Science.gov

Sample records for 9cr-1mo steel p91

  1. 9 Cr-- 1 Mo steel material for high temperature application

    DOEpatents

    Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-11-27

    One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.

  2. Investigation of a Modified 9Cr-1Mo (P91) Pipe Failure

    SciTech Connect

    Klueh, Ronald L; Shingledecker, John P

    2006-04-01

    A modified 9Cr-1Mo feedwater (condensate) line at an Eastman Chemical Company plant failed in January 2005. The line was in continuous service since start-up December 2001 until failure. The Plant Superintendent estimated there were three thermal cycles since start-up, although there may have been as many as 25 thermal cycles during commissioning. Normal operating temperature was 325 F (163 C) and pressure was 1762 psig. The line was steam traced with the tracing activated only when ambient outdoor temperature dropped to 40 F (5 C). A modified 9Cr-1Mo steel (P91) pipe failure in a feedwater line in a chemical plant was investigated. The failure occurred in the vicinity of an elbow produced with socket welds of the pipe to the elbow. Based on metallography and hardness measurements, it was concluded that failure occurred because of an improper post-weld heat treatment of the socket weldment.

  3. Heat treated 9 Cr-1 Mo steel material for high temperature application

    DOEpatents

    Jablonski, Paul D.; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-08-21

    The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.

  4. Elevated-temperature deflection-controlled test of modified 9 Cr-1 Mo steel beam

    SciTech Connect

    Gwaltney, R C; Battiste, R L; Yahr, G T; Peters, M L

    1983-05-01

    This report presents elevated-temperature test results and comparisons with analytic predictions for a simply supported modified 9 Cr-1 Mo steel beam subjected to a controlled center deflection history. The test was performed to provide an assessment of structural analysis methods and material relations for modified 9 Cr-1 Mo steel. The inelastic analysis predictions were obtained using the finite-element code ADINA. The analysis was done using a nonlinear, time-independent plasticity model and a creep strain-hardening model for the constitutive equations. The test contained three constant-deflection hold periods for a total of 504 h at a a temperature of 573{sup 0}C (1100{sup 0}F). The beam specimen was fabricated using plate stock of the modified 9 Cr-1 Mo steel at heat 30383. The structural deformation responses in terms of load and strain were measured during the test; results are provided in graphical form.

  5. Characterization and Performance of Magnetron-Sputtered Zirconium Coatings Deposited on 9Cr-1Mo Steel

    NASA Astrophysics Data System (ADS)

    Singh, Akash; Murugesan, Somasundaram; Parameswaran, P.; Priya, R.; Thirumurugessan, R.; Muthukumar, N.; Mohandas, E.; Kamachi Mudali, U.; Krishnamurthi, J.

    2016-11-01

    Zirconium coatings of different thicknesses have been deposited at 773 K on 9Cr-1Mo steel substrate using pulsed DC magnetron sputtering. These coatings were heat treated in vacuum at two different temperatures (1173 and 1273 K) for one hour. X-ray diffraction (XRD) analysis of Zr-coated samples revealed the formation of α-phase (HCP structure) of Zr. XRD analysis of heat-treated samples show the presence of Zr3Fe and Zr2Fe intermetallics. The lattice parameter of these coatings was calculated, and it matches with the bulk values when the thickness reached 2µm. In order to understand this, crystallite size and strain values of these coatings were calculated from XRD plots employing Williamson-Hall method. In order to assess the performance of the coatings, systematic corrosion tests were carried out. The corrosion current density calculated from the polarization behavior showed that the corrosion current density of the uncoated 9Cr-1Mo steel was higher than the coated sample before and after the heat treatment. Studies using electrochemical impedance spectroscopy confirmed that the coated steel has higher impedance than the uncoated steel. The corrosion resistance of 9Cr1Mo steel had improved after Zr coating. However, the corrosion resistance of the coating after heat treatment decreased when compared to the as-deposited coating. The microstructure and composition of the surface oxide film influence the corrosion resistance of the Zr-coated 9Cr1Mo steel.

  6. Sodium compatibility of HT-9 and Fe-9Cr-1Mo steels

    SciTech Connect

    Anantatmula, R.P.; Brehm, W.F.

    1985-11-01

    Ferritic steels have been receiving significant attention for possible use as steam generator tubing, and as alternate structural materials for liquid-metal heat-transport systems in commercial fast reactors, fusion reactors, etc. The materials are chosen on the basis of their high thermal conductivity, resistance to stress-corrosion-cracking in aqueous and steam environments, favorable fabricability and fairly low cost. These steels are available in several classes based on the microstructure and alloy content, viz., martensitics, bainitics, delta ferritics, and duplex steels. The low alloy bainitic steels (Fe-2-1/4Cr-1Mo) undergo extensive decarburization when exposed to high temperature flowing sodium. It is for this reason that ferritic steels with higher chromium (9 to 12% Cr) content have been proposed to minimize the carbon transfer and eventual degradation of mechanical properties. The martensitic steels, HT-9 and improved Fe9Cr1Mo are being considered as cladding/duct materials for liquid metal reactors (LMR). The alloy HT-9 is based on 12Cr1Mo composition. The improved Fe9Cr1Mo alloy is based on 9Cr1Mo composition as its name implies. The objective of the work reported here is to evaluate the sodium compatibility of the alloys at temperatures and flow rates typical of LMR cores. Testing was done for 8104 hours at 60/sup 0/C and 3992 hours at 650/sup 0/C.

  7. Laser welding and post weld treatment of modified 9Cr-1MoVNb steel.

    SciTech Connect

    Xu, Z.

    2012-04-03

    Laser welding and post weld laser treatment of modified 9Cr-1MoVNb steels (Grade P91) were performed in this preliminary study to investigate the feasibility of using laser welding process as a potential alternative to arc welding methods for solving the Type IV cracking problem in P91 steel welds. The mechanical and metallurgical testing of the pulsed Nd:YAG laser-welded samples shows the following conclusions: (1) both bead-on-plate and circumferential butt welds made by a pulsed Nd:YAG laser show good welds that are free of microcracks and porosity. The narrow heat affected zone has a homogeneous grain structure without conventional soft hardness zone where the Type IV cracking occurs in conventional arc welds. (2) The laser weld tests also show that the same laser welder has the potential to be used as a multi-function tool for weld surface remelting, glazing or post weld tempering to reduce the weld surface defects and to increase the cracking resistance and toughness of the welds. (3) The Vicker hardness of laser welds in the weld and heat affected zone was 420-500 HV with peak hardness in the HAZ compared to 240 HV of base metal. Post weld laser treatment was able to slightly reduce the peak hardness and smooth the hardness profile, but failed to bring the hardness down to below 300 HV due to insufficient time at temperature and too fast cooling rate after the time. Though optimal hardness of weld made by laser is to be determined for best weld strength, methods to achieve the post weld laser treatment temperature, time at the temperature and slow cooling rate need to be developed. (4) Mechanical testing of the laser weld and post weld laser treated samples need to be performed to evaluate the effects of laser post treatments such as surface remelting, glazing, re-hardening, or tempering on the strength of the welds.

  8. Structures and properties of rapidly solidified 9Cr-1Mo steel

    SciTech Connect

    Megusar, J.; Lavernia, E.; Domalavage, P.; Harling, O.K.; Grant, N.J.

    1983-01-01

    Irradiation-induced shifts of the DBTT and possible hydrogen embrittlement of ferritic steels are currently considered major problems for CTR applications. Rapid solidification and in particular liquid dynamic compaction (LDC) has been studied in developing 9Cr-1Mo steel as a candidate first wall material. Structural refinements such as reduction of segregation, fine grain size and fine size of second phase particles are retained in this process and this will have a favorable effect on fracture properties. LCD has also the potential of preparing first wall components directly from the melt and this would have an economic advantage over conventional ingot technology.

  9. Fracture criteria for hydrogen and temper embrittlement in 9Cr1Mo steel

    SciTech Connect

    Wall, M.; Lane, C.E.; Hippsley, C.A. . Harwell Lab.)

    1994-04-01

    A reduction in ductility and toughness is observed on thermal aging of 9Cr1Mo steels in the temperature range 400--650 C. Previous investigations using tensile tests have shown a synergistic effect of hydrogen on such temper embrittlement. To investigate the mechanisms underlying this effect of hydrogen a series of fracture tests have been undertaken on a commercially produced 9Cr1Mo steel using blunt-notched (SENB) specimens tested in four-point-bend. The results were analyzed to determine the maximum local tensile stress [sigma][sup *][sub F] and the local stress and strain levels at the point of crack initiation as a function of test temperature, hydrogen content and thermal aging. Local fracture stress, rather than [sigma][sup *][sub F], was relatively constant with test temperature, and it is proposed that this parameter, together with local fracture strain, controls the failure mechanism. A dual stress/strain criteria model is proposed, and it is suggested that both hydrogen and temper embrittlement reduce the local fracture stress, indicating an influence on cohesive strength for both mechanisms of embrittlement. 52 refs.

  10. Tensile properties and flow behavior analysis of modified 9Cr-1Mo steel clad tube material

    NASA Astrophysics Data System (ADS)

    Singh, Kanwarjeet; Latha, S.; Nandagopal, M.; Mathew, M. D.; Laha, K.; Jayakumar, T.

    2014-11-01

    The tensile properties and flow behavior of modified 9Cr-1Mo steel clad tube have been investigated in the framework of various constitutive equations for a wide range of temperatures (300-923 K) and strain rates (3 × 10-3 s-1, 3 × 10-4 s-1 and 3 × 10-5 s-1). The tensile flow behavior of modified 9Cr-1Mo steel clad tube was most accurately described by Voce equation. The variation of instantaneous work hardening rate (θ = dσ/dε) and σθ with stress (σ) indicated two stage behavior characterized by rapid decrease at low stresses (transient stage) followed by a gradual decrease in high stresses (Stage III). The variation of work hardening parameters and work hardening rate in terms of θ vs. σ and σθ vs. σ with temperature exhibited three distinct regimes. Rapid decrease in flow stress and work hardening parameters and rapid shift of θ vs. σ and σθ vs. σ towards low stresses with increase in temperature indicated dynamic recovery at high temperatures. Tensile properties of the material have been best predicted from Voce equation.

  11. Preliminary Considerations of Modified 9Cr-1Mo Steel for Gen IV Nuclear Reactor Application

    SciTech Connect

    Ren, Weiju

    2008-01-01

    Modified 9Cr-1Mo steel is currently identified as one of the leading candidate materials in the down selection for construction of the Gen IV nuclear reactor pressure vessel. Because of the stringent requirements in strength, size, safety, design life, and maintenance for the intended nuclear application, qualification of the material demands scrutiny in various aspects such as mechanical properties, data sufficiency, Codification, mechanical behavior modeling, metallurgical stability, environmental resistance, component manufacturability and transportation. In the present paper, history of the material development is briefly reviewed; requirements and challenges for the intended application are discussed; available information on the material is described. Further research and development activities are suggested to facilitate the materials selection.

  12. Modification in the Microstructure of Mod. 9Cr-1Mo Ferritic Martensitic Steel Exposed to Sodium

    NASA Astrophysics Data System (ADS)

    Prasanthi, T. N.; Sudha, Cheruvathur; Paul, V. Thomas; Bharasi, N. Sivai; Saroja, S.; Vijayalakshmi, M.

    2014-09-01

    Mod. 9Cr-1Mo is used as the structural material in the steam generator circuit of liquid metal-cooled fast breeder reactors. Microstructural modifications on the surface of this steel are investigated after exposing to flowing sodium at a temperature of 798 K (525 °C) for 16000 hours. Sodium exposure results in the carburization of the ferritic steel up to a depth of ~218 µm from the surface. Electron microprobe analysis revealed the existence of two separate zones with appreciable difference in microchemistry within the carburized layer. Differences in the type, morphology, volume fraction, and microchemistry of the carbides present in the two zones are investigated using analytical transmission electron microscopy. Formation of separate zones within the carburized layer is understood as a combined effect of leaching, diffusion of the alloying elements, and thermal aging. Chromium concentration on the surface in the α-phase suggested possible degradation in the corrosion resistance of the steel. Further, concentration-dependent diffusivities for carbon are determined in the base material and carburized zones using Hall's and den Broeder's methods, respectively. These are given as inputs for simulating the concentration profiles for carbon using numerical computation technique based on finite difference method. Predicted thickness of the carburized zone agrees reasonably well with that of experiment.

  13. On the microstructure-polarization behavior correlation of a 9Cr-1Mo steel weld joint

    NASA Astrophysics Data System (ADS)

    George, G.; Shaikh, H.; Parvathavarthini, N.; George, R. P.; Khatak, H. S.

    2001-08-01

    The use of 9Cr-1Mo ferritic steel necessitates its fabrication by the process of welding. The heat-affected zone (HAZ) of 9Cr-1Mo ferritic steel is a combination of many microstructures. In the present study, the corrosion properties of the base metal, weld metal, and the various regions of the HAZ are assessed with respect to their microstructures. The various microstructures in the HAZ were simulated by heat treatment of the normalized and tempered base metal at 1463, 1200, and 1138 K for 5 min followed by oil quenching. The microstructure of the base metal in the normalized and tempered condition revealed martensite laths with M23C6 carbides at lath boundaries, and uniform dispersion of fine, acicular M2C. The weld metal showed predominantly martensitic structure with dispersion of carbides. Simulation of the microstructures of the HAZ by heat treatment resulted in the following microstructures: coarse-grained martensite of 75 µm size at 1463 K, fine-grained martensite at 1200 K, and martensite + proeutectoid α-ferrite at 1138 K. In all cases, carbide precipitation was observed in the martensitic matrix. Microhardness measurements of HAZ-simulated base metal showed increasing hardness with increasing heat treatment temperature. The hardness values obtained corresponded very well with the regions of the actual HAZ in the weld joint. Electrochemical polarization studies were carried out on the base metal, weld metal, weldment (base metal + weld metal + HAZ), and the simulated HAZ structures in 0.5 M sulfuric acid solution. Critical current densities ( i crit1 and i crit2), passive current densities ( i pass and i sec-pass), and transpassive potential ( E tp) were the parameters considered for evaluating the corrosion resistance. The HAZ structures simulated at 1463 and 1200 K, corresponding to coarse- and fine-grained martensitic regions of an actual HAZ, had corrosion properties as good as the normalized and tempered base metal. Of the various simulated HAZ

  14. Creep-Fatigue Evaluation by Hysteresis Energy in Modified 9Cr-1Mo Steel

    NASA Astrophysics Data System (ADS)

    Nagae, Yuji; Takaya, Shigeru; Asayama, Tai

    Researchers proposed the methods of creep-fatigue evaluation, such as time fraction rules or ductility exhaustion rules. However, the microstructure change during creep-fatigue should not be directly considered in these methods. The hysteresis energy contributes to the microstructure change before the crack initiation and the crack initiation and propagation. The creep-fatigue has evaluated by the hysteresis energy in modified 9Cr-1Mo steel which is a candidate for structural material in Fast Breeder Reactor (FBR) plant. Creep-fatigue and fatigue tests were carried out at 723-873K in air. The hysteresis energy per hour at the middle of life (Nf / 2, Nf is the number of cycles to failure) has been evaluated. It is clear that the relationship between this parameter and the time to failure can be expressed by the power-law function. The creep-fatigue life can be evaluated based on the hysteresis energy an hour at Nf / 2 using this relation.

  15. Transfer of modified 9Cr-1Mo steel technology through cooperative programs (1980-1985)

    SciTech Connect

    Sikka, V.K.; DiStefano, J.R.; Patriarca, P.

    1986-06-01

    The principal objective of the United States Department of Energy (DOE) 9Cr-1Mo steel development program has been to provide the data and analyses required by designers for use of the alloy in advanced liquid metal reactors to reduce technical tasks and plant capital costs. It was recognized early that designers would not consider use of any material for nuclear applications unless there was a considerable body of experience already established. Toward this end, the plan has been to get the alloy accepted in Section I (Power Boilers), Section II (Materials Specifications), Section VIII (Pressure Vessels), and Section III (Nuclear power Plant Components) of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (BPV) Code as logical steps in the process. To achieve this objective, extensive interaction with the industrial community was considered mandatory. Accordingly, an intensive effort to achieve technology transfer was initiated, which resulted in the involvement of many organizations. This report is a compilation of 47 status sheets describing 35 participating organizations and funding sources, purpose of the interactions, material and product forms utilized, summary of the work completed, findings, and appropriate references. These interactions contributed significantly toward the fulfillment of the program goals.

  16. Creep-fatigue criteria and inelastic behavior of modified 9Cr-1Mo steel at elevated temperatures. Final report

    SciTech Connect

    Ruggles, M.B.; Ogata, T.

    1994-02-01

    The ever increasing demand for safety requires that stringent and conservative methodology be developed for design and analysis of reactor components. At present modified 9Cr-1Mo steel is a candidate material for construction of steam generators in fast breeder reactors. Therefore high-temperature material properties and extensive insight into deformation behavior and creep-fatigue life are required to develop design guidelines for use of modified 9Cr-1Mo steel in actual plant components. However, existing information on creep-fatigue and deformation response of modified 9Cr-1Mo steel is insufficient, and further experimental and modeling efforts are needed. A joint effort between the Electric Power Research Institute (EPRI) in the United States and the Central Research Institute of Electric Power Industry (CRIEPI) in Japan was started in 1991 to investigate the inelastic behavior of and to develop creep-fatigue criteria for modified 9Cr-1Mo steel at elevated temperatures. The current program focuses on uniaxial and biaxial fatigue, creep, and creep-fatigue tests. Results of this effort are presented in this report. Section 2 introduces the test material and experimental arrangement. Uniaxial exploratory deformation tests and unified constitutive equations for inelastic analysis of modified 9Cr-1Mo steel are presented in Sections 3 and 4, respectively. Axial fatigue and creep-fatigue test results are discussed in Section 5. Section 6 is devoted to constant stress creep tests. Biaxial fatigue and creep-fatigue tests are described in Section 7. Progress in creep-fatigue life evaluation is reported in Section 8.

  17. Characterization of Ferrite in Tempered Martensite of Modified 9Cr-1Mo Steel Using the Electron Backscattered Diffraction Technique

    NASA Astrophysics Data System (ADS)

    Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murty, B. S.

    2011-12-01

    Ferrite was identified and characterized in tempered martensitic modified 9Cr-1Mo steel using the electron backscattered diffraction (EBSD) technique. Microstructural examination of the as-received modified 9Cr-1Mo steel revealed the presence of polycrystalline grains without lath morphology having low hardness within a predominantly tempered lath martensitic matrix. These grains were identified as the ferrite phase, and subsequent EBSD data analysis confirmed that the image quality (IQ) index of these grains is higher and boundary line length per unit area is lower than those of martensitic matrix. Therefore, it is proposed that characterization of ferrite phase in martensitic matrix can be carried out using microstructural parameters such as IQ index and boundary line length per unit area obtained from EBSD data analysis.

  18. Effect of Alloy 625 Buffer Layer on Hardfacing of Modified 9Cr-1Mo Steel Using Nickel Base Hardfacing Alloy

    NASA Astrophysics Data System (ADS)

    Chakraborty, Gopa; Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murugesan, S.; Dasgupta, Arup

    2016-04-01

    Dashpot piston, made up of modified 9Cr-1Mo steel, is a part of diverse safety rod used for safe shutdown of a nuclear reactor. This component was hardfaced using nickel base AWS ER NiCr-B alloy and extensive cracking was experienced during direct deposition of this alloy on dashpot piston. Cracking reduced considerably and the component was successfully hardfaced by application of Inconel 625 as buffer layer prior to hardface deposition. Hence, a separate study was undertaken to investigate the role of buffer layer in reducing the cracking and on the microstructure of the hardfaced deposit. Results indicate that in the direct deposition of hardfacing alloy on modified 9Cr-1Mo steel, both heat-affected zone (HAZ) formed and the deposit layer are hard making the thickness of the hard layer formed equal to combined thickness of both HAZ and deposit. This hard layer is unable to absorb thermal stresses resulting in the cracking of the deposit. By providing a buffer layer of Alloy 625 followed by a post-weld heat treatment, HAZ formed in the modified 9Cr-1Mo steel is effectively tempered, and HAZ formed during the subsequent deposition of the hardfacing alloy over the Alloy 625 buffer layer is almost completely confined to Alloy 625, which does not harden. This reduces the cracking susceptibility of the deposit. Further, unlike in the case of direct deposition on modified 9Cr-1Mo steel, dilution of the deposit by Ni-base buffer layer does not alter the hardness of the deposit and desired hardness on the deposit surface could be achieved even with lower thickness of the deposit. This gives an option for reducing the recommended thickness of the deposit, which can also reduce the risk of cracking.

  19. Prediction and Monitoring Systems of Creep-Fracture Behavior of 9Cr-1Mo Steels for Teactor Pressure Vessels

    SciTech Connect

    Potirniche, Gabriel; Barlow, Fred D.; Charit, Indrajit; Rink, Karl

    2013-11-26

    A recent workshop on next-generation nuclear plant (NGNP) topics underscored the need for research studies on the creep fracture behavior of two materials under consideration for reactor pressure vessel (RPV) applications: 9Cr-1Mo and SA-5XX steels. This research project will provide a fundamental understanding of creep fracture behavior of modified 9Cr-1Mo steel welds for through modeling and experimentation and will recommend a design for an RPV structural health monitoring system. Following are the specific objectives of this research project: Characterize metallurgical degradation in welded modified 9Cr-1Mo steel resulting from aging processes and creep service conditions; Perform creep tests and characterize the mechanisms of creep fracture process; Quantify how the microstructure degradation controls the creep strength of welded steel specimens; Perform finite element (FE) simulations using polycrystal plasticity to understand how grain texture affects the creep fracture properties of welds; Develop a microstructure-based creep fracture model to estimate RPVs service life; Manufacture small, prototypic, cylindrical pressure vessels, subject them to degradation by aging, and measure their leak rates; Simulate damage evolution in creep specimens by FE analyses; Develop a model that correlates gas leak rates from welded pressure vessels with the amount of microstructural damage; Perform large-scale FE simulations with a realistic microstructure to evaluate RPV performance at elevated temperatures and creep strength; Develop a fracture model for the structural integrity of RPVs subjected to creep loads; and Develop a plan for a non-destructive structural health monitoring technique and damage detection device for RPVs.

  20. Characterizing microstructural changes in ferritic steels by positron annihilation spectroscopy: Studies on modified 9Cr-1Mo steel

    NASA Astrophysics Data System (ADS)

    Hari Babu, S.; Rajkumar, K. V.; Hussain, S.; Amarendra, G.; Sundar, C. S.; Jayakumar, T.

    2013-01-01

    Applicability of positron annihilation spectroscopy in probing the microstructural changes in ferritic steels has been investigated with thermal treatment studies on modified 9Cr-1Mo steel, during 300-1273 K. Positron lifetime results are compared with those of ultrasonic velocity and hardness techniques with two initial microstructural conditions i.e., normalized and tempered condition as well as only normalized condition. In first case, positron lifetime is found to be sensitive to small changes in metal carbide precipitation which could not be probed by other two techniques. In later case, positron lifetime is found to be sensitive to defect annealing until 673 K and in distinguishing the growth and coarsening of metal carbide precipitation stages during 773-1073 K. The present study suggests that by combining positron lifetime, ultrasonic velocity and hardness measurements, it is possible to distinguish distinct microstructures occurring at different stages.

  1. Effect of Microalloy Precipitates on the Microstructure and Texture of Hot-Deformed Modified 9Cr-1Mo Steel

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arya; Dutta, A.; Sk, Md Basiruddin; Mitra, R.; Bhaduri, A. K.; Chakrabarti, D.

    2017-03-01

    Microalloying elements like Nb and V are added to modified 9Cr-1Mo steel to ensure excellent creep resistance by the formation of fine MX precipitates during tempering treatment. The effect of those elements on the evolution of microstructure (and texture) in hot-deformed steel has hardly been studied. Industrial processing of modified 9Cr-1Mo steel often develops deformed and elongated prior-austenite grain structure, which can be detrimental from property point of view. The present study shows that the formation of such structure can primarily be attributed to the pinning effect from strain-induced Nb(C,N) precipitation, which can effectively retard the static recrystallization of deformed-γ at high-deformation temperature and short inter-pass times ( 10 seconds). Based on the results, the application of either heavy deformation pass at high-temperature or multiple-lighter passes maintaining sufficient inter-pass interval (30 to 50 seconds) is recommended to achieve fine and equiaxed γ-grain structure by dynamic recrystallization and static recrystallization, respectively.

  2. The influence of thermal aging on the microstructure and fatigue properties of modified 9Cr-1Mo steel

    SciTech Connect

    Gieseke, B.G.; Brinkman, C.R.; Maziasz, P.J.

    1992-12-31

    Results of elevated-temperature low cycle fatigue and creep-fatigue tests are for one heat of modified 9Cr-1Mo steel in the normalized and tempered condition, after pre-aging 50,000 h at 538 and 593C, and after pre-aging for 75,000 h at 538C. These data show that pre-aging reduces the low cycle fatigue and creepfatigue lives in comparison to unaged material. The magnitude of these reductions are discussed along with the impact of pre-aging on the creep-fatigue damage diagrams. The effect of environment on creep-fatigue life of unaged modified 9Cr-1Mo steels is also addressed. Transmission electron microscopy explains changes in mechanical properties due to thermal aging. In the unaged alloy, TEM shows that dynamic recovery/recrystallization is occurring after significant strain-induced dislocation hardening around a stationary and stable array of as-tempered carbides during creep-fatigue. In contrast creep-fatigue testing of the pre-aged alloy produced a much coarser cellular subgrain structure and dislocation recovery without recrystallization. Aging causes as-tempered carbide dissolution and/or reprecipitation together with additional precipitation of Laves (Fe{sub 2}Mo) phase, which removes some of the precipitate-strengthening effects, and depletes solid-solution hardening effects on the dislocation networks and subgrain boundary structures.

  3. Exploratory time-dependent fatigue behavior of 2 1/4 Cr-1 Mo and modified 9 Cr-1 Mo steel. Status report

    SciTech Connect

    Brinkman, C R; Strizak, J P; Booker, M K; Sikka, V K

    1981-06-01

    We review various aspects of time-dependent fatigue behavior of 2 1/4 Cr-1 Mo steel. Specifically, the roles of dynamic strain aging, environmental interaction, and classical creep damage (voidage) are discussed. Examples of results from exploratory test efforts show the strong waveform-environment synergism that occurs in this material. Plans are presented for future exploratory time-dependent fatigue testing of 2 1/4 Cr-1 Mo steel. Results indicate that the continuous-cycle fatigue resistance of modified 9 Cr-1 Mo is superior to that of standard 9 Cr-1 Mo steel and annealed 2 1/4 Cr-1 Mo steel in the high-cycle region. Limited results from time-dependent fatigue tests on modified 9 Cr-1 Mo steel have indicated that compressive hold periods are more damaging than tensile holds and that cyclic waveform effects similar to those seen in 2 1/4 Cr-1 Mo steel also occur in modified 9 Cr-1 Mo steel. 26 figures, 5 tables.

  4. Grain refinement to improve impact toughness in 9Cr-1Mo steel through a double austenitization treatment

    NASA Astrophysics Data System (ADS)

    Karthikeyan, T.; Thomas Paul, V.; Saroja, S.; Moitra, A.; Sasikala, G.; Vijayalakshmi, M.

    2011-12-01

    This paper presents the results of an experimental investigation where an enhancement in Charpy impact toughness and decrease in DBTT was obtained through grain refinement in 9Cr-1Mo steel. The steel in the normalized and tempered condition (1323 K/air cool + 1023 K/2 h/air cool) had an average prior-austenite grain size of 26 μm. By designing a two-stage normalizing (1323 K/2 h/water quench + 1223 K/2 h/air cool) and tempering treatment (1023 K/2 h/air cool), a homogeneous tempered martensite microstructure with a lesser prior-austenite grain size of 12 μm could be obtained. An improvement trend in impact properties of standard sized Charpy specimens was obtained in fine-grained steel: upper shelf energy increased from 175 J to 210 J, and DBTT reduced from 243 K to 228 K. This heat treatment is unique since an attempt to carry out a single-stage low temperature normalizing treatment (1223 K/2 h/air cool) did not give a complete martensite structure, due to the incomplete dissolution of carbides during austenitization.

  5. Mechanism of microstructural deterioration preceding type IV failure in weldment of Mod.9Cr-1Mo steel

    NASA Astrophysics Data System (ADS)

    Lee, J. S.; Maruyama, K.

    2015-07-01

    The objective of the present study was to elucidate the cavity formation mechanism of Type IV failure in weldment of advanced high-Cr ferritic steels. A welded joint of Mod.9Cr-1Mo steel was creep tested at 650 °C under 83 MPa. The creep fracture mode was Type IV failure in the heat affect zone (HAZ). Microstructural characterization of the HAZ and the fracture location, were performed before and after the creep test. The Type IV cracking started in the inter-critical HAZ at a location having fine grain size and coarse M23C6 precipitates. Moreover, the grain structure of the inter-critical HAZ, which is a mixture of soft α and hard α' grains, plays an important role in the stage of cavity evolution into a crack along the grain boundary. This is due to the heterogeneity of local strain between the two kinds of grains. By a synergistic effect of the strain concentration, the coarse precipitates and heterogeneous strain distribution among grains in the inter critical HAZ, facilitates the nucleation and growth of creep cavities, resulting in premature failure of welded joints.

  6. Microstructure and annealing behavior of a modified 9Cr-1Mo steel after dynamic plastic deformation to different strains

    NASA Astrophysics Data System (ADS)

    Zhang, Z. B.; Mishin, O. V.; Tao, N. R.; Pantleon, W.

    2015-03-01

    The microstructure, hardness and tensile properties of a modified 9Cr-1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level of strength can be achieved by DPD to a strain of 2.3, and that the microstructure at this strain contains a large fraction of high angle boundaries. The ductility of the DPD processed steel is however low. Considerable structural coarsening of the deformed microstructure without pronounced recrystallization takes place during annealing of the low-strain and high-strain samples for 1 h at 650 °C and 600 °C, respectively. Both coarsening and partial recrystallization occur in the high-strain sample during annealing at 650 °C for 1 h. For this sample, it is found that whereas coarsening alone results in a loss of strength with only a small gain in ductility, coarsening combined with pronounced partial recrystallization enables a combination of appreciably increased ductility and comparatively high strength.

  7. JAPC-USDOE joint study on structural design methods and data for modified 9 Cr-1 Mo Steel; Annual report, April 1, 1990--March 31, 1991

    SciTech Connect

    Blass, J J; Brinkman, C R; Alexander, D J; Battiste, R L; Gieseke, B G; Maziasz, P J; Moosbrugger, J C; O`Connor, D G; Ruggles, M B

    1991-03-01

    This document is the last in a series of five reports issued by Oak Ridge National Laboratory (ORNL) as part of the study, jointly supported by the Japan Atomic Power Company (JAPC) and the US Department of Energy (USDOE), on structural design methods and data for modified 9 Cr-1 Mo steel. This annual report covers the period of April 1 to March 31.

  8. Effects of temperature and environment on fatigue crack growth mechanisms in a 9% Cr 1% Mo steel

    SciTech Connect

    Cotterill, P.J.; Knott, J.F. )

    1992-10-01

    In this paper the environmental contribution of laboratory air to fatigue crack growth in a 9% Cr 1% Mo steel is assessed by a comparison of crack propagation rates in air and vacuum over a range of temperatures (25-625[degrees]C). In the Paris regime, growth rates in air are generally higher than those in vacuum, where there is little variation of da/dN with temperature. In contrast, the enhancing effect of the air atmosphere on crack growth rates is strongly temperature dependent. A variety of environment-assisted crack growth mechanisms are found to be operative at different temperature ranges, and evidence of these is provided by both an analysis of activation energies and a fractorgraphic investigation. The situation is different at lower stress intensities, where the threshold stress intensity range falls dramatically with increasing temperature in vacuum, and near-threshold growth rates at 525[degrees]C are higher in vacuum than in air. This effect is attributed to the occurrence of sever oxide-induced closure in air at elevated temperatures, where the crack is blocked with oxide at low stress intensities, reducing the crack driving force to a level below the intrinsic material threshold.

  9. Formation of Al2O3/FeAl coatings on a 9Cr-1Mo steel, and corrosion evaluation in flowing Pb-17Li loop

    NASA Astrophysics Data System (ADS)

    Majumdar, Sanjib; Paul, Bhaskar; Chakraborty, Poulami; Kishor, Jugal; Kain, Vivekanand; Dey, Gautam Kumar

    2017-04-01

    Iron aluminide coating layers were formed on a ferritic martensitic grade 9Cr-1Mo (P 91) steel using pack aluminizing process. The formation of different aluminide compositions such as orthorhombic-Fe2Al5, B2-FeAl and A2-Fe(Al) on the pack chemistry and heat treatment conditions have been established. About 4-6 μm thick Al2O3 scale was formed on the FeAl phase by controlled heat treatment. The corrosion tests were conducted using both the FeAl and Al2O3/FeAl coated specimens in an electro-magnetic pump driven Pb-17Li Loop at 500 °C for 5000 h maintaining a flow velocity of 1.5 m/s. The detailed characterization studies using scanning electron microscopy, back-scattered electron imaging and energy dispersive spectrometry revealed no deterioration of the coating layers after the corrosion tests. Self-healing oxides were formed at the cracks generated in the aluminide layers during thermal cycling and protected the base alloy (steel) from any kind of elemental dissolution or microstructural degradation.

  10. Heat treatment effects on toughness of 9Cr-1MoVNb and 12Cr-1MoVW steels irradiated at 365{degrees}C

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1991-12-31

    The 9Cr-1MoVNb and 12Cr-1MoVW steels were austenitized at 1040 and 1100{degrees}C to produce different prior austenite grain sizes, after which they were given different tempering treatments (1 h at 760 or 2.5 h at 780{degrees}C). Subsize Charpy impact specimens from these materials were irradiated at 365{degrees}C up to 5 dpa. For 9Cr-1MoVNb steel in the unirradiated condition, the smaller the prior austenite grain size and the higher the tempering temperature, the lower the ductile-brittle transition temperature (DBTT). Regardless of the DBTT in the unirradiated condition, however, the DBTT shift for 9Cr-1MoVNb steel due to irradiation was the same for all heat treatments. This means heat treatment can be used to ensure a lower DBTT before and after irradiation. The 12Cr-1MoVW steel showed little effect of heat treatment on DBTT in the unirradiated condition, and the shift in DBTT was relatively constant. Thus, it appears that heat treatment cannot be used to reduce the effect of irradiation on DBTT for this steel.

  11. Heat treatment effects on toughness of 9Cr-1MoVNb and 12Cr-1MoVW steels irradiated at 365 degrees C

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1991-01-01

    The 9Cr-1MoVNb and 12Cr-1MoVW steels were austenitized at 1040 and 1100{degrees}C to produce different prior austenite grain sizes, after which they were given different tempering treatments (1 h at 760 or 2.5 h at 780{degrees}C). Subsize Charpy impact specimens from these materials were irradiated at 365{degrees}C up to 5 dpa. For 9Cr-1MoVNb steel in the unirradiated condition, the smaller the prior austenite grain size and the higher the tempering temperature, the lower the ductile-brittle transition temperature (DBTT). Regardless of the DBTT in the unirradiated condition, however, the DBTT shift for 9Cr-1MoVNb steel due to irradiation was the same for all heat treatments. This means heat treatment can be used to ensure a lower DBTT before and after irradiation. The 12Cr-1MoVW steel showed little effect of heat treatment on DBTT in the unirradiated condition, and the shift in DBTT was relatively constant. Thus, it appears that heat treatment cannot be used to reduce the effect of irradiation on DBTT for this steel.

  12. Corrosion Behavior of Yttria-Stabilized Zirconia-Coated 9Cr-1Mo Steel in Molten UCl3-LiCl-KCl Salt

    NASA Astrophysics Data System (ADS)

    Jagadeeswara Rao, Ch.; Venkatesh, P.; Prabhakara Reddy, B.; Ningshen, S.; Mallika, C.; Kamachi Mudali, U.

    2017-02-01

    For the electrorefining step in the pyrochemical reprocessing of spent metallic fuels of future sodium cooled fast breeder reactors, 9Cr-1Mo steel has been proposed as the container material. The electrorefining process is carried out using 5-6 wt.% UCl3 in LiCl-KCl molten salt as the electrolyte at 500 °C under argon atmosphere. In the present study, to protect the container vessel from hot corrosion by the molten salt, 8-9% yttria-stabilized zirconia (YSZ) ceramic coating was deposited on 9Cr-1Mo steel by atmospheric plasma spray process. The hot corrosion behavior of YSZ-coated 9Cr-1Mo steel specimen was investigated in molten UCl3-LiCl-KCl salt at 600 °C for 100-, 500-, 1000- and 2000-h duration. The results revealed that the weight change in the YSZ-coated specimen was insignificant even after exposure to molten salt for 2000 h, and delamination of coating did not occur. SEM examination showed the lamellar morphology of the YSZ coating after the corrosion test with occluded molten salt. The XRD analysis confirmed the presence of tetragonal and cubic phases of ZrO2, without any phase change. Formation of UO2 in some regions of the samples was evident from XRD results.

  13. Effect of Activated Flux on the Microstructure, Mechanical Properties, and Residual Stresses of Modified 9Cr-1Mo Steel Weld Joints

    NASA Astrophysics Data System (ADS)

    Maduraimuthu, V.; Vasudevan, M.; Muthupandi, V.; Bhaduri, A. K.; Jayakumar, T.

    2012-02-01

    A novel variant of tungsten inert gas (TIG) welding called activated-TIG (A-TIG) welding, which uses a thin layer of activated flux coating applied on the joint area prior to welding, is known to enhance the depth of penetration during autogenous TIG welding and overcomes the limitation associated with TIG welding of modified 9Cr-1Mo steels. Therefore, it is necessary to develop a specific activated flux for enhancing the depth of penetration during autogeneous TIG welding of modified 9Cr-1Mo steel. In the current work, activated flux composition is optimized to achieve 6 mm depth of penetration in single-pass TIG welding at minimum heat input possible. Then square butt weld joints are made for 6-mm-thick and 10-mm-thick plates using the optimized flux. The effect of flux on the microstructure, mechanical properties, and residual stresses of the A-TIG weld joint is studied by comparing it with that of the weld joints made by conventional multipass TIG welding process using matching filler wire. Welded microstructure in the A-TIG weld joint is coarser because of the higher peak temperature in A-TIG welding process compared with that of multipass TIG weld joint made by a conventional TIG welding process. Transverse strength properties of the modified 9Cr-1Mo steel weld produced by A-TIG welding exceeded the minimum specified strength values of the base materials. The average toughness values of A-TIG weld joints are lower compared with that of the base metal and multipass weld joints due to the presence of δ-ferrite and inclusions in the weld metal caused by the flux. Compressive residual stresses are observed in the fusion zone of A-TIG weld joint, whereas tensile residual stresses are observed in the multipass TIG weld joint.

  14. Mechanical properties and microstructural evolution of modified 9Cr-1Mo steel after long-term aging for 50,000 h

    NASA Astrophysics Data System (ADS)

    Baek, Jong-Hyuk; Kim, Sung-Ho; Lee, Chan-Bock; Hahn, Do-Hee

    2009-08-01

    The mechanical properties and microstructural evolution of modified 9Cr-1Mo steel have been studied to investigate steel property changes after long-term isothermal aging at 600 °C for 50,000 h. The microhardness and strength were maintained constantly after aging but the impact energy was dramatically reduced by 62 % during the aging period. From the viewpoint of microstructural evolution after the aging process, Cr-enrichment and Fe-depletion took place within the M23C6-type precipitates in the as-aged steel and V-depletion also happened within the VX-type precipitates after aging. In addition, the precipitates of the M2Mo-type Laves phase and the segregation of the impurity atoms would be formed during the long-term aging period. It was considered that the sharp reduction of the impact energy could be related to the formation of the Laves phases and the impurity segregation after aging at 600 °C. The phase stability was also verified by the specific heat results up to 950 °C from a DSC test. It was concluded from this study that the modified 9Cr-1Mo steel would keep its microstructural stability at 600 °C during the long-term aging period of 50,000 h, which was equivalent to the in-service life of the SFR fuel cladding.

  15. Heat treatment effects on impact toughness of 9Cr-1MoVNb and 12Cr-1MoVW steels irradiated to 100 dpa

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1997-08-01

    Plates of 9Cr-1MoVNb and 12Cr-1MoVW steels were given four different heat treatments: two normalizing treatments were used and for each normalizing treatment two tempers were used. Miniature Charpy specimens from each heat treatment were irradiated to {approx}19.5 dpa at 365{degrees}C and to {approx}100 dpa at 420{degrees}C in the Fast Flux Test Facility (FFTF). In previous work, the same materials were irradiated to 4-5 dpa at 365{degrees}C and 35-36 dpa at 420{degrees}C in FFTF. The tests indicated that prior austenite grain size, which was varied by the different normalizing treatments, had a significant effect on impact behavior of the 9Cr-1MoVNb but not on the 12Cr-1MoVW. Tempering treatment had relatively little effect on the shift in DBTT for both steels. Conclusions are presented on how heat treatment can be used to optimize impact properties.

  16. Influence of high-temperature exposure on the microstructure and mechanical properties of dissimilar metal welds between modified 9Cr-1Mo steel and alloy 800

    NASA Astrophysics Data System (ADS)

    Sireesha, M.; Albert, Shaju K.; Sundaresan, S.

    2005-06-01

    Transition joints between ferritic steel and austenitic stainless steel are commonly encountered in high-temperature components of power plants. Service failures in these are known to occur as a result, mainly, of thermal stresses due to expansion coefficient differentials. In order to mitigate the problem, a trimetallic configuration involving an intermediate piece of a material such as Alloy 800 between the ferritic and austenitic steels has been suggested. In our work, modified 9Cr-1Mo steel and 316LN stainless steel are used as the ferritic and austenitic components and the thermal behavior of the joints between modified 9Cr-1Mo steel and Alloy 800 is described in this article. The joints, made using the nickel-base filler material INCONEL 82/182 (INCONEL 82 for the root pass by gas-tungsten arc welding and INCONEL 182 for the filler passes by shielded-metal arc welding), were aged at 625 °C for periods up to 5000 hours. The microstructural changes occurring in the weld metal as well as at the interfaces with the two parent materials are characterized in detail. Results of across-the-weld hardness surveys and cross-weld tension tests and weld metal Charpy impact tests are correlated with the structural changes observed. Principally, the results show that (1) the tendency for carbon to diffuse from the ferritic steel into the weld metal is much less pronounced than when 2.25Cr-1Mo steel is used as the ferritic part; and (2) intermetallic precipitation occurs in the weld metal for aging durations longer than 2000 hours, but the weld metal toughness still remains adequate in terms of the relevant specification.

  17. Microstructural Analysis of Orientation-Dependent Recovery and Recrystallization in a Modified 9Cr-1Mo Steel Deformed by Compression at a High Strain Rate

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenbo; Zhang, Yubin; Mishin, Oleg V.; Tao, Nairong; Pantleon, Wolfgang; Juul Jensen, Dorte

    2016-09-01

    The evolution of the microstructure and texture during annealing of a modified ferritic/martensitic 9Cr-1Mo steel compressed by dynamic plastic deformation (DPD) to a strain of 2.3 has been investigated using transmission electron microscopy and electron backscatter diffraction. It is found that the duplex <111> + <100> fiber texture formed by DPD is transformed during annealing to a dominant <111> fiber texture, and that crystallites of the <111> component have an advantage during both nucleation and growth. Detailed characterization of the microstructural morphology, and estimation of the stored energies in <111>- and <100>-oriented regions in deformed and annealed samples, as well as investigations of the growth of recrystallizing grains, are used to analyze the annealing behavior. It is concluded that recrystallization in the given material occurs by a combination of oriented nucleation and oriented growth.

  18. Comparison of the effects of long-term thermal aging and HFIR irradiation on the microstructural evolution of 9Cr-1MoVNb steel

    SciTech Connect

    Maziasz, P.J.; Klueh, R.L.

    1990-01-01

    Both thermal aging at 482--704{degree}C for up to 25,000h and HFIR irradiation at 300--600{degree}C for up to 39 dpa produce substantial changes in the as-tempered microstructure of 9Cr-1MoVNb martensitic/ferritic steel. However, the changes in the dislocation/subgrain boundary and the precipitate structures caused by thermal aging or neutron irradiation are quite different in nature. During thermal aging, the as-tempered lath/subgrain boundary and carbide precipitate structures remain stable below 650{degree}C, but coarsen and recover somewhat at 650--704{degree}C. The formation of abundant intergranular Laves phase, intra-lath dislocation networks, and fine dispersions of VC needles are thermal aging effects that are superimposed upon the as-tempered microstructure at 482--593{degree}C. HFIR irradiation produces dense dispersions of very small black-dot'' dislocations loops at 300{degree}C and produces helium bubbles and voids at 400{degree}C At 300--500{degree}C, there is considerable recovery of the as-tempered lath/subgrain boundary structure and microstructural/microcompositional instability of the as-tempered carbide precipitates during irradiation. By contrast, the as-tempered microstructure remains essentially unchanged during irradiation at 600{degree}C. Comparison of thermally aged with irradiation material suggests that the instabilities of the as-tempered lath/subgrain boundary and precipitate structures at lower irradiation temperatures are radiation-induced effects, whereas the absence of both Laves phase and fine VC needles during irradiation is a radiation-retarded thermal effect.

  19. Void formation and helium effects in 9Cr-1MoVNb and 12Cr-1MoVW steels irradiated in HFIR and FFTF at 400/degree/C

    SciTech Connect

    Maziasz, P.J.; Klueh, R.L.

    1988-01-01

    Martensitic/ferritic 9Cr-1MoVNb and 12Cr-1MoVW steels doped with up to 2 wt% Ni have up to 450 appm He after HFIR irradiation to /approximately/38 dpa, but only 5 appm He after 47 dpa in FFTF. No fine He bubbles and few or no larger voids were observable in any of these steels after FFTF irradiation at 407/degree/C. By contrast, many voids were found in the undoped steels (30-90 appm He) irradiated in HFIR at 400/degree/C, while voids plus many more fine He bubbles were found in the Ni-doped steels (400-450 appm He). Irradiation in both reactors at /approximately/400/degree/C produced significant changes in the as-tempered lath/subgrain boundary, dislocation, and precipitation structures that were sensitive to alloy composition, including doping with Ni. However, for each specific alloy the irradiation-produced changes were exactly the same comparing samples irradiated in FFTF and HFIR, particularly the Ni-doped steels. Therefore, the increased void formation appears solely due to the increased helium generation found in HFIR. While the levels of void swelling are relatively low after 37-39 dpa in HFIR (0.1-0.4%), details of the microstructural evolution suggest that void nucleation is still progressing, and swelling could increase with dose. The effect of helium on void swelling remains a valid concern for fusion application that requires higher dose experiments. 15 refs., 14 figs., 8 tabs.

  20. Irradiation creep and swelling of the U.S. fusion heats of HT9 and 9Cr-1Mo to 208 dpa at {approximately}400{degree}C

    SciTech Connect

    Toloczko, M.B.; Garner, F.A.; Eiholzer, C.R.

    1993-09-01

    Ferritic-martensite steels are being considered for structural applications in fusion reactors. In order to provide data on the response of such steels to radiation, a series of experiments have been conducted in FFTF. Here, the irradiation creep and swelling behaviors of the fusion heats of HT9 and 9Cr-1Mo at {approximately}400 C have been measured to exposures as large as 208 dpa, using both diametral and density measurements of helium-pressurized creep tubes. Void swelling was found in both alloys at 208 dpa to occur at rates of 0.012%/dpa or less, with the swelling of HT9 exhibiting a larger degree of stress enhancement than 9Cr-1Mo. The creep rate of HT9 is rather nonlinear in its response to hoop stress level in the range 0--200 MPa, but 9Cr-1Mo exhibits only slightly greater than linear behavior with stress level. The creep-swelling coupling coefficients for 9Cr-1Mo are consistent with values obtained for other steels.

  1. Influence of low nickel (0.09 wt%) content on microstructure and toughness of P91 steel welds

    NASA Astrophysics Data System (ADS)

    Arivazhagan, B.; Vasudevan, M.; Kamaraj, M.

    2015-05-01

    Modified 9Cr-1Mo (P91) steel is widely used as a high temperature structural material in the fabrication of power plant components. Alloying elements significantly influences the microstructure and mechanical properties of P91 steel weldments. The alloying elements manganese and nickel significantly influence the lower critical phase transformation temperature (AC1) as well as tempering response of welds. In the existing published information there was wide spread use of high Mn+Ni filler wire. In the present study, weldment preparation was completed using GTA filler wire having low Nickel content (Mn+Ni of 0.58 wt% including nickel content of 0.09 wt%). Microstructure and mechanical properties characterization was done. There is a requirement on minimum toughness of 47 Joules for P91 steel tempered welds at room temperature. Microstructural observation revealed that the GTA welds have low δ-ferrite content (<0.5%) in the martensite matrix. In the as-weld condition, the toughness was 28 Joules whereas after PWHT at 760 °C-2 h it was 115 Joules. In the present study, toughness of low nickel weld was higher due to low δ-ferrite content (<0.5%), multipass grain refinement and weld metal deposition of single pass per layer of weldment.

  2. An Approach to Maximize Weld Penetration During TIG Welding of P91 Steel Plates by Utilizing Image Processing and Taguchi Orthogonal Array

    NASA Astrophysics Data System (ADS)

    Singh, Akhilesh Kumar; Debnath, Tapas; Dey, Vidyut; Rai, Ram Naresh

    2016-06-01

    P-91 is modified 9Cr-1Mo steel. Fabricated structures and components of P-91 has a lot of application in power and chemical industry owing to its excellent properties like high temperature stress corrosion resistance, less susceptibility to thermal fatigue at high operating temperatures. The weld quality and surface finish of fabricated structure of P91 is very good when welded by Tungsten Inert Gas welding (TIG). However, the process has its limitation regarding weld penetration. The success of a welding process lies in fabricating with such a combination of parameters that gives maximum weld penetration and minimum weld width. To carry out an investigation on the effect of the autogenous TIG welding parameters on weld penetration and weld width, bead-on-plate welds were carried on P91 plates of thickness 6 mm in accordance to a Taguchi L9 design. Welding current, welding speed and gas flow rate were the three control variables in the investigation. After autogenous (TIG) welding, the dimension of the weld width, weld penetration and weld area were successfully measured by an image analysis technique developed for the study. The maximum error for the measured dimensions of the weld width, penetration and area with the developed image analysis technique was only 2 % compared to the measurements of Leica-Q-Win-V3 software installed in optical microscope. The measurements with the developed software, unlike the measurements under a microscope, required least human intervention. An Analysis of Variance (ANOVA) confirms the significance of the selected parameters. Thereafter, Taguchi's method was successfully used to trade-off between maximum penetration and minimum weld width while keeping the weld area at a minimum.

  3. Effect of Impurity Tin on the Creep Properties of a P91 Heat-Resistant Steel

    NASA Astrophysics Data System (ADS)

    Song, S.-H.; Xu, Y.-W.; Yang, H.-F.

    2014-09-01

    The creep properties of P91 steel specimens undoped and doped with 0.058 wt pct tin, which was normalized from 1328 K (1055 °C) and tempered at 1033 K (760 °C), were examined under different engineering stresses (150 to 210 MPa) and temperatures [873 K to 923 K (600 °C to 650 °C)]. The creep behavior followed the temperature-compensated power law and Monkman-Grant equations. In the temperature-compensated power law equation, the apparent activation energy and stress exponent for creep were approximately 541 kJ/mol and 12 for the undoped steel and 527 kJ/mol and 11 for the Sn-doped one, respectively. In the Monkman-Grant relation, the values of constants m and C were around 1.062 and 0.0672 for the undoped steel, and 1.012 and 0.0650 for the Sn-doped one, respectively. The 100 MPa stress creep lifetime at 873 K (600 °C) was estimated as 100641 hours for the undoped steel and 35290 hours for the Sn-doped steel, respectively. These indicated that Sn substantially deteriorated the creep properties of the steel. It was found that grain or subgrain boundary segregation of Sn could promote the nucleation of cavities or microcracks, thereby leading to the deterioration of the steel creep properties.

  4. Creep, fatigue and creep-fatigue interactions in modified 9% Chromium - 1% Molybdenum (P91) steels

    NASA Astrophysics Data System (ADS)

    Kalyanasundaram, Valliappa

    Grade P91 steel, from the class of advanced high-chrome ferritic steels, is one of the preferred materials for many elevated temperature structural components. Creep-fatigue (C-F) interactions, along with oxidation, can accelerate the kinetics of damage accumulation and consequently reduce such components' life. Hence, reliable C-F test data is required for meticulous consideration of C-F interactions and oxidation, which in turn is vital for sound design practices. It is also imperative to develop analytical constitutive models that can simulate and predict material response under various long-term in-service conditions using experimental data from short-term laboratory experiments. Consequently, the major objectives of the proposed research are to characterize the creep, fatigue and C-F behavior of grade P91 steels at 625 C and develop robust constitutive models for simulating/predicting their microstructural response under different loading conditions. This work will utilize experimental data from 16 laboratories worldwide that conducted tests (creep, fatigue and C-F) on grade P91 steel at 625°C in a round-robin (RR) program. Along with 7 creep deformation and rupture tests, 32 pure fatigue and 46 C-F tests from the RR are considered in this work. A phenomenological constitutive model formulated in this work needs just five fitting parameters to simulate/predict the monotonic, pure fatigue and C-F behavior of grade P91 at 625 C. A modified version of an existing constitutive model is also presented for particularly simulating its isothermal creep deformation and rupture behavior. Experimental results indicate that specimen C-F lives, as measured by the 2% load drop criterion, seem to decrease with increasing strain ranges and increasing hold times at 625°C. Metallographic assessment of the tested specimens shows that the damage mode in both pure fatigue and 600 seconds hold time cyclic tests is predominantly transgranular fatigue with some presence of

  5. Water quench thermal fatigue analysis of grade P22 and grade P91 steels

    NASA Astrophysics Data System (ADS)

    Appling, William C.

    Power plants and other facilities that utilize high temperature steam flow have been using corrosion-resistant steels with high creep-rupture strengths in their piping systems. Fatigue crack failures have occurred in these piping systems, potentially from the sudden temperature changes from the internal water spray system used to control steam temperature. A new test to investigate the thermal quench fatigue response of metals was developed to aid the study of these failures in P22 and P91 steel pipes. The focus of this thesis was to develop the test and begin development of the quench fatigue response of P22 and P91. Testing involved evaluating the pre and post-test hardness measurements of the quench fatigue specimens and correlating these results with the results of the quench fatigue runs. Specimens were evaluated in quench fatigue for two test conditions: a maximum stress condition and a stress loading similar to what has been measured in existing piping systems. The maximum stress state was used to induce failure in the specimens within a reasonable amount of time and to evaluate any change in material microstructure. The second test condition had a temperature drop of approximately 200 °C and more closely simulated general operating conditions for the piping systems in question. This test condition also included a preload on the specimen in the axial direction to simulate the stress induced from the internal pressure of the piping systems. In addition to experimental analysis, a finite element model was developed and tested to verify the initial material deformation that occurred from quench spraying.

  6. Study of microstress state of P91 steel using complementary mechanical Barkhausen, magnetoacoustic emission, and X-ray diffraction techniques

    SciTech Connect

    Augustyniak, Bolesław Piotrowski, Leszek; Maciakowski, Paweł; Chmielewski, Marek; Lech-Grega, Marzena; Żelechowski, Janusz

    2014-05-07

    The paper deals with assessment of microstress state of martensite P91 steel using three complementary techniques: mechanical Barkhausen emission, magnetoacoustic emission (MAE), and X-ray diffraction (XRD) profile analysis. Magnetic coercivity Hc and microstructure were investigated with inductive magnetometry and magnetic force microscopy (MFM), respectively. Internal stress level of P91 steel was modified by heat treatment. Steel samples were austenitized, quenched, and then tempered at three temperatures (720 °C, 750 °C, and 780 °C) during increasing time (from 15 min up to 240 min). The microstrain level ε{sub i} was evaluated using Williamson–Hall method. It was revealed that during tempering microstrain systematically decreases from ε{sub i} = 2.5 × 10{sup −3} for as quenched state down to ε{sub i} = 0.3 × 10{sup −3} for well tempered samples. Both mechanical hardness (Vicker's HV) and magnetic hardness (coercivity) decrease almost linearly with decreasing microstrain while the MAE and MBE intensities strongly increase. Tempering leads to evident shift of the MeBN intensity maximum recorded for the first load towards lower applied strain values and to increase of MAE intensity. This indicates that the microstress state deduced by magnetic techniques is correlated with microstrains evaluated with XRD technique.

  7. Study of microstress state of P91 steel using complementary mechanical Barkhausen, magnetoacoustic emission, and X-ray diffraction techniques

    NASA Astrophysics Data System (ADS)

    Augustyniak, Bolesław; Piotrowski, Leszek; Maciakowski, Paweł; Chmielewski, Marek; Lech-Grega, Marzena; Żelechowski, Janusz

    2014-05-01

    The paper deals with assessment of microstress state of martensite P91 steel using three complementary techniques: mechanical Barkhausen emission, magnetoacoustic emission (MAE), and X-ray diffraction (XRD) profile analysis. Magnetic coercivity Hc and microstructure were investigated with inductive magnetometry and magnetic force microscopy (MFM), respectively. Internal stress level of P91 steel was modified by heat treatment. Steel samples were austenitized, quenched, and then tempered at three temperatures (720 °C, 750 °C, and 780 °C) during increasing time (from 15 min up to 240 min). The microstrain level ɛi was evaluated using Williamson-Hall method. It was revealed that during tempering microstrain systematically decreases from ɛi = 2.5 × 10-3 for as quenched state down to ɛi = 0.3 × 10-3 for well tempered samples. Both mechanical hardness (Vicker's HV) and magnetic hardness (coercivity) decrease almost linearly with decreasing microstrain while the MAE and MBE intensities strongly increase. Tempering leads to evident shift of the MeBN intensity maximum recorded for the first load towards lower applied strain values and to increase of MAE intensity. This indicates that the microstress state deduced by magnetic techniques is correlated with microstrains evaluated with XRD technique.

  8. Effect of Groove Design and Post-Weld Heat Treatment on Microstructure and Mechanical Properties of P91 Steel Weld

    NASA Astrophysics Data System (ADS)

    Pandey, C.; Mahapatra, M. M.

    2016-07-01

    The martensitic creep-resistant steel designated as ASTM A335 for plate and as P91 for pipe is primarily used for high-temperature and high-pressure applications in steam power plants due to its excellent high-temperature properties such as high creep strength, high thermal conductivity, low thermal expansion, and so on. However, in the case of welded joints of such steels, the presence of an inter-critical heat-affected zone (IC-HAZ) can cause the joint to have lower creep strength than the base metal. In the present study, the effect of post-welding heat treatment (PWHT) and weld groove designs on the overall microstructure and mechanical properties of P91 steel pipe welds produced by the gas tungsten arc welding process was studied. Various regions of welded joints were characterized in detail for hardness and metallographic and tensile properties. Sub-size tensile samples were also tested to evaluate the mechanical properties of the weld metal and heat-affected zone (HAZ) with respect to PWHT. After PWHT, a homogenous microstructure was observed in the HAZ and tensile test fracture samples revealed shifting of the fracture location from the IC-HAZ to the fine-grained heat-affected zone. Before PWHT, the conventional V-grooved welded joints exhibited higher tensile strength compared to the narrow-grooved joints. However, after PWHT, both narrow- and V-grooved joints exhibited similar strength. Fractography of the samples indicates the presence of carbide precipitates such as Cr23C6, VC, and NbC on the fracture surface.

  9. Quantitative nondestructive electronic and magnetic property assessment of heat treated grade p91 steel

    NASA Astrophysics Data System (ADS)

    Meir, Shai Shmuel

    Structural steels experience aging from fatigue, creep and corrosion. Prolonged high temperature service accelerates creep and stress-corrosion cracking. Microstructural degradation of structural steels is a serious problem that limits the integrity of high-temperature parts in power plants. Some power plants that utilize fossil fuels have experienced lifecycle issues with heat-treated steel alloys that have experienced progressive damage over time. A nondestructive technique for the evaluation of the microstructure of key structural materials and the prediction of lifecycle has been the focus of extensive research for many years. Advanced nondestructive wave assessment techniques are being developed using electronic and magnetic perturbation analysis. These methods are applied to ferrous materials to determine whether a designed heat-treatment provides an acceptable microstructure offering specific set of required properties for the full service life of the component. The methods used in this research include impedance spectroscopy and hysteresis measurement as preliminary assessment methods and hysteresis frequency analysis and Barkhausen noise measurement as secondary assessment methods.

  10. Small Two-Bar Specimen Creep Testing of Grade P91 Steel at 650°C

    NASA Astrophysics Data System (ADS)

    Ali, Balhassn S. M.; Hyde, Tom H.; Sun, Wei

    2016-03-01

    Commonly used small creep specimen types, such as ring and impression creep specimens, are capable of providing minimum creep strain rate data from small volumes of material. However, these test types are unable to provide the creep rupture data. In this paper the recently developed two-bar specimen type, which can be used to obtain minimum creep strain rate and creep rupture creep data from small volumes of material, is described. Conversion relationships are used to convert (i) the applied load to the equivalent uniaxial stress, and (ii) the load line deformation rate to the equivalent uniaxial creep strain rate. The effects of the specimen dimension ratios on the conversion factors are also discussed in this paper. This paper also shows comparisons between two-bar specimen creep test data and the corresponding uniaxial creep test data, for grade P91 steel at 650°C.

  11. Mechanical properties of modified 9Cr 1Mo (T91) irradiated at 300 °C in SINQ Target-3

    NASA Astrophysics Data System (ADS)

    Dai, Y.; Jia, X. J.; Farrell, K.

    2003-05-01

    Specimens of martensitic steel T91 were irradiated in the Swiss spallation neutron source (SINQ) Target-3 in a temperature range of 90-300 °C to displacement doses between 3 and 9.8 dpa. Tensile tests were performed at 22, 250 and 350 °C, and small punch (SP) tests were conducted in a temperature range of -186 to 22 °C to derive the change of the ductile-brittle transition temperature (ΔDBTT SP) of the steel after irradiation. The tensile test results demonstrate that the irradiation hardening increases with dose. The uniform elongation falls to less than 1%, while the total elongation is greater than 5% in all cases. All the tensile samples broke in a ductile fracture mode. In the present dose range the irradiation hardening does not saturate and increases even more rapidly at doses above about 6 dpa. The SP tests indicate that the DBTT SP of 0.25 mm thick T91 discs is about -153 °C for the unirradiated condition. After irradiation the DBTT SP increases significantly to -35 °C at 9.4 dpa, corresponding to an estimated DBTT CVN shift of 295 °C; and meanwhile the upper energies decrease. The ΔDBTT SP has a linear dependence on helium content. Analyses of the data indicate that the radiation hardening and the occurrence of intergranular fracture mode in the higher dose SP tests are dependent on gas content.

  12. High Temperature Oxidation Behavior of P91, P92 and E911 Alloy Steels in Dry andWet Atmospheres

    NASA Astrophysics Data System (ADS)

    Mathiazhagan, Palanivel; Khanna, Anand Sawroop

    2011-04-01

    The oxidation behavior has been studied under both dry and wet oxidation atmosphere at 873 K to 1073 K. In dry atmosphere the oxidation resistance of these alloys has been described by the formation of a protective oxide FeCr2O4 at 873 K to 973 K. At 1073 K, the kinetics are parabolic with fast growing oxide leading to spalling of oxide for P92 alloy. Oxide scale formed in air was protective with a chromium rich scale at 873-973 K, while double layered oxides were formed at 1073 K with iron oxide an outer layer and inner Cr-rich spinel FeCr2O4. In wet atmosphere oxide scale was reasonably different. The oxide layer showed porous in wet atmospheres where as dense oxide layer formed during dry oxidation. The oxidation rate of P92 alloy is about 3, 2 and 1 orders of magnitude higher than the P9, P91 and E911 alloys in wet atmospheres.

  13. Long-term strength and allowable stresses of grade 10Kh9MFB and X10CrMoVNb9-1 (T91/P91) chromium heat-resistant steels

    NASA Astrophysics Data System (ADS)

    Skorobogatykh, V. N.; Danyushevskiy, I. A.; Schenkova, I. A.; Prudnikov, D. A.

    2015-04-01

    Currently, grade X10CrMoVNb9-1 (T91, P91) and 10Kh9MFB (10Kh9MFB-Sh) chromium steels are widely applied in equipment manufacturing for thermal power plants in Russia and abroad. Compilation and comparison of tensile, impact, and long-term strength tests results accumulated for many years of investigations of foreign grade X10CrMoVNb9-1, T91, P91, and domestic grade 10Kh9MFB (10Kh9MFB-Sh) steels is carried out. The property identity of metals investigated is established. High strength and plastic properties of steels, from which pipes and other products are made, for operation under creep conditions are confirmed. Design characteristics of long-term strength on the basis of tests with more than one million of hour-samples are determined ( and at temperatures of 500-650°C). The table of recommended allowable stresses for grade 10Kh9MFB, 10Kh9MFB-SH, X10CrMoVNb9-1, T91, and P91 steels is developed. The long-time properties of pipe welded joints of grade 10Kh9MFB+10Kh9MFB, 10Kh9MFB-Sh+10Kh9MFB-Sh, X10CrMoVNb9-1+X10CrMoVNb9-1, P91+P91, T91+T91, 10Kh9MFB (10Kh9MFB-Sh)+X10CrMoVNb9-1(T/P91) steels is researched. The welded joint reduction factor is experimentally determined.

  14. Study of the structure and properties of metal of the major steam lines of a CCGT-420 unit made from high-chromium X10CrMoVNb9-1 (P91) steel

    NASA Astrophysics Data System (ADS)

    Grin', E. A.; Anokhov, A. E.; Pchelintsev, A. V.; Krüger, E.-T.

    2016-07-01

    The technology of manufacture of live steam lines and hot reheat lines at FINOW Rohrsysteme GmbH are discussed. These pipelines are designed for high-performance CCGT units and are made from high-chromium martensitic steel X10CrMoVNb9-1 (P91). The principles of certification and evaluation of conformance of thermal and mechanical equipment made from new construction materials with the TRCU 032-2013 technical regulation of the Customs Union are detailed. The requirements outlined in Russian and international regulatory documents regarding the manufacture of pipes and semifinished products for pipeline systems are compared. The characteristic features of high-chromium martensitic steel, which define the requirements for its heat treatment and welding, are outlined. The methodology and the results of a comprehensive analysis of metal of pipes, fittings, and weld joints of steam lines are presented. It is demonstrated that the short-term mechanical properties of metal (P91 steel) of pipes, bends, and weld joints meet the requirements of European standards and Russian technical specifications. The experimental data on long-term strength of metal of pipes from a live steam line virtually match the corresponding reference curve from the European standard, while certain experimental points for metal of bends of this steam line and metal of pipes and bends from a hot reheat line lie below the reference curve, but they definitely stay within the qualifying (20%) interval of the scatter band. The presence of a weakened layer in the heat-affected zone of weld joints of steel P91 is established. It is shown that the properties of this zone govern the short-term and long-term strength of weld joints in general. The results of synthesis and analysis of research data support the notion that the certification testing of steam lines and other equipment made from chromium steels should necessarily involve the determination of long-term strength parameters.

  15. Impact behavior of 9-Cr and 12-Cr ferritic steels after low-temperature irradiation

    SciTech Connect

    Klueh, R.L.; Vitek, J.M.; Corwin, W.R.; Alexander, D.J.

    1987-01-01

    Miniature Charpy impact specimens of 9Cr-1MoVNb and 12Cr-1MoVW steels and these steels with 1 and 2% Ni were irradiated in the High-Flux Isotope Reactor (HFIR) at 50/sup 0/C to displacement damage levels of up to 9 dpa. Nickel was added to study the effect of transmutation helium. Irradiation caused an increase in the ductile-brittle transition temperature (DBTT). The 9Cr-1MoVNb steels, with and without nickel, showed a larger shift than the 12Cr-1MoVW steels, with and without nickel. The results indicated that helium also increased the DBTT. The same steels were previously irradiated at higher temperatures. From the present and past tests, the effect of irradiation temperature on the DBTT behavior can be evaluated. For the 9Cr-1MoVNb steel, there is a continuous decrease in the magnitude of the DBTT increase up to an irradiation temperature of about 400/sup 0/C, after which the shift drops rapidly to zero at about 450/sup 0/C. The DBTT of the 12Cr-1MoVW steel shows a maximum increase at an irradiation temperature of about 400/sup 0/C and less of an increase at either higher or lower irradiation temperatures.

  16. A comparison of low-chromium and high-chromium reduced-activation steels for fusion applications

    SciTech Connect

    Klueh, R.L.; Maziasz, P.J.; Alexander, D.J.

    1996-11-01

    Ferritic steels have been considered candidate structural materials for first wall and blanket structures for fusion power plants since the late 1970s. The first steels considered in the United States were the conventional Cr-Mo steels Sandvik HT9 (nominally 12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C, here designated l2Cr-1MoVW), modified 9Cr-1Mo steel (9Cr-1Mo-0.2V-0.06Nb-0. IC, designated 9Cr-1MoVNb) and, to a lesser extent, 2 1/4Cr-1Mo steel (2.25Cr-Mo-0.1C). All compositions are in wt. %. The normalized-and-tempered 9 and 12Cr steels had a tempered martensite microstructure, and the normalized-and-tempered 2 1/4 Cr steel had a tempered bainite microstructure. This report describes chromium steels tested in normalized and tempered conditions. Miniature tensile and Charpy specimens were tested.

  17. Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1997-08-01

    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement is reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture.

  18. Effect of heat treatment on microstructure and hardness of Grade 91 steel

    SciTech Connect

    Shrestha, Triratna; Alsagabi, Sultan; Charit, Indrajit; Potirniche, Gabriel; Glazoff, Michael

    2015-01-21

    The modified 9Cr-1Mo steel (Grade 91) is a material of choice in fossil-fuel-fired power plants with increased efficiency, service life, and reduction in emission of greenhouse gases. It is also considered a prospective material for the Next Generation Nuclear Power Plant for application in reactor pressure vessels at temperatures up to 650°C. In this paper, heat treatment of the modified 9Cr-1Mo steel was studied by normalizing and tempering the steel at various temperatures and times, with the ultimate goal of improving its creep resistance and optimizing material hardness. The microstructural evolution of the heat treated steels was correlated with the differential scanning calorimetric results. Optical microscopy, scanning and transmission electron microscopy in conjunction with microhardness profiles and calorimetric plots were used to understand the evolution of microstructure including precipitate structures in modified 9Cr-1Mo steel and relate it to the mechanical behavior of the steel. Thermo-CalcTM calculations were used to support experimental work and provide guidance in terms of the precipitate stability and microstructural evolution. Furthermore, the carbon isopleth and temperature dependencies of the volume fraction of different precipitates were constructed. The predicted and experimentally observed results were found to be in good agreement.

  19. Effect of heat treatment on microstructure and hardness of Grade 91 steel

    DOE PAGES

    Shrestha, Triratna; Alsagabi, Sultan; Charit, Indrajit; ...

    2015-01-21

    The modified 9Cr-1Mo steel (Grade 91) is a material of choice in fossil-fuel-fired power plants with increased efficiency, service life, and reduction in emission of greenhouse gases. It is also considered a prospective material for the Next Generation Nuclear Power Plant for application in reactor pressure vessels at temperatures up to 650°C. In this paper, heat treatment of the modified 9Cr-1Mo steel was studied by normalizing and tempering the steel at various temperatures and times, with the ultimate goal of improving its creep resistance and optimizing material hardness. The microstructural evolution of the heat treated steels was correlated with themore » differential scanning calorimetric results. Optical microscopy, scanning and transmission electron microscopy in conjunction with microhardness profiles and calorimetric plots were used to understand the evolution of microstructure including precipitate structures in modified 9Cr-1Mo steel and relate it to the mechanical behavior of the steel. Thermo-CalcTM calculations were used to support experimental work and provide guidance in terms of the precipitate stability and microstructural evolution. Furthermore, the carbon isopleth and temperature dependencies of the volume fraction of different precipitates were constructed. The predicted and experimentally observed results were found to be in good agreement.« less

  20. Irradiation-induced impurity segregation and ductile-to-brittle transition temperature shift in high chromium ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Faulkner, R. G.; Flewitt, P. E. J.

    2007-08-01

    A model is presented to predict irradiation-induced impurity segregation and its contribution to the ductile-to-brittle transition temperature (DBTT) shift in high chromium ferritic steels. The hardening contribution (dislocation loops, voids and precipitates) is also considered in this study. The predicted results are compared with the experimental DBTT shifts data for irradiated 9Cr1MoVNb and 12Cr1MoVW steels with different grain sizes.

  1. Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1997-06-01

    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement will be reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture. In addition to irradiation hardening, neutrons from the fusion reaction will produce large amounts of helium in the steels used to construct fusion power plant components. Tests to simulate the fusion environment indicate that helium can also affect the toughness. Steels are being developed for fusion applications that have a low DBTT prior to irradiation and then show only a small shift after irradiation. A martensitic 9Cr-2WVTa (nominally Fe-9Cr-2W-0.25V-0.07Ta-0.1C) steel had a much lower DBTT than the conventional 9Cr-1MoVNb steel prior to neutron irradiation and showed a much smaller increase in DBTT after irradiation. 27 refs., 5 figs., 1 tab.

  2. Mechanical properties of neutron-irradiated nickel-containing martensitic steels: I. Experimental study

    NASA Astrophysics Data System (ADS)

    Klueh, R. L.; Hashimoto, N.; Sokolov, M. A.; Shiba, K.; Jitsukawa, S.

    2006-10-01

    Tensile and Charpy specimens of 9Cr-1MoVNb (modified 9Cr-1Mo) and 12Cr-1MoVW (Sandvik HT9) steels and these steels doped with 2% Ni were irradiated at 300 and 400 °C in the High Flux Isotope Reactor (HFIR) up to ≈12 dpa and at 393 °C in the Fast Flux Test Facility (FFTF) to ≈15 dpa. In HFIR, a mixed-spectrum reactor, ( n, α) reactions of thermal neutrons with 58Ni produce helium in the steels. Little helium is produced during irradiation in FFTF. After HFIR irradiation, the yield stress of all steels increased, with the largest increases occurring for nickel-doped steels. The ductile-brittle transition temperature (DBTT) increased up to two times and 1.7 times more in steels with 2% Ni than in those without the nickel addition after HFIR irradiation at 300 and 400 °C, respectively. Much smaller differences occurred between these steels after irradiation in FFTF. The DBTT increases for steels with 2% Ni after HFIR irradiation were 2-4 times greater than after FFTF irradiation. Results indicated there was hardening due to helium in addition to hardening by displacement damage and irradiation-induced precipitation.

  3. Embrittlement of Cr-Mo steels after low fluence irradiation in HFIR

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1995-04-01

    The goal of this work is the determination of the possible effect of the simultaneous formation of helium and displacement damage during irradiation on the Charpy impact behavior. Subsize Charpy impact specimens of 9Cr-1MoVNb (modified 9Cr-1Mo) and 12Cr-1MoVW (Sandvik HT9) steels and 12Cr-1MoVW with 2%Ni (12Cr-1MOVW-2Ni) were irradiated in the High Flux Isotope Reactor (HFIR) at 300 and 400{degree}C to damage levels up to 2.5 dpa. The objective was to study the effect of the simultaneous formation of displacement damage and transmutation helium on impact toghness. Despite the low fluence relative to previous irradiations of these steels, significant increases in the ductile-brittle transition temperature (DBTT) occurred. The 12Cr-1MoVW-2Ni steel irradiated at 400{degree}C had the largest increase in DBTT and displayed indications of intergranular fracture. A mechanism is proposed to explain how helium can affect the fracture behaviour of this latter steel in the present tests, and how it affected all three steels in previous experiments, where the steels were irradiated to higher fluences.

  4. Charpy impact toughness of martensitic steels irradiated in FFTF: Effect of heat treatment

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1992-12-31

    Plates of 9Cr-1MoVNb and 12Cr-1 MoVW steels were normalized and then tempered at two different tempering conditions. One-third-size Charpy specimens from each steel were irradiated to 7.4-8{times}10{sup 26} n/m{sup 2} (about {approximately}35 dpa) at 420{degrees}C in the Materials Open Test Assembly (MOTA) of the Fast Flux Test Facility. Specimens were also thermally aged to 20,000 h at 400{degrees}C to compare the effect of aging and irradiation. Previous work on the steels irradiated to 4-5 dpa at 365{degrees}C in MOTA were reexamined in light of the new results. The tests indicated that prior-austenite grain size, which was varied by different normalizing treatments, had an effect on impact behavior of the 9Cr-1MoVNb but not on the 12Cr-1MoVW. Tempering treatment had relatively little effect on the shift in DBTT for both steels. Conclusions are presented on how heat treatment can be used to optimize properties.

  5. Charpy impact toughness of martensitic steels irradiated in FFTF: Effect of heat treatment

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1992-12-31

    Charpy tests were made on plates of 9Cr-1MoVNb and 12Cr-1MoVW steels given four different normalizing-and-tempering treatments. One-third-size Charpy specimens from each steel were irradiated to 7.4-8 {times} 10{sup 26} n/m{sup 2} (about 34--37 dpa) at 420C in the Materials Open Test Assembly of the Fast Flux Test Facility. Specimens were also thermally aged to 20000 h at 400C to determine the effect of aging during irradiation. Previous work on these steels irradiated to 4--5 dpa at 365C in MOTA were reexamined in light of the new results. The tests indicated that prior austenite grain size, which was varied by different normalizing treatments, had an effect on impact behavior of the 9Cr-1MoVNb but not on the 12Cr-1MoVW. Tempering treatment had relatively little effect on the shift in DBTT for both steels. conclusions are presented on how heat treatment can be used to optimize properties.

  6. Charpy impact toughness of martensitic steels irradiated in FFTF: Effect of heat treatment

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1992-01-01

    Charpy tests were made on plates of 9Cr-1MoVNb and 12Cr-1MoVW steels given four different normalizing-and-tempering treatments. One-third-size Charpy specimens from each steel were irradiated to 7.4-8 [times] 10[sup 26] n/m[sup 2] (about 34--37 dpa) at 420C in the Materials Open Test Assembly of the Fast Flux Test Facility. Specimens were also thermally aged to 20000 h at 400C to determine the effect of aging during irradiation. Previous work on these steels irradiated to 4--5 dpa at 365C in MOTA were reexamined in light of the new results. The tests indicated that prior austenite grain size, which was varied by different normalizing treatments, had an effect on impact behavior of the 9Cr-1MoVNb but not on the 12Cr-1MoVW. Tempering treatment had relatively little effect on the shift in DBTT for both steels. conclusions are presented on how heat treatment can be used to optimize properties.

  7. Report on thermal aging effects on tensile properties of ferritic-martensitic steels.

    SciTech Connect

    Li, M.; Soppet, W.K.; Rink, D.L.; Listwan, J.T.; Natesan, K.

    2012-05-10

    This report provides an update on the evaluation of thermal-aging induced degradation of tensile properties of advanced ferritic-martensitic steels. The report is the first deliverable (level 3) in FY11 (M3A11AN04030103), under the Work Package A-11AN040301, 'Advanced Alloy Testing' performed by Argonne National Laboratory, as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing tensile data on aged alloys and a mechanistic model, validated by experiments, with a predictive capability on long-term performance. The scope of work is to evaluate the effect of thermal aging on the tensile properties of advanced alloys such as ferritic-martensitic steels, mod.9Cr-1Mo, NF616, and advanced austenitic stainless steel, HT-UPS. The aging experiments have been conducted over a temperature of 550-750 C for various time periods to simulate the microstructural changes in the alloys as a function of time at temperature. In addition, a mechanistic model based on thermodynamics and kinetics has been used to address the changes in microstructure of the alloys as a function of time and temperature, which is developed in the companion work package at ANL. The focus of this project is advanced alloy testing and understanding the effects of long-term thermal aging on the tensile properties. Advanced materials examined in this project include ferritic-martensitic steels mod.9Cr-1Mo and NF616, and austenitic steel, HT-UPS. The report summarizes the tensile testing results of thermally-aged mod.9Cr-1Mo, NF616 H1 and NF616 H2 ferritic-martensitic steels. NF616 H1 and NF616 H2 experienced different thermal-mechanical treatments before thermal aging experiments. NF616 H1 was normalized and tempered, and NF616 H2 was normalized and tempered and cold-rolled. By examining these two heats, we evaluated the effects of thermal-mechanical treatments on material microstructures and

  8. Creep-fatigue modelling in structural steels using empirical and constitutive creep methods implemented in a strip-yield model

    NASA Astrophysics Data System (ADS)

    Andrews, Benjamin J.

    The phenomena of creep and fatigue have each been thoroughly studied. More recently, attempts have been made to predict the damage evolution in engineering materials due to combined creep and fatigue loading, but these formulations have been strictly empirical and have not been used successfully outside of a narrow set of conditions. This work proposes a new creep-fatigue crack growth model based on constitutive creep equations (adjusted to experimental data) and Paris law fatigue crack growth. Predictions from this model are compared to experimental data in two steels: modified 9Cr-1Mo steel and AISI 316L stainless steel. Modified 9Cr-1Mo steel is a high-strength steel used in the construction of pressure vessels and piping for nuclear and conventional power plants, especially for high temperature applications. Creep-fatigue and pure creep experimental data from the literature are compared to model predictions, and they show good agreement. Material constants for the constitutive creep model are obtained for AISI 316L stainless steel, an alloy steel widely used for temperature and corrosion resistance for such components as exhaust manifolds, furnace parts, heat exchangers and jet engine parts. Model predictions are compared to pure creep experimental data, with satisfactory results. Assumptions and constraints inherent in the implementation of the present model are examined. They include: spatial discretization, similitude, plane stress constraint and linear elasticity. It is shown that the implementation of the present model had a non-trivial impact on the model solutions in 316L stainless steel, especially the spatial discretization. Based on these studies, the following conclusions are drawn: 1. The constitutive creep model consistently performs better than the Nikbin, Smith and Webster (NSW) model for predicting creep and creep-fatigue crack extension. 2. Given a database of uniaxial creep test data, a constitutive material model such as the one developed for

  9. The Effect of Silicon Content on Impact Toughness of T91 Grade Steels

    NASA Astrophysics Data System (ADS)

    Roy, Ajit; Kumar, Pankaj; Maitra, Debajyoti

    2009-03-01

    The impact resistance of silicon (Si)-containing modified 9Cr-1Mo steels has been investigated within a temperature regime of -40 to 440 °C using the Charpy method. The results indicate that the energies absorbed in fracturing the tested specimens were substantially lower at temperatures of -40, 25, and 75 °C compared to those at elevated temperatures. Lower impact energies and higher ductile-to-brittle-transition-temperatures (DBTTs) were observed with the steels containing 1.5 and 1.9 wt.% Si. The steels containing higher Si levels exhibited both ductile and brittle failures at elevated temperatures. However, at lower temperatures, brittle failures characterized by cleavage and intergranular cracking were observed for all four tested materials.

  10. Finite Element Analysis for the Verification of Post-Weld Heat Treatment of 9Cr-1Mo Welds

    SciTech Connect

    Cheng, W.; Shiwa, M.; Komura, I.; Gotoh, Y.; Takahashi, N.

    2005-04-09

    The study on the verification of post-weld heat treatment (PWHT) and PWHT temperature assessment by using AC magnetization method was carried out. Simulated specimens of different PWHT conditions were prepared and their bulk electro-magnetic properties were investigated. The finite element analysis incorporating with magnetic hysteresis was carried out for the purpose of finding proper inspection conditions and evaluation parameters. The simulation showed that PWHT can be verified by the AC magnetization method, however, for PWHT temperature assessment, some new parameters should be considered.

  11. Effects induced by the brazing thermal cycle on the structural properties of materials in steel brazed joints

    NASA Astrophysics Data System (ADS)

    Brossa, M.; Guerreschi, U.

    1988-07-01

    Specimens of AISI 316 austenitic steel, 9Cr-1Mo modified martensitic steel, and 2.25Cr-1Mo ferritic steel have been brazed in a furnace under vacuum conditions. Several thermal cycles were followed in order to investigate their influence on the final characteristics of the joints and the materials. Various kinds of high-melting Ni-based brazing alloys having properties similar to the base materials were used. The growth of the austenitic grain size was measured in order to assess its dependence on the brazing cycle of the different alloys. Metallurgical analyses were carried out and, in a few cases, repeated after the specimens underwent a second thermal cycle or destructive tests. No precipitation of carbides was observed in the base materials after the brazing cycles, confirming that the cooling rate is above the critical range.

  12. Effect of thermal exposure in helium on mechanical properties and microstructure of 316L and P91

    NASA Astrophysics Data System (ADS)

    Kunzova, Klara; Berka, Jan; Siegl, Jan; Hausild, Petr

    2016-04-01

    In this paper, the effects of high temperature exposure in air as well as in impure He on mechanical properties of 316L and P91 steels were investigated. The experimental programme was part of material design of new experimental facility - high temperature helium loop. Some of the specimens were exposed in air at 750 °C for up to 1000 h. Another set of specimens were exposed in impure helium containing 1 ppmv CO2, 2 ppmv O2, 35 ppmv CH4, 250 ppmv CO and 400 ppmv H2 at 750 °C for up to 1000 h. Metalographical analysis, tensile tests, fracture toughness and hardness tests of exposed and non-exposed specimens were carried out. After the exposure both in air and He, the ultimate tensile strength of P91 decreased significantly more than that of 316L. After the exposure in He, the fracture toughness of 316L was reduced to 60% while fracture toughness of P91 showed no significant changes. The hardness of P91 decreased with exposure time in air. The measurement of the hardness of 316L was very scattered the most probably due to the heterogeneities in microstructure, the trend was not possible to evaluate.

  13. Response of ferritic steels to nonsteady loading at elevated temperatures

    SciTech Connect

    Swindeman, R.W.

    1984-04-01

    High-temperature operating experience is lacking in pressure vessel materials that have strength levels above 586 MPa. Because of their tendency toward strain softening, we have been concerned about their behavior under nonsteady loading. Testing was undertaken to explore the extent of softening produced by monotonic and cyclic strains. The specific materials included bainitic 2 1/4Cr-1Mo steel, a micro-alloyed version of 2 1/4Cr-1Mo steel, a micro-alloyed version of 2 1/4Cr-1Mo steel containing vanadium, titanium, and boron, and a martensitic 9Cr-1Mo-V-Nb steel. Tests included tensile, creep, variable stress creep, relaxation, strain cycling, stress cycling, and non-isothermal creep ratchetting experiments. We found that these steels had very low uniform elongation and exhibited small strains to the onset of tertiary creep compared to annealed 2 1/4Cr-1Mo steel. Repeated relaxation test data also indicated a limited capacity for strain hardening. Reversal strains produced softening. The degree of softening increased with increased initial strength level. We concluded that the high strength bainitic and martensitic steels should perform well when used under conditions where severe cyclic operation does not occur.

  14. Characterization of microstructure of HAZs in as-welded and service condition of P91 pipe weldments

    NASA Astrophysics Data System (ADS)

    Pandey, C.; Giri, A.; Mahapatra, M. M.; Kumar, P.

    2017-01-01

    Steels 9-12% Cr, having the high creep rupture strength are advocated for the modern low polluting thermal power plants. In the present investigation, the P91 pipe weldments have been characterized for microstructural responses in as-welded, post-weld heat treatment (PWHT) and ageing conditions. The PWHT of welded samples were carried out at 760 °C for time of 2 h and ageing at 760 °C for 720 h and 1440 h, respectively. The effect of time has been studied on precipitates size, distribution of precipitates and grain sizes present in various zones of P91 steel weldments. The impact toughness and hardness variation of heat affected zone (HAZ) have also been studied in as-welded condition as well as at different heat treatment condition. A significant change was observed in grain size and precipitates size after each heat treatment condition. The maximum impact toughness of HAZ was obtained after PWHT at 760 °C for 2 h. The main phase observed in weld fusion zone in as-welded, PWHT and ageing conditions were M23C6, MX, M7C3, Fe-rich M3C and M2C. The unwanted Z-phase (NbCrN) was also noticed in weld fusion zone after ageing of 1440 h.

  15. Effect of Austenization Temperature on the Microstructure and Strength of 9% and 12% Cr Ferritic-Martensitic Steels

    SciTech Connect

    Terry C. Totemeier

    2004-10-01

    The effect of reduced-temperature austenization on the microstructure and strength of two ferritic-martensitic steels was studied. Prototypic 9% and 12% Cr steels, grade 91 (9Cr-1MoVNb) and type 422 stainless (12Cr-1MoVW), respectively, were austenized at 925°C and 1050°C and tempered at 760°C. The reduced austenization temperature was intended to simulate potential inadequate austenization during field construction of large structures and also the thermal cycle experienced in the Type IV region of weld heat affected zones (HAZ). The microstructure, tensile behavior, and creep strength were characterized for both steels treated at each condition. The reduced austenization temperature resulted in general coarsening of carbides in both steels and polygonization of the tempered martensite structure in type 422. For this steel, a marked reduction in microhardness was observed, while there was little change in microhardness for grade 91. Slight reductions in tensile strength were observed for both steels at room temperature and elevated temperatures of 450 and 550°C. The strength reduction was greater for type 422 than for grade 91. At 650°C the tensile strength reduction was minimal for both steels. Marked reductions in creep rupture lives were observed for both steels at 650°C; the reductions were less at 600°C and minimal at 550°C. Overall, the higher Cr content steel was observed to be more sensitive to variations in heat treatment conditions.

  16. Effect of Heat Treatment on Microstructure and Hot Impact Toughness of Various Zones of P91 Welded Pipes

    NASA Astrophysics Data System (ADS)

    Pandey, C.; Mahapatra, M. M.

    2016-06-01

    The new generation super critical thermal power plants are required to operate at enhanced thermal efficiency of over 50% to reduce the fuel consumption and environmental pollution. Creep strength-enhanced ferritic steels, commonly known as Cr-Mo alloys such as P91 (X10CrMoVNb 9-1) are such material of choice for the next generation power plants. The operating requirement of these next generation power plants is that steam temperature of around 650 °C is maintained. For such high-temperature application, creep strength of material is the primary consideration together with adequate weld heat-affected zone (HAZ) toughness. Present work deals with the effect of high service temperature on impact toughness of P91 (X10CrMoVNb 9-1) base material, weld fusion zone, and HAZ. The impact toughness of HAZ for conventional weld groove design and narrow weld groove design has been evaluated experimentally in as-welded and at different post-weld heat treatment conditions. Fractography of the impact toughness specimens of base metal, weld fusion zone, and HAZ was carried out using scanning electron microscope. The effects of heat treatment schemes on the percentage of element present at the fracture surface were also studied.

  17. A case-history analysis of using plain carbon and alloy steel for completion equipment in CO{sub 2} service

    SciTech Connect

    Chitwood, G.B.; Coyle, W.R.; Hilts, R.L.

    1994-12-31

    On rare occasions, field experience has shown that the corrosion rate from exposure to CO{sub 2} can vary greatly among different grades of carbon and alloy steels. The literature attributes the variation in corrosion rate to the microstructure resulting from heat treatment. A normalized plain carbon steel with a pearlitic microstructure is far superior to a hardened and tempered alloy steel with a martensitic microstructure. This paper presents two case histories from oil wells in the Middle East, wherein hardened and tempered alloy steel gas lift equipment underwent severe corrosion from CO{sub 2}. In one case, the API J-55 tubing string experienced no corrosion. This has prompted consideration of the use of normalized steel for completion equipment in order to achieve corrosion performance similar to the J-55 tubing. For the equipment used in these wells, it was determined that alloy steel cannot provide a pearlitic microstructure while still maintaining good metallurgical properties. This study concluded that 9Cr-1 Mo stainless steel has superior corrosion resistance and is recommended for completion equipment in these types of environments.

  18. A comparative evaluation of welding consumables for dissimilar weids between 316LN austenitic stainless steel and Alloy 800

    NASA Astrophysics Data System (ADS)

    Sireesha, M.; Albert, Shaju K.; Shankar, V.; Sundaresan, S.

    2000-03-01

    Transition joints in power plants between ferritic steels and austenitic stainless steels suffer from a mismatch in coefficients of thermal expansion (CTE) and the migration of carbon during service from the ferritic to the austenitic steel. To overcome these, nickel-based consumables are commonly used. The use of a trimetallic combination with an insert piece of intermediate CTE provides for a more effective lowering of thermal stresses. The current work envisages a trimetallic joint involving modified 9Cr-1Mo steel and 316LN austenitic stainless steel as the base materials and Alloy 800 as the intermediate piece. Of the two joints involved, this paper describes the choice of welding consumables for the joint between Alloy 800 and 316LN. Four consumables were examined: 316, 16-8-2, Inconel 82 and Inconel 182. The comparative evaluation was based on hot cracking tests and estimation of mechanical properties and coefficient of thermal expansion. While 16-8-2 exhibited highest resistance to solidification cracking, the Inconel filler materials also showed adequate resistance; additionally, the latter were superior from the mechanical property and coefficient of thermal expansion view-points. It is therefore concluded that for the joint between Alloy 800 and 316LN the Inconel filler materials offer the best compromise.

  19. Insight into the microstructural characterization of ferritic steels using micromagnetic parameters

    SciTech Connect

    Moorthy, V.; Vaidyanathan, S.; Raj, B.; Jayakumar, T.; Kashyap, B.P.

    2000-04-01

    The influence of tempering-induced microstructural changes on the micromagnetic parameters such as magnetic Barkhausen emission (MBE), coercive force (H{sub c}), residual induction (B{sub r}), and maximum induction (B{sub max}) has been studied in 0.2 pct carbon steel, 2.25Cr-1Mo steel, and 9Cr-1Mo steel. It is observed that, after short tempering, the micromagnetic parameters show more or less linear correlation with hardness, which is attributed to the reduction in dislocation density, but long-term tempering produces nonlinear behavior. The variation in each of these parameters with tempering time has been explained based on the changes in the size and distribution of ferrite laths/grains and precipitates. It has been shown that the individual variation in the microstructural features such as size and distribution of laths/grains and precipitates during tempering can be clearly identified by the MBE parameters, which is not possible from the hysteresis loop parameters (H{sub c} and B{sub r}). It is also shown that the MBE parameters cannot only be used to identify different stages of tempering but also to quantify the average size of laths/grains and second-phase precipitates.

  20. Microstructures and Type-IV Creep Damage of High Cr Steel Welds

    NASA Astrophysics Data System (ADS)

    Hongo, Hiromichi; Tabuchi, Masaaki; Takahashi, Yukio

    Creep strength of welded joints in high Cr steels decreases due to the formation of Type-IV creep damage in the heat-affected zone (HAZ) during long-term use at high temperatures. This paper aims to elucidate the processes and mechanisms of Type-IV failure. Creep tests for the welded joints with different groove configurations of Mod.9Cr-1Mo steel were conducted. Distributions of Type-IV creep damages in HAZ of these welds were measured quantitatively, and were compared with FEM computations using damage mechanics analysis. For the welded joints with double U groove, creep voids were observed mostly at 20% below the surface of the plate, and scarcely near surfaces and center of thickness. For the welded joints with single U groove, creep voids were observed inside the plate thickness more than 3mm below the surfaces. From the comparison of experimental damage distributions with FEM analysis, it is considered to be important to take the stress triaxiality into account for the prediction of damage location and fracture life of high Cr ferritic steel welds.

  1. Toward Improving the Type IV Cracking Resistance in Cr-Mo Steel Weld Through Thermo-Mechanical Processing

    NASA Astrophysics Data System (ADS)

    Shassere, Benjamin A.; Yamamoto, Yukinori; Babu, Sudarsanam Suresh

    2016-05-01

    Detailed microstructure characterization of Grade 91 (Modified 9Cr-1Mo, ASTM A387) steel subjected to a thermo-mechanical treatment process was performed to rationalize the cross-weld creep properties. A series of thermo-mechanical processing in the austenite phase region, followed by isothermal aging at temperatures at 973 K to 1173 K (700 °C to 900 °C), was applied to the Grade 91 steel to promote precipitation kinetics of MX (M: Nb and V, X: C and N) in the austenite matrix. Detailed characterization of the base metals after standard tempering confirmed the presence of fine MX dispersion within the tempered martensitic microstructure in steels processed at/and above 1073 K (800 °C). Relatively low volume fraction of M23C6 precipitates was observed after processing at 1073 K (800 °C). The cross-weld creep strength after processing was increased with respect to the increase of MX dispersion, indicating that these MX precipitates maintained during weld thermal cycles in the fine-grained heat-affected zone region and thereby contribute to improved creep resistant of welds in comparison to the welds made with the standard "normalization and tempering" processes. The steels processed in this specific processing condition showed improved cross-weld creep resistance and sufficient room temperature toughness. The above data are also analyzed based on existing theories of creep deformation based on dislocation climb mechanism.

  2. PERFORMANCE IMPROVEMENT OF CREEP-RESISTANT FERRITIC STEEL WELDMENTS THROUGH THERMO-MECHANICAL TREATMENT AND ALLOY DESIGN

    SciTech Connect

    Yamamoto, Yukinori; Babu, Prof. Sudarsanam Suresh; Shassere, Benjamin; Yu, Xinghua

    2016-01-01

    Two different approaches have been proposed for improvement of cross-weld creep properties of the high temperature ferrous structural materials for fossil-fired energy applications. The traditional creep strength-enhanced ferritic (CSEF) steel weldments suffer from Type IV failures which occur at the fine-grained heat affected zone (FGHAZ). In order to minimize the premature failure at FGHAZ in the existing CSEF steels, such as modified 9Cr-1Mo ferritic-martensitic steels (Grade 91), a thermo-mechanical treatment consisting of aus-forging/rolling and subsequent aus-aging is proposed which promotes the formation of stable MX carbonitrides prior to martensitic transformation. Such MX remains undissolved during welding process, even in FGHAZ, which successfully improves the cross-weld creep properties. Another approach is to develop a new fully ferrtic, creep-resistant FeCrAl alloy which is essentially free from Type IV failure issues. Fe-30Cr-3Al base alloys with minor alloying additions were developed which achieved a combination of good oxidation/corrosion resistance and improved tensile and creep performance comparable or superior to Grade 92 steel.

  3. Toward Improving the Type IV Cracking Resistance in Cr-Mo Steel Weld Through Thermo-Mechanical Processing

    DOE PAGES

    Shassere, Benjamin A.; Yamamoto, Yukinori; Babu, Sudarsanam Suresh

    2016-02-23

    Detailed microstructure characterization of Grade 91 (Modified 9Cr-1Mo, ASTM A387) steel subjected to a thermo-mechanical treatment (TMT) process was performed to rationalize the cross-weld creep properties. A series of thermo-mechanical processing in the austenite phase region, followed by isothermal aging at temperatures at 973 to 1173 K (700 to 900ºC) was applied to the Grade 91 steel to promote precipitation kinetics of MX (M: Nb and V, X: C and N) in the austenite matrix. Detailed characterization of the base metals after standard tempering confirmed the presence of fine MX dispersion within the tempered martensitic microstructure in steels processed at/andmore » above 1073 K (800 ºC). Relatively low volume fraction of M23C6 precipitates was observed after processing at 1073 K (800 ºC). The cross-weld creep strength after processing was increased with respect to the increase of MX dispersion, indicating that these MX precipitates maintained during weld thermal cycles in the fine grained heat affected zone (FGHAZ) region and thereby contribute to improved creep resistant of welds in comparison to the welds made with the standard “normalization and tempering” processes. Lastly, the steels processed in this specific processing condition showed improved cross-weld creep resistance and sufficient room-temperature toughness. The above data is also analysed based on existing theories of creep deformation based on dislocation climb mechanism.« less

  4. Toward Improving the Type IV Cracking Resistance in Cr-Mo Steel Weld Through Thermo-Mechanical Processing

    SciTech Connect

    Shassere, Benjamin A.; Yamamoto, Yukinori; Babu, Sudarsanam Suresh

    2016-02-23

    Detailed microstructure characterization of Grade 91 (Modified 9Cr-1Mo, ASTM A387) steel subjected to a thermo-mechanical treatment (TMT) process was performed to rationalize the cross-weld creep properties. A series of thermo-mechanical processing in the austenite phase region, followed by isothermal aging at temperatures at 973 to 1173 K (700 to 900ºC) was applied to the Grade 91 steel to promote precipitation kinetics of MX (M: Nb and V, X: C and N) in the austenite matrix. Detailed characterization of the base metals after standard tempering confirmed the presence of fine MX dispersion within the tempered martensitic microstructure in steels processed at/and above 1073 K (800 ºC). Relatively low volume fraction of M23C6 precipitates was observed after processing at 1073 K (800 ºC). The cross-weld creep strength after processing was increased with respect to the increase of MX dispersion, indicating that these MX precipitates maintained during weld thermal cycles in the fine grained heat affected zone (FGHAZ) region and thereby contribute to improved creep resistant of welds in comparison to the welds made with the standard “normalization and tempering” processes. Lastly, the steels processed in this specific processing condition showed improved cross-weld creep resistance and sufficient room-temperature toughness. The above data is also analysed based on existing theories of creep deformation based on dislocation climb mechanism.

  5. Electron microscopy and microanalysis of steel weld joints after long time exposures at high temperatures

    NASA Astrophysics Data System (ADS)

    Jandová, D.; Kasl, J.; Rek, A.

    2010-02-01

    The structural changes of three trial weld joints of creep resistant modified 9Cr-1Mo steels and low alloyed chromium steel after post-weld heat treatment and long-term creep tests were investigated. Smooth cross-weld specimens ruptured in different zones of the weld joints as a result of different structural changes taking place during creep exposures. The microstructure of the weld joint is heterogeneous and consequently microstructural development can be different in the weld metal, the heat affected zone, and the base material. Precipitation reactions, nucleation and growth of some particles and dissolution of others, affect the strengthening of the matrix, recovery at high temperatures, and the resulting creep resistance. Therefore, a detailed study of secondary phase's development in individual zones of weld joints can elucidate mechanism of cracks propagation in specific regions and the causes of creep failure. Type I and II fractures in the weld metal and Type IV fractures in the fine prior austenite grain heat affected zones occurred after creep tests at temperatures ranging from 525 to 625 °C and under stresses from 40 to 240 MPa. An extended metallographic study of the weld joints was carried out using scanning and transmission electron microscopy, energy-dispersive and wave-dispersive X-ray microanalysis. Carbon extraction replicas and thin foils were prepared from individual weld joint regions and quantitative evaluation of dislocation substructure and particles of secondary phases has been performed.

  6. RNA-dependent RNA polymerase activity associated with the yeast viral p91/20S RNA ribonucleoprotein complex.

    PubMed Central

    García-Cuéllar, M P; Esteban, R; Fujimura, T

    1997-01-01

    20S RNA is a noninfectious viral single-stranded RNA found in most laboratory strains of the yeast Saccharomyces cerevisiae. 20S RNA encodes a protein of 91 kDa (p91) that contains the common motifs found among RNA-dependent RNA polymerases from RNA viruses. p91 and 20S RNA are noncovalently associated in vivo, forming a ribonucleoprotein complex. We detected an RNA polymerase activity in p91/20S RNA complexes isolated by high-speed centrifugation. The activity was not inhibited by actinomycin D nor alpha-amanitin. The majority of the in vitro products was 20S RNA and the rest was the complementary strands of 20S RNA. Because the extracts were prepared from cells accumulating 20S RNA over its complementary strands, these in vitro products reflect the corresponding activities in vivo. When the p91/20S RNA complexes were subjected to sucrose gradient centrifugation, the polymerase activity cosedimented with the complexes. Furthermore, an RNA polymerase activity was detected in the complex by an antibody-linked polymerase assay using anti-p91 antiserum, suggesting that p91 is present in the active RNA polymerase machinery. These results together indicate that p91 is the RNA-dependent RNA polymerase or a subunit thereof responsible for 20S RNA replication. PMID:8990396

  7. Control of on-orbit contamination for the Argos (P91-1) satellite

    NASA Technical Reports Server (NTRS)

    Kelley, Joseph G.

    1992-01-01

    The ARGOS (P91-1) satellite presents a challenging combination of on-orbit contamination concerns while mandating a low-cost approach. Several experiment payloads contain contamination sensitive optics, another contains large quantities of CO2 and Xe for release in orbit, and one contains an NH3 fueled arc jet thruster. The latter includes a suite of sensors to measure contamination; so prelaunch calculations will be tested. Planned contamination control techniques include: physical separation of sensitive surfaces from contamination sources; flight covers to protect sensitive surfaces during early outgassing on-orbit; gas release and thruster operation early in the flight, before flight covers are opened; and careful control of plumes and venting through a detailed analysis of each.

  8. High temperature oxidation and sodium chloride-induced accelerated corrosion of hot-dip aluminized 9chromium-1molybdenum and 310 stainless steel

    NASA Astrophysics Data System (ADS)

    Tsaur, Charng-Cheng

    The behaviors of high temperature corrosion on hot-dip aluminized on 9Cr-1Mo and 310 stainless steels when catalyzed by NaCl and cyclic heating environment were studied experimentally. The corrosion behavior and morphological development were investigated by weight gain kinetics, metallographs, depths of attack, metal losses, and X-ray analyses. The results of 310SS deposited with salt mixtures show that weight gain kinetics in simple oxidation reveals a steady-state parabolic rate law after 3 hr, while the kinetics with salt deposits display multi-stage growth rates. NaCl is the main corrosive specie in high-temperature corrosion involving mixtures of NaCl/Na2SO 4 and is responsible for the formation of internal attack. Uniform internal attack is the typical morphology of NaCl-induced hot corrosion, while the extent of intergranular attack is more pronounced as the content of Na 2SO4 in the mixture is increased. The thermal-cycling test results of 310SS deposited NaCl and coated 7wt%Si/93wt%Al show that the aluminized layers have good corrosion resistance during the first four cycles of testing, while degradation occurs after testing for five cycles. The reason for degradation of aluminized layers is attributed to the formation of inter-connecting voids caused by aluminum inward diffusion, chloridation/oxidation cyclic reactions and the penetration of molten NaCl through the voids into the alloy substrate. The 9Cr-1Mo steels coated with 7wt%Si/93wt%Al oxidized at 750, 850, and 950°C in static air show that oxidation kinetics followed a parabolic rate law at 750 and 850°C. The cracks propagated through the Fex Aly layer due to the growth of brittle FeAl2 and Fe2Al5 at 750 and 850°C. The voids condensed in the interface of intermetallics and substrate are attributed to the Kirkendall effect. At 950°C, the fast growing aluminide layer has a different expansion coefficient than oxide scale, leading to scale cracking, oxygen penetration, and internal oxidized

  9. Ligand-induced IFN gamma receptor tyrosine phosphorylation couples the receptor to its signal transduction system (p91).

    PubMed Central

    Greenlund, A C; Farrar, M A; Viviano, B L; Schreiber, R D

    1994-01-01

    Herein we report that interferon-gamma (IFN gamma) induces the rapid and reversible tyrosine phosphorylation of the IFN gamma receptor. Using a panel of receptor intracellular domain mutants, we show that a membrane-proximal LPKS sequence (residues 266-269) is required for ligand-induced tyrosine kinase activation and/or kinase-receptor association and biological responsiveness, and a functionally critical membrane-distal tyrosine residue (Y440) is a target of the activated enzyme. The biological significance of Y440 phosphorylation was demonstrated by showing that a receptor-derived nonapeptide corresponding to receptor residues 436-444 and containing phosphorylated Y440 bound specifically to p91, blocked p91 phosphorylation and inhibited the generation of an active p91-containing transcription factor complex. In contrast, nonphosphorylated wild-type, phosphorylated mutant, or phosphorylated irrelevant peptides did not. Moreover, the phosphorylated Y440-containing peptide did not interact with a related but distinct latent transcription factor (p113) which is activatible by IFN alpha but not IFN gamma. These results thus document the specific and inducible association of p91 with the phosphorylated IFN gamma receptor and thereby elucidate the mechanism by which ligand couples the IFN gamma receptor to its signal transduction system. Images PMID:8156998

  10. Type IV Creep Damage Behavior in Gr.91 Steel Welded Joints

    NASA Astrophysics Data System (ADS)

    Hongo, Hiromichi; Tabuchi, Masaaki; Watanabe, Takashi

    2012-04-01

    Modified 9Cr-1Mo steel (ASME Grade 91 steel) is used as a key structural material for boiler components in ultra-supercritical (USC) thermal power plants at approximately 873 K (600 °C). The creep strength of welded joints of this steel decreases as a result of Type IV creep cracking that forms in the heat-affected zone (HAZ) under long-term use at high temperatures. The current article aims to elucidate the damage processes and microstructural degradations that take place in the HAZ of these welded joints. Long-term creep tests for base metal, simulated HAZ, and welded joints were conducted at 823 K, 873 K, and 923 K (550 °C, 600 °C, and 650 °C). Furthermore, creep tests of thick welded joint specimens were interrupted at several time steps at 873 K (600 °C) and 90 MPa, after which the distribution and evolution of creep damage inside the plates were measured quantitatively. It was found that creep voids are initiated in the early stages (0.2 of life) of creep rupture life, which coalesce to form a crack at a later stage (0.8 of life). In a fine-grained HAZ, creep damage is concentrated chiefly in an area approximately 20 pct below the surface of the plate. The experimental creep damage distributions coincide closely with the computed results obtained by damage mechanics analysis using the creep properties of a simulated fine-grained HAZ. Both the concentration of creep strain and the high multiaxial stress conditions in the fine-grained HAZ influence the distribution of Type IV creep damage.

  11. Verification of Allowable Stresses In ASME Section III Subsection NH For Grade 91 Steel & Alloy 800H

    SciTech Connect

    R. W. Swindeman; M. J. Swindeman; B. W. Roberts; B. E. Thurgood; D. L. Marriott

    2007-11-30

    The database for the creep-rupture of 9Cr-1Mo-V (Grade 91) steel was collected and reviewed to determine if it met the needs for recommending time-dependent strength values, S{sub t}, for coverage in ASME Section III Subsection NH (ASME III-NH) to 650 C (1200 F) and 600,000 hours. The accumulated database included over 300 tests for 1% total strain, nearly 400 tests for tertiary creep, and nearly 1700 tests to rupture. Procedures for analyzing creep and rupture data for ASME III-NH were reviewed and compared to the procedures used to develop the current allowable stress values for Gr 91 for ASME II-D. The criteria in ASME III-NH for estimating S{sub t} included the average strength for 1% total strain for times to 600,000 hours, 80% of the minimum strength for tertiary creep for times to 600,000 hours, and 67% of the minimum rupture strength values for times to 600,000 hours. Time-temperature-stress parametric formulations were selected to correlate the data and make predictions of the long-time strength. It was found that the stress corresponding to 1% total strain and the initiation of tertiary creep were not the controlling criteria over the temperature-time range of concern. It was found that small adjustments to the current values in III-NH could be introduced but that the existing values were conservative and could be retained. The existing database was found to be adequate to extend the coverage to 600,000 hours for temperatures below 650 C (1200 F).

  12. Localized corrosion studies on materials proposed for a safety-grade sodium-to-air decay-heat removal system for fast breeder reactors

    SciTech Connect

    Mudali, U.K.; Khatak, H.S.; Dayal, R.K.; Gnanamoorthy, J.B. )

    1993-02-01

    The present investigation was carried out to assess the localized corrosion resistance of materials proposed for the construction of the safety-grade sodium-to-air decay-heat removal system for fast breeder reactors. The materials, such as Alloy 800, 9Cr-1 Mo steel, and type 316LN stainless steel, in different microstructural conditions were assessed for pitting and stress-corrosion cracking resistances in a chloride medium. The results indicated that 9Cr-1Mo steel in the normalized and tempered condition can be considered for the above application from the standpoint of corrosion resistance.

  13. Measurements of micron-scale meteoroids and orbital debris with the Space Dust (SPADUS) instrument on the upcoming ARGOS P91-1 mission

    NASA Technical Reports Server (NTRS)

    McKibben, R. B.; Simpson, J. A.; Tuzzolino, A. J.

    1997-01-01

    The space dust (SPADUS) experiment, to be launched into a sun-synchronous polar orbit at an altitude of 833 km onboard the USAF ARGOS P91-1 mission, will provide time-resolved measurements of the intensity, size spectrum and geocentric trajectories of dust particles encountered during the nominal three year mission. The experiment uses polyvinylidene fluoride dust sensors with a total detector area of 576 sq cm. The SPADUS will measure particle sizes between 2 and 200 microns, particle velocities between 1 and 10 km/s to better than 4 percent, and the direction of incidence with a mean error of 7 percent. These data will identify the particles as being debris or of natural origin.

  14. Investigation of a Novel NDE Method for Monitoring Thermomechanical Damage and Microstructure Evolution in Ferritic-Martensitic Steels for Generation IV Nuclear Energy Systems

    SciTech Connect

    Nagy, Peter

    2013-09-30

    The main goal of the proposed project is the development of validated nondestructive evaluation (NDE) techniques for in situ monitoring of ferritic-martensitic steels like Grade 91 9Cr-1Mo, which are candidate materials for Generation IV nuclear energy structural components operating at temperatures up to ~650{degree}C and for steam-generator tubing for sodium-cooled fast reactors. Full assessment of thermomechanical damage requires a clear separation between thermally activated microstructural evolution and creep damage caused by simultaneous mechanical stress. Creep damage can be classified as "negligible" creep without significant plastic strain and "ordinary" creep of the primary, secondary, and tertiary kind that is accompanied by significant plastic deformation and/or cavity nucleation and growth. Under negligible creep conditions of interest in this project, minimal or no plastic strain occurs, and the accumulation of creep damage does not significantly reduce the fatigue life of a structural component so that low-temperature design rules, such as the ASME Section III, Subsection NB, can be applied with confidence. The proposed research project will utilize a multifaceted approach in which the feasibility of electrical conductivity and thermo-electric monitoring methods is researched and coupled with detailed post-thermal/creep exposure characterization of microstructural changes and damage processes using state-of-the-art electron microscopy techniques, with the aim of establishing the most effective nondestructive materials evaluation technique for particular degradation modes in high-temperature alloys that are candidates for use in the Next Generation Nuclear Plant (NGNP) as well as providing the necessary mechanism-based underpinnings for relating the two. Only techniques suitable for practical application in situ will be considered. As the project evolves and results accumulate, we will also study the use of this technique for monitoring other GEN IV

  15. Comparative Tensile Flow and Work-Hardening Behavior of 9 Pct Chromium Ferritic-Martensitic Steels in the Framework of the Estrin-Mecking Internal-Variable Approach

    NASA Astrophysics Data System (ADS)

    Choudhary, B. K.; Christopher, J.

    2016-06-01

    The comparative tensile flow and work-hardening behavior of P9 steel in two different product forms, normalized and tempered plate and thick section tube plate forging, and P91 steel were investigated in the framework of the dislocation dynamics based Estrin-Mecking (E-M) one-internal-variable approach. The analysis indicated that the flow behavior of P9 and P91 steels was adequately described by the E-M approach in a wide range of temperatures. It was suggested that dislocation dense martensite lath/cell boundaries and precipitates together act as effective barriers to dislocation motion in P9 and P91 steels. At room and intermediate temperatures, the evolution of the internal-state variable, i.e., the dislocation density with plastic strain, exhibited insignificant variations with respect to temperature. At high temperatures, a rapid evolution of dislocation density with plastic strain toward saturation with increasing temperature was observed. The softer P9 steel tube plate forging exhibited higher work hardening in terms of larger gains in the dislocation density and flow stress contribution from dislocations than the P9 steel plate and P91 steel at temperatures ranging from 300 K to 873 K (27 °C to 600 °C). The evaluation of activation energy suggests that the deformation is controlled by cross-slip of dislocations at room and intermediate temperatures, and climb of dislocations at high temperatures. The relative influence of initial microstructure on flow and work-hardening parameters associated with the E-M approach was discussed in the three temperature regimes displayed by P9 and P91 steels.

  16. Differential regulation of Th1 and Th2 cells by p91–110 and p21–40 peptides of the 16-kD α-crystallin antigen of Mycobacterium tuberculosis

    PubMed Central

    AGREWALA, J N; WILKINSON, R J

    1998-01-01

    Permissively recognized peptides which can activate lymphocytes from subjects with a variety of class II HLA types are interesting diagnostic and vaccine candidates. In this study we generated T helper clones reactive to the permissively recognized p21–40 and p91–110 peptides of the 16-kD heat shock protein of Mycobacterium tuberculosis. All the clones specific for p91–110 secreted interferon-gamma (IFN-γ) and were of the Th1 phenotype. By contrast, the p21–40 peptide favoured the generation of IL-4-producing clones. Antibody blockade established that the peptide-specific Th clones could either be DR-, DP- or DQ-restricted. Thus, two permissively recognized sequences p21–40 and p91–110 from the same mycobacterial antigen can drive the differentiation of functionally distinct T helper subsets. Attempts to immunize against tuberculosis should bear in mind epitope specificity if a favourable Th subtype response is to be generated. PMID:9844048

  17. Building on knowledge base of sodium cooled fast spectrum reactors to develop materials technology for fusion reactors

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Rao, K. Bhanu Sankara

    2009-04-01

    The alloys 316L(N) and Mod. 9Cr-1Mo steel are the major structural materials for fabrication of structural components in sodium cooled fast reactors (SFRs). Various factors influencing the mechanical behaviour of these alloys and different modes of deformation and failure in SFR systems, their analysis and the simulated tests performed on components for assessment of structural integrity and the applicability of RCC-MR code for the design and validation of components are highlighted. The procedures followed for optimal design of die and punch for the near net shape forming of petals of main vessel of 500 MWe prototype fast breeder reactor (PFBR); the safe temperature and strain rate domains established using dynamic materials model for forming of 316L(N) and 9Cr-1Mo steels components by various industrial processes are illustrated. Weldability problems associated with 316L(N) and Mo. 9Cr-1Mo are briefly discussed. The utilization of artificial neural network models for prediction of creep rupture life and delta-ferrite in austenitic stainless steel welds is described. The usage of non-destructive examination techniques in characterization of deformation, fracture and various microstructural features in SFR materials is briefly discussed. Most of the experience gained on SFR systems could be utilized in developing science and technology for fusion reactors. Summary of the current status of knowledge on various aspects of fission and fusion systems with emphasis on cross fertilization of research is presented.

  18. Steamside Oxidation Behavior of Experimental 9%Cr Steels

    SciTech Connect

    Dogan, O.N.; Holcomb, G.R.; Alman, D.E.; Jablonski, P.D.

    2007-10-01

    Reducing emissions and increasing economic competitiveness require more efficient steam power plants that utilize fossil fuels. One of the major challenges in designing these plants is the availability of materials that can stand the supercritical and ultra-supercritical steam conditions at a competitive cost. There are several programs around the world developing new ferritic and austenitic steels for superheater and reheater tubes exposed to the advanced steam conditions. The new steels must possess properties better than current steels in terms of creep strength, steamside oxidation resistance, fireside corrosion resistance, and thermal fatigue resistance. This paper introduces a series of experimental 9%Cr steels containing Cu, Co, and Ti. Stability of the phases in the new steels is discussed and compared to the phases in the commercially available materials. The steels were tested under both the dry and moist conditions at 650ºC for their cyclical oxidation resistance. Results of oxidation tests are presented. Under the moist conditions, the experimental steels exhibited significantly less mass gain compared to the commercial P91 steel. Microstructural characterization of the scale revealed different oxide compositions.

  19. Aircraft Steels

    DTIC Science & Technology

    2009-02-19

    NAWCADPAX/TR-2009/ 12 AIRCRAFT STEELS by E. U. Lee R. Taylor C. Lei H. C. Sanders 19 February 2009...MARYLAND NAWCADPAX/TR-2009/ 12 19 February 2009 AIRCRAFT STEELS by E. U. Lee R. Taylor C. Lei H. C. Sanders...Prescribed by ANSI Std. Z39-18 NAWCADPAX/TR-2009/ 12 ii SUMMARY Five high strength and four stainless steels have been studied, identifying their

  20. Microstructural Stability and Oxidation Resistance of 9-12 Chromium Steels at Elevated Temperatures

    SciTech Connect

    Dogan, O.N.; Alman, D.E.; Jablonski, P.D.; Hawk, J.A.

    2006-05-01

    Various martensitic 9-12 Cr steels are utilized currently in fossil fuel powered energy plants for their good elevated temperature properties such as creep strength, steam side oxidation resistance, fire side corrosion resistance, and thermal fatigue resistance. Need for further improvements on the properties of 9-12 Cr steels for higher temperature (>600oC) use is driven by the environmental concerns (i.e., improve efficiency to reduce emissions and fossil fuel consumption). In this paper, we will discuss the results of the research done to explore new subsitutional solute solution and precipitate hardening mechanisms for improved strength of 9-12 Cr martensitic steels. Stability of the phases present in the steels will be evaluated for various temperature and time exposures. A comparison of microstructural properties of the experimental steels and commercial steels will also be presented.

    The influence of a Ce surface treatment on oxidation behavior of a commercial (P91) and several experimental steels containing 9 to 12 weight percent Cr was examined at 650ºC in flowing dry and moist air. The oxidation behavior of all the alloys without the Ce modification was significantly degraded by the presence of moisture in the air during testing. For instance the weight gain for P91 was two orders of magnitude greater in moist air than in dry air. This was accompanied by a change in oxide scale from the formation of Cr-based scales in dry air to the formation of Fe-based scales in moist air. The Ce surface treatment was very effective in improving the oxidation resistance of the experimental steels in both moist and dry air. For instance, after exposure to moist air at 650ºC for 2000 hours, an experimental alloy with the cerium surface modification had a weight gain three orders of magnitude lower than the alloy without the Ce modification and two orders of magnitude lower than P91. The Ce surface treatment suppressed the formation of Fe-based scales and

  1. Mechanical properties of low activating martensitic 8?10% CrWVTa steels of type OPTIFER

    NASA Astrophysics Data System (ADS)

    Schäfer, L.; Schirra, M.; Ehrlich, K.

    1996-10-01

    A series of low activating steels (OPTIFER-Ia, Ib, II, III and IV) has been developed as materials for the first wall and blanket structures of a future fusion device. The steels have been characterized by metallurgical examinations and by tests of the mechanical properties using tensile, impact bending and creep rupture tests. In comparison with conventional martensitic 9-12% CrMoVNb steels (e.g., MANET and P91 steels) a strong improvement of upper shelf impact energy and a remarkable shift to lower DBTT = -118°C was obtained, whereas other mechanical data are similar. Fracture toughness can be optimized by proper selection of austenitization temperature, quenching and tempering treatment with a preference of a lower austenitizing temperature.

  2. Creep behavior of modified 9% CrMo cast steel for application in coal-fired steam power plants. Final report

    SciTech Connect

    Mayer, K.H.; Koenig, H.

    1995-02-01

    Laboratory creep studies of modified 9% CrMo cast ferritic steel indicate that its performance will be very similar to that of the popular ASME P-91 9% Cr wrought ferritic steel. This report includes an investigation of the physical parameters and properties of modified 9% CrMo cast ferritic steel, including castability and weldability; thermal, low-cycle fatigue, corrosion, and creep strength; and long-term toughness in tests of up to 50,000 hours on large components and specimens.

  3. Microscale deformation of a tempered martensite ferritic steel: Modelling and experimental study of grain and sub-grain interactions

    NASA Astrophysics Data System (ADS)

    Golden, Brian J.; Li, Dong-Feng; Guo, Yina; Tiernan, Peter; Leen, Sean B.; O'Dowd, Noel P.

    2016-01-01

    In this paper, a finite-element modelling framework is presented with explicit representation of polycrystalline microstructure for a tempered martensite ferritic steel. A miniature notched specimen was manufactured from P91 steel with a 20,000 h service history and tested at room temperature under three point bending. Deformation at the microscale is quantified by electron back scattered diffraction (EBSD) before and after mechanical loading. A representative volume element was developed, based on the initial EBSD scan, and a crystal plasticity model used to account for slip-based inelastic deformation in the material. The model showed excellent correlation with the experimental data when the relevant comparisons were made.

  4. Improvement of ASME NH for Grade 91

    SciTech Connect

    Bernard Riou

    2007-10-09

    This report has been prepared in the context of Task 3 of the ASME/DOE Gen IV material project. It has been identified that creep-fatigue evaluation procedures presently available in ASME (1) and RCC-MR (2) have been mainly developed for austenitic stainless steels and may not be suitable for cyclic softening materials such as mod 9 Cr 1 Mo steel (grade 91). The aim of this document is, starting from experimental test results, to perform a review of the procedures and, if necessary, provide recommendations for their improvements.

  5. Tempering-Induced Microstructural Changes in the Weld Heat-Affected Zone of 9 to 12 Pct Cr Steels and Their Influence on Sliding Wear

    NASA Astrophysics Data System (ADS)

    Velkavrh, Igor; Kafexhiu, Fevzi; Klien, Stefan; Diem, Alexander; Podgornik, Bojan

    2017-01-01

    Increasing amount of tribological applications is working under alternating high/low temperature conditions where the material is subjected to temperature fatigue mechanisms such as creep, softening due to annealing, and at the same time must withstand mechanical wear due to sliding contact with pairing bodies. Steam turbine valves, gate valves, valve heads, stems, seats and bushings, and contacting surfaces of the carrier elements are some examples of such applications. The purpose of the present study is to evaluate the potential of X20 and P91 steels as materials for applications operating under combined effect of mechanical wear and alternating high/low temperature conditions. It was focused on how the microstructural changes occurring in the weld zone affect the wear properties of the selected materials. Generally, with longer tempering time and higher tempering temperature, the number of carbide precipitates decreased, while their relative spacing increased. Before tempering, the morphology of the steel matrix (grain size, microstructure homogeneity) governed the wear resistance of both steels, while after tempering wear response was determined by the combination of the number and the size of carbide particles. After tempering, in X20 steel larger number of stable M23C6 carbides was observed as compared with P91 steel, resulting in lower wear rates. It was observed that for both steels, a similar combination of number density and size distribution of carbide particles provided the highest wear resistance.

  6. Steel Rattler

    NASA Astrophysics Data System (ADS)

    Trudo, Robert A.; Stotts, Larry G.

    1997-07-01

    Steel Rattler is a multi-phased project to determine the feasibility of using commercial off-the-shelf components in an advanced acoustic/seismic unattended ground sensor. This project is supported by the Defense Intelligence Agency through Sandia National Laboratories as the lead development agency. Steel Rattler uses advanced acoustic and seismic detection algorithms to categorize and identify various heavy vehicles down to the number of cylinders in the engine. This detection is accomplished with the capabilities of new, high-speed digital signal processors which analyze both acoustic and seismic data. The resulting analysis is compared against an onboard library of known vehicles and a statistical match is determined. An integrated thermal imager is also employed to capture digital thermal images for subsequent compression and transmission. Information acquired by Steel Rattler in the field is transmitted in small packets by a built-in low-power satellite communication system. The ground station receivers distribute the coded information to multiple analysis sites where the information is reassembled into coherent messages and images.

  7. Supertough Stainless Bearing Steel

    NASA Technical Reports Server (NTRS)

    Olson, Gregory B.

    1995-01-01

    Composition and processing of supertough stainless bearing steel designed with help of computer-aided thermodynamic modeling. Fracture toughness and hardness of steel exceeds those of other bearing steels like 440C stainless bearing steel. Developed for service in fuel and oxidizer turbopumps on Space Shuttle main engine. Because of strength and toughness, also proves useful in other applications like gears and surgical knives.

  8. Ways of improvement for the materials of sodium cooled fast reactors

    SciTech Connect

    Horowitz, E.

    2012-07-01

    The French sodium cooled prototype reactor ASTRID will take into account 'Generation IV' requirements, especially a long operational life-time (60 years) and a high efficiency. The good behavior of austenitic steel AISI316L(N), should be confirmed for a use, in moderately irradiated and unirradiated parts of ASTRID. Parts recovered from dismantled French sodium-cooled reactors will be characterized. Further experiments must be carried out concerning ageing of these components. Other materials will be chosen for fuel wrapping and cladding, in order to reduce creep and swelling under irradiation, (either conventional, or oxide-dispersed strengthened steels (ODSS). Corrosion of ODSS in the presence of sodium needs a serious assessment The lifetime of primary pumps components made of Duplex steels should also be assessed. The disruptions in steam generator tubes should be minimized and controlled; therefore, optimised designs and geometries must be established before defining the corresponding materials. Either Modified 9Cr1Mo or Incoloy 800H, might be candidates;it will be necessary to check whether austenitic steels are compatible with Modified 9Cr1Mo or Incoloy 800H in the same circuit. For all materials, the best manufacturing processes must be combined with thermal, mechanical treatments; calculations of phase diagrams (CALPHAD) might be used to optimise both treatments and chemical compositions. (authors)

  9. Ultrahigh carbon steels, Damascus steels, and superplasticity

    SciTech Connect

    Sherby, O.D.; Wadsworth, J.

    1997-04-01

    The processing properties of ultrahigh carbon steels (UHCSs) have been studied at Stanford University over the past twenty years. These studies have shown that such steels (1 to 2.1% C) can be made superplastic at elevated temperature and can have remarkable mechanical properties at room temperature. It was the investigation of these UHCSs that eventually brought us to study the myths, magic, and metallurgy of ancient Damascus steels, which in fact, were also ultrahigh carbon steels. These steels were made in India as castings, known as wootz, possibly as far back as the time of Alexander the Great. The best swords are believed to have been forged in Persia from Indian wootz. This paper centers on recent work on superplastic UHCSs and on their relation to Damascus steels. 32 refs., 6 figs.

  10. Investigation of austenitic alloys for advanced heat recovery and hot gas cleanup systems

    SciTech Connect

    Swindeman, R.W.; Ren, W.

    1996-08-01

    Materials properties were collected for the design and construction of structural components for use in advanced heat recovery and hot gas cleanup systems. Alloys systems included 9Cr-1Mo-V steel, modified 316 stainless steel, modified type 310 stainless steel, modified 20Cr-25Ni-Nb stainless steel, modified alloy 800, and two sulfidation resistant alloys: HR160 and HR120. Experimental work was undertaken to expand the databases for potentially useful alloys. Types of testing included creep, stress-rupture, creep-crack growth, fatigue, and post-exposure short-time tensile tests. Because of the interest in relatively inexpensive alloys for service at 700{degrees}C and higher, research emphasis was placed on a modified type 310 stainless steel and a modified 20Cr-25Ni-Nb stainless steel. Both steels were found to have useful strength to 925{degrees}C with good weldability and ductility.

  11. Investigation of austenitic alloys for advanced heat recovery and hot-gas cleanup systems

    SciTech Connect

    Swindeman, R.W.

    1997-12-01

    Materials properties were collected for the design and construction of structural components for use in advanced heat recovery and hot gas cleanup systems. Alloys systems included 9Cr-1Mo-V steel, modified 316 stainless steel, modified type 310 stainless steel, modified 20Cr-25Ni-Nb stainless steel, and modified alloy 800. Experimental work was undertaken to expand the databases for potentially useful alloys. Types of testing included creep, stress-rupture, creep-crack growth, fatigue, and post-exposure short-time tensile tests. Because of the interest in relatively inexpensive alloys for service at 700 C and higher, research emphasis was placed on a modified type 310 stainless steel and a modified 20Cr-25Ni-Nb stainless steel. Both steels were found to have useful strength to 925 C with good weldability and ductility.

  12. Intelligent Modeling Combining Adaptive Neuro Fuzzy Inference System and Genetic Algorithm for Optimizing Welding Process Parameters

    NASA Astrophysics Data System (ADS)

    Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.

    2011-04-01

    Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.

  13. Survey of the degradation modes of candidate materials for high-level radioactive waste disposal containers

    SciTech Connect

    Vinson, D.W.; Nutt, W.M.; Bullen, D.B.

    1995-06-01

    Oxidation and atmospheric corrosion data suggest that addition of Cr provides the greatest improvement in oxidation resistance. Cr-bearing cast irons are resistant to chloride environments and solutions containing strongly oxidizing constituents. Weathering steels, including high content and at least 0.04% Cu, appear to provide adequate resistance to oxidation under temperate conditions. However, data from long-term, high-temperature oxidation studies on weathering steels were not available. From the literature, it appears that the low alloy steels, plain carbon steels, cast steels, and cast irons con-ode at similar rates in an aqueous environment. Alloys containing more than 12% Cr or 36% Ni corrode at a lower rate than plain carbon steels, but pitting may be worse. Short term tests indicate that an alloy of 9Cr-1Mo may result in increased corrosion resistance, however long term data are not available. Austenitic cast irons show the best corrosion resistance. A ranking of total corrosion performance of the materials from most corrosion resistant to least corrosion resistant is: Austenitic Cast Iron; 12% Cr = 36% Ni = 9Cr-1Mo; Carbon Steel = Low Alloy Steels; and Cast Iron. Since the materials to be employed in the Advanced Conceptual Design (ACD) waste package are considered to be corrosion allowance materials, the austenitic cast irons, high Cr steels, high Ni steels and the high Cr-Mo steels should not be considered as candidates for the outer containment barrier. Based upon the oxidation and corrosion data available for carbon steels, low alloy steels, and cast irons, a suitable list of candidate materials for a corrosion allowance outer barrier for an ACD waste package could include, A516, 2.25%Cr -- 1%Mo Steel, and A27.

  14. Welding Rustproof Steels

    NASA Technical Reports Server (NTRS)

    Hoffmann, W

    1929-01-01

    The following experimental results will perhaps increase the knowledge of the process of welding rustproof steels. The experiments were made with two chrome-steel sheets and with two chrome-steel-nickel sheets having the composition shown in Table I.

  15. Comminuting irradiated ferritic steel

    DOEpatents

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  16. The steel scrap age.

    PubMed

    Pauliuk, Stefan; Milford, Rachel L; Müller, Daniel B; Allwood, Julian M

    2013-04-02

    Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age.

  17. Methods of forming steel

    DOEpatents

    Branagan, Daniel J.; Burch, Joseph V.

    2001-01-01

    In one aspect, the invention encompasses a method of forming a steel. A metallic glass is formed and at least a portion of the glass is converted to a crystalline steel material having a nanocrystalline scale grain size. In another aspect, the invention encompasses another method of forming a steel. A molten alloy is formed and cooled the alloy at a rate which forms a metallic glass. The metallic glass is devitrified to convert the glass to a crystalline steel material having a nanocrystalline scale grain size. In yet another aspect, the invention encompasses another method of forming a steel. A first metallic glass steel substrate is provided, and a molten alloy is formed over the first metallic glass steel substrate to heat and devitrify at least some of the underlying metallic glass of the substrate.

  18. Maraging Steel Machining Improvements

    DTIC Science & Technology

    2007-04-23

    APR 2007 2. REPORT TYPE Technical, Success Story 3. DATES COVERED 01-12-2006 to 23-04-2007 4. TITLE AND SUBTITLE Maraging Steel Machining...consumers of cobalt-strengthened maraging steel . An increase in production requires them to reduce the machining time of certain operations producing... maraging steel ; Success Stories 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 1 18. NUMBER OF PAGES 1 19a. NAME OF RESPONSIBLE

  19. Welding irradiated stainless steel

    SciTech Connect

    Kanne, W.R. Jr.; Chandler, G.T.; Nelson, D.Z.; Franco-Ferreira, E.A.

    1993-12-31

    Conventional welding processes produced severe underbead cracking in irradiated stainless steel containing 1 to 33 appm helium from n,a reactions. A shallow penetration overlay technique was successfully demonstrated for welding irradiated stainless steel. The technique was applied to irradiated 304 stainless steel that contained 10 appm helium. Surface cracking, present in conventional welds made on the same steel at the same and lower helium concentrations, was eliminated. Underbead cracking was minimal compared to conventional welding methods. However, cracking in the irradiated material was greater than in tritium charged and aged material at the same helium concentrations. The overlay technique provides a potential method for repair or modification of irradiated reactor materials.

  20. Coated 4340 Steel

    DTIC Science & Technology

    2013-08-26

    the effects of three coating systems on the mechanical property, fatigue, and...defined striations or striations-like features were formed in air, Figure A-13(b). On the other hand, intergranular cracking and formation of brittle...steel, in air. Their respective effects on the fatigue resistance of bare 4340 steel were similar in both of the employed environments, air and

  1. Steel Industry Wastes.

    ERIC Educational Resources Information Center

    Schmidtke, N. W.; Averill, D. W.

    1978-01-01

    Presents a literature review of wastes from steel industry, covering publications of 1976-77. This review covers: (1) coke production; (2) iron and steel production; (3) rolling operations; and (4) surface treatment. A list of 133 references is also presented. (NM)

  2. EAST ELEVATION, LTV STEEL (FORMERLY REPUBLIC STEEL), 8" BAR MILL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, LTV STEEL (FORMERLY REPUBLIC STEEL), 8" BAR MILL, BUFFALO PLANT. VIEW LOOKING SOUTHWEST FROM ROLL SHOP. 8" BAR MILL DESIGNED AND BUILT BY DONNER STEEL CO. (PREDECESSOR OF REPUBLIC), 1919-1920. FOR DESCRIPTION OF ORIGINAL MILL SEE "IRON AGE", 116\\4 (23 JULY 1925): 201-204. - LTV Steel, 8-inch Bar Mill, Buffalo Plant, Buffalo, Erie County, NY

  3. Damascus steel ledeburite class

    NASA Astrophysics Data System (ADS)

    Sukhanov, D. A.; Arkhangelsky, L. B.; Plotnikova, N. V.

    2017-02-01

    Discovered that some of blades Damascus steel has an unusual nature of origin of the excess cementite, which different from the redundant phases of secondary cementite, cementite of ledeburite and primary cementite in iron-carbon alloys. It is revealed that the morphological features of separate particles of cementite in Damascus steels lies in the abnormal size of excess carbides having the shape of irregular prisms. Considered three hypotheses for the formation of excess cementite in the form of faceted prismatic of excess carbides. The first hypothesis is based on thermal fission of cementite of a few isolated grains. The second hypothesis is based on the process of fragmentation cementite during deformation to the separate the pieces. The third hypothesis is based on the transformation of metastable cementite in the stable of angular eutectic carbide. It is shown that the angular carbides are formed within the original metastable colony ledeburite, so they are called “eutectic carbide”. It is established that high-purity white cast iron is converted into of Damascus steel during isothermal soaking at the annealing. It was revealed that some of blades Damascus steel ledeburite class do not contain in its microstructure of crushed ledeburite. It is shown that the pattern of carbide heterogeneity of Damascus steel consists entirely of angular eutectic carbides. Believe that Damascus steel refers to non-heat-resistant steel of ledeburite class, which have similar structural characteristics with semi-heat-resistant die steel or heat-resistant high speed steel, differing from them only in the nature of excess carbide phase.

  4. Cobalt free maraging steel

    SciTech Connect

    Floreen, S.

    1984-04-17

    The subject invention is directed to ferrous-base alloys, particularly to a cobalt-free maraging steel of novel chemistry characterized by a desired combination of strength and toughness, notwithstanding that cobalt is non-essential.

  5. Structural Amorphous Steels

    NASA Astrophysics Data System (ADS)

    Lu, Z. P.; Liu, C. T.; Thompson, J. R.; Porter, W. D.

    2004-06-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist’s dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed.

  6. Glass Stronger than Steel

    DOE R&D Accomplishments Database

    Yarris, Lynn

    2011-03-28

    A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of steel or any other known material, has been developed and tested by a collaboration of researchers from Berkeley Lab and Caltech.

  7. Weld overlay cladding with iron aluminides

    SciTech Connect

    Goodwin, G.M.

    1995-08-01

    The hot and cold cracking tendencies of some early iron aluminide alloy compositions have limited their use in applications where good weldability is required. Using hot crack testing techniques invented at ORNL, and experimental determinations of preheat and postweld heat treatment needed to avoid cold cracking, we have developed iron aluminide filler metal compositions which can be successfully used to weld overlay clad various substrate materials, including 9Cr-1Mo steel, 2-1/4Cr-1Mo steel, and 300-series austenitic stainless steels. Dilution must be carefully controlled to avoid crack-sensitive deposit compositions. The technique used to produce the current filler metal compositions is aspiration-casting, i.e. drawing the liquid from the melt into glass rods. Future development efforts will involve fabrication of composite wires of similar compositions to permit mechanized gas tungsten arc (GTA) and/or gas metal arc (GMA) welding.

  8. Joining Steel Armor - Intermix

    DTIC Science & Technology

    1979-03-01

    TARADCOM a d ki Lk A el B~ 0el RWET0 TECHNICAL REPORT NO. 12311 JOINING STEEL ARMOR - INTERMIX March 1979 U U * S* ’ "U .by B. . A.SCEV * U...authorized documents. O "if TECHNICAL REPORT NO. 12311 JOINING STEEL ARMOR - INTERMIX BY B. A. SCHEVO March 1979 AMS: 3197..6D.4329 TARADCOM ARMOR AND...Intermix Process ...... ........ 3 Test Procedures - Intermix Armor ........ ......... 4 Mock Hull ................. ..................... 5 Results

  9. Life after Steel

    ERIC Educational Resources Information Center

    Mangan, Katherine

    2013-01-01

    Bobby Curran grew up in a working-class neighborhood in Baltimore, finished high school, and followed his grandfather's steel-toed bootprints straight to Sparrows Point, a 3,000-acre sprawl of industry on the Chesapeake Bay. College was not part of the plan. A gritty but well-paying job at the RG Steel plant was Mr. Curran's ticket to a secure…

  10. Ferrium M54 Steel

    DTIC Science & Technology

    2015-03-18

    15 to 18% (reference 1). Beyond this range the alloy becomes more noble than steel and loses its sacrificial protection property . Therefore, Zn-14...for a 7075-T651 aluminum alloy , which was subjected to biaxial fatigue loading in 3.5% NaCl solution (reference 27). NAWCADPAX/TIM-2014/292...Edition, Properties and Selection: Iron, Steels, and High- Performance Alloys , ASM International, 1990, p. 395. 8. G. L. Spencer and D. J. Duquette

  11. Articles comprising ferritic stainless steels

    SciTech Connect

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  12. View northwest, wharf A, sheet steel bulkhead, steel lift tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northwest, wharf A, sheet steel bulkhead, steel lift tower - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  13. Superclean steel development

    SciTech Connect

    Richman, R.H.; McNaughton, W.P. )

    1989-12-01

    The Electric Power Research Institute has actively encouraged and sponsored a number of research projects to develop a superclean 3.5NiCrMoV steel for low pressure turbine rotors. Such steel is highly resistant to temper embrittlement and will thus facilitate increased efficiency in electricity generation through the use of higher operating temperatures and improvements in design. The objective of this interim report was to integrate the results that have been generated to date worldwide in the pursuit of superclean steel. The report contains detailed findings that enable the interested utility to evaluate how the results affect utility decision making. A companion document has been written to summarize the findings from this technical report. The results indicate that steels with impurity contents typical of the superclean specification can be manufactured for production rotors with properties that equal or exceed those for conventional 3.5NiCrMoV rotors in every detail. Of particular interest are the results that the superclean steels appear to be virtually resistant to temper embrittlement to a temperature of 500 {degrees}C. 109 refs., 51 figs., 9 tabs.

  14. Trends in steel technology. [Dual phase and HSLA steels

    SciTech Connect

    Not Available

    1980-01-01

    Dual phase steels, composite products, and microalloyed steels are making inroads in the automotive industry applications for bumpers, automotive parts, bodies, mechanical parts, suspension and steering equipment and truck bumpers. New steels are also used to support solar mirrors and cells, in corrosive environments in the oil and gas industry, fusion reactors, and pressure vessels in nuclear power plants. (FS)

  15. Continuous steel production and apparatus

    DOEpatents

    Peaslee, Kent D.; Peter, Jorg J.; Robertson, David G. C.; Thomas, Brian G.; Zhang, Lifeng

    2009-11-17

    A process for continuous refining of steel via multiple distinct reaction vessels for melting, oxidation, reduction, and refining for delivery of steel continuously to, for example, a tundish of a continuous caster system, and associated apparatus.

  16. Stainless steel tanks

    SciTech Connect

    Hagen, T.

    1995-12-31

    There is currently no recognized code or standard for the design, fabrication and construction of atmospheric and low pressure stainless steel tanks. At the present time these tanks are being designed to individual specifications, manufacturers standards or utilizing other codes and standards that may not be entirely applicable. Recognizing the need, the American Petroleum Institute will be publishing a new appendix to the API STD 650 Standard which will cover stainless steel tanks. The new Appendix was put together by a Task Group of selected individuals from the API Subcommittee of Pressure Vessels and Tanks from the Committee on Refinery Equipment. This paper deals with the development and basis of the new appendix. The new appendix will provide a much needed standard to cover the material, design, fabrication, erection and testing requirements for vertical, cylindrical, austenitic stainless steel aboveground tanks in nonrefrigerated service.

  17. A-3 steel work completed

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Stennis Space Center engineers celebrated a key milestone in construction of the A-3 Test Stand on April 9 - completion of structural steel work. Workers with Lafayette (La.) Steel Erector Inc. placed the last structural steel beam atop the stand during a noon ceremony attended by more than 100 workers and guests.

  18. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  19. Braze alloy spreading on steel

    NASA Technical Reports Server (NTRS)

    Siewert, T. A.; Heine, R. W.; Lagally, M. G.

    1978-01-01

    Scanning electron microscopy (SEM) and Auger electron microscopy (AEM) were employed to observe elemental surface decomposition resulting from the brazing of a copper-treated steel. Two types of steel were used for the study, stainless steel (treated with a eutectic silver-copper alloy), and low-carbon steel (treated with pure copper). Attention is given to oxygen partial pressure during the processes; a low enough pressure (8 x 10 to the -5th torr) was found to totally inhibit the spreading of the filler material at a fixed heating cycle. With both types of steel, copper treatment enhanced even spreading at a decreased temperature.

  20. 77 FR 30589 - SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... Surface Transportation Board SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver Infrastructure Fund North America LP, and Patriot Funding LLC--Control Exemption--Patriot Rail Corp., et al. SteelRiver Infrastructure Partners LP (SRIP LP), SteelRiver...

  1. Ferritic steel melt and FLiBe/steel experiment : melting ferritic steel.

    SciTech Connect

    Troncosa, Kenneth P.; Smith, Brandon M.; Tanaka, Tina Joan

    2004-11-01

    In preparation for developing a Z-pinch IFE power plant, the interaction of ferritic steel with the coolant, FLiBe, must be explored. Sandia National Laboratories Fusion Technology Department was asked to drop molten ferritic steel and FLiBe in a vacuum system and determine the gas byproducts and ability to recycle the steel. We tried various methods of resistive heating of ferritic steel using available power supplies and easily obtained heaters. Although we could melt the steel, we could not cause a drop to fall. This report describes the various experiments that were performed and includes some suggestions and materials needed to be successful. Although the steel was easily melted, it was not possible to drip the molten steel into a FLiBe pool Levitation melting of the drop is likely to be more successful.

  2. History of ultrahigh carbon steels

    SciTech Connect

    Wadsworth, J.; Sherby, O.D.

    1997-06-20

    The history and development of ultrahigh carbon steels (i.e., steels containing between 1 and 2.l percent C and now known as UHCS) are described. The early use of steel compositions containing carbon contents above the eutectoid level is found in ancient weapons from around the world. For example, both Damascus and Japanese sword steels are hypereutectoid steels. Their manufacture and processing is of interest in understanding the role of carbon content in the development of modern steels. Although sporadic examples of UHCS compositions are found in steels examined in the early part of this century, it was not until the mid-1970s that the modern study began. This study had its origin in the development of superplastic behavior in steels and the recognition that increasing the carbon content was of importance in developing that property. The compositions that were optimal for superplasticity involved the development of steels that contained higher carbon contents than conventional modern steels. It was discovered, however, that the room temperature properties of these compositions were of interest in their own right. Following this discovery, a period of intense work began on understanding their manufacture, processing, and properties for both superplastic forming and room temperature applications. The development of superplastic cast irons and iron carbides, as well as those of laminated composites containing UHCS, was an important part of this history.

  3. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  4. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  5. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  6. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  7. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  8. Stainless Steel Permeability

    SciTech Connect

    Buchenauer, Dean A.; Karnesky, Richard A.

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  9. Integrity assessment of the ferritic / austenitic dissimilar weld joint between intermediate heat exchanger and steam generator in fast reactor

    SciTech Connect

    Jayakumar, T.; Laha, K.; Chandravathi, K. S.; Parameswaran, P.; Goyal, S.; Kumar, J. G.; Mathew, M. D.

    2012-07-01

    Integrity of the modified 9Cr-1Mo / alloy 800 dissimilar joint welded with Inconel 182 electrodes has been assessed under creep condition based on the detailed analysis of microstructure and stress distribution across the joint by finite element analysis. A hardness peak at the ferritic / austenitic weld interface and a hardness trough at the inter-critical heat affected zone (HAZ) in ferritic base metal developed. Un-tempered martensite was found at the ferritic / austenitic weld interface to impart high hardness in it; whereas annealing of martensitic structure of modified 9Cr-1Mo steel by inter-critical heating during welding thermal cycle resulted in hardness tough in the inter-critical HAZ. Creep tests were carried out on the joint and ferritic steel base metal at 823 K over a stress range of 160-320 MPa. The joint possessed lower creep rupture strength than its ferritic steel base metal. Failure of the joint at relatively lower stresses occurred at the ferritic / austenitic weld interface; whereas it occurred at inter-critical region of HAZ at moderate stresses. Cavity nucleation associated with the weld interface particles led to premature failure of the joint. Finite element analysis of stress distribution across the weld joint considering the micro-mechanical strength inhomogeneity across it revealed higher von-Mises and principal stresses at the weld interface. These stresses induced preferential creep cavitation at the weld interface. Role of precipitate in enhancing creep cavitation at the weld interface has been elucidated based on the FE analysis of stress distribution across it. (authors)

  10. High Fragmentation Steel Production Process

    DTIC Science & Technology

    1984-01-01

    phase of the project entailed the purchase and metallurgical characterization of two heats of HF-1 steel from different vendors. Performed by...At>-A 13^ nzt AD AD-E401 117 CONTRACTOR REPORT ARLCD-CR-83049 HIGH FRAGMENTATION STEEL PRODUCTION PROCESS ^"fP-PTTMirj A 1 James F. Kane...Report 6. PERFORMING ORG. REPORT NUMBER High Fragmentation Steel Production Process 7. AUTHORfs; James F. Kane, Ronald L. Kivak, Colin C. MacCrindle

  11. Process for dezincing galvanized steel

    DOEpatents

    Morgan, W.A.; Dudek, F.J.; Daniels, E.J.

    1998-07-14

    A process is described for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75 C and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (1) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (2) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (3) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (4) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte. 1 fig.

  12. Process for dezincing galvanized steel

    DOEpatents

    Morgan, William A.; Dudek, Frederick J.; Daniels, Edward J.

    1998-01-01

    A process for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75.degree. C. and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (i) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (ii) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (iii) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (iv) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte.

  13. High strength, tough alloy steel

    DOEpatents

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  14. Hydrogen Embrittlement of Gun Steel

    DTIC Science & Technology

    1987-11-01

    8217s HY80 and HY130 steels were checked for the critical hydrogen concentrations which were determined to be 6 ppm for HY8O steel 8 and 3 ppm for HY130...JOTC FILE COPY AD-A188 972 AD 1 TECHNICAL REPORT ARCCB-TR-87030 HYDROGEN EMBRITTLEMENT OF GUN STEEL F’ GERALD L. SPFNCER DTIC DEC 1 5 1987 NOVEMBER...PtEtIOC COVERED HYDROGEN EMBRITTLEHENT OF GUN STEEL Final OG EOTNME 6. PERFORMINGORO EOTNME 7. A*JTNOR(s) S. CONTRACT OR GRANT NUMBER(&) Gerald L

  15. Use of anomalous small angle x-ray scattering to investigate microstructural features in complex alloys. Technical progress report, July 1, 1987--July 31, 1988

    SciTech Connect

    Weertman, J.R.

    1988-08-01

    This report covers the last 5 months of the second year of this grant and the first 8 months of the third year. The research thrust of this grant has been directed into two areas. The principal effort has been spent in an investigation of the use of anomalous small angle x-ray scattering (ASAXS) to observe changes in the microstructure of a relatively complex alloy produced by high temperature deformation or aging. The second effort involves a study of the high temperature behavior of several ferritic steels. During this past year we have been examining the effect of environment (air vs vacuum) on the high temperature strength of Fe9Cr1Mo modified by the addition of small amounts of V and Nb.

  16. Use of anomalous small angle x-ray scattering to investigate microstructural features in complex alloys

    SciTech Connect

    Weertman, J.R.

    1988-08-01

    This report covers the last 5 months of the second year of this grant and the first 8 months of the third year. The research thrust of this grant has been directed into two areas. The principal effort has been spent in an investigation of the use of anomalous small angle x-ray scattering (ASAXS) to observe changes in the microstructure of a relatively complex alloy produced by high temperature deformation or aging. The second effort involves a study of the high temperature behavior of several ferritic steels. During this past year we have been examining the effect of environment (air vs vacuum) on the high temperature strength of Fe9Cr1Mo modified by the addition of small amounts of V and Nb.

  17. 3D neutronic calculations: CAD-MCNP methodology applied to vessel activation in KOYO-F

    NASA Astrophysics Data System (ADS)

    Herreras, Y.; Lafuente, A.; Sordo, F.; Cabellos, O.; Perlado, J. M.

    2008-05-01

    This paper presents a methodology for 3D neutronic calculations suitable for complex and extensive geometries. The geometry of the system design is first fully modelled with a CAD program, and subsequently processed through a MCNP-CAD interface in order to generate an MCNP geometry file. Neutronic irradiation results are finally achieved running the MCNPX program, where the geometry input card used is directly the MCNP-CAD interface output. This methodology enables accurate neutronic calculations for complex geometries characterised by high detail levels. This procedure will be applied to the Fast Ignition Fusion Reactor KOYO-F to determine first neutron fluxes calculations along the blanket as well as the material activation in the reduced martensitic 9Cr-1Mo steel vessel.

  18. The industrial ecology of steel

    SciTech Connect

    Considine, Timothy J.; Jablonowski, Christopher; Considine, Donita M.M.; Rao, Prasad G.

    2001-03-26

    This study performs an integrated assessment of new technology adoption in the steel industry. New coke, iron, and steel production technologies are discussed, and their economic and environmental characteristics are compared. Based upon detailed plant level data on cost and physical input-output relations by process, this study develops a simple mathematical optimization model of steel process choice. This model is then expanded to a life cycle context, accounting for environmental emissions generated during the production and transportation of energy and material inputs into steelmaking. This life-cycle optimization model provides a basis for evaluating the environmental impacts of existing and new iron and steel technologies. Five different plant configurations are examined, from conventional integrated steel production to completely scrap-based operations. Two cost criteria are used to evaluate technology choice: private and social cost, with the latter including the environmental damages associated with emissions. While scrap-based technologies clearly generate lower emissions in mass terms, their emissions of sulfur dioxide and nitrogen oxides are significantly higher. Using conventional damage cost estimates reported in the literature suggests that the social costs associated with scrap-based steel production are slightly higher than with integrated steel production. This suggests that adopting a life-cycle viewpoint can substantially affect environmental assessment of new technologies. Finally, this study also examines the impacts of carbon taxes on steel production costs and technology choice.

  19. MINOS Detector Steel Magnetic Measurements

    SciTech Connect

    Robert C. Trendler and Walter F. Jaskierny

    1999-03-03

    Magnetic measurements were made on one steel plate of the MINOS far detector. The conventionally used technique of measuring sense coil voltage induced by step changes in excitation current voltage was successful in providing stable, repeatable measurements. Measurements were made at several locations on the steel and the results are presented.

  20. Hydrogen Embrittlement of Structural Steels

    SciTech Connect

    Somerday, Brian P.; San Marchi, Christopher W

    2014-08-01

    Carbon-manganese steels are candidates for the structural materials in hydrogen gas pipelines; however, it is well known that these steels are susceptible to hydrogen embrittlement. Decades of research and industrial experience have established that hydrogen embrittlement compromises the structural integrity of steel components. This experience has also helped identify the failure modes that can operate in hydrogen containment structures. As a result, there are tangible ideas for managing hydrogen embrittlement in steels and quantifying safety margins for steel hydrogen containment structures. For example, fatigue crack growth aided by hydrogen embrittlement is a well-established failure mode for steel hydrogen containment structures subjected to pressure cycling. This pressure cycling represents one of the key differences in operating conditions between current hydrogen pipelines and those anticipated in a hydrogen delivery infrastructure. Applying structural integrity models in design codes coupled with measurement of relevant material properties allows quantification of the reliability/integrity of steel hydrogen pipelines subjected to pressure cycling. Furthermore, application of these structural integrity models is aided by the development of physics-based predictive models, which provide important insights such as the effects of microstructure on hydrogen-assisted fatigue crack growth. Successful implementation of these structural integrity and physics-based models enhances confidence in the design codes and enables decisions about materials selection and operating conditions for reliable and efficient steel hydrogen pipelines.

  1. 2169 Steel Waveform Experiments

    NASA Astrophysics Data System (ADS)

    Furnish, M.; Alexander, C.; Reinhart, W.; Brown, J.

    2013-06-01

    In support of efforts to develop multiscale models of materials, we performed eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn). These experiments provided shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were used, with samples 1 to 5 mm thick. The study focused on dynamic strength determination via the release/reshock paths. Reshock tests with explosively welded impactors produced clean results. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allowed release information to be determined from these free surface samples as well. The sample strength appears to increase with stress from ~1 GPa to ~3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Connections: Superplasticity, Damascus Steels, Laminated Steels, and Carbon Dating

    NASA Astrophysics Data System (ADS)

    Wadsworth, Jeffrey

    2016-12-01

    In this paper, a description is given of the connections that evolved from the initial development of a family of superplastic plain carbon steels that came to be known as Ultra-High Carbon Steels (UHCS). It was observed that their very high carbon contents were similar, if not identical, to those of Damascus steels. There followed a series of attempts to rediscover how the famous patterns found on Damascus steels blades were formed. At the same time, in order to improve the toughness at room temperature of the newly-developed UHCS, laminated composites were made of alternating layers of UHCS and mild steel (and subsequently other steels and other metals). This led to a study of ancient laminated composites, the motives for their manufacture, and the plausibility of some of the claims relating to the number of layers in the final blades. One apparently ancient laminated composite, recovered in 1837 from the great pyramid of Giza which was constructed in about 2750 B.C., stimulated a carbon dating study of ancient steels. The modern interest in "Bladesmithing" has connections back to many of these ancient weapons.

  3. Occupational Profiles in the European Steel Industry.

    ERIC Educational Resources Information Center

    Franz, Hans-Werner; And Others

    The steel industry in Europe has faced great changes, with resulting layoffs and restructuring. Now that the most basic changes seem to be over, it has become evident that the remaining steel industry requires more highly trained workers than was the case previously. Although steel maintenance employees were always highly skilled, steel production…

  4. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  5. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  6. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  7. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  8. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  9. Improving the toughness of ultrahigh strength steel

    SciTech Connect

    Soto, Koji

    2002-01-01

    The ideal structural steel combines high strength with high fracture toughness. This dissertation discusses the toughening mechanism of the Fe/Co/Ni/Cr/Mo/C steel, AerMet 100, which has the highest toughness/strength combination among all commercial ultrahigh strength steels. The possibility of improving the toughness of this steel was examined by considering several relevant factors.

  10. Hypereutectoid high-speed steels

    SciTech Connect

    Kremnev, L.S.

    1986-01-01

    Half of the tungsten and molybdenum contained in R6M5 and R18 steels is concentrated in the undissolved eutectic carbides hindering austenitic grain gowth in hardening and providing the necessary strength and impact strength. This article describes the tungsten-free low-alloy high-speed steel 11M5F with a chemical composition of 1.03-1.10% C, 5.2-5.7% Mo, 3.8-4.2% Cr, 1.3-1.7% V, 0.3-0.6% Si, and 0.3% Ce. The properties of 11M5F and R6M5 steels are examined and compared. The results of production and laboratory tests of the cutting properties of tools of the steels developed showed their high effectiveness, especially of 11M5F steel with 1% A1. The life of tools of the tungsten-free steels is two or three times greater than the life of tools of R6M5 steel.

  11. Welding tritium exposed stainless steel

    SciTech Connect

    Kanne, W.R. Jr.

    1994-11-01

    Stainless steels that are exposed to tritium become unweldable by conventional methods due to buildup of decay helium within the metal matrix. With longer service lives expected for tritium containment systems, methods for welding on tritium exposed material will become important for repair or modification of the systems. Solid-state resistance welding and low-penetration overlay welding have been shown to mitigate helium embrittlement cracking in tritium exposed 304 stainless steel. These processes can also be used on stainless steel containing helium from neutron irradiation, such as occurs in nuclear reactors.

  12. Method for welding chromium molybdenum steels

    SciTech Connect

    Sikka, V.K.

    1986-09-16

    A process is described for welding chromium-molybdenum steels which consist of: subjecting the steel to normalization by heating to above the transformation temperature and cooling in air; subjecting the steel to a partial temper by heating to a temperature less than a full temper; welding the steel using an appropriate filler metal; subjecting the steel to a full temper by heating to a temperature sufficient to optimize strength, reduce stress, increase ductility and reduce hardness.

  13. 2169 steel waveform experiments.

    SciTech Connect

    Furnish, Michael David; Alexander, C. Scott; Reinhart, William Dodd; Brown, Justin L.

    2012-11-01

    In support of LLNL efforts to develop multiscale models of a variety of materials, we have performed a set of eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn, balance predominantly Fe). These experiments provided carefully controlled shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were included in this experiment set to increase the utility of the data set, as were samples ranging in thickness from 1 to 5 mm. Target physical phenomena included the elastic/plastic transition (Hugoniot elastic limit), the Hugoniot, any phase transition phenomena, and the release path (windowed and free-surface). The Hugoniot was found to be nearly linear, with no indications of the Fe phase transition. Releases were non-hysteretic, and relatively consistent between 3- and 5-mmthick samples (the 3 mm samples giving slightly lower wavespeeds on release). Reshock tests with explosively welded impactors produced clean results; those with glue bonds showed transient releases prior to the arrival of the reshock, reducing their usefulness for deriving strength information. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allows release information to be determined from these free surface samples. The sample strength appears to increase with stress from ~1 GPa to ~ 3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model.

  14. Fatigue handbook: Offshore steel structures

    SciTech Connect

    Almarnaess, A.

    1985-01-01

    The contents of this book are: Overview of Offshore Steel Structures; Loads on Ocean Structures; Fracture Mechanics As a Tool in Fatigue Analysis; Basic Fatigue Properties of Welded Joints; Significance of Defects; Improving the Fatigue Strength of Welded Joints; Effects of Marine Environment and Cathodic Protection on Fatigue of Structural Steels Fatigue of Tubular Joints; Unstable Fracture; Fatigue Life Calculations; and Fatigue in Building Codes Background and Applications.

  15. Wear of steel by rubber

    NASA Technical Reports Server (NTRS)

    Gent, A. N.; Pulford, C. T. R.

    1978-01-01

    Wear of a steel blade used as a scraper to abrade rubber surfaces has been found to take place much more rapidly on a cis-polyisoprene (natural rubber) surface than on a cis-polybutadiene surface, and much more rapidly in an inert atmosphere than in air. These observations are attributed to the direct attack upon steel of free-radical species generated by mechanical rupture of elastomer molecules during abrasion.

  16. ELECTROMAGNETIC INSPECTION OF HARDENED STEEL.

    DTIC Science & Technology

    heat treat methods (no carbon added to the surface), and (2) The determination of through hardness or tempering temperature history of Stentor tool...effectiveness of phase sensitive and harmonic eddy current test methods for determining tempering temperature history of 4340 and Stentor tool steels was...showed that tempering temperature history of 4340 and Stentor steel can be determined for all temperatures (265 F to 820 F) used for specimen preparation on this program.

  17. Development of New Stainless Steel

    SciTech Connect

    Robert F. Buck

    2005-08-30

    A new family of innovative martensitic stainless steels, 521-A, 521-B, and 521-C has been developed by Advanced Steel Technology, LLC (Trafford, PA) as high strength fastener (bolt) materials for use at moderate temperatures in turbine engines, including steam turbines, gas turbines, and aircraft engines. The primary objective of the development program was to create a martensitic stainless steel with high strength at moderate temperatures, and which could replace the expensive nickel-based superalloy IN 718 in some fasteners applications. A secondary objective was to replace conventional 12Cr steels such as AISI 422 used as blades, buckets and shafts that operate at intermediate temperatures in turbine engines with stronger steel. The composition of the new alloys was specifically designed to produce excellent mechanical properties while integrating heat treatment steps into production to reduce energy consumption during manufacturing. As a result, production costs and energy consumption during production of rolled bar products is significantly lower than conventional materials. Successful commercialization of the new alloys would permit the installed cost of certain turbine engines to be reduced without sacrificing high availability or operational flexibility, thereby enhancing the global competitiveness of U.S. turbine engine manufacturers. Moreover, the domestic specialty steel industry would also benefit through increased productivity and reduced operating costs, while increasing their share of the international market for turbine engine fasteners, blades, buckets and shafts.

  18. Interdiffusion Behavior in Aluminide Coatings for Power Generation Applications

    SciTech Connect

    Zhang, Y.; Pint, B.A.; Haynes, J.A.; Cooley, K.M.; Wright, I.G.

    2003-04-22

    One of the critical issues for the application of iron aluminide coatings is the loss of Al from the coating into the Fe-base substrate alloys which do not contain aluminum. The interdiffusion behavior between chemical vapor deposited (CVD) aluminide coatings and ferritic and austenitic substrates is being studied for times up to 10,000h in the temperature range of 500-800 C. Coatings were synthesized using a laboratory-scale CVD reactor on representative commercial ferritic (Fe-9Cr-1Mo) and austenitic (type 304L stainless steel) alloys. The aluminide coatings on both alloys typically consisted of a relatively thin (20-25 {micro}m) Al-rich outer layer and a thicker (150- 250 {micro}m) inner layer with less Al. The composition profiles before and after interdiffusion testing were measured by electron probe microanalysis (EPMA). The decrease of the Al content at the coating surface was not significant after extended diffusion times ({le} 5000h) at temperatures {le} 700 C. More interdiffusion occurred at 800 C in coatings on both Fe-9Cr-1Mo and 304L alloys. Particularly, a two-phase microstructure was formed in the outer coating layer on 304L after interdiffusion of 2000h at 800 C. The interdiffusion behavior also was simulated using a computer model COSIM (Coating Oxidation and Substrate Interdiffusion Model), which was originally developed for MCrAlY overlay coatings by NASA. Reasonable agreement was observed between the simulated and experimental composition profiles although more work is needed to confirm assumptions made in the model.

  19. Review on cold-formed steel connections.

    PubMed

    Lee, Yeong Huei; Tan, Cher Siang; Mohammad, Shahrin; Tahir, Mahmood Md; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed.

  20. Review on Cold-Formed Steel Connections

    PubMed Central

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  1. 38. Photocopy of photograph. STEEL PLANT, BOILERS UNDER CONSTRUCTION IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Photocopy of photograph. STEEL PLANT, BOILERS UNDER CONSTRUCTION IN BOILER PLANT LOCATED EAST OF MAIN STEEL PLANT, 1909. (From the Bethlehem Steel Corporation collection, Seattle, WA) - Irondale Iron & Steel Plant, Port Townsend, Jefferson County, WA

  2. Nickel release from stainless steels.

    PubMed

    Haudrechy, P; Mantout, B; Frappaz, A; Rousseau, D; Chabeau, G; Faure, M; Claudy, A

    1997-09-01

    In 1994, a study of nickel release and allergic contact dermatitis from nickel-plated metals and stainless steels was published in this journal. It was shown that low-sulfur stainless steel grades like AISI 304, 316L or 430 (S < or = 0.007%) release less than 0.03 microgram/cm2/week of nickel in acid artificial sweat and elicit no reactions in patients already sensitized to nickel. In contrast, nickel-plated samples release around 100 micrograms/cm2/week of Ni and high-sulfur stainless steel (AISI 303-S approximately 0.3%) releases about 1.5 micrograms/cm2/week in this acid artificial sweat. Applied on patients sensitized to nickel, these metals elicit positive reactions in 96% and 14%, respectively, of the patients. The main conclusion was that low-sulfur stainless steels like AISI 304, 316L or 430, even when containing Ni, should not elicit nickel contact dermatitis, while metals having a mean corrosion resistance like a high-sulfur stainless steel (AISI 303) or nickel-plated steel should be avoided. The determining characteristic was in fact the corrosion resistance in chloride media, which, for stainless steels, is connected, among other factors, to the sulfur content. Thus, a question remained concerning the grades with an intermediate sulfur content, around 0.03%, which were not studied. They are the object of the study presented in this paper. 3 tests were performed: leaching experiments, dimethylglyoxime and HNO3 spot tests, and clinical patch tests; however, only stainless steels were tested: a low-sulfur AISI 304 and AISI 303 as references and 3 grades with a sulfur content around 0.03%: AISI 304L, AISI 304L added with Ca, AISI 304L+Cu. Leaching experiments showed that the 4 non-resulfurised grades released less than 0.5 microgram/cm2/week in acid sweat while the reulfurized AISI 303 released around or more than 0.5 microgram/cm2/week. This is explained by the poorer corrosion resistance of the resulfurized grade. Yet all these grades had the same

  3. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  4. 46 CFR 56.60-5 - Steel (High temperature applications).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2... steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel,...

  5. 46 CFR 56.60-5 - Steel (High temperature applications).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2... steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel,...

  6. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  7. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  8. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  9. 46 CFR 56.60-5 - Steel (High temperature applications).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2... steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel,...

  10. 46 CFR 56.60-5 - Steel (High temperature applications).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2... steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel,...

  11. 46 CFR 56.60-5 - Steel (High temperature applications).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2... steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel,...

  12. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  13. Steel erected at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Workers erect the first fabricated steel girders to arrive at the A-3 Test Stand at Stennis Space Center. Steel work began at the construction site Oct. 29 and is scheduled to continue into next spring.

  14. High-temperature brazing of stainless steel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Heisman, R. M.; Mitchell, M. J.

    1978-01-01

    Prevention of iron contamination of platens is eliminated by placing alumina/silica ceramic-fiber blankets between platens and carbon-steel plate. Carbon-steel plates provide rigidity and improve heat transfer.

  15. Corrosion control of steel-reinforced concrete

    NASA Astrophysics Data System (ADS)

    Chung, D. D. L.

    2000-10-01

    The methods and materials for corrosion control of steel-reinforced concrete are reviewed. The methods are steel surface treatment, the use of admixtures in concrete, surface coating on concrete, and cathodic protection.

  16. ESF GROUND SUPPORT - STRUCTURAL STEEL ANALYSIS

    SciTech Connect

    T. Misiak

    1996-06-26

    The purpose and objective of this analysis are to expand the level of detail and confirm member sizes for steel sets included in the Ground Support Design Analysis, Reference 5.20. This analysis also provides bounding values and details and defines critical design attributes for alternative configurations of the steel set. One possible configuration for the steel set is presented. This analysis covers the steel set design for the Exploratory Studies Facility (ESF) entire Main Loop 25-foot diameter tunnel.

  17. Copper-Nickel Cladding on Stainless Steel

    DTIC Science & Technology

    2005-07-01

    steel,. Monel (65Ni/35Cu) alloy consumables should be used as they can tolerate more iron dilution from the steel than the 70-30 copper-nickel alloy ...Cooper Alloys , 400 , K-500 Stainless Steel - Tyles 302, 304, 321, 347 N ickel 200 Silver Braze Alloys Nickel-Chromium Alloy 600 Nickel-Aluminum Bronze 70...cladding of austenitic stainless steels may also offer some ballistic, non-magnetic, and electromagnetic signature advantages over current hull alloys and

  18. Corrosion Behavior of Steel Fibrous Concrete

    DTIC Science & Technology

    1977-05-01

    Crvtaiue wi ,rerse sido it necessaty m’d Identify by block number) steel fibrous concrete corrosion cracked fibrous concrete 20 ABST RACT (Continue...dissolved gas in liq- Although chloride ions affect the rate of steel corro- uids. sion in concrete , corrosion can occur without them. Verbeck has...repcrted that steel subjected to a concrete Corrosion of steel will not occur without water. Not environment normally develops a protective oxide film

  19. Recycling steel automatically - through resource recovery

    SciTech Connect

    Foley, W.J.

    1997-12-01

    Last year, more than 55 percent of all steel cans were recycled. But no matter how effective the local recycling programs may be, some steel cans and other steel products are overlooked and appear in MSW. This missed steel fraction is automatically recycled by resource recovery facilities through magnetic separation. More than three-fourths of the operating resource recovery plants magnetically separate steel cans and other discarded steel items either pre- or post-combustion. Recovering ferrous scrap clearly reduces the post-combustion material that is landfilled and heightens the facilities` environmental performance. Both the resource recovery and steel industries must heighten public awareness of the benefits of automatic steel recycling. Magnetic separation at resource recovery facilities is a simple method of diverting what would otherwise be relegated as solid waste to the landfill. It should be recognized as an increasingly important and valued part of the resource recovery and steel industries` overall recycling efforts. This paper will discuss the status of steel can recycling in the United States, describe how recovered ferrous is beneficiated before recycling by the steel industry, and make recommendations for heightening awareness of the steel recycling contribution made by resource recovery facilities.

  20. Steel erected at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Fabricated steel began arriving by truck Oct. 24 for construction of the A-3 Test Stand that will be used to test the engine for the nation's next generation of moon rockets. Within days workers from Lafayette Steel Erector Inc. began assembling the 16 steel stages needed on the foundation and footings poured in the previous year.

  1. Steeling and Resilience in Art Education

    ERIC Educational Resources Information Center

    Heise, Donalyn

    2014-01-01

    Steel is an incredibly strong alloy of iron and carbon. Due to its incredible strength and durability, this resilient material is commonly used for constructing buildings. The transitive verb "steeling" is defined in Miriam-Webster dictionary as "to fill with resolution or determination, as in, she 'steeled herself to face the…

  2. Metallography of maraging 350 steel

    SciTech Connect

    Hutson, S.M.; Merten, C.W.

    1987-01-01

    A technique for etching maraging 350 steel with Glyceregia is described. Surface activation procedures are integral to this technique. Microstructural features revealed by this technique are compared with those obtained with Kalling's reagent, Fry's reagent, and 5% Nital, three etchants commonly used to reveal microstructures of maraging steels. Features which may be simultaneously revealed using Glyceregia include prior austenite grain boundaries, martensitic structure, precipitates, titanium carbo-nitrides, and reverted austenite. The other etchants examined in this investigation typically reveal only a few of the microstructural features detailed above at any one time. 11 refs., 10 figs., 2 tabs.

  3. Teaching Steel Connections Using an Interactive Virtual Steel Sculpture

    ERIC Educational Resources Information Center

    Moaveni, Saeed; Chou, Karen C.

    2015-01-01

    Steel connections play important roles in the integrity of a structure, and many structural failures are attributed to connection failures. Connections are the glue that holds a structure together. The failures of the Hartford Coliseum in 1977, the Hyatt Regency Hotel in Kansas City in 1980, and the I-35W Bridge in Minneapolis in 2007 are all…

  4. Superhard Nanocrystalline Homometallic Stainless Steel on Steel for Seamless Coatings

    NASA Technical Reports Server (NTRS)

    Tobin, Eric J.; Hafley, R. (Technical Monitor)

    2002-01-01

    The objective of this work is to deposit nanocrystalline stainless steel onto steel substrates (homometallic) for enhanced wear and corrosion resistance. Homometallic coatings provide superior adhesion, and it has been shown that ultrafine-grained materials exhibit the increased hardness and decreased permeability desired for protective coatings. Nanocrystals will be produced by controlling nucleation and growth and use of an ion beam during deposition by e-beam evaporation or sputtering. Phase I is depositing 31 6L nanocrystalline stainless steel onto 31 6L stainless steel substrates. These coatings exhibit hardnesses comparable to those normally obtained for ceramic coatings such ZrO2, and possess the superior adhesion of seamless, homometallic coatings. Hardening the surface with a similar material also enhances adhesion, by avoiding problems associated with thermal and lattice mismatch. So far we have deposited nanocrystalline homometallic 316L stainless steel coatings by varying the ions and the current density of the ion beams. For all deposition conditions we have produced smooth, uniform, superhard coatings. All coatings exhibit hardness of at least 200% harder than that of bulk materials. Our measurements indicate that there is a direct relationship between nanohardness and the current density of the ion beam. Stress measurements indicate that stress in the films is increasingly proportional to current density of the ion beam. TEM, XPS, and XRD results indicate that the coated layers consist of FCC structure nanocrystallites with a dimension of about 10 to 20 nm. The Ni and Mo concentration of these coating are lower than those of bulk 316L but the concentration of Cr is higher.

  5. Bearing steels in the 21. century

    SciTech Connect

    Tsubota, Kazuichi; Sato, Toshio; Kato, Yoshiyuki; Hiraoka, Kazuhiko; Hayashi, Ryoji

    1998-12-31

    Oxygen content of bearing steel will be reduced to below 3 ppm in the year 2000 if the current trend for the reduction of oxygen in the steel continues. As a result, size of oxide inclusions will become smaller and the fatigue life will be doubled. From the viewpoint of life prediction, cleanliness evaluation methods currently used are not effective. Inclusion Rating Method by Statistics of Extreme is useful for both cleanliness evaluation and fatigue life prediction. Bearings made of suitably heat treated carbon steels or low alloy steels, which possess equivalent fatigue properties to bearing steels, will increase owing to the requirement for lower cost and better formability.

  6. Reduced-activation steels: Future development for improved creep strength

    NASA Astrophysics Data System (ADS)

    Klueh, R. L.

    2008-08-01

    Reduced-activation steels for fusion applications were developed in the 1980s to replace the elevated-temperature commercial steels first considered. The new steels were patterned after the commercial steels, with the objective that the new steels have yield stress and ultimate tensile strength and impact toughness in a Charpy test comparable to or better than the steels they replaced. That objective was achieved in reduced-activation steels developed in Japan, Europe, and the United States. Although tensile and impact toughness of the reduced-activation steels exceed those of the commercial steels they were patterned after, their creep-rupture properties are inferior to some commercial steels they replaced. They are even more inferior to commercial steels developed since the 1980s. In this paper, compositional differences between reduced-activation steels and new commercial steels are examined, and compositions are proposed for development of new-and-improved reduced-activation steels.

  7. Dendritic inhomogeneity of stainless maraging steels

    SciTech Connect

    Krasnikova, S.I.; Drobot, A.V.; Shmelev, A.Y.; Vukelich, S.B.

    1986-03-01

    The authors investigated dendritic inhomogeneity in industrial ingots 630 mm (steel I) in diameter and 500 mm (steel II) in diameter. The variation in the degree of dendritic inhomogeneity was investigated over the height of the ingots and across the sections on an MS-46 microprobe. It was established that the elements can be placed in the following order in accordance with the degree of reduction in the liquation factor: titanium, molybdenum, nickel, chromium, and cobalt. Titanium and molybdenum exhibit forward liquation in both steels, and chromium in steel II. The distribution of nickel and chromium in the steel I ingots and cobalt in the steel II ingots is unconventional. Dendritic inhomogeneity, which must be considered in assigning the heat treatment for finished articles, develops during the crystallization of stainless maraging steels.

  8. STEFINS: a steel freezing integral simulation program

    SciTech Connect

    Frank, M.V.

    1980-09-01

    STEFINS (STEel Freezing INtegral Simulation) is a computer program for the calculation of the rate of solidification of molten steel on solid steel. Such computations arize when investigating core melt accidents in fast reactors. In principle this problem involves a coupled two-dimensional thermal and hydraulic approach. However, by physically reasonable assumptions a decoupled approach has been developed. The transient solidification of molten steel on a cold wall is solved in the direction normal to the molten steel flow and independent from the solution for the molten steel temperature and Nusselt number along the direction of flow. The solutions to the applicable energy equations have been programmed in cylindrical and slab geometries. Internal gamma heating of steel is included.

  9. Thermal Linear Expansion of Nine Selected AISI Stainless Steels

    DTIC Science & Technology

    1978-04-01

    stainless steels. The nine selected stainless steels are AISI 303, 304, 304L, 316, 317, 321, 347, 410 , and 430. The recoended values Include the...point of the stainless steels. The nine selected stainless steels are AISI 303, 304, 304L, 316, 317, 321, 347, 410 , and 430. The recommended values...Stainless Steel..................................26 8. AISI 410 Stainless Steel..................................29 9. AISI 430 Stainless Steel

  10. Comparative Structural Strength Research of Hardened Carbon Steel and Hot-Rolled Alloy Steel

    NASA Astrophysics Data System (ADS)

    Bogomolov, A. V.; Zhakupov, A. N.; Kanayev, A. T.; Sikach, I. A.; Tugumov, K. K.

    2016-08-01

    Experiments on quantitative evaluation of fatigue strength showed that St5ps and St5sp carbon steels with A400 strength class can be fully applied for erection of constructions and buildings having cyclical loads during operation. Study of corrosion resistance of hardened carbon steel in comparison with hot-rolled alloy steel consists in difference in structures and hence, difference in intensity of electric and chemical processes featuring presence of steel in concrete. Structure of St5sp steel with A400 strength class in surface area has significantly less corrosion rate than ferritic-perlitic structure of 35GS steel with A400 strength class.

  11. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect

    J. K. Wright; R. N. Wright

    2008-04-01

    The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have

  12. [Radioactivity monitoring of steel processing in Croatian steel mills and foundries].

    PubMed

    Sofilić, Tahir; Marjanović, Tihana; Rastovcan-Mioc, Alenka

    2006-03-01

    The last twenty years have seen a number of cases of radioactive pollution in metallurgical industry. Therefore many metal producers have implemented systematic monitoring of radioactivity in their production processes, especially in steel processing, steel being the most applied construction material with the annual world output of over billion tonnes. Learning from the experience of the best known steel producers in Europe and the world Croatian steel mills have introduced radioactivity surveillance and control systems for radioactive elements in steel scrap, semi-finished and finished products. This paper argues in favour of radioactivity surveillance and control systems in steel and steel castings production in Croatia, and describes current systems and solutions available. Since we lack our own standards and regulations to control both domestic and imported steel scrap, semi-finished products (crude steel, hot and cold rolled strip) and finished products, we need to start implementing radioactivity surveillance and control systems in our steel and steel castings production applying the current international recommendations and guidelines, until we build up our own monitoring system and adopt legislation on the national level. This paper gives an overview of the basic types of radioactivity surveillance and control systems, the most frequent requirements to be met, as well as of the measurement and information flow in their application in steel and steel castings production.

  13. Microstructure and Mechanical Properties of HSLA-100 Steel

    DTIC Science & Technology

    1990-12-01

    13 Figure 4. High Strength Bainite Strength Components .................... 20 Figure 5. Bainitic Steel Tempering and DBTT ...21 Figure 6. Tempered Bainite Steel Yield Stress and DBTT .................. 21 Figure 7. HSLA-100 Steel Yield Strength versus Aging...Energy at -84°C ............... 31 Figure 14. HSLA-100 Steel Lot GQH DBTT ............................ 31 Figure 15. HSLA-100 Steel Lot GQH Ductility

  14. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    NASA Astrophysics Data System (ADS)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths (τ (app)) and slip coefficient (β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle (ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  15. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    NASA Astrophysics Data System (ADS)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths ( τ ( app)) and slip coefficient ( β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle ( ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  16. Longer Life for Steel Structures

    NASA Technical Reports Server (NTRS)

    1990-01-01

    IC 531 is a coating manufactured and marketed by Inorganic Coatings, Inc. The coating was developed by Goddard to protect structures at Kennedy Space Center. It is a high ratio potassium silicate formula. The coating is water based, nontoxic, and nonflammable. It generates no volatile organic compounds nor hazardous chemical waste, and bonds to steel in 30 minutes. At the present time, no one can say for sure how long IC 531's effective lifetime is. Some of the original Goddard test applications of 1976 are still going strong after lengthy exposure to the Sun, salt and moisture. Says IC in company literature: 'IC 531 offers virtually permanent protection for steel. We predict it will protect structures for well beyond 25 years. If necessary, it is infinitely maintainable; if damaged, it can easily be touched up with more IC 531.'

  17. Underwater wet welding of steel

    SciTech Connect

    Ibarra, S.; Liu, S.; Olson, D.L.

    1995-05-01

    Underwater wet welding is conducted directly in water with the shielded metal arc (SMA) and flux cored arc (FCA) welding processes. Underwater wet welding has been demonstrated as an acceptable repair technique down to 100 meters (325 ft.) in depth, but wet welds have been attempted on carbon steel structures down to 200 meters (650 ft.). The primary purpose of this interpretive report is to document and evaluate current understanding of metallurgical behavior of underwater wet welds so that new welding consumables can be designed and new welding practices can be developed for fabrication and repair of high strength steel structures at greater depths. First the pyrometallurgical and physical metallurgy behaviors of underwater weldments are discussed. Second, modifications of the welding consumables and processes are suggested to enhance the ability to apply wet welding techniques.

  18. Steel Industry Energy Bandwidth Study

    SciTech Connect

    none,

    2004-10-01

    ITP conducted a study on energy use and potential savings, or "bandwidth" study, in major steelmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results based on the 2nd law of thermodynamics. The Steel Industry Energy Bandwidth Study (PDF 133 KB) also estimates steel industry energy use in the year 2010, and uses that value as a basis for comparison against the minimum requirements. This energy savings opportunity for 2010 will aid focus on longer term R&D.

  19. Existing Steel Railway Bridges Evaluation

    NASA Astrophysics Data System (ADS)

    Vičan, Josef; Gocál, Jozef; Odrobiňák, Jaroslav; Koteš, Peter

    2016-12-01

    The article describes general principles and basis of evaluation of existing railway bridges based on the concept of load-carrying capacity determination. Compared to the design of a new bridge, the modified reliability level for existing bridges evaluation should be considered due to implementation of the additional data related to bridge condition and behaviour obtained from regular inspections. Based on those data respecting the bridge remaining lifetime, a modification of partial safety factors for actions and materials could be respected in the bridge evaluation process. A great attention is also paid to the specific problems of determination of load-caring capacity of steel railway bridges in service. Recommendation for global analysis and methodology for existing steel bridge superstructure load-carrying capacity determination are described too.

  20. Light microscopy of carbon steels

    SciTech Connect

    Samuels, L.E.

    1998-12-31

    Containing over 1,200 representative micrographs and the information and explanatory text that makes them really useful: composition, condition, etchant, and magnification, and more than 100 graphs and tables, this how to book not only gives everyday working examples, but also discusses the relationship between the constitution, metallurgy, and microstructure of various carbon steel products. Written by a renowned expert in metallography, this definitive work is a must for all those working in this area. Contents include: nomenclature of phases and constituents; phase transformations; low-carbon irons and steels; annealing and normalizing; spheroidization and graphitization; austenitization; transformation of austenite; tempering of martensite; welding; surface oxidation, decarburation; and oxidation scaling; glossary of terms; etching methods; conversion tables.

  1. Welding of high chromium steels

    NASA Technical Reports Server (NTRS)

    Miller, W B

    1928-01-01

    A brief description is given of different groups of high chromium steels (rustless iron and stainless steels) according to their composition and more generally accepted names. The welding procedure for a given group will be much the same regardless of the slight variations in chemical composition which may exist within a certain group. Information is given for the tensile properties (yield point and ultimate strength) of metal sheets and welds before and after annealing on coupons one and one-half inches wide. Since welds in rustless iron containing 16 to 18 percent chromium and 7 to 12 percent nickel show the best combination of strength and ductility in the 'as welded' or annealed condition, it is considered the best alloy to use for welded construction.

  2. Steel Industry Marginal Opportunity Analysis

    SciTech Connect

    none,

    2005-09-01

    The Steel Industry Marginal Opportunity Analysis (PDF 347 KB) identifies opportunities for developing advanced technologies and estimates both the necessary funding and the potential payoff. This analysis determines what portion of the energy bandwidth can be captured through the adoption of state-of-the-art technology and practices. R&D opportunities for addressing the remainder of the bandwidth are characterized and plotted on a marginal opportunity curve.

  3. Nano-composite stainless steel

    DOEpatents

    Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.

    2015-07-14

    A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.

  4. A study of Damascus steel

    SciTech Connect

    Berge, P.

    1995-02-16

    The Damascus sword has been an article of fascination for many years to blade collectors and metallurgists alike. The blades were given their name by Europeans who encountered these blades which originated from Damascus, Syria. They are best known for the appearance of the blade face. Genuine Damascus blades show swirling patterns of alternating light and dark regions which are due to the microstructure of the steel. The microstructure consists of arrays of well rounded cementite patterns in a matrix of either pearlite, bainite, or martensite. When this structure is etched the matrix will turn dark leaving the cementite particles light. Although many blades were produced over the centuries, while some of the process is known the making of a genuine Damascus blade today is generally considered a lost art. Many scientists have studied the subject in an attempt to understand the complex process by which the clustered arrays of cementite particles develop in the steel blades. The most prominent theories to date are presented in the General Introduction to this thesis. The thesis is divided into four main parts. In the first part, four proposed mechanisms of cementite cluster sheet formation as they relate to the banding theory are introduced. Experiments to investigate these mechanisms are presented. In Part II, collaborative research focused on the methodology of the reconstructed process for making Damascus steel is presented. In the third part, a study into the graphitization of the reconstructed blades is presented. In Part IV, experimental attempts at producing Damascus steel ingots in the laboratory are presented.

  5. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    NASA Astrophysics Data System (ADS)

    Shen, Wenning; Feng, Lajun; Feng, Hui; Cao, Ying; Liu, Lei; Cao, Mo; Ge, Yanfeng

    The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel.

  6. 77 FR 67400 - RG Steel Wheeling, LLC, a Division of RG Steel, LLC, Doing Business as Wheeling Corrugating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... Employment and Training Administration RG Steel Wheeling, LLC, a Division of RG Steel, LLC, Doing Business as..., 2012, applicable to workers of RG Steel Wheeling, LLC, a division of RG Steel, LLC, doing business as... RG Steel, LLC, doing business as Wheeling Corrugating Company, Beech Bottom, West Virginia,...

  7. Nickel: makes stainless steel strong

    USGS Publications Warehouse

    Boland, Maeve A.

    2012-01-01

    Nickel is a silvery-white metal that is used mainly to make stainless steel and other alloys stronger and better able to withstand extreme temperatures and corrosive environments. Nickel was first identified as a unique element in 1751 by Baron Axel Fredrik Cronstedt, a Swedish mineralogist and chemist. He originally called the element kupfernickel because it was found in rock that looked like copper (kupfer) ore and because miners thought that "bad spirits" (nickel) in the rock were making it difficult for them to extract copper from it. Approximately 80 percent of the primary (not recycled) nickel consumed in the United States in 2011 was used in alloys, such as stainless steel and superalloys. Because nickel increases an alloy's resistance to corrosion and its ability to withstand extreme temperatures, equipment and parts made of nickel-bearing alloys are often used in harsh environments, such as those in chemical plants, petroleum refineries, jet engines, power generation facilities, and offshore installations. Medical equipment, cookware, and cutlery are often made of stainless steel because it is easy to clean and sterilize. All U.S. circulating coins except the penny are made of alloys that contain nickel. Nickel alloys are increasingly being used in making rechargeable batteries for portable computers, power tools, and hybrid and electric vehicles. Nickel is also plated onto such items as bathroom fixtures to reduce corrosion and provide an attractive finish.

  8. Environmental Impact Analysis Process. Abbreviated Environmental Assessment for P91-1 Argos Spacecraft

    DTIC Science & Technology

    1997-06-01

    formula) COCO Contractor-Owned Contractor-Operated COBE COsmic Background Explorer DOPAA Description of Proposed Action and Alternatives DOT U.S...manufacturing and pre-launch servicing and checkout is carried out in contractor-owned and contractor-operated ( COCO ) facilities, (not at Vandenberg AFB...place at contractor-owned contractor-operated ( COCO ) facilities. The launch site and the WR are extensively described in Section 3.0 of the

  9. Recycling steel. Conducting a waste audit.

    PubMed

    Crawford, G

    1996-01-01

    This is the second in a series of three articles regarding steel can recycling from foodservice operations of healthcare facilities. This article highlights the basic methods of recycling steel cans, and includes information on conducting a waste audit and negotiating with a hauler regarding the benefits of recycling. The previous article discussed how steel is recycled across the country. The next article will convey a case history of actual foodservice recycling practice from a healthcare facility.

  10. Nonmetallic Inclusions in HSLA Steel Weldments

    DTIC Science & Technology

    1989-12-01

    lowering the DBTT . Nickel prevents the hot shortness phenomenon often observed in copper-bearing steels . Nickel is also an austenite stabilizer. By lowering... STEEL WELDMENTS by Brent A. Douglas December, 1989 Thesis Advisor Alan G. Fox Approved for public release; distribution is unlimited. 90 ,-. S...ACCESSION NO. II. TITLE (Incude Security Claw fication) Nonmetallic Inclusions In HSLA Steel Weldments IZ. PERSONAL AUTHOR(S) Douglas, Brent A. 138

  11. Evaluation of the Benefits of HSLA Steels

    DTIC Science & Technology

    1989-03-01

    quenched and tempered steels , such as HY80 and HY1OO, require preheat and interpass temperature controls during welding of plates thicker than 1/2 inch...interpass tempera- tures and heat input limitations. Strict adherence to these requirements is mandatory to avoid cracking in hydrogen- sensitive steels ...requirement and excellent weldability of this steel will probably lower produc- tion costs and cracking -related repairs enough to overcome the slight

  12. Crack growth behavior under creep-fatigue conditions using compact and double edge notch tension-compression specimens

    NASA Astrophysics Data System (ADS)

    Narasimha Chary, Santosh Balaji

    inspection of fatigue surfaces, it has been found that that better alignment control procedures are needed to ensure symmetric crack fronts for the DEN(T-C) specimen. Creep-fatigue crack growth tests were conducted on 9Cr-1Mo (P91) steels at 625°C with various hold times. These tests were conducted using C(T) specimens under constant load amplitude conditions (tension-tension) and DEN(T-C) specimens under displacement like conditions (tension-compression). Crack growth data generated under creep-fatigue conditions using standard C(T) specimens correlated well with crack growth data generated using DEN(T-C) specimens. The crack growth rates per cycle increased significantly with increase in hold time when crack growth data were plotted with the cyclic stress intensity parameter, Delta-K. A transient behavior in the initial portion of da/dN versus Delta-K plots were observed for the hold time tests, as reported previously by several other researchers. It is shown for the C(T) specimens that the creep-fatigue interactions during crack growth for various hold times are represented better by the (Ct)avg parameter implying that the P91 steel behaves in a creep-ductile manner. Significant differences (factors of 2 to 5) were observed between the calculated values of (Ct)avg and those based on measured values of force-line deflection. It is also shown that there is a high risk of obtaining invalid data in longer hold time tests under force-control conditions. The usefulness of DEN(T-C) specimens for crack growth studies under displacement controlled conditions to combat ratcheting problems in tests conducted under load conditions is established. The tests conditions for the round-robin program on creep-fatigue crack growth testing in support of ASTM E-2760 are finalized. Further developments needed in creep-fatigue crack growth testing are also presented.

  13. Bending Properties of Al-Steel and Steel-Steel Composite Metal Foams

    NASA Astrophysics Data System (ADS)

    Brown, Judith A.; Vendra, Lakshmi J.; Rabiei, Afsaneh

    2010-11-01

    The performance of new composite metal foams (CMFs) under bending was evaluated with simultaneous acoustic emission (AE) monitoring on samples processed by cast and powder metallurgy (PM) techniques. The results showed high maximum strength in all samples up to 86 MPa with more ductile failure in PM samples. Acoustic emission behavior confirmed that the dominating failure mechanism of cast CMF is the brittle fracture of intermetallic phases that mostly exist at the interface of the steel spheres with the aluminum matrix, whereas in PM samples (100 pct steel), the failure is governed by the propagation of preexisting microporosities in the matrix resulting in a complete ductile failure. SEM imaging of the fracture surfaces supported these findings.

  14. Modified 43XX Steels for High Toughness

    DTIC Science & Technology

    1980-04-01

    AL AMMRC TR 80-20 MODIFIED 43XX STEELS FOR HIGH TOUGHNESS T CS.,•, °x ,•, o o,,o,,,sD T I W4 AftELECTE APRIL 1980 J N.J. Kar, V.F. Zackay and E.R...carried out. Isohra tasomions in these steels resulted inn bbaainni 11-v DI FOR Z 47 RITIOW OF I NOV695 IS OBSOLETE UCASFE SECURITY UCLASSIFIEDINOFTI PAGE...this investigation for Si-modified AISI 4330 steel appear to be superior to those for unmodified AISI 4340 and 300-M steels , whilst the strength-tough

  15. Fracture Characteristics of Structural Steels and Weldments

    DTIC Science & Technology

    1975-11-01

    constrctionTECHNICAL REPORT`M.170 engineringNovember 1975 research laboratory FRACTURE CHARACTERISTICS OF STRUCTURAL STEELS AND WELDMENTS by J...microscope structure steel steel weldments 2 0. AUS51RA.Y’ Ztiu is~~g e ".C f ,e owl mod Idwisf~yb 6405 ". b mbef This5 tepof I p)wnh~t tlie tiIodings...CLALUVICA1IOli Of UAE(.0’ LINCLASSTFI~n SECURITY CLASSIFICATION Of THIS PAQE(1h.M Data EntWOO4 The hydrogen-enibrittled, high-strength steels exhibited

  16. Corrosion of stainless steel, 2. edition

    SciTech Connect

    Sedriks, A.J.

    1996-10-01

    The book describes corrosion characteristics in all the major and minor groups of stainless steels, namely, in austenitic, ferritic, martensitic, duplex, and precipitation hardenable steels. Several chapters are spent on those special forms of corrosion that are investigated in the great detail in stainless steels, namely, pitting corrosion, crevice corrosion, and stress corrosion cracking. The influences of thermal treatment (heat affected zone cases), composition, and microstructure on corrosion are given good coverage. Corrosive environments include high temperature oxidation, sulfidation as well as acids, alkalis, various different petroleum plant environments, and even human body fluids (stainless steels are commonly used prosthetic materials).

  17. Recycling steel automatically -- through resource recovery

    SciTech Connect

    Crawford, G.L.

    1996-12-31

    More than three-fourths of the operating resource recovery plants magnetically separate steel cans and other discarded steel items either pre- or post-combustion. This last year, 121 resource recovery facilities combusted about 14% of the solid waste for communities across the US. Automatic recycling of steel clearly reduces the post-combustion material that is landfilled and heightens the facilities environmental performance through tangible recycling achievement. Even though about one out of every six steel cans is recycled automatically through resource recovery, not many people are aware of automatic recycling of steel cans through resource recovery. How many people know that their local resource recovery plant is insuring that virtually all of their food, beverage and general purpose cans--including paint and aerosol--are being recycled so easily and efficiently? Magnetic separation at resource recovery facilities is a fundamentally simple and desirable method of diverting what would otherwise be relegated as solid waste to the landfill. It should be recognized as an increasingly important and valued part of the resource recovery and steel industries overall recycling efforts. This paper will provide the latest information on steel recycled automatically from resource recovery facilities within the total context of all recycling accomplished annually by the steel industry. Most important, recommendations are provided for building public awareness of the automatic steel recycling contribution made so solidly by resource recovery facilities.

  18. 30. Photocopy of photograph. STEEL PLANT, OPEN HEARTH FURNACE CHARGING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Photocopy of photograph. STEEL PLANT, OPEN HEARTH FURNACE CHARGING CREW, 1910. (From the Bethlehem Steel Corporation Colletion, Seattle, WA) - Irondale Iron & Steel Plant, Port Townsend, Jefferson County, WA

  19. 37. Photocopy of photograph. STEEL PLANT, OPEN HOUSE INSIDE PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. Photocopy of photograph. STEEL PLANT, OPEN HOUSE INSIDE PLANT AT TIME OF ITS OPENING, 1910. (From the Bethlehem Steel Corporation Collection, Seattle, WA) - Irondale Iron & Steel Plant, Port Townsend, Jefferson County, WA

  20. North and west facades of crucible steel building; looking southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North and west facades of crucible steel building; looking southeast - Bethlehem Steel Corporation, South Bethlehem Works, Crucible Steel Plant, Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  1. Steel shear walls, behavior, modeling and design

    SciTech Connect

    Astaneh-Asl, Abolhassan

    2008-07-08

    In recent years steel shear walls have become one of the more efficient lateral load resisting systems in tall buildings. The basic steel shear wall system consists of a steel plate welded to boundary steel columns and boundary steel beams. In some cases the boundary columns have been concrete-filled steel tubes. Seismic behavior of steel shear wall systems during actual earthquakes and based on laboratory cyclic tests indicates that the systems are quite ductile and can be designed in an economical way to have sufficient stiffness, strength, ductility and energy dissipation capacity to resist seismic effects of strong earthquakes. This paper, after summarizing the past research, presents the results of two tests of an innovative steel shear wall system where the boundary elements are concrete-filled tubes. Then, a review of currently available analytical models of steel shear walls is provided with a discussion of capabilities and limitations of each model. We have observed that the tension only 'strip model', forming the basis of the current AISC seismic design provisions for steel shear walls, is not capable of predicting the behavior of steel shear walls with length-to-thickness ratio less than about 600 which is the range most common in buildings. The main reasons for such shortcomings of the AISC seismic design provisions for steel shear walls is that it ignores the compression field in the shear walls, which can be significant in typical shear walls. The AISC method also is not capable of incorporating stresses in the shear wall due to overturning moments. A more rational seismic design procedure for design of shear walls proposed in 2000 by the author is summarized in the paper. The design method, based on procedures used for design of steel plate girders, takes into account both tension and compression stress fields and is applicable to all values of length-to-thickness ratios of steel shear walls. The method is also capable of including the effect of

  2. Clean steel technology -- Fundamental to the development of high performance steels

    SciTech Connect

    Wilson, A.D.

    1999-07-01

    The use of clean steel technology (low sulfur with calcium treatment for inclusion shape control) is a fundamental building block in the development of high performance plate steels. A brief review will be presented of the benefits of calcium treatment and its effect on non-metallic inclusions (sulfides and oxides) and reducing sulfur levels. During the past thirty years the requirements for low sulfur levels have been reduced from 0.010% maximum to 0.001% maximum. The effects of clean steel practices on specific properties will be reviewed including tensile ductility, Charpy V-notch and fracture toughness, fatigue crack propagation and hydrogen-induced-cracking resistance. Traditional low sulfur plate steel applications have included pressure vessels. offshore platforms, plastic injection molds and line-pipe skelp. More recent applications will be discussed including bridge steels, high strength structural steels to 130 ksi (897 MPa) minimum yield strength, 9% nickel steels for cryogenic applications, and military armor.

  3. Corrosion Behavior of IF Steel in Various Media and Its Comparison with Mild Steel

    NASA Astrophysics Data System (ADS)

    Singh, G. P.; Moon, A. P.; Sengupta, S.; Deo, G.; Sangal, S.; Mondal, K.

    2015-05-01

    The present work discusses corrosion behavior of an interstitial-free (IF) steel in 0.6 M NaCl, 1 M NaOH, and 1 M HCl solutions, and its comparison with mild steel (MS). Dynamics polarization and AC Impedance Spectroscopy explain different polarization behaviors of the steel samples. All the steels were exposed to open atmosphere for 100 days, and to 0.6 M NaCl salt fog for 30 days. Scanning electron microscopy, x-ray diffraction, and Raman and Fourier Transformed Infrared Spectroscopy were used to characterize microstructure of the steels, rust constituents, and morphologies. Corrosion behavior of the steels has close relation with the morphology and constituents of the rusts. It has been observed that the corrosion in the IF and MS steels is uniform in nature.

  4. Help for the Steel Industry

    NASA Astrophysics Data System (ADS)

    1991-01-01

    A collaboration between NASA Lewis Research Center (LRC) and Gladwin Engineering resulted in the adaptation of aerospace high temperature metal technology to the continuous casting of steel. The continuous process is more efficient because it takes less time and labor. A high temperature material, once used on the X-15 research plane, was applied to metal rollers by a LRC developed spraying technique. Lewis Research Center also supplied mold prototype of metal composites, reducing erosion and promoting thermal conductivity. Rollers that previously cracked due to thermal fatigue, lasted longer. Gladwin's sales have increased, and additional NASA-developed innovations are anticipated.

  5. Chromizing of 3Cr Steel

    SciTech Connect

    Ravi, Vilupanur; Harrison, Bradley; Koch, Jordan; Ly, Alexander; Schissler, Andrew; Pint, Bruce A; Haynes, James A

    2011-01-01

    Grade 315 steel (Fe-2.9 Cr-1.7 W-0.7 Mo-0.3 Mn-0.3 Si-0.2 V-0.1 Ni-0.13 C-0.01 N) was chromized by the halide-activated pack cementation (HAPC) process. Key process parameters, i.e., coating temperatures and pack compositions, were investigated. Ammonium chloride-activated packs in the 700-1000 C range produced coatings nominally in the 1-8 {micro}m range, as determined by optical and scanning electron microscopy (SEM). Coatings applied in the 900-1000 C temperature range resulted in Cr-rich coatings. The predominant phase in the coating was identified as Cr23C6 by X-ray diffraction. In addition, the presence of chromium nitride, Cr2N, was observed in the coating. The power generation industry is faced with an ever-increasing demand for energy while simultaneously having to reduce carbon emissions. These goals can be facilitated by increasing plant efficiency through the use of higher operating temperatures and pressures. Traditional construction materials, e.g., the ferritic Grade 22 high strength low alloy steel, are limited to operations below {approx} 550 C. Therefore, new materials are required for future plants designed to operate up to 650 C and possibly higher. These new materials need to have improved tensile strength, ductility, toughness, corrosion resistance, and creep properties at elevated temperatures. Oak Ridge National Laboratory (ORNL) is investigating the oxidation and creep behavior of various coatings on Grade 315 steel (Fe-2.9 Cr-1.7 W-0.7 Mo-0.3 Mn-0.3 Si-0.2 V-0.1 Ni-0.13 C-0.01 N), a super-bainitic steel developed for superior creep properties. Thin, chemical vapor-deposited (CVD) aluminide coatings were used to compensate for the reduced corrosion and oxidation resistance that resulted from the low chromium content of the alloy. However, the aluminized Grade 315 alloys performed less-than-favorably under conditions relevant to fossil boilers, leading to the conclusion that higher chromium contents are required for the formation of

  6. Diffusion brazing nickel-plated stainless steel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Mitchell, M. J.

    1976-01-01

    To bond parts, sandwich assembly is made up of aluminum core, aluminum face sheet with brazing alloy interface, and nickel plated stainless steel part. Sandwich is placed between bottom and top glide sheet that is placed in stainless steel retort where assembly is bonded at 580 C.

  7. Technological properties of steels of martensitic class

    NASA Astrophysics Data System (ADS)

    Kleiner, L. M.; Greben'kov, S. K.; Zakirova, M. G.; Tolchina, I. V.; Ryaposov, I. V.

    2011-03-01

    Process, design, and ecological advantages of low-carbon martensitic steels (LCMS) are presented as compared to medium-carbon heat-treatable structural steels with a structure of tempered sorbite. The factors ensuring high manufacture adaptability in all stages of the production cycle are considered. Technological properties of widely used commercial weldable LCMS are analyzed.

  8. Method for welding chromium molybdenum steels

    DOEpatents

    Sikka, Vinod K.

    1986-01-01

    Chromium-molybdenum steels exhibit a weakening after welding in an area adjacent to the weld. This invention is an improved method for welding to eliminate the weakness by subjecting normalized steel to a partial temper prior to welding and subsequently fully tempering the welded article for optimum strength and ductility.

  9. History dependence of magnetomechanical properties of steel

    NASA Astrophysics Data System (ADS)

    Melquiond, F.; Mouroux, A.; Jouglar, J.; Vuillermoz, P. L.; Weinstock, H.

    1996-05-01

    Magnetomechanical measurements using a superconducting SQUID magnetic gradiometer and a tensile-testing machine have been performed on a variety of steel specimens to determine the change in magnetization due to applied stress and the possible application of the observed behavior as a new form of nondestructive evaluation in steel. This study builds on earlier related measurements.

  10. A recycling process for dezincing steel scrap

    SciTech Connect

    Dudek, F.J.; Daniels, E.J. ); Morgan, W.A.; Kellner, A.W.; Harrison, J. )

    1992-01-01

    In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

  11. A recycling process for dezincing steel scrap

    SciTech Connect

    Dudek, F.J.; Daniels, E.J.; Morgan, W.A.; Kellner, A.W.; Harrison, J.

    1992-08-01

    In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

  12. Chem I Supplement: Chemistry of Steel Making.

    ERIC Educational Resources Information Center

    Sellers, Neal

    1980-01-01

    Provides information about the chemistry of steel making applicable to teaching secondary school science. Generalized chemical reactions describe the manufacture of steel from iron ore. Also discussed are raw materials, processing choices, and how various furnaces (blast, direct reduction, open hearth, basic oxygen, electric) work. (CS)

  13. Mineral resource of the month: steel

    USGS Publications Warehouse

    Fenton, Michael D.

    2007-01-01

    About 96 million metric tons of steel was produced in the United States last year — more than any other metal. And the $3.46 billion of iron and steel scrap exported was also the highest of any metal scrap export, helping to reduce the U.S. trade deficit.

  14. African Drum and Steel Pan Ensembles.

    ERIC Educational Resources Information Center

    Sunkett, Mark E.

    2000-01-01

    Discusses how to develop both African drum and steel pan ensembles providing information on teacher preparation, instrument choice, beginning the ensemble, and lesson planning. Includes additional information for the drum ensembles. Lists references and instructional materials, sources of drums and pans, and common note layout/range for steel pan…

  15. Ellie Mannette: Master of the Steel Drum.

    ERIC Educational Resources Information Center

    Svaline, J. Marc

    2001-01-01

    Presents an interview with Elliot ("Ellie") Mannette who has played a major role in the development and application of steel drums. States that he has spent most of his life designing and teaching the steel drums. Covers interview topics and background information on Mannette. (CMK)

  16. METHOD FOR JOINING ALUMINUM TO STAINLESS STEEL

    DOEpatents

    Lemon, L.C.

    1960-05-24

    Aluminum may be joined to stainless steel without the use of flux by tinning the aluminum with a tin solder containing 1% silver and 1% lead, tinning the stainless steel with a 50% lead 50% tin solder, and then sweating the tinned surfaces together.

  17. Low Mn alloy steel for cryogenic service

    DOEpatents

    Morris, J.W. Jr.; Niikura, M.

    A ferritic cryogenic steel which has a relatively low (about 4 to 6%) manganese content and which has been made suitable for use at cryogenic temperatures by a thermal cycling treatment followed by a final tempering. The steel includes 4 to 6% manganese, 0.02 to 0.06% carbon, 0.1 to 0.4% molybdenum and 0 to 3% nickel.

  18. Forming "dynamic" membranes on stainless steel

    NASA Technical Reports Server (NTRS)

    Brandon, C. A.; Gaddis, J. L.

    1979-01-01

    "Dynamic" zirconium polyacrylic membrane is formed directly on stainless steel substrate without excessive corrosion of steel. Membrane is potentially useful in removal of contaminated chemicals from solution through reversed osmosis. Application includes use in filtration and desalination equipment, and in textile industry for separation of dyes from aqueous solvents.

  19. Corrosion and degradation of test materials in the Mountain Fuel Resources 30 ton/day coal gasification Process Development Unit

    SciTech Connect

    Yurkewycz, R.

    1985-01-31

    One period of in-plant exposure (lower section of gasifier and steam superheater) of candidate alloys for gasification applications was completed in the Mountain Fuel Resources, Inc. (MFR) Process Development Unit (PDU). During this brief period of exposure (294 h gasifying coal), temperatures at the test sites were 140/sup 0/F (60/sup 0/C) at the lower section of the gasifier and ranged from 350/sup 0/ to 500/sup 0/F (177/sup 0/ to 260/sup 0/C) during steady-state periods in the steam superheater but were sometimes <300/sup 0/F (149/sup 0/C). These lower temperatures, encountered during process upsets, were in many cases lower than the dew point of the product gas. Operating pressures were 300 psi (2.1 MPa) in the gasifier and ranged from 50 to 200 psig (0.4 to 1.4 MPa gauge) in the superheater. Fouling of heat exchanger surfaces was also reported. At the lower section of the gasifier, A515 carbon steel, aluminized carbon steel, 2 1/4Cr-1Mo, 1 1/4Cr-1Mo, 9Cr-1Mo, and 410 SS suffered from heavy corrosion and they cannot be considered for use in this system. Types 304 SS and 316 SS showed acceptable general corrosion resistance, but they suffered from pitting. Incoloy 800 was the only one of the alloys tested that exhibited excellent resistance to overall corrosion and pitting. In the steam superheater, high alloy steels Type 310, 26-1, 18-2, and Type 304 incurred the least amount of corrosion damage; corrosion rates were <10 mpy (0.25 mm/y). Alloy Incoloy 800 performed nominally at 21 mpy (0.53 mm/y). The remaining alloys 1 1/4Cr-1/2Mo, 2 1/4Cr-1Mo, Type 410, 253MA and 9Cr-1Mo(Mod.) experienced unacceptable localized corrosion losses; corrosion rates were >150 mpy (3.81 mm/y). Pack-aluminized carbon steel A515 showed no evidence of diffusion zone penetration and was acceptable in corrosion performance. 14 refs., 9 figs., 7 tabs.

  20. Hydrogen transport in iron and steel

    NASA Technical Reports Server (NTRS)

    Louthan, M. R., Jr.; Derrick, R. G.; Donovan, J. A.; Caskey, G. R., Jr.

    1976-01-01

    The permeabilities of protium, deuterium, and tritium in foil specimens of Marz grade iron, 4130 steel, Armco iron, HP-9-4-20, and T-1 steels were studied at hydrogen pressures between 0.02 and 0.5 MPa over the temperature range 260-700 K. The permeability was measured by a pressure-rise method, deuterium counting with a detector, and radioactivity counting. Good agreement is found between the measurement techniques used. It is shown that the permeabilities of protium, deuterium, and tritium in iron and T-1 steel at temperatures as low as 260 K are in good agreement with the equation proposed by Gonzalez (1967). However, the permeabilities of HP-9-4-20 and 4130 steel to hydrogen are typically lower than predicted. The isotope effect on hydrogen permeability of HP-9-4-20, 4130 and T-1 steels, and high-purity iron can be estimated by an inverse square root of mass correction.

  1. An understanding of HSLA-65 plate steels

    NASA Astrophysics Data System (ADS)

    Sampath, K.

    2006-02-01

    HSLA-65 plate steels can be produced using one of five plate manufacturing techniques: normalizing, controlled rolling (CR), controlled rolling followed by accelerated cooling (CR-AC), direct quenching and tempering (DQT), or conventional quenching and tempering (Q&T). The HSLA-65 steels are characterized by low carbon content and low alloy content, and they exhibit a low carbon equivalent that allows improved plate weldability. These characteristics in turn (a) provide the steel plate with a refined microstructure that ensures high strength and toughness; (b) eliminate or substantially reduce the need for preheating during welding; (c) resist susceptibility to hydrogen-assisted cracking (HAC) in the weld heat affected zone (HAZ) when fusion (arc) welded using low heat-input conditions; and (d) depending on section thickness, facilitate high heat-input welding (about 2 kJ/mm) without significant loss of strength or toughness in the HAZ. However, application of this plate manufacturing process and of these controls produces significant differences in the metallurgical structure and range of mechanical properties of the HSLA-65 plate steels both among themselves and versus conventional higher strength steel (HSS) plates. For example, among the HSLA-65 plate steels, those produced by Q&T exhibit minimal variability in mechanical properties, especially in thicker plates. Besides variability in mechanical properties depending on plate thickness, the CR and CR-AC plate steels exhibit a relatively higher yield strength to ultimate tensile strength (YS/UTS) ratio than do DQT and Q&T steels. Such differences in processing and properties of HSLA-65 plate steels could potentially affect the selection and control of various secondary fabrication practices, including arc welding. Consequently, fabricators must exercise extreme caution when transferring allowable limits of certified secondary fabrication practices from one type of HSLA-65 plate steel to another, even for the

  2. Automated Steel Cleanliness Analysis Tool (ASCAT)

    SciTech Connect

    Gary Casuccio; Michael Potter; Fred Schwerer; Dr. Richard J. Fruehan; Dr. Scott Story

    2005-12-30

    The objective of this study was to develop the Automated Steel Cleanliness Analysis Tool (ASCATTM) to permit steelmakers to evaluate the quality of the steel through the analysis of individual inclusions. By characterizing individual inclusions, determinations can be made as to the cleanliness of the steel. Understanding the complicating effects of inclusions in the steelmaking process and on the resulting properties of steel allows the steel producer to increase throughput, better control the process, reduce remelts, and improve the quality of the product. The ASCAT (Figure 1) is a steel-smart inclusion analysis tool developed around a customized next-generation computer controlled scanning electron microscopy (NG-CCSEM) hardware platform that permits acquisition of inclusion size and composition data at a rate never before possible in SEM-based instruments. With built-in customized ''intelligent'' software, the inclusion data is automatically sorted into clusters representing different inclusion types to define the characteristics of a particular heat (Figure 2). The ASCAT represents an innovative new tool for the collection of statistically meaningful data on inclusions, and provides a means of understanding the complicated effects of inclusions in the steel making process and on the resulting properties of steel. Research conducted by RJLG with AISI (American Iron and Steel Institute) and SMA (Steel Manufactures of America) members indicates that the ASCAT has application in high-grade bar, sheet, plate, tin products, pipes, SBQ, tire cord, welding rod, and specialty steels and alloys where control of inclusions, whether natural or engineered, are crucial to their specification for a given end-use. Example applications include castability of calcium treated steel; interstitial free (IF) degasser grade slag conditioning practice; tundish clogging and erosion minimization; degasser circulation and optimization; quality assessment/steel cleanliness; slab, billet

  3. Superstrength of nanograined steel with nanoscale intermetallic precipitates transformed from shock-compressed martensitic steel

    NASA Astrophysics Data System (ADS)

    Yu, Hailiang; Yan, Ming; Lu, Cheng; Tieu, Anh Kiet; Li, Huijun; Zhu, Qiang; Godbole, Ajit; Li, Jintao; Su, Lihong; Kong, Charlie

    2016-11-01

    An increasing number of industrial applications need superstrength steels. It is known that refined grains and nanoscale precipitates can increase strength. The hardest martensitic steel reported to date is C0.8 steel, whose nanohardness can reach 11.9 GPa through incremental interstitial solid solution strengthening. Here we report a nanograined (NG) steel dispersed with nanoscale precipitates which has an extraordinarily high hardness of 19.1 GPa. The NG steel (shock-compressed Armox 500T steel) was obtained under these conditions: high strain rate of 1.2 μs-1, high temperature rise rate of 600 Kμs-1 and high pressure of 17 GPa. The mean grain size achieved was 39 nm and reinforcing precipitates were indexed in the NG steel. The strength of the NG steel is expected to be ~3950 MPa. The discovery of the NG steel offers a general pathway for designing new advanced steel materials with exceptional hardness and excellent strength.

  4. Superstrength of nanograined steel with nanoscale intermetallic precipitates transformed from shock-compressed martensitic steel

    PubMed Central

    Yu, Hailiang; Yan, Ming; Lu, Cheng; Tieu, Anh Kiet; Li, Huijun; Zhu, Qiang; Godbole, Ajit; Li, Jintao; Su, Lihong; Kong, Charlie

    2016-01-01

    An increasing number of industrial applications need superstrength steels. It is known that refined grains and nanoscale precipitates can increase strength. The hardest martensitic steel reported to date is C0.8 steel, whose nanohardness can reach 11.9 GPa through incremental interstitial solid solution strengthening. Here we report a nanograined (NG) steel dispersed with nanoscale precipitates which has an extraordinarily high hardness of 19.1 GPa. The NG steel (shock-compressed Armox 500T steel) was obtained under these conditions: high strain rate of 1.2 μs−1, high temperature rise rate of 600 Kμs−1 and high pressure of 17 GPa. The mean grain size achieved was 39 nm and reinforcing precipitates were indexed in the NG steel. The strength of the NG steel is expected to be ~3950 MPa. The discovery of the NG steel offers a general pathway for designing new advanced steel materials with exceptional hardness and excellent strength. PMID:27892460

  5. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

    DTIC Science & Technology

    2013-08-01

    and around particle inclusions within the WZ. In the case of FSW aluminum to steel , the structure often seen is one of steel particles dispersed...the microstructure and mechanical performance of dissimilar FSWs between aluminum and steel , this study focuses on the characterization of the...MICROSTRUCTURAL CHARACTERIZATION OF FRICTION STIR WELDED ALUMINUM - STEEL JOINTS By ERIN ELIZABETH PATTERSON A thesis submitted in

  6. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  7. 49 CFR 178.504 - Standards for steel drums.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for steel drums. 178.504 Section 178.504...-bulk Performance-Oriented Packaging Standards § 178.504 Standards for steel drums. (a) The following are identification codes for steel drums: (1) 1A1 for a non-removable head steel drum; and (2) 1A2...

  8. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover...

  9. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for...

  10. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover...

  11. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  12. 19 CFR 360.101 - Steel import licensing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 3 2012-04-01 2012-04-01 false Steel import licensing. 360.101 Section 360.101 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.101 Steel import licensing. (a) In general. (1) All imports of basic steel...

  13. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  14. 49 CFR 178.504 - Standards for steel drums.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Standards for steel drums. 178.504 Section 178.504...-Oriented Packaging Standards § 178.504 Standards for steel drums. (a) The following are identification codes for steel drums: (1) 1A1 for a non-removable head steel drum; and (2) 1A2 for a removable...

  15. 19 CFR 360.101 - Steel import licensing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 3 2013-04-01 2013-04-01 false Steel import licensing. 360.101 Section 360.101 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.101 Steel import licensing. (a) In general. (1) All imports of basic steel...

  16. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover...

  17. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  18. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  19. 49 CFR 178.504 - Standards for steel drums.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Standards for steel drums. 178.504 Section 178.504...-Oriented Packaging Standards § 178.504 Standards for steel drums. (a) The following are identification codes for steel drums: (1) 1A1 for a non-removable head steel drum; and (2) 1A2 for a removable...

  20. 19 CFR 360.101 - Steel import licensing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 3 2014-04-01 2014-04-01 false Steel import licensing. 360.101 Section 360.101 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.101 Steel import licensing. (a) In general. (1) All imports of basic steel...

  1. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for...

  2. 19 CFR 360.101 - Steel import licensing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 3 2011-04-01 2011-04-01 false Steel import licensing. 360.101 Section 360.101 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.101 Steel import licensing. (a) In general. (1) All imports of basic steel...

  3. 49 CFR 178.504 - Standards for steel drums.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Standards for steel drums. 178.504 Section 178.504...-Oriented Packaging Standards § 178.504 Standards for steel drums. (a) The following are identification codes for steel drums: (1) 1A1 for a non-removable head steel drum; and (2) 1A2 for a removable...

  4. 49 CFR 178.504 - Standards for steel drums.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Standards for steel drums. 178.504 Section 178.504...-Oriented Packaging Standards § 178.504 Standards for steel drums. (a) The following are identification codes for steel drums: (1) 1A1 for a non-removable head steel drum; and (2) 1A2 for a removable...

  5. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  6. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  7. 75 FR 8746 - Certain Steel Grating From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... COMMISSION Certain Steel Grating From China AGENCY: United States International Trade Commission. ACTION... retarded, by reason of subsidized and less-than-fair-value imports from China of certain steel gratings... ``certain steel grating, consisting of two or more pieces of steel, including load- bearing pieces and...

  8. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  9. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for...

  10. 19 CFR 360.101 - Steel import licensing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Steel import licensing. 360.101 Section 360.101 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.101 Steel import licensing. (a) In general. (1) All imports of basic steel...

  11. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover...

  12. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for...

  13. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover...

  14. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  15. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  16. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for...

  17. Austenite grain coarsening in microalloyed steels

    NASA Astrophysics Data System (ADS)

    Cuddy, L. J.; Raley, J. C.

    1983-10-01

    A uniform, fine-grain structure is essential in steels, particularly for strip and plate, that are to meet demands for high strength and toughness. To produce such microstructures, every step of the high-temperature processing of the steel must be carefully controlled, beginning with grain coarsening that occurs during reheating for slab rolling. Extremely coarse or nonuniform grain structures in the reheated slab are difficult to refine by subsequent hot working. Accordingly, the grain-coarsening behavior of laboratory heats of C-Mn-Si base steels and of such steels with additions of Al, V, Ti, or Nb was examined to understand the principles governing the behavior of this class of steels. The grain-coarsening temperature (the temperature at which abnormal or discontinuous growth occurs) varies with the type and concentration of the microalloy addition; an approximate relation is presented. Generally the grain-coarsening temperature increases with, but is lower than, the temperature required for complete dissolution of the microalloy carbide or nitride present. Thus, steels containing the very insoluble TiN coarsen at much higher temperatures than steels containing the more soluble VCN. These results agree qualitatively with predictions of models of grain-boundary pinning by precipitate particles.

  18. Recycling galvanized steel: Operating experience and benefits

    SciTech Connect

    Dudek, F.J.; Daniels, E.J.; Morgan, W.A.

    1993-08-01

    In response to the increase in consumption of galvanized steel for automobiles in the last decade and the problems associated with remelting larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is recovered electrolytically as dendritic powder. The dezinced ferrous scrap is rinsed and used directly. The process is effective for zinc, lead, and aluminum removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 900 tonnes of mostly baled scrap. A pilot plant to continuously treat loose scrap, with a design capacity of 48,000 tonnes annually, has been in operation in East Chicago, Indiana since early in 1993. The first 450 t of scrap degalvanized in the pilot plant have residual zinc below 0.01% and sodium dragout below 0.01%. Use of degalvanized steel scrap decreases raw materials, environmental compliance, and opportunity costs to steel- and iron-makers. Availability of clean degalvanized scrap may enable integrated steel producers to recycle furnace dusts to the sinter plant and EAF shops to produce flat products without use of high quality scrap alternatives such as DRI, pig iron, or iron carbide. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap. The quantities of zinc available by the year 2000 from prompt and obsolete automotive scrap win approach 25% of zinc consumed in the major automotive production centers of the world. Zinc recycling from galvanized steel scrap, either before or after scrap melting, will have to be implemented.

  19. Alloy dissolution in argon stirred steel

    NASA Astrophysics Data System (ADS)

    Webber, Darryl Scott

    Alloying is required for the production of all steel products from small castings to large beams. Addition of large quantities of bulk alloys can result in alloy segregation and inconsistent alloy recovery. The objective of this research was to better understand alloy dissolution in liquid steel especially as it relates to Missouri S&Ts' patented continuous steelmaking process. A 45-kilogram capacity ladle with a single porous plug was used to evaluate the effect of four experimental factors on alloy dissolution: alloy species, alloy size or form, argon flow rate, and furnace tap temperature. Four alloys were tested experimentally including Class I low carbon ferromanganese, nickel and tin (as a surrogate for low melting alloys) and Class II ferroniobium. The alloys ranged in size and form from granular to 30 mm diameter lumps. Experimental results were evaluated using a theoretically based numerical model for the steel shell period, alloy mixing (Class I) and alloy dissolution (Class II). A CFD model of the experimental ladle was used to understand steel motion in the ladle and to provide steel velocity magnitudes for the numerical steel shell model. Experiments and modeling confirmed that smaller sized alloys have shorter steel shell periods and homogenize faster than larger particles. Increasing the argon flow rate shortened mixing times and reduced the delay between alloy addition and the first appearance of alloy in the melt. In addition, for every five degree increase in steel bath temperature the steel shell period was shortened by approximately four percent. Class II ferroniobium alloy dissolution was an order of magnitude slower than Class I alloy mixing.

  20. Steel Creek wildlife: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Giffin, M.A.; Patterson, K.K.

    1988-03-01

    Reptile and amphibian populations in Steel Creek below L-Lake were assessed in monthly or quarterly sampling programs. Thirty-eight species of reptiles or amphibians were collected during 1987 in the Steel Creek corridor below the L-Lake impoundment, and in the delta and channel. Juvenile turtles and alligators, and larval amphibians were observed or collected during the study, indicating continued reproduction in Steel Creek. The reptile and amphibian populations in Steel Creek show no indication of any effect due to the impoundment of the lake or the operation of L-Reactor. Waterfowl and associated birds in Steel Creek below L-Lake were observed, in conjunction with other sampling programs, during winter--spring and fall--winter migrations. Nine species of waterfowl and five species of associated birds were observed in 1987 in the Steel Creek corridor below the L-Lake impoundment and in the delta and channel.

  1. Modernization of Controls Improves Productivity and Reduces Energy Costs at a Large Steel Plant (Weirton Steel Plant)

    SciTech Connect

    2000-04-01

    In 1996 and 1997, Weirton Steel upgraded the utilities control systems at its main steel manufacturing plant in Weirton, WV. In response to increasing energy costs and the need to remain competitive in the steel industry, Weirton Steel commissioned a comprehensive energy management study of the facility, which provided the basis for an energy management control strategy.

  2. Ultrahigh Carbon Steels and Their Laminates

    DTIC Science & Technology

    1990-02-01

    PROGRAM PROJECT TASK WORK UNIT 11LitME NT NO. No. NO. NO I I TITLE tiAtluda Seca.r.ty Ck~iaialasonJ Ultrahigh Carbon Steels and their laminates...PROM Aug. 1984 To- Fe~r--9O February 1, 1906 1S. SUPPLEMENTARY NOTATION Amore coinpetc tte of tie-program is: Low Density and Tough Steels with High...Hardenabihzty: Processing, Testing and Evaluation of UHC steels and their laminates 17 COSATI CODES Is.. SUBJECT TERMS (CoAtInai" on uvwrue iroleemary

  3. Thermal embrittlement of reactor vessel steels

    SciTech Connect

    Corwin, W.R.; Nanstad, R.K.; Alexander, D.J.; Stoller, R.E.; Wang, J.A.; Odette, G.R.

    1995-06-01

    As a result of observations of possible thermal embrittlement from recent studies with welds removed from retired steam generators of the Palisades Nuclear Plant (PNP), an assessment was made of thermal aging of reactor pressure vessel (RPV) steels under nominal reactor operating conditions. Discussions are presented on (1) data from the literature regarding relatively low-temperature thermal embrittlement of RPV steels; (2)relevant data from the US power reactor-embrittlement data base (PR-EDB); and (3)potential mechanisms of thermal embrittlement in low-alloy steels.

  4. Direct Alloying of Steel with Nickel Concentrate

    NASA Astrophysics Data System (ADS)

    Nokhrina, O. I.; Rozhikhina, I. D.; Proshunin, I. E.

    2016-08-01

    A technology of alloying steel with nickel reduced from nickel concentrate is analysed and developed. Limits of reduction concentration areas are defined. An optimal composition of nickel concentrate pellets and a method of feeding them into the furnace are deduced from experiments. It is proved that when pellets made of nickel concentrate and coke are added into the charge during steel smelting by the technology of alloyed scrap remelting, nickel recovery achieves 92-95%. The technology was tested by smelting DSP-40 steel.

  5. Strain hardening of steel EP836

    SciTech Connect

    Lyadskaya, A.A.; Lappa, R.M.; Spuskanyuk, V.Z.

    1986-03-01

    The authors investigate the effect of different combinations of cold hydraulic pressing and heat treatment on the physical and mechanical properties of steel EP836 (03N17K10V10MT), containing 0.03% C, 16-17% Ni, 10-11.5% Co, 9.5-11.5% W, 1% Ti, 1% Mo, and 0.15% A1. Deformation of the unaged steel resulted in insignificant hardening without a decrease in plasticity; this agrees with the results of investigations of other steels of this class.

  6. Tritiated Water Interaction with Stainless Steel

    SciTech Connect

    Glen R. Longhurst

    2007-05-01

    Experiments conducted to study tritium permeation of stainless steel at ambient and elevated temperatures revealed that HT converts relatively quickly to HTO. Further, the HTO partial pressure contributes essentially equally with elemental tritium gas in driving permeation through the stainless steel. Such permeation appears to be due to dissociation of the water molecule on the hot stainless steel surface. There is an equilibrium concentration of HTO vapor above adsorbed gas on the walls of the experimental apparatus evident from freezing transients. The uptake process of tritium from the carrier gas involves both surface adsorption and isotopic exchange with surface bound water.

  7. Steel pressure vessels for hydrostatic pressures to 50 kilobars.

    PubMed

    Lavergne, A; Whalley, E

    1978-07-01

    Cylindrical steel pressure vessels are described that can be used for hydrostatic pressures up to 50 kilobars. Monoblock vessels of 350 maraging steel can be used to 40 kilobars and compound vessels with an inner vessel of 350 maraging steel and an outer vessel of 300 maraging steel to 50 kilobars. Neither requires the cylinder to be end loaded, and so they are much easier to use than the more usual compound vessels with a tungsten carbide inner and steel outer vessel.

  8. Ultrasonic attenuation in pearlitic steel.

    PubMed

    Du, Hualong; Turner, Joseph A

    2014-03-01

    Expressions for the attenuation coefficients of longitudinal and transverse ultrasonic waves are developed for steel with pearlitic microstructure. This type of lamellar duplex microstructure influences attenuation because of the lamellar spacing. In addition, longitudinal attenuation measurements were conducted using an unfocused transducer with 10 MHz central frequency on the cross section of a quenched railroad wheel sample. The dependence of longitudinal attenuation on the pearlite microstructure is observed from the changes of longitudinal attenuation from the quenched tread surface to deeper locations. The results show that the attenuation value is lowest and relatively constant within the quench depth, then increases linearly. The experimental results demonstrate a reasonable agreement with results from the theoretical model. Ultrasonic attenuation provides an important non-destructive method to evaluate duplex microstructure within grains which can be implemented for quality control in conjunction with other manufacturing processes.

  9. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    SciTech Connect

    Jafarzadegan, M.; Feng, A.H.; Abdollah-zadeh, A.; Saeid, T.; Shen, J.; Assadi, H.

    2012-12-15

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.

  10. Evaluation of Direct Diode Laser Deposited Stainless Steel 316L on 4340 Steel Substrate for Aircraft Landing Gear Application

    DTIC Science & Technology

    2010-03-01

    AFRL-RX-WP-TP-2010-4149 EVALUATION OF DIRECT DIODE LASER DEPOSITED STAINLESS STEEL 316L ON 4340 STEEL SUBSTRATE FOR AIRCRAFT LANDING GEAR...March 2010 – 01 March 2010 4. TITLE AND SUBTITLE EVALUATION OF DIRECT DIODE LASER DEPOSITED STAINLESS STEEL 316L ON 4340 STEEL SUBSTRATE FOR...Code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 Evaluation of Direct Diode Laser Deposited Stainless Steel 316L on

  11. TiC reinforced cast chromium steels

    SciTech Connect

    Dogan, Omer N.; Rawers, James C.; Hawk, Jeffrey A.; Schrems, Karol K.

    2003-11-01

    A series of new titanium carbide reinforced cast chromium steels were developed for wear applications. Objective of the program was to enhance wear resistant alloys and, if possible, improve mechanical properties. The new steels which were melted in a vacuum induction furnace contained 12 Cr, 3-5 Ti, 1-2 C in weight percent. Alloying with Ti changed the precipitate microstructure from Cr carbide to TiC dispersed in a martensitic matrix. Yield strength and impact resistance improved with Ti alloying. Wear rates of the cast Cr/TiC steels, (determined from high- and low-stress abrasion tests, erosion test, and scratch tests) were generally lower than both the as-cast and heat-treated AISI type 440°C steel and were often further reduced by increasing the Ti alloy concentration. The exceptions were the erosion test for which all materials had similar wear rate.

  12. TiC reinforced cast Cr steels

    SciTech Connect

    Dogan, O.N.; Hawk, J.A.; Schrems, K.K.

    2006-06-01

    A new class of materials, namely TiC-reinforced cast chromium (Cr) steels, was developed for applications requiring high abrasion resistance and good fracture toughness. The research approach was to modify the carbide structure of commercial AISI 440C steel for better fracture resistance while maintaining the already high abrasion resistance. The new alloys contained 12Cr, 2.5–4.5Ti, and 1–1.5C (wt.%) and were melted in a vacuum induction furnace. Their microstructure was composed primarily of a martensitic matrix with a dispersion of TiC precipitates. Modification of TiC morphology was accomplished through changing the cooling rate during solidification. Wear rates of the TiC-reinforced Cr steels were comparable to that of AISI 440C steel, but the impact resistance was much improved.

  13. Steel - Structural, reinforcing; Pressure vessel, railway

    SciTech Connect

    Not Available

    1986-01-01

    This book contains specifications for structural steel used in various constructions; concrete reinforcement; plate and forgings for boilers and pressure vesseles; rails, axles, wheels and other accessories for railway service.

  14. High performance corrosion-resistant structural steels

    SciTech Connect

    Fletcher, F.B.; Ferry, B.N.; Beblo, D.G.

    1995-12-31

    A new corrosion-resistant structural steel named Duracorr was developed for low maintenance when compared to conventional structural steels. The new stainless steel is a dual phase composition between the established 12% Cr, ferritic T409 and martensitic T410 grades. Attractive combinations of hardness, strength, toughness, weldability and formability are derived from a microstructure that is a dual phase mixture of ferrite and martensite. The Duracorr composition, UNS S41003, provides for a microstructure of ferrite and austenite to be present throughout the hot rolling process. Cooling to room temperature causes transformation of the austenite to martensite. Subsequent tempering of the steel creates minimum mechanical properties of 275 MPa (40 ksi) yield strength and 455 MPa (66 ksi) tensile strength with room temperature longitudinal Charpy impact values typically greater than 34 J (25 ft-lbs).

  15. Lightweight Steel Solutions for Automotive Industry

    SciTech Connect

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-06-15

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  16. Abbreviated annealing of high-speed steel

    SciTech Connect

    Zablotskii, V.K.; Bartel, G.P.

    1987-07-01

    The authors investigate the structural and phase transformations during the heating, holding, and cooling of high-speed steels of two basic groups: tungsten (R18, R12, R12F3, and R12F4K5) and tungsten-molybdenum (R6M5, 10R6M5, R6M5K5, R8M3, 10R8M3, and R8M3K6S) steels in the forged state. They propose a cooling regime with complete alpha-gamma recrystallization whose implementation at a Soviet steel plant has made it possible to reduce the duration of heat treatment and increase productivity by 20% in cutting the annealed high-speed steels.

  17. Clean Cast Steel Technology, Phase IV

    SciTech Connect

    Charles E. Bates

    2003-02-24

    The objective of the Clean Cast Steel Technology Program was to improve casting product quality by removing or minimizing oxide defects and to allow the production of higher integrity castings for high speed machining lines. Previous research has concentrated on macro-inclusions that break, chip, or crack machine tool cutters and drills and cause immediate shutdown of the machining lines. The overall goal of the project is to reduce the amount of surface macro-inclusions and improve the machinability of steel castings. Macro-inclusions and improve the machinability of steel castings. Macro-inclusions have been identified by industrial sponsors as a major barrier to improving the quality and marketability of steel castings.

  18. Precise carbon control of fabricated stainless steel

    DOEpatents

    Nilsen, R.J.

    1975-12-01

    A process is described for controlling the carbon content of fabricated stainless steel components including the steps of heat treating the component in hydrogen atmospheres of varying dewpoints and carbon potentials.

  19. Stainless Steel to Titanium Bimetallic Transitions

    SciTech Connect

    Kaluzny, J. A.; Grimm, C.; Passarelli, D.

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  20. Lightweight Steel Solutions for Automotive Industry

    NASA Astrophysics Data System (ADS)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-06-01

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  1. Hydrogen compatibility handbook for stainless steels

    SciTech Connect

    Caskey, G.R. Jr.

    1983-06-01

    This handbook compiles data on the effects of hydrogen on the mechanical properties of stainless steels and discusses this data within the context of current understanding of hydrogen compatibility of metals. All of the tabulated data derives from continuing studies of hydrogen effects on materials that have been conducted at the Savannah River Laboratory over the past fifteen years. Supplementary data from other sources are included in the discussion. Austenitic, ferritic, martensitic, and precipitation hardenable stainless steels have been studied. Damage caused by helium generated from decay of tritium is a distinctive effect that occurs in addition to the hydrogen isotopes protium and deuterium. The handbook defines the scope of our current knowledge of hydrogen effects in stainless steels and serves as a guide to selection of stainless steels for service in hydrogen.

  2. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, J.

    1984-01-01

    The application of the ion beam technique to the nitriding of steels is described. It is indicated that the technique can be successfully applied to nitriding. Some of the structural changes obtained by this technique are similar to those obtained by ion nitriding. The main difference is the absence of the iron nitride diffraction lines. It is found that the dependence of the resultant microhardness on beam voltage for super nitralloy is different from that of 304 stainless steel.

  3. Thermal treatment of dissimilar steels' welded joints

    NASA Astrophysics Data System (ADS)

    Nikulina, A. A.; Denisova, A. S.; Gradusov, I. N.; Ryabinkina, P. A.; Rushkovets, M. V.

    2016-04-01

    In this paper combinations of chrome-nickel steel and high-carbon steel, produced by flash butt welding after heat treatment, are investigated. Light and electron microscopic studies show that the welded joints after heat treatment have a complex structure consisting of several phases as initial welded joints. A martensite structure in welded joints after thermal treatment at 300... 800 °C has been found.

  4. High strength and high toughness steel

    DOEpatents

    Parker, Earl R.; Zackay, Victor F.

    1979-01-01

    A structural steel which possess both high strength and high toughness and has particular application of cryogenic uses. The steel is produced by the utilization of thermally induced phase transformation following heating in a three-phase field in iron-rich alloys of the Fe-Ni-Ti system, with a preferred composition of 12% nickel, 0.5% titanium, the remainder being iron.

  5. High strength, high ductility low carbon steel

    DOEpatents

    Koo, Jayoung; Thomas, Gareth

    1978-01-01

    A high strength, high ductility low carbon steel consisting essentially of iron, 0.05-0.15 wt% carbon, and 1-3 wt% silicon. Minor amounts of other constituents may be present. The steel is characterized by a duplex ferrite-martensite microstructure in a fibrous morphology. The microstructure is developed by heat treatment consisting of initial austenitizing treatment followed by annealing in the (.alpha. + .gamma.) range with intermediate quenching.

  6. Stainless Steels’ Resistance to Hydroerosion,

    DTIC Science & Technology

    1980-07-30

    Omel’chenko, engineer, S. L. Millichenko, A. G. Aleksandrov, Candidates of Technical Sciences Thanks to a high corrosion resistance stainless steels have...has great significance. The resistance to hydroerosion of several of the most common types of stainless steels which have roughly the same corrosion ...the failure is first localized in the ferrite phase and occurs by means of plastic deformation and the development of fatigue micro- cracks both

  7. Diffraction Measurements on CPF Steel Fatigue Samples

    DTIC Science & Technology

    1995-05-30

    I I I I I I I I I I I I I I I I I I I - 535 - Diffraction Measurements on CPF Steel Fatigue Samples by Percy Clark*, Tom...to the formation of a detectable fatigue crack, a series of hourglass shaped specimens were fabricated from 350WT steel , cyclically loaded to...were made between these experiments and earlier less successful similar experiments conducted on HY80 samples. The limitations and potential for the

  8. Occupational rhinitis due to steel welding fumes.

    PubMed

    Castano, Roberto; Suarthana, Eva

    2014-12-01

    Exposure to welding fumes is a recognized respiratory hazard. Occupational asthma but not occupational rhinitis has been documented in workers exposed to steel welding fumes. We report a 26-year-old male with work-related rhinitis symptoms as well as lower airways symptoms suggestive of occupational asthma and metal fume fever associated with exposure to steel welding fumes. The diagnosis of occupational rhinitis was confirmed by specific inhalation challenge.

  9. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, J.

    1985-01-01

    The application of the ion beam technique to the nitriding of steels is described. It is indicated that the technique can be successfully applied to nitriding. Some of the structural changes obtained by this technique are similar to those obtained by ion nitriding. The main difference is the absence of the iron nitride diffraction lines. It is found that the dependence of the resultant microhardness on beam voltage for super nitralloy is different from that of 304 stainless steel.

  10. Improved High Strength Armor Steel through Texturing

    DTIC Science & Technology

    1979-09-01

    80 I 14 02w INTRODUCTION During metal manufacturing processing, such as rolling of sheet and plate, the polycrystalline aggregate of the material...of the quenched martensite has been documented by previous investigators including Kula and Dhosi who ob- served that thermomechanical processing can...textured armor steel exhibits improved ballistic resistance to conventionally uncontrolled rolled steels of equal hardness at normal obliquity. This

  11. Laser Rewelding of 304L Stainless Steel.

    SciTech Connect

    Maguire, Michael Christopher; Rodelas, Jeffrey

    2016-11-01

    Laser welding of 304L stainless steel during component fabrication has been found to alter the chemical composition of the steel due to material evaporation. During repair or rework, or during potential reuse/ rewelding of certain components, the potential exists to alter the composition to the extent that the material becomes prone to solidification cracking. This work aims to characterize the extent of this susceptibility in order to make informed decisions regarding rewelding practice and base metal chemistry allowances.

  12. Regularities of bainitic steel deformation transition

    NASA Astrophysics Data System (ADS)

    Gromov, V. E.; Nikitina, E. N.; Ivanov, Yu F.; Aksenova, K. V.

    2016-09-01

    Quantitative analysis of defect and carbide subsystems evolution in medium-carbon bainitic steel subjected to compressive strain up to 36% was performed by means of transmission electron diffraction microscopy. Dislocation substructure and carbide phase parameters dependence on degree of deformation are identified, possible reasons of staging in their changes are discussed. It is suggested that the reason for bainitic steel softening at high (over 15%) degrees of deformation is activation of deformation microtwinning process.

  13. Stainless steel recycle FY94 progress report

    SciTech Connect

    Imrich, K.J.

    1994-10-28

    The Materials Technology Section (MTS) of the Savannah River Technology Center (SRTC) was asked to demonstrate the practicality of recycling previously contaminated stainless steel components such as reactor heat exchanger heads, process water piping and slug buckets into 208 liters (55 gallon) drums and 2.8 cubic meter (100 ft{sup 3}) storage boxes. Radioactively contaminated stainless steel scrap will be sent to several industrial partners where it will be melted, decontaminated/cast into ingots, and rolled into plate and sheet and fabricated into the drums and boxes. As part of this recycle initiative, MTS was requested to demonstrate that radioactively contaminated Type 304L stainless steel could be remelted and cast to meet the applicable ASTM specification for fabrication of drums and boxes. In addition, MTS was requested to develop the technical basis of melt decontamination and establish practicality of using this approach for value added products. The findings presented in this investigation lead to the following conclusions: recycle of 18 wt% Cr-8 wt% Ni alloy can be achieved by melting Type 304 stainless steel in a air vacuum induction furnace; limited melt decontamination of the contaminated stainless steel was achieved, surface contamination was removed by standard decontamination techniques; carbon uptake in the as-cast ingots resulted from the graphite susceptor used in this experiment and is unavoidable with this furnace configuration. A new furnace optimized for melting stainless steel has been installed and is currently being tested for use in this program.

  14. Steels with controlled hardenability for induction hardening

    NASA Astrophysics Data System (ADS)

    Shepelyakovskii, K. Z.

    1980-07-01

    Steels of the CH and LH type developed in the Soviet Union permit the use of a new method of induction hardening — bulk-surface hardening — and efficient utilization of the high-strength conditions (σb = 230-250 kgf/mm2). These steels make it possible to improve the structural strength, operating characteristics, service life, and reliability of critical heavily loaded machine parts. At the same time, CH steels make it possible to reduce by a factor of 2-3 the quantity of alloying elements, reduce the electrical energy for heat treatment, and completely exclude the cost of quenching oil for heat treatment in automatic equipment with high labor productivity, while retaining good working conditions. All this leads to substantial savings in production and operation. For example, when transmission gears (cylindrical and conical) are manufactured from LH steels the annual savings amount to more than 700,000 rubles at two automobile plants. Machine parts of CH steels — half axles and bearings in railway cars —have saved respectively six and four million rubles annually. The introduction of controlled-hardenability steels for induction hardening is a necessary condition for technological progress in machine construction and metallurgy.

  15. Development of Steel Foam Materials and Structures

    SciTech Connect

    Kenneth Kremer; Anthony Liszkiewicz; James Adkins

    2004-10-20

    In the past few years there has been a growing interest in lightweight metal foams. Demands for weight reduction, improved fuel efficiency, and increased passenger safety in automobiles now has manufacturers seriously considering the use of metal foams, in contrast to a few years ago, when the same materials would have been ruled out for technical or economical reasons. The objective of this program was to advance the development and use of steel foam materials, by demonstrating the advantages of these novel lightweight materials in selected generic applications. Progress was made in defining materials and process parameters; characterization of physical and mechanical properties; and fabrication and testing of generic steel foam-filled shapes with compositions from 2.5 wt.% to 0.7 wt.% carbon. A means of producing steel foam shapes with uniform long range porosity levels of 50 to 60 percent was demonstrated and verified with NDE methods. Steel foam integrated beams, cylinders and plates were mechanically tested and demonstrated advantages in bend stiffness, bend resistance, and crush energy absorption. Methods of joining by welding, adhesive bonding, and mechanical fastening were investigated. It is important to keep in mind that steel foam is a conventional material in an unconventional form. A substantial amount of physical and mechanical properties are presented throughout the report and in a properties database at the end of the report to support designer's in applying steel foam in unconventional ways.

  16. Ultrahigh Ductility, High-Carbon Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Zuo, Xunwei; Rong, Yonghua; Chen, Nailu

    2016-10-01

    Based on the proposed design idea of the anti-transformation-induced plasticity effect, both the additions of the Nb element and pretreatment of the normalization process as a novel quenching-partitioning-tempering (Q-P-T) were designed for Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb hot-rolled steel. This high-carbon Q-P-T martensitic steel exhibits a tensile strength of 1890 MPa and elongation of 29 pct accompanied by the excellent product of tensile and elongation of 55 GPa pct. The origin of ultrahigh ductility for high-carbon Q-P-T martensitic steel is revealed from two aspects: one is the softening of martensitic matrix due to both the depletion of carbon in the matensitic matrix during the Q-P-T process by partitioning of carbon from supersaturated martensite to retained austenite and the reduction of the dislocation density in a martensitic matrix by dislocation absorption by retained austenite effect during deformation, which significantly enhances the deformation ability of martensitic matrix; another is the high mechanical stability of considerable carbon-enriched retained austenite, which effectively reduces the formation of brittle twin-type martensite. This work verifies the correctness of the design idea of the anti-TRIP effect and makes the third-generation advanced high-strength steels extend to the field of high-carbon steels from low- and medium-carbon steels.

  17. Microstructural studies of advanced austenitic steels

    SciTech Connect

    Todd, J. A.; Ren, Jyh-Ching

    1989-11-15

    This report presents the first complete microstructural and analytical electron microscopy study of Alloy AX5, one of a series of advanced austenitic steels developed by Maziasz and co-workers at Oak Ridge National Laboratory, for their potential application as reheater and superheater materials in power plants that will reach the end of their design lives in the 1990's. The advanced steels are modified with carbide forming elements such as titanium, niobium and vanadium. When combined with optimized thermo-mechanical treatments, the advanced steels exhibit significantly improved creep rupture properties compared to commercially available 316 stainless steels, 17--14 Cu--Mo and 800 H steels. The importance of microstructure in controlling these improvements has been demonstrated for selected alloys, using stress relaxation testing as an accelerated test method. The microstructural features responsible for the improved creep strengths have been identified by studying the thermal aging kinetics of one of the 16Ni--14Cr advanced steels, Alloy AX5, in both the solution annealed and the solution annealed plus cold worked conditions. Time-temperature-precipitation diagrams have been developed for the temperature range 600 C to 900 C and for times from 1 h to 3000 h. 226 refs., 88 figs., 10 tabs.

  18. Ion-nitriding of austenitic stainless steels

    SciTech Connect

    Pacheco, O.; Hertz, D.; Lebrun, J.P.; Michel, H.

    1995-12-31

    Although ion-nitriding is an extensively industrialized process enabling steel surfaces to be hardened by nitrogen diffusion, with a resulting increase in wear, seizure and fatigue resistance, its direct application to stainless steels, while enhancing their mechanical properties, also causes a marked degradation in their oxidation resistance. However, by adaption of the nitriding process, it is possible to maintain the improved wear resistant properties while retaining the oxidation resistance of the stainless steel. The controlled diffusion permits the growth of a nitrogen supersaturated austenite layer on parts made of stainless steel (AISI 304L and 316L) without chromium nitride precipitation. The diffusion layer remains stable during post heat treatments up to 650 F for 5,000 hrs and maintains a hardness of 900 HV. A very low and stable friction coefficient is achieved which provides good wear resistance against stainless steels under diverse conditions. Electrochemical and chemical tests in various media confirm the preservation of the stainless steel characteristics. An example of the application of this process is the treatment of Reactor Control Rod Cluster Assemblies (RCCAs) for Pressurized Water Nuclear Reactors.

  19. Effects of interactive particles on steel weldability

    SciTech Connect

    Eijk, C. van der; Grong, O.; Babu, S.S.; David, S.A.

    1998-11-01

    The concept of intragranular ferrite nucleation by specific inclusions is well known from steel weld metals. In this paper it is shown that the idea can be transferred to steel metallurgy. Control of the inclusion composition and thus the nucleation potency with respect to ferrite can readily be achieved by the choice of an appropriate deoxidation procedure. Thermodynamic (Thermo-Calc) calculations in addition to X-ray mappings and microprobe analysis are employed to understand and predict the inclusion formation in the steels. Three different steels, two of them Ti-deoxidized, and one Al-Ca-deoxidized, have been subjected to weld thermal simulation at different peak temperatures and cooling programs followed by Charpy-V notch testing at {minus}40 C to reveal differences in the HAZ toughness. The results from these tests show that the titanium deoxidized steels exhibit excellent toughness in the grain coarsened HAZ after high heat input weld simulation because of a refinement of the microstructure. This observation is in contrast to the more traditional behavior of the conventional Al-Ca deoxidized steels, which show no evidence of intragranular ferrite formation.

  20. Utilization of structural steel in buildings

    PubMed Central

    Moynihan, Muiris C.; Allwood, Julian M.

    2014-01-01

    Over one-quarter of steel produced annually is used in the construction of buildings. Making this steel causes carbon dioxide emissions, which climate change experts recommend be reduced by half in the next 37 years. One option to achieve this is to design and build more efficiently, still delivering the same service from buildings but using less steel to do so. To estimate how much steel could be saved from this option, 23 steel-framed building designs are studied, sourced from leading UK engineering firms. The utilization of each beam is found and buildings are analysed to find patterns. The results for over 10 000 beams show that average utilization is below 50% of their capacity. The primary reason for this low value is ‘rationalization’—providing extra material to reduce labour costs. By designing for minimum material rather than minimum cost, steel use in buildings could be drastically reduced, leading to an equivalent reduction in ‘embodied’ carbon emissions. PMID:25104911

  1. Demonstrating Nonhexavelent Chrome Steel Conversion Coatings on Stryker High Hard Armor Steel Hatches

    DTIC Science & Technology

    2014-01-01

    protection against armor-piercing threats, these steels corrode rapidly without the use of a good corrosion protective coating ...stress corrosion cracking. • Provides a more robust process that will protect against deficiencies in the inorganic coating process. Advantages...of other systems provide good protection against armor-piercing threats. However, these steels corrode rapidly without good corrosion protective

  2. EMPLACEMENT DRIFT INVERT-LOW STEEL EVALUATION

    SciTech Connect

    M. E. Taylor and D. H. Tang

    2000-09-29

    This technical report evaluates and develops options for reducing the amount of steel in the emplacement drift invert. Concepts developed in the ''Invert Configuration and Drip Shield Interface'' were evaluated to determine material properties required for the proposed invert concepts. Project requirements documents prescribe the use of a carbon steel frame for the invert with a granular material of crushed tuff as ballast. The ''Invert Configuration and Drip Shield Interface'' developed three concepts: (1) All-Ballast Invert; (2) Modified Steel Invert with Ballast; and (3) Steel Tie with Ballast Invert. Analysis of the steel frame members, runway beams, and guide beams, for the modified steel invert with ballast, decreased the quantity of steel in the emplacement drift invert, however a substantial steel support frame for the gantry and waste package/pallet assembly is still required. Use of one of the other two concepts appears to be an alternative to the steel frame and each of the concepts uses considerably less steel materials. Analysis of the steel tie with ballast invert shows that the bearing pressure on the ballast under the single steel tie, C 9 x 20, loaded with the waste package/pallet assembly, drip shield, and backfill exceeds the upper bound of the allowable bearing capacity for tuff used in this study. The single tie, C 10 x 20, will also fail for the same loading condition except for the tie length of 4.2 meters and longer. Analysis also shows that with two ties, C 9 or 10 x 20's, the average ballast pressure is less than the allowable bearing capacity. Distributing the waste package/pallet, drip shield, and backfill loads to two steel ties reduces the contact bearing pressure. Modifying the emplacement pallet end beams to a greater width, reducing the tie spacing, and increasing the width of the ties would ensure that the pallet beams are always supported by two steel ties. Further analysis is required to determine compatible tie size and spacing

  3. 76 FR 33239 - High Pressure Steel Cylinders From the People's Republic of China; Initiation of Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... International Trade Administration High Pressure Steel Cylinders From the People's Republic of China; Initiation...'') petition concerning imports of high pressure steel cylinders (``steel cylinders'') from the People's... Petitions for the Imposition of Antidumping and Countervailing Duties Against High Pressure Steel...

  4. 77 FR 37384 - High Pressure Steel Cylinders From the People's Republic of China: Countervailing Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... International Trade Administration High Pressure Steel Cylinders From the People's Republic of China... duty order on high pressure steel cylinders (``steel cylinders'') from the People's Republic of China.... See High Pressure Steel Cylinders From the People's Republic of China: Final...

  5. High Mn austenitic stainless steel

    DOEpatents

    Yamamoto, Yukinori [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Brady, Michael P [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Liu, Chain-tsuan [Knoxville, TN

    2010-07-13

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  6. Mechanical properties of irradiated 9Cr-2WVTa steel

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.; Rieth, M.

    1998-09-01

    An Fe-9Cr-2W-0.25V-0.07Ta-0.1C (9Cr-2WVTa) steel has excellent strength and impact toughness before and after irradiation in the Fast Flux Test Facility and the High Flux Reactor (HFR). The ductile-brittle transition temperature (DBTT) increased only 32 C after 28 dpa at 365 C in FFTF, compared to a shift of {approx}60 C for a 9Cr-2WV steel--the same as the 9Cr-2WVTa steel but without tantalum. This difference occurred despite the two steels having similar tensile but without tantalum. This difference occurred despite the two steels having similar tensile properties before and after irradiation. The 9Cr-2WVTa steel has a smaller prior-austenite grain size, but otherwise microstructures are similar before irradiation and show similar changes during irradiation. The irradiation behavior of the 9Cr-2WVTa steel differs from the 9Cr-2WV steel and other similar steels in two ways: (1) the shift in DBTT of the 9Cr-2WVTa steel irradiated in FFTF does not saturate with fluence by {approx}28 dpa, whereas for the 9Cr-2WV steel and most similar steels, saturation occurs at <10 dpa, and (2) the shift in DBTT for 9Cr-2WVTa steel irradiated in FFTF and HFR increased with irradiation temperature, whereas it decreased for the 9Cr-2WV steel, as it does for most similar steels. The improved properties of the 9Cr-2WVTa steel and the differences with other steels were attributed to tantalum in solution.

  7. Hydrogen trapping in high-strength steels

    SciTech Connect

    Pound, B.G.

    1998-10-09

    Hydrogen trapping in three high-strength steels -- AerMet 100 and AISI 4340 and H11 -- was studied using a potentiostatic pulse technique. Irreversible trapping constants (k) and hydrogen entry fluxes were determined for these alloys in 1 mol/1 acetic acid/1 mol/1 sodium acetate. The order of the k values for the three steels and two 18Ni maraging steels previously studies inversely parallels their threshold stress intensities for stress corrosion cracking (K{sub 1SCC}). Irreversible trapping in AerMet 100 varies with aging temperature and appears to depend on the type of carbide (Fe{sub 3}C or M{sub 2}C) present. For 4340 steel, k can be correlated with K{sub 1SCC} over a range of yield strengths. The change in k is consistent with a change in the principal type of irreversible trap from matrix boundaries to incoherent Fe{sub 3}C. The principal irreversible traps in H11 at high yield strengths are thought to be similar to those in 4340 steel.

  8. Aging degradation of cast stainless steel

    SciTech Connect

    Chopra, O.K.; Chung, H.M.

    1985-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast-duplex stainless steels under light-water reactor operating conditions. Data from room-temperature Charpy-impact tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 450/sup 0/C are presented and compared with results from other studies. Microstructures of cast-duplex stainless steels subjected to long-term aging either in the laboratory or in reactor service have been characterized. The results indicate that at least two processes contribute to the low-temperature embrittleent of duplex stainless steels, viz., weakening of the ferrite/austenite phase boundary by carbide precipitation and embrittlement of ferrite matrix by the formation of additional phases such as G-phase, Type X, or the ..cap alpha..' phase. Carbide precipitation has a significant effect on the onset of embrittlement of CF-8 and -8M grades of stainless steels aged at 400 or 450/sup 0/C. The existing correlations do not accurately represent the embrittlement behavior over the temperature range 300 to 450/sup 0/C. 18 refs., 13 figs.

  9. Dislocation substructure in fatigued duplex stainless steel

    SciTech Connect

    Polak, J. . Lab. de Mecanique de Lille Inst. of Physical Metallurgy, Brno . Academy of Sciences); Degallaix, S. . Lab. de Mecanique de Lille); Kruml, T. . Academy of Sciences)

    1993-12-15

    Cyclic plastic straining of crystalline materials results in the formation of specific dislocation structures. Considerable progress in mapping and understanding internal dislocation structures has been achieved by studying single crystal behavior: however, most structural materials have a polycrystalline structure and investigations of polycrystals in comparison to single crystal behavior of simple metals prove to be very useful in understanding more complex materials. There are some classes of materials, however, with complicated structure which do not have a direct equivalent in single crystalline form. Moreover, the specific dimensions and shapes of individual crystallites play an important role both in the cyclic stress-strain response of these materials and in the formation of their interior structure in cyclic straining. Austenitic-ferritic duplex stainless steel, which is a kind of a natural composite, is a material of this type. The widespread interest in the application of duplex steels is caused by approximately doubled mechanical properties and equal corrosion properties, when compared with classical austenitic stainless steels. Fatigue resistance of these steels as well as the surface damage evolution in cyclic straining have been studied; however, much less is known about the internal substructure development in cyclic straining. In this study the dislocation arrangement in ferritic and austenitic grains of the austenitic-ferritic duplex steel alloyed with nitrogen and cyclically strained with two strain amplitudes, is reported and compared to the dislocation arrangement found in single and polycrystals of austenitic and ferritic materials of a similar composition and with the surface relief produced in cyclic plastic straining.

  10. High Strength, Weldable Precipitation Aged Steels

    NASA Astrophysics Data System (ADS)

    Wilson, Alexander D.

    1987-03-01

    The family of plate steels represented by ASTM Specification A7101 is finding increasing applications. These low carbon, Cu-Ni-Cr-Mo-Cb, copper precipitation hardened steels have been identified by a number of designations over the years. During early development in the late 1960's and first commercial production in 1970, the steels were known as IN-787 (trademark of International Nickel Company).2 ASTM specifications were subsequently developed for structural (A710) and pressure vessel (A736) applications over ten years ago. More recent interest and application of this family of steels by the U.S. Navy has lead to development of a military specification MIL-S-24645 (SH),3 also initially known as "HSLA-80." Significant tonnage is being produced for the U.S. Navy as a replacement for HY80 (MIL-S-16216) in cruiser deck, bulkhead and hull applications.4 In these applications, the enhanced weldability and requirement of no preheat at this high strength and toughness level has been the main motivation for its use. Over the past 15 years, A710 type steels have also been used in a variety of applications, including off-shore platforms, pressure vessels, arctic linepipe valves and off-highway mining truck frames.

  11. Superplastic forming of stainless steel automotive components

    SciTech Connect

    Bridges, B.; Elmer, J.; Carol, L.

    1997-02-06

    Exhaust emission standards are governmentally controlled standards, which are increasingly stringent, forcing alternate strategies to meet these standards. One approach to improve the efficiency of the exhaust emission equipment is to decrease the time required to get the catalytic converter to optimum operating temperature. To accomplish this, automotive manufacturers are using double wall stainless steel exhaust manifolds to reduce heat loss of the exhaust gases to the converter. The current method to manufacture double wall stainless steel exhaust components is to use a low-cost alloy with good forming properties and extensively form, cut, assemble, and weld the pieces. Superplastic forming (SPF) technology along with alloy improvements has potential at making this process more cost effective. Lockheed Martin Energy Systems (LMES), Lawrence Livermore National Laboratory (LLNL) and USCAR Low Emission Partnership (LEP) worked under a Cooperative Research And Development Agreement (CRADA) to evaluate material properties, SPF behavior, and welding behavior of duplex stainless steel alloy for automotive component manufacturing. Battelle Pacific Northwest National Laboratory (PNNL) has a separate CRADA with the LEP to use SPF technology to manufacture a double wall stainless steel exhaust component. As a team these CRADAs developed and demonstrated a technical plan to accomplish making double wall stainless steel exhaust manifolds.

  12. Process development of thin strip steel casting

    SciTech Connect

    Sussman, R.C.; Williams, R.S.

    1990-12-01

    An important new frontier is being opened in steel processing with the emergence of thin strip casting. Casting steel directly to thin strip has enormous benefits in energy savings by potentially eliminating the need for hot reduction in a hot strip mill. This has been the driving force for numerous current research efforts into the direct strip casting of steel. The US Department of Energy initiated a program to evaluate the development of thin strip casting in the steel industry. In earlier phases of this program, planar flow casting on an experimental caster was studied by a team of engineers from Westinghouse Electric corporation and Armco Inc. A subsequent research program was designed as a fundamental and developmental study of both planar and melt overflow casting processes. This study was arranged as several separate and distinct tasks which were often completed by different teams of researchers. An early task was to design and build a water model to study fluid flow through different designs of planar flow casting nozzles. Another important task was mathematically modeling of melt overflow casting process. A mathematical solidification model for the formation of the strip in the melt overflow process was written. A study of the material and conditioning of casting substrates was made on the small wheel caster using the melt overflow casting process. This report discusses work on the development of thin steel casting.

  13. Bearing and gear steels for aerospace applications

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1990-01-01

    Research in metallurgy and processing for bearing and gear steels has resulted in improvements in rolling-element bearing and gear life for aerospace application by a factor of approximately 200 over that obtained in the early 1940's. The selection and specification of a bearing or gear steel is dependent on the integration of multiple metallurgical and physical variables. For most aerospace bearings, through-hardened VIM-VAR AISI M-50 steel is the material of preference. For gears, the preferential material is case-carburized VAR AISI 9310. However, the VAR processing for this material is being replaced by VIM-VAR processing. Since case-carburized VIM-VAR M-50NiL incorporates the desirable qualities of both the AISI M-50 and AISI 9310 materials, optimal life and reliability can be achieved in both bearings and gears with a single steel. Hence, this material offers the promise of a common steel for both bearings and gears for future aerospace applications.

  14. 3. INTERIOR VIEW OF SMOKEHOUSE UNIT; NOTE STAINLESS STEEL NOZZLES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INTERIOR VIEW OF SMOKEHOUSE UNIT; NOTE STAINLESS STEEL NOZZLES THAT INTRODUCED SMOKE INTO UNIT; FLOOR IS UNPAINTED STEEL - Rath Packing Company, Smokehouse-Hog Chilling Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  15. Diamond machining of steel molds for optical components

    NASA Astrophysics Data System (ADS)

    Bohr, Roland

    2016-08-01

    The requirement of ultra precision diamond machining of lens molds in steel is identified. A solution for this type of machining is presented and results of such a machining in steel compared to standard milling and polishing process are shown.

  16. 1. VIEW NORTHEASTWEST AND SOUTH ELEVATIONS OF THE BETHLEHEM STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW NORTHEAST-WEST AND SOUTH ELEVATIONS OF THE BETHLEHEM STEEL COMPANY SHIPYARD CARPENTER SHOP. - Bethlehem Steel Company Shipyard, Carpenter Shop, 1201-1321 Hudson Street, Hoboken, Hudson County, NJ

  17. 4. VIEW EASTSOUTH ELEVATION OF THE BETHLEHEM STEEL COMPANY SHIPYARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW EAST-SOUTH ELEVATION OF THE BETHLEHEM STEEL COMPANY SHIPYARD BLACKSMITH SHOP/BOILER SHOP. - Bethlehem Steel Company Shipyard, Blacksmith Shop-Boiler Shop, 1201-1321 Hudson Street, Hoboken, Hudson County, NJ

  18. 1. VIEW WESTEAST ELEVATION OF THE BETHLEHEM STEEL COMPANY SHIPYARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW WEST-EAST ELEVATION OF THE BETHLEHEM STEEL COMPANY SHIPYARD BLACKSMITH SHOP/BOILER SHOP. - Bethlehem Steel Company Shipyard, Blacksmith Shop-Boiler Shop, 1201-1321 Hudson Street, Hoboken, Hudson County, NJ

  19. Nickel-free austenitic stainless steels for medical applications

    PubMed Central

    Yang, Ke; Ren, Yibin

    2010-01-01

    The adverse effects of nickel ions being released into the human body have prompted the development of high-nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel in medical stainless steels, the advantages of nitrogen in stainless steels, and emphatically, the development of high-nitrogen nickel-free stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength and good plasticity, better corrosion and wear resistances, and superior biocompatibility compared to the currently used 316L stainless steel, the newly developed high-nitrogen nickel-free stainless steel is a reliable substitute for the conventional medical stainless steels. PMID:27877320

  20. 5. SOUTHERN END OF INTERIOR OF STEEL FRAMEWORK TRAIN SHED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SOUTHERN END OF INTERIOR OF STEEL FRAMEWORK TRAIN SHED LOOKING SE TO CAVED IN SHED, CENTER, AND BRICK AND STEEL SHED. - Western Railway of Alabama Montgomery Rail Shops, 701 North Perry Street, Montgomery, Montgomery County, AL

  1. View of steel warehouses (building 710 second in on right); ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of steel warehouses (building 710 second in on right); camera facing south. - Naval Supply Annex Stockton, Steel Warehouse Type, Between James & Humphreys Drives south of Embarcadero, Stockton, San Joaquin County, CA

  2. View of steel warehouses (from left: building 807, 808, 809, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of steel warehouses (from left: building 807, 808, 809, 810, 811); camera facing east. - Naval Supply Annex Stockton, Steel Warehouse Type, Between James & Humphreys Drives south of Embarcadero, Stockton, San Joaquin County, CA

  3. View of steel warehouses, building 710 north sidewalk; camera facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of steel warehouses, building 710 north sidewalk; camera facing east. - Naval Supply Annex Stockton, Steel Warehouse Type, Between James & Humphreys Drives south of Embarcadero, Stockton, San Joaquin County, CA

  4. View of steel warehouses on Ellsberg Drive, building 710 full ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of steel warehouses on Ellsberg Drive, building 710 full building at center; camera facing southeast. - Naval Supply Annex Stockton, Steel Warehouse Type, Between James & Humphreys Drives south of Embarcadero, Stockton, San Joaquin County, CA

  5. First Structural Steel Erected at NSLS-II

    ScienceCinema

    None

    2016-07-12

    Ten steel columns were incorporated into the ever-growing framework for the National Synchrotron Light Source II last week, the first structural steel erected for the future 400,000-square-foot facility.

  6. View of steel warehouses (building 710 second in on left); ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of steel warehouses (building 710 second in on left); camera facing west. - Naval Supply Annex Stockton, Steel Warehouse Type, Between James & Humphreys Drives south of Embarcadero, Stockton, San Joaquin County, CA

  7. View of steel warehouses at Gilmore Avenue (building 710 second ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of steel warehouses at Gilmore Avenue (building 710 second in on left); camera facing east. - Naval Supply Annex Stockton, Steel Warehouse Type, Between James & Humphreys Drives south of Embarcadero, Stockton, San Joaquin County, CA

  8. First Structural Steel Erected at NSLS-II

    SciTech Connect

    2009-09-14

    Ten steel columns were incorporated into the ever-growing framework for the National Synchrotron Light Source II last week, the first structural steel erected for the future 400,000-square-foot facility.

  9. 76 FR 18781 - Certain Steel Wheels From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Steel Wheels From China AGENCY: United States International Trade Commission. ACTION... the United States is materially retarded, by reason of imports from China of certain steel...

  10. 20. DETAILED OBLIQUE VIEW SOUTHWEST FURNACE 2, SHOWING STEEL FRAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DETAILED OBLIQUE VIEW SOUTHWEST FURNACE 2, SHOWING STEEL FRAME BOXES FOR COUNTERWEIGHTS, AND FURNACE HEATING PIPES AT RIGHT. - Vulcan Crucible Steel Company, Building No. 3, 100 First Street, Aliquippa, Beaver County, PA

  11. 19. 1500 CUBIC FEET CAPACITY SCRAP STEEL CHARGING BOX ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. 1500 CUBIC FEET CAPACITY SCRAP STEEL CHARGING BOX ON THE CHARGING AISLE OF THE BOP SHOP LOOKING NORTHWEST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  12. Symbiosis of Steel, Energy, and CO2 Evolution in Korea

    NASA Astrophysics Data System (ADS)

    Lee, Hyunjoung; Matsuura, Hiroyuki; Sohn, Il

    2016-09-01

    This study looks at the energy intensity of the steel industry and the greenhouse gas intensity involved with the production of steel. Using several sources of steel production data and the corresponding energy sources used provides a time-series analysis of the greenhouse gas (GHG) and energy intensity from 1990 to 2014. The impact of the steel economy with the gross domestic product (GDP) provides indirect importance of the general manufacturing sector within Korea and in particular the steel industry. Beyond 2008, the shift in excess materials production and significant increase in total imports have led to an imbalance in the Korean steel market and continue to inhibit the growth of the domestic steel market. The forecast of the GHG and energy intensity along with the steel production up to 2030 is provided using the auto regressive integrated moving average analysis.

  13. Northwest view of steel plate "cans" in bay 7 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Northwest view of steel plate "cans" in bay 7 of the main pipe mill building. Historian for scale. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  14. Microstructure, Processing, Performance Relationships for High Temperature Coatings

    SciTech Connect

    Thomas M. Lillo

    2011-04-01

    This work evaluates the suitability of iron aluminide coatings for use in high temperature fossil fuel combustion environments, such as boiler applications. The coatings are applied using High Velocity Oxy-Fuel (HVOF) thermal spray techniques. Iron aluminide coatings, with the nominal composition of Fe3Al, were applied to various high temperature structural materials (316 Stainless Steel, 9Cr-1Mo steel and Inconel 600) that typically lack inherent resistance to environmental degradation found in fossil fuel combustion atmospheres. Coating/substrate combinations were subjected to thermal cycling to evaluate the effect of HVOF parameters, coating thickness, substrate material and substrate surface roughness on the resistance to coating delamination and cracking. It was found that substrate surface roughness had a profound influence on the performance of a given substrate/coating system and that surface preparation techniques will need to be tailored to the specific substrate material. Also, higher particle velocity during HVOF thermal spray deposition of the iron aluminide coatings tended to result in better-performing coating/substrate systems with less delamination at the coating/substrate interface. Some combinations of HVOF parameters, coating thickness and substrate materials were found to perform extremely well even at temperatures up to 900oC. However, in some cases, substantial reactions at the interface were observed.

  15. NASA Astrophysics Data System (ADS)

    Scapin, M.; Peroni, L.; Fichera, C.; Cambriani, A.

    2014-08-01

    High chromium ferritic/martensitic steel T91 (9% Cr, 1% Mo), on account of its radiation resistance, is a candidate material for nuclear reactor applications. Its joining by an impact method to create a cold joint is tested in the realm of scoping tests toward the safe operation of nuclear fuels, encapsulated in representative T91 materials. Hitherto, T91 mechanical characterization at high strain rates is relatively unknown, particularly, in relation to impact joining and also to nuclear accidents. In this study, the mechanical characterization of T91 steel was performed in tension by varying the strain-rate (10-3 up to 104 s-1) and temperature (20-800°C) on dog-bone specimens, using standard testing machines or Hopkinson Bar apparati. As expected, the material is both temperature and strain-rate sensitive and different sets of parameters for the Johnson-Cook strength model were extracted via a numerical inverse procedure, in order to obtain the most suitable set to be used in this field of applications.

  16. Diffusion bonding between ODS ferritic steel and F82H steel for fusion applications

    NASA Astrophysics Data System (ADS)

    Noh, Sanghoon; Kim, Byungjun; Kasada, Ryuta; Kimura, Akihiko

    2012-07-01

    Diffusion bonding techniques were employed to join high Cr oxide dispersion strengthened (ODS) ferritic steel (Fe-15Cr-2W-0.2Ti-0.35Y2O3) and F82H steel under uni-axial hydrostatic pressure using a high vacuum hot press, and the microstructure and mechanical properties of the joints were investigated. The dissimilar joints were bonded by solid-state diffusion bonding (SSDB) and liquid phase diffusion bonding (LPDB). After bonding process, heat treatments were conducted to utilize the phase transformation of F82H steel for recovering the martensitic structure. Tensile tests with miniaturized specimens were carried out to investigate and compare the bonding strengths of each joint. Microstructure was observed for the bonding interface, and fracture mode was investigated after the tensile tests. LPDB joint of interfacial F82H steel fully recovered to martensite phase by post-joining heat treatments, while SSDB joint had ferrite phases at the interface even after heat treatment, which is considered to be due to decarburization of F82H steel during the bonding process. Therefore it is considered that the insert material plays a role as diffusion barrier of carbon during LPDB process. Microstructure observations and tensile tests of the joints revealed that the LPDB joints possess suitable tensile properties which are comparable to that of F82H steel. This indicates that LPDB is more promising method to bond ODS-FS and F82H steel than SSDB.

  17. Investigation of the plastic fracture of high strength steels

    NASA Technical Reports Server (NTRS)

    Cox, T. B.; Low, J. R., Jr.

    1972-01-01

    This investigation deals in detail with the three recognized stages of plastic fracture in high strength steels, namely, void initiation, void growth, and void coalescence. The particular steels under investigation include plates from both commercial purity and high purity heats of AISI 4340 and 18 Ni, 200 grade maraging steels. A scanning electron microscope equipped with an X-ray energy dispersive analyzer, together with observations made using light microscopy, revealed methods of improving the resistance of high strength steels to plastic fracture.

  18. Enhanced Inclusion Removal from Steel in the Tundish

    SciTech Connect

    R. C. Bradt; M.A.R. Sharif

    2009-09-25

    The objective of this project was to develop an effective chemical filtering system for significantly reducing the content of inclusion particles in the steel melts exiting the tundish for continuous casting. This project combined a multi-process approach that aimed to make significant progress towards an "inclusion free" steel by incorporating several interdependent concepts to reduce the content of inclusions in the molten steel exiting the tundish for the caster. The goal is to produce "cleaner" steel.

  19. Enhanced Incluison Removal from Steel in the Tundish

    SciTech Connect

    R.C. Bradt; M.A.R. Sharif

    2009-09-25

    The objective of this project was to develop an effective chemical filtering system for significantly reducing the content of inclusion particles in the steel melts exiting the tundish for continuous casting. This project combined a multi-process approach that aimed to make significant progress towards an "inclusion free" steel by incorporating several interdependent concepts to reduce the content of inclusions in the molten steel exiting the tundish for the caster. The goal is to produce "cleaner" steel.

  20. Corrosion inhibition of reinforcing steel by using acrylic latex

    SciTech Connect

    Wang, S.X.; Lin, W.W.; Ceng, S.A.; Zhang, J.Q.

    1998-05-01

    Acrylic latex was introduced into steel-reinforcing steel concrete as concrete admixtures or rebar coatings in order to prevent corrosion of steel reinforcements. The results showed that applying the latex by both methods took effect in different ways, while the latter was more noticeable. The corrosion prevention mechanism and the surface state of the steel rebar were also explored, based on which suggestions for enhancing the corrosion-resistant ability were made.

  1. Effect of rust on the wettability of steel by water

    SciTech Connect

    Lu, W.; Chung, D.D.L.

    1998-04-01

    Rust, as formed on steel by immersion of low-carbon steel in water, was found to improve the wettability of steel by water. The advancing contact angle decreased from 87{degree} to 32{degree}, and the receding contact angle decreased from 81{degree} to 29{degree}. Cleansing of steel by acetone also helped improve the wettability, but the advancing angle only decreased from 87{degree} to 73{degree}, and the receding angle only decreased from 81{degree} to 41{degree}.

  2. High Strength Steel Weldment Reliability: Weld Metal Hydrogen Trapping.

    DTIC Science & Technology

    1998-02-01

    additions to welding consumables to control weld metal hydrogen and thus reduce susceptibility to cold cracking in high strength steel weldments. 14...applying weld metal hydrogen trapping to improve the resistance to hydrogen cracking in welding of high strength steels . Hydrogen cracking in high...requirements which are necessary to prevent hydrogen cracking in high strength steel welding. Common practices to prevent hydrogen cracking in steel

  3. Heat Treatment and Properties of Iron and Steel

    DTIC Science & Technology

    2007-11-02

    specified as an added element to a standard steel. • Silicon: Because of the technological nature of the process , acid bessemer steels are not...Heat treatment of steels 9 5.1. Annealing ~ 10 a. Full annealing I__ 10 b. Process annealing 10 c. Spheroidizing . 10 5.2. Normalizing 10...treatment of iron and steel and for directions and explanations of such processes . This Monograph has been prepared to answer such inquiries and to give

  4. Application of RST in the steel industry

    NASA Astrophysics Data System (ADS)

    Raman, R. V.; Maringer, R. E.

    1982-05-01

    The rapid solidification technology (RST) involves quenching molten metals at rates of perhaps 102 to 1010 degrees C per second. First reported in 1960, RST has experienced rapid growth during the last decade and is now established on the commercial market-place. This has resulted from the simple facts that unusual properties result from RST, that relatively easy techniques are available to produce large quantities of material, and that applications for these materials have been recognized. Ferrous-base materials produced by RST methods include staple fibers of mild and stainless steel for incorporation into concrete and castable refractories, powder metallurgy tool steels, and amorphous strip for power transformers. Research results suggest that RST will have a strong continuing influence on ferrous powder metallurgy, on the direct casting of strip and foil of carbon and stainless steel, and on core materials for motor and transformers.

  5. Fracture mechanism of borated stainless steel

    SciTech Connect

    He, J.Y.; Soliman, S.E.; Baratta, A.J.; Balliett, T.A.

    2000-05-01

    The mechanical properties and fracture mechanism of irradiated and unirradiated boron containing Type 304 stainless steel are studied. Four different batches with different boron weight percentages are used. One of these batches was manufactured by a conventional wrought technique, while the others were manufactured by a powder metallurgy technique. The irradiated specimens were subjected to a fluence level of 5 x 10{sup 19} or 1 {times} 10{sup 21} n/m{sup 2}. The mechanical and fracture tests were performed at temperatures of 233, 298, and 533 K. No significant effects on the mechanical properties or fracture behavior were observed as a result of neutron irradiation and/or temperature. The ductility and toughness of the borated steel were found to decrease with increasing boron content. The effect of boride on void nucleation and linkage was found to play an important role in the fracture behavior of borated steel.

  6. Microstructure and cleavage in lath martensitic steels.

    PubMed

    Morris, John W; Kinney, Chris; Pytlewski, Ken; Adachi, Y

    2013-02-01

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified 'classic' lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov-Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage.

  7. Residual stress measurements in carbon steel

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Min, N.

    1986-01-01

    External dc magnetic field-induced changes in natural velocity of Rayleigh surface waves were measured in steel specimens under various stress conditions. The low field slopes of curves representing the fractional changes of natural velocity were proved to provide correct stress information in steels with different metallurgical properties. The slopes of curves under uniaxial compression, exceeding about one third of the yield stress, fell below zero in all the specimens when magnetized along the stress axis. The slopes under tension varied among different steels but remained positive in any circumstances. The stress effect was observed for both applied and residual stress. A physical interpretation of these results is given based on the stress-induced domain structure changes and the delta epsilon effect. Most importantly, it is found that the influence of detailed metallurgical properties cause only secondary effects on the obtained stress information.

  8. Solidification Sequence of Spray-Formed Steels

    NASA Astrophysics Data System (ADS)

    Zepon, Guilherme; Ellendt, Nils; Uhlenwinkel, Volker; Bolfarini, Claudemiro

    2016-02-01

    Solidification in spray-forming is still an open discussion in the atomization and deposition area. This paper proposes a solidification model based on the equilibrium solidification path of alloys. The main assumptions of the model are that the deposition zone temperature must be above the alloy's solidus temperature and that the equilibrium liquid fraction at this temperature is reached, which involves partial remelting and/or redissolution of completely solidified droplets. When the deposition zone is cooled, solidification of the remaining liquid takes place under near equilibrium conditions. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to analyze the microstructures of two different spray-formed steel grades: (1) boron modified supermartensitic stainless steel (SMSS) and (2) D2 tool steel. The microstructures were analyzed to determine the sequence of phase formation during solidification. In both cases, the solidification model proposed was validated.

  9. Ultrasonic Spectroscopy of Stainless Steel Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.; Lerch, Bradley A.; Hebsur, Mohan G.; Baaklini, George Y.; Ghosn, Louis J.

    2003-01-01

    Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment material systems for next generation engines. In order to improve the production for these systems, nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, are being utilized to evaluate the brazing quality between the 17-4PH stainless steel face plates and the 17-4PH stainless steel foam core. Based on NDE data, shear tests are performed on sections representing various levels of brazing quality from an initial batch of these sandwich structures. Metallographic characterization of brazing is done to corroborate NDE findings and the observed shear failure mechanisms.

  10. Microstructure and cleavage in lath martensitic steels

    NASA Astrophysics Data System (ADS)

    Morris, John W., Jr.; Kinney, Chris; Pytlewski, Ken; Adachi, Y.

    2013-02-01

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified ‘classic’ lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov-Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage.

  11. Neutron Irradiation Resistance of RAFM Steels

    SciTech Connect

    Gaganidze, Ermile; Dafferner, Bernhard; Aktaa, Jarir

    2008-07-01

    The neutron irradiation resistance of the reduced-activation ferritic/martensitic (RAFM) steel EUROFER97 and international reference steels (F82H-mod, OPTIFER-Ia, GA3X and MANET-I) have been investigated after irradiation in the Petten High Flux Reactor up to 16.3 dpa at different irradiation temperatures (250-450 deg. C). The embrittlement behavior and hardening are investigated by instrumented Charpy-V tests with sub-size specimens. Neutron irradiation-induced embrittlement and hardening of EUROFER97 was studied under different heat treatment conditions. Embrittlement and hardening of as-delivered EUROFER97 steel are comparable to those of reference steels. Heat treatment of EUROFER97 at a higher austenitizing temperature substantially improves the embrittlement behaviour at low irradiation temperatures. Analysis of embrittlement vs. hardening behavior of RAFM steels within a proper model in terms of the parameter C={delta}DBTT/{delta}{sigma} indicates hardening-dominated embrittlement at irradiation temperatures below 350 deg. C with 0.17 {<=} C {<=} 0.53 deg. C/MPa. Scattering of C at irradiation temperatures above 400 deg. C indicates non hardening embrittlement. A role of He in a process of embrittlement is investigated in EUROFER97 based steels, that are doped with different contents of natural B and the separated {sup 10}B-isotope (0.008-0.112 wt.%). Testing on small scale fracture mechanical specimens for determination of quasi-static fracture toughness will be also presented in a view of future irradiation campaigns. (authors)

  12. Mechanical Property Characterization of ESR (Electroslag Remelted) 4353 Steel with a Comparison to ESR 4340 Steel

    DTIC Science & Technology

    1987-04-01

    IThe ESR 4J53 steel exhibits Charpy impact energy values of 12.4 ftib for 400 and 4504 tempers, which decrease to 9.2 ft&,jb for a 5000f temper as a...temperature or hard- ness, the ESR 4340 steel has greater Charpy impact energy and fracture tough- ness( KI )i. -w N .: UNCLASS IF I ED S Cul...pertinent for the consideration of high strength steels for Army applications include tensile -4 properties, hardness, Charpy V-notch impact energy

  13. Structure and properties of a steel/white-cast-iron bimetal produced by method of carbonizing the steel melt

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, S. Z.

    1985-11-01

    Centrifugal bimetallization by the method of carbonizing the steel melt makes it possible to obtain a steel/white-cast-iron composition with a cladding layer close to the eutectic in terms of composition.

  14. Guidelines for structural bolting in accordance with the AISC (American Institute of Steel Construction) eighth edition manual of steel construction''

    SciTech Connect

    Western, J.L.; Johns, D.M.

    1990-05-11

    This paper specifies the usage of structural bolts in terms of their design, selection and application, in accordance with the American Institute of Steel Construction (AISC) Eighth Edition. Manual of Steel Construction.'' 1 tab.

  15. Experimental and Theoretical Investigations of Hot Isostatically Pressed-Produced Stainless Steel/High Alloy Tool Steel Compound Materials

    NASA Astrophysics Data System (ADS)

    Lindwall, Greta; Flyg, Jesper; Frisk, Karin; Sandberg, Odd

    2011-05-01

    Consolidation of tool steel powders and simultaneous joining to a stainless 316L steel are performed by hot isostatic pressing (HIP). Two tool steel grades are considered: a high vanadium alloyed carbon tool steel, and a high vanadium and chromium alloyed nitrogen tool steel. The boundary layer arising during diffusion bonding is in focus and, in particular, the diffusion of carbon and nitrogen over the joint. Measurements of the elemental concentration profiles and corrosion tests by the double loop-electrochemical potentiokinetic reactivation (DL-EPR) method are performed. Comparative calculations with the DICTRA software are performed and are found to be in agreement with the experimental results. It is found that the carbon tool steel grade has a more critical influence on the corrosion resistance of the stainless 316L steel in comparison to the nitrogen tool steel grade.

  16. Study of hot hardness characteristics of tool steels

    NASA Technical Reports Server (NTRS)

    Chevalier, J. L.; Dietrich, M. W.; Zaretsky, E. V.

    1972-01-01

    Hardness measurements of tool steel materials in electric furnace at elevated temperatures and low oxygen environment are discussed. Development of equation to predict short term hardness as function of intial room temperature hardness of steel is reported. Types of steel involved in the process are identified.

  17. Complex alloy steel for heavily loaded carburized gear wheels

    NASA Astrophysics Data System (ADS)

    Tel'dekov, V. A.; Merilova, E. A.; Shevchuk, V. P.

    1987-05-01

    The tendency of steel 18KhGN2MFB towards internal oxidation and austenite grain growth during CHT is markedly lower than for steel 20KhNZA normally used for gear wheels. Steel 18KhGN2MFB has sufficiently high hardenability for the carburized and carbonitrided layers.

  18. Explosive welding technique for joining aluminum and steel tubes

    NASA Technical Reports Server (NTRS)

    Wakefield, M. E.

    1975-01-01

    Silver sheet is wrapped around aluminum portion of joint. Mylar powder box is wrapped over silver sheet. Explosion welds silver to aluminum. Stainless-steel tube is placed over silver-aluminum interface. Mylar powder box, covered with Mylar tape, is wrapped around steel member. Explosion welds steel to silver-aluminum interface.

  19. Welding of Aluminum Alloys to Steels: An Overview

    DTIC Science & Technology

    2013-08-01

    95] K. Kimapong1, T. Watanabe, Effect of welding process parameters on mechanical property of FSW lap joint between aluminum alloy and steel ...UNCLASSIFIED: Distribution Statement A. Approved for public release. 1 UNCLASSIFIED Welding of aluminum alloys to steels : an overview M. Mazar...welding methods for joining aluminum alloys to steels . The microstructural development, mechanical properties and application of the joints are discussed

  20. 75 FR 41889 - Certain Steel Grating From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... COMMISSION Certain Steel Grating From China Determination On the basis of the record \\1\\ developed in the... steel grating from China, provided for in subheading 7308.90.70 of the Harmonized Tariff Schedule of the... imports of certain steel gratings from China were being subsidized within the meaning of section 703(b)...

  1. Micronutrient availability from steel slag amendment in pine bark substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Steel slag is a byproduct of the steel industry that can be used as a liming agent, but also has a high mineral nutrient content. While micronutrients are present in steel slag, it is not known if the mineral form of the micronutrients would render them available for plant uptake. The objective of...

  2. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  3. 19 CFR 360.104 - Steel import monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 3 2014-04-01 2014-04-01 false Steel import monitoring. 360.104 Section 360.104 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.104 Steel import monitoring. (a) Throughout the duration of the licensing...

  4. 49 CFR Appendix A to Part 178 - Specifications for Steel

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specifications for Steel A Appendix A to Part 178... to Part 178—Specifications for Steel Table 1 Designation Chemical composition, percent-ladle analysis... be 1.40 percent. 6 Rephosphorized Grade 3 steels containing no more than 0.15 percent phosphorus...

  5. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Outer hull steel plating. 154.170 Section 154.170... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of...

  6. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Stainless steel suture. 878.4495 Section 878.4495...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture. (a) Identification. A stainless steel suture is a needled or unneedled nonabsorbable surgical suture composed of...

  7. 29 CFR 1926.858 - Removal of steel construction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Removal of steel construction. 1926.858 Section 1926.858... of steel construction. (a) When floor arches have been removed, planking in accordance with § 1926.855(b) shall be provided for the workers engaged in razing the steel framing. (b) Cranes,...

  8. 19 CFR 360.104 - Steel import monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Steel import monitoring. 360.104 Section 360.104 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.104 Steel import monitoring. (a) Throughout the duration of the licensing...

  9. 49 CFR 192.371 - Service lines: Steel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Service lines: Steel. 192.371 Section 192.371 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... § 192.371 Service lines: Steel. Each steel service line to be operated at less than 100 p.s.i. (689...

  10. 78 FR 7451 - Clad Steel Plate From Japan; Determination

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... COMMISSION Clad Steel Plate From Japan; Determination On the basis of the record \\1\\ developed in the subject... order on clad steel plate from Japan would be likely to lead to continuation or recurrence of material... contained in USITC Publication 4370 (January 2013), entitled Clad Steel Plate from Japan: Investigation...

  11. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Stainless steel suture. 878.4495 Section 878.4495...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture. (a) Identification. A stainless steel suture is a needled or unneedled nonabsorbable surgical suture composed of...

  12. 49 CFR 192.371 - Service lines: Steel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Service lines: Steel. 192.371 Section 192.371 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... § 192.371 Service lines: Steel. Each steel service line to be operated at less than 100 p.s.i. (689...

  13. 78 FR 78382 - Steel Nails From China; Determination

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... COMMISSION Steel Nails From China; Determination On the basis of the record \\1\\ developed in the subject five... order on steel nails from China would be likely to lead to continuation or recurrence of material injury... contained in USITC Publication 4442 (December 2013), entitled Steel Nails from China: Investigation No....

  14. 77 FR 64545 - Drawn Stainless Steel Sinks From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... COMMISSION Drawn Stainless Steel Sinks From China Scheduling of the final phase of countervailing duty and... retarded, by reason of subsidized and less-than-fair-value imports from China of drawn stainless steel... merchandise as ``drawn stainless steel sinks with single or multiple drawn bowls, with or without drain...

  15. 30 CFR 56.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tool and drill steel racks. 56.7050 Section 56... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills....

  16. 49 CFR 192.309 - Repair of steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Repair of steel pipe. 192.309 Section 192.309... Lines and Mains § 192.309 Repair of steel pipe. (a) Each imperfection or damage that impairs the serviceability of a length of steel pipe must be repaired or removed. If a repair is made by grinding,...

  17. 46 CFR 154.188 - Membrane tank: Inner hull steel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Membrane tank: Inner hull steel. 154.188 Section 154.188... Structure § 154.188 Membrane tank: Inner hull steel. For a vessel with membrane tanks, the inner hull... “Rules for Building and Classing Steel Vessels”, 1981....

  18. 77 FR 28404 - Galvanized Steel Wire From China and Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... COMMISSION Galvanized Steel Wire From China and Mexico Determinations On the basis of the record \\1... retarded, by reason of imports from China of galvanized steel wire, provided for in subheadings 7217.20.30... retarded, by reason of imports from Mexico of galvanized steel wire, provided for in subheadings...

  19. 46 CFR 154.188 - Membrane tank: Inner hull steel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Membrane tank: Inner hull steel. 154.188 Section 154.188... Structure § 154.188 Membrane tank: Inner hull steel. For a vessel with membrane tanks, the inner hull... “Rules for Building and Classing Steel Vessels”, 1981....

  20. 30 CFR 57.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills....

  1. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  2. 76 FR 19382 - Galvanized Steel Wire From China and Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    ... COMMISSION Galvanized Steel Wire From China and Mexico AGENCY: United States International Trade Commission... Mexico of galvanized steel wire, provided for in subheading 7217.20.30 and 7217.20.45 of the Harmonized...., Nashville, TN; National Standard, LLC, Niles, MI; and Oklahoma Steel and Wire Co., Inc., Madill,...

  3. 19 CFR 360.104 - Steel import monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 3 2012-04-01 2012-04-01 false Steel import monitoring. 360.104 Section 360.104 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.104 Steel import monitoring. (a) Throughout the duration of the licensing...

  4. 30 CFR 57.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills....

  5. 30 CFR 57.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills....

  6. 30 CFR 57.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills....

  7. Web-Based Interactive Steel Sculpture for the Google Generation

    ERIC Educational Resources Information Center

    Chou, Karen C.; Moaveni, Saeed

    2009-01-01

    In almost all the civil engineering programs in the United States, a student is required to take at least one design course in either steel or reinforced concrete. One of the topics covered in an introductory steel design course is the design of connections. Steel connections play important roles in the integrity of a structure, and many…

  8. 30 CFR 56.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tool and drill steel racks. 56.7050 Section 56... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills....

  9. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  10. 49 CFR Appendix A to Part 178 - Specifications for Steel

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specifications for Steel A Appendix A to Part 178... to Part 178—Specifications for Steel Table 1 Designation Chemical composition, percent-ladle analysis... be 1.40 percent. 6 Rephosphorized Grade 3 steels containing no more than 0.15 percent phosphorus...

  11. 76 FR 38697 - High Pressure Steel Cylinders From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... COMMISSION High Pressure Steel Cylinders From China Determinations On the basis of the record \\1\\ developed... injured by reason of imports from China of high pressure steel cylinders, provided for in subheading 7311... pressure steel cylinders from China. Accordingly, effective May 11, 2011, the Commission...

  12. 30 CFR 56.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tool and drill steel racks. 56.7050 Section 56... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills....

  13. 77 FR 1504 - Stainless Steel Wire Rod From India

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... COMMISSION Stainless Steel Wire Rod From India Determination On the basis of the record \\1\\ developed in the... antidumping duty order on stainless steel wire rod From India would be likely to lead to continuation or... contained in USITC Publication 4300 (January 2012), entitled Stainless Steel Wire Rod From...

  14. 49 CFR 192.371 - Service lines: Steel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Service lines: Steel. 192.371 Section 192.371 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... § 192.371 Service lines: Steel. Each steel service line to be operated at less than 100 p.s.i. (689...

  15. 19 CFR 360.104 - Steel import monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 3 2013-04-01 2013-04-01 false Steel import monitoring. 360.104 Section 360.104 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.104 Steel import monitoring. (a) Throughout the duration of the licensing...

  16. 75 FR 27428 - Safety Standards for Steel Erection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... Occupational Safety and Health Administration 29 CFR Part 1926 Safety Standards for Steel Erection AGENCY... technical amendment adds a nonmandatory note to the OSHA standards governing steel erection. The note... employers engaged in activities covered by OSHA's steel erection standards. DATES: Effective date: May...

  17. 30 CFR 57.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills....

  18. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  19. 19 CFR 360.104 - Steel import monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 3 2011-04-01 2011-04-01 false Steel import monitoring. 360.104 Section 360.104 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.104 Steel import monitoring. (a) Throughout the duration of the licensing...

  20. 30 CFR 56.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tool and drill steel racks. 56.7050 Section 56... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills....

  1. 29 CFR 1926.858 - Removal of steel construction.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Removal of steel construction. 1926.858 Section 1926.858... of steel construction. (a) When floor arches have been removed, planking in accordance with § 1926.855(b) shall be provided for the workers engaged in razing the steel framing. (b) Cranes,...

  2. 49 CFR 192.309 - Repair of steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Repair of steel pipe. 192.309 Section 192.309... Lines and Mains § 192.309 Repair of steel pipe. (a) Each imperfection or damage that impairs the serviceability of a length of steel pipe must be repaired or removed. If a repair is made by grinding,...

  3. 29 CFR 1926.858 - Removal of steel construction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Removal of steel construction. 1926.858 Section 1926.858... of steel construction. (a) When floor arches have been removed, planking in accordance with § 1926.855(b) shall be provided for the workers engaged in razing the steel framing. (b) Cranes,...

  4. 46 CFR 154.188 - Membrane tank: Inner hull steel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Membrane tank: Inner hull steel. 154.188 Section 154.188... Structure § 154.188 Membrane tank: Inner hull steel. For a vessel with membrane tanks, the inner hull... “Rules for Building and Classing Steel Vessels”, 1981....

  5. 49 CFR 192.371 - Service lines: Steel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Service lines: Steel. 192.371 Section 192.371 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... § 192.371 Service lines: Steel. Each steel service line to be operated at less than 100 p.s.i. (689...

  6. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  7. 49 CFR Appendix A to Part 178 - Specifications for Steel

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specifications for Steel A Appendix A to Part 178.... 178, App. A Appendix A to Part 178—Specifications for Steel Table 1 [Open-hearth, basic oxygen, or electric steel of uniform quality. The following chemical composition limits are based on ladle...

  8. 49 CFR 192.309 - Repair of steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Repair of steel pipe. 192.309 Section 192.309... Lines and Mains § 192.309 Repair of steel pipe. (a) Each imperfection or damage that impairs the serviceability of a length of steel pipe must be repaired or removed. If a repair is made by grinding,...

  9. 49 CFR Appendix A to Part 178 - Specifications for Steel

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specifications for Steel A Appendix A to Part 178... to Part 178—Specifications for Steel Table 1 Designation Chemical composition, percent-ladle analysis... be 1.40 percent. 6 Rephosphorized Grade 3 steels containing no more than 0.15 percent phosphorus...

  10. 29 CFR 1926.858 - Removal of steel construction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Removal of steel construction. 1926.858 Section 1926.858... of steel construction. (a) When floor arches have been removed, planking in accordance with § 1926.855(b) shall be provided for the workers engaged in razing the steel framing. (b) Cranes,...

  11. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Outer hull steel plating. 154.170 Section 154.170... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of...

  12. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stainless steel suture. 878.4495 Section 878.4495...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture. (a) Identification. A stainless steel suture is a needled or unneedled nonabsorbable surgical suture composed of...

  13. 29 CFR 1926.858 - Removal of steel construction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Removal of steel construction. 1926.858 Section 1926.858... of steel construction. (a) When floor arches have been removed, planking in accordance with § 1926.855(b) shall be provided for the workers engaged in razing the steel framing. (b) Cranes,...

  14. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Stainless steel suture. 878.4495 Section 878.4495...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture. (a) Identification. A stainless steel suture is a needled or unneedled nonabsorbable surgical suture composed of...

  15. Virtual Steel Connection Sculpture--Student Learning Assessment

    ERIC Educational Resources Information Center

    Chou, Karen C.; Moaveni, Saeed; Drane, Denise

    2016-01-01

    A Virtual Steel Connection Sculpture was developed through a grant from the National Science Foundation. The Virtual Sculpture is an interactive tool that shows students and anyone interested in connections how steel members are connected. This tool is created to complement students' steel design courses. The features of this educational tool,…

  16. 46 CFR 154.188 - Membrane tank: Inner hull steel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Membrane tank: Inner hull steel. 154.188 Section 154.188... Structure § 154.188 Membrane tank: Inner hull steel. For a vessel with membrane tanks, the inner hull... “Rules for Building and Classing Steel Vessels”, 1981....

  17. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Outer hull steel plating. 154.170 Section 154.170... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of...

  18. 49 CFR 192.309 - Repair of steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Repair of steel pipe. 192.309 Section 192.309... Lines and Mains § 192.309 Repair of steel pipe. (a) Each imperfection or damage that impairs the serviceability of a length of steel pipe must be repaired or removed. If a repair is made by grinding,...

  19. 46 CFR 154.188 - Membrane tank: Inner hull steel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Membrane tank: Inner hull steel. 154.188 Section 154.188... Structure § 154.188 Membrane tank: Inner hull steel. For a vessel with membrane tanks, the inner hull... “Rules for Building and Classing Steel Vessels”, 1981....

  20. 76 FR 29266 - Galvanized Steel Wire From China and Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... COMMISSION Galvanized Steel Wire From China and Mexico Determinations On the basis of the record \\1... injured by reason of imports from China and Mexico of galvanized steel wire, provided for in subheading...; National Standard, LLC/DW-National Standard-Niles, LLC, Niles, MI; and Oklahoma Steel & Wire Company,...

  1. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Outer hull steel plating. 154.170 Section 154.170... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of...

  2. 76 FR 29265 - Certain Steel Wheels From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... COMMISSION Certain Steel Wheels From China Determinations On the basis of the record \\1\\ developed in the... threatened with material injury by reason of imports from China of certain steel wheels, provided for in... the United States is materially retarded, by reason of imports from China of certain steel wheels...

  3. 49 CFR Appendix A to Part 178 - Specifications for Steel

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specifications for Steel A Appendix A to Part 178... to Part 178—Specifications for Steel Table 1 Designation Chemical composition, percent-ladle analysis... be 1.40 percent. 6 Rephosphorized Grade 3 steels containing no more than 0.15 percent phosphorus...

  4. 78 FR 11090 - Steel Import Monitoring and Analysis System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... International Trade Administration 19 CFR Part 360 RIN 0625-AA93 Steel Import Monitoring and Analysis System... to extend the Steel Import Monitoring and Analysis (SIMA) system until March 21, 2017. The purpose of the SIMA system is to provide the public statistical data on steel imports entering the United...

  5. 49 CFR 192.309 - Repair of steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Repair of steel pipe. 192.309 Section 192.309... Lines and Mains § 192.309 Repair of steel pipe. (a) Each imperfection or damage that impairs the serviceability of a length of steel pipe must be repaired or removed. If a repair is made by grinding,...

  6. 77 FR 27249 - Certain Steel Wheels From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... COMMISSION Certain Steel Wheels From China Determinations On the basis of the record \\1\\ developed in the... of imports of certain steel wheels from China, provided for in subheading 8708.70 of the Harmonized... notification of preliminary determinations by Commerce that imports of certain steel wheels from China...

  7. 78 FR 21417 - Drawn Stainless Steel Sinks From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... COMMISSION Drawn Stainless Steel Sinks From China Determinations On the basis of the record \\1\\ developed in... drawn stainless steel sinks from China, provided for in subheading 7324.10.00 of the Harmonized Tariff... notification of a preliminary determinations by Commerce that imports of drawn stainless steel sinks from...

  8. 77 FR 67593 - Steel Import Monitoring and Analysis System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... International Trade Administration 19 CFR Part 360 RIN 0625-AA93 Steel Import Monitoring and Analysis System... modifications to the regulations for the Steel Import Monitoring and Analysis (SIMA) System that would extend... as possible certain steel mill imports into the United States and make the import data...

  9. 30 CFR 56.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tool and drill steel racks. 56.7050 Section 56... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills....

  10. 78 FR 7452 - Steel Wire Garment Hangers From Vietnam; Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... COMMISSION Steel Wire Garment Hangers From Vietnam; Determinations On the basis of the record \\1\\ developed... imports of steel wire garment hangers from Vietnam, provided for in subheading 7326.20.00 of the... countervailing and antidumping duty orders on steel wire garment hangers from Vietnam. Background The...

  11. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Stainless steel suture. 878.4495 Section 878.4495...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture. (a) Identification. A stainless steel suture is a needled or unneedled nonabsorbable surgical suture composed of...

  12. 49 CFR 192.371 - Service lines: Steel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Steel. 192.371 Section 192.371 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... § 192.371 Service lines: Steel. Each steel service line to be operated at less than 100 p.s.i. (689...

  13. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Outer hull steel plating. 154.170 Section 154.170... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of...

  14. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect

    Santella, M. L.; Hovanski, Yuri; Grant, Glenn J.; Carpenter, Joseph A.; Warren, C. D.; Smith, Mark T.

    2008-12-28

    Experiments are continuing to evaluate the feasibility of friction stir spot welding advanced high-strength steels including, DP780, martensitic hot-stamp boron steel, and TRIP steels. Spot weld lap-shear strengths can exceed those required by industry standards such as AWS D8.1.

  15. Mathematical modeling of steel fiber concrete under dynamic impact

    NASA Astrophysics Data System (ADS)

    Belov, N. N.; Yugov, N. T.; Kopanitsa, D. G.; Kopanitsa, G. D.; Yugov, A. A.; Shashkov, V. V.

    2015-01-01

    This paper introduces a continuum mechanics mathematical model that describes the processes of deformation and destruction of steel-fiber-concrete under a shock wave impact. A computer modeling method was applied to study the processes of shock wave impact of a steel cylindrical rod and concrete and steel fiber concrete plates. The impact speeds were within 100-500 m/s.

  16. Statement of the steel manufacturers association

    SciTech Connect

    Peters, M.S.

    1995-12-31

    This paper presents the policy of the Steel Manufacturers Association regarding regulation of radioactively contaminated scrap metal. In general, the use of sound science combined with accurate cost/benefit analysis is identified as an acceptable basis for the imposition of regulations. An increase in contaminated scrap is attributed to the number of radioactive devices licensed by the U.S. Nuclear Regulatory Commission (NRC) and a failure of the NRC to adequately track and control the disposition of these sources. Other topics briefly discussed include steel company preventative measures, potential health effects, economic effects, regulatory jurisdiction, and pre-melt and post-melt recommendations.

  17. Modern steels at atomic and nanometre scales

    DOE PAGES

    Caballero, F. G.; Garcia-Mateo, C.; Miller, M. K.

    2014-10-10

    Processing bulk nanocrystalline materials for structural applications still poses a difficult challenge, particularly in achieving an industrially viable process. Recent work in ferritic steels has proved that it is possible to move from ultrafine to nanoscale by exploiting the bainite reaction without the use of severe deformation, rapid heat treatment or mechanical processing. This new generation of steels has been designed in which transformation at low temperature leads to a nanoscale structure consisting of extremely fine, 20–40 nm thick plates of bainitic ferrite and films of retained austenite. Finally, a description of the characteristics and significance of this remarkable microstructuremore » is provided here.« less

  18. Superhydrophobic conductive carbon nanotube coatings for steel.

    PubMed

    Sethi, Sunny; Dhinojwala, Ali

    2009-04-21

    We report the synthesis of superhydrophobic coatings for steel using carbon nanotube (CNT)-mesh structures. The CNT coating maintains its structural integrity and superhydrophobicity even after exposure to extreme thermal stresses and has excellent thermal and electrical properties. The coating can also be reinforced by optimally impregnating the CNT-mesh structure with cross-linked polymers without significantly compromising on superhydrophobicity and electrical conductivity. These superhydrophobic conductive coatings on steel, which is an important structural material, open up possibilities for many new applications in the areas of heat transfer, solar panels, transport of fluids, nonwetting and nonfouling surfaces, temperature resilient coatings, composites, water-walking robots, and naval applications.

  19. Sulfide Inclusions in Electroslag Remelted Steels.

    DTIC Science & Technology

    1981-01-01

    8089 6ASS ACUET NTO TEC C MDEDP FMTRA EC F01/SULFIDE INCLUSIONS I N ELECTROSLAG REMELTED STEELS (U)~JAN 1 40BOLDY, T FUJII, D R PoI RIER DAAGA6-78-C...NATIONAL BUREAU Of SIAND1ARDS 1963-A A): D O C AMMRC TR 81-4 SULFIDE INCLUSIONS P ELECTROSLAG REMELTED STEELS January 1981 M. D . Boldy, T. Fujii, D . R...Approved for public release; distribution unlimited. ELECT S APR8 1981D S[tE TED Prepared for D ARMY MATERIALS AND MECHANICS RESEARCH CENTER Watertown

  20. Ductile fracture of carbon steels: A review

    SciTech Connect

    Pospiech, J.

    1995-02-01

    This paper presents an extensive survey of literature on the theory of deformation and failure of inhomogeneous materials. Literature concerning deformation and fracture of carbon steels also is reviewed. The best utilization of deformability in cold-working processes translates into increased production, full use of available equipment capacity, and reduction of interannealing operations. In order to know the deformability of materials such as steels, one must know the mechanisms involved in deformation and fracture of nonhomogeneous materials, as well as the plastic fracture criterion. This requires use of metallographic examination techniques.

  1. Economic feasibility of radioactive scrap steel recycling

    SciTech Connect

    Balhiser, R.; Rosholt, D.; Nichols, F.

    1995-12-31

    The goal of MSE`s Radioactive Scrap Steel (RSS) Recycle Program is to develop practical methods for recycling RSS into useful product. This paper provides interim information about ongoing feasibility investigations that are scheduled for completion by September 1995. The project approach, major issues, and cost projections are outlined. Current information indicates that a cost effective RSS Recycling Facility can be designed, built, and in operation by 1999. The RSS team believes that high quality steel plate can be made from RSS at a conversion cost of $1500 per ton or less.

  2. Improved Heat Treatment Of Steel Alloy 4340

    NASA Technical Reports Server (NTRS)

    Cooper, Lawrence B.

    1993-01-01

    New process takes significantly less time than prior heat-treatment processes. Involves placing steel plate directly in furnace and heat-treating. Plate then quenched in slowly moving oil to reduce stresses. Any deflection then pressed out. Possible uses of 4340 steel include new and improved bulletproof vests for military and police personnel and armor for bulletproof automobiles for military, police, diplomatic, and private users. Also used in other military land vehicles as tanks and in both military and civilian aircraft. Lighter armorplate enables land vehicles and aircraft to attain greater speed and maneuverability, consume less fuel, and afford better protection from snipers or terrorists.

  3. Modern steels at atomic and nanometre scales

    SciTech Connect

    Caballero, F. G.; Garcia-Mateo, C.; Miller, M. K.

    2014-10-10

    Processing bulk nanocrystalline materials for structural applications still poses a difficult challenge, particularly in achieving an industrially viable process. Recent work in ferritic steels has proved that it is possible to move from ultrafine to nanoscale by exploiting the bainite reaction without the use of severe deformation, rapid heat treatment or mechanical processing. This new generation of steels has been designed in which transformation at low temperature leads to a nanoscale structure consisting of extremely fine, 20–40 nm thick plates of bainitic ferrite and films of retained austenite. Finally, a description of the characteristics and significance of this remarkable microstructure is provided here.

  4. Chromium-Makes stainless steel stainless

    USGS Publications Warehouse

    Kropschot, S.J.; Doebrich, Jeff

    2010-01-01

    Chromium, a steely-gray, lustrous, hard metal that takes a high polish and has a high melting point, is a silvery white, hard, and bright metal plating on steel and other material. Commonly known as chrome, it is one of the most important and indispensable industrial metals because of its hardness and resistance to corrosion. But it is used for more than the production of stainless steel and nonferrous alloys; it is also used to create pigments and chemicals used to process leather.

  5. Direct Coating of Nanocrystalline Diamond on Steel

    NASA Astrophysics Data System (ADS)

    Tsugawa, Kazuo; Kawaki, Shyunsuke; Ishihara, Masatou; Hasegawa, Masataka

    2012-09-01

    Nanocrystalline diamond films have been successfully deposited on stainless steel substrates without any substrate pretreatments to promote diamond nucleation, including the formation of interlayers. A low-temperature growth technique, 400 °C or lower, in microwave plasma chemical vapor deposition using a surface-wave plasma has cleared up problems in diamond growth on ferrous materials, such as the surface graphitization, long incubation time, substrate softening, and poor adhesion. The deposited nanocrystalline diamond films on stainless steel exhibit good adhesion and tribological properties, such as a high wear resistance, a low friction coefficient, and a low aggression strength, at room temperature in air without lubrication.

  6. Nondestructive Technique To Assess Embrittlement In Steels

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Yost, William T.; Cantrell, John H.

    1990-01-01

    Recent research at NASA Langley Research Center led to identification of nondestructive technique for detection of temper embrittlement in HY80 steel. Measures magnetoacoustic emission associated with reversible motion of domain walls at low magnetic fields. Of interest to engineers responsible for reliability and safety of various dynamically loaded and/or thermally cycled steel parts. Applications include testing of landing gears, naval vessels, and parts subjected to heat, such as those found in steam-pipe fittings, boilers, turbine rotors, and nuclear pressure vessels.

  7. Stainless Steel Microstructure and Mechanical Properties Evaluation

    SciTech Connect

    Switzner, Nathan T

    2010-06-01

    A nitrogen strengthened 21-6-9 stainless steel plate was spinformed into hemispherical test shapes. A battery of laboratory tests was used to characterize the hemispheres. The laboratory tests show that near the pole (axis) of a spinformed hemisphere the yield strength is the lowest because this area endures the least “cold-work” strengthening, i.e., the least deformation. The characterization indicated that stress-relief annealing spinformed stainless steel hemispheres does not degrade mechanical properties. Stress-relief annealing reduces residual stresses while maintaining relatively high mechanical properties. Full annealing completely eliminates residual stresses, but reduces yield strength by about 30%.

  8. Certification of offshore mooring steel wire ropes

    SciTech Connect

    Lohne, P.W.

    1996-12-31

    The trend to produce oil in increasingly deeper water has led to the development of floating production solutions for the exploitation of the energy resources in these areas. It is a fact that steel wire ropes have been used and are being proposed as line segments in the majority of the mooring systems of these units/ships. This paper specifies requirements for the materials, design, manufacture and testing of large diameter offshore mooring steel wire ropes and may serve as a technical reference document in contractual matters between the purchaser and the manufacturer. Typical applications covered are permanently moored floating production systems (FPS), offshore loading systems and mobile offshore units.

  9. Squeeze Casting of Steel Weapon Components

    DTIC Science & Technology

    1976-09-01

    nd 45 percent alloy steel is ver- d flat-walled pport. Auxiliary eeze casting the ssure, effectively last-to-freeze chine weight com...Castings 132 49 Local Deformatnion of the 1045 Steel Punch. . 133 50 End Facing of the Inconel 713C Punch Showing Heat Checking 135 51 Higher...December 1971, 14 ff. (10) R. Mehrabian and M. C, Flemings, "Die Casting of Parti- ally Solidified Alloys ," Trans-AFS, Vol. 80, 1972, pp. 173-183; Die

  10. Friction Drilling of Stainless Steels Pipes

    SciTech Connect

    Fernandez, A.; Lopez de Lacalle, L. N.; Lamikiz, A.

    2011-01-17

    This work describes the experimental study of the friction drilling process in stainless steel by means of an optimization of the machining conditions. For such purpose austenitic stainless steel with different thicknesses were analyzed through controlled tests at different rotation speeds and feed rates. On one hand, the torque and the thrust force were computed and monitorized. On the other hand, the dimensional tolerances of the holes were evaluated, mainly the accuracy of the hole diameter and the burr thickness at different depths. Another topic of interest inherent to this special technique is the temperature level reached during the friction process which is crucial when it comes to development of microstructural transformations.

  11. Finite Element Analysis for Imaging Steel Bars Placed Under a Mild Steel Boundary Using Eddy Current Techniques

    SciTech Connect

    Hussin, H.; Zaid, M.; Gaydecki, P.; El-Madaani, F.; Fernandes, B.

    2006-03-06

    This paper reports on recent modelling results obtained using finite-element analysis for penetrating a magnetic field through a 2 mm steel boundary. The object is to detect 16 mm steel bars placed under mild steel boundaries at different operating frequencies. To penetrate thicker steel boundaries and increase the depth penetration, a different configuration based on remote field eddy currents (RFEC) has been modelled.

  12. Correlation Between Shear Punch and Tensile Strength for Low-Carbon Steel and Stainless Steel Sheets

    NASA Astrophysics Data System (ADS)

    Mahmudi, R.; Sadeghi, M.

    2013-02-01

    The deformation behavior of AISI 1015 low-carbon steel, and AISI 304 stainless steel sheets was investigated by uniaxial tension and the shear punch test (SPT). Both materials were cold rolled to an 80% thickness reduction and subsequently annealed in the temperature range 25-850 °C to produce a wide range of yield and ultimate strength levels. The correlations between shear punch and tensile yield and ultimate stresses were established empirically. Different linear relationships having different slopes and intercepts were found for the low-carbon and stainless steel sheets, and the possible parameters affecting the correlation were discussed. It was shown that, within limits, yield and tensile strength of thin steel sheets can be predicted from the shear data obtained by the easy-to-perform SPT.

  13. Toughening Mechanisms in Ultrahigh-Strength Steels

    DTIC Science & Technology

    1993-12-01

    thermodynamic survey identified lanthanum phosphate as potentially the most stable gettering phase for phosphorus in steels, and further calculations...effects on intergranular cohesion (primarily excluding Mn and Si) and compatibility with rapid solidification and lanthanum treatment for impurity...of the eigenstrain referred to the body-centered cubic (bcc) ferrite matrix. The con- stant composition elastic constants used to determine the

  14. Stainless steel mesh-acrylic cranioplasty.

    PubMed

    Tysvaer, A T; Hovind, K H

    1977-03-01

    Twenty-four steel mesh-acrylic plates have been used for repair of skull defects in 1970-73. Three plates had to be removed due to complications, two due to infection and one due to an allergic reaction. The plate is easy to mould, strong, and light. The cosmetic results are excellent.

  15. Austenitic stainless steels for cryogenic service

    SciTech Connect

    Dalder, E.N.C.; Juhas, M.C.

    1985-09-19

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K.

  16. Do Steel Bridges Prevent Rail Corrugations?

    NASA Astrophysics Data System (ADS)

    Meinke, Peter; Stephanides, Johannes

    2010-03-01

    Rail corrugations (germ. "Schlupfwellen") are wear pattern, which emerge during the transits of railway vehicles at narrow railway curves (R ≤ 250 m) and they are a menace to railway operators, especially if their railroad network exists in mountains. Therefore ÖBB started recently a research program "OBO" (Optimierter Bogenoberbau) for better understanding and avoidance of "Schlupfwellen", which is mainly experimentally oriented. As a representative test track was the extended famous narrow curve at the valley of Brixen close to Kitzbühl chosen, and two Measurement sites where there established, one embedded in the ballasted track bed and another one on a steel bridge, situated in this curve. Measuring the passing trains, a rearly astonishing fact was discovered: Whereas in the ballasted track all well known typical features occur (vibration, bending and torsion of the rail,…), which produce the wear created Schlupfwellen and the dedicated grumbling noise, the wheelsets run properly on the steel bridge track and pass "friendly" the associated curve segment! Dicussing the ascertained fact, it was realized that on many European steel bridges such phenomena happens! The paper ends assuming that a broad-band vibration of the rail heads upon the steel bridge reduces the friction coefficient in the wheel/rail contact area ("Flange oilers"). This can be the reason for the smooth travel at the bridge. This may also be the basis for a technical application to overcome the generation of Schlupfwellen?

  17. Predictability of steel containment response near failure

    SciTech Connect

    Costello, J.F.; Ludwigsen, J.S.; Luk, V.K.; Hessheimer, M.F.

    2000-01-06

    The Nuclear Power Engineering Corporation of Japan and the US Nuclear Regulatory Commission Office of Nuclear Regulatory Research, are co-sponsoring and jointly funding a Cooperative Containment Research Program at Sandia National Laboratories, Albuquerque, New Mexico, USA. As a part of this program, a steel containment vessel model and contact structure assembly was tested to failure with over pressurization at Sandia on December 11--12, 1996. The steel containment vessel model was a mixed-scale model (1:10 in geometry and 1:4 in shell thickness) of a steel containment for an improved Mark-II Boiling Water Reactor plant in Japan. The contact structure, which is a thick, bell-shaped steel shell separated at a nominally uniform distance from the model, provides a simplified representation of features of the concrete reactor shield building in the actual plant. The objective of the internal pressurization test was to provide measurement data of the structural response of the model up to its failure in order to validate analytical modeling, to find its pressure capacity, and to observe the failure model and mechanisms.

  18. Iron and Steel Industry Training Board

    ERIC Educational Resources Information Center

    Riley, Alvan D.

    1974-01-01

    The British iron and steel industry training board has developed a training approach called investment appraisal of training. This approach is a forward-looking appraisal in which the estimated costs ofthe proposed training activity are balanced against benefits accruing in fi nancial terms from improved performance. (DS)

  19. Employing the Disadvantaged: Inland Steel's Experience.

    ERIC Educational Resources Information Center

    Campbell, Ralph

    1969-01-01

    Among the various approaches used by the Inland Steel Company in training ghetto youth for jobs, greatest promise has been shown by the Work Experience and Training Program initiated in 1965 at the Joseph T. Ryerson and Son plant, an Inland subsidiary located in the Lawndale (West Side) area of Chicago near the scene of the 1966 riots. Results…

  20. Occupation Competency Profile: Steel Detailer Program.

    ERIC Educational Resources Information Center

    Alberta Learning, Edmonton. Apprenticeship and Industry Training.

    This document presents information about the apprenticeship training program of Alberta, Canada, in general and the steel detailer program in particular. The first part of the document discusses the following items: Alberta's apprenticeship and industry training system; the apprenticeship and industry training committee structure; local…