array of four strategically located 200-m boreholes, plus a few shallower holes and surface installations. The borehole instrument package is designed to have long life (decades) at moderately high temperatures. Each site includes a single-component,very broad band, Sacks-Evertson strainmeter, a three-component seismometer (about 1 Hz to 1 kHz), a Pinnacle Technologies tiltmeter, and a surface CGPS station with choke ring antenna. At one site a new CIW hot-hole strainmeter design, involving hydraulic sensors and no downhole electronics, has been used for the first time anywhere. Data will be streamed from the remote borehole sites using FreeWave telemetry coupled with Quanterra A/D converters. The borehole observatory is being fully integrated into the surface monitoring networks of the MVO and other PSU/U Ark monitor systems, enhancing the existing CGPS and surface broadband seismic-acoustic networks. These instruments are intended to probe changes in the andesitic volcanic system and underlying mafic sources with unprecedented sensitivity. Cyclic activity at a variety of timescales has been a feature of SHV volcanism, involving seismicity

  4. Broad Band Data and Noise Observed with Surface Station and Borehole Station

    NASA Astrophysics Data System (ADS)

    Tunc, Suleyman; Ozel, Oguz; Safa Arslan, Mehmet; Behiye Akşahin, Bengi; Hatipoglu, Mustafa; Cagin Yalcintepe, Ragip; Ada, Samim; Meral Ozel, Nurcan

    2016-04-01

    Marmara region tectonically is very active and many destructive earthquakes happened in the past. North Anatolian Fault Zone crosses the Marmara region and it has three branches. The northern branch passes through Marmara Sea and expected future large earthquake will happen along this fault zone. There is a gap in seismic network in the Marmara region at offshore and onshore areas. We have started broadband borehole seismographic observations to obtain the detailed information about fault geometry and its stick-slip behavior beneath the western Marmara Sea, as a part of the MARsite collaborative Project, namely "New Directions in Seismic Hazard Assessment through Focused Earth Observation in the Marmara Supersite-MARsite". The target area western Marmara of Turkey. In the beginning of the project, we installed eight Broadband surface station around Marmara Sea in April 2014. Then, we added broadband sensor and broadband surface sensor at the same location in November 2014. In this study, we developed a Matlab application to calculate Power Spectral Density against the New Low Noise Model (NLNM) and New High Noise Model (NHNM) determined for one-hour segments of the data. Also we compared ambient noise of broadband borehole sensor and surface broadband sensor.

  5. Seismic Studies

    SciTech Connect

    R. Quittmeyer

    2006-09-25

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at

  6. BOREHOLE NEUTRON ACTIVATION: THE RARE EARTHS.

    USGS Publications Warehouse

    Mikesell, J.L.; Senftle, F.E.

    1987-01-01

    Neutron-induced borehole gamma-ray spectroscopy has been widely used as a geophysical exploration technique by the petroleum industry, but its use for mineral exploration is not as common. Nuclear methods can be applied to mineral exploration, for determining stratigraphy and bed correlations, for mapping ore deposits, and for studying mineral concentration gradients. High-resolution detectors are essential for mineral exploration, and by using them an analysis of the major element concentrations in a borehole can usually be made. A number of economically important elements can be detected at typical ore-grade concentrations using this method. Because of the application of the rare-earth elements to high-temperature superconductors, these elements are examined in detail as an example of how nuclear techniques can be applied to mineral exploration.

  7. Design parameters for borehole strain instrumentation

    NASA Astrophysics Data System (ADS)

    Gladwin, Michael T.; Hart, Rhodes

    1985-01-01

    The response of a borehole strain meter to hydrostatic and shear deformations in an isotropic medium is calculated to facilitate optimum instrument design and produce instrument response factors for parameters typically encountered in installed instruments. Results for an empty borehole are first compared with results for an instrument in intimate contact with the surrounding rock. The effects of the grout used to install the instrument are then examined. Where possible, analytic forms for the response factors are given. Results for typical installations are then presented in graphical form for optimizing instrument design in an environment of known elastic parameters. Alternatively, the results may be applied in the measurement of unknown strain signals, to correct for instrument response or to provide in-situ estimates of the elastic properties of the environment by examination of observed strain response to known strain signals.

  8. High-precision multicomponent borehole deformation monitoring

    NASA Astrophysics Data System (ADS)

    Gladwin, Michael T.

    1984-12-01

    An instrument capable of deep borehole measurement of vector plane strain to 0.3 nstrain and tilt to 1.0 nrad has been developed for deployment in crustal deformation and earthquake prediction studies. The instrument has been deployed in California where shear strains dominate the deformation. The 125-mm-diam package is grouted in 175-mm boreholes at depths of approximately 200 m. The wall thickness and the grout thickness are chosen to match instrument strength to expected rock parameters. The instrument is capable of flat response from dc to 10 Hz on any single channel. The electronics package is stable to three parts in 108 over the temperature range 10 to 45° C. Reliable shear strain data is available immediately on installation when simple volume strain meters show only bond curing effects or thermal recovery signals.

  9. Spatial distribution of reservoir properties using seismic attributes correlated to log properties

    SciTech Connect

    Dickerman, K.; Caamano, E. ); Gir, R. )

    1994-07-01

    Reservoir description maps have traditionally been generated using seismic data in succession with well log data. Integrating well logs with seismic maps in a separate step is not taking advantage of all the information contained within a 3-D data set. This paper describes a technique that statistically correlates seismic and log data to produce integrated maps of reservoir frequencies with increased resolution and confidence. The procedure involves first matching 3-D seismic with borehole seismic data. Then a statistical correlation is attempted between seismic attributes including amplitude, impedance, velocity, etc., and log properties such as porosity, water saturation, net to gross, bulk water volume, etc. at the well intersections. A multivariant function of the correlations is then derived. This function is applied to seismic data to produce reservoir property maps. This technique has been applied to 3-D data from Indonesia. Results and problems in estimating the functional relationship are discussed.

  10. Geologic and well-construction data for the H-9 borehole complex near the proposed Waste Isolation Pilot Plant site, southeastern New Mexico

    USGS Publications Warehouse

    Drellack, S.L.; Wells, J.G.

    1982-01-01

    The H-9 complex, a group of three closely spaced boreholes, is located 5.5 miles south of the proposed Waste Isolation Pilot Plant (WIPP) site in east-central Eddy County, New Mexico. The holes were drilled during July, August, and September 1979 to obtain geologic and hydrologic data to better define the regional ground-water-flow system. The geologic data presented in this report are part of a site-characterization study for the possible storage of defense-associated radioactive wastes within salt beds of the Salado Formation of Permian age. The geologic data include detailed descriptions of cores, cuttings, and geophysical logs. Each borehole was designed to penetrate a distinct water-bearing zone: H-9a (total depth 559 feet) was completed just below the Magenta Dolomite Member of the Rustler Formation; H-9b (total depth 708 feet) was completed just below the Culebra Dolomite Member of the Rustler Formation; H-9c (total depth 816 feet) was completed below the Rustler Formation-Salado Formation contact. The geologic units penetrated in borehole H-9c are eolian sand of Holocene age (0-5 feet); the Gatuna Formation of Pleistocene age; (5-25 feet); and the Dewey Lake Red Beds (25-455 feet), the Rustler Formation (455.791 feet), and part of the Salado Formation (791-816 feet), all of Permian age. Three sections (494-501 feet, 615-625 feet, 692-712 feet) in the Rustler Formation penetrated by borehole H-9c are composed of remnant anhydrite (locally altered to gypsum) and clay and silt residue from the dissolution of much thicker seams of argillaceous and silty halite. This indicates that the eastward-moving dissolution within the Rustler Formation, found just to the west of the WIPP site, is present at the H-9 site. (USGS)

  11. Advances in borehole geophysics for hydrology

    SciTech Connect

    Nelson, P.H.

    1982-01-01

    Borehole geophysical methods provide vital subsurface information on rock properties, fluid movement, and the condition of engineered borehole structures. Within the first category, salient advances include the continuing improvement of the borehole televiewer, refinement of the electrical conductivity dipmeter for fracture characterization, and the development of a gigahertz-frequency electromagnetic propagation tool for water saturation measurements. The exploration of the rock mass between boreholes remains a challenging problem with high potential; promising methods are now incorporating high-density spatial sampling and sophisticated data processing. Flow-rate measurement methods appear adequate for all but low-flow situations. At low rates the tagging method seems the most attractive. The current exploitation of neutron-activation techniques for tagging means that the wellbore fluid itself is tagged, thereby eliminating the mixing of an alien fluid into the wellbore. Another method uses the acoustic noise generated by flow through constrictions and in and behind casing to detect and locate flaws in the production system. With the advent of field-recorded digital data, the interpretation of logs from sedimentary sequences is now reaching a sophisticated level with the aid of computer processing and the application of statistical methods. Lagging behind are interpretive schemes for the low-porosity, fracture-controlled igneous and metamorphic rocks encountered in the geothermal reservoirs and in potential waste-storage sites. Progress is being made on the general problem of fracture detection by use of electrical and acoustical techniques, but the reliable definition of permeability continues to be an elusive goal.

  12. Borehole fracture detection using magnetic powder

    SciTech Connect

    Smith, D.G.

    1985-01-01

    A method for detecting fractures in a formation penetrated by a borehole wherein the fracture is first filled with a magnetic material and the formation then logged with an instrument that responds to the earth's magnetic field. The fracture can be filled with a magnetic material by including it in the drilling mud when the well is drilled and changing the mud system before logging. The logging tool can comprise a simple compass or a magnetometer.

  13. Promising pneumatic punchers for borehole drilling

    SciTech Connect

    A.A. Lipin

    2005-03-15

    The state of borehole drilling by downhole pneumatic punchers and their potential use in open and underground mining as well as in exploration for reliable sampling are analyzed. Performance specification is presented for the new-generation pneumatic punchers equipped with a pin tool, effectively operating at a compressed-air pressure of 0.5-0.7 MPa, and with an additional extended exhaust from the power stroke chamber during working cycle.

  14. Isoflurane reduces oxygen-glucose deprivation-induced oxidative, inflammatory, and apoptotic responses in H9c2 cardiomyocytes

    PubMed Central

    Liu, Jun; Yang, Shuangmei; Zhang, Xiaoran; Liu, Guoze; Yue, Xiuqin

    2016-01-01

    Isoflurane (ISO) protects the heart from hypoxia-reperfusion injury. However, the molecular mechanisms of ISO in oxygen-glucose deprivation (OGD)-induced H9c2 cardiomyocyte injury is yet to be understood. Using H9c2 cells cultured in vitro, we examined the cytotoxicity of different doses of ISO (0.7%, 1.4%, and 2.1%) to H9c2 cells and found that 2.1% ISO had significant toxicity to the cell. Thus, 1.4% ISO was selected for the subsequent experiments. ISO notably ameliorated cell viability loss, lactate dehydrogenase release, and creatine kinase activity of H9c2 cells that were treated with OGD. ISO suppressed OGD-induced pro-inflammatory tumor necrosis factor-α, interleukin (IL)-1β, IL-6, IL-8 production, and nuclear factor (NF)-κB activation in H9c2 cells. ISO reduced the reactive oxygen species and malondialdehyde generation, but it enhanced the superoxide dismutase activity in OGD-stimulated H9c2 cells. In addition, diminished OGD-induced cell apoptosis and preserved mitochondrial membrane potential were observed in ISO-treated H9c2 cells. ISO markedly up-regulated the anti-apoptotic Bcl-2 expression but inhibited the pro-apoptotic expressions of Bax, procaspase-3, cleaved caspase-3, and caspase-3 activity. Mechanistically, the cardioprotective effects of ISO on OGD-induced H9c2 cell injury were mediated by the Akt signaling pathway. These findings suggest that ISO alleviates OGD-induced H9c2 cell injury and may therefore be used to prevent and treat ischemic heart diseases. PMID:27398143

  15. Crustal heat flow measurements in western Anatolia from borehole equilibrium temperatures

    NASA Astrophysics Data System (ADS)

    Erkan, K.

    2014-01-01

    Results of a crustal heat flow analysis in western Anatolia based on borehole equilibrium temperatures and rock thermal conductivity data are reported. The dataset comprises 113 borehole sites that were collected in Southern Marmara and Aegean regions of Turkey in 1995-1999. The measurements are from abandoned water wells with depths of 100-150 m. Data were first classed in terms of quality, and the low quality data, including data showing effects of hydrologic disturbances on temperatures, were eliminated. For the remaining 34 sites, one meter resolution temperature-depth curves were carefully analyzed for determination of the background geothermal gradients, and any effects of terrain topography and intra-borehole fluid flow were corrected when necessary. Thermal conductivities were determined either by direct measurements on representative surface outcrop or estimated from the borehole lithologic records. The calculated heat flow values are 85-90 mW m-2 in the northern and central parts of the Menderes horst-graben system. Within the system, the highest heat flow values (> 100 mW m-2) are observed in the northeastern part of Gediz Graben, near Kula active volcanic center. The calculated heat flow values are also in agreement with the results of studies on the maximum depth of seismicity in the region. In the Menderes horst-graben system, surface heat flow is expected to show significant variations as a result of active sedimentation and thermal refraction in grabens, and active erosion on horst detachment zones. High heat flow values (90-100 mW m-2) are also observed in the peninsular (western) part of Çanakkale province. The heat flow anomaly here may be an extension of the high heat flow zone previously observed in the northern Aegean Sea. Moderate heat flow values (60-70 mW m-2) are observed in eastern part of Çanakkale and central part of Balıkesir provinces.

  16. Combined wave propagation analysis of earthquake recordings from borehole and building sensors

    NASA Astrophysics Data System (ADS)

    Petrovic, B.; Parolai, S.; Dikmen, U.; Safak, E.; Moldobekov, B.; Orunbaev, S.

    2015-12-01

    In regions highly exposed to natural hazards, Early Warning Systems can play a central role in risk management and mitigation procedures. To improve at a relatively low cost the spatial resolution of regional earthquake early warning (EEW) systems, decentralized onsite EEW and building monitoring, a wireless sensing unit, the Self-Organizing Seismic Early Warning Information Network (SOSEWIN) was developed and further improved to include the multi-parameter acquisition. SOSEWINs working in continuous real time mode are currently tested on various sites. In Bishkek and Istanbul, an instrumented building is located close to a borehole equipped with downhole sensors. The joint data analysis of building and borehole earthquake recordings allows the study of the behavior of the building, characteristics of the soil, and soil-structure interactions. The interferometric approach applied to recordings of the building response is particularly suitable to characterize the wave propagation inside a building, including the propagation velocity of shear waves and attenuation. Applied to borehole sensors, it gives insights into velocity changes in different layers, reflections and mode conversion, and allows the estimation of the quality factor Qs. We used combined building and borehole data from the two test sites: 1) to estimate the characteristics of wave propagation through the building to the soil and back, and 2) to obtain an empirical insight into soil-structure interactions. The two test sites represent two different building and soil types, and soil structure impedance contrasts. The wave propagation through the soil to the building and back is investigated by the joint interferometric approach. The propagation of up and down-going waves through the building and soil is clearly imaged and the reflection of P and S waves from the earth surface and the top of the building identified. An estimate of the reflected and transmitted energy amounts is given, too.

  17. HO-1 Protects against Hypoxia/Reoxygenation-Induced Mitochondrial Dysfunction in H9c2 Cardiomyocytes

    PubMed Central

    Chen, Dongling; Jin, Zhe; Zhang, Jingjing; Jiang, Linlin; Chen, Kai; He, Xianghu; Song, Yinwei; Ke, Jianjuan; Wang, Yanlin

    2016-01-01

    Background Mitochondrial dysfunction would ultimately lead to myocardial cell apoptosis and death during ischemia-reperfusion injuries. Autophagy could ameliorate mitochondrial dysfunction by autophagosome forming, which is a catabolic process to preserve the mitochondrial’s structural and functional integrity. HO-1 induction and expression are important protective mechanisms. This study in order to investigate the role of HO-1 during mitochondrial damage and its mechanism. Methods and Results The H9c2 cardiomyocyte cell line were incubated by hypoxic and then reoxygenated for the indicated time (2, 6, 12, 18, and 24 h). Cell viability was tested with CCK-8 kit. The expression of endogenous HO-1(RT-PCR and Western blot) increased with the duration of reoxygenation and reached maximum levels after 2 hours of H/R; thereafter, the expression gradually decreased to a stable level. Mitochondrial dysfunction (Flow cytometry quantified the ROS generation and JC-1 staining) and autophagy (The Confocal microscopy measured the autophagy. RFP-GFP-LC3 double-labeled adenovirus was used for testing.) were induced after 6 hours of H/R. Then, genetic engineering technology was employed to construct an Lv-HO1-H9c2 cell line. When HO-1 was overexpressed, the LC3II levels were significantly increased after reoxygenation, p62 protein expression was significantly decreased, the level of autophagy was unchanged, the mitochondrial membrane potential was significantly increased, and the mitochondrial ROS level was significantly decreased. Furthermore, when the HO-1 inhibitor ZnPP was applied the level of autophagy after reoxygenation was significantly inhibited, and no significant improvement in mitochondrial dysfunction was observed. Conclusions During myocardial hypoxia-reoxygenation injury, HO-1 overexpression induces autophagy to protect the stability of the mitochondrial membrane and reduce the amount of mitochondrial oxidation products, thereby exerting a protective effect. PMID

  18. Effect of borehole design on electrical impedance tomography measurements

    NASA Astrophysics Data System (ADS)

    Mozaffari, Amirpasha; Huisman, Johan Alexander; Treichel, Andrea; Zimmermann, Egon; Kelter, Matthias; Vereecken, Harry

    2015-04-01

    Electrical Impedance Tomography (EIT) is a sophisticated non-invasive tool to investigate the subsurface in engineering and environmental studies. To increase the depth of investigation, EIT measurements can be made in boreholes. However, the presence of the borehole may affect EIT measurements. Here, we aim to investigate the effect of different borehole components on EIT measurements using 2,5-D and 3D finite element modeling and unstructured meshes. To investigate the effect of different borehole components on EIT measurements, a variety of scenarios were designed. In particular, the effect of the water-filled borehole, the PVC casing, and the gravel filter were investigated relative to complex resistivity simulations for a homogenous medium with chain and electrode modules. It was found that the results of the complex resistivity simulations were best understood using the sensitivity distribution of the electrode configuration under consideration. In all simulations, the sensitivity in the vicinity of the borehole was predominantly negative. Therefore, the introduction of the water-filled borehole caused an increase in the real part of the impedance, and a decrease (more negative) in the imaginary part of the simulated impedance. The PVC casing mostly enhanced the effect of the water-filled borehole described above, although this effect was less clear for some electrode configuration. The effect of the gravel filter mostly reduced the effect of the water-filled borehole with PVC casing. For EIT measurements in a single borehole, the highest simulated phase error was 12% for a Wenner configuration with electrode spacing of 0.33 m. This error decreased with increasing electrode spacing. In the case of cross-well configurations, the error in the phase shit was as high as 6%. Here, it was found that the highest errors occur when both current electrodes are located in the same borehole. These results indicated that cross-well measurements are less affected by the

  19. Near-Surface Site Characterization Using a Combination of Active and Passive Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Lane, J. W.; Liu, L.; Chen, Y.; White, E. A.

    2007-12-01

    Seismic surveys with an active source are commonly used to characterize the subsurface. Increasingly, passive seismic surveys utilizing ambient seismic frequencies (microtremors) are being used to support geotechnical and hazards engineering studies. In this study, we use a combination of active and passive seismic methods to characterize a watershed site at Haddam Meadows State Park, Haddam, Connecticut. At Haddam Meadows, we employed a number of seismic arrays using both active and passive approaches to estimate the depth to rock and the seismic velocity structure of the unconsolidated sediments. The active seismic surveys included seismic refraction and multi-channel analysis of surface waves (MASW) using an accelerated weight-drop seismic source. The passive seismic surveys consisted of MASW techniques using both linear and circular geophone arrays, and a survey using a 3-component seismometer. The active seismic data were processed using conventional algorithms; the passive seismic data were processed using both the spatial autocorrelation method (SPAC) and the horizontal to vertical spectral ratio (H/V) method. The interpretations of subsurface structure from the active and passive surveys are generally in good agreement and compare favorably with ground truth information provided by adjacent boreholes. Our results suggest that a combination of active and passive seismic methods can be used to rapidly characterize the subsurface at the watershed scale.

  20. Seismic Tomography.

    ERIC Educational Resources Information Center

    Anderson, Don L.; Dziewonski, Adam M.

    1984-01-01

    Describes how seismic tomography is used to analyze the waves produced by earthquakes. The information obtained from the procedure can then be used to map the earth's mantle in three dimensions. The resulting maps are then studied to determine such information as the convective flow that propels the crustal plates. (JN)

  1. Seismic Symphonies

    NASA Astrophysics Data System (ADS)

    Strinna, Elisa; Ferrari, Graziano

    2015-04-01

    The project started in 2008 as a sound installation, a collaboration between an artist, a barrel organ builder and a seismologist. The work differs from other attempts of sound transposition of seismic records. In this case seismic frequencies are not converted automatically into the "sound of the earthquake." However, it has been studied a musical translation system that, based on the organ tonal scale, generates a totally unexpected sequence of sounds which is intended to evoke the emotions aroused by the earthquake. The symphonies proposed in the project have somewhat peculiar origins: they in fact come to life from the translation of graphic tracks into a sound track. The graphic tracks in question are made up by copies of seismograms recorded during some earthquakes that have taken place around the world. Seismograms are translated into music by a sculpture-instrument, half a seismograph and half a barrel organ. The organ plays through holes practiced on paper. Adapting the documents to the instrument score, holes have been drilled on the waves' peaks. The organ covers about three tonal scales, starting from heavy and deep sounds it reaches up to high and jarring notes. The translation of the seismic records is based on a criterion that does match the highest sounds to larger amplitudes with lower ones to minors. Translating the seismogram in the organ score, the larger the amplitude of recorded waves, the more the seismogram covers the full tonal scale played by the barrel organ and the notes arouse an intense emotional response in the listener. Elisa Strinna's Seismic Symphonies installation becomes an unprecedented tool for emotional involvement, through which can be revived the memory of the greatest disasters of over a century of seismic history of the Earth. A bridge between art and science. Seismic Symphonies is also a symbolic inversion: the instrument of the organ is most commonly used in churches, and its sounds are derived from the heavens and

  2. Surface and borehole electromagnetic imaging of conducting contaminant plumes

    SciTech Connect

    Berryman, J. G., LLNL

    1998-07-01

    Electromagnetic induction tomography is a promising new tool for imaging electrical conductivity variations in the earth. The EM source field is produced by induction coil (magnetic dipole) transmitters deployed at the surface or in boreholes. Vertical and horizontal component magnetic field detectors are deployed in other boreholes or on the surface. Sources and receivers are typically deployed in a configuration surrounding the region of interest. The goal of this procedure is to image electrical conductivity variations in the earth, much as x-ray tomography is used to image density variations through cross-sections of the body. Although such EM field techniques have been developed and applied, the algorithms for inverting the magnetic field data to produce the desired images of electrical conductivity have not kept pace. One of the main reasons for the lag in the algorithm development has been the fact that the magnetic induction problem is inherently three dimensional; other imaging methods such as x-ray and seismic can make use of two-dimensional approximations that are not too far from reality, but we do not have this luxury in EM induction tomography. In addition, previous field experiments were conducted at controlled test sites that typically do not have much external noise or extensive surface clutter problems often associated with environmental sites. To use the same field techniques in environments more typical of cleanup sites requires a new set of data processing tools to remove the effects of both noise and clutter. The goal of this project is to join theory and experiment to produce enhanced images of electrically conducting fluids underground, allowing better localization of contaminants and improved planning strategies for the subsequent remediation efforts. After explaining the physical context in more detail, this report will summarize the progress made in the first 18 months of this project: (1) on code development and (2) on field tests of

  3. Borehole Paleoclimatology: In search of a minimum depth criterion for terrestrial borehole temperature profiles

    NASA Astrophysics Data System (ADS)

    Beltrami, H.; Smerdon, J. E.; Matharoo, G.; Nickerson, N. R.

    2010-12-01

    One important uncertainty in borehole paleoclimatology that has been overlooked is the degree to which ground surface temperature (GST) reconstructions depend on the maximum depth of the profile. Because the vast majority of measured borehole temperature profiles are acquired from boreholes of opportunity, the maximum measurement depth in data used for paleoclimatic studies varies considerably (beginning at depths as shallow as 100-150 m and extending to depths of more than 1 km). The depth of the borehole is important because the downwelling climatic signal must be separated from the quasi-steady state thermal regime established by the energy in the Earth's interior. This component of the signal is estimated as a linear increase in temperature with depth from the lower section of a borehole temperature profile, which is assumed to be unperturbed by recent changes in climate at the surface. The validity of this assumption is dependent on both the subsurface thermophysical properties and the character of the downwelling climatic signal. Such uncertainties can significantly impact the determination of the quasi-steady state thermal regime, and consequently the magnitude of the temperature anomaly interpreted as a climatic signal. Here we illustrate how the minimum depth of a temperature-depth profile impacts the estimation of the climatic transient and the resultant GST reconstruction. In particular, we attempt to quantitatively illustrate the effects and uncertainties that arise from the analysis of borehole temperature logs of different depths. Our results demonstrate that widely different GST histories can be derived from a single temperature profile truncated at different depths. We show that borehole temperature measurements approaching 500-600 m depths provide the most robust GST reconstructions and are preferable for inferring past climatic variations at the ground surface. Furthermore, we find that the bias introduced by a temperature profile of depths

  4. Effects of the deviation characteristics of nuclear waste emplacement boreholes on borehole liner stresses; Yucca Mountain Project

    SciTech Connect

    Glowka, D.A.

    1990-09-01

    This report investigates the effects of borehole deviation on the useability of lined boreholes for the disposal of high-level nuclear waste at the proposed Yucca Mountain Repository in Nevada. Items that lead to constraints on borehole deviation include excessive stresses that could cause liner failure and possible binding of a waste container inside the liner during waste emplacement and retrieval operations. Liner stress models are developed for two general borehole configurations, one for boreholes drilled with a steerable bit and one for boreholes drilled with a non-steerable bit. Procedures are developed for calculating liner stresses that arise both during insertion of the liner into a borehole and during the thermal expansion process that follows waste emplacement. The effects of borehole curvature on the ability of the waste container to pass freely inside the liner without binding are also examined. Based on the results, specifications on borehole deviation allowances are developed for specific vertical and horizontal borehole configurations of current interest. 11 refs., 22 figs., 4 tabs.

  5. High-Resolution Active Source Seismic Investigation of the Alpine Fault at Gaunt Creek, central Westland, New Zealand

    NASA Astrophysics Data System (ADS)

    Eccles, J. D.; Sutherland, R.; Townend, J.; Toy, V. G.; Malin, P. E.

    2012-12-01

    Two shallow (101 m and 151 m) boreholes were drilled in early 2011 through the Alpine Fault at Gaunt Creek in the first phase of the Deep Fault Drilling Project (DFDP). Both holes are located close to a well-known fault outcrop where hanging wall mylonites and cataclasites, exhumed from c. 30 km depth, are thrust over Quaternary gravels. The boreholes DFDP-1A and 1B terminated in footwall gravel and Australian Plate continental footwall material respectively and were both cored and logged using wireline tools. Following drilling a borehole observatory was installed including two borehole seismometers within 20 m of the principal slip zone (PSZ). In April 2012, a multi-purpose explosive seismic survey was undertaken to bridge the gap between the detailed observations of fault zone properties made in the boreholes and the larger-scale seismic response. A string of eight borehole geophones were installed in the DFDP-1A borehole and 126 additional channels deployed on the surface. This experiment was the first field-trial of REF TEK 160 'GOES' systems for seismic; each of the eighteen 'GOES' consisted of a standalone unit with GPS timing, an internal three-component 2 Hz sensor and capacity to record six external channels (for twelve units this was cabled 15 Hz vertical geophones). These units enabled the profile to straddle physiographic obstacles such as Gaunt Creek and facilitated straightforward correlation of shot timing. Moreover, standalone units proved easy to transport upriver into rough terrain to extend the profile azimuth. Forty-one explosive shots, 0.15-1.2 kg in size, were detonated along a 2D profile perpendicular to the Alpine Fault's strike for seismic reflection imaging, vertical seismic profiling and tomography. The preliminary findings based on this data set are presented here.

  6. Laboratory seismic anisotropy in mylonites

    NASA Astrophysics Data System (ADS)

    Almqvist, B. S. G.; Herwegh, M.; Hirt, A. M.; Ebert, A.; Linckens, J.; Precigout, J.; Leiss, B.; Walter, J. M.; Burg, J.-P.

    2012-04-01

    Tectonic strain is often accommodated along narrow zones in the Earth's crust and upper mantle, and these high-strain zones represent an important mechanical and rheological component in geodynamics. In outcrop we observe the intense deformation along and across these structures. But at depth, in the mid and lower crust, and in the mantle, we are dependent on geophysical methods for analysis of structures, such as seismic reflection and refraction surveys. A natural progression has therefore been to understand the remote geophysical signal in terms of laboratory ultrasonic pulse transmission measurements on rock cores, collected in the field or from borehole drill core. Here we first present a brief review that consider key studies in the area of laboratory seismic measurements in strongly anisotropic rocks, ranging from calcite mylonites to metapelites. In the second part we focus attention on ongoing research projects targetting laboratory seismic anisotropy in mylonitized rocks, and associated challenges. Measurements of compressional (P) and shear (S) waves were made at high confining pressure (up to 5 kbar). Mineral texture analysis was performed with electron backscatter diffraction (EBSD) and neutron texture diffraction to determine crystallographic preferred orientation (CPO). So-called "rock-recipe" models are used to calculate seismic anisotropy, which consider the elastic properties of minerals that constitutes the rock, and their respective CPO. However, the outcome of such models do not always simply correspond to the measured seismic anisotropy. Differences are attributed to several factors, such as grain boundaries, mineral microstructures including shape-preferred orientation (SPO), micro-cracks and pores, and grain-scale stress-strain conditions. We highlight the combination of these factors in case studies on calcite and peridotite mylonites. In calcite mylonites, sampled in the Morcles nappe shear zone, the measured seismic anisotropy generally

  7. Seismic methods for resource exploration in enhanced geothermal systems

    SciTech Connect

    Gritto, Roland; Majer, Ernest L.

    2002-06-12

    A finite-difference modeling study of seismic wave propagation was conducted to determine how to best investigate subsurface faults and fracture zones in geothermal areas. The numerical model was created based on results from a previous seismic reflection experiment. A suite of fault models was investigated including blind faults and faults with surface expressions. The seismic data suggest that blind faults can be detected by a sudden attenuation of seismic wave amplitudes, as long the fault is located below the receiver array. Additionally, a conversion from P- to S-waves indicates the reflection and refraction of the P-waves while propagating across the fault. The drop in amplitudes and the excitation of S-waves can be used to estimate the location of the fault at depth. The accuracy of the numerical modeling depends on the availability of a priori in situ information (velocity and density) from borehole experiments in the geothermal area.

  8. A pilot, first-in-human, pharmacokinetic study of 9cUAB30 in healthy volunteers.

    PubMed

    Kolesar, Jill M; Hoel, Ryan; Pomplun, Marcia; Havighurst, Tom; Stublaski, Jeanne; Wollmer, Barbara; Krontiras, Helen; Brouillette, Wayne; Muccio, Donald; Kim, Kyungmann; Grubbs, Clinton J; Bailey, Howard E

    2010-12-01

    9cUAB30 is a synthetic analog of 9-cis-retinoic acid with chemopreventive activity in cell lines and in animal models. The purpose of this first-in-human evaluation of 9cUAB30 was to evaluate the single-dose pharmacokinetic profile and toxicity of the compound in healthy volunteers at 3 dose levels. This study enrolled 14 patients to receive a single dose of 5, 10, or 20 mg of 9cUAB30. Plasma and urine samples were collected to assess 9cUAB30 concentrations by a validated LC/MS MS method. 9cUAB30 was well tolerated, with 1 patient experiencing grade 2 toxicity and no grade 3 or 4 toxicities reported. T(max) occurred approximately 3 hours after dose administration with the plasma half-life ranging from 2.79 to 7.21 hours. AUC increased linearly across the examined dose range of 5 to 20 mg; C(max) was proportional to the log of the dose. The plasma clearance ranged from 25 to 39 L/h compared to the renal clearance which ranged from 0.018 to 0.103 L/h. 9cUAB30 has a favorable toxicity and pharmacokinetic profile, with oral availability and primarily hepatic metabolism. Further dose ranging studies with once a day dosing are underway. PMID:21149332

  9. Feasibility of a borehole VHF radar technique for fracture mapping

    SciTech Connect

    Chang, H.T.

    1984-01-01

    Experiments were conducted to establish the feasibility of a downhole high-frequency electromagnetic technique for location of fractures in the vicinity of boreholes. An existing flame-cut slot in granite was filled with salt water to simulate a brine-filled fracture. A transmitter consisting of a phased dual-dipole array arranged to provide a directional signal toward the fracture was installed in a borehole opposite the fracture. A receiver operated at 30 to 300 MHz was also located in the same borehole. The radar returns from the simulated fracture were detectable in boreholes located at distances of up to 12 meters from the fracture. These results indicate for the first time the feasibility of a downhole VHF radar for use in a single borehole for detection of fractures located away from the borehole.

  10. Obtaining anisotropic velocity data for proper depth seismic imaging

    SciTech Connect

    Egerev, Sergey; Yushin, Victor; Ovchinnikov, Oleg; Dubinsky, Vladimir; Patterson, Doug

    2012-05-24

    The paper deals with the problem of obtaining anisotropic velocity data due to continuous acoustic impedance-based measurements while scanning in the axial direction along the walls of the borehole. Diagrams of full conductivity of the piezoceramic transducer were used to derive anisotropy parameters of the rock sample. The measurements are aimed to support accurate depth imaging of seismic data. Understanding these common anisotropy effects is important when interpreting data where it is present.

  11. Seismic measurements of the internal properties of fault zones

    USGS Publications Warehouse

    Mooney, W.D.; Ginzburg, A.

    1986-01-01

    The internal properties within and adjacent to fault zones are reviewed, principally on the basis of laboratory, borehole, and seismic refraction and reflection data. The deformation of rocks by faulting ranges from intragrain microcracking to severe alteration. Saturated microcracked and mildly fractured rocks do not exhibit a significant reduction in velocity, but, from borehole measurements, densely fractured rocks do show significantly reduced velocities, the amount of reduction generally proportional to the fracture density. Highly fractured rock and thick fault gouge along the creeping portion of the San Andreas fault are evidenced by a pronounced seismic low-velocity zone (LVZ), which is either very thin or absent along locked portions of the fault. Thus there is a correlation between fault slip behavior and seismic velocity structure within the fault zone; high pore pressure within the pronounced LVZ may be conductive to fault creep. Deep seismic reflection data indicate that crustal faults sometimes extend through the entire crust. Models of these data and geologic evidence are consistent with a composition of deep faults consisting of highly foliated, seismically anisotropic mylonites. ?? 1986 Birkha??user Verlag, Basel.

  12. Canister, Sealing Method And Composition For Sealing A Borehole

    DOEpatents

    Brown, Donald W.; Wagh, Arun S.

    2005-06-28

    Method and composition for sealing a borehole. A chemically bonded phosphate ceramic sealant for sealing, stabilizing, or plugging boreholes is prepared by combining an oxide or hydroxide and a phosphate with water to form slurry. The slurry is introduced into the borehole where the seal, stabilization or plug is desired, and then allowed to set up to form the high strength, minimally porous sealant, which binds strongly to itself and to underground formations, steel and ceramics.

  13. Borehole sounding device with sealed depth and water level sensors

    DOEpatents

    Skalski, Joseph C.; Henke, Michael D.

    2005-08-02

    A borehole device having proximal and distal ends comprises an enclosure at the proximal end for accepting an aircraft cable containing a plurality of insulated conductors from a remote position. A water sensing enclosure is sealingly attached to the enclosure and contains means for detecting water, and sending a signal on the cable to the remote position indicating water has been detected. A bottom sensing enclosure is sealingly attached to the water sensing enclosure for determining when the borehole device encounters borehole bottom and sends a signal on the cable to the remote position indicating that borehole bottom has been encountered.

  14. Method and apparatus for multipole acoustic wave borehole logging

    SciTech Connect

    Winbow, G.A.; Baker, L.J.

    1987-03-10

    A method is described for determining the radial thickness of an invaded zone of an earth formation surrounding a borehole where a virgin earth formation surrounds the borehole and is separated from the borehole by the invaded zone. The method comprises: (a) transmitting a 2/sup n/-pole P-wave from a point in the borehole into the earth formation surrounding the borehole, n being an integer greater than zero; (b) measuring the P-wave velocity of a zone of the earth formation located at a first radial distance from the borehole by detecting the arrival of the 2/sup n/-pole P-wave at a first location and at a second location in the borehole spaced longitudinally along the borehole from the point of transmission and from each other. The second location is spaced farther from the point of transmission than is the first location, the time arrival between the detections of the 2/sup n/-pole P-wave arrival is measured at the first location and the second location; and (c) repeating the steps (a) and (b) with successively increased longitudinal spacings between the point of transmission and the first location and between the point of transmission and the second location to measure the P-wave velocities of zones of the earth formation located successively radially farther away from the borehole.

  15. The Belgian National Seismic Monitoring Network

    NASA Astrophysics Data System (ADS)

    van Camp, M.; Lecocq, T.; Vanneste, K.; Rapagnani, G.; Martin, H.; Devos, F.; Bukasa, B.; Hendrickx, M.; Collin, F.; Camelbeeck, T.

    2009-04-01

    The Royal Observatory of Belgium (ROB) is responsible for the seismic activity monitoring in Belgium. For this purpose the ROB operates a network of 24 seismic stations. In addition 18 accelerographs have been installed since 2001 in the most seismic active zones. Seismometers allow detecting and localizing any earthquake of magnitude larger than 1.0 in Belgium and surrounding regions. The location of the accelerometric stations is chosen in function of the type of sub-soil and in some places in function of the nearness of important infrastructures as well. Seven seismic stations are now sending their data in real time to the Observatory (in Uccle) using ADSL lines. This will be increased in a near future. Among them 3 broad-band stations are also sending data to the ORFEUS and IRIS data centres. IRIS also receives data from the Belgian superconducting gravimeter. In addition, in 2010, a broadband borehole seismometer is to be installed at the Princess Elizabeth Antarctic station (71°57' S - 23°20' E), on the bedrock, 180 km away from the coastline. Recently a low-cost seismic alert system was developed for the Belgian territory, based on the connection flow on the ROB website (http://www.seismology.be), in parallel to an automatic control of the "Did you feel it ?" macroseismic inquiries, implemented in 2002. The alert is then confirmed at the latest by the seismic signals from five seismic stations that appear on the website with a delay of more or less ten minutes. It was successfully tested during the earthquake sequence that has been observed in the region at the southwest of Brussels since July 2008.

  16. Fiber optic communication in borehole applications

    SciTech Connect

    Franco, R.J.; Morgan, J.R.

    1997-04-01

    The Telemetry Technology Development Department have, in support of the Advanced Geophysical Technology Department and the Oil Recovery Technology Partnership, developed a fiber optic communication capability for use in borehole applications. This environment requires the use of packaging and component technologies to operate at high temperature (up to 175{degrees}C) and survive rugged handling. Fiber optic wireline technology has been developed by The Rochester Corporation under contract to Sandia National Labs and produced a very rugged, versatile wireline cable. This development has utilized commercial fiber optic component technologies and demonstrated their utility in extreme operating environments.

  17. Mountain Home Well - Borehole Geophysics Database

    DOE Data Explorer

    Shervais, John

    2012-11-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  18. Testing and optimization of the seismic networks of Campi Flegrei (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Tramelli, A.; Troise, C.; De Natale, G.; Orazi, M.

    2013-11-01

    The definition of the network resolution power is an important parameter to be considered when evaluating most of the seismic analysis, being connected to the location quality and earthquakes detectability. We estimated the resolving power of the seismic network of Campi Flegrei. The results show that the actual moment magnitude threshold is 0.5 in the Solfatara area, center of the caldera, but increases sharply going away from the center. We also estimated the theoretical resolution power of the actual seismic network of Campi Flegrei plus 5 hypothetical borehole stations, moving the borehole stations into 3 different wells. As expected, big improvements in the location parameters come from the use of borehole stations. The results show that a 3000 m deep borehole located close to the actual hypocentral area would allow to detect and locate the very low magnitude earthquakes, probably connected to the hydrothermal system characterizing the Campi Flegrei caldera. Finally, we performed an optimization analysis of the permanent seismic network of Campi Flegrei finding the best 3 station positions that would increase the resolution power of the network to locate earthquakes in the South and offshore part of the caldera. We evidenced that the actual network has an improvable resolution in the South and West part of the caldera.

  19. Seismic imaging of the oil and geothermal reservoirs using the induced seismicity

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Toksoz, M. N.; Fehler, M.

    2011-12-01

    It is known that microseismicity can be induced in the oil field due to the stress change caused by oil/gas production. Similarly, injection of high-pressure fluids into the reservoir can also induce microseismicity. Due to the proximity of induced seismicity to the reservoir, in some cases, it may be advantageous to use induced seismicity to image the reservoir. The seismic stations for monitoring the induced seismicity are usually sparse. Conventional travel time tomography using travel times from seismic events to stations may not be applicable because of poor ray coverage outside the source region. In comparison, the double-difference tomography method of Zhang and Thurber (2003) that uses the differential travel times is able to image the reservoir by avoiding determining the velocity structure outside the source region. In this study, we present two case studies of applying double-difference tomography to induced seismicity monitored by borehole stations. In the case of an oil field in Oman, five closely spaced monitoring wells are used to monitor microseismicity induced by gas production. In each well, multiple seismic sensors are positioned from depths 750 m - 1250 m and about 2000 events are selected for tomography. Reservoir imaging shows encouraging results in identifying structures and velocity changes within reservoir layers. Clear velocity contrast was seen across the major northeast-southwest faults. Low Vp, low Vs and low Vp/Vs anomalies are mainly associated with the gas production layer. For the case of the Soultz Enhanced Geothermal System at Soultz-sous-Forets, France, we used travel time data from the September and October 1993 hydraulic stimulations, where only four borehole stations are available. The results showed that the S-wave velocity structure correlated well with seismicity and showed low velocity zones at depths between 2900 and 3300 meters, where fluid was believed to have infiltrated the reservoir. We also attempt time

  20. Proteasome inhibitors attenuated cholesterol-induced cardiac hypertrophy in H9c2 cells.

    PubMed

    Lee, Hyunjung; Park, Jinyoung; Kim, Eunice EunKyeong; Yoo, Young Sook; Song, Eun Joo

    2016-05-01

    The Ubiquitin proteasome system (UPS) plays roles in protein degradation, cell cycle control, and growth and inflammatory cell signaling. Dysfunction of UPS in cardiac diseases has been seen in many studies. Cholesterol acts as an inducer of cardiac hypertrophy. In this study, the effect of proteasome inhibitors on the cholesterol-induced hypertrophic growth in H9c2 cells is examined in order to observe whether UPS is involved in cardiac hypertrophy. The treatment of proteasome inhibitors MG132 and Bortezomib markedly reduced cellular surface area and mRNA expression of β-MHC in cholesterol-induced cardiac hypertrophy. In addition, activated AKT and ERK were significantly attenuated by MG132 and Bortezomib in cholesterol- induced cardiac hypertrophy. We demonstrated that cholesterol- induced cardiac hypertrophy was suppressed by proteasome inhibitors. Thus, regulatory mechanism of cholesterol- induced cardiac hypertrophy by proteasome inhibitors may provide a new therapeutic strategy to prevent the progression of heart failure. [BMB Reports 2016; 49(5): 270-275]. PMID:26592933

  1. Parthenolide-Induced Cytotoxicity in H9c2 Cardiomyoblasts Involves Oxidative Stress

    PubMed Central

    Tsai, Tien-Yao; Chan, Paul; Gong, Chi-Li; Wong, Kar-Lok; Su, Tzu-Hui; Shen, Pei-Chen; Leung, Yuk-Man; Liu, Zhong-Min

    2015-01-01

    Background Cardiac cellular injury as a consequence of ischemia and reperfusion involves nuclear factor-κB (NF-κ B), amongst other factors, and NF-κ B inhibitors could substantially reduce myocardial infarct size. Parthenolide, a sesquiterpene lactone compound which could inhibit NF-κ B, has been shown to ameliorate myocardial reperfusion injury but may also produce toxic effects in cardiomyocytes at high concentrations. The aim of this study was to examine the cytotoxic effects of this drug on H9c2 cardiomyoblasts, which are precursor cells of cardiomyocytes. Methods Cell viability and apoptosis were examined by MTT and TUNEL assay, respectively, and protein expression was analyzed by western blot. Reactive oxygen species (ROS) production was measured using DCFH-DA as dye. Cytosolic Ca2+ concentration and mitochondrial membrane potential were measured microfluorimetrically using, respectively, fura 2 and rhodamine 123 as dyes. Results Parthenolide caused apoptosis at 30 μ M, as judged by TUNEL assay and Bax and cytochrome c translocation. It also caused collapse of mitochondrial membrane potential and endoplasmic reticulum stress. Parthenolide triggered ROS formation, and vitamin C (antioxidant) partially alleviated parthenolide-induced cell death. Conclusions The results suggested that parthenolide at high concentrations caused cytotoxicity in cardiomyoblasts in part by inducing oxidative stress, and demonstrated the imperative for cautious and appropriate use of this agent in cardioprotection. PMID:27122844

  2. Repeat temperature measurements in borehole GC-1, northwestern Utah - Towards isolating a climate-change signal in borehole temperature profiles

    SciTech Connect

    Chapman, D.S.; Harris, R.N. )

    1993-09-01

    Temperature-depth profiles in borehole GC-1, northwestern Utah, were measured in 1978, 1990, and 1992. Borehole temperatures below 80 m depth are highly reproducible over the 14 year period indicating long term thermal stability. A slowly changing temperature field above 80 m depth has similiar characteristics to synthetic temperature profiles computed from a 100 year record of air temperature changes at Park Valley weather station 50 km northeast of the borehole site. 6 refs.

  3. Quantifying the similarity of seismic polarizations

    NASA Astrophysics Data System (ADS)

    Jones, Joshua P.; Eaton, David W.; Caffagni, Enrico

    2016-02-01

    Assessing the similarities of seismic attributes can help identify tremor, low signal-to-noise (S/N) signals and converted or reflected phases, in addition to diagnosing site noise and sensor misalignment in arrays. Polarization analysis is a widely accepted method for studying the orientation and directional characteristics of seismic phases via computed attributes, but similarity is ordinarily discussed using qualitative comparisons with reference values or known seismic sources. Here we introduce a technique for quantitative polarization similarity that uses weighted histograms computed in short, overlapping time windows, drawing on methods adapted from the image processing and computer vision literature. Our method accounts for ambiguity in azimuth and incidence angle and variations in S/N ratio. Measuring polarization similarity allows easy identification of site noise and sensor misalignment and can help identify coherent noise and emergent or low S/N phase arrivals. Dissimilar azimuths during phase arrivals indicate misaligned horizontal components, dissimilar incidence angles during phase arrivals indicate misaligned vertical components and dissimilar linear polarization may indicate a secondary noise source. Using records of the Mw = 8.3 Sea of Okhotsk earthquake, from Canadian National Seismic Network broad-band sensors in British Columbia and Yukon Territory, Canada, and a vertical borehole array at Hoadley gas field, central Alberta, Canada, we demonstrate that our method is robust to station spacing. Discrete wavelet analysis extends polarization similarity to the time-frequency domain in a straightforward way. Time-frequency polarization similarities of borehole data suggest that a coherent noise source may have persisted above 8 Hz several months after peak resource extraction from a `flowback' type hydraulic fracture.

  4. Simulation of wave propagation in boreholes and radial profiling of formation elastic parameters

    NASA Astrophysics Data System (ADS)

    Chi, Shihong

    Modern acoustic logging tools measure in-situ elastic wave velocities of rock formations. These velocities provide ground truth for time-depth conversions in seismic exploration. They are also widely used to quantify the mechanical strength of formations for applications such as wellbore stability analysis and sand production prevention. Despite continued improvements in acoustic logging technology and interpretation methods that take advantage of full waveform data, acoustic logs processed with current industry standard methods often remain influenced by formation damage and mud-filtrate invasion. This dissertation develops an efficient and accurate algorithm for the numerical simulation of wave propagation in fluid-filled boreholes in the presence of complex, near-wellbore damaged zones. The algorithm is based on the generalized reflection and transmission matrices method. Assessment of mud-filtrate invasion effects on borehole acoustic measurements is performed through simulation of time-lapse logging in the presence of complex radial invasion zones. The validity of log corrections performed with the Biot-Gassmann fluid substitution model is assessed by comparing the velocities estimated from array waveform data simulated for homogeneous and radially heterogeneous formations that sustain mud-filtrate invasion. The proposed inversion algorithm uses array waveform data to estimate radial profiles of formation elastic parameters. These elastic parameters can be used to construct more realistic near-wellbore petrophysical models for applications in seismic exploration, geo-mechanics, and production. Frequency-domain, normalized amplitude and phase information contained in array waveform data are input to the nonlinear Gauss-Newton inversion algorithm. Validation of both numerical simulation and inversion is performed against previously published results based on the Thomson-Haskell method and travel time tomography, respectively. This exercise indicates that the

  5. Technical Basis for Certification of Seismic Design Criteria for the Waste Treatment Plant, Hanford, Washington

    SciTech Connect

    Brouns, T.M.; Rohay, A.C.; Youngs, R.R.; Costantino, C.J.; Miller, L.F.

    2008-07-01

    In August 2007, Secretary of Energy Samuel W. Bodman approved the final seismic and ground motion criteria for the Waste Treatment and Immobilization Plant (WTP) at the Department of Energy's (DOE) Hanford Site. Construction of the WTP began in 2002 based on seismic design criteria established in 1999 and a probabilistic seismic hazard analysis completed in 1996. The design criteria were reevaluated in 2005 to address questions from the Defense Nuclear Facilities Safety Board (DNFSB), resulting in an increase by up to 40% in the seismic design basis. DOE announced in 2006 the suspension of construction on the pretreatment and high-level waste vitrification facilities within the WTP to validate the design with more stringent seismic criteria. In 2007, the U.S. Congress mandated that the Secretary of Energy certify the final seismic and ground motion criteria prior to expenditure of funds on construction of these two facilities. With the Secretary's approval of the final seismic criteria in the summer of 2007, DOE authorized restart of construction of the pretreatment and high-level waste vitrification facilities. The technical basis for the certification of seismic design criteria resulted from a two-year Seismic Boreholes Project that planned, collected, and analyzed geological data from four new boreholes drilled to depths of approximately 1400 feet below ground surface on the WTP site. A key uncertainty identified in the 2005 analyses was the velocity contrasts between the basalt flows and sedimentary interbeds below the WTP. The absence of directly-measured seismic shear wave velocities in the sedimentary interbeds resulted in the use of a wider and more conservative range of velocities in the 2005 analyses. The Seismic Boreholes Project was designed to directly measure the velocities and velocity contrasts in the basalts and sediments below the WTP, reanalyze the ground motion response, and assess the level of conservatism in the 2005 seismic design criteria

  6. Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt

    SciTech Connect

    Parra, J.; Collier, H.; Angstman, B.

    1997-08-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

  7. Downhole Measurements of Shear- and Compression-Wave Velocities in Boreholes C4993, C4996, C4997 and C4998 at the Waste Treatment Plant DOE Hanford Site.

    SciTech Connect

    Redpath, Bruce B.

    2007-04-27

    This report describes the procedures and the results of a series of downhole measurements of shear- and compression-wave velocities performed as part of the Seismic Boreholes Project at the site of the Waste Treatment Plant (WTP). The measurements were made in several stages from October 2006 through early February 2007. Although some fieldwork was carried out in conjunction with the University of Texas at Austin (UT), all data acquired by UT personnel are reported separately by that organization.

  8. The Role of Active Fractures on Borehole Breakout Development

    NASA Astrophysics Data System (ADS)

    Sahara, D.; Kohl, T.; Schoenball, M.; Müller, B.

    2013-12-01

    The properties of georeservoirs are strongly related to the stress field and their interpretation is a major target in geotechnical management. Borehole breakouts are direct indicators of the stress field as they develop due to the concentration of the highest compressional stress toward the minimum horizontal stress direction. However, the interaction with fractures might create local perturbations. Such weakened zones are often observed by localized anomalies of the borehole breakout orientation. We examined high-quality acoustic borehole televiewer (UBI) logs run in the entire granite sections at the deep well GPK4 at Soultz-sous-Forêts, France. The borehole is moderately inclined (15° - 35°) in its middle section. Detailed analysis of 1221 borehole elongation pairs in the vicinity of 1871 natural fractures observed in GPK4 well is used to infer the role of fractures on the borehole breakouts shape and orientation. Patterns of borehole breakout orientation in the vicinity of active fractures suggest that the wavelength of the borehole breakout orientation anomalies in this granite rock depend on the scale of the fracture while the rotation amplitude and direction is strongly influenced by the fracture orientation. In the upper and middle part of the well even a linear trend between fracture and breakout orientations could be established. In addition to the rotation, breakouts typically are found to be asymmetrically formed in zones of high fracture density. We find that major faults tend to create a systematic rotation of borehole breakout orientation with long spatial wavelength while abrupt changes are often observed around small fractures. The finding suggest that the borehole breakout heterogeneities are not merely governed by the principal stress heterogeneities, but that the effect of mechanical heterogeneities like elastic moduli changes, rock strength anisotropy and fracturing must be taken into account. Thus, one has to be careful to infer the

  9. Hydrogeologic framework and borehole yields in Ghana

    NASA Astrophysics Data System (ADS)

    Dapaah-Siakwan, S.; Gyau-Boakye, P.

    2000-08-01

    In Ghana, 68% of the population live in rural communities, which are scattered and remote. Groundwater is the most feasible source of potable water supply for most of these dispersed and remote settlements. To meet the present and future challenges of population expansion vis-à-vis the observed declining rainfall in most parts of Africa including Ghana, it is necessary to assess, efficiently manage, and utilize the groundwater resources. The objective of this paper is therefore to describe the hydrogeologic framework and analyze borehole yields as part of the groundwater-resources assessment of Ghana. The hydrogeologic units are broadly categorized as: (1) the Basement Complex (crystalline rocks), which underlies about 54% of the country; (2) the Voltaian System, which underlies about 45%; and (3) the Cenozoic, Mesozoic, and Paleozoic sedimentary strata (Coastal Provinces), which underlie the remaining 1% of the country. The Basement Complex and the Coastal Provinces have higher groundwater potential than the Voltaian System. This is particularly significant, because the Basement Complex and the Coastal Provinces underlie the most densely populated areas of the country and can hence be tapped for human use. The average borehole yields of the Basement Complex, the Coastal Provinces and the Voltaian System range from 2.7-12.7, 3.9-15.6, and 6.2-8.5 m3/h, respectively.

  10. Second ILAW Site Borehole Characterization Plan

    SciTech Connect

    SP Reidel

    2000-08-10

    The US Department of Energy's Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford since 1944. Approximately 209,000 m{sup 3} (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low-activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized. The low-activity vitrified waste will be disposed of in the 200 East Area of the Hanford Site. This report is a plan to drill and characterize the second borehole for the Performance Assessment. The first characterization borehole was drilled in 1998. The plan describes data collection activities for determining physical and chemical properties of the vadose zone and saturated zone on the northeast side of the proposed disposal site. These data will then be used in the 2005 Performance Assessment.

  11. The 1996-2009 borehole dilatometer installations, operation, and maintenance at sites in Long Valley Caldera, CA

    USGS Publications Warehouse

    Myren, Glenn; Johnston, Malcolm; Mueller, Robert

    2011-01-01

    High seismicity levels with accelerating uplift (under the resurgent dome) in Long Valley caldera in the eastern Sierra Nevada from 1989 to 1997, triggered upgrades to dilational strainmeters and other instrumentation installed in the early 1980's following a series of magnitude 6 earthquakes. This included two additional high-resolution borehole strainmeters and replacement of the failed strainmeter at Devil's Postpile. The purpose of the borehole-monitoring network is to monitor crustal deformation and other geophysical parameters associated with volcanic intrusions and earthquakes in the Long Valley Caldera. Additional instrumentation was added at these sites to improve the capability of providing continuous monitoring of the magma source under the resurgent dome. Sites were selected in regions of hard crystalline rock, where the expected signals from magmatic activity were calculated to be a maximum and the probability of an earthquake of magnitude 4 or greater is large. For the most part, the dilatometers were installed near existing arrays of surface tiltmeters, seismometers, level line, and GPS arrays. At each site, attempts are made to separate tectonic and volcanic signals from known noise sources in each instrument type. Each of these sites was planned to be a multi-parameter monitoring site, which included measurements of 3-component seismic velocity and acceleration, borehole strain, tilt, pore pressure and magnetic field. Using seismicity, geophysical knowledge, geologic and topographic maps, and geologists recommendations, lists of preliminary sites were chosen. Additional requirements were access, and telemetry constraints. When the final site choice was made, a permit was obtained from the U.S. Forest Service. Following this selection process, two new borehole sites were installed on the north and south side of the Long Valley Caldera in June of 1999. One site was located near Big Spring Campground to the east of Crestview. The second site was

  12. The Plate Boundary Observatory Borehole Strainmeter Program: Overview of Data Analysis and Products

    NASA Astrophysics Data System (ADS)

    Hodgkinson, K.; Anderson, G.; Hasting, M.; Hoyt, B.; Jackson, M.; Lee, E.; Matykiewicz, J.; Mencin, D.; Persson, E.; Smith, S.; Torrez, D.; Wright, J.

    2006-12-01

    The PBO borehole strainmeter network is now the largest in the US with 19 strainmeters installed along the Western US Plate Boundary: 14 in the Pacific North West and 5 in Anza, Southern California. With five drilling crews operating though October 2006 the network should grow to 28 strainmeters by December 2006. The areas include Parkfield and Mt St. Helens, PBO's first strainmeter installation in a volcanic region. PBO strainmeter sites are multi-instrumented. Seismic, pore pressure, atmospheric pressure, rainfall and temperature data are measured at almost all sites. Tiltmeters will also be installed at some sites. The strainmeters record at 20-sps, 1-sps and 10-minute interval and are downloaded hourly. The 1-sps data are sent to the NCEDC and IRIS DMC within a few minutes of being retrieved from the strainmeter. The data are archived in SEED format and can be viewed and analyzed with any SEED handling software. PBO's Borehole Strainmeter Analysis Center (BSMAC) in Socorro, NM, produces processed strain data every 10 to 14 days. The data are stored in XML format giving the user the option to use PBO edits or to work with unedited data. The XML file contains time series corrections for the atmospheric pressure, the Earth tides and borehole effects. Every 3 months the data are reviewed and the borehole trends and tidal signal are re- estimated to form the best possible processed data set. PBO reviewed the quality of the data collected by the first 8 strainmeters in a workshop in January 2006. The group discussed coring, examined the borehole trends, tidal signal, and a PSD analysis of data from each strainmeter. A second workshop, focusing on data analysis and in-situ calibration, will take place in October 2006. The UNAVCO strainmeter web page (http://pboweb.unavco.org) provides links to the raw and processed data and is a source for information on data formats, links to software and instrument documentation. An XML log file for each strainmeter provides a

  13. Development of a new borehole acoustic televiewer for geothermal applications

    SciTech Connect

    Moore, T.K.; Hinz, K.; Archuleta, J.

    1985-01-01

    Currently Westfalische Berggewerkschaftskasse (WBK) of West Germany and the Los Alamos National Laboratory of the United States are jointly developing a borehole acoustic televiewer for use in geothermal wellbores. The tool can be described as five subsystems working together to produce a borehole image. Each of the subsystems will be described. 2 refs., 2 figs.

  14. Geomechanical Considerations for the Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Park, B. Y.

    2015-12-01

    Deep borehole disposal of high-level radioactive waste is under consideration as a potential alternative to shallower mined repositories. The disposal concept consists of drilling a borehole into crystalline basement rocks to a depth of 5 km, emplacement of canisters containing solid waste in the lower 2 km, and plugging and sealing the upper 3 km of the borehole. Crystalline rocks such as granites are particularly attractive for borehole emplacement because of their low permeability and porosity at depth, and high mechanical strength to resist borehole deformation. In addition, high overburden pressures contribute to sealing of some of the fractures that provide transport pathways. We present geomechanical considerations during construction (e.g., borehole breakouts, disturbed rock zone development, and creep closure), relevant to both the smaller-diameter characterization borehole (8.5") and the larger-diameter field test borehole (17"). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Determination of Cry9C protein in corn-based foods by enzyme-linked immunosorbent assay: interlaboratory study.

    PubMed

    Trucksess, N W

    2001-01-01

    The performance of a commercially available enzyme-linked immunosorbent assay kit (Enviro-Logix) was assessed for the determination of Cry9C protein, which is produced by the genetically modified corn StarLink, in 8 types of corn-based foods (starch, refined oil, soft tortillas, tortilla chips, corn flakes, corn puffs, corn muffins, and corn bread) in an interlaboratory study involving 7 laboratories in the United States. The assay kit is a double antibody sandwich and is based on the specific interaction between antibody and antigen. The Cry9C protein analyte is sandwiched between 2 antibodies, one to capture the analyte and the other is conjugated to the enzyme, horseradish peroxidase. The enzyme uses tetramethylbenzidine/peroxide for color development. A strong acid stopping reagent is then used to change the color from blue to a stable yellow. The intensity of the color is proportional to the concentration of the Cry9C protein. In this study blind duplicates of control samples (blank material prepared from non- StarLink corn), spiked samples (blank material with the addition of Cry9C protein), and samples containing incurred analyte (products prepared with StarLink corn) were analyzed. Cry9C protein from 2 different sources was used to spike the food products. Cry9C protein produced and purified from a bacterial host was used to prepare spiked test samples at 2.72 and 6.8 ng/g. Cry9C protein from StarLink corn flour was used to prepare spiked samples at 1.97 ng/g. Average recoveries for samples spiked with corn flour Cry9C protein at 1.97 ng/g ranged from 73 to 122%, within-laboratory relative standard deviations (RSDr) ranged from 6 to 22%, and between-laboratories relative standard deviations (RSDR) ranged from 16 to 56%. Average recoveries for samples spiked with bacterial Cry9C protein at 2.72 and 6.8 ng/g ranged from 27 to 96% and from 32 to 113%, respectively; RSDr values ranged from 10 to 35% and from 7 to 38%, respectively; and the RSDR ranged from 28

  16. Characterizing fractures and shear zones in crystalline rock using seismic and GPR methods

    NASA Astrophysics Data System (ADS)

    Doetsch, Joseph; Jordi, Claudio; Laaksonlaita, Niko; Gischig, Valentin; Schmelzbach, Cedric; Maurer, Hansruedi

    2016-04-01

    Understanding the natural or artificially created hydraulic conductivity of a rock mass is critical for the successful exploitation of enhanced geothermal systems (EGS). The hydraulic response of fractured crystalline rock is largely governed by the spatial organization of permeable fractures. Defining the 3D geometry of these fractures and their connectivity is extremely challenging, because fractures can only be observed directly at their intersections with tunnels or boreholes. Borehole-based and tunnel-based ground-penetrating radar (GPR) and seismic measurements have the potential to image fractures and other heterogeneities between and around boreholes and tunnels, and to monitor subtle time-lapse changes in great detail. We present the analysis of data acquired in the Grimsel rock laboratory as part of the In-situ Stimulation and Circulation (ISC) experiment, in which a series of stimulation experiments have been and will be performed. The experiments in the granitic rock range from hydraulic fracturing to controlled fault-slip experiments. The aim is to obtain a better understanding of coupled seismo-hydro-mechanical processes associated with high-pressure fluid injections in crystalline rocks and their impact on permeability creation and enhancement. GPR and seismic data have been recorded to improve the geological model and characterize permeable fractures and shear zones. The acquired and processed data include reflection GPR profiles measured from tunnel walls, single-borehole GPR images, and borehole-to-borehole and tunnel-to-tunnel seismic and GPR tomograms. The reflection GPR data reveal the geometry of shear zones up to a distance of 30 m from the tunnels and boreholes, but the interpretation is complicated by the geometrical ambiguity around tunnels and boreholes and by spurious reflections from man-made structures such as boreholes. The GPR and seismic traveltime tomography results reveal brittle fractured rock between two ductile shear zones. The

  17. First quarter chemical borehole studies in the drift scale test

    SciTech Connect

    DeLoach, L., LLNL

    1998-05-19

    The chemistry boreholes of the Drift Scale Test (DST) have been designed to gather geochemical information and assess the impact of thermal perturbations on gas and liquid phases present in pore spaces and fractures within the rock. There are a total of ten boreholes dedicated to these chemical studies. Two arrays of five boreholes each were drilled from the access/observation drift (AOD) in planes which run normal to the heater drift and which are located approximately 15 and 45% of the way along the length of the drift as measured from the bulkhead. The boreholes each have a length of about 40 meters and have been drilled at low angles directed just above or just below the heater plane. In each array, three boreholes are directed at increasingly steeper angles (< 25-) above the line of wing heaters and two are directed at shallow angles below the wing heater plane.

  18. Dependence of Body Wave Velocity on Borehole Stress Concentration

    NASA Astrophysics Data System (ADS)

    Tian, Jiayong; Man, Yuanpeng; Qi, Hui

    In order to develop ultrasonic method for the quantitative measurement of in-situ rock stresses, we investigate the influence of stress concentration on the body-wave velocities around a borehole. First, the acoustoelasticity theory of finite-deformation solids yields a direct and explicit quantitative borehole acoustoelasticity, which reveals that the orientations of the maximum and minimum wave-velocity shifts at the borehole surface coincide with the directions of the minimum and maximum far-field principal stresses, respectively. Second, pulse-echo measurement of wave-velocity variations at the borehole surface in the sandstone sample under the biaxial compressional loadings is performed to validate the quantitative borehole acoustoelasticity. The consistence of the experimental results with the theoretical prediction means that the ultrasonic method based on acoustoelasticity theory could be a promising noncontact and non-destructive method for the quantitative measurement of in-situ rock stresses.

  19. Autophagy plays an important role in Sunitinib-mediated cell death in H9c2 cardiac muscle cells

    SciTech Connect

    Zhao Yuqin; Xue Tao; Yang Xiaochun; Zhu Hong; Ding Xiaofei; Lou Liming; Lu Wei; Yang Bo; He Qiaojun

    2010-10-01

    Sunitinib, which is a multitargeted tyrosine-kinase inhibitor, exhibits antiangiogenic and antitumor activity, and extends survival of patients with metastatic renal-cell carcinoma (mRCC) and gastrointestinal stromal tumors (GIST). This molecule has also been reported to be associated with cardiotoxicity at a high frequency, but the mechanism is still unknown. In the present study, we observed that Sunitinib showed high anti-proliferative effect on H9c2 cardiac muscle cells measured by PI staining and the MTT assay. But apoptotic markers (PARP cleavage, caspase 3 cleavage and chromatin condensation) were uniformly negative in H9c2 cells after Sunitinib treatment for 48 h, indicating that another cell death pathway may be involved in Sunitinib-induced cardiotoxicity. Here we found Sunitinib dramatically increased autophagic flux in H9c2 cells. Acidic vesicle fluorescence and high expression of LC3-II in H9c2 cells identified autophagy as a Sunitinib-induced process that might be associated with cytotoxicity. Furthermore, knocking down Beclin 1 by RNA-interference to block autophagy in H9c2 cells revealed that the death rate was decreased when treated with Sunitinib in comparison to control cells. These results confirmed that autophagy plays an important role in Sunitinib-mediated H9c2 cells cytotoxicity. Taken together, the data presented here strongly suggest that autophagy is associated with Sunitinib-induced cardiotoxicity, and that inhibition of autophagy constitutes a viable strategy for reducing Sunitinib-induced cardiomyocyte death thereby alleviating Sunitinib cardiotoxicity.

  20. Numerical Borehole Breakdown Investigations using XFEM

    NASA Astrophysics Data System (ADS)

    Beckhuis, Sven; Leonhart, Dirk; Meschke, Günther

    2016-04-01

    During pressurization of a wellbore a typical downhole pressure record shows the following regimes: first the applied wellbore pressure balances the reservoir pressure, then after the compressive circumferential hole stresses are overcome, tensile stresses are induced on the inside surface of the hole. When the magnitude of these stresses reach the tensile failure stress of the surrounding rock medium, a fracture is initiated and propagates into the reservoir. [1] In standard theories this pressure, the so called breakdown pressure, is the peak pressure in the down-hole pressure record. However experimental investigations [2] show that the breakdown did not occur even if a fracture was initiated at the borehole wall. Drilling muds had the tendency to seal and stabilize fractures and prevent fracture propagation. Also fracture mechanics analysis of breakdown process in mini-frac or leak off tests [3] show that the breakdown pressure could be either equal or larger than the fracture initiation pressure. In order to gain a deeper understanding of the breakdown process in reservoir rock, numerical investigations using the extended finite element method (XFEM) for hydraulic fracturing of porous materials [4] are discussed. The reservoir rock is assumed to be pre-fractured. During pressurization of the borehole, the injection pressure, the pressure distribution and the position of the highest flux along the fracture for different fracturing fluid viscosities are recorded and the influence of the aforementioned values on the stability of fracture propagation is discussed. [1] YEW, C. H. (1997), "Mechanics of Hydraulic Fracturing", Gulf Publishing Company [2] MORITA, N.; BLACK, A. D.; FUH, G.-F. (1996), "Borehole Breakdown Pressure with Drilling Fluids". International Journal of Rock Mechanics and Mining Sciences 33, pp. 39-51 [3] DETOURNAY, E.; CARBONELL, R. (1996), "Fracture Mechanics Analysis of the Breakdown Process in Minifrac or Leakoff Test", Society of Petroleum

  1. Background noise model development for seismic stations of KMA

    NASA Astrophysics Data System (ADS)

    Jeon, Youngsoo

    2010-05-01

    The background noise recorded at seismometer is exist at any seismic signal due to the natural phenomena of the medium which the signal passed through. Reducing the seismic noise is very important to improve the data quality in seismic studies. But, the most important aspect of reducing seismic noise is to find the appropriate place before installing the seismometer. For this reason, NIMR(National Institution of Meteorological Researches) starts to develop a model of standard background noise for the broadband seismic stations of the KMA(Korea Meteorological Administration) using a continuous data set obtained from 13 broadband stations during the period of 2007 and 2008. We also developed the model using short period seismic data from 10 stations at the year of 2009. The method of Mcmara and Buland(2004) is applied to analyse background noise of Korean Peninsula. The fact that borehole seismometer records show low noise level at frequency range greater than 1 Hz compared with that of records at the surface indicate that the cultural noise of inland Korean Peninsula should be considered to process the seismic data set. Reducing Double Frequency peak also should be regarded because the Korean Peninsula surrounded by the seas from eastern, western and southern part. The development of KMA background model shows that the Peterson model(1993) is not applicable to fit the background noise signal generated from Korean Peninsula.

  2. Sequential Camouflage of the arachno-6,9-C2B8H14 Cage by Substituents.

    PubMed

    Bakardjiev, Mario; Štíbr, Bohumil; Holub, Josef; Tok, Oleg L; Švec, Petr; Růžičková, Zdeňka; Růžička, Aleš

    2016-07-18

    Sequential methylation of arachno-6,9-C2B8H14 (1) led to a series of methyl derivatives and finally to the camouflaging of all boron positions by mixed persubstitution. Thus, deprotonation of 1 produced the [arachno-6,9-C2B8H13] anion (1(-)), the methylation of which with MeI in tetrahydrofuran proceeded on the open-face boron vertexes with the formation of 5-Me-arachno-6,9-C2B8H13 (2; yield 28%) and 5,8-Me2-arachno-6,9-C2B8H12 (3; yield 36%). Observed in this reaction was also a side formation of 2-Me-closo-1,6-C2B8H9 (4; yield 6%).The electrophilic AlCl3-catalyzed CH3(+) attack of the neutral 1 in neat MeI at ambient temperature afforded 1,3-Me2-arachno-6,9-C2B8H12 (5), while a 76-h heating at 120 °C generated a mixture of the di- and triiodo derivatives 1,2,3,4,8,10-Me6-5,7-I2-arachno-6,9-C2B8H6 (6) and 1,2,3,4,7-Me5-5,7,10-I3-arachno-6,9-C2B8H6 (7). On the other hand, a HOTf-catalyzed reaction between 1 and MeOTf at reflux resulted in the isolation of 2-TfO-1,3.4,5,7,8,10-Me7-arachno-6,9-C2B8H6 (8; Tf = CF3SO2; yield 65%). The compounds were characterized by multinuclear ((11)B, (1)H, (13)C, and (19)F) NMR spectroscopy, mass spectrometry, and elemental analysis, and the structures of compounds 1, 1(-), 5, and 6 were established by X-ray diffraction analysis. PMID:27351461

  3. Borehole-to-borehole geophysical methods applied to investigations of high level waste repository sites

    SciTech Connect

    Ramirez, A.L.

    1983-01-01

    This discussion focuses on the use of borehole to borehole geophysical measurements to detect geological discontinuities in High Level Waste (HLW) repository sites. The need for these techniques arises from: (a) the requirement that a HLW repository's characteristics and projected performance be known with a high degree of confidence; and (b) the inadequacy of other geophysical methods in mapping fractures. Probing configurations which can be used to characterize HLW sites are described. Results from experiments in which these techniques were applied to problems similar to those expected at repository sites are briefly discussed. The use of a procedure designed to reduce uncertainty associated with all geophysical exploration techniques is proposed; key components of the procedure are defined.

  4. 9C continued: results from a deeper radio-source survey at 15 GHz

    NASA Astrophysics Data System (ADS)

    Waldram, E. M.; Pooley, G. G.; Davies, M. L.; Grainge, K. J. B.; Scott, P. F.

    2010-05-01

    The 9C survey of radio sources with the Ryle Telescope at 15.2 GHz was set up to survey the fields observed with the cosmic microwave background telescope, the Very Small Array. In our first paper, we described three regions of the survey, constituting a total area of 520 deg2 to a completeness limit of ~25mJy. Here we report on a series of deeper regions, amounting to an area of 115 deg2 complete to ~10mJy and of 29 deg2 complete to ~5.5mJy. We have investigated the source counts and the distributions of the 1.4 to 15.2 GHz spectral indices (α15.21.4) for these deeper samples. The whole catalogue of 643 sources is available online. Down to our lower limit of 5.5mJy, we detect no evidence for any change in the differential source count from the earlier fitted count above 25mJy, n(S) = 51(S/Jy)-2.15Jy-1 sr-1. We have matched both our new and earlier catalogues with the NRAO VLA Sky Survey (NVSS) catalogue at 1.4 GHz and selected flux-limited samples at both 15 and 1.4 GHz. As expected, we find that the proportions of sources with flat and rising spectra in the samples selected at 15 GHz are significantly higher than those in the samples selected at 1.4 GHz. In addition, for 15-GHz samples selected in three flux density ranges, we detect a significant shift in the median value of α15.21.4: the higher the flux densities the higher the proportions of sources with flat and rising spectra. In our area complete to ~10mJy, we find five sources between 10 and 15mJy at 15 GHz, amounting to 4.3 per cent of sources in this range, with no counterpart in the NVSS catalogue. This implies that, had we relied on NVSS for locating our sources, we could have missed a significant proportion of them at low flux densities. Our results illustrate the problems inherent in using a low-frequency catalogue to characterize the source population at a much higher frequency and emphasize the value of our blind 15.2-GHz survey.

  5. Installation and Initial Results of Borehole Strainmeters around the Marmara Sea in Turkey.

    NASA Astrophysics Data System (ADS)

    Mencin, David; Bohnhoff, Marco; Ozener, Haluk; Mattioli, Glen; Bilham, Roger; Johnson, Wade; Gottlieb, Mike; Van Boskirk, Elizabeth; Aracel, Digdem; Bulut, Fatih; Bal, Osman

    2016-04-01

    Twice in the past 1000 years a sequence of damaging earthquakes has propagated during the course of a few decades along the North Anatolian fault (NAF) in Turkey towards Istanbul, with the final earthquake in the sequence catastrophically destroying the city. This occurred most recently in 1509 when the population was only about 200,000 yet ten thousand people died. The population of greater Istanbul is now 20 million, building stock more fragile, and the last earthquake of the current westward propagating sequence is considered geologically imminent. An opportunity to enhance the detection capability of a suite of deep seismometers installed near Istanbul has arisen, that will permit us to observe, characterize, and possibly predict the moment of imminent failure along the NAF, as well as monitor the tectonic processes leading to this failure. As an augmentation of the Geophysical Observatory at the North Anatolian Fault (GONAF), UNAVCO installed two continuous creepmeters and six borehole strainmeters between July 2014 and October 2015 into boreholes provided by the several international sponsors, including NSF, GFZ, AFAD and Bogazici University Kandilli Observatory. The entire geophysical sensor network is collectively referred to as GeoGONAF. The borehole strainmeters enhance the ability of the scientific instrumentation to monitor ultra-slow process near the probable source zone of the Mw>7 earthquake that is soon expected beneath the Marmara Sea. The strainmeters and creepmeters allow us to make geodetic observations of this segment of the fault before, during and after a large earthquake, which combined with the seismic data from GONAF will provide valuable data for understanding earthquake processes. Installed instruments have already recorded both local and teleseismic events and observed creep events on the on-shore segments of the NAF to the East of the Marmara. In addition we have seen typical hydrological loading signals associated with normal modes of

  6. Advances in crosswell electromagnetics steel cased boreholes

    SciTech Connect

    Harben, P E; Kirkendall, B A; Lewis, J P

    1999-03-01

    The Crosswell electromagnetic (EM) induction technique ideally measures the resistivity distribution between boreholes which may often be cased with carbon steel. Quantification of the effect of such steel casing on the induced field is the most significant limitation of the technique. Recent data acquired at a site in Richmond, California quantify the effect of steel casing on induction measurements and demonstrate this effect to be separable. This unique site contains adjacent steel and plastic wells in which frequency soundings demonstrate low spectrum (1.0 - 50 Hz) measurements an effective means of isolating the casing response from, the formation response. It is also shown that the steel casing effect on the induction coil is highly localized, and limited to less than 0.30 meters above and below the coil.

  7. Head assembly for multiposition borehole extensometer

    SciTech Connect

    Frank, D.N.

    1983-05-10

    A head assembly for a borehole extensometer and an improved extensometer for measuring subsurface subsidence. A plurality of inflatable anchors provide discrete measurement points. A metering rod is fixed to each of the anchors which are displaced when subsidence occurs, thereby translating the attached rod. The head assembly includes a sprocket wheel rotatably mounted on a standpipe and engaged by a chain which is connected at one end to the metering rod and at the other end to a counterweight. A second sprocket wheel connected to the standpipe also engages the chain and drives a connected potentiometer. The head assembly converts the linear displacement of the metering rod to the rotary motion of the second sprocket wheel, which is measured by the potentiometer, producing a continuous electrical output.

  8. Head assembly for multiposition borehole extensometer

    SciTech Connect

    Frank, D.N.

    1981-06-09

    A head assembly for a borehole extensometer and an improved extensometer for measuring subsurface subsidence. A plurality of inflatable anchors provide discrete measurement points. A metering rod is fixed to each of the anchors which are displaced when subsidence occurs, thereby translating the attached rod. The head assembly includes a sprocket wheel rotatably mounted on a standpipe and engaged by a chain which is connected at one end to the metering rod and at the other end to a counterweight. A second sprocket wheel connected to the standpipe also engages the chain and drives a connected potentiometer. The head assembly converts the linear displacement of the metering rod to the rotary motion of the second sprocket wheel, which is measured by the potentiometer, producing a continuous electrical output.

  9. Head assembly for multiposition borehole extensometer

    DOEpatents

    Frank, Donald N.

    1983-01-01

    A head assembly for a borehole extensometer and an improved extensometer for measuring subsurface subsidence. A plurality of inflatable anchors provide discrete measurement points. A metering rod is fixed to each of the anchors which are displaced when subsidence occurs, thereby translating the attached rod. The head assembly includes a sprocket wheel rotatably mounted on a standpipe and engaged by a chain which is connected at one end to the metering rod and at the other end to a counterweight. A second sprocket wheel connected to the standpipe also engages the chain and drives a connected potentiometer. The head assembly converts the linear displacement of the metering rod to the rotary motion of the second sprocket wheel, which is measured by the potentiometer, producing a continuous electrical output.

  10. Borehole hydraulic coal mining system analysis

    NASA Technical Reports Server (NTRS)

    Floyd, E. L.

    1977-01-01

    The borehole hydraulic coal mining system accesses the coal seam through a hole drilled in the overburden. The mining device is lowered through the hole into the coal seam where it fragments the coal with high pressure water jets which pump it to the surface as a slurry by a jet pump located in the center of the mining device. The coal slurry is then injected into a pipeline for transport to the preparation plant. The system was analyzed for performance in the thick, shallow coal seams of Wyoming, and the steeply pitching seams of western Colorado. Considered were all the aspects of the mining operation for a 20-year mine life, producing 2,640,000 tons/yr. Effects on the environment and the cost of restoration, as well as concern for health and safety, were studied. Assumptions for design of the mine, the analytical method, and results of the analysis are detailed.

  11. Multiple fracturing experiments: propellant and borehole considerations

    SciTech Connect

    Cuderman, J F

    1982-01-01

    The technology for multiple fracturing of a wellbore, using progressively burning propellants, is being developed to enhance natural gas recovery. Multiple fracturing appears especially attractive for stimulating naturally fractured reservoirs such as Devonian shales where it is expected to effectively intersect existing fractures and connect them to a wellbore. Previous experiments and modeling efforts defined pressure risetimes required for multiple fracturing as a function of borehole diameter, but identified only a weak dependence on peak pressure attained. Typically, from four to eight equally spaced major fractures occur as a function of pressure risetime and in situ stress orientation. The present experiments address propellant and rock response considerations required to achieve the desired pressure risetimes for reliable multiple fracturing.

  12. Waterborne cryptosporidiosis associated with a borehole supply.

    PubMed

    Morgan, D; Allaby, M; Crook, S; Casemore, D; Healing, T D; Soltanpoor, N; Hill, S; Hooper, W

    1995-06-23

    From 1 April to 31 May 1993, 64 cases of cryptosporidiosis were diagnosed within one district health authority. Forty were classified as primary cases, 35 of whom were clustered in an area supplied by a discrete public water supply that supplied the majority of homes in a large town. Most of the water in this supply is abstracted from boreholes and some is filtered before distribution. Households that received mains water from this supply were 15 times more likely to be affected than households nearby that received water from other sources. A case control study demonstrated a dose response relationship between consumption of water obtained from the town supply and risk of illness. Very low concentrations of cryptosporidial oocysts were detected in the water supply on four occasions several weeks after the outbreak. Environmental investigation failed to reveal a likely mechanism for contamination of the water supply. PMID:7613587

  13. Borehole plugging materials development program, report 2

    SciTech Connect

    Gulick, C.W. Jr.; Boa, J.A. Jr.; Walley, D.M.; Buck, A.D.

    1980-02-01

    The data for 2 yr of grout mixtures durability studies developed for the borehole plugging program of the Nuclear Waste Isolation Pilot Plant (WIPP) are reported. In addition, data for 1 yr of durability studies of grout mixture field samples used to plug the ERDA No. 10 exploratory drill hole near the WIPP site are included. The grout samples and the data do not show any evidence of deterioration during the durability studies that include exposure to brine at both ambient and elevated temperatures. The data include strength, compressional wave velocity, dynamic modulus, expansion, weight change, porosity, permeability, bond strength, chemical analysis of cements, and petrographic examinations. The work was performed at the Concrete Division of the Structures Laboratory of the US Army Engineer Waterways Experiments Station (WES), Vicksburg, Mississippi. The work is continuing at WES.

  14. Corrosion tests in the Marchwood geothermal borehole

    NASA Astrophysics Data System (ADS)

    Lawrence, P. F.

    1982-03-01

    Corrosion tests in the high salinity brine produced during a production test at the Marchwood borehole. These tests were intended to obtain preliminary information on the corrosion of a range of metals and alloys most likely to be used for downhole service, heat exchangers and associated equipment, if hot water from this aquifer is used to provide a long-term energy source. Specimens of appropriate candidate materials were exposed to flowing brine in the surface pipework and also downhole at a depth of 663 m. The brine was pumped to the surface by a multi-stage electric submersible pump. The downhole specimens, which were installed with the pump, were exposed for a period of 83 days. The surface specimens were exposed during the well production test for 33.3 days. The product brine was around three times sea water concentration, at a temperature of 72 C and pH 6.2.

  15. Mapping an aquitard breach using shear-wave seismic reflection

    NASA Astrophysics Data System (ADS)

    Waldron, B. A.; Harris, J. B.; Larsen, D.; Pell, A.

    2009-05-01

    In multi-layered hydrostratigraphic systems, aquitard breaches caused by faulting or paleo-erosion can allow substantial quantities of water of differing quality to be exchanged between aquifers. Seismic reflection technology was used to map the extent and orientation of an aquitard breach connecting a shallow alluvial aquifer to the deeper semi-confined Memphis aquifer in southwestern Tennessee, USA. Geophysical well logs indicate the presence of the aquitard at borehole locations that define the beginning and end points on two seismic survey lines, which intersect at a borehole where the aquitard is absent. A SE-NW-oriented paleochannel, 350 m wide and approximately 35-40 m deep, is interpreted from the seismic reflection surveys. The paleochannel cuts through the aquitard and into the upper part of the Memphis aquifer, thus creating a hydraulic connection between the shallow unconfined and deeper, semi-confined aquifers. The results indicate the potential of the shear-wave seismic reflection methods to resolve shallow breaches through fine-grained aquitards given availability of sufficient well control.

  16. A compendium of P- and S-wave velocities from surface-to-borehole logging; summary and reanalysis of previously published data and analysis of unpublished data

    USGS Publications Warehouse

    Boore, David M.

    2003-01-01

    For over 28 years, the U.S. Geological Survey (USGS) has been acquiring seismic velocity and geologic data at a number of locations in California, many of which were chosen because strong ground motions from earthquakes were recorded at the sites. The method for all measurements involves picking first arrivals of P- and S-waves from a surface source recorded at various depths in a borehole (as opposed to noninvasive methods, such as the SASW method [e.g., Brown et al., 2002]). The results from most of the sites are contained in a series of U.S. Geological Survey Open-File Reports (see References). Until now, none of the results have been available as computer files, and before 1992 the interpretation of the arrival times was in terms of piecemeal interval velocities, with no attempt to derive a layered model that would fit the travel times in an overall sense (the one exception is Porcella, 1984). In this report I reanalyze all of the arrival times in terms of layered models for P- and for S-wave velocities at each site, and I provide the results as computer files. In addition to the measurements reported in the open-file reports, I also include some borehole results from other reports, as well as some results never before published. I include data for 277 boreholes (at the time of this writing; more will be added to the web site as they are obtained), all in California (I have data from boreholes in Washington and Utah, but these will be published separately). I am also in the process of interpreting travel time data obtained using a seismic cone penetrometer at hundreds of sites; these data can be interpreted in the same way of those obtained from surface-to-borehole logging. When available, the data will be added to the web site (see below for information on obtaining data from the World Wide Web (WWW)). In addition to the basic borehole data and results, I provide information concerning strong-motion stations that I judge to be close enough to the boreholes

  17. Tilt observations using borehole tiltmeters. 2. Analysis of data from Yellowstone National Park

    SciTech Connect

    Meertens, C.; Levine, J.; Busby, R. National Inst. of Standards and Technology, Boulder, CO Univ. of Colorado, Boulder )

    1989-01-10

    The authors have installed borehole tiltmeters at five sites in Yellowstone National Park, Wyoming, and have used these instruments to measure the spatial variation of the amplitude and phase of the principal semidiurnal tide. The measured tides vary both with position and azimuth and differ from the sum of the body tide and the ocean load by up to 50%. The difference predicted by a finite element model constructed from seismic, refraction, and gravity data has a maximum value of only 12%, although the discrepancy between these observations and the model is only marginally significant at some sites. The disagreement between the model and the observations is much larger than they observed using the same instruments a other sites and cannot be attributed to an instrumental effect. They have been unable to modify the model to explain their results while keeping it consistent with the previous observations.

  18. Impact of maximum borehole depths on inverted temperature histories in borehole paleoclimatology

    NASA Astrophysics Data System (ADS)

    Beltrami, H.; Smerdon, J. E.; Matharoo, G. S.; Nickerson, N.

    2011-02-01

    A quantitative assessment is presented for the impact of the maximum depth of a temperature-depth profile on the estimate of the climatic transient and the resultant ground surface temperature (GST) reconstruction used in borehole paleoclimatology. The depth of the profile is important because the downwelling climatic signal must be separated from the quasi-steady state thermal regime established by the energy in the Earth's interior. This component of the signal is estimated as a linear increase in temperature with depth from the lower section of a borehole temperature profile, which is assumed to be unperturbed by recent changes in climate at the surface. The validity of this assumption is dependent on both the subsurface thermophysical properties and the character of the downwelling climatic signal. Such uncertainties can significantly impact the determination of the quasi-steady state thermal regime, and consequently the magnitude of the temperature anomaly interpreted as a climatic signal. The quantitative effects and uncertainties that arise from the analysis of temperature-depth profiles of different depths are presented. Results demonstrate that widely different GST histories can be derived from a single temperature profile truncated at different depths. Borehole temperature measurements approaching 500-600 m depths are shown to provide the most robust GST reconstructions spanning 500 to 1000 ybp. It is further shown that the bias introduced by a temperature profile of depths shallower than 500-600 m remains even if the time span of the reconstruction target is shortened.

  19. Impact of maximum borehole depths on inverted temperature histories in borehole paleoclimatology

    NASA Astrophysics Data System (ADS)

    Beltrami, H.; Smerdon, J. E.; Matharoo, G. S.; Nickerson, N.

    2011-07-01

    A quantitative assessment is presented for the impact of the maximum depth of a temperature-depth profile on the estimate of the climatic transient and the resultant ground surface temperature (GST) reconstruction used in borehole paleoclimatology. The depth of the profile is important because the downwelling climatic signal must be separated from the quasi-steady state thermal regime established by the energy in the Earth's interior. This component of the signal is estimated as a linear increase in temperature with depth from the lower section of a borehole temperature profile, which is assumed to be unperturbed by recent changes in climate at the surface. The validity of this assumption is dependent on both the subsurface thermophysical properties and the character of the downwelling climatic signal. Such uncertainties can significantly impact the determination of the quasi-steady state thermal regime, and consequently the magnitude of the temperature anomaly interpreted as a climatic signal. The quantitative effects and uncertainties that arise from the analysis of temperature-depth profiles of different depths are presented. Results demonstrate that widely different GST histories can be derived from a single temperature profile truncated at different depths. Borehole temperature measurements approaching 500-600 m depths are shown to provide the most robust GST reconstructions spanning 500 to 1000 yr BP. It is further shown that the bias introduced by a temperature profile of depths shallower than 500-600 m remains even if the time span of the reconstruction target is shortened.

  20. Anatomy of a seismoelectric conversion: Measurements and conceptual modeling in boreholes penetrating a sandy aquifer

    NASA Astrophysics Data System (ADS)

    Dupuis, J. C.; Butler, K. E.; Kepic, A. W.; Harris, B. D.

    2009-10-01

    Conversions of compressional seismic waves to electric fields have been measured in two boreholes drilled in an unconfined sandy aquifer on the Gnangara Mound near Perth, Australia. The seismoelectric conversions at both field sites occurred in the vicinity of the water table at 13-m depth and yielded maximum amplitudes of 1 μV/m using a sledgehammer source on surface. Partially cemented layers, inferred from geological and geophysical logs, straddle the water table and may play a role in generating the conversion and influencing its amplitude distribution. The dense vertical sampling used in these borehole experiments reveals spatial and temporal polarity reversals of the interfacial signal which provide new evidence in support of the conceptual model for seismoelectric conversions at interfaces. We demonstrate that the growth rate of the source zone and its maximum vertical extent below the water table are encoded in the polarity of the interfacial signal. These experiments confirm that vertical seismoelectric profiling can be used to gain further insight into seismoelectric conversions and characteristics of interfaces that makes them amenable to detection.

  1. Recording and interpretation/analysis of tilt signals with five ASKANIA borehole tiltmeters at the KTB.

    PubMed

    Gebauer, André; Jahr, Thomas; Jentzsch, Gerhard

    2007-05-01

    In June 2003, a large scale injection experiment started at the Continental Deep Drilling site (KTB) in Germany. A tiltmeter array was installed which consisted of five high resolution borehole tiltmeters of the ASKANIA type, also equipped with three dimensional seismometers. For the next 11 months, 86 000 m(3) were injected into the KTB pilot borehole 4000 m deep. The average injection rate was approximately 200 l/min. The research objective was to observe and to analyze deformation caused by the injection into the upper crust at the kilometer range. A new data acquisition system was developed by Geo-Research Center Potsdam (GFZ) to master the expected huge amount of seismic and tilt data. Furthermore, it was necessary to develop a new preprocessing software called PREANALYSE for long-period time series. This software includes different useful functions, such as step and spike correction, interpolation, filtering, and spectral analysis. This worldwide unique installation offers the excellent opportunity of the separation of signals due to injection and due to environment by correlation of the data of the five stations with the ground water table and meteorological data. PMID:17552845

  2. Downhole measurements in the AND-1B borehole, ANDRILL McMurdo Ice Shelf Project, Antarctica

    USGS Publications Warehouse

    Morin, R.; Williams, T.; Henrys, S.; Crosby, T.; Hansaraj, D.

    2007-01-01

    A comprehensive set of downhole measurements was collected in the AND-1B drillhole as part of the on-ice scientific programme defined for the McMurdo Ice Shelf (MIS) Project. Geophysical logs were recorded over two operation phases and consisted of calliper, temperature, fluid conductivity, induction resistivity, magnetic susceptibility, natural gamma activity, acoustic televiewer, borehole deviation, and dipmeter. In addition, two standard vertical seismic profiles (VSP) and one walk-away VSP were obtained. Radioactive logs (porosity and density) were not run because of unstable borehole conditions. Although the total depth of the hole is 1285 metres below seafloor (mbsf), the depth range for in situ measurements was limited by the length of the wireline (1018 mbsf) and by the nullification of some geophysical logs due to the presence of steel casing. A depth correction was derived to account for systematic discrepancies in depth between downhole measurements and cores; consequently, log responses can be directly compared to core properties. The resulting data are amenable to studies of cyclicity and climate, heat flux and fluid flow, and stricture and stress. When integrated with physical properties and fractures measured on the core, this information should play a significant role in addressing many of the scientific objectives of the ANDRILL programme.

  3. Deep borehole disposition of surplus fissile materials-The site selection process

    SciTech Connect

    Heiken, G.; WoldeGabriel, G.; Morley, R.; Plannerer, H

    1996-05-01

    One option for disposing of excess weapons plutonium is to place it near the base of deep boreholes in stable crystalline rocks. The technology exists to immediately begin the design of this means of disposition and there are many attractive sites available within the conterminous US. The borehole system utilizes mainly natural barriers to preven migration of Pu and U to the Earth`s surface. Careful site selection ensures favorable geologic conditions that provide natural long-lived migration barriers; they include deep, extremely stable rock formations, strongly reducing brines that exhibit increasing salinity with depth, and most importantly, demonstrated isolation or non-communication of deep fluids with the biosphere for millions of years. This isolation is the most important characteristic, with the other conditions mainly being those that will enhance the potential of locating and maintaining the isolated zones. Candidate sites will probably be located on the craton in very old Precambrian crystalline rocks, most likely the center of a granitic pluton. The sites will be located in tectonically stable areas with no recent volcanic or seismic activity, and situated away from tectonic features that might become active in the near geologic future.

  4. Advances in Over-Sea-Ice Seismic Reflection Surveys

    NASA Astrophysics Data System (ADS)

    Speece, M. A.; Pekar, S. F.; Williams, B. P.; Sunwall, D. A.; Alesandrini, S. M.; Hein, R. H.

    2009-12-01

    During the austral spring-summers of 2005, 2007, and 2008 a series of over-sea-ice seismic reflection data sets were recorded over McMurdo Sound, Antarctica, in support of the ANtarctic geological DRILLing program (ANDRILL). These surveys incorporated techniques that improved the quality of over-sea-ice seismic data. Prior to this work, over-sea-ice seismic experiments had limited success because of poor source coupling caused by thin sea ice, source bubble-pulse effects caused by explosive seismic sources placed in the water column, and ice flexural-mode noise caused by surface sources. To mitigate these problems, a Generator-Injector (GI) air gun was used as the seismic source. The GI gun was lowered into the water column through holes drilled through the sea ice. The GI gun provided good source coupling and minimized the source bubble effects and flexural mode problems that had plagued previous over-sea-ice experiments. In addition, the GI gun allows for source repetition which is a significant advantage in minimizing wind noise though source summing. A 60-channel seismic snowstreamer consisting of vertically oriented gimbaled geophones with 25-m takeout spacing was employed during these surveys to aid rapid data collection during the normal-incident seismic surveying portions of these projects. A new recording platform and compressor that were added in 2008 have significantly increased production. As experience has been gained, improvements in the recognition of and correction for timing and statics problems, inherent in over-sea-ice seismic data collection, have resulted in better resolution and overall data quality. For instance, thin, soft, low-amplitude pelagic sediment at the ocean bottom have been imaged with high-resolution at a water depth of 900 m. In addition to the surface profiling, a three-component Vertical Seismic Profile (VSP) seismic survey was conducted in 2007 at the newly-drilled ANDRILL Southern McMurdo Sound (SMS) Project borehole. The VSP

  5. Deep Borehole Measurements for Characterizing the Magma/Hydrothermal System at Long Valley Caldera, CA

    SciTech Connect

    Carrrigan, Charles R.

    1989-03-21

    The Magma Energy Program of the Geothermal Technology Division is scheduled to begin drilling a deep (6 km) exploration well in Long Valley Caldera, California in 1989. The drilling site is near the center of the caldera which is associated with numerous shallow (5-7 km) geophysical anomalies. This deep well will present an unparalleled opportunity to test and validate geophysical techniques for locating magma as well as a test of the theory that magma is still present at drillable depths within the central portion of the caldera. If, indeed, drilling indicates magma, the geothermal community will then be afforded the unique possibility of examining the coupling between magmatic and hydrothermal regimes in a major volcanic system. Goals of planned seismic experiments that involve the well include the investigation of local crustal structure down to depths of 10 km as well as the determination of mechanisms for local seismicity and deformation. Borehole electrical and electromagnetic surveys will increase the volume and depth of rock investigated by the well through consideration of the conductive structure of the hydrothermal and underlying regimes. Currently active processes involving magma injection will be studied through observation of changes in pore pressure and strain. Measurements of in situ stress from recovered cores and hydraulic fracture tests will be used in conjunction with uplift data to determine those models for magmatic injection and inflation that are most applicable. Finally, studies of the thermal regime will be directed toward elucidating the coupling between the magmatic source region and the more shallow hydrothermal system in the caldera fill. To achieve this will require careful logging of borehole fluid temperature and chemistry. In addition, studies of rock/fluid interactions through core and fluid samples will allow physical characterization of the transition zone between hydrothermal and magmatic regimes.

  6. Lipid emulsion attenuates apoptosis induced by a toxic dose of bupivacaine in H9c2 rat cardiomyoblast cells.

    PubMed

    Ok, S-H; Yu, J; Lee, Y; Cho, H; Shin, I-W; Sohn, J-T

    2016-09-01

    The goal of this in vitro study was to investigate the effect of lipid emulsion on apoptosis induced by a toxic dose of bupivacaine (BPV) in H9c2 rat cardiomyoblast cell lines. The effect of lipid emulsion on the decreased cell viability and count induced by BPV or mepivacaine (MPV) in the H9c2 cells was assessed using an 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide assay or a cell count assay. The effect of BPV or lipid emulsion combined with BPV on cleaved caspase 3, caspase 8, and Bax in H9c2 cells was investigated using Western blotting. A terminal deoxynucleotidyl transferase dUTP2'-deoxyuridine 5'-triphosphate nick end-labeling (TUNEL) assay was performed to detect apoptosis of H9c2 cells treated with BPV alone or lipid emulsion combined with BPV. The magnitude of lipid emulsion-mediated attenuation of decreased cell viability induced by BPV was higher than that of lipid emulsion-mediated attenuation of decreased cell viability induced by MPV. Lipid emulsion attenuated the increases in cleaved caspase 3, caspase 8 and Bax induced by BPV. Lipid emulsion attenuated the increases in TUNEL-positive cells induced by BPV. These results suggest that lipid emulsion attenuates a toxic dose of BPV-induced apoptosis via inhibition of the extrinsic and intrinsic apoptotic pathways. The protective effect of lipid emulsion may be partially associated with the relatively high lipid solubility of BPV. PMID:26437793

  7. Hydrogen sulfide attenuates doxorubicin-induced cardiotoxicity by inhibiting the expression of peroxiredoxin III in H9c2 cells.

    PubMed

    Liu, Mi-Hua; Lin, Xiao-Long; Yuan, Cong; He, Jun; Tan, Tian-Ping; Wu, Shao-Jian; Yu, Shan; Chen, Li; Liu, Jun; Tian, Wei; Chen, Yu-Dan; Fu, Hong-Yun; Li, Jian; Zhang, Yuan

    2016-01-01

    Doxorubicin (DOX) is a widely used chemotherapeutic agent, which can give rise to severe cardiotoxicity, limiting its clinical use. Preliminary evidence suggests that hydrogen sulfide (H2S) may exert protective effects on DOX‑induced cardiotoxicity. Therefore, the aim of the present study was to investigate whether peroxiredoxin III is involved in the cardioprotection of H2S against DOX‑induced cardiotoxicity. The results demonstrated that DOX not only markedly induced injuries, including cytotoxicity and apoptosis, it also increased the expression levels of peroxiredoxin III. Notably, pretreatment with sodium hydrosulfide significantly attenuated the DOX‑induced decrease in cell viability and increase in apoptosis, and also reversed the increased expression levels of peroxiredoxin III in H9c2 cardiomyocytes. In addition, pretreatment of the H9c2 cells with N‑acetyl‑L‑cysteine, a scavenger of reactive oxygen species, prior to exposure to DOX markedly decreased the expression levels of peroxiredoxin III. In conclusion, the results of the present study suggested that exogenous H2S attenuates DOX‑induced cardiotoxicity by inhibiting the expression of peroxiredoxin III in H9c2 cells. In the present study, the apoptosis of H9c2 cardiomyocytes was assessed using an methyl thiazolyl tetrazolium assay and Hoechst staining. The levels of Prx III and cystathionine-γ-lyase were examined by western blotting. PMID:26573464

  8. Myricitrin Attenuates High Glucose-Induced Apoptosis through Activating Akt-Nrf2 Signaling in H9c2 Cardiomyocytes.

    PubMed

    Zhang, Bin; Chen, Yaping; Shen, Qiang; Liu, Guiyan; Ye, Jingxue; Sun, Guibo; Sun, Xiaobo

    2016-01-01

    Hyperglycemia, as well as diabetes mellitus, has been shown to trigger cardiac cell apoptosis. We have previously demonstrated that myricitrin prevents endothelial cell apoptosis. However, whether myricitrin can attenuate H9c2 cell apoptosis remains unknown. In this study, we established an experiment model in H9c2 cells exposed to high glucose. We tested the hypothesis that myricitrin may inhibit high glucose (HG)-induced cardiac cell apoptosis as determined by TUNEL staining. Furthermore, myricitrin promoted antioxidative enzyme production, suppressed high glucose-induced reactive oxygen species (ROS) production and decreased mitochondrial membrane potential (MMP) in H9c2 cells. This agent significantly inhibited apoptotic protein expression, activated Akt and facilitated the transcription of NF-E2-related factor 2 (Nrf2)-mediated protein (heme oxygenase-1 (HO-1) and quinone oxidoreductase 1 (NQO-1) expression as determined by Western blotting. Significantly, an Akt inhibitor (LY294002) or HO-1 inhibitor (ZnPP) not only inhibited myricitrin-induced HO-1/NQO-1 upregulation but also alleviated its anti-apoptotic effects. In summary, these observations demonstrate that myricitrin activates Nrf2-mediated anti-oxidant signaling and attenuates H9c2 cell apoptosis induced by high glucose via activation of Akt signaling. PMID:27399653

  9. Results From a Borehole Seismometer Array I: Microseismicity at a Productive Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii

    NASA Astrophysics Data System (ADS)

    Kenedi, C. L.; Shalev, E.; Malin, P.; Kaleikini, M.; Dahl, G.

    2008-12-01

    Borehole seismometer arrays have proven successful in both the exploration and monitoring of geothermal fields. Because the seismometers are located at depth, they are isolated from human noise and record microearthquakes with clearly identifiable seismic phases that can be used for event location. Further analysis of these events can be used to resolve earthquake clouds into identifiable faults. The local fault and dike structures in Puna, in southeastern Hawaii, are of interest both in terms of electricity production and volcanic hazard monitoring. The geothermal power plant at Puna has a 30MW capacity and is built on a section of the Kilauea Lower East Rift Zone where lava flows erupted as recently as 1955. In order to improve seismic monitoring in this area, we installed eight 3-component borehole seismometers. The instrument depths range from 24 to 210 m (80 to 690 ft); the shallower instruments have 2 Hz geophones and the deepest have 4.5 Hz geophones. The seismometers are located at the vertices of two rhombs, 2 km wide x 4 km long and 4 km wide x 8 km long, both centered at the power plant. Since June 2006, we have located >4500 earthquakes; P- and S-wave arrivals were hand picked and events located using Hypoinverse-2000. Most of the earthquakes occurred at depths between 2.5 and 3 km. The large majority of events were M-0.5 to M0.5; the Gutenberg-Richter b-value is 1.4, which is consistent with microearthquake swarms. Frequency analysis indicates a 7-day periodicity; a Schuster diagram confirms increased seismicity on a weekly cycle. The location, depth, and period of the microearthquakes suggest that power plant activity affects local seismicity. Southwest of the geothermal facility, up-rift towards the Kilauea summit, earthquakes were progressively deeper at greater distances. Depths also increased towards the south, which is consistent with the eastern extension of the south-dipping, east-striking Hilina fault system. To the northeast, down-rift of the

  10. Seismic Response of a Sedimentary Basin: Preliminary Results from Strong Motion Downhole Array in Taipei Basin

    NASA Astrophysics Data System (ADS)

    Young, B.; Chen, K.; Chiu, J.

    2013-12-01

    The Strong Motion Downhole Array (SMDA) is an array of 32 triggered strong motion broadband seismometers located at eight sites in Taipei Basin. Each site features three to five co-located three-component accelerometers--one at the surface and an additional two to four each down independent boreholes. Located in the center of Taipei Basin is Taipei City and the Taipei metropolitan area, the capital of Taiwan and home to more than 7 million residents. Taipei Basin is in a major seismic hazard area and is prone to frequent large earthquakes producing strong ground motion. This unique three-dimension seismic array presents new frontiers for seismic research in Taiwan and, along with it, new challenges. Frequency-dependent and site-specific amplification of seismic waves from depth to surface has been observed: preliminary results indicate that the top few tens of meters of sediment--not the entire thickness--are responsible for significant frequency-dependent amplification; amplitudes of seismic waves at the surface may be as much as seven times that at depth. Dominant amplification frequencies are interpreted as quarter-wavelength constructive interference between the surface and major interfaces in the sediments. Using surface stations with known orientation as a reference, borehole seismometer orientations in these data--which are unknown, and some of which vary considerably from event to event--have been determined using several methods. After low-pass filtering the strong motion data, iteratively rotating the two horizontal components from an individual borehole station and cross-correlating them with that from a co-located surface station has proven to be very effective. In cases where the iterative cross-correlation method does not provide a good fit, rotating both surface and borehole stations to a common axis of maximum seismic energy provides an alternative approach. The orientation-offset of a borehole station relative to the surface station may be

  11. Geomechanical Engineering Concepts Applied to Deep Borehole Disposal Wells

    NASA Astrophysics Data System (ADS)

    Herrick, C. G.; Haimson, B. C.; Lee, M.

    2015-12-01

    Deep borehole disposal (DBD) of certain defense-generated radioactive waste forms is being considered by the US Department of Energy (DOE) as an alternative to mined repositories. The 17 inch diameter vertical boreholes are planned to be drilled in crystalline basement rock. As part of an initial field test program, the DOE will drill a demonstration borehole, to be used to test equipment for handling and emplacing prototype nonradioactive waste containers, and a second smaller diameter borehole, to be used for site characterization. Both boreholes will be drilled to a depth of 5 km. Construction of such boreholes is expected to be complex because of their overall length, large diameter, and anticipated downhole conditions of high temperatures, pore pressures, and stress regimes. It is believed that successful development of DBD boreholes can only be accomplished if geologic and tectonic conditions are characterized and drill activities are designed based on that understanding. Our study focuses primarily on using the in situ state of stress to mitigate borehole wall failure, whether tensile or compressive. The measured stresses, or their constrained estimates, will include pore pressure, the vertical stress, the horizontal stresses and orientations, and thermally induced stresses. Pore pressure will be measured directly or indirectly. Horizontal stresses will be estimated from hydraulic fracturing tests, leak off tests, and breakout characteristics. Understanding the site stress condition along with the rock's strength characteristics will aid in the optimization of mud weight and casing design required to control borehole wall failure and other drilling problems.Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6552A

  12. Ophthalmic Combination of SurR9-C84A and Trichostatin-A Targeting Molecular Pathogenesis of Alkali Burn

    PubMed Central

    Roy, Kislay; Sriramoju, Bhasker; Kanwar, Rupinder K.; Kanwar, Jagat R.

    2016-01-01

    Background: Alkali burn is a frequently occurring ocular injury that resembles ocular inflammation caused by eye allergies, infection, and refractive surgeries. Methods: We investigated the synergistic regenerative potential of dominant negative survivin mutant (SurR9-C84A) and histone deacetylase (HDAC) inhibitor trichostatin-A (TSA) against alkali burn and corneal haze using human keratocytes and rabbit alkali burn model (Female New Zealand white rabbits). Results: Combination of SurR9-C84A and TSA suppressed levels of transforming growth factor (TGF)-β, alpha smooth-muscle actin (α-SMA), fibronectin and HDAC1, leading to apoptosis in myofibroblast cells and, showed the potential to clear the corneal haze. An insult with 0.5 N NaOH for 1 min led to neutrophils infiltration and formation of large vacuoles in the stroma. Treatments with TSA and SurR9-C84A for 40 min led to improvement in the conjunctival and corneal tissue integrity, marked by an increase in clathrin, and claudin expressions. An increase in TGF-β and endogenous survivin confirmed wound healing and cell proliferation in rabbit cornea. The blood analysis revealed a substantial decrease in the RBC, WBC, platelets, or the hemoglobin content post alkali burn. The cytokine array analysis revealed that NaOH induced expressions of IL-1α and MMP-9, which were found to be significantly downregulated (1.8 and 11.5 fold respectively) by the combinatorial treatment of SurR9-C84A and TSA. Conclusion: Our results confirmed that combination of SurR9-C84A with TSA worked in synergy to heal ocular injury and inflammations due to alkali burn and led to the regeneration of ocular tissue by increasing clathrin, claudin, survivin, and TGF-β and reversal of alkali burn by suppressing IL-1α and MMP-9 without inducing haze. PMID:27516741

  13. Optimizing Seismic Monitoring Networks for EGS and Conventional Geothermal Projects

    NASA Astrophysics Data System (ADS)

    Kraft, Toni; Herrmann, Marcus; Bethmann, Falko; Stefan, Wiemer

    2013-04-01

    location problem. Optimization for additional criteria (e.g., focal mechanism determination or installation costs) can be included. We consider a 3D seismic velocity model, an European ambient seismic noise model derived from high-resolution land-use data, and existing seismic stations in the vicinity of the geotechnical site. Additionally, we account for the attenuation of the seismic signal with travel time and ambient seismic noise with depth to be able to correctly deal with borehole station networks. Using this algorithm we are able to find the optimal geometry and size of the seismic monitoring network that meets the predefined application-oriented performance criteria. This talk will focus on optimal network geometries for deep geothermal projects of the EGS and hydrothermal type, and discuss the requirements for basic seismic surveillance and high-resolution reservoir monitoring and characterization.

  14. Development of the Multi-Level Seismic Receiver (MLSR)

    SciTech Connect

    Sleefe, G.E.; Engler, B.P.; Drozda, P.M.; Franco, R.J.; Morgan, J.

    1995-02-01

    The Advanced Geophysical Technology Department (6114) and the Telemetry Technology Development Department (2664) have, in conjunction with the Oil Recovery Technology Partnership, developed a Multi-Level Seismic Receiver (MLSR) for use in crosswell seismic surveys. The MLSR was designed and evaluated with the significant support of many industry partners in the oil exploration industry. The unit was designed to record and process superior quality seismic data operating in severe borehole environments, including high temperature (up to 200{degrees}C) and static pressure (10,000 psi). This development has utilized state-of-the-art technology in transducers, data acquisition, and real-time data communication and data processing. The mechanical design of the receiver has been carefully modeled and evaluated to insure excellent signal coupling into the receiver.

  15. Seismic experiments, nuclear dismantlement go hand in hand in Kazakhstan

    NASA Astrophysics Data System (ADS)

    Leith, William; Kluchko, Luke J.

    Unique seismic experiments involving large chemical explosions at different depths have been conducted in Kazakhstan, thanks to nuclear dismantlement activity there. Collaborative efforts of several bodies have provided this creative, cost-efficient extension of the dismantling work, improving technical monitoring and verification of the Comprehensive Test Ban Treaty (CTBT).For the past several years, the Defense Special Weapons Agency (DSWA) has been closing the nuclear test tunnels and bore-holes at the former Soviet nuclear test site nearSemipalatinsk, eastern Kazakhstan, as part of the Nunn-Lugar Cooperative Threat Reduction (CTR) Program. The existence of this program and the infrastructure that was in place to implement it made it possible to conduct the seismic experiments. As a result, benchmark data have been collected on the variations in seismic signals from explosions at different burial depths.

  16. Seismic refraction exploration

    SciTech Connect

    Ruehle, W.H.

    1980-12-30

    In seismic exploration, refracted seismic energy is detected by seismic receivers to produce seismograms of subsurface formations. The seismograms are produced by directing seismic energy from an array of sources at an angle to be refracted by the subsurface formations and detected by the receivers. The directivity of the array is obtained by delaying the seismic pulses produced by each source in the source array.

  17. Building a 3D geological near surface model from borehole and laboratory data

    NASA Astrophysics Data System (ADS)

    Sala, P.; Tisato, N.; Pfiffner, O. A.; Frehner, M.

    2012-04-01

    The interpretation of active seismic survey data usually results in a subsurface P-wave velocity model. Such models commonly do not include the near surface, but end a few hundreds of meters beneath the Earth's surface. However, near surface effects, such as low-velocity zones or topography can influence the seismic signal significantly. Therefore, it is important to extend the P-wave velocity model all the way to the Earth's surface. As a test site of this study, we use the underground gas storage facility in Chémery (France), located at the south-western border of the Paris Basin. Velocities and lithological data of the shallow formations can be found in a public dataset, which collects data of a large number of short boreholes (BRGM online catalog: infoterre.brgm.fr/viewer). From the lithological data a structural model defined by surfaces gridded from well markers and faults derived from the analysis of these surfaces, is generated. The generation of the structural model comprised some major challenges, mainly because the borehole data represent 1D vertical pinpoints into the subsurface, rather than 2D sections as it is the case for most seismic surveys. This complicated the cross-correlation between the boreholes and the interpolation of the lithological formations in the 3D space. After the structural model has been generated, the velocity logs were upscaled to the model and interpolated to generate a near-surface P wave velocity model. To better constrain the velocity model, laboratory measurements of P-wave velocity were conducted. We collected 24 hand specimens from outcrops, from which we drilled core plugs. The sampled lithologies are 6 different sedimentary rock types, mostly calcarenites. The measurements were conducted employing the pulse transmission method for compression (Vp) and shear (Vs) waves in dry and fully water saturated conditions. Density and porosity were measured with two different methods: (1) with a helium pycnometer, and (2

  18. BoreholeAR: A mobile tablet application for effective borehole database visualization using an augmented reality technology

    NASA Astrophysics Data System (ADS)

    Lee, Sangho; Suh, Jangwon; Park, Hyeong-Dong

    2015-03-01

    Boring logs are widely used in geological field studies since the data describes various attributes of underground and surface environments. However, it is difficult to manage multiple boring logs in the field as the conventional management and visualization methods are not suitable for integrating and combining large data sets. We developed an iPad application to enable its user to search the boring log rapidly and visualize them using the augmented reality (AR) technique. For the development of the application, a standard borehole database appropriate for a mobile-based borehole database management system was designed. The application consists of three modules: an AR module, a map module, and a database module. The AR module superimposes borehole data on camera imagery as viewed by the user and provides intuitive visualization of borehole locations. The map module shows the locations of corresponding borehole data on a 2D map with additional map layers. The database module provides data management functions for large borehole databases for other modules. Field survey was also carried out using more than 100,000 borehole data.

  19. Field experiment in Soultz-sous-Forêts, 1993: Changes of the pattern of induced seismicity

    NASA Astrophysics Data System (ADS)

    Smirnov, Vladimir; Ponomarev, Alexander; Bernard, Pascal; Bourouis, Seid

    2013-12-01

    The data of the known field experiment on water injection in the borehole were analyzed. Parameters of self-similarity of seismicity were estimated in comparison with the changes of water pressure. Changes of seismicity parameters that indicate the redistribution of the failure from lower scales to upper are revealed. The total number of earthquakes per series of the water initiation found to be depended exponentially on the water pressure and seismic activity maximum is delayed gradually relative to beginning of initiation. The growth of induced seismicity zone in time differs from diffusion model for water flow in the porous medium. Analysis carried out from laboratory data indicates that diffusion growth of the failure area may be realized in the dry specimen, without fluid. It could be assumed that both kinetic processes — water and the failure diffusion — can be significant for the development of seismicity induced by the water injection.

  20. Seismic Hazard Assessment for the Baku City and Absheron Peninsula, Azerbaijan

    SciTech Connect

    Babayev, Gulam R.

    2006-03-23

    This paper deals with the seismic hazard assessment for Baku and the Absheron peninsula. The assessment is based on the information on the features of earthquake ground motion excitation, seismic wave propagation (attenuation), and site effect. I analyze active faults, seismicity, soil and rock properties, geological cross-sections, the borehole data of measured shear-wave velocity, lithology, amplification factor of each geological unit, geomorphology, topography, and basic rock and surface ground motions. To estimate peak ground acceleration (PGA) at the surface, PGA at the basic rock is multiplied by the amplification parameter of each surface layers. Quaternary soft deposits, representing a high risk due to increasing PGA values at surface, are studied in detail. For a near-zone target earthquake PGA values are compared to intensity at MSK-64 scale for the Absheron peninsula. The amplification factor for the Baku city is assessed and provides estimations for a level of a seismic motion and seismic intensity of the studied area.

  1. Crustal structure of Siberia: a new appraisal of old seismic data

    NASA Astrophysics Data System (ADS)

    Cherepanova, Yu; Artemieva, I. M.; Milshtein, E.; Erinchek, Yu. M.; Thybo, H.

    2010-05-01

    We review the structure of the crust and the sedimentary cover in an area that encompasses two largest tectonic regions, the Paleozoic West Siberia basin and the Precambrian Siberian craton, and extends from the Ural mountains in the west to the Verkoyansk Ridge/Lena river in the east, and from the Arctic shelf in the north to the Tien Shan and Altay-Sayans mountains in the south. We compiled "from scratch" all available seismic data for the region, from the late 1960-ies until present. Our compilation includes results of seismic reflection, refraction and receiver functions studies, based on old and newly acquired seismic data; data along seismic profiles are digitized with a 50 km lateral spacing which is comparable with resolution of seismic models. Seismic data on the structure of the sedimentary cover was complemented by borehole data, where available. Due to uneven quality of seismic data related both to data acquisition and interpretation, a special attention was paid to this problem and quality parameters are incorporated into the new database of regional crustal structure. We have intentionally excluded unreliable constraints, such as based on gravity modelling or tectonic similarities, or seismic data reported not along seismic reflection/ refraction profiles but as interpolated contour maps. The present database comprises detailed and reliable information on the seismic structure of the crust for most of the tectonic structures of the region and allows examining spatial correlations with tectonic and geological structures, providing the basis for studies of crustal evolution and mantle modeling.

  2. Downhole seismic noise measurements in the Beowawe geothermal field, Nevada

    SciTech Connect

    Rutledge, J.T.; Albright, J.N.; Batra, R.

    1985-01-01

    A downhole seismic noise study was conducted at The Geysers area of Chevron's Beowawe geothermal field. Four wells were acoustically monitored with sensors placed simultaneously downhole and at the wellhead. Analyses included the correlation of downhole to surficial noise characteristics, well-to-well data correlations for noise source location or direction, and testing for the presence of borehole acoustic coupling between downhole and wellhead receivers. Intrawell cross-correlations in cased or lined boreholes clearly indicate acoustic coupling between wellhead and downhole receivers. Mean-integrated power values calculated over three frequency intervals indicate that the coupled signal is in the frequency interval 30 to 85 Hz and is the dominant component of signal downhole. Surficial variations of noise intensity in the frequency interval 0.5 to 15 Hz show little relation to simultaneously monitored downhole noise integrity. Downhole noise measurement appears to be predominantly a function of near-borehole phenomena in lined or cased holes. Measurements in an uncased borehole showed good correlations with surficial variations. Interwell correlations of noise could not be found. Reservoir noise in the Beowawe field indicated by conventional geophysical surveys could not be corroborated. 8 refs., 4 figs.

  3. Synthesis, crystal structure and properties of Mg3B36Si9C and related rare earth compounds RE3-xB36Si9C (RE=Y, Gd-Lu)

    NASA Astrophysics Data System (ADS)

    Ludwig, Thilo; Pediaditakis, Alexis; Sagawe, Vanessa; Hillebrecht, Harald

    2013-08-01

    We report on the synthesis and characterisation of Mg3B36Si9C. Black single crystals of hexagonal shape were yielded from the elements at 1600 °C in h-BN crucibles welded in Ta ampoules. The crystal structure (space group R3barm, a=10.0793(13) Å, c=16.372(3) Å, 660 refl., 51 param., R1(F)=0.019; wR2(F2)=0.051) is characterized by a Kagome-net of B12 icosahedra, ethane like Si8-units and disordered SiC-dumbbells. Vibrational spectra show typical features of boron-rich borides and Zintl phases. Mg3B36Si9C is stable against HF/HNO3 and conc. NaOH. The micro-hardness is 17.0 GPa (Vickers) and 14.5 GPa (Knoop), respectively. According to simple electron counting rules Mg3B36Si9C is an electron precise compound. Band structure calculations reveal a band gap of 1.0 eV in agreement to the black colour. Interatomic distances obtained from the refinement of X-ray data are biased and falsified by the disorder of the SiC-dumbbell. The most evident structural parameters were obtained by relaxation calculation. Composition and carbon content were confirmed by WDX measurements. The small but significant carbon content is necessary by structural reasons and frequently caused by contaminations. The rare earth compounds RE3-xB36Si9C (RE=Y, Dy-Lu) are isotypic. Single crystals were grown from a silicon melt and their structures refined. The partial occupation of the RE-sites fits to the requirements of an electron-precise composition. According to the displacement parameters a relaxation should be applied to obtain correct structural parameters.

  4. Estimating Heavy Oil Viscosity from Seismic Data

    NASA Astrophysics Data System (ADS)

    Vasheghani Farahani, Fereidoon

    Heavy oils are viscoelastic material; therefore, their shear properties influence the seismic response and should not be ignored. Heavy oil viscosity, among other parameters, controls the attenuation of seismic waves which is measured in terms of quality factor Q. BISQ, a poroviscoelastic model that couples the effects of simultaneous Biot and squirt flow mechanisms, is used to relate Q to the fluid viscosity. The variation of quality factor with respect to fluid viscosity, as predicted by BISQ, matches the laboratory measurements. Quality factor is a measurable seismic attribute. Higher frequency data are more favourable for Q estimation. Crosswell seismic data from a heavy oil reservoir is used for estimating Q. Travel time tomography followed by attenuation tomography yields the quality factor. The resultingQ tomogram can be converted into the viscosity tomogram if the remaining reservoir parameters are known. Such parameters are populated for the zone of interest using the geostatistical methods from the available log and core data at borehole locations. Existing BISQ equations can only take one fluid phase into account. However, the porous reservoir rock is saturated with bitumen and water. A slightly modified version of the BISQ relations is used in order to accommodate the presence of a second fluid phase. The estimated viscosity tomogram shows ambiguity because for every given quality factor, more than one viscosity value can be calculated. Despite the ambiguity, the methodology introduced in this study demonstrates that seismic data have the potential to be used for estimation of fluid viscosity in heavy oil reservoirs, although further research is needed to improve the workflow.

  5. Geophysical borehole logging in the unsaturated zone, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Schimschal, Ulrich; Nelson, Philip H.

    1991-01-01

    Borehole geophysical logging for site characterization in the volcanic rocks at the proposed nuclear waste repository at Yucca Mountain, Nevada, requires data collection under rather unusual conditions. Logging tools must operate in rugose, dry holes above the water table in the unsaturated zone. Not all logging tools will operate in this environment, therefore; careful consideration must be given to selection and calibration. A sample suite of logs is presented that demonstrates correlation of geological formations from borehole to borehole, the definition of zones of altered mineralogy, and the quantitative estimates of rock properties. We show the results of an exploratory calculation of porosity and water saturation based upon density and epithermal neutron logs. Comparison of the results with a few core samples is encouraging, particularly because the logs can provide continuous data in boreholes where core samples are not available.

  6. Canister, sealing method and composition for sealing a borehole

    DOEpatents

    Brown, Donald W.; Wagh, Arun S.

    2003-05-13

    Canister, sealing method and composition for sealing a borehole. The canister includes a container with slurry inside the container, one or more slurry exits at one end of the container, a pump at the other end of the container, and a piston inside that pushes the slurry though the slurry exit(s), out of the container, and into a borehole. An inflatable packer outside the container provides stabilization in the borehole. A borehole sealing material is made by combining an oxide or hydroxide and a phosphate with water to form a slurry which then sets to form a high strength, minimally porous material which binds well to itself, underground formations, steel and ceramics.

  7. SURFACE AND BOREHOLE ELECTROMAGNETIC IMAGING OF CONDUCTING CONTAMINANT PLUMES

    EPA Science Inventory

    Electromagnetic induction tomography is a promising new tool for imaging electrical conductivity variations in the earth. The EM source field is produced by induction coil (magnetic dipole) transmitters deployed at the surface or in boreholes. Vertical and horizontal component ma...

  8. Method and apparatus for suppressing waves in a borehole

    DOEpatents

    West, Phillip B.

    2005-10-04

    Methods and apparatus for suppression of wave energy within a fluid-filled borehole using a low pressure acoustic barrier. In one embodiment, a flexible diaphragm type device is configured as an open bottomed tubular structure for disposition in a borehole to be filled with a gas to create a barrier to wave energy, including tube waves. In another embodiment, an expandable umbrella type device is used to define a chamber in which a gas is disposed. In yet another embodiment, a reverse acting bladder type device is suspended in the borehole. Due to its reverse acting properties, the bladder expands when internal pressure is reduced, and the reverse acting bladder device extends across the borehole to provide a low pressure wave energy barrier.

  9. Seismic paleoceanography and the stratigraphic signature of rapid climate changes

    NASA Astrophysics Data System (ADS)

    Berne, Serge; Sierro, Francisco Javier

    2015-04-01

    The term "seismic paleoceanography" was introduced in 2004 by R. Schneider, a former Chair of Images, during the EC-funded « Promess » project, for highlighting the importance of seismic data in paleoceanographic reconstructions during this particular project. The interest of seismic stratigraphy prior to drilling operations, such as those of the IODP, has long been recognized, and became a pre-requisite for the submission of scientific proposals. However, this kind of expedition generally relies on relatively low resolution, multi-channel seismic data where only the impact of major climate changes can be visualized. In contrast, a large proportion of the Images community, more familiar with the Marion Dufresne, mainly considers seismic data as a support for selecting the best coring sites. The large amount of shallow cores, borehole and seismic (at various frequencies) data available in the Gulf of Lions allows us to illustrate the importance of very high- and ultra high- resolution seismic data for tracking the signature of rapid climate changes. The flooding events associated to "Bond Cycles" (bundles of several Dansgaard-Oeschger cycles) during MIS 3- MIS 2, are an example of the interesting feedbacks between seismic interpretation and high-resolution paleoceanography. These events where first identified in the Gulf of Lions through the multi-proxy analysis of cores retrieved at site PRGL1-4 (Sierro et al., 2009). In return, the re-examination of seismic data allows us to identify a series of corresponding seismic bounding surfaces (characterized by toplap and onlap terminations) along the continental slope. In terms of seismic amplitudes, the seismic surface associated to the transition between Heinrich Stadial 4 and Interstadial 8 appears as the most pronounced event during the entire MIS3-MIS2, suggesting that the magnitude of the associated sea-level change was the most important of this interval. Even more subtle events, such as the Melt Water Pulse 19

  10. Data Qualification Report: Borehole Straigraphic Contacts

    SciTech Connect

    R.W. Clayton; C. Lum

    2000-04-18

    The data set considered here is the borehole stratigraphic contacts data (DTN: M09811MWDGFM03.000) used as input to the Geologic Framework Model. A Technical Assessment method used to evaluate these data with a two-fold approach: (1) comparison to the geophysical logs on which the contacts were, in part, based; and (2) evaluation of the data by mapping individual units using the entire data set. Qualification of the geophysical logs is being performed in a separate activity. A representative subset of the contacts data was chosen based on importance of the contact and representativeness of that contact in the total data set. An acceptance window was established for each contact based on the needs of the data users. Data determined to be within the acceptance window were determined to be adequate for their intended use in three-dimensional spatial modeling and were recommended to be Qualified. These methods were chosen to provide a two-pronged evaluation that examines both the origin and results of the data. The result of this evaluation is a recommendation to qualify all contacts. No data were found to lie outside the pre-determined acceptance window. Where no geophysical logs are available, data were evaluated in relation to surrounding data and by impact assessment. These data are also recommended to be qualified. The stratigraphic contact data contained in this report (Attachment VII; DTN: M00004QGFMPICK.000) are intended to replace the source data, which will remain unqualified.

  11. Application of Borehole SIP Technique to Sulfide Mineral Exploration

    NASA Astrophysics Data System (ADS)

    Kim, Changryol; Park, Mi Kyung; Park, Samgyu; Sung, Nak Hoon; Shin, Seung Wook

    2016-04-01

    In the study, SIP (Spectral Induced Polarization) well logging probe system was developed to rapidly locate the metal ore bodies with sulfide minerals in the boreholes. The newly developed SIP logging probe employed the non-polarizable electrodes, consisting of zinc chloride (ZnCl2), sodium chloride (NaCl), gypsum (CaSO4·2H2O), and water (H2O), instead of existing copper electrodes, leading to eliminating the EM coupling effect in the IP surveys as much as possible. In addition, the SIP logging system is designed to make measurements down to maximum 500 meters in depth in the boreholes. The SIP well logging was conducted to examine the applicability of the SIP probe system to the boreholes at the ore mine in Jecheon area, Korea. The boreholes used in the SIP logging are known to have penetrated the metal ore bodies with sulfide minerals from the drilling investigations. The ore mine of the study area is the scarn deposits surrounded by the limestone or lime-silicate rocks in Ordovician period. The results of the SIP well logging have shown that the borehole segments with limestone or lime-silicate rocks yielded the insignificant SIP responses while the borehole segments with sulfide minerals (e.g. pyrite) provided the significant phase shifts of the SIP responses. The borehole segments penetrating the metal ore body, so-called cupola, have shown very high response of the phase shift, due to the high contents of the sulfide mineral pyrite. The phase shifts of the SIP response could be used to estimate the grade of the ore bodies since the higher contents of the sulfide minerals, the higher magnitudes of the phase shifts in the SIP responses. It is, therefore, believed that the borehole SIP technique can be applied to investigate the metal ore bodies with sulfide minerals, and that could be used to estimate the ore grades as a supplementary tool in the future.

  12. Bond strength of cementitious borehole plugs in welded tuff

    SciTech Connect

    Akgun, H.; Daemen, J.J.K.

    1991-02-01

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young`s modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs.

  13. Thermobaric calculation of a steam-thermal borehole

    NASA Astrophysics Data System (ADS)

    Alishaev, M. G.; Azizov, G. A.

    2011-07-01

    A procedure is proposed for carrying out an approximate analytical calculation of pressure and temperature along a vertical borehole for thermal water with a temperature of 150-320°C taking into account its phase transition into steam. It is shown that both a single-phase flow mode for water and a two-phase flow mode for a mixture of water and steam can appear in the borehole under certain conditions.

  14. Observations of joint persistence and connectivity across boreholes

    SciTech Connect

    Thapa, B.B.; Karasaki, K.

    1996-01-01

    Observations of joint persistence and connectivity are made by comparison of digital borehole wall images of fractures, fluid conductivity logs and hydraulic injections test results. The fractures were found to be generally impersistent across vertical boreholes about 8 m apart. Many hydraulic connections were found in the same volume of rock. Direct connections through single fractures seem to be rare and connectivity appears to be controlled by fracture networks, even over small volumes.

  15. Hydrocarbon Induced Seismicity in Northern Netherlands

    NASA Astrophysics Data System (ADS)

    Dost, B.; Spetzler, J.; Kraaijpoel, D.; Caccavale, M.

    2015-12-01

    The northern Netherlands has been regarded aseismic until the first earthquakes started in 1986, after more than 25 years of gas production from the one of the largest on-shore gas-fields in the World, the Groningen field, and accompanying smaller gas fields. Due to the shallow sources, at approximately 3 km depth, even small magnitude events cause considerable damage to buildings in the region. Since the largest recorded event in the Groningen field in 2012 with ML= 3,6, more than 30.000 damage claims were received by the mining company. Since 1995 a seismic monitoring network is operational in the region, consisting of 8 200m deep boreholes with 4 levels of 3C 4,5 Hz geophones. The network was designed for a location threshold of ML=1,5 over a 40x 80 km region. Average station separation was 20 km. At the end of 2014, 245 events have been recorded with ML ≥ 1,5, out of a total of 1100. Since 2003 a new mining law is in place in the Netherlands, which requires for each gas field in production a seismic risk analysis. Initially, due to the small number of events for specific fields, a general hazard (PSHA) was calculated for all gas-fields and a maximum magnitude was estimated at ML = 3,9. Since 2003 an increase in the activity rate is observed for the Groningen field, leading to the development of new models and a re-assessment of parameters like the maximum magnitude. More recently these models are extended to seismic risk, where also the fragility of the regional buildings is taken into account. Understanding the earthquake process is essential in taking mitigation measures. Continued research is focused on reducing the uncertainties in the hazard and risk models and is accompanied by an upgrade of the monitoring network. In 2014 a new dense network was designed to monitor the Groningen gas field in this region (30*40 km) with an average separation of 4 km. This allows an improved location threshold (M>0,5) and location accuracy (50-100m). A detailed P- and S

  16. Pharmacological discrimination of plasmalemmal and mitochondrial sodium-calcium exchanger in cardiomyocyte-derived H9c2 cells.

    PubMed

    Namekata, Iyuki; Hamaguchi, Shogo; Tanaka, Hikaru

    2015-01-01

    We examined the effects of SEA0400 and CGP-37157 on the plasmalemmal Na(+)-Ca(2+) exchanger (NCX) and mitochondrial NCX using H9c2 cardiomyocytes loaded with Ca(2+)-sensitive fluorescent probes. The plasmalemmal NCX activity, which was measured as the increase in cytoplasmic Ca(2+) concentration after application of low Na(+) extracellular solution, was inhibited by SEA0400 but not by CGP-37157. The mitochondrial NCX activity, which was measured in permeabilized H9c2 cells as the decrease in mitochondrial Ca(2+) concentration after application of Ca(2+)-free extramitochondrial solution, was inhibited by CGP-37157 but not by SEA0400. These results indicate that SEA0400 and CGP-37157 act as selective inhibitors towards plasmalemmal and mitochondrial NCX, respectively, and provide pharmacological evidence that the plasmalemmal and mitochondrial NCX are distinct molecular entities. PMID:25744471

  17. High vertical resolution crosswell seismic imaging

    DOEpatents

    Lazaratos, Spyridon K.

    1999-12-07

    A method for producing high vertical resolution seismic images from crosswell data is disclosed. In accordance with one aspect of the disclosure, a set of vertically spaced, generally horizontally extending continuous layers and associated nodes are defined within a region between two boreholes. The specific number of nodes is selected such that the value of a particular characteristic of the subterranean region at each of the nodes is one which can be determined from the seismic data. Once values are established at the nodes, values of the particular characteristic are assigned to positions between the node points of each layer based on the values at node within that layer and without regard to the values at node points within any other layer. A seismic map is produced using the node values and the assigned values therebetween. In accordance with another aspect of the disclosure, an approximate model of the region is established using direct arrival traveltime data. Thereafter, the approximate model is adjusted using reflected arrival data. In accordance with still another aspect of the disclosure, correction is provided for well deviation. An associated technique which provides improvements in ray tracing is also disclosed.

  18. The experimental results and analysis of a borehole radar prototype

    NASA Astrophysics Data System (ADS)

    Liu, Sixin; Wu, Junjun; Dong, Hang; Fu, Lei; Wang, Fei

    2012-04-01

    A prototype of borehole radar has been successfully tested in three sites for different purposes under a field condition. The objective of the prototype is providing an effective down-hole tool for detecting targets in deep boreholes situated in a relatively high conductivity area such as the metal ores. The first testing site is at a geothermal field. The fractures extending more than 20 m from the borehole are delineated by the borehole radar in the single-hole reflection mode. The second testing site is located in a jade mine for basement evaluation. The cross-hole measurement mode was used to detect the cavities made by previous unorganized mining activities. Several high-velocity anomalies were found in the velocity profile and presumably the targets of the mine shafts and tunnels. The third test site is located in a mineralized belt characterized by low resistivity less than 1000 Ohm m, the surface-borehole measurement was carried out and the data were processed with velocity tomography. The low-velocity zone corresponds to a mineralized zone from geological records. The three testing results proved the readiness of this borehole radar prototype for further deployment in more complicated and realistic field situations.

  19. Stereoselective Synthesis of the C9-C19 Fragment of Lyngbyaloside B and C via Ether Transfer

    PubMed Central

    Stefan, Eric; Taylor, Richard E.

    2012-01-01

    A stereoselective synthesis of the C9-C19 fragment of lyngbyaloside B and C highlighted, by an extension of our ether transfer methodology, enables the formation of tertiary ethers. 2-Naphthylmethyl ethers have been shown to proceed efficiently through ether transfer with high stereoselectivity and are easily deprotected by DDQ oxidation. Variation of the workup conditions results in the stereoselective formation of syn-1,3-diol mono- or diethers. PMID:22716968

  20. Protective effects of extendin‑4 on hypoxia/reoxygenation‑induced injury in H9c2 cells.

    PubMed

    Lu, Kai; Chang, Guanglei; Ye, Lin; Zhang, Peng; Li, Yong; Zhang, Dongying

    2015-08-01

    Glucagon-like peptide-1 (GLP-1) analogues are likely to exert cardioprotective effects via balancing the energy metabolism in cardiomyocytes following ischemic or hypoxic insults. The present study aimed to explore the protective effects and mechanism of exendin-4, a GLP-1 analogue, on cardiomyocyte glucose uptake using an in vitro model of hypoxia/reoxygenation (H/R) of H9c2 cardiomyocyte cells. Pre-treatment with exendin-4 (200 nM) prior to H/R increased the cell viability, decreased cell apoptosis, enhanced cardiomyocyte glucose uptake and increased the production of adenosine triphosphate. Exendin-4 also decreased the levels of lactate dehydrogenase and creatine kinase-MB in the culture medium. Furthermore, the activity of carnitine palmitoyltransferase-1 in the H9c2 cells was decreased, while the activity of phosphofructokinase-1 was increased following exendin-4 treatment. Moreover, pre-treatment with exendin-4 increased the expression of p38 mitogen-activated protein kinase (p38MAPK) γ and translocation of glucose transporter-1 in H9c2 cells subjected to H/R. However, these effects were attenuated by the p38MAPK inhibitors BIRB796 and SB203580. The results suggested that exendin-4 exerted significant cardioprotective effects against H/R-induced cell injury and restored the metabolic imbalance of cardiomyocytes by activating the p38MAPK signaling pathway in the H9c2 cell model. Importantly, p38MAPKγ, one subunit of p38MAPK, may have the most important function in this process. The results of the present study may be helpful in the development of novel drugs to treat patients with coronary heart disease. PMID:25936390

  1. Active seismic experiment

    NASA Technical Reports Server (NTRS)

    Kovach, R. L.; Watkins, J. S.; Talwani, P.

    1972-01-01

    The Apollo 16 active seismic experiment (ASE) was designed to generate and monitor seismic waves for the study of the lunar near-surface structure. Several seismic energy sources are used: an astronaut-activated thumper device, a mortar package that contains rocket-launched grenades, and the impulse produced by the lunar module ascent. Analysis of some seismic signals recorded by the ASE has provided data concerning the near-surface structure at the Descartes landing site. Two compressional seismic velocities have so far been recognized in the seismic data. The deployment of the ASE is described, and the significant results obtained are discussed.

  2. Thresholds for earthquake-induced hydrological changes in sedimentary aquifers: a record from 9 earthquakes and 107 boreholes in central New Zealand

    NASA Astrophysics Data System (ADS)

    Weaver, Konrad; Cox, Simon; Holden, Caroline; Townend, John

    2016-04-01

    A dense hydrogeological network in central New Zealand has recorded groundwater fluctuations from 12 years of seismic events. Hydrological data over the past 15 years were assessed in 107 boreholes at depths of 4 - 405 m. Nine seismic events (M≥5.9) occurred at near- to far-field distances of 10 - 913 km, shaking the sedimentary aquifers at a wide range of 10‑4 to 103 J/m3 seismic energy densities. The earthquakes produced 258 detectable hydrological responses, exhibiting different polarities (rise or fall), amplitudes (2 to 820 mm, -859 to -2 mm) and timescales (15 min to day [s]). Shaking parameters were calculated from 28 proximal GeoNet broadband seismometers, providing local estimates of peak ground acceleration (PGA) and velocity (PGV), Arias intensity, and spectral amplitudes. ShakeMap model solutions, utilising ground motion prediction equations (GMPEs), were also acquired at borehole sites. Continuous oceanic tidal responses of 38 boreholes were derived using Baytap08, with temporal transmissivity and earthquake-induced changes estimated from tidal properties. The earthquake-induced changes to groundwater level and tidal response are used to infer those events which caused aquifer deformation and changes to the groundwater flow regime. A transient (15 min to 2 hr) / permanent (15 min to day [s]) deformation boundary is observed when shaking reaches ˜1 %g PGA. As well as defining thresholds at which hydrological changes occurred, the central New Zealand dataset provided an opportunity to examine aquifer ability in resistance to the effects induced by earthquakes. Where monitoring is dense and continuous, the absence of responses under certain levels of shaking is equally informative and helps delineate causative processes. On-going work utilises data mining to assess the contribution of seismic, hydrological, and geological parameters to earthquake-induced hydrological changes in sedimentary aquifer systems.

  3. Detectability of slow slip beneath the seismogenic zone of strike-slip faults using borehole tiltmeters

    NASA Astrophysics Data System (ADS)

    Chery, J.

    2015-12-01

    During the last decades, geodetic tools like C-GPS allowed the detection of slow slip events associated with transient motion below the seismogenic zone. This new class of fault motion lead us to revise the standard version of the seismic cycle simply including coseismic, postseismic and interseismic phases. Most of these discoveries occurred on subduction margins in various places like Japan, Cascadia, Chile and Indonesia. By contrast, GPS and strainmeters have provided little evidence of slow slip beneath the seismogenic zone of large continental faults like the San Andreas fault or the North Anatolian fault. Because the detectability of such motions is mostly tributary from instrumental precision, we examine the theoretical capability of tiltmeter arrays for detecting horizontal motion of a buried vertical fault. We define the slipping part of the strike-slip fault like a buried rectangular patch submitted to horizontal motion. This motion provides horizontal and vertical surface deformation as a function of both patch geometry (length, width, depth) and motion amplitude. Using a dislocation buried at 15km depth, we compute the maximum motion and tilt as a function of seismic moment. Assuming yields of detectability of 1mm for GPS horizontal motion and 10 nrad for a tiltmeter, we show that small slip events could be better detected using high resolution and stability tiltmeters. We then examine how tiltmeters arrays could be used for such a purpose. In particular, we discuss how to deal with usual problems often plaguing tiltmeters data like instrumental drift, borehole coupling and hydrological strain.

  4. Deep borehole measurements for characterizing the magma/hydrothermal system at Long Valley Caldera, CA

    SciTech Connect

    Carrigan, C.R.

    1989-01-01

    The Magma Energy Program of the Geothermal Technology Division is scheduled to begin drilling a deep (6 km) exploration well in long Valley Caldera, California in 1989. The drilling site is near the center of the caldera which is associated with numerous shallow (5-7 km) geophysical anomalies. This deep well will present an unparalleled opportunity to test and validate geophysical techniques for locating magma as well as a test of the theory that magma is still present at drillable depths within the central portion of the caldera. If, indeed, drilling indicates magma, the geothermal community will then be afforded the unique possibility of examining the coupling between magmatic and hydrothermal regimes in a major volcanic system. Goals of planned seismic experiments that involve the well include the investigation of local crystal structure down to depths of 10 km as well as the determination of mechanisms for local seismicity and deformation. Borehole electrical and electromagnetic surveys will increase the volume and depth of rock investigated by the well through consideration of the conductive structure of the hydrothermal and underlying regimes. 9 refs., 5 figs.

  5. Analysis of signals of a borehole strainmeter in the western rift of Corinth, Greece

    NASA Astrophysics Data System (ADS)

    Canitano, A.; Bernard, P.; Linde, A. T.; Sacks, S.

    2013-03-01

    This paper presents the first analysis of the records of an elliptical 3-component Sacks-Evertson borehole strainmeter. This highresolution prototype by the Carnegie Institution of Washington, is installed since 2006 in the western rift of Corinth, Greece. We first present the calibration and the correction from external influences, in order to quantify the detection level of the instrument. We show evidence for pore pressure diffusion from the sea, mostly affecting one component. Neglecting this effect, a first order correction reduces the signal by 90% at tidal periods for 2 components and about 70% for the third one. The residual noise vary from 1 nstrain at 1-hour period to 10 nstrain at 1-day period. It allows to detect slow earthquakes lasting 1 day down to magnitude 4 at an hypocentral distance of 8 kilometers. The uncorrected records at periods smaller than semidiurnal does not reveal any slow strain transient with strong amplitude. During the closest seismic swarm to the site in 2011, the analysis of the records reveals strain steps occuring at the arrival times of seismic waves radiated by the local earthquakes, uncorrelated with the amplitudes and mostly related to dynamic pore pressure instabilities.

  6. Evidence for non-self-similarity of microearthquakes recorded at a Taiwan borehole seismometer array

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Yu; Ma, Kuo-Fong; Kanamori, Hiroo; Song, Teh-Ru Alex; Lapusta, Nadia; Tsai, Victor C.

    2016-04-01

    We investigate the relationship between seismic moment M0 and source duration tw of microearthquakes by using high-quality seismic data recorded with a vertical borehole array installed in central Taiwan. We apply a waveform cross-correlation method to the three-component records and identify several event clusters with high waveform similarity, with event magnitudes ranging from 0.3 to 2.0. Three clusters-Clusters A, B, and C-contain 11, 8, and 6 events with similar waveforms, respectively. To determine how M0 scales with tw, we remove path effects by using a path-averaged Q. The results indicate a nearly constant tw for events within each cluster, regardless of M0, with mean values of tw being 0.058, 0.056, and 0.034 s for Clusters A, B, and C, respectively. Constant tw, independent of M0, violates the commonly used scaling relation {t_w} ∝ M_0^{1/3}. This constant duration may arise either because all events in a cluster are hosted on the same isolated seismogenic patch, or because the events are driven by external factors of constant duration, such as fluid injections into the fault zone. It may also be related to the earthquake nucleation size.

  7. Evidence for non-self-similarity of microearthquakes recorded at a Taiwan borehole seismometer array

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Yu; Ma, Kuo-Fong; Kanamori, Hiroo; Song, Teh-Ru Alex; Lapusta, Nadia; Tsai, Victor C.

    2016-08-01

    We investigate the relationship between seismic moment M0 and source duration tw of microearthquakes by using high-quality seismic data recorded with a vertical borehole array installed in central Taiwan. We apply a waveform cross-correlation method to the three-component records and identify several event clusters with high waveform similarity, with event magnitudes ranging from 0.3 to 2.0. Three clusters-Clusters A, B and C-contain 11, 8 and 6 events with similar waveforms, respectively. To determine how M0 scales with tw, we remove path effects by using a path-averaged Q. The results indicate a nearly constant tw for events within each cluster, regardless of M0, with mean values of tw being 0.058, 0.056 and 0.034 s for Clusters A, B and C, respectively. Constant tw, independent of M0, violates the commonly used scaling relation {t_w} ∝ M_0^{1/3}. This constant duration may arise either because all events in a cluster are hosted on the same isolated seismogenic patch, or because the events are driven by external factors of constant duration, such as fluid injections into the fault zone. It may also be related to the earthquake nucleation size.

  8. Canstatin inhibits isoproterenol-induced apoptosis through preserving mitochondrial morphology in differentiated H9c2 cardiomyoblasts.

    PubMed

    Okada, Muneyoshi; Morioka, Suiri; Kanazawa, Hiroki; Yamawaki, Hideyuki

    2016-08-01

    Canstatin, a non-collagenous fragment, is cleaved from type IV collagen α2 chain, an essential component of basement membrane surrounding cardiomyocytes. Although canstatin is known as an endogenous anti-angiogenic factor, its effects on cardiomyocytes have not been clarified. This study examined the effects of canstatin on isoproterenol-induced apoptosis in differentiated H9c2 cardiomyoblasts. Retinoic acid was used to differentiate H9c2 myoblast to cardiomyocyte-like phenotype. Cell viability was determined by a cell counting assay. Western blotting was performed to detect expression of cleaved casepase-3 and phosphorylation of dynamin related protein (Drp)1 at Ser637 which regulates mitochondrial fission. Mito Sox Red staining was performed to examine a mitochondria-dependent production of reactive oxygen species (ROS). Mitochondrial morphology was detected by Mito Tracker Red staining. Isoproterenol (100 μM, 48 h) significantly decreased cell viability and increased cleaved caspase-3 expression, which were inhibited by canstatin (10-250 ng/ml) in a concentration-dependent manner. Canstatin suppressed the isoproterenol-induced mitochondrial fission but not ROS. Canstatin also inhibited the isoproterenol-induced dephosphorylation of Drp1 at Ser637. In conclusion, canstatin inhibits isoproterenol-induced apoptosis through the inhibition of mitochondrial fission via the suppression of dephosphorylation of Drp1 at Ser637 in differentiated H9c2 cardiomyoblasts. PMID:27315818

  9. Interleukin-27 Protects Cardiomyocyte-Like H9c2 Cells against Metabolic Syndrome: Role of STAT3 Signaling

    PubMed Central

    Phan, Wei-Lian; Huang, Yu-Tzu; Ma, Ming-Chieh

    2015-01-01

    The present results demonstrated that high glucose (G), salt (S), and cholesterol C (either alone or in combination), as mimicking extracellular changes in metabolic syndrome, damage cardiomyocyte-like H9c2 cells and reduce their viability in a time-dependent manner. However, the effects were greatest when cells were exposed to all three agents (GSC). The mRNA of glycoprotein (gp) 130 and WSX-1, both components of the interleukin (IL)-27 receptor, were present in H9c2 cells. Although mRNA expression was not affected by exogenous treatment with IL-27, the expression of gp130 mRNA (but not that of WSX-1 mRNA) was attenuated by GSC. Treatment of IL-27 to H9c2 cells increased activation of signal transducer and activator of transcription 3 (STAT3) and protected cells from GSC-induced cytochrome c release and cell damage. The protective effects of IL-27 were abrogated by the STAT3 inhibitor, stattic. The results of the present study clearly demonstrate that the STAT3 pathway triggered by anti-inflammatory IL-27 plays a role in protecting cardiomyocytes against GSC-mediated damage. PMID:26339633

  10. Mapping brittle fracture zones in three dimensions: high resolution traveltime seismic tomography in a granitic pluton

    NASA Astrophysics Data System (ADS)

    Martí, D.; Carbonell, R.; Tryggvason, A.; Escuder, J.; Pérez-Estaún, A.

    2002-04-01

    Fractured and altered zones within a granitic pluton are mapped in three dimensions by means of high resolution seismic traveltime tomography. The input traveltimes were picked from offset and azimuth variable vertical seismic profiles (OVSP) acquired in three boreholes and from seismic shot gathers of four CDP high resolution seismic reflection profiles recorded on the surface. For the OVSP data a hydrophone streamer placed in the boreholes recorded the acoustic energy generated (a signal with a frequency content between 15 to 150 Hz) by a Vibroseis truck at source points distributed every 30 m in a rectangular grid of 620 m by 150 m. The combination of borehole and surface seismic data resulted in an increase in the ray density of the shallow subsurface. The tomographic algorithm uses a variable model grid, with a finer grid spacing close to the surface were ray density is highest and the velocity variations are strongest. Therefore the resulting velocity models feature more detail at shallow levels. A simple and smooth starting velocity model was derived from P -wave velocity logs. Careful surface geological mapping, and borehole geophysical data, P - and S -wave velocity logs and Poisson's ratio depth functions, provided key constraints for a physically reasonable 3-D interpretation of the tomograms. The low velocity anomalies constrained by the tomographic images were interpreted as unconsolidated rock, fractures and altered zones which correlate with structures mapped at the surface or velocity anomalies identified in the logs. Subsequent resolution analysis revealed that the derived velocity model is well constrained to depths of 60 m.

  11. Permanent water level drop associated with the Spitak Earthquake: observations at Lisi Borehole (Republic of Georgia) and modelling

    NASA Astrophysics Data System (ADS)

    Gavrilenko, P.; Melikadzé, G.; Chélidzé, T.; Gibert, D.; Kumsiashvili, G.

    2000-10-01

    We present the results of a series of measurements that were made between 1988 and 1992 at Lisi (Georgia). Water level variations in the Lisi well, barometric pressure, precipitation (including rain and snow) and temperature measurements were made during this period. A hydraulic `slug test' has been performed more recently in the well. Two major seismic events occurred during the observation period in the Caucasus area. The Spitak seismic event of 1988 December 9, 110km from the Lisi borehole, left a clear post-seismic hydraulic signature, whereas the second event, that of 1991 April 29, 125km from the borehole, did not seem to induce any detectable anomaly. First, we analyse the tidal and barometric responses of the water level in order to calibrate the borehole and to determine the hydraulic parameters of the aquifer. Then we develop a model for aquifer recharge by meteoric precipitation. Finally, we compare our model with the observed water level variations in the well. We highlight anomalous behaviour that correlates with the earthquake, with the following characteristics: the water level drops about 75cm with a time constant of 6.6days. The initial water level is never recovered and the change appears permanent on the scale of the period of observation. Since it is delayed in time, the anomalous water level cannot be attributed to coseismic deformation. Following the suggestion of some authors that the observed behaviour could be related to damage of the aquifer due to the passage of seismic waves, we attempted to take this process into account and to model the resulting water level variations in the aquifer. A double porosity model (including fractures and a porous medium) has been used to describe the modifications undergone by the medium. The medium is discretized at two different scales-(1) at the scale of a porous block and (2) at the scale of the fractured system (which may include a finite number of porous blocks). Using this basic model we have tested

  12. Decoupling of deformation in the Upper Rhine Graben sediments. Seismic reflection and diffraction on 3-component Vertical Seismic Profiling (Soultz-sous-Forêts area)

    NASA Astrophysics Data System (ADS)

    Place, Joachim; Diraison, Marc; Naville, Charles; Géraud, Yves; Schaming, Marc; Dezayes, Chrystel

    2010-07-01

    A contribution to the definition of the structural pattern of the Soultz-sous-Forêts EGS (Enhanced Geothermal System) is presented here. After reprocessing, the PHN84J seismic reflection profile highlights the tilted blocks of the Merkwiller-Péchelbronn oilfield. In the Soultz-sous-Forêts horst, complex fault patterns are observed: the Hermerswiller normal fault flattens at depth and is rooted in decollements occurring in Triassic salt or clay series, while other steep normal faults affect underlying sedimentary formations and basement. Some methods for the exploitation of a seismic diffraction recorded by multi-component Vertical Seismic Profiling (VSP) are also illustrated to locate the diffractor without specific data processing. Polarisation and travel time analysis of a diffraction event recorded in the GPK1 borehole are analysed, and its exploitation combined with seismic reflection helps defining a tilted block geometry.

  13. Borehole sampling of fracture populations - compensating for borehole sampling bias in crystalline bedrock aquifers, Mirror Lake, Grafton County, New Hampshire

    USGS Publications Warehouse

    McDonald, G.D.; Paillet, Frederick L.; Barton, C.C.; Johnson, C.D.

    1997-01-01

    The clustering of orientations of hydraulically conductive fractures in bedrock at the Mirror Lake, New Hampshire fractured rock study site was investigated by comparing the orientations of fracture populations in two subvertical borehole arrays with those mapped on four adjacent subvertical roadcuts. In the boreholes and the roadcuts, the orientation of fracture populations appears very similar after borehole data are compensated for undersampling of steeply dipping fractures. Compensated borehole and pavement fracture data indicate a northeast-striking population of fractures with varying dips concentrated near that of the local foliation in the adjacent rock. The data show no correlation between fracture density (fractures/linear meter) and distance from lithologic contacts in both the boreholes and the roadcuts. The population of water-producing borehole fractures is too small (28 out of 610 fractures) to yield meaningful orientation comparisons. However, the orientation of large aperture fractures (which contains all the producing fractures) contains two or three subsidiary clusters in orientation frequency that are not evident in stereographic projections of the entire population containing all aperture sizes. Further, these subsidiary orientation clusters do not coincide with the dominant (subhorizontal and subvertical) regional fracture orientations.

  14. Performance evaluation of the newly developed volumetric strainmeter for the ocean borehole observatory in Nankai Seismogenic zone

    NASA Astrophysics Data System (ADS)

    Kitada, K.; Araki, E.; Kimura, T.; Kinoshita, M.

    2011-12-01

    Long term, in-situ monitoring of seismic activity, slow slip event, pore fluid behavior and strain accumulation around mega earthquake zone is a key for understanding the process of earthquake generation. During the IODP Expedition 332 in last December, we have successfully installed the borehole observatory including our new volumetric strainmeter in the Kumano forearc basin of the Nankai Trough. In the KY11-09 cruise by R/V Kaiyo from this July to August 2011, the performance test on the strainmeter installed into the Site C0002 in Nankai Trough was conducted for the connection to the data recorder in order to achieve the long term borehole monitoring. The observatory will be connected to submarine cabled observation network called Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) for the real time monitoring, which were constructed in and around the drilling target area during the KY11-09 cruise. Assessing the strain response based on the several externally applied stresses is a crucial step toward evaluating and interpreting the strain data collected in the ocean borehole. Especially, in order to detect strain change based on the regional stress field, it is important to verify the performance by comparing with the theory model after removed the effect of the environmental factors. In this study, we have installed the borehole volumetric strainmeter which is the same type as installed in Nankai Trough, into the 216 mm outside diameter borehole with depth of about 21m in Kamioka mine (Hida, Japan) last December and the evaluation test of the long term performance was started. The collected strain data showed the drift rate of about 400-500 nstrain/day which can be explained by the temperature change of silicone oil inside the sensing part of the strainmeter and/or the other effect. The drift corrected data clearly showed the earth tidal strain change and corresponds with areal strain change predicted by the earth tidal model (GOTIC2). 0.2 - 0

  15. The electrical resistivity method in cased boreholes

    SciTech Connect

    Schenkel, C.J.

    1991-05-01

    The use of downhole current sources in resistivity mapping can greatly enhance the detection and delineation of subsurface features. The purpose of this work is to examine the resistivity method for current sources in wells cased with steel. The resistivity method in cased boreholes with downhole current sources is investigated using the integral equation (IE) technique. The casing and other bodies are characterized as conductivity inhomogeneities in a half-space. For sources located along the casing axis, an axially symmetric Green's function is used to formulate the surface potential and electric field (E-field) volume integral equations. The situations involving off-axis current sources and three-dimensional (3-D) bodies is formulated using the surface potential IE method. The solution of the 3-D Green's function is presented in cylindrical and Cartesian coordinate systems. The methods of moments is used to solve the Fredholm integral equation of the second kind for the response due to the casing and other bodies. The numerical analysis revealed that the current in the casing can be approximated by its vertical component except near the source and the axial symmetric approximation of the casing is valid even for the 3-D problem. The E-field volume IE method is an effective and efficient technique to simulate the response of the casing in a half-space, whereas the surface potential approach is computationally better when multiple bodies are involved. Analyzing several configurations of the current source indicated that the casing response is influenced by four characteristic factors: conduction length, current source depth,casing depth, and casing length. 85 refs., 133 figs., 11 tabs.

  16. Seismic intrusion detector system

    DOEpatents

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  17. Methane Emissions from Abandoned Boreholes in South Eastern Australia

    NASA Astrophysics Data System (ADS)

    Day, S. J.; Fry, R.; Dell'Amico, M.; Williams, D.; Halliburton, B.; Element, A.

    2015-12-01

    The Surat Basin in south-eastern Queensland is one of Australia's main coal bed methane production areas. It has also been subject to coal exploration over many years and consequently there are thousands of abandoned exploration boreholes throughout the region. Here, we present some results of field measurements aimed at locating leaking legacy exploration boreholes in the Surat Basin and to quantify their emission rates. We also discuss emission measurements made on abandoned CBM wells in Queensland and NSW that have been decommissioned according to modern practices. Leaking boreholes were located using a Picarro 2301 CH4 analyser mounted in a vehicle that was driven through gas fields in the Surat Basin. Where surface emissions were indicated by elevated ambient CH4 levels, the emission rate was measured using soil flux chambers at each site. For comparison, soil gas flux measurements were also made on natural surfaces and agricultural land throughout the study areas. Ten borehole sources were located during the surveys, yielding emission rates from less than 0.1 kg CH4 day-1 to more than 100 kg CH4 day-1. A number of other known exploration borehole sites were examined which had no detectable CH4 emissions. Plugged and abandoned CBM wells showed no CH4 emissions except in two cases where emission rates of about 0.07 g CH4 day-1 were detected, which were comparable to natural wetland CH4 emissions. Preliminary results suggest that modern decommissioning practices appear to be effective in preventing CH4 leakage from CBM abandoned wells. However, legacy coal exploration boreholes may represent a significant source of CH4 in the Surat Basin, although the proportion of these holes leaking CH4 is yet to be determined. Moreover, it is not yet clear if emissions from boreholes are affected by changes in groundwater induced by water extraction associated with gas production and agriculture. This is an area requiring further research.

  18. Experimental Investigation of Near-Borehole Crack Plugging with Bentonite

    NASA Astrophysics Data System (ADS)

    Upadhyay, R. A.; Islam, M. N.; Bunger, A.

    2015-12-01

    The success of the disposal of nuclear waste in a deep borehole (DBH) is determined by the integrity of the components of the borehole plug. Bentonite clay has been proposed as a key plugging material, and its effectiveness depends upon its penetration into near-borehole cracks associated with the drilling process. Here we present research aimed at understanding and maximizing the ability of clay materials to plug near-borehole cracks. A device was constructed such that the borehole is represented by a cylindrical chamber, and a near-borehole crack is represented by a slot adjacent to the center chamber. The experiments consist of placing bentonite clay pellets into the center chamber and filling the entire cavity with distilled water so that the pellets hydrate and swell, intruding into the slot because the cell prohibits swelling in the vertical direction along the borehole. Results indicate that the bentonite clay pellets do not fully plug the slot. We propose a model where the penetration is limited by (1) the free swelling potential intrinsic to the system comprised of the bentonite pellets and the hydrating fluid and (2) resisting shear force along the walls of the slot. Narrow slots have a smaller volume for the clay to fill than wider slots, but wider slots present less resistive force to clay intrusion. These two limiting factors work against each other, leading to a non-monotonic relationship between slot width and intrusion length. Further experimental results indicate that the free swelling potential of bentonite clay pellets depends on pellet diameter, "container" geometry, and solution salinity. Smaller diameter pellets possess more relative volumetric expansion than larger diameter pellets. The relative expansion of the clay also appears to decrease with the container size, which we understand to be due to the increased resistive force provided by the container walls. Increasing the salinity of the solution leads to a dramatic decrease in the clay

  19. Seismic imaging a carbonate reservoir: The Paris Basin Dogger

    SciTech Connect

    Mougenot, D.

    1995-08-01

    Within the Dogger project, seven partners joined forces (CGG, DHYCA, EAP, ESSO-REP, IFP, TOTAL, TRITON France) to develop an appropriate seismic acquisition, processing and interpretation methodology in order to improve the description of the main oil reservoir (30 m) lying at the top of the Dogger carbonates in the Paris Basin, at a depth of 1900 m. High-resolution 2D Vibroseismic is used to record high frequencies (up to 100 Hz) at the level of the target, and provides sufficiently adequate vertical resolution for the reflections at the top and at the base of the reservoir not to interfere. The upper frequency content of the 3D seismic (70 Hz) is more difficult to enhance. Yet the essential contribution made by the 3D is to evidence, via horizon attributes, sub-meridian lineaments corresponding to faults with throw of several meters which is too weak to be detected on vertical sections. The distribution of these faults, via which water tends to invade the reservoir, and the organization of the amplitudes at the top reservoir reflector, which seems to suggest lateral variations in porosity, are a valuable guide for setting up wells. Three-component seismic (2D-3c) and S-wave emissions did not produce any reflections beyond 30 Hz at the level of the target which is a poor reflector (PS & SS). Only borehole seismic (VSP, offset VSP), where high frequencies are much less attenuated than with surface seismic, provides detailed imaging of the reservoir in converted mode (up to 110 Hz in PP and in PS). The combination of a continuous spatial sampling, such as that obtained in 3D, and of a Vibroseis emission adapted to frequency attenuation, such as that used in 2D, can supply useful information about the thin and discontinuous Dogger reservoir which cannot he provided by mere correlation of the borehole data.

  20. Comparison of phase velocities from array measurements of Rayleigh waves associated with microtremor and results calculated from borehole shear-wave velocity profiles

    USGS Publications Warehouse

    Liu, Hsi-Ping; Boore, David M.; Joyner, William B.; Oppenheimer, David H.; Warrick, Richard E.; Zhang, Wenbo; Hamilton, John C.; Brown, Leo T.

    2000-01-01

    Shear-wave velocities (VS) are widely used for earthquake ground-motion site characterization. VS data are now largely obtained using borehole methods. Drilling holes, however, is expensive. Nonintrusive surface methods are inexpensive for obtaining VS information, but not many comparisons with direct borehole measurements have been published. Because different assumptions are used in data interpretation of each surface method and public safety is involved in site characterization for engineering structures, it is important to validate the surface methods by additional comparisons with borehole measurements. We compare results obtained from a particular surface method (array measurement of surface waves associated with microtremor) with results obtained from borehole methods. Using a 10-element nested-triangular array of 100-m aperture, we measured surface-wave phase velocities at two California sites, Garner Valley near Hemet and Hollister Municipal Airport. The Garner Valley site is located at an ancient lake bed where water-saturated sediment overlies decomposed granite on top of granite bedrock. Our array was deployed at a location where seismic velocities had been determined to a depth of 500 m by borehole methods. At Hollister, where the near-surface sediment consists of clay, sand, and gravel, we determined phase velocities using an array located close to a 60-m deep borehole where downhole velocity logs already exist. Because we want to assess the measurements uncomplicated by uncertainties introduced by the inversion process, we compare our phase-velocity results with the borehole VS depth profile by calculating fundamental-mode Rayleigh-wave phase velocities from an earth model constructed from the borehole data. For wavelengths less than ~2 times of the array aperture at Garner Valley, phase-velocity results from array measurements agree with the calculated Rayleigh-wave velocities to better than 11%. Measurement errors become larger for wavelengths 2

  1. The Olmsted fault zone, southernmost Illinois: A key to understanding seismic hazard in the northern new Madrid seismic zone

    USGS Publications Warehouse

    Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.

    2005-01-01

    Geological deformation in the northern New Madrid seismic zone, near Olmsted, Illinois (USA), is analyzed using integrated compressional-wave (P) and horizontally polarized-wave (SH) seismic reflection and regional and dedicated borehole information. Seismic hazards are of special concern because of strategic facilities (e.g., lock and dam sites and chemical plants on the Ohio River near its confluence with the Mississippi River) and because of alluvial soils subject to high amplification of earthquake shock. We use an integrated approach starting with lower resolution, but deeper penetration, P-wave reflection profiles to identify displacement of Paleozoic bedrock. Higher resolution, but shallower penetration, SH-wave images show deformation that has propagated upward from bedrock faults into Pleistocene loess. We have mapped an intricate zone more than 8 km wide of high-angle faults in Mississippi embayment sediments localized over Paleozoic bedrock faults that trend north to northeast, parallel to the Ohio River. These faults align with the pattern of epicenters in the New Madrid seismic zone. Normal and reverse offsets along with positive flower structures imply a component of strike-slip; the current stress regime favors right-lateral slip on northeast-trending faults. The largest fault, the Olmsted fault, underwent principal displacement near the end of the Cretaceous Period 65 to 70 million years ago. Strata of this age (dated via fossil pollen) thicken greatly on the downthrown side of the Olmsted fault into a locally subsiding basin. Small offsets of Tertiary and Quaternary strata are evident on high-resolution SH-wave seismic profiles. Our results imply recent reactivation and possible future seismic activity in a critical area of the New Madrid seismic zone. This integrated approach provides a strategy for evaluating shallow seismic hazard-related targets for engineering concerns. ?? 2005 Elsevier B.V. All rights reserved.

  2. Deep Borehole Field Test Requirements and Controlled Assumptions.

    SciTech Connect

    Hardin, Ernest

    2015-07-01

    This document presents design requirements and controlled assumptions intended for use in the engineering development and testing of: 1) prototype packages for radioactive waste disposal in deep boreholes; 2) a waste package surface handling system; and 3) a subsurface system for emplacing and retrieving packages in deep boreholes. Engineering development and testing is being performed as part of the Deep Borehole Field Test (DBFT; SNL 2014a). This document presents parallel sets of requirements for a waste disposal system and for the DBFT, showing the close relationship. In addition to design, it will also inform planning for drilling, construction, and scientific characterization activities for the DBFT. The information presented here follows typical preparations for engineering design. It includes functional and operating requirements for handling and emplacement/retrieval equipment, waste package design and emplacement requirements, borehole construction requirements, sealing requirements, and performance criteria. Assumptions are included where they could impact engineering design. Design solutions are avoided in the requirements discussion. Deep Borehole Field Test Requirements and Controlled Assumptions July 21, 2015 iv ACKNOWLEDGEMENTS This set of requirements and assumptions has benefited greatly from reviews by Gordon Appel, Geoff Freeze, Kris Kuhlman, Bob MacKinnon, Steve Pye, David Sassani, Dave Sevougian, and Jiann Su.

  3. Clematichinenoside (AR) Attenuates Hypoxia/Reoxygenation-Induced H9c2 Cardiomyocyte Apoptosis via a Mitochondria-Mediated Signaling Pathway.

    PubMed

    Ding, Haiyan; Han, Rong; Chen, Xueshan; Fang, Weirong; Liu, Meng; Wang, Xuemei; Wei, Qin; Kodithuwakku, Nandani Darshika; Li, Yunman

    2016-01-01

    Mitochondria-mediated cardiomyocyte apoptosis is involved in myocardial ischemia/reperfusion (MI/R) injury. Clematichinenoside (AR) is a triterpenoid saponin isolated from the roots of Clematis chinensis with antioxidant and anti-inflammatory cardioprotection effects against MI/R injury, yet the anti-apoptotic effect and underlying mechanisms of AR in MI/R injury remain unclear. We hypothesize that AR may improve mitochondrial function to inhibit MI/R-induced cardiomyocyte apoptosis. In this study, we replicated an in vitro H9c2 cardiomyocyte MI/R model by hypoxia/reoxygenation (H/R) treatment. The viability of H9c2 cardiomyocytes was determined by MTT assay; apoptosis was evaluated by flow cytometry and TUNEL experiments; mitochondrial permeability transition pore (mPTP) opening was analyzed by a calcein-cobalt quenching method; and mitochondrial membrane potential (ΔΨm) was detected by JC-1. Moreover, we used western blots to determine the mitochondrial cytochrome c translocation to cytosolic and the expression of caspase-3, Bcl-2, and Bax proteins. These results showed that the application of AR decreased the ratio of apoptosis and the extent of mPTP opening, but increased ΔΨm. AR also inhibited H/R-induced release of mitochondrial cytochrome c and decreased the expression of the caspase-3, Bax proteins. Conversely, it remarkably increased the expression of Bcl-2 protein. Taken together, these results revealed that AR protects H9c2 cardiomyocytes against H/R-induced apoptosis through mitochondrial-mediated apoptotic signaling pathway. PMID:27248986

  4. Hydrogen sulfide protects against apoptosis under oxidative stress through SIRT1 pathway in H9c2 cardiomyocytes.

    PubMed

    Wu, Dan; Hu, Qingxun; Liu, Xinhua; Pan, Lilong; Xiong, Qinghui; Zhu, Yi Zhun

    2015-04-30

    Oxidative stress plays a great role in the pathogenesis of heart failure (HF). Oxidative stress results in apoptosis, which can cause the damage of cardiomyocytes. Hydrogen sulfide (H2S), the third gasotransmitter, is a good reactive oxygen species (ROS) scavenger, which has protective effect against HF. Sirtuin-1 (SIRT1) is a highly conserved nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase that plays a critical role in promoting cell survival under oxidative stress. The purpose of this article is to investigate the interaction between H2S and SIRT1 under oxidative stress in H9c2 cardiomyocytes. Oxidative stress was induced by hydrogen peroxide (H2O2). Treatment with NaSH (25-100 µmol/L) dose-dependently increased the cell viability and improved the cell apoptosis induced by H2O2 in H9c2 cardiomyocytes. The protective effect of NaSH against the apoptosis could be attenuated by SIRT1 inhibitor Ex 527 (10 µmol/L). Treatment with NaSH (100 µmol/L) could increase the expression of SIRT1 in time dependent manner, which decreased by different concentration of H2O2. NaSH (100 µmol/L) increased the cellular ATP level and the expression of ATPase. These effects were attenuated by Ex 527 (10 µmol/L). After NaSH (100 µmol/L) treatment, the decrease in ROS production and the enhancement in SOD, GPx and GST expression were observed. Ex 527 (10 µmol/L) reversed these effects. In conclusion, for the first time, this article can identify antioxidative effects of H2S under oxidative stress through SIRT1 pathway in H9c2 cardiomyocytes. PMID:25461268

  5. Preparation and Characterization of Selenium Incorporated Guar Gum Nanoparticle and Its Interaction with H9c2 Cells

    PubMed Central

    Soumya, Rema Sreenivasan; Vineetha, Vadavanath Prabhakaran; Reshma, Premachandran Latha; Raghu, Kozhiparambil Gopalan

    2013-01-01

    This study deals with the preparation and characterization of selenium incorporated guar gum nanoparticle (SGG), and its effect on H9c2 cardiomyoblast. Herein, nanoprecipitation techniques had been employed for the preparation of SGG nanoparticle. The prepared nanoparticle had been subjected to various types of analytical techniques like transmission electron microscopy (TEM), X-ray diffraction (XRD) and particle size analysis to confirm the characteristics of nanoparticle as well as for selenium incorporation. Physical characterization of nanoparticle showed that the size of nanoparticles increase upto ∼69–173 nm upon selenium incorporation from ∼41–132 nm. Then the prepared nanoparticles were evaluated for its effect on H9c2 cells. In this regard, the effect of nanoparticle on various vital parameters of H9c2 cells was studied. Parameters like cell viability, uptake of selenium incorporated guar gum nanoparticle by the cells, effect of SGG on DNA integrity, apoptosis, reactive oxygen species generation, alteration in transmembrane potential of mitochondria and cytoskeletal integrity had been investigated. Viability results showed that up to 25 nM of SGG was safe (10.31%) but beyond that it induces cytotoxicity. Cellular uptake of selenium showed that cell permeability for SGG is significantly high compared to normal selenium (7.2 nM of selenium for 25 nM SGG compared with 5.2 nM selenium for 25 nM sodium selenite). There was no apoptosis with SGG and also it protects DNA from hydroxyl radical induced breakage. Likewise no adverse effect on mitochondria and cytoskeleton was observed for 25 nM of SGG. Overall results reveal that SGG is highly suitable for biomedical research application. PMID:24098647

  6. AN INTEGRATED MULTI-COMPONENT PROCESSING AND INTERPRETATION FRAMEWORK FOR 3D BOREHOLE SEISMIC DATA

    SciTech Connect

    M. Karrenbach

    2005-04-15

    This report covers the November 2004-March 2005 time period. A mid year project review meeting was held at DOE facilities on November 30th. Work has been performed successfully on several tasks 3 through 15. Most of these tasks have been executed independently. We progressed steadily and completed some of the sub-tasks, while others are still on going. We achieved the goals that we had set up in the task schedule. Reviewing the results of this work period indicates that our plan is solid and we did not encounter any unforeseen problems. The work plan will continue as projected.

  7. Quantification of seismic scattering in situ with the conversion log method: A study from the KTB super-deep drill hole

    NASA Astrophysics Data System (ADS)

    Beilecke, Thies; Rabbel, Wolfgang

    2004-08-01

    The ``conversion log'' is a new approach to quantify seismic scattering in situ in terms of PS conversion in transmission along a vertical seismic profile (VSP): The amount of converted seismic energy is determined by slant-stacking and plotted as a function of depth, thus forming a borehole log of seismic conversion. We investigated seismic scattering of crystalline crust at the Continental Deep Drilling Site (KTB) in southern Germany where detailed knowledge exists of crustal parameters down to 9 km depth. In 1999 a deep VSP was acquired in the KTB main borehole. The experiment yielded high quality seismic data in terms of signal bandwidth, signal-to-noise ratio and stability of the source signal. The seismic data show varying levels of PS conversion along the borehole. The dip of layering and foliation is about 45° to 75° along the KTB drill hole. Under these conditions the conversion amplitudes depend only weakly on the angle between the incident seismic wave and the impedance contrast surface. The conversion log method was used to quantify energy loss by forward scattering. Field data were compared with finite-difference computations and with petrological and structural borehole information. It turned out that only 10-50% of PS forward scattering originates from conversion at lithological interfaces and structural complexity whereas 90-50% is due to velocity heterogeneity caused by fractures. The conversion log is correlated with the depth function of fracture density, and it is inversely correlated with the depth function of chlorite content, that seems to `heal' the influence of cracks and fissures.

  8. M9 Tohoku earthquake hydro- and seismic response in the Caucasus and North Turkey

    NASA Astrophysics Data System (ADS)

    Chelidze, Tamaz L.; Shengelia, Ia; Zhukova, Natalya; Matcharashvili, Teimuraz; Melikadze, George; Kobzev, Genady

    2016-06-01

    Presently, there are a lot of observations on the significant impact of strong remote earthquakes on underground water and local seismicity. Teleseismic wave trains of strong earthquakes give rise to several hydraulic effects in boreholes, namely permanent water level changes and water level oscillations, which closely mimic the seismograms (hydroseismograms). Clear identical anomalies in the deep borehole water levels have been observed on a large part of the territory of Georgia during passing of the S and Love-Rayleigh teleseismic waves (including also multiple surface Rayleigh waves) of the 2011 Tohoku M9 earthquake. The analysis carried out in order to find dynamically triggered events (non-volcanic tremors) of the Tohoku earthquake by the accepted methodology has not revealed a clear tremor signature in the test area: the Caucasus and North Turkey. The possible mechanisms of some seismic signals of unknown origin observed during passage of teleseismic waves of Tohoku earthquake are discussed.

  9. Urban shear-wave reflection seismics: Reconstruction support by combined shallow seismic and engineering geology investigations

    NASA Astrophysics Data System (ADS)

    Polom, U.; Guenther, A.; Arsyad, I.; Wiyono, P.; Krawczyk, C. M.

    2009-12-01

    After the big 2004 Sumatra-Andaman earthquake, the massive reconstruction activities in the Aceh province (Northern Sumatra) were promoted by the Republic of Indonesia and the Federal Ministry of Economic Cooperation and Development. The aims of the project MANGEONAD (Management of Georisk Nanggroe Aceh Darussalam). are to establish geoscientific on the ground support for a sustainable development and management of save building constructions, lifelines, infrastructure and also natural resources. Therefore, shallow shear-wave reflection seismics was applied in close combination to engineering geology investigations in the period between 2005-2009 since depth and internal structure of the Krueng Aceh River delta (mainly young alluvial sediments) were widely unknown. Due to the requirements in the densely populated Banda Aceh region, lacking also traffic infrastructure, a small and lightweight engineering seismic setup of high mobility and high subsurface resolution capability was chosen. The S-wave land streamer system with 48 channels was applied successfully together with the ELVIS vibratory source using S- and P-waves on paved roads within the city of Banda Aceh. The performance of the S-wave system enabled the detailed seismic investigation of the shallow subsurface down to 50-150 m depth generating shaking frequencies between 20 Hz to 200 Hz. This also provides depth information extending the maximum depths of boreholes and Standard Penetrometer Testings (SPT), which could only be applied to max. 20 m depth. To integrate the results gained from all three methods, and further to provide a fast statistical analysis tool for engineering use, the Information System Engineering Geology (ISEG, BGR) was developed. This geospatial information tool includes the seismic data, all borehole information, geotechnical SPT and laboratory results from samples available in the investigation area. Thereby, the geotechnical 3D analysis of the subsurface units is enabled. The

  10. Surface and borehole electromagnetic imaging of conducting contaminant plumes. 1997 annual progress report

    SciTech Connect

    Berryman, J.G.

    1997-01-01

    'Electromagnetic induction tomography is a promising new tool for imaging electrical conductivity variations in the earth. The EM source field is produced by induction coil (magnetic dipole) transmitters deployed at the surface or in boreholes. Vertical and horizontal component magnetic field detectors are deployed in other boreholes or on the surface. Sources and receivers are typically deployed in a configuration surrounding the region of interest. The goal of this procedure is to image electrical conductivity variations in the earth, much as x-ray tomography is used to image density variations through cross-sections of the body. Although such EM field techniques have been developed and applied, the algorithms for inverting the magnetic data to produce the desired images of electrical conductivity have not kept pace. One of the main reasons for the lag in the algorithm development has been the fact that the magnetic induction problem is inherently three dimensional: other imaging methods such as x-ray and seismic can make use of two-dimensional approximations that are not too far from reality, but the author does not have this luxury in EM induction tomography. In addition, previous field experiments were conducted at controlled test sites that typically do not have much external noise or extensive surface clutter problems often associated with environmental sites. To use the same field techniques in environments more typical of cleanup sites requires a new set of data processing tools to remove the effects of both noise and clutter. The goal of this project is to join theory and experiment to produce enhanced images of electrically conducting fluids underground, allowing better localization of contaminants and improved planning strategies for the subsequent remediation efforts. After explaining the physical context in more detail, this report will summarize the progress made in the first year of this project: (1) on code development and (2) on field tests of

  11. FMS/FMI borehole imaging of carbonate gas reservoirs, Central Luconia Province, offshore Sarawak, Malaysia

    SciTech Connect

    Singh, U.; Van der Baan, D. )

    1994-07-01

    The Central Luconia Province, offshore Sarawak, is a significant gas province characterized by extensive development of late Miocene carbonate buildups. Some 200 carbonate structures have been seismically mapped of which 70 have been drilled. FMS/FMI borehole images were obtained from three appraisal wells drilled in the [open quotes]M[close quotes] cluster gas fields situated in the northwestern part of the province. The [open quotes]M[close quotes] cluster fields are currently part of an upstream gas development project to supply liquefied natural gas. Log facies recognition within these carbonate gas reservoirs is problematic due mainly to the large gas effect. This problem is being addressed by (1) application of neural network techniques and (2) using borehole imaging tools. Cores obtained from the M1, M3, and M4 gas fields were calibrated with the FMS/FMI images. Reservoir characterization was obtained at two different scales. The larger scale (i.e., 1:40 and 1:200) involved static normalized images where the vertical stacking pattern was observed based on recognition of bed boundaries. In addition, the greater vertical resolution of the FMS/FMI images allowed recognition of thin beds. For recognition of specific lithofacies, dynamically normalized images were used to highlight lithofacies-specific sedimentary features, e.g., clay seams/stylolites, vugs, and breccia zones. In general, the FMS/FMI images allowed (1) easier recognition of reservoir features, e.g., bed boundaries, and (2) distinction between lithofacies that are difficult to characterize on conventional wireline logs.

  12. Present-day stress directions in California determined through borehole breakout analysis

    SciTech Connect

    Mount, V.S.; Suppe, J.

    1988-03-01

    Borehole elongations or breakouts, observed on unprocessed four-arm dipmeter logs, have been used to map in-situ stress directions throughout onshore California. Approximately 130 wells were analyzed for borehole breakouts in California, with 107 giving useful results. The wells are subvertical (most inclinations > 80/sup 0/) and range in depth from 920 to 5760 m, with 90% of the wells being deeper than 1500 m. Breakouts were observed from depths of 100-5600 m. The number of broken out intervals per well range from 3 to 38 with an average of 12. A regionally consistent stress pattern is observed with maximum horizontal compression generally oriented northeast-southwest. Breakout-determined stress directions are consistent with other stress indicators, including stress directions determined from focal mechanisms for earthquakes occurring at depths of 5-15 km. The direction of maximum compression consistently intersects the San Andreas fault at a high angle (80/sup 0/-90/sup 0/) and is approximately perpendicular to axes of young thrust-related anticlines. Heat-flow and seismic observations limit the shear stress on the San Andreas fault to 10-20 MPa, or less. The observed orientation of maximum horizontal compression (nearly perpendicular) to the San Andreas) allows generation of large regional deviatoric stresses of rock-breaking magnitudes (on the order of 100 MPa). Transpressive plate motion is decoupled into a low-stress strike-slip component and a high-stress compressive component. These observations suggest that standard concepts of transpressive wrench tectonics - which envisage drag on a high-friction fault - are wrong. The thrust structures are largely decoupled from the strike-slip fault.

  13. Estimation of Biogenic Gas Distribution in a Northern Peatland Using Surface and Borehole Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Comas, X.; Slater, L.; Reeve, A.

    2005-05-01

    A combination of borehole and surface ground penetrating radar (GPR), time domain reflectometry (TDR) and direct gas sampling was performed to detect biogenic gas accumulation areas in Caribou Bog, a multi-unit peatland in central Maine (Orono). Areas of electromagnetic (EM) signal scattering (or shadow zones, similar to those reported with the seismic reflection method) observed in the surface GPR coincide with sampled zones of high CH4 and CO2 concentration. Shadow zones also correlate with areas of high EM wave velocity detected in zero offset profiles (ZOP) conducted with the borehole GPR, and with areas of low water content inferred with TDR. Application of the Complex Refractive Index Model (CRIM) to the EM wave velocities implies that the anomalous high velocity zones results from a volumetric gas content of 7% and 10% for a peat soil porosity of 91% and 94% respectively. In the absence of gas, the CRIM model predicts a porosity value of only 84% to reach the maximum EM wave velocity recorded, a value not supported by our peat porosity measurements in the laboratory and inconsistent with the high porosity of peat recorded by others. Strong reflectors detected with the surface GPR are interpreted as confining layers acting as biogenic gas traps and inducing overpressurized biogenic gas pockets as postulated by others. Spatial gas distribution and volumetric gas content can be roughly estimated considering the areas affected by EM wave blanking. These findings also have implications for the monitoring of temporal behavior of biogenic gas emissions to the atmosphere from peatlands.

  14. Analysis of borehole-radar reflection logs from selected HC boreholes at the Project Shoal area, Churchill County, Nevada

    USGS Publications Warehouse

    Lane, J.W., Jr.; Joesten, P.K.; Pohll, G.M.; Mihevic, Todd

    2001-01-01

    Single-hole borehole-radar reflection logs were collected and interpreted in support of a study to characterize ground-water flow and transport at the Project Shoal Area (PSA) in Churchill County, Nevada. Radar logging was conducted in six boreholes using 60-MHz omni-directional electric-dipole antennas and a 60-MHz magnetic-dipole directional receiving antenna.Radar data from five boreholes were interpreted to identify the location, orientation, estimated length, and spatial continuity of planar reflectors present in the logs. The overall quality of the radar data is marginal and ranges from very poor to good. Twenty-seven reflectors were interpreted from the directional radar reflection logs. Although the range of orientation interpreted for the reflectors is large, a significant number of reflectors strike northeast-southwest and east-west to slightly northwest-southeast. Reflectors are moderate to steeply dipping and reflector length ranged from less than 7 m to more than 133 m.Qualitative scores were assigned to each reflector to provide a sense of the spatial continuity of the reflector and the characteristics of the field data relative to an ideal planar reflector (orientation score). The overall orientation scores are low, which reflects the general data quality, but also indicates that the properties of most reflectors depart from the ideal planar case. The low scores are consistent with reflections from fracture zones that contain numerous, closely spaced, sub-parallel fractures.Interpretation of borehole-radar direct-wave velocity and amplitude logs identified several characteristics of the logged boreholes: (1) low-velocity zones correlate with decreased direct-wave amplitude, indicating the presence of fracture zones; (2) direct-wave amplitude increases with depth in three of the boreholes, suggesting an increase in electrical resistivity with depth resulting from changes in mineral assemblage or from a decrease in the specific conductance of ground

  15. Electrical resistivity borehole measurements: application to an urban tunnel site

    NASA Astrophysics Data System (ADS)

    Denis, A.; Marache, A.; Obellianne, T.; Breysse, D.

    2002-06-01

    This paper shows how it is possible to use wells drilled during geotechnical pre-investigation of a tunneling site to obtain a 2-D image of the resistivity close to a tunnel boring machine. An experimental apparatus is presented which makes it possible to perform single and borehole-to-borehole electrical measurements independent of the geological and hydrogeological context, which can be activated at any moment during the building of the tunnel. This apparatus is first demonstrated through its use on a test site. Numerical simulations and data inversion are used to analyse the experimental results. Finally, electrical resistivity tomography and single-borehole measurements on a tunneling site are presented. Experimental results show the viability of the apparatus and the efficiency of the inverse algorithm, and also highlight the limitations of the electrical resistivity tomography as a tool for geotechnical investigation in urban areas.

  16. Properties of ambient seismic noise and summary of noise spectrum in the vicinity of RSTN sites

    SciTech Connect

    Taylor, S.R.

    1981-01-26

    The general characteristics of seismic noise are reviewed in terms of its source, mode of propagation, seasonal variations, and variation with depth. The characteristics of the noise spectrum as a function of depth are important for extrapolating surface noise surveys to the expected noise in a borehole. A literature review of measured noise spectra in the vicinity of the five proposed Regional Seismic Test Network sites is combined with direct noise measurements from the National Seismic Station at the Cumberland Plateau Observatory and the LRSM station at Red Lake, Ontario. Results from a recent noise survey in the Adirondacks and Black Hills are also reviewed. Minimum noise values at all five Regional Seismic Test Network sites are tabulated at 1 Hz and appear to be higher than those of the low noise model of Brune and Oliver (1959).

  17. Deep borehole disposal of high-level radioactive waste.

    SciTech Connect

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  18. MicroRNA-29a-3p attenuates ET-1-induced hypertrophic responses in H9c2 cardiomyocytes.

    PubMed

    Li, Man; Wang, Nan; Zhang, Jian; He, Hong-Peng; Gong, Hui-Qin; Zhang, Rui; Song, Tie-Feng; Zhang, Li-Nan; Guo, Zhi-Xia; Cao, Dong-Sun; Zhang, Tong-Cun

    2016-07-01

    Transcription factor nuclear factor of activated T cells c4 (NFATc4) is the best-characterized target for the development of cardiac hypertrophy. Aberrant microRNA-29 (miR-29) expression is involved in the development of cardiac fibrosis and congestive heart failure. However, whether miR-29 regulates hypertrophic processes is still not clear. In this study, we investigated the potential functions of miR-29a-3p in endothelin-1 (ET-1)-induced cardiomyocyte hypertrophy. We showed that miR-29a-3p was down-regulated in ET-1-treated H9c2 cardiomyocytes. Overexpression of miR-29a-3p significantly reduced ET-1-induced hypertrophic responses in H9c2 cardiomyocytes, which was accompanied by a decrease in NFATc4 expression. miR-29a-3p targeted directly to the 3'-UTR of NFATc4 mRNA and silenced NFATc4 expression. Our results indicate that miR-29a-3p inhibits ET-1-induced cardiomyocyte hypertrophy via inhibiting NFATc4 expression. PMID:26992639

  19. Reducing Uncertainty in the Seismic Design Basis for the Waste Treatment Plant, Hanford, Washington

    SciTech Connect

    Brouns, T.M.; Rohay, A.C.; Reidel, S.P.; Gardner, M.G.

    2007-07-01

    The seismic design basis for the Waste Treatment Plant (WTP) at the Department of Energy's (DOE) Hanford Site near Richland was re-evaluated in 2005, resulting in an increase by up to 40% in the seismic design basis. The original seismic design basis for the WTP was established in 1999 based on a probabilistic seismic hazard analysis completed in 1996. The 2005 analysis was performed to address questions raised by the Defense Nuclear Facilities Safety Board (DNFSB) about the assumptions used in developing the original seismic criteria and adequacy of the site geotechnical surveys. The updated seismic response analysis used existing and newly acquired seismic velocity data, statistical analysis, expert elicitation, and ground motion simulation to develop interim design ground motion response spectra which enveloped the remaining uncertainties. The uncertainties in these response spectra were enveloped at approximately the 84. percentile to produce conservative design spectra, which contributed significantly to the increase in the seismic design basis. A key uncertainty identified in the 2005 analysis was the velocity contrasts between the basalt flows and sedimentary interbeds below the WTP. The velocity structure of the upper four basalt flows (Saddle Mountains Basalt) and the inter-layered sedimentary interbeds (Ellensburg Formation) produces strong reductions in modeled earthquake ground motions propagating through them. Uncertainty in the strength of velocity contrasts between these basalts and interbeds primarily resulted from an absence of measured shear wave velocities (Vs) in the interbeds. For this study, Vs in the interbeds was estimated from older, limited compressional wave velocity (Vp) data using estimated ranges for the ratio of the two velocities (Vp/Vs) based on analogues in similar materials. A range of possible Vs for the interbeds and basalts was used and produced additional uncertainty in the resulting response spectra. Because of the

  20. Seasonal variations of seismic velocities in the San Jacinto fault area observed with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Hillers, G.; Ben-Zion, Y.; Campillo, M.; Zigone, D.

    2015-08-01

    We observe seasonal seismic wave speed changes (dv/v) in the San Jacinto fault area and investigate several likely source mechanisms. Velocity variations are obtained from analysis of 6 yr data of vertical component seismic noise recorded by 10 surface and six borehole stations. We study the interrelation between dv/v records, frequency-dependent seismic noise properties, and nearby environmental data of wind speed, rain, ground water level, barometric pressure and atmospheric temperature. The results indicate peak-to-peak seasonal velocity variations of ˜0.2 per cent in the 0.5-2 Hz frequency range, likely associated with genuine changes of rock properties rather than changes in the noise field. Phase measurements between dv/v and the various environmental data imply that the dominant source mechanism in the arid study area is thermoelastic strain induced by atmospheric temperature variations. The other considered environmental effects produce secondary variations that are superimposed on the thermal-based changes. More detailed work with longer data on the response of rocks to various known external loadings can help tracking the evolving stress and effective rheology at depth.

  1. New insights on the Karoo shale gas potential from borehole KZF-1 (Western Cape, South Africa)

    NASA Astrophysics Data System (ADS)

    Campbell, Stuart A.; Götz, Annette E.; Montenari, Michael

    2016-04-01

    A study on world shale reserves conducted by the Energy Information Agency (EIA) in 2013 concluded that there could be as much as 390 Tcf recoverable reserves of shale gas in the southern and south-western parts of the Karoo Basin. This would make it the 8th-largest shale gas resource in the world. However, the true extent and commercial viability is still unknown, due to the lack of exploration drilling and modern 3D seismic. Within the framework of the Karoo Research Initiative (KARIN), two deep boreholes were drilled in the Eastern and Western Cape provinces of South Africa. Here we report on new core material from borehole KZF-1 (Western Cape) which intersected the Permian black shales of the Ecca Group, the Whitehill Formation being the main target formation for future shale gas production. To determine the original source potential for shale gas we investigated the sedimentary environments in which the potential source rocks formed, addressing the research question of how much sedimentary organic matter the shales contained when they originally formed. Palynofacies indicates marginal marine conditions of a stratified basin setting with low marine phytoplankton percentages (acritarchs, prasinophytes), good AOM preservation, high terrestrial input, and a high spores:bisaccates ratio (kerogen type III). Stratigraphically, a deepening-upward trend is observed. Laterally, the basin configuration seems to be much more complex than previously assumed. Furthermore, palynological data confirms the correlation of marine black shales of the Prince Albert and Whitehill formations in the southern and south-western parts of the Karoo Basin with the terrestrial coals of the Vryheid Formation in the north-eastern part of the basin. TOC values (1-6%) classify the Karoo black shales as promising shale gas resources, especially with regard to the high thermal maturity (Ro >3). The recently drilled deep boreholes in the southern and south-western Karoo Basin, the first since the

  2. Elements of a continuous-wave borehole radar. Final report

    SciTech Connect

    Caffey, T.W.H.

    1997-08-01

    The theory is developed for the antenna array for a proposed continuous-wave, ground-penetrating radar for use in a borehole, and field measurements are presented. Accomplishments include the underground measurement of the transmitting beam in the azimuth plane, active azimuth-steering of the transmitting beam, and the development of a range-to-target algorithm. The excellent performance of the antenna array supports the concept of a continuous-wave borehole radar. A field-prototype should be developed for use in both geothermal zones and for the exploration and recovery of oil and gas.

  3. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    SciTech Connect

    Cochran, John R.; Hardin, Ernest

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portions of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has

  4. Reclamation report, Basalt Waste Isolation Project, boreholes 1990

    SciTech Connect

    Brandt, C.A.; Rickard, W.H. Jr.; Cadoret, N.A.

    1991-01-01

    The restoration of areas disturbed activities of the Basalt Waste Isolation Project (BWIP) has been undertaken by the US Department of Energy (DOE) in fulfillment of obligations and commitments made under the National Environmental Policy Act and the Nuclear Waste Policy Act. This restoration program comprises three separate projects: borehole reclamation, Near Surface Test Facility reclamation, and Exploratory Shaft Facility reclamation. Detailed descriptions of these reclamation projects may be found in a number of previous reports. This report describes the second phase of the reclamation program for the BWIP boreholes and analyzes its success relative to the reclamation objective. 6 refs., 14 figs., 13 tabs.

  5. Feasibility of the Shallow High Resolution Seismic Reflection Technique for Use at the Hanford Site

    SciTech Connect

    Narbutovskih, S.M.

    1993-07-30

    Data obtained during site characterization should be useful to assess the need for remediation, to evaluate and design effective remedial plans, and to allow long-term monitoring to discern remediation effectiveness. A valuable environmental tool that incorporates this data is a model that describes groundwater and vadose zone flow and transport characteristics. Data on geology and hydrology combined with information on contaminant sources are incorporated into these conceptual models that delineate the relative significance of the various fluid migration pathways. Downstream these same models also support risk assessment, remediation design, and long-term assessment of remediation effectiveness. Consequently, the building of coherent, accurate vadose zone and groundwater models is fundamental to a successful remediation. Among the important requirements for these models is accurate knowledge of flow domain boundaries and soil characteristics. At the Hanford Site, this knowledge is obtained primarily from borehole data, which provides information only at a point. In the high energy flood and fluvial deposits found at the Hanford Site, it can, at times, be difficult to correlate lithologic horizons between boreholes. Where there is no borehole control, our understanding of the geometry of hydrogeologic boundaries and thus of fluid migration paths is limited. Surface geophysical techniques are generally used to provide a measure of geologic control between boreholes. In particular, the seismic reflection method has the potential to provide the greatest resolution of the subsurface hydrogeology between and beyond boreholes.

  6. Applications of detailed 3D P-wave velocity crustal model in Poland for local, regional and global seismic tomography

    NASA Astrophysics Data System (ADS)

    Polkowski, Marcin; Grad, Marek

    2015-04-01

    The 3D P-wave seismic velocity model was obtained by combining data from multiple studies during past 50 years. Data sources included refraction seismology, reflection seismology, geological boreholes, vertical seismic profiling, magnetotellurics and gravimetry. Use of many data sources allowed creation of detailed 3D P-wave velocity model that reaches to depth of 60 km and includes 6-layers of sediments and 3-layers of the crust. Purpose of this study is to analyze how 3D model influences local (accuracy of location and source time estimation for local events), regional (identification of wide-angle seismic phases) and global (teleseismic tomography) seismic travel times. Additionally we compare results of forward seismic wave propagation with signals observed on short period and broadband stations. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.

  7. Angola Seismicity MAP

    NASA Astrophysics Data System (ADS)

    Neto, F. A. P.; Franca, G.

    2014-12-01

    The purpose of this job was to study and document the Angola natural seismicity, establishment of the first database seismic data to facilitate consultation and search for information on seismic activity in the country. The study was conducted based on query reports produced by