Science.gov

Sample records for 9cr1mo-nbv steel weldments

  1. Nonmetallic Inclusions in HSLA Steel Weldments

    DTIC Science & Technology

    1989-12-01

    lowering the DBTT . Nickel prevents the hot shortness phenomenon often observed in copper-bearing steels . Nickel is also an austenite stabilizer. By lowering... STEEL WELDMENTS by Brent A. Douglas December, 1989 Thesis Advisor Alan G. Fox Approved for public release; distribution is unlimited. 90 ,-. S...ACCESSION NO. II. TITLE (Incude Security Claw fication) Nonmetallic Inclusions In HSLA Steel Weldments IZ. PERSONAL AUTHOR(S) Douglas, Brent A. 138

  2. High Strength Steel Weldment Reliability: Weld Metal Hydrogen Trapping.

    DTIC Science & Technology

    1998-02-01

    additions to welding consumables to control weld metal hydrogen and thus reduce susceptibility to cold cracking in high strength steel weldments. 14...applying weld metal hydrogen trapping to improve the resistance to hydrogen cracking in welding of high strength steels . Hydrogen cracking in high...requirements which are necessary to prevent hydrogen cracking in high strength steel welding. Common practices to prevent hydrogen cracking in steel

  3. Tritium Effects on Fracture Toughness of Stainless Steel Weldments

    SciTech Connect

    MORGAN, MICHAEL; CHAPMAN, G. K.; TOSTEN, M. H.; WEST, S. L.

    2005-05-12

    The effects of tritium on the fracture toughness properties of Type 304L and Type 21-6-9 stainless steel weldments were measured. Weldments were tritium-charged-and-aged and then tested in order to measure the effect of the increasing decay helium content on toughness. The results were compared to uncharged and hydrogen-charged samples. For unexposed weldments having 8-12 volume percent retained delta ferrite, fracture toughness was higher than base metal toughness. At higher levels of weld ferrite, the fracture toughness decreased to values below that of the base metal. Hydrogen-charged and tritium-charged weldments had lower toughness values than similarly charged base metals and toughness decreased further with increasing weld ferrite content. The effect of decay helium content was inconclusive because of tritium off-gassing losses during handling, storage and testing. Fracture modes were dominated by the dimpled rupture process in unexposed weldments. In hydrogen and tritium-exposed weldments, the fracture modes depended on the weld ferrite content. At high ferrite contents, hydrogen-induced transgranular fracture of the weld ferrite phase was observed.

  4. Weldment for austenitic stainless steel and method

    DOEpatents

    Bagnall, Christopher; McBride, Marvin A.

    1985-01-01

    For making defect-free welds for joining two austenitic stainless steel mers, using gas tungsten-arc welding, a thin foil-like iron member is placed between the two steel members to be joined, prior to making the weld, with the foil-like iron member having a higher melting point than the stainless steel members. When the weld is formed, there results a weld nugget comprising melted and then solidified portions of the joined members with small portions of the foil-like iron member projecting into the solidified weld nugget. The portions of the weld nugget proximate the small portions of the foil-like iron member which project into the weld nugget are relatively rich in iron. This causes these iron-rich nugget portions to display substantial delta ferrite during solidification of the weld nugget which eliminates weld defects which could otherwise occur. This is especially useful for joining austenitic steel members which, when just below the solidus temperature, include at most only a very minor proportion of delta ferrite.

  5. Properties of submerged arc welded TMCP-steel weldments

    SciTech Connect

    Kotamies, J.M.N.; Brederholm, A.T.; Haenninen, H.E.

    1996-12-01

    In this investigation weldability, mechanical properties and effects of different heat inputs and welding consumables on the properties of weldments of the thermomechanically control processed (TMCP) steel, RAEX 500M were examined. The hardness measurements and transverse tensile tests showed that HAZ softening was insignificant in the TMCP-steel weldments studied. The weld metal strength properties were equal to or higher than those of the base metal through the heat input range of 2.0 to 6.0 kJ/mm. The required low temperature impact toughness of 40 J was achieved with plate thickness of 40 mm at {minus}60 C with all the filler materials used except with S2Ni2 (welding energy 5.8 kJ/mm) and S2Ni2 with metal powder addition (welding energy 5.9 kJ/mm). With high welding energies and longer cooling times (t{sub 8/5}) favorable weld metal microstructures were achieved with Mo-, Ti- and B-alloyed filler materials.

  6. Stress Corrosion Cracking of Carbon Steel Weldments

    SciTech Connect

    POH-SANG, LAM

    2005-01-13

    An experiment was conducted to investigate the role of weld residual stress on stress corrosion cracking in welded carbon steel plates prototypic to those used for nuclear waste storage tanks. Carbon steel specimen plates were butt-joined with Gas Metal Arc Welding technique. Initial cracks (seed cracks) were machined across the weld and in the heat affected zone. These specimen plates were then submerged in a simulated high level radioactive waste chemistry environment. Stress corrosion cracking occurred in the as-welded plate but not in the stress-relieved duplicate. A detailed finite element analysis to simulate exactly the welding process was carried out, and the resulting temperature history was used to calculate the residual stress distribution in the plate for characterizing the observed stress corrosion cracking. It was shown that the cracking can be predicted for the through-thickness cracks perpendicular to the weld by comparing the experimental KISCC to the calculated stress intensity factors due to the welding residual stress. The predicted crack lengths agree reasonably well with the test data. The final crack lengths appear to be dependent on the details of welding and the sequence of machining the seed cracks, consistent with the prediction.

  7. Microstructure and Oxidation Characteristics of Laser and GTAW Weldments in Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Samanta, S. K.; Mitra, S. K.; Pal, T. K.

    2008-12-01

    The present investigation reports microstructure and high-temperature oxidation behavior of GTAW and laser weldments of 316L stainless steel. The microstructure and oxidation behavior of composite laser weldment are found to be influenced by the welding speed. In GTAW weldment, weld metal shows higher oxidation rate as compared to base metal of same weldment. Furthermore, the inoculation of Ce in GTAW weld influences the microstructure and oxidation characteristics. The scale morphologies, scale adherence, and spallation have been characterized by SEM and EDAX.

  8. Characterizations of Preheated and Non-Preheated HY-80 Steel Weldments by Transmission Electron Microscopy.

    DTIC Science & Technology

    1983-09-01

    D- 36 966 CHARACTERIZATIONS OF PREHEATED AND NON-PREHEATED HY-80 i/I • " STEEL NELDMENTS BY TRANSMISSION ELECTRON MICROSCOPY(U) C T T NAVAL...34. NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS CHARACTERIZATIONS OF PREHEATED AND NON-PREHEATED HY-80 STEEL WELDMENTS BY TRANSMISSION ELECTRON...Master’s Thesis; Non-Preheated HY-80 Steel Weldments September 1983 by Transmission Electron Microscopy S. PERFORMING ONG. REPORT NUMBER 7. ATNOR"a S

  9. Sensitization and IGSCC susceptibility prediction in stainless steel pipe weldments

    SciTech Connect

    Atteridge, D.G.; Simmons, J.W.; Li, Ming; Bruemmer, S.M.

    1991-11-01

    An analytical model, based on prediction of chromium depletion, has been developed for predicting thermomechanical effects on austenitic stainless steel intergranular stress corrosion cracking (IGSCC) susceptibility. Model development and validation is based on sensitization development analysis of over 30 Type 316 and 304 stainless steel heats. The data base included analysis of deformation effects on resultant sensitization development. Continuous Cooling sensitization behavior is examined and modelled with and without strain. Gas tungsten are (GTA) girth pipe weldments are also characterized by experimental measurements of heat affected zone (HAZ) temperatures, strains and sensitization during/after each pass; pass by pass thermal histories are also predicted. The model is then used to assess pipe chemistry changes on IGSCC resistance.

  10. Characterization of Submerged-Arc and Gas-Metal-Arc Weldments in HY-100 Steel.

    DTIC Science & Technology

    1983-12-01

    RD-R14i 939 CHARACTERIZATION OF SUBMERGED-ARC AND GAS-METAL-ARC / WELDMENTS IN HY-IBB STEEL (U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA R E THERRIEN DEC...100 Steel 6. PIERFORMING ORG. REPORT NUM11ER I.7. AUTHOW) 11. CONTRACT OR GRANT NuMMER(.) Alfred E. Therrien _O P O R ME E E T R J C .T S’ .~ S...weld toughness in submerged arc welded (SAW) 4- HY-100 steel weldments precludes this process from large 4. scale HY-100 shipbuilding production

  11. Irradiation behavior of weldments of austenitic stainless steel made by various welding techniques

    SciTech Connect

    Shiba, Kiyoyuki; Sawai, Tomotsugu; Jitsukawa, Shiro; Hishinuma, Akimichi; Pawel, J.E.

    1996-12-31

    Austenitic stainless steel is one of the candidate materials for nuclear fusion reactor applications. Here, an austenitic stainless steel, 316F, irradiated in the High Flux Isotope Reactor to doses of about 8 to 33 dpa at 400 and 500 C was investigated. Electron beam (EB) welding and metal inert gas (MIG) welding techniques were used to make weldment specimens. Weldment specimens were made from their weld metal or weld joint (including heat affected zone) regions of the weldments. Base metal was also studied for comparison. Microstructures of these specimens were observed by TEM. Tensile tests were carried out at the nominal irradiation temperature in vacuum. Solution annealed 316F showed the large irradiation hardening at 400 C, while the change in yield stress observed at 500 C was not so large. Weldments specimens had the same temperature and dose dependence as the base metal. The differences between EB and MIG after irradiation were small, compared to the differences before irradiation, except for the slight less ductility of MIG weldments. The defect microstructures of weldments were the same as base metal.

  12. Evaluation of weldment sensitization on Type 304 and 304L stainless steel spent-fuel canisters

    SciTech Connect

    Filippio, A.M.

    1980-01-01

    Sensitization was evaluated on welded Type 304 and 304L stainless steel canisters produced for the Commercial Waste Spent Fuel Packaging Program (CWSFPP) and the Nevada Nuclear Waste Storage Program (NNWSP). The canister weldments which were made under conditions having the greatest potential for causing sensitization were examined using metallographic and corrosion test practices described in Specification ASTM A-262, and also by exposure to hypothetical conditions simulating continuous boiling water immersion at the storage sites. When tested to ASTM A-262, the Type 304 weldments displayed classical evidence of sensitization; i.e., loss of corrosion resistance at heat affected zones, but no evidence of sensitizations was uncovered on the Type 304L weldments. Both the Type 304 and 304L weldments were totally unaffected by exposure for 1500 hours under conditions of continuous boiling water immersion, indicating that the CWSFPP and NNWSP canisters have adequate corrosion resistance for the intended applications.

  13. Numerical Fracture Analysis of Cryogenically Treated Alloy Steel Weldments

    NASA Astrophysics Data System (ADS)

    Rasool Mohideen, S.; Thamizhmanii, S.; Fatah, M. M. Muhammed Abdul; Saidin, W. Najmuddin W.

    2016-02-01

    Cryogenic treatment is being used commercially in the industries in the last two decades for improving the life of many engineering component such as bearings and cutting tools. Though their influence in improving the wear resistance of tool materials is well established, the effect of treatment on weldments is not much investigated. In the present work, a two dimensional finite element analysis was carried out on the compact tension specimen model for simulating the treatment process and to study the fracture behaviour. The weldments were modelled by thermo- mechanical coupled field analysis for simulating he temperature distribution in the model during weld pool cooling and introducing thermal stresses due to uneven contraction and cooling. The model was subjected to cryogenic treatment by adopting radiation effect. The fracture analysis was carried out using Rice's J- Integral approach. The analysis produced a similar outcome of experimental results i.e. Increase in the fracture toughness of the specimen after cryogenic treatment in the heat affected zone of weldment.

  14. Characterization of an HY-130 Steel Weldment by Transmission Electron Microscopy.

    DTIC Science & Technology

    1981-12-01

    A0A1IA 451 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/6 11/6 cHARACTERZXATION O AN NY-130 STEEL WELOMENT BY TRANSMISSION EL--ETC(U) UNLA D DEC 81 W N...17 19.8 THESIS S CHARACTERIZATION OF AN HY-130 STEEL WELDMENT BY TRANSMISSION ELECTRON MICROSCOPY by Wallace Michael Elger December 1981 0-. Thesis...REPORT & PERIOD COVERED Characterization of an HY-130 Steel Master’s Thesis; Weidment by Transmission Electron December 1981 Microscopy 6. PERFORMING

  15. Mechanical Characteristics of Submerged Arc Weldment in API Gas Pipeline Steel of Grade X65

    NASA Astrophysics Data System (ADS)

    Hashemi, S. H.; Mohammadyani, D.

    2011-01-01

    The mechanical properties of submerged arc weldment (SAW) in gas transportation pipeline steel of grade API X65 (65 ksi yield strength) were investigated. This steel is produced by thermo mechanical control rolled (TMC), and is largely used in Iran gas piping systems and networks. The results from laboratory study on three different regions; i.e. base metal (BM), fusion zone (FZ) and heat affected zone (HAZ) were used to compare weldment mechanical characteristics with those specified by API 5L (revision 2004) standard code. Different laboratory experiments were conducted on test specimens taken from 48 inch outside diameter and 14.3 mm wall thickness gas pipeline. The test results showed a gradient of microstructure and Vickers hardness data from the centerline of FZ towards the unaffected MB. Similarly, lower Charpy absorbed energy (compared to BM) was observed in the FZ impact specimens. Despite this, the API specifications were fulfilled in three tested zones, ensuring pipeline structural integrity under working conditions.

  16. Mechanical Characteristics of Submerged Arc Weldment in API Gas Pipeline Steel of Grade X65

    SciTech Connect

    Hashemi, S. H.; Mohammadyani, D.

    2011-01-17

    The mechanical properties of submerged arc weldment (SAW) in gas transportation pipeline steel of grade API X65 (65 ksi yield strength) were investigated. This steel is produced by thermo mechanical control rolled (TMC), and is largely used in Iran gas piping systems and networks. The results from laboratory study on three different regions; i.e. base metal (BM), fusion zone (FZ) and heat affected zone (HAZ) were used to compare weldment mechanical characteristics with those specified by API 5L (revision 2004) standard code. Different laboratory experiments were conducted on test specimens taken from 48 inch outside diameter and 14.3 mm wall thickness gas pipeline. The test results showed a gradient of microstructure and Vickers hardness data from the centerline of FZ towards the unaffected MB. Similarly, lower Charpy absorbed energy (compared to BM) was observed in the FZ impact specimens. Despite this, the API specifications were fulfilled in three tested zones, ensuring pipeline structural integrity under working conditions.

  17. Structure-property correlation of submerged-arc and gas-metal-arc weldments in HY-100 steel

    NASA Astrophysics Data System (ADS)

    Deb, P.; Challenger, K. D.; Therrien, A. E.

    1991-01-01

    Structure-property relationships of two HY-100 steel weldments prepared by submerged arc (SAW) and gas metal arc (GMAW) welding processes using identical heat input (2.2 kJ mm-1) have been studied. It has been found that submerged arc welded (SAW) HY-100 steel weldments have a lower weld toughness than welds produced by the gas metal arc welding (GMAW) process. Optical, scanning, and transmission electron microscopy were used in conjunction with microhardness traverses to characterize and compare the various microconstituents that are present in the last weld pass of both weldments. TEM examination revealed the presence of coarse upper bainite, B-II bainite, and carbides in a highly dislocated ferrite matrix as well as in ferrite laths in the SAW weldment, while the GMAW weldment exhibited a typical fine low carbon lath martensite, autotempered martensite, and mixed B-II and B-III bainites which occasionally contained small regions of twinned martensite. The measured cooling rate in the SAW was found to be about 40 pct slower than that in GMAW. It was also found in the SAW that the weld metal inclusion number density was about 25 pct greater than that in GMAW. Micro-hardness traverses exhibited significantly lower hardness (about 50 HV) in the SAW weldment compared with GMAW, but the tempered weld metal microhardness in both the weldments was measured about the same, at 250 HV. The ductile-to-brittle transition temperature (DBTT) of both weldments was determined by Charpy impact test. Based on an average energy criterion, the DBTT of the SAW weldment was 323 K (50 °C) higher than that of the GMAW weldment. This difference in fracture resistance is due to the different weld metal microstructures. The different microstructures most probably result from differences in cooling rate subsequent to welding; however, the SAW weld also has a higher inclusion number density which could promote a higher transformation temperature for the austenite.

  18. Structure-property correlation of submerged-arc and gas-metal-arc weldments in HY-100 steel

    NASA Astrophysics Data System (ADS)

    Deb, P.; Challenger, K. D.; Therrien, A. E.

    1987-01-01

    Structure-property relationships of two HY-100 steel weldments prepared by submerged arc (SAW) and gas metal arc (GMAW) welding processes using identical heat input (2.2 kJ mm-1) have been studied. It has been found that submerged arc welded (SAW) HY-100 steel weldments have a lower weld toughness than welds produced by the gas metal arc welding (GMAW) process. Optical, scanning, and transmission electron microscopy were used in conjunction with microhardness traverses to characterize and compare the various microconstituents that are present in the last weld pass of both weldments. TEM examination revealed the presence of coarse upper bainite, B-II bainite, and carbides in a highly dislocated ferrite matrix as well as in ferrite laths in the SAW weldment, while the GMAW weldment exhibited a typical fine low carbon lath martensite, autotempered martensite, and mixed B-II and B-III bainites which occasionally contained small regions of twinned martensite. The measured cooling rate in the SAW was found to be about 40 pct slower than that in GMAW. It was also found in the SAW that the weld metal inclusion number density was about 25 pct greater than that in GMAW. Micro-hardness traverses exhibited significantly lower hardness (about 50 HV) in the SAW weldment compared with GMAW, but the tempered weld metal microhardness in both the weldments was measured about the same, at 250 HV. The ductile-to-brittle transition temperature (DBTT) of both weldments was determined by Charpy impact test. Based on an average energy criterion, the DBTT of the SAW weldment was 323 K (50 °C) higher than that of the GMAW weldment. This difference in fracture resistance is due to the different weld metal microstructures. The different microstructures most probably result from differences in cooling rate subsequent to welding; however, the SAW weld also has a higher inclusion number density which could promote a higher transformation temperature for the austenite.

  19. Structure-property correlation of submerged-arc and gas-metal-arc weldments in HY-100 steel

    NASA Astrophysics Data System (ADS)

    Deb, P.; Challenger, K. D.; Therrien, A. E.

    1987-06-01

    Structure-property relationships of two HY-100 steel weldments prepared by submerged arc (SAW) and gas metal arc (GMAW) welding processes using identical heat input (2.2 kJ mm-1) have been studied. It has been found that submerged arc welded (SAW) HY-100 steel weldments have a lower weld toughness than welds produced by the gas metal arc welding (GMAW) process. Optical, scanning, and transmission electron microscopy were used in conjunction with microhardness traverses to characterize and compare the various microconstituents that are present in the last weld pass of both weldments. TEM examination revealed the presence of coarse upper bainite, B-II bainite, and carbides in a highly dislocated ferrite matrix as well as in ferrite laths in the SAW weldment, while the GMAW weldment exhibited a typical fine low carbon lath martensite, autotempered martensite, and mixed B-II and B-III bainites which occasionally contained small regions of twinned martensite. The measured cooling rate in the SAW was found to be about 40 pct slower than that in GMAW. It was also found in the SAW that the weld metal inclusion number density was about 25 pct greater than that in GMAW. Micro-hardness traverses exhibited significantly lower hardness (about 50 HV) in the SAW weldment compared with GMAW, but the tempered weld metal microhardness in both the weldments was measured about the same, at 250 HV. The ductile-to-brittle transition temperature (DBTT) of both weldments was determined by Charpy impact test. Based on an average energy criterion, the DBTT of the SAW weldment was 323 K (50 °C) higher than that of the GMAW weldment. This difference in fracture resistance is due to the different weld metal microstructures. The different microstructures most probably result from differences in cooling rate subsequent to welding; however, the SAW weld also has a higher inclusion number density which could promote a higher transformation temperature for the austenite.

  20. Reactor Materials Program: Mechanical properties of irradiated Types 304 and 304L stainless steel weldment components

    SciTech Connect

    Sindelar, R.L.; Caskey, G.R. Jr.

    1991-12-01

    The vessels (reactor tanks) of the Savannah River Site nuclear production reactors constructed in the 1950`s are comprised of Type 304 stainless steel with Type 308 stainless steel weld filler. Irradiation exposure to the reactor tank sidewalls through reactor operation has caused a change in the mechanical properties of these materials. A database of as-irradiated mechanical properties for site-specific materials and irradiation conditions has been produced for reactor tank structural analyses and to quantify the effects of radiation-induced materials degradation for evaluating reactor service life. The data has been collected from the SRL Reactor Materials Program (RMP) irradiations and testing of archival stainless steel weldment components and from previous SRL programs to measure properties of irradiated reactor Thermal Shield weldments and reactor tank (R-tank) sidewall material. Irradiation programs of the RMP are designed to quantify mechanical properties at tank operating temperatures following irradiation to present and future tank wall maximum exposure conditions. The exposure conditions are characterized in terms of fast neutron fluence (E{sub n} > 0.1 MeV) and displacements per atom (dpa){sup 3}. Tensile properties, Charpy-V notch toughness, and elastic-plastic fracture toughness were measured for base, weld, and weld heat-affected zone (HAZ) weldment components from archival piping specimens following a Screening Irradiation in the University of Buffalo Reactor (UBR) and following a Full-Term Irradiation in the High Flux Isotope Reactor (HFIR).

  1. Reactor Materials Program: Mechanical properties of irradiated Types 304 and 304L stainless steel weldment components

    SciTech Connect

    Sindelar, R.L.; Caskey, G.R. Jr.

    1991-12-01

    The vessels (reactor tanks) of the Savannah River Site nuclear production reactors constructed in the 1950's are comprised of Type 304 stainless steel with Type 308 stainless steel weld filler. Irradiation exposure to the reactor tank sidewalls through reactor operation has caused a change in the mechanical properties of these materials. A database of as-irradiated mechanical properties for site-specific materials and irradiation conditions has been produced for reactor tank structural analyses and to quantify the effects of radiation-induced materials degradation for evaluating reactor service life. The data has been collected from the SRL Reactor Materials Program (RMP) irradiations and testing of archival stainless steel weldment components and from previous SRL programs to measure properties of irradiated reactor Thermal Shield weldments and reactor tank (R-tank) sidewall material. Irradiation programs of the RMP are designed to quantify mechanical properties at tank operating temperatures following irradiation to present and future tank wall maximum exposure conditions. The exposure conditions are characterized in terms of fast neutron fluence (E{sub n} > 0.1 MeV) and displacements per atom (dpa){sup 3}. Tensile properties, Charpy-V notch toughness, and elastic-plastic fracture toughness were measured for base, weld, and weld heat-affected zone (HAZ) weldment components from archival piping specimens following a Screening Irradiation in the University of Buffalo Reactor (UBR) and following a Full-Term Irradiation in the High Flux Isotope Reactor (HFIR).

  2. Cryogenic mechanical properties of heavy-section weldment in high-manganese austenitic steel

    SciTech Connect

    Matsumoto, O.; Tsuchiyama, T.; Hada, S.

    1997-06-01

    Cryogenic mechanical properties of a heavy-section weldment of high-manganese austenitic steel for the structure of superconducting magnet were evaluated, The heavy-section weld joint with a 200 mm thickness was manufactured by gas tungsten arc welding (GTAW) process using 21Mn-13Cr-5Ni-0.2N-B steel weld material. No cracks were observed in the weld metal. Tensile property and fracture toughness were tested at 4 K. The yield strength and the fracture toughness value, K{sub Ic}(J), were 1223 - 1278 MPa and 181{approximately} 201 MPam{sup {1/2}} in the weld metal, respectively.

  3. Effects of welding on weldment mechanical performance in two austenitic steels

    SciTech Connect

    Strum, M.J.

    1982-06-01

    The effect of autogenous gas-tungsten arc-welding on the mechanical performance of two austenitic steels has been evaluated for cable jackets of force-cooled superconductor coils. The original candidate material was Nitronic 40, a nitrogen-strengthened stainless steel. The in-situ reaction heat treatment at 700/sup 0/C necessary for the formation of the superconducting A15 phase results in severe degradation of the cryogenic tensile ductility in the weld metal. The search for an alternate material led to JBK-75, a modified A-286 type ..gamma..' precipitation hardening iron-based superalloy. Observations of a tensile strength mismatch between base metal and the weaker weld metal in JBK-75 prompted a study into the aging response in weldments of this alloy. Localized strain through slip step traces show an easy path of deformation within the solidification structure. Weldment strength varies with grain size. It was found that through post-weld annealing treatments at 950/sup 0/C, prior to aging, weldment hardness levels can be matched. However, although increased strength levels are obtained in the weld metal, concomitant decreases in base metal strengths are suffered, presumably due to observed grain growth. 24 figures, 9 tables.

  4. A fundamental analysis of low frequency impedance phenomenon: Application to hydrogen content assessment of coated linepipe steel weldments

    SciTech Connect

    Koenig, K.; Olson, D. L.; Mishra, B.; Lasseigne, A. N.; Jackson, J. E.

    2011-06-23

    Nondestructive hydrogen content assessment of coated linepipe steel weldments via low frequency impedance measurements has been realized both in the laboratory and the field. A fundamental analysis of the plausibility of localized hydrogen-induced lattice strain detection in linepipe steel through low frequency impedance measurements is presented. Theoretical explanations of low frequency impedance measurements include free electron theory, quantum mechanics, and RKKY theory.

  5. Characterization of GTA weldments in 10Ni-8CO-2Cr-1MO steel

    NASA Technical Reports Server (NTRS)

    Stonesifer, F. R.; Smith, H. L.

    1972-01-01

    This study of 10Ni-8Co-2Cr-1Mo steel includes evaluations of tensile, impact, hardness, fracture toughness properties, and metallographic features. Base plate and three weldments in one-inch thicknesses were examined to compare as-welded properties with those obtained after reaging, and results of welding the 10%Ni alloy with 9-4-20 wire as opposed to a matching weld wire composition. Critical crack sizes are calculated for the material. The most desirable weld properties are obtained using the matching weld wire and a reaging cycle. However, the improvement gained through reaging is probably not sufficient to justify the additional cost for most practical applications.

  6. Effects of W on microstructure and high-temperature oxidation behavior of ferritic stainless steel weldment

    NASA Astrophysics Data System (ADS)

    Ji, Yijie; Xie, Yuye; Zhu, Shuangchun; Yan, Biao

    2017-07-01

    With the promotion of fuel economy policy and automobile lightweight concept, ferritic stainless steels applied in vehicles’ exhaust hot end systems have been developed. This paper simulated the high-temperature environment at which the automobile exhaust system serviced in for high-temperature corrosion. Kinetic curves were conducted in isothermal environments at 1000∘C. X-ray diffraction, scanning electron microscope and energy dispersive spectrometer were used to study the oxidation behavior of ferritic stainless steels and the effects of tungsten (W) addition. The results show that, with increasing oxidation time, the rate of weight gains increase and the main failure is spalling of surface oxide layer. The addition of W has a complicated effect on the oxidation behavior of ferritic stainless steel weldment.

  7. High-Mn steel weldment mechanical properties at 4 K

    SciTech Connect

    Chan, J.W.; Sunwoo, A.J.; Morris, J.W. Jr.

    1988-06-01

    Advanced high-field superconducting magnets of the next generation of magnetic confinement fusion devices will require structural alloys with high yield strength and high toughness at cryogenic temperatures. Commercially available alloys used in the current generation of magnets, such as 300 series stainless steels, do not have the required properties. N-strengthened, high-Mn alloys meet base plate requirements in the as-rolled condition. However, the property changes associated with weld microstructural and chemical changes in these alloys have not been well characterized. In this work welding induced cryogenic mechanical property changes of an 18Mn-16Cr-5Ni-0.2N alloy are correlated with as-solidified weld microstructures and chemistries. 30 refs., 12 figs., 3 tabs.

  8. Development of ferritic weldments for grain-refined ferritic steels for 4. 2K service

    SciTech Connect

    Kim, H.J.

    1982-01-01

    The weldability of grain-refined ferritic nickel steels designed for structural use in liquid helium was investigated. Plates of interstitial-free Fe-12Ni-0.25Ti alloy and carbon-containing 9Ni steel were welded with 14Ni ferritic fillers using a gas tungsten arc welding (GTAW) process with pure argon gas shielding. The ferritic weldments made have a strength closely matching those of the base plates without a significant loss in base metal toughness at temperatures as low as 4.2K. The comparable toughness obtained in the welded region is attributed to three factors; the defect-free weldment, the chemical cleanliness of the GTAW weld deposit, and the in-process formation of an appropriate microstructure in the welded region. Special emphasis in this study was placed on changes in microstructures with respect to the characteristic of the weld thermal cycles and the effect of the resultant microstructures on low temperature toughness. In the heat-affected zone (HAZ) of multipass welded 9Ni steel, the retained (or precipitated) austenite is removed by the weld heat cycles but the sequential rapid heat cycles to successively lower peak temperatures associated with succeeding weld passes re-establish high toughness by sequentially refining the grain size and gettering carbon in the form of cementite precipitates. On the other hand, the high toughness in the HAZ of the 12Ni alloy and in the weld deposit is a direct consequence of repeated grain refinement through the overlapped austenitizing cycles and is not affected by the tempering cycles because of the carbon-free nature of these materials.

  9. The effects of sulfate reducing bacteria on stainless steel and Ni-Cr-Mo alloy weldments

    SciTech Connect

    Petersen, T.A.; Taylor, S.R.

    1995-10-01

    Previous research in this laboratory demonstrated a direct correlation between alloy composition and corrosion susceptibility of stainless steel and Ni-Cr-Mo alloy weldments exposed to lake water augmented with sulfate reducing bacteria (SRB). It was shown that lake water containing an active SRB population reduced the polarization resistance (R{sub p}) on all alloys studied including those with 9% Mo. In addition, preliminary evidence indicated that edge preparation and weld heat input were also important parameters in determining corrosion performance. This prior research, however, looked at ``doctored`` weldments in which the thermal oxide in the heat affected zone was removed. The objectives of the research presented here are to further confirm these observations using as-received welds. The materials examined (listed in increasing alloy content) are 1/4 inch thick plates of 316L, 317L, AL6XN (6% Mo), alloy 625 clad steel, alloy 625, and alloy 686. Materials were welded using the tungsten inert gas (TIG) process in an argon purged environment. In addition, 317L was welded in air to test oxide effects. All samples were prepared for welding by grinding to a V-edge, except the 625 clad steel samples which were prepared using a J-edge. Electrochemical performance of welded samples was monitored in four glass cells which could each allow exposure of 8 samples to the same environment. Two cells contained lake water inoculated with SRS, and two cells contained sterilized lake water. The open circuit potential (E{sub oc}) and R{sub p} was used to correlate corrosion susceptibility and bacterial activity with alloy composition and welding parameters.

  10. Investigation of the stress corrosion cracking of duplex stainless steel weldments in sour conditions

    SciTech Connect

    Schofield, M.J.; Bradshaw, R.; Cottis, R.A.

    1995-10-01

    Duplex stainless steels are increasingly widely used in the oil and gas production industry for a variety of applications. The stress corrosion cracking (SCC) behavior of wrought material is reasonably well understood, and limits of use are placed upon these alloys in NACE MR0175, for sour service. However, the SCC behavior of weldments is less well understood, and this has limited the use of welded material in H{sub 2}S-containing conditions. The SCC resistance of duplex stainless steels is influenced by their microstructure as well as their chemical composition and the objective of the research reported in this paper is to investigate the SCC behavior of welded 22%Cr and 25%Cr alloys in a simulated oilfield environment. Mechanized orbital TIG was used to butt weld 168mm outside diameter tubes. The shielding gas contained nitrogen additions of up to 10% (in the case of UNS S32760) and 7% (in the case of UNS S31803). Slow strain rate testing (SSRT) was conducted on cross-weld specimens in sodium chloride solutions overpressured with varying partial pressures of H{sub 2}S and CO{sub 2}. The SSRT results, in terms of ductility parameters and secondary cracking, are correlated with fractography and metallurgical examination of crack morphology in order to establish the effects of the welding process and the nitrogen content of the shielding gas. It was found that the nitrogen uptake from the shielding gas has a detrimental effect on SCC resistance of duplex stainless steel weldments. While this effect is only modes, it is in direct contrast to the beneficial effect it has on pitting corrosion resistance.

  11. Stationary and quasistationary models of carbon redistribution in austenitic steel weldments: II. Polycomponent systems

    NASA Astrophysics Data System (ADS)

    Kučera, Jar; Kozák, V.; Million, B.; Stránský, K.

    1986-04-01

    In this IInd part of our paper (Czech. J. Phys. B 35 (1985) 1355) the analysis of carbon uphill diffusion data is presented. The analysed data were measured in the polycomponent steel weldments. All of the data satisfy well the conditions for stationary model application. On the basis of the present analysis the carbon diffusivities ( D {1/*}) appertaining to a non-alloyed austenite, the activity (ɛ{C/s}) and diffusion ( β {C/s}) interaction coefficients are evaluated. A “Si anomaly” in Darken's experiments is observed and discussed. On the contrary to the other substitutional elements Mn, Cr and Mo, which decrease simultaneously C-activity and C-diffusivity, silicon increases the carbon activity and, at the same time, decreases its diffusivity in the Fe-C-Xs austenitic solid solutions.

  12. Fundamental studies of hydrogen attack in carbon-0.5molybdenum steel and weldments applied in petroelum and petrochemical industries

    NASA Astrophysics Data System (ADS)

    Liu, Peng

    High temperature hydrogen attack (HTHA) is a form of surface decarburization, internal decarburization, and/or intergranular cracking in steels exposed to high temperature (>400°F) and high hydrogen pressure. Hydrogen attack is an irreversible process which can cause permanent damage resulting in degradation of mechanical properties and failures such as leakage, bursting, fire, and/or explosion. The continuous progression of hydrogen attack in C-0.5Mo steel and weldments below the C-0.5Mo Nelson Curve has caused a significant concern for the integrity and serviceability of C-0.5Mo steel utilized for pressure vessels and piping in the petroleum refinery and petrochemical industries. A state-of-the-art literature review was implemented to provide a comprehensive overview of the published research efforts on hydrogen attack studies. The evolution of "Nelson Curves" for carbon steel, C-0.5Mo, and Cr-Mo steels was historically reviewed in regard to design applications and limitations. Testing techniques for hydrogen attack assessment were summarized under the categories of hydrogen exposure testing, mechanical evaluation, and dilatometric swelling testing. In accord with the demands of these industries, fundamental studies of hydrogen attack in C-0.5Mo steel and weldments were accomplished in terms of quantitative methodologies for hydrogen damage evaluation; hydrogen damage assessment of service exposed weldments and autoclave exposed materials; effects of carbon and alloying elements, heat treatments, hot and cold working, welding processes and postweld heat treatment (PWHT) on hydrogen attack susceptibility; development of continuous cooling transformation (CCT) diagrams for C-0.5Mo base metals and the coarse grained heat-affected zone (CGHAZ); carbide evaluation for the C-0.5Mo steel after service exposure and heat treatment; methane evolution by the reaction of hydrogen and carbides; hydrogen diffusion and methane pressure through the wall thickness of one

  13. Influence of repair welding of aged 18Ni 250 maraging steel weldments on tensile and fracture properties

    SciTech Connect

    Sinha, P.P.; Arumugham, S.; Nagarajan, K.V. . Materials and Metallurgy Group)

    1993-08-01

    The effects of repair welding on tensile strength and fracture toughness of aged weldments of 18 Ni 250-grade maraging steel have been studied. It has been established that aged weldments in the steel can be repaired and approximately 95% of the tensile strength of the initial welds could be achieved by postrepair aging treatment. Also, the repairs had practically no effect on the fracture toughness (K[sub IC]) of the weldment. These results have been discussed in terms of microstructural conditions in the various affected and unaffected zones of the initial weld. One important inference that emerges from the mechanical properties-microstructural correlation in the study is that (K[sub IC]) of the weld is independent of the gross microstructural features of the dendritic size and shapes in the ranges observed in this study. It has, however, been cautioned that the above statement is not valid in cases in which heavy segregation occurs along the interdendritic boundaries resulting in heavily banded microstructure. This can result from faulty weld parameters such as excessive heat input. A second aging to recover the mechanical properties of the repaired zone has additional beneficial effects on tensile strengths and helps in maintaining fracture toughness to the original level of the initial weld.

  14. Evaluation of weldments in Type 21-6-9 stainless steel for Compact Ignition Tokamak structural applications: Phase 1

    SciTech Connect

    Alexander, D.J.; Goodwin, G.M.; Bloom, E.E.

    1991-06-01

    Primary design considerations for the Compact Ignition Tokamak toroidal field-coil cases are yield strength and toughness in the temperature range from 77 to 300 K. Type 21-6-9 stainless steel, also still known by its original Armco Steel Company trade name Nitronic 40, is the proposed alloy for this application. It has high yield strength and usually adequate base metal toughness, but weldments in thick sections have not been adequately characterized in terms of mechanical properties or hot-cracking propensity. In this study, weldability of the alloy in heavy sections and the mechanical properties of the resultant welds were investigated including tensile yield strength and Charpy V-notch toughness at 77 K and room temperature. Weldments were made in four different base metals using seven different filler metals. None of the weldments showed any indication of hot-cracking problems. All base metals, including weldment heat-affected zones, were found to have adequate strength and impact toughness at both test temperatures. Weld metals, on the other hand, except ERNiCr-3 and ENiCrFe-3 had impact toughnesses of less than 67 J at 77 K. Inconel 82 had an average weld metal impact toughness of over 135 J at 77 K, and although its strength at 77 K is less than that of type 21-6-9 base metal, at this point it is considered to be the first-choice filler metal. Phase 2 of this program will concentrate on composition refinement and process/procedure optimization for the generic ERNiCr-3 composition and will generate a design data base for base and weld metal, including tensile, fracture toughness, and crack growth rate data.

  15. Microstructure, Composition, and Impact Toughness Across the Fusion Line of High-Strength Bainitic Steel Weldments

    NASA Astrophysics Data System (ADS)

    Lan, Liangyun; Kong, Xiangwei; Chang, Zhiyuan; Qiu, Chunlin; Zhao, Dewen

    2017-06-01

    This paper analyzed the evolution of microstructure, composition, and impact toughness across the fusion line of high-strength bainitic steel weldments with different heat inputs. The main purpose was to develop a convenient method to evaluate the HAZ toughness quickly. The compositions of HAZ were insensitive to higher contents of alloy elements (e.g., Ni, Mo) in the weld metal because their diffusion distance is very short into the HAZ. The weld metal contained predominantly acicular ferrite at any a heat input, whereas the main microstructures in the HAZ changed from lath martensite/bainite to upper bainite with the increasing heat input. The evolution of HAZ toughness in relation to microstructural changes can be revealed clearly combined with the impact load curve and fracture morphology, although the results of impact tests do not show an obvious change with heat input because the position of Charpy V notch contains the weld metal, HAZ as well as a part of base metal. As a result, based on the bead-on-plate welding tests, the welding parameter affecting the HAZ toughness can be evaluated rapidly.

  16. Microstructure, Composition, and Impact Toughness Across the Fusion Line of High-Strength Bainitic Steel Weldments

    NASA Astrophysics Data System (ADS)

    Lan, Liangyun; Kong, Xiangwei; Chang, Zhiyuan; Qiu, Chunlin; Zhao, Dewen

    2017-09-01

    This paper analyzed the evolution of microstructure, composition, and impact toughness across the fusion line of high-strength bainitic steel weldments with different heat inputs. The main purpose was to develop a convenient method to evaluate the HAZ toughness quickly. The compositions of HAZ were insensitive to higher contents of alloy elements ( e.g., Ni, Mo) in the weld metal because their diffusion distance is very short into the HAZ. The weld metal contained predominantly acicular ferrite at any a heat input, whereas the main microstructures in the HAZ changed from lath martensite/bainite to upper bainite with the increasing heat input. The evolution of HAZ toughness in relation to microstructural changes can be revealed clearly combined with the impact load curve and fracture morphology, although the results of impact tests do not show an obvious change with heat input because the position of Charpy V notch contains the weld metal, HAZ as well as a part of base metal. As a result, based on the bead-on-plate welding tests, the welding parameter affecting the HAZ toughness can be evaluated rapidly.

  17. Finite element analysis of type IV cracking in 2.25Cr-1Mo steel weldment based on micro-mechanistic approach

    NASA Astrophysics Data System (ADS)

    Goyal, Sunil; Laha, K.; Chandravathi, K. S.; Parameswaran, P.; Mathew, M. D.

    2011-08-01

    Creep studies were carried out on 2.25Cr-1Mo steel base metal and its fusion-welded weldments at 823 K over the stress range 100-240 MPa. The weldment possessed lower creep rupture strength than the base metal due to type IV failure at the outer edge of the heat-affected zone (HAZ). Premature failure of the weldment was associated with pronounced creep cavitation accompanied with localized creep deformation in the soft intercritical region of the HAZ that was sandwiched between relatively higher creep deformation-resistant microstructural regions. The cavitation was associated with coarse intergranular precipitates in the intercritical region of the HAZ. The type IV cracking in the intercritical region of the HAZ was found to initiate deep inside the weldment and propagate towards the specimen surface. Finite element analysis of stress and strain distributions across the weldment was carried out considering the micro-mechanical strength inhomogeneity across it to explain the observed features of type IV cracking. The estimated higher von-Mises and principal stresses deep inside the intercritical region of the HAZ of the weldment led to the localized creep deformation and preferential cavity nucleation and growth, resulting in type IV failure of the weldment. The role of intergranular precipitate particles in the intercritical region of the HAZ in facilitating creep cavity nucleation by the exhaustion of creep ductility of the material close to the precipitate was corroborated from finite element analysis of stress and strain distribution around the precipitates.

  18. Fatigue crack growth behavior of pressure vessel steels and submerged arc weldments in a high-temperature pressurized water environment

    SciTech Connect

    Liaw, P.K.; Logsdon, W.A.; Begley, J.A. . Research and Development Center)

    1989-10-01

    The fatigue crack growth rate (FCGR) properties of SA508 Cl 2a and SA533 Gr A Cl 2 pressure vessel steels and the corresponding automatic submerged arc weldments were developed in a high-temperature pressurized water (HPW) environment at 288{degrees} C (550{degrees} F) and 7.2 MPa (1044 psi) at load ratios of 0.20 and 0.50. The properties were generally conservative compared to American Society of Mechanical Engineers Section XI water environment reference curve. The growth rate of fatigue cracks in the base materials, however, was faster in the HPW environment than in a 288{degrees} C (550{degrees} F) base line air environment. The growth rate of fatigue cracks in the two submerged arc weldments was also accelerated in the HPW environment but to a lesser degree than that demonstrated by the base materials. In the air environment, fatigue striations were observed, independent of material and load ratio, while in the HPW environment, some intergranular facets were present. The greater environmental effect on crack growth rates displayed by the base materials compared the weldments attributed to a different sulfide composition and morphology.

  19. Microstructures and mechanical properties of dissimilar Nd:YAG laser weldments of AISI4340 and AISI316L steels

    NASA Astrophysics Data System (ADS)

    Sufizadeh, A. R.; Akbari Mousavi, S. A. A.

    2017-05-01

    This paper presents studies on the microstructure and mechanical properties of AISI 316L stainless steel and AISI 4340 low-alloy steel joints formed by the Nd:YAG laser welding process. The weld microstructures and heat affected zones (HAZs) were investigated. Austenitic microstructures were observed in all of the samples. The sizes of the HAZs changed when the heat input was varied, and the 316L sides exhibited a larger HAZ. The cooling rates were calculated by measuring the solidification dendrite arm spacing. It is shown that high cooling rates lead to an austenitic microstructure. Tensile tests were carried out, and the results revealed the tensile properties of both the base metals and the weldments. The hardness test results agreed well with the tensile test results.

  20. Effect of artificial aging on the microstructure of weldment on API 5L X-52 steel pipe

    SciTech Connect

    Vargas-Arista, B. . E-mail: bvarista26@yahoo.com.mx; Hallen, J.M. . E-mail: j_hallen@yahoo.com; Albiter, A. . E-mail: aalbiter@imp.mx

    2007-08-15

    The effects of artificial aging on the microstructure in the weldment of an API 5L X-52 steel pipe were studied. Aging was performed at 250 deg. C over a period of 1000 h and values were recorded at every 100 h intervals. Transmission electron microscopy observations showed precipitation strengthening from nearly circular Nb-C containing nanoparticles for the base metal and heat affected zone, and cementite for the weld metal. The largest amount of precipitation in the weldment zone was obtained at 500 h, due to peak-aging, which showed the highest particle density. The weld metal was more susceptible to aging, exhibiting the highest increase in precipitation at 500 h, followed by the heat affected zone. After 500 h, the deterioration in the microstructure was caused by the coarsening of particles due to over-aging. The base metal showed the larger increment in particle size after 900 h of aging accompanied by a bigger decrease in fine particles than in the weld metal.

  1. Thick-section weldments in 21-6-9 and 316LN stainless steel for fusion energy applications

    SciTech Connect

    Alexander, D.J.; Goodwin, G.M.

    1991-01-01

    The Burning Plasma Experiment (BPX), formerly known as the Compact Ignition Tokomak, will be a major advance in the design of a fusion reactor. The successful construction of fusion reactors will require extensive welding of thick-section stainless steel plates. Severe service conditions will be experienced by the structure. Operating temperatures will range from room temperature (300 K) to liquid nitrogen temperature (77 K), and perhaps even lower. The structure will be highly stressed, and subject to sudden impact loads if plasma disruptions occur. This demands a combination of high strength and high toughness from the weldments. Significant portions of the welding will be done in the field, so preweld and postweld heat treatments will be difficult. The thick sections to be welded will require a high deposition rate process, and will result in significant residual stresses in the materials. Inspection of these thick sections in complex geometries will be very difficult. All of these constraints make it essential that the welding procedures and alloys be well understood, and the mechanical properties of the welds and their heat-affected zones must be adequately characterized. The candidate alloy for structural applications in the BPX such as the magnet cases was initially selected as 21-6-9 austenitic stainless steel, and later changed to 316LN stainless steel. This study examined several possible filler materials for thick-section (25 to 50 mm) weldments in these two materials. The tensile and Charpy V-notch properties were measured at room temperature and 77 K. The fracture toughness was measured for promising materials.

  2. Role of gaseous environment and secondary precipitation in microstructural degradation of Cr-Mo steel weldments at high temperatures

    SciTech Connect

    Raman, R.K.S.

    1999-08-01

    This study is an attempt to understand the combined role of variations in oxidizing environment and secondary precipitation, in the microstructurally different regions of a standard Cr-Mo steel weldment, on the intensity of internal oxidation during high-temperature oxidation in air and steam environments. Samples of the weld-metal, heat affected zone (HAZ), and base-metal regions were separated from the weldment of 2.25Cr-1Mo steel and oxidized in the environments of air and steam at 873 K. The oxide scales and underlying subscales were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, and electron probe microanalysis (EPMA). Extensive internal oxidation and oxidation-induced void formation in the subscale zone and grain-boundary cavitation in the neighboring region were found to occur during oxidation in the steam environment. However, the internal oxidation and void formation were much more extensive in the subscale regions of the HAZ than in the subscales of the weld-metal and base-metal regions. As a result, the alloy matrix in the area neighboring the subscale region of the HAZ specimen suffered extensive grain-boundary cavitation. This behavior has been attributed to a rather specific combination and complex interplay of the environment, alloy microstructure, oxidizing temperature, and nature of the resulting external scale in causing and sustaining internal oxidation. The article also discusses the role of internal oxidation-assisted microstructural degradation in deteriorating the service life of components of 2.25 Cr-1Mo steel.

  3. PERFORMANCE IMPROVEMENT OF CREEP-RESISTANT FERRITIC STEEL WELDMENTS THROUGH THERMO-MECHANICAL TREATMENT AND ALLOY DESIGN

    SciTech Connect

    Yamamoto, Yukinori; Babu, Prof. Sudarsanam Suresh; Shassere, Benjamin; Yu, Xinghua

    2016-01-01

    Two different approaches have been proposed for improvement of cross-weld creep properties of the high temperature ferrous structural materials for fossil-fired energy applications. The traditional creep strength-enhanced ferritic (CSEF) steel weldments suffer from Type IV failures which occur at the fine-grained heat affected zone (FGHAZ). In order to minimize the premature failure at FGHAZ in the existing CSEF steels, such as modified 9Cr-1Mo ferritic-martensitic steels (Grade 91), a thermo-mechanical treatment consisting of aus-forging/rolling and subsequent aus-aging is proposed which promotes the formation of stable MX carbonitrides prior to martensitic transformation. Such MX remains undissolved during welding process, even in FGHAZ, which successfully improves the cross-weld creep properties. Another approach is to develop a new fully ferrtic, creep-resistant FeCrAl alloy which is essentially free from Type IV failure issues. Fe-30Cr-3Al base alloys with minor alloying additions were developed which achieved a combination of good oxidation/corrosion resistance and improved tensile and creep performance comparable or superior to Grade 92 steel.

  4. Microstructures relevant to brittle fracture initiation at the heat-affected zone of weldment of a low carbon steel

    SciTech Connect

    Ohya, K.; Kim, J.; Yokoyama, K.; Nagumo, M.

    1996-09-01

    Charpy toughness of the heat-affected zone (HAZ) of weldment of a low carbon steel has been investigated by means of an instrumented Charpy test and fractographic analysis. Microstructures were varied with thermal cycles simulating double-pass welding. The ductile-brittle transition temperature is the most deteriorated at an intermediate second-cycle heating temperature. The origin of the difference in the transition temperatures has been analyzed to exist in the brittle fracture initiation stage. Fractographic examination correlating with microstructural features has revealed that the brittle fracture initiation site is associated with the intersection of bainitic ferrite areas with different orientations rather than the martensite-austenite constituents. The role of the constraint of plastic deformation on the brittle fracture initiation is discussed.

  5. Fracture and crack growth resistance studies of 304 stainless steel weldments relating to retesting of cryogenic vessels

    NASA Technical Reports Server (NTRS)

    Hall, L. R.; Finger, R. W.

    1972-01-01

    Fracture and crack growth resistance characteristics of 304 stainless steel alloy weldments as relating to retesting of cryogenic vessels were examined. Welding procedures were typical of those used in full scale vessel fabrication. Fracture resistance survey tests were conducted in room temperature air, liquid nitrogen and liquid hydrogen. In air, both surface-flawed and center-cracked panels containing cracks in weld metal, fusion line, heat-affected zone, or parent metal were tested. In liquid nitrogen and liquid hydrogen, tests were conducted using center-cracked panels containing weld centerline cracks. Load-unload, sustained load, and cyclic load tests were performed in air or hydrogen gas, liquid nitrogen, and liquid hydrogen using surface-flawed specimens containing weld centerline cracks. Results were used to evaluate the effectiveness of periodic proof overloads in assuring safe and reliable operation of over-the-road cryogenic dewars.

  6. Correlation of inclusion size and chemistry with weld metal composition and microstructure arc weldments of high strength steels

    NASA Astrophysics Data System (ADS)

    Eakes, Mark W.

    1994-12-01

    Non-metallic inclusions are crucial to the development of acicular ferrite, the desired microstructure for optimal strength and toughness in weld metal. This study focused on obtaining correlation between the size and chemistry of inclusions and weld metal properties, especially the amount of acicular ferrite, in Gas Metal Arc (GMA) and Submerged Arc (SA) weldments in HY-100 and HSLA-100 steel. A strong correlation was found between the amount of acicular ferrite, flux basicity and inclusion composition and volume fraction in SAW weld metal samples. An index developed to consider the effect of chemistry and volume fraction of inclusions on acicular ferrite showed good correlation. The GMA weld samples were found to contain less acicular ferrite than the SAW samples, principally because of their lower oxygen content. However, it was again found possible to correlate inclusion chemistry and volume fraction with acicular ferrite formation. Unfortunately, the large amount of data scatter precluded the development of an index in this case.

  7. Influence of Alloy Content and Prior Microstructure on Evolution of Secondary Phases in Weldments of 9Cr-Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Thomas Paul, V.; Sudha, C.; Saroja, S.

    2015-08-01

    9Cr-Reduced Activation Ferritic-Martensitic steels with 1 and 1.4 wt pct tungsten are materials of choice for the test blanket module in fusion reactors. The steels possess a tempered martensite microstructure with a decoration of inter- and intra-lath carbides, which undergoes extensive modification on application of heat. The change in substructure and precipitation behavior on welding and subsequent thermal exposure has been studied using both experimental and computational techniques. Changes i.e., formation of various phases, their volume fraction, size, and morphology in different regions of the weldment due to prolonged thermal exposure was influenced not only by the time and temperature of exposure but also the prior microstructure. Laves phase of type Fe2W was formed in the high tungsten steel, on aging the weldment at 823 K (550 °C). It formed in the fine-grained heat-affected zone (HAZ) at much shorter durations than in the base metal. The accelerated kinetics has been understood in terms of enhanced precipitation of carbides at lath/grain boundaries during aging and the concomitant depletion of carbon and chromium and enrichment of tungsten in the vicinity of the carbides. Therefore, the fine-grained HAZ in the weldment was identified as a region susceptible for failure during service.

  8. Mechanism of microstructural deterioration preceding type IV failure in weldment of Mod.9Cr-1Mo steel

    NASA Astrophysics Data System (ADS)

    Lee, J. S.; Maruyama, K.

    2015-07-01

    The objective of the present study was to elucidate the cavity formation mechanism of Type IV failure in weldment of advanced high-Cr ferritic steels. A welded joint of Mod.9Cr-1Mo steel was creep tested at 650 °C under 83 MPa. The creep fracture mode was Type IV failure in the heat affect zone (HAZ). Microstructural characterization of the HAZ and the fracture location, were performed before and after the creep test. The Type IV cracking started in the inter-critical HAZ at a location having fine grain size and coarse M23C6 precipitates. Moreover, the grain structure of the inter-critical HAZ, which is a mixture of soft α and hard α' grains, plays an important role in the stage of cavity evolution into a crack along the grain boundary. This is due to the heterogeneity of local strain between the two kinds of grains. By a synergistic effect of the strain concentration, the coarse precipitates and heterogeneous strain distribution among grains in the inter critical HAZ, facilitates the nucleation and growth of creep cavities, resulting in premature failure of welded joints.

  9. Effect of tempering on the strength and toughness of 2 1/4 Cr-1 Mo steel weldments

    SciTech Connect

    Swindeman, R.W.; Nanstad, R.K.; King, J.F.; Stelzman, W.J.

    1984-10-01

    Hardness, tensile, and Charpy V-notch impact tests were performed on samples prepared from submerged-arc weldments of 2 1/4 Cr-1 Mo steel. The intent was to explore the effect of tempering on the strength and ductility of the alloy in order to assess the potential for developing a high-strength alloy for gasifier pressure vessel service to 300/sup 0/C. Results indicated that good weld metal strength and toughness could be achieved. Limited work on the heat-affected zone of the base metal did not reveal any major problems. We concluded that qualification of a quenched-and-tempered version of 2 1/4 Cr-1 Mo steel with ultimate strength in the range 620 to 758 MPa (90 to 110 ksi) will be difficult for welded gasifier pressure vessels because of a narrow time-temperature tempering window. A minimum ultimate strength requirement of 585 MPa (85 ksi), however, would be much easier to achieve because of the larger window.

  10. The Effect of Welding Process on the Microstructure of HY-130 Steel Weldments

    DTIC Science & Technology

    1988-12-01

    microstructure and hardness were observed in the HA Z of the two weldments. --, ,- 𔃺! Distribution/Availability of Abstract 21 Abstract security Classification S...Traverses 27 420- 400- SAWi J I ED2 380- S 4 z [ 360 340 rr’l 4’ 320- S1 . 300 • 2 3 280 • - 2 4 6 8 10 12 DISTANCE FROM TOP OF LAST WELD PASS (mm...Figure 9. Mlcrohardness Profiles Across the Center of the Weld Metal 28 420- D 400C wD G M A o 380 A2 m 1 SAW D C z 360 S5 Q3 B340 B ftS2 ELuJ 320- _A

  11. Fracture initiation by local brittle zones in weldments of quenched and tempered structural alloy steel plate

    SciTech Connect

    Kenney, K.L.; Reuter, W.G.; Reemsnyder, H.S.; Matlock, D.K.

    1997-12-31

    The heat-affected zone (HAZ) embrittlement of an API 2Y Grade 50T quenched and tempered offshore structural steel plate, welded by the submerged-arc process at a heat input of 4.5 kJ/mm, was investigated from the viewpoint of identifying the local brittle zone (LBZ) microstructure and the metallurgical factors associated with its formation. Microstructural and fractographic analysis showed the LBZ microstructure to be dual phase martensite-austenite (M-A) constituent. The formation of M-A constituent was found to be related to microstructural banding of the hot-rolled base plate. When the banded base plate was welded, M-A constituent formed only within the band microstructure which penetrated the intercritically-reheated coarse-grain HAZ (IRCGHAZ). The chemistry of the band microstructure in conjunction with the thermal cycle of the IRCGHAZ provided the critical conditions for the formation of M-A constituent in the API 2Y Grade 50T steel investigated. The influence of local brittle zones (i.e., M-A constituent) on the HAZ fracture toughness was evaluated by means of Crack-Tip Opening Displacement (CTOD) tests. These tests showed the steel to suffer embrittlement when the fatigue precrack sampled an intercritically-reheated coarse-grain HAZ which contained M-A constituent, confirming that M-A constituent is the major microstructural factor controlling the HAZ toughness of this particular steel.

  12. Environmental cracking behavior of submerged arc-welded supermartensitic stainless steel weldments

    NASA Astrophysics Data System (ADS)

    Srinivasan, P. Bala; Sharkawy, S. W.; Dietzel, W.

    2004-04-01

    Supermartensitic stainless steel welds produced by submerged are welding were assessed for their microstructure and properties. Slow strain rate tests conducted on these specimens revealed that both the parent material and the weld metals are susceptible to cracking under conditions of hydrogen (H) charging.

  13. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    SciTech Connect

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  14. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    SciTech Connect

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  15. Effect of notch location on fatigue crack growth behavior of strength-mismatched high-strength low-alloy steel weldments

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Balasubramanian, V.; Nasser, S. Nemat

    2004-12-01

    Welding of high-strength low-alloy (HSLA) steels involves the use of low-strength, equal-strength, and high-strength filler materials (electrodes) compared with the parent material, depending on the application of the welded structures and the availability of filler material. In the present investigation, the fatigue crack growth behavior of weld metal (WM) and the heat-affected zone (HAZ) of undermatched (UM), equally matched (EM), and overmatched (OM) joints has been studied. The base material used in this investigation is HSLA-80 steel of weldable grade. Shielded metal arc welding (SMAW) has been used to fabricate the butt joints. A center-cracked tension (CCT) specimen has been used to evaluate the fatigue crack growth behavior of welded joints, utilizing a servo-hydraulic-controlled fatigue-testing machine at constant amplitude loading (R=0). The effect of notch location on the fatigue crack growth behavior of strength mismatched HSLA steel weldments also has been analyzed.

  16. Study of Residual Stresses and Distortion in Structural Weldments in High-Strength Steels.

    DTIC Science & Technology

    1981-11-30

    extended to include any similar nucleation and growth transformation, such as the ferritic one. As far as the martensite transformation is concerned...provides the typical chemical composition ranges for Ni-Al bronze. A comparison of the mechanical and physical properties of cold rolled Ni-Al bronze...hot rolled AISI-SAE-1035 steel, and cold rolled - copper is shown in Table 4.2 for reference purposes. TABLE 4.1 CHEMICAL COMPOSITION OF Ni-Al BRONZE

  17. Use of Implant Testing to Evaluate the Susceptibility of HY-130 Steel Weldments to Hydrogen Embrittlement.

    DTIC Science & Technology

    1981-12-01

    place the meniscus in the calibrated portion of the burette. The weld specimen was placed under the collection funnel and the evolved hydrogen gas rose...to the top of the silicone-oil meniscus , and was trapped in the burette. Figure 5b shows the entire apparatus. Before hydrogen analysis could be...collection funnel, the silicone-oil meniscus was lowered to the calibrated portion of the burette. Hydrogen analysis specimens were machined from HY-130 steel

  18. Study of Residual Stresses and Distortion in Structural Weldments in High-Strength Steels.

    DTIC Science & Technology

    1982-11-30

    following students worked on this project. In chronological order: Lipsey , M.D. Coneybear, G.W. Mylonas, G.A. Rogalski, W.J. Marby, J.P. LCoumis, G.A...Officers and so their services were furnished at no cost to the project): lipsey , M.D.: Ocean Engineer, and Master of Science in Naval Architecture and...completed: L. Lipsey , M.D., "Investigation of Welding Thermal Strains in High Strength Quenched and Tempered Steel", Ocean Engineer Thesis, M.[.T., June 1978

  19. Investigation into Microstructures of Maraging Steel 250 Weldments and Effect of Post-Weld Heat Treatments

    NASA Astrophysics Data System (ADS)

    Tariq, Fawad; Baloch, Rasheed Ahmed; Ahmed, Bilal; Naz, Nausheen

    2010-03-01

    This study was undertaken to gain a better understanding of microstructures obtained by multipass gas tungsten arc welding in maraging steel grade 250. Metallography and microhardness measurements were carried out on sheet and welded joints in as-welded and post-weld aged conditions. It was found that there was a significant amount of reverted austenite formed on cell boundaries of weld metal after aging at 758-823 K for 3-5 h, and was stable at room temperature. Aging at higher temperatures led to an increase in the continuous network of patchy austenite along the cell boundaries. The reason for the above, in our opinion, is the concentrational heterogeneity which characterizes the microstructure of maraging steel welds. No reverted austenite was observed in as-welded specimens. Solution annealing at 1093 K for 1 h did not completely eliminate the chemical heterogeneity associated with weld structures. However, homogenizing at 1373 K produced homogenous structure that on subsequent aging produces austenite-free lath martensitic structure.

  20. In-Situ Observations of Phase Transformations in the HAZ of 2205 Duplex Stainless Steel Weldments

    SciTech Connect

    Palmer, T A; Elmer, J W; Wong, J

    2001-08-15

    Ferrite ({delta})/austenite ({gamma}) transformations in the heat affected zone (HAZ) of a gas tungsten arc (GTA) weld in 2205 duplex stainless steel are observed in real-time using spatially resolved X-ray diffraction (SRXRD) with high intensity synchrotron radiation. A map showing the locations of the {delta} and {gamma} phases with respect to the calculated weld pool dimensions has been constructed from a series of SRXRD scans. Regions of liquid, completely transformed {gamma}, a combination of partially transformed {gamma} with untransformed {delta}, and untransformed {delta}+{gamma} are identified. Analysis of each SRXRD pattern provides a semi-quantitative definition of both the {delta}/{gamma} phase balance and the extent of annealing which are mapped for the first time with respect to the calculated weld pool size and shape. A combination of these analyses provides a unique real-time description of the progression of phase transformations in the HAZ. Using these real-time observations, important kinetic information about the transformations occurring in duplex stainless steels during heating and cooling cycles typical of welding can be determined.

  1. Influence of Activating Flux and Helium Shielding Gas on an Austenitic Stainless Steel Weldment

    NASA Astrophysics Data System (ADS)

    Huang, Her-Yueh; Yang, Chung-Wei

    2013-06-01

    Activating flux-assisted gas tungsten arc welding (GTAW) is a well-established method for enhancing weld penetration. In GTAW, steel is usually welded with a shielding gas that contains mostly argon. However, pure argon does not provide enough weld penetration. Argon-helium mixtures are inert and a greater concentration of helium would increase the arc voltage and the weld depth-to-width (D/W) ratio. There is a significant level of interest in the interaction between activating flux and shielding gas composition. Weld morphology, arc profile, retained δ ferrite content, angular distortion, and microstructure are extremely important in applying the activating flux combination argon-helium in GTAW; therefore, in this work, all these were studied.

  2. Corrosion Behavior of Pulsed Gas Tungsten Arc Weldments in Power Plant Carbon Steel

    NASA Astrophysics Data System (ADS)

    Kumaresh Babu, S. P.; Natarajan, S.

    2007-10-01

    Welding plays an essential role in fabrication of components such as boiler drum, pipe work, heat exchangers, etc., used in power plants. Gas tungsten arc welding (GTAW) is mainly used for welding of boiler components. Pulsed GTAW is another process widely used where high quality and precision welds are required. In all arc-welding processes, the intense heat produced by the arc and the associated local heating and cooling lead to varied corrosion behavior and several metallurgical phase changes. Since the occurrence of corrosion is due to electrochemical potential gradient developed in the adjacent site of a weld metal, it is proposed to study the effects of welding on the corrosion behavior of these steels. This paper describes the experimental work carried out to evaluate and compare corrosion and its inhibition in SA 516 Gr.70 carbon steel by pulsed GTAW process in HCl medium at 0.1, 0.5, and 1.0 M concentrations. The parent metal, weld metal and heat affected zone are chosen as regions of exposure for the study made at room temperature (R.T.) and at 100 °C. Electrochemical polarization techniques such as Tafel line extrapolation (Tafel), linear polarization resistance (LPR), and ac impedance method have been used to measure the corrosion current. The role of hexamine and mixed inhibitor (thiourea + hexamine in 0.5 M HCl), each at 100 ppm concentration is studied in these experiments. Microstructural observation, surface characterization, and morphology using SEM and XRD studies have been made on samples exposed at 100 °C in order to highlight the nature and extent of film formation.

  3. TRITIUM EFFECTS ON WELDMENT FRACTURE TOUGHNESS

    SciTech Connect

    Morgan, M; Michael Tosten, M; Scott West, S

    2006-07-17

    The effects of tritium on the fracture toughness properties of Type 304L stainless steel and its weldments were measured. Fracture toughness data are needed for assessing tritium reservoir structural integrity. This report provides data from J-Integral fracture toughness tests on unexposed and tritium-exposed weldments. The effect of tritium on weldment toughness has not been measured until now. The data include tests on tritium-exposed weldments after aging for up to three years to measure the effect of increasing decay helium concentration on toughness. The results indicate that Type 304L stainless steel weldments have high fracture toughness and are resistant to tritium aging effects on toughness. For unexposed alloys, weldment fracture toughness was higher than base metal toughness. Tritium-exposed-and-aged base metals and weldments had lower toughness values than unexposed ones but still retained good toughness properties. In both base metals and weldments there was an initial reduction in fracture toughness after tritium exposure but little change in fracture toughness values with increasing helium content in the range tested. Fracture modes occurred by the dimpled rupture process in unexposed and tritium-exposed steels and welds. This corroborates further the resistance of Type 304L steel to tritium embrittlement. This report fulfills the requirements for the FY06 Level 3 milestone, TSR15.3 ''Issue summary report for tritium reservoir material aging studies'' for the Enhanced Surveillance Campaign (ESC). The milestone was in support of ESC L2-1866 Milestone-''Complete an annual Enhanced Surveillance stockpile aging assessment report to support the annual assessment process''.

  4. High-Temperature Corrosion Behavior of Different Regions of Weldment of 2.25Cr-1Mo Steel in SO2 + O2 Atmosphere

    NASA Astrophysics Data System (ADS)

    Ghosh, D.; Shukla, A. K.; Mitra, S. K.; Satpati, B.

    2016-02-01

    This paper investigates the corrosion behavior of different regions of weldment of 2.25Cr-1Mo steel exposed in mixed oxidation and sulfidation (SO2 + O2) environment up to 500 h at 773 K. Microstructural investigation and characterization of oxide scales are done using SEM, TEM, and XRD. The obtained results infer that heat-affected zone corrodes faster than both base and weld metal. The reaction kinetics follows a parabolic growth rate for all regions. The higher corrosion rate of heat-affected zone is attributed to the formation of Cr23C6 secondary precipitates leading to depletion of protective inner scale of the Cr-rich oxide during welding.

  5. Effects of Laser Shock Processing on Morphologies and Mechanical Properties of ANSI 304 Stainless Steel Weldments Subjected to Cavitation Erosion

    PubMed Central

    Zhang, Lei; Lu, Jin-Zhong; Zhang, Yong-Kang; Ma, Hai-Le; Luo, Kai-Yu; Dai, Feng-Ze

    2017-01-01

    Effects of laser shock processing (LSP) on the cavitation erosion resistance of laser weldments were investigated by optical microscope (OM), scanning electron microscope (SEM) observations, roughness tester, micro hardness tester, and X-ray diffraction (XRD) technology. The morphological microstructures were characterized. Cumulative mass loss, incubation period, erosion rate, and damaged surface areas were monitored during cavitation erosion. Surface roughness, micro-hardness, and residual stress were measured in different zones. Results showed that LSP could improve the damage of morphological microstructures and mechanical properties after cavitation erosion. The compressive residual stresses were generated during the process of LSP, which was an effective guarantee for the improvement of the above mentioned properties. PMID:28772652

  6. Irradiation response in weldment and HIP joint of reduced activation ferritic/martensitic steel, F82H

    SciTech Connect

    Hirose, Takanori; Sokolov, Mikhail A; Ando, M.; Tanigawa, H.; Shiba, K.; Stoller, Roger E; Odette, G.R.

    2013-11-01

    This work investigates irradiation response in the joints of F82H employed for a fusion breeding blanket. The joints, which were prepared using welding and diffusion welding, were irradiated up to 6 dpa in the High Flux Isotope Reactor at the Oak Ridge National Laboratory. Post-irradiation tests revealed hardening in weldment (WM) and base metal (BM) greater than 300 MPa. However, the heat affected zones (HAZ) exhibit about half that of WM and BM. Therefore, neutron irradiation decreased the strength of the HAZ, leaving it in danger of local deformation in this region. Further the hardening in WM made with an electron beam was larger than that in WM made with tungsten inert gas welding. However the mechanical properties of the diffusion-welded joint were very similar to those of BM even after the irradiation.

  7. Role of microstructural degradation in the heat affected zone of 2.25Cr-1Mo steel weldments on subscale features during steam oxidation and their role in weld failures

    SciTech Connect

    Raman, R.K.S.

    1998-02-01

    Microstructural degradations in the base metal adjacent to the weld pool, i.e., the heat-affected zone (HAZ), caused during welding of 2.25Cr-1Mo steel, were characterized by electron and optical microscopy of different regions of the weldments. In order to study the influence of the microstructural degradations on scaling kinetics in steam and the resulting subscale features, samples of the base metal, the HAZ, and weld metal specimens were extracted from the weldment and oxidized in an environment of 35 pct steam + nitrogen at 873 K for 10 hours. Oxide scales formed in the three regions and the underlying subscales were characterized using scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). Influence of the free chromium content in the three weldment regions on protective scale formation and on the subscale features has been investigated. As the principal achievement, this study has clearly shown the occurrence of oxidation-induced void formation in the subscale zone and grain boundary cavitation in the neighboring area during steam oxidation of the HAZ. This article also discusses the possible role of oxidation-induced void formation and grain boundary cavitation in the inferior service life of welds in 2.25Cr-1Mo steel components.

  8. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    SciTech Connect

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-15

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld metal.

  9. Fatigue and Fracture-Toughness Characterization of SAW and SMA A537 Class I Ship-Steel Weldments.

    DTIC Science & Technology

    1981-12-01

    Mr. W. N. lannan Mr. Thomas W. Allen Vice President Chief Engineering Officer American Bureau of Shipping Military Se~lift Comand LCdr D. A. Anderson...Dynamics Ship Steel Improvement Program," General Dynamics, Quincey Ship- Building Division, May 17, 1977. 8 0 c" 041L on 0 1 ) 0 0 OD -4 0f C 0 0 0)C; C

  10. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by super duplex filler metal

    SciTech Connect

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-15

    In the present paper, microstructural changes across an as-welded dissimilar austenitic/duplex stainless steel couple welded by a super duplex stainless steel filler metal using gas tungsten arc welding process is characterized with optical microscopy and electron back-scattered diffraction techniques. Accordingly, variations of microstructure, texture, and grain boundary character distribution of base metals, heat affected zones, and weld metal were investigated. The results showed that the weld metal, which was composed of Widmanstätten austenite side-plates and allotriomorphic grain boundary austenite morphologies, had the weakest texture and was dominated by low angle boundaries. The welding process increased the ferrite content but decreased the texture intensity at the heat affected zone of the super duplex stainless steel base metal. In addition, through partial ferritization, it changed the morphology of elongated grains of the rolled microstructure to twinned partially transformed austenite plateaus scattered between ferrite textured colonies. However, the texture of the austenitic stainless steel heat affected zone was strengthened via encouraging recrystallization and formation of annealing twins. At both interfaces, an increase in the special character coincident site lattice boundaries of the primary phase as well as a strong texture with <100> orientation, mainly of Goss component, was observed. - Graphical abstract: Display Omitted - Highlights: • Weld metal showed local orientation at microscale but random texture at macroscale. • Intensification of <100> orientated grains was observed adjacent to the fusion lines. • The austenite texture was weaker than that of the ferrite in all duplex regions. • Welding caused twinned partially transformed austenites to form at SDSS HAZ. • At both interfaces, the ratio of special CSL boundaries of the primary phase increased.

  11. A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part I. the model

    NASA Astrophysics Data System (ADS)

    Hemmer, H.; Grong, Ø.

    1999-11-01

    The present investigation is concerned with modeling of the microstructure evolution in duplex stainless steels under thermal conditions applicable to welding. The important reactions that have been modeled are the dissolution of austenite during heating, subsequent grain growth in the delta ferrite regime, and finally, the decomposition of the delta ferrite to austenite during cooling. As a starting point, a differential formulation of the underlying diffusion problem is presented, based on the internal-state variable approach. These solutions are later manipulated and expressed in terms of the Scheil integral in the cases where the evolution equation is separable or can be made separable by a simple change of variables. The models have then been applied to describe the heat-affected zone microstructure evolution during both thick-plate and thin-plate welding of three commercial duplex stainless steel grades: 2205, 2304, and 2507. The results may conveniently be presented in the form of novel process diagrams, which display contours of constant delta ferrite grain size along with information about dissolution and reprecipitation of austenite for different combinations of weld input energy and peak temperature. These diagrams are well suited for quantitative readings and illustrate, in a condensed manner, the competition between the different variables that lead to structural changes during welding of duplex stainless steels.

  12. Fabrication Flaw Density and Distribution in Piping Weldments

    SciTech Connect

    Doctor, Steven R.

    2009-09-01

    The U.S. Nuclear Regulatory Commission supported the Pacific Northwest National Laboratory (PNNL) to develop empirical data on the density and distribution of fabrication flaws in nuclear reactor components. These data are needed to support probabilistic fracture mechanics calculations and studies on component structural integrity. PNNL performed nondestructive examination inspections and destructive testing on archived piping welds to determine the fabrication flaw size and distribution characteristics of the flaws in nuclear power plant piping weldments. Eight different processes and product forms in piping weldments were studied including wrought stainless steel and dissimilar metal weldments. Parametric analysis using an exponential fit was performed on the data. Results were created as a function of the through-wall size of the fabrication flaws as well as the length distribution. The results are compared and contrasted with those developed for reactor pressure vessel processes and product forms. The most significant findings were that the density of fabrication flaws versus through-wall size was higher in piping weldments than that for the reactor pressure vessel weldments, and the density of fabrication flaws versus through-wall size in both reactor pressure vessel weld repairs and piping weldments were greater than the density in the original weldments. Curves showing these distributions are presented.

  13. Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments

    SciTech Connect

    Unnikrishnan, Rahul; Idury, K.S.N. Satish; Ismail, T.P.; Bhadauria, Alok; Shekhawat, S.K.; Khatirkar, Rajesh K.; Sapate, Sanjay G.

    2014-07-01

    Austenitic stainless steels are widely used in high performance pressure vessels, nuclear, chemical, process and medical industry due to their very good corrosion resistance and superior mechanical properties. However, austenitic stainless steels are prone to sensitization when subjected to higher temperatures (673 K to 1173 K) during the manufacturing process (e.g. welding) and/or certain applications (e.g. pressure vessels). During sensitization, chromium in the matrix precipitates out as carbides and intermetallic compounds (sigma, chi and Laves phases) decreasing the corrosion resistance and mechanical properties. In the present investigation, 304L austenitic stainless steel was subjected to different heat inputs by shielded metal arc welding process using a standard 308L electrode. The microstructural developments were characterized by using optical microscopy and electron backscattered diffraction, while the residual stresses were measured by X-ray diffraction using the sin{sup 2}ψ method. It was observed that even at the highest heat input, shielded metal arc welding process does not result in significant precipitation of carbides or intermetallic phases. The ferrite content and grain size increased with increase in heat input. The grain size variation in the fusion zone/heat affected zone was not effectively captured by optical microscopy. This study shows that electron backscattered diffraction is necessary to bring out changes in the grain size quantitatively in the fusion zone/heat affected zone as it can consider twin boundaries as a part of grain in the calculation of grain size. The residual stresses were compressive in nature for the lowest heat input, while they were tensile at the highest heat input near the weld bead. The significant feature of the welded region and the base metal was the presence of a very strong texture. The texture in the heat affected zone was almost random. - Highlights: • Effect of heat input on microstructure, residual

  14. Acoustic emission response of 18% Ni maraging steel weldment with inserted cracks of varying depth to thickness ratio

    SciTech Connect

    Chelladurai, T.; Sankaranarayanan, A.S.; Acharya, A.R.; Krishnamurthy, R.

    1995-06-01

    Acoustic emission studies have been carried out on a batch of welded and center cracked specimens made of 18% Ni M250 maraging steel where the crack depth to specimen thickness ratio varied from approximately 10/80 to 25/80. Broad band AE transducers providing maximum sensitivity in frequency range 135 to 310 KHz were used for the AE monitoring. The paper brings out the AE performance of the specimens with inserted surface cracks of different sizes when the latter become critically severe leading to failure. The studies indicate the prediction possibility for the hardware constructed out of this material reasonably well before their final rupture. The AE signatures are also presented in a form that would facilitate generation of an acceptance criteria for the evaluation of hardware in real time.

  15. How to control hydrogen level in (super) duplex stainless steel weldments using the GTAW or GMAW process

    SciTech Connect

    Mee, V.V.D.; Meelker, H.; Schelde, R.V.D.

    1999-01-01

    In this investigation, an attempt is made to further the understanding of factors influencing the hydrogen content in duplex stainless steel gas tungsten arc (GTA) and gas metal arc (GMA) welds as well as to what extent it affects hydrogen-induced cracking susceptibility. The results indicated that susceptibility to hydrogen cracking using the GTA or GMA process appears to be limited. In practice, maintaining a moisture level below 10 ppm in the shielding gas is of less importance than the choice of welding parameters. Even a moisture level of 1000 ppm in the shielding gas, in combination with the correct welding parameters, will result in a sufficient low hydrogen content in the weld. Similarly, a moisture level in the shielding gas below 10 ppm does not necessarily result in low hydrogen content in the weld metal. Although very high ferrite levels were combined with high restrain and high hydrogen content, none of the GMA and GTA welds cracked. Susceptibility to hydrogen cracking is concluded to be limited.

  16. The effect of inhibitor sodium nitrate on pitting corrosion of dissimilar material weldment joint of stainless steel AISI 304 and mild steel SS 400

    SciTech Connect

    Hilca, B. R. Triyono

    2016-03-29

    This study experimentally evaluated the effect of Sodium Nitrate inhibitor (NaNO{sub 3}) of 0.1%, 0.3%, and 0.5% on NaCl 3.5% toward pitting corrosion of dissimilar metal welding joint between stainless steel AISI 304 and mild steel SS 400. Electrochemical corrosion was tested using potentiodynamic polarization. Further the Scanning Electron Microscope (SEM) conducted to analyze the specimen. Chemical composition analysis used Energy Dispersive X-ray Spectrometry (EDS). The highest efficiency of sodium nitrate for ER 308 attained 63.8% and 64.89%for ER 309L. The specimen surface which observed through SEM showed decrease of pitting corrosion respectively with the addition of sodium nitrate content as inhibitor.

  17. The effect of inhibitor sodium nitrate on pitting corrosion of dissimilar material weldment joint of stainless steel AISI 304 and mild steel SS 400

    NASA Astrophysics Data System (ADS)

    Hilca, B. R.; Triyono

    2016-03-01

    This study experimentally evaluated the effect of Sodium Nitrate inhibitor (NaNO3) of 0.1%, 0.3%, and 0.5% on NaCl 3.5% toward pitting corrosion of dissimilar metal welding joint between stainless steel AISI 304 and mild steel SS 400. Electrochemical corrosion was tested using potentiodynamic polarization. Further the Scanning Electron Microscope (SEM) conducted to analyze the specimen. Chemical composition analysis used Energy Dispersive X-ray Spectrometry (EDS). The highest efficiency of sodium nitrate for ER 308 attained 63.8% and 64.89%for ER 309L. The specimen surface which observed through SEM showed decrease of pitting corrosion respectively with the addition of sodium nitrate content as inhibitor.

  18. Elevated-temperature tensile and creep-rupture behavior of alloy 800H/ERNiCr-3 weld metal/2 1/4 Cr-1 Mo steel dissimilar-metal weldments

    SciTech Connect

    Klueh, R L; King, J F

    1982-11-01

    Tensile tests at room temperature, 510, and 566{sup 0}C and creep-rupture tests at 510{sup 0}C were made on specimens taken from dissimilar-metal welds made on isothermally annealed 2 1/4 Cr-1 Mo steel and mill-annealed alloy 800H plates joined with ERNiCr-3 filler metal. The specimens were machined so that the gage length contained all three alloys; the weld metal was in the center of the gage section. The weldments were tested under several postweld heat treatment (PWHT) and aging conditions. Ductile cup-cone tensile failures occurred in the 2 1/4 Cr-1 Mo steel base metal well removed from the weld fusion line, as expected from the relative base metal properties. For creep at 510{sup 0}C and rupture lifetimes of up to about 2000 h, failure also occurred in the 2 1/4 Cr-1 Mo steel base metal. Three low-stress tests failed in the 2 1/4 Cr-1 Mo steel with low ductility in over 7500 h within 10 {mu}m of the fusion line. Metallographic studies showed that the interface-type failures resulted by a previously proposed mechanism that involves the formation of a chromium-depleted region parallel to the fusion line.

  19. Creep rupture behavior due to molybdenum rich M{sub 6}C carbide in 1.0Cr-1.0Mo-0.25V bainitic steel weldment

    SciTech Connect

    Oh, Y.K.; Kim, G.S.; Indacochea, J.E.

    1999-06-04

    Some reports show that Cr-Mo-V steel structures fabricated by welding has a high percent of failures in the microstructurally altered and inhomogeneous heat affected zone (HAZ). The failure usually takes place either at the coarse grain HAZ (CGHAZ) or intercritical HAZ (ICHAZ). Failure at creep condition is related to either cracking at grain boundary triple junctions or the formation of cavities (or voids) on grain boundaries that are approximately normal to the applied stress. Cavities are normally formed by grain boundary sliding causing stress concentrations at precipitates in the grain boundaries. Cavities will then develop at the precipitates whenever plastic flow or diffusion is not fast enough to prevent it. The precipitates that provide cavity nucleation sites are mostly sulfides and carbides. The carbides that provide cavity sites are usually M{sub 23}C{sub 6} and M{sub 6}C. Although considerable researchers have been carried out in the carbides that provide cavitation, the mechanism governs creep behavior during welding remains uncertain. Therefore, the objective of this study is to correlate carbide morphology and its effect on creep rupture behavior in 1.0 Cr-1.0Mo-0.25V bainitic steel weldment.

  20. Ballistic Testing of Armor Weldments

    DTIC Science & Technology

    1994-01-21

    Distribution unlimited %1 , A E S K T 5A •+ T K .4/ ¢ C+’ •; T . . .. This TOP describes ballistic tests to evaluate armor weldments for resistance to shock and...C-I 1. SCOPE. This TOP describes ballistic tests to evaluate armor weldments for resistance to shock and penetration...Operations Procedure (TOP) 2-2-711 Ballistic Testing of Armor Weldments WU A268445 6+ AuT I`S’•,+ r:’ 7. PERFORMING ORGANIZATION NAME(S) ANU; ADDRCSSI’t

  1. EFFECT OF TRITIUM AND DECAY HELIUM ON WELDMENT FRACTURE TOUGHNESS

    SciTech Connect

    Morgan, M; Scott West, S; Michael Tosten, M

    2006-09-26

    The fracture toughness data collected in this study are needed to assess the long-term effects of tritium and its decay product on tritium reservoirs. The results show that tritium and decay helium have negative effects on the fracture toughness properties of stainless steel and its weldments. The data and report from this study has been included in a material property database for use in tritium reservoir modeling efforts like the Technology Investment Program ''Lifecycle Engineering for Tritium Reservoirs''. A number of conclusions can be drawn from the data: (1) For unexposed Type 304L stainless steel, the fracture toughness of weldments was two to three times higher than the base metal toughness. (2) Tritium exposure lowered the fracture toughness properties of both base metals and weldments. This was characterized by lower J{sub Q} values and lower J-da curves. (3) Tritium-exposed-and-aged base metals and weldments had lower fracture toughness values than unexposed ones but still retained good toughness properties.

  2. Reactor Materials Program - Baseline Material Property Handbook - Mechanical Properties of 1950's Vintage Stainless Steel Weldment Components, Task Number 89-23-A-1

    SciTech Connect

    Stoner, K.J.

    1999-11-05

    The Process Water System (primary coolant) piping of the nuclear production reactors constructed in the 1950''s at Savannah River Site is comprised primarily of Type 304 stainless steel with Type 308 stainless steel weld filler. A program to measure the mechanical properties of archival PWS piping and weld materials (having approximately six years of service at temperatures between 25 and 100 degrees C) has been completed. The results from the mechanical testing has been synthesized to provide a mechanical properties database for structural analyses of the SRS piping.

  3. Effect of post weld heat treatment on the microstructure and mechanical properties of ITER-grade 316LN austenitic stainless steel weldments

    NASA Astrophysics Data System (ADS)

    Xin, Jijun; Fang, Chao; Song, Yuntao; Wei, Jing; Xu, Shen; Wu, Jiefeng

    2017-04-01

    The effect of postweld heat treatment (PWHT) on the microstructure and mechanical properties of ITER-grade 316LN austenitic stainless steel joints with ER316LMn filler material was investigated. PWHT aging was performed for 1 h at four different temperatures of 600 °C, 760 °C, 870 °C and 920 °C, respectively. The microstructure revealed the sigma phase precipitation occurred in the weld metals heat-treated at the temperature of 870 °C and 920 °C. The PWHT temperatures have the less effect on the tensile strength, and the maximum tensile strength of the joints is about 630 MPa, reaching the 95% of the base metal, whereas the elongation is enhanced with the rise of PWHT temperatures. Meanwhile, the sigma phase precipitation in the weld metals reduces the impact toughness.

  4. Corrosion of low carbon steel weldments at 600-800 °C in N2/H2S/H2O gases

    NASA Astrophysics Data System (ADS)

    Lee, Dong Bok

    2014-03-01

    A low carbon steel was arc-welded, and corroded at 600, 700 and 800 °C for up to 20 h in 1 atm of either N2/H2S-mixed gases or N2/H2S/H2O-mixed gases to characterize the effects of H2S and H2O gases on the high-temperature corrosion of welded joints. Corrosion proceeded fast and almost linearly. It increased with the increases in the corrosion temperature and with the addition of H2S and H2O. H2S formed FeS, while H2O formed iron oxides such as Fe3O4. Hydrogen and sulfur that were released from H2S and H2O made the scales fragile and nonadherent. Weld metals corroded faster than base metals because the former had coarser grains than the latter.

  5. Fracture mechanics SCC testing of weldments

    SciTech Connect

    Dietzel, W.; Daum, K.H.; Strieder, K.; Kocak, M.

    1994-12-31

    Stress corrosion cracking (SCC) studies of shielded metal arc (SMAW) weld joints of a C-Mn steel were performed using a fracture mechanics based test technique. The specimens contained multipass ferritic weldments with two nitrogen contents and were tested in the As-Welded (AW) condition. Fatigue precracked compact tension (CT) specimens with the cracks in the weld metals were subjected to slow rising displacement rates in the order of 1 {mu}m/h, measured in the load lines of the specimens. The tests were conducted at room temperature in ASTM substitute ocean water under conditions of hydrogen charging (cathodic polarization at {minus}900 mV vs Ag/AgCl, de-aerated solution). Results obtained in these tests in terms of CTOD-R curves are compared with corresponding data obtained in standardized fracture mechanics tests performed in laboratory air. The aim of this work was to assess the feasibility of a rising displacement type of test for SCC testing of weldments. It was also intended to compare the influences of the nitrogen content on the fracture behavior of these welds in air and under conditions of environmentally assisted cracking by using fracture mechanics concepts. The evaluation of the rising displacement SCC tests shows that differences in the fracture behavior observed for testing in laboratory air which could be attributed to the effect of nitrogen are almost completely overridden by the influence of die corrosive environment. Investigations of the fracture surfaces show that the uptake of hydrogen from the aqueous environment in both cases led to a strong embrittlement which is responsible for the decrease in fracture toughness.

  6. The effects of aging for 50,000 hours at 343{degree}C on the mechanical properties of Type 308 stainless steel weldments

    SciTech Connect

    Alexander, D.J.; Nanstad, R.K.

    1995-12-01

    The effects of long-term aging at intermediate temperature on the mechanical properties of type 308 stainless steel weld metals have been studied. Three multipass shielded metal-arc welds with ferrite levels of 4, 8, or 12% were aged up to 50,000 h at 343{degrees}C. Tensile and Charpy V-notch specimens were used to determine the effects of aging on the mechanical properties of the weld metal. Aging had little effect on the yield strength of the weld metal, but did result in a slight increase (approximately 5%) in the ultimate tensile strength. The ferrite content had little effect on the yield strength of the materials, but the ultimate tensile strength increased slightly with higher ferrite content. In contrast to the small effect on the tensile properties, the impact properties were significantly degraded by aging. The extent of the degradation increased with increasing ferrite content and continued to increase with increasing aging time, Spinodal decomposition and the precipitation of G-phase particles in the ferrite phase are believed to be responsible for the degradation of the mechanical properties.

  7. Effect of Continuous and Pulsed Current Gas Tungsten Arc Welding on Dissimilar Weldments Between Hastelloy C-276/AISI 321 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sharma, Sumitra; Taiwade, Ravindra V.; Vashishtha, Himanshu

    2017-03-01

    In the present investigation, an attempt has been made to join Hastelloy C-276 nickel-based superalloy and AISI 321 austenitic stainless steel using ERNiCrMo-4 filler. The joints were fabricated by continuous and pulsed current gas tungsten arc welding processes. Experimental studies to ascertain the structure-property co-relationship with or without pulsed current mode were carried out using an optical microscope and scanning electron microscope. Further, the energy-dispersive spectroscope was used to evaluate the extent of microsegregation. The microstructure of fusion zone was obtained as finer cellular dendritic structure for pulsed current mode, whereas columnar structure was formed with small amount of cellular structure for continuous current mode. The scanning electron microscope examination witnessed the existence of migrated grain boundaries at the weld interfaces. Moreover, the presence of secondary phases such as P and μ was observed in continuous current weld joints, whereas they were absent in pulsed current weld joints, which needs to be further characterized. Moreover, pulsed current joints resulted in narrower weld bead, refined morphology, reduced elemental segregation and improved strength of the welded joints. The outcomes of the present investigation would help in obtaining good quality dissimilar joints for industrial applications and AISI 321 ASS being cheaper consequently led to cost-effective design also.

  8. Effect of Continuous and Pulsed Current Gas Tungsten Arc Welding on Dissimilar Weldments Between Hastelloy C-276/AISI 321 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sharma, Sumitra; Taiwade, Ravindra V.; Vashishtha, Himanshu

    2017-02-01

    In the present investigation, an attempt has been made to join Hastelloy C-276 nickel-based superalloy and AISI 321 austenitic stainless steel using ERNiCrMo-4 filler. The joints were fabricated by continuous and pulsed current gas tungsten arc welding processes. Experimental studies to ascertain the structure-property co-relationship with or without pulsed current mode were carried out using an optical microscope and scanning electron microscope. Further, the energy-dispersive spectroscope was used to evaluate the extent of microsegregation. The microstructure of fusion zone was obtained as finer cellular dendritic structure for pulsed current mode, whereas columnar structure was formed with small amount of cellular structure for continuous current mode. The scanning electron microscope examination witnessed the existence of migrated grain boundaries at the weld interfaces. Moreover, the presence of secondary phases such as P and μ was observed in continuous current weld joints, whereas they were absent in pulsed current weld joints, which needs to be further characterized. Moreover, pulsed current joints resulted in narrower weld bead, refined morphology, reduced elemental segregation and improved strength of the welded joints. The outcomes of the present investigation would help in obtaining good quality dissimilar joints for industrial applications and AISI 321 ASS being cheaper consequently led to cost-effective design also.

  9. Investigation of the Kinetics of the Ferrite/Austenite Phase Transformation in the HAZ of a 2205 Duplex Stainless Steel Weldment

    SciTech Connect

    Palmer, T A; Elmer, J W; Wong, J; Babu, S S; Vitek, J M

    2002-03-14

    A semi-quantitative map based on a series of spatially resolved X-ray diffraction (SRXRD) scans shows the progression of the ferrite ({delta})/austenite ({gamma}) phase balance throughout the HAZ during GTA welding of a 2205 duplex stainless steel (DSS). This map shows an unexpected decrease in the ferrite fraction on heating, followed by a recovery to the original ferrite fraction on cooling at locations within the HAZ. Even though such behavior is supported by thermodynamic calculations, it has not been confirmed by either experimental methods or have the kinetics been evaluated. Both Gleeble thermal simulations and time resolved x-ray diffraction measurements on spot welds in the 2205 DSS provide further evidence for this rather low-temperature transformation. On the other hand, calculations of the diffusion of alloying elements across the 6/y interface under a variety of conditions shed no further light on the driving force for this transformation. Further work on the mechanisms and driving forces for this transformation is on-going.

  10. Fracture Characteristics of Structural Steels and Weldments

    DTIC Science & Technology

    1975-11-01

    Metal Sted ASIAM ASTMA -5 17 AXllOWQ1 I’ Co01lXthsA Al-36 Gtwode dqw IIVl3000 C 4.1w2 ax 0.100,2 O.A na .2 nviu 0.0 OM nx 0,0)35 niax 0.011 wax 0.010...tile fatligue crack, ad ASTMA .67 Grd~ (tSS T) $~eIvance. crucked biclusion r~tmains it the bottom of Thre fracture surfface resulting fromt tensile

  11. Creep rupture testing of alloy 617 and A508/533 base metals and weldments.

    SciTech Connect

    Natesan, K.; Li, M.; Soppet, W.K.; Rink, D.L.

    2012-01-17

    The NGNP, which is an advanced HTGR concept with emphasis on both electricity and hydrogen production, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 750-1000 C. Alloy 617 is a prime candidate for VHTR structural components such as reactor internals, piping, and heat exchangers in view of its resistance to oxidation and elevated temperature strength. However, lack of adequate data on the performance of the alloy in welded condition prompted to initiate a creep test program at Argonne National Laboratory. In addition, Testing has been initiated to evaluate the creep rupture properties of the pressure vessel steel A508/533 in air and in helium environments. The program, which began in December 2009, was certified for quality assurance NQA-1 requirements during January and February 2010. Specimens were designed and fabricated during March and the tests were initiated in April 2010. During the past year, several creep tests were conducted in air on Alloy 617 base metal and weldment specimens at temperatures of 750, 850, and 950 C. Idaho National Laboratory, using gas tungsten arc welding method with Alloy 617 weld wire, fabricated the weldment specimens. Eight tests were conducted on Alloy 617 base metal specimens and nine were on Alloy 617 weldments. The creep rupture times for the base alloy and weldment tests were up to {approx}3900 and {approx}4500 h, respectively. The results showed that the creep rupture lives of weld specimens are much longer than those for the base alloy, when tested under identical test conditions. The test results also showed that the creep strain at fracture is in the range of 7-18% for weldment samples and were much lower than those for the base alloy, under similar test conditions. In general, the weldment specimens showed more of a flat or constant creep rate region than the base metal specimens. The base alloy and the weldment exhibited tertiary creep

  12. Assessment of safety and availability of dissimilar weldments in the water-steam circuit of HTR plants

    NASA Astrophysics Data System (ADS)

    Schneider, Klaus; Gnirss, Günther; Grünling, Hermann

    1990-04-01

    A concept for the assessment of dissimilar weldments in HTR steam piping is described. A combination of experiments and calculation shows that dissimilar metal welds between the ferritic steel X 20 CrMoV 21 1 and the austenitic alloy X 10 NiCrAlTi 32 20 can be operated for the design life of the component. The combination of reliable manufacturing and nondestructive testing assures that defects in weld joints will show only negligible crack growth. The leak before break criterion is fulfilled. The concept of assessment of dissimilar weldments is verified by the component test MINERVA.

  13. View southeast of weldment assembly floor in structures shop, building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View southeast of weldment assembly floor in structures shop, building 57; the floor is fabricated of cast iron and features a grillwork of 1 1/2 square holes which are used as sockets for gripping positioning or lock down pins; a lock down pin is shown left and below the center of the photograph; the vertical section of the pin is placed into a hole in the cast steel floor while the angles section of the pin rests on the piece under construction; the pin is hammered into the hole and spring tension in the pin holds the work piece in position. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Structure Shop, League Island, Philadelphia, Philadelphia County, PA

  14. Detection of weldment lack of fusion using opaque additives

    NASA Technical Reports Server (NTRS)

    Cook, J. L.; Brown, R. L.

    1973-01-01

    Problems in the production of aluminum weldments are caused by moisture absorbed by the aluminum oxide which forms on the surface before welding. Another problem is incomplete penetration of the weldment. The problems can be solved by coating the aluminum surfaces with an X-ray-opaque metal such as silver or copper. This will prevent the formation of moisture-absorbing aluminum oxide. Any protective coating remaining in an area of incomplete weld penetration can be seen in an inspection of the weldment conducted with the aid of an X-ray method. Details of copper deposition procedures are discussed along with a copper coating analysis and the testing of the weldments.

  15. Weldability evaluations and weldment properties of Hastelloy X

    SciTech Connect

    King, J.F.; McCoy, H.E.; Rittenhouse, P.L.

    1981-01-01

    Studies of weldability and weldment properties were conducted on commerical heats of Hastelloy X. Weldment preparation was done using several combinations of welding techniques and filler metals. Evaluation methods employed included hot cracking susceptibility and tensile and creep properties measured both before and after aging at 593 to 871/sup 0/C for up to 10,000 h.

  16. Reactor Materials Program -- weldment component toughness of SRS PWS piping materials. [Process Water System

    SciTech Connect

    Sindelar, R.L.

    1993-02-01

    The mechanical properties of austenitic stainless steel materials from the reactor systems in the unirradiated (baseline) and the irradiated conditions have been developed previously for structural and fracture analyses of the pressure boundary of the SRS reactor Process Water System (PWS) components. Individual mechanical specimen test results were compiled into three separate weldment components or regions, namely, the base, weld, and weld heat-affected-zone (HAZ), for two orientations (L-C and C-L) with respect to the pipe axis of the source materials and for two test temperatures of 25 and 125[degrees]C. Twelve separate categories were thus defined to assess the effect of test conditions on the mechanical properties and to facilitate selection of properties for structural and fracture analyses. The testing results show high fracture toughness of the materials and support the demonstration of PWS pressure boundary structural integrity under all conditions of reactor operation. The fracture toughness of a fourth weldment component, namely, the weld fusion line region, has been measured to evaluate the potential for a region of low toughness in the interface between the Type 308 stainless steel weld metal and the Type 304 stainless steel pipe. The testing details and results of the weld fusion line toughness are contained in this report.

  17. Performance of weld repairs on service-aged 2{1/4}Cr-1Mo girth weldments utilizing conventional postweld heat treatment and temper-bead repair techniques

    SciTech Connect

    Gandy, D.W.; Viswanathan, R.; Findlan, S.J.

    1996-06-01

    Weld repair of service-damaged piping and header girth weldments has generated considerable interest within the fossil power plant arena over the past few years. The interest has stemmed in part from recent revisions to the National Board Inspection Code regarding welding repair of Cr-Mo steels and from the fact that many domestic utility power plants are nearing the end of their projected design life. EPRI is addressing a number of concerns expressed by utilities surrounding weld repair under a joint EPRI/utility program RP3484-01. The program is focused on procuring service-aged piping and header girth weldments, quantifying the level of damage associated with those weldments, performing weld repairs within the girth weldment region, testing the repair weldment mechanically and metallurgically, and comparing the increase or decrease in remaining life associated with the weld repair. This paper discusses four industry case histories along with two piping girth weld repairs performed under the EPRI program: (1) a repair performed with conventional postweld heat treatment and (2) a repair performed employing temper-bead welding repair technology.

  18. A study of mechanical properties for aluminum GMA weldments

    SciTech Connect

    Kluken, A.O.; Bjoerneklett, B.

    1997-02-01

    Medium- to high-strength aluminum alloys represent an attractive alternative to steel as a material for critical structural members. One area of great interest for their use is the transportation industry due to the increasing demands for less environmental impact through improved fuel efficiency, weight reductions, and increased load capacity. Fabrication of structural bodies involves, in most instances, the application of a joining process. Load-carrying members must be joined together or nonload-carrying parts attached to the primary structure. Although adhesive bonding, laser beam welding and friction stir welding are attractive processes for joining of aluminum, gas metal arc welding (GMAW) is by far the most widely used process at present. Fusion welding of a heat-treatable aluminum alloy represents an additional local heat treatment of material that previously has been processed through tight temperature control to obtain the desired mechanical properties. Hence, great attention must be given to selection of alloy and temper condition, welding parameters, and postweld aging procedures for a given application. The objective of this investigation was to establish mechanical property data, i.e., tensile strength and impact toughness, for Al-Mg-Si and Al-Zn-Mg gas metal arc weldments applicable to the automotive and shipbuilding industries.

  19. Measured residual stresses in overlay pipe weldments removed from service

    SciTech Connect

    Shack, W.J.

    1985-02-01

    Surface and throughwall residual stresses were measured on an elbow-to-pipe weldment that had been removed from the Hatch-2 reactor about a year after the application of a weld overlay. The results were compared with experimental measurements on three mock-up weldments and with finite-element calculations. The comparison shows that there are significant differences in the form and magnitude of the residual stress distributions. However, even after more than a year of service, the residual stresses over most of the inner surface of the actual plant weldment with an overlay were strongly compressive. 3 refs., 7 figs.

  20. CSM-3. 2. 2: characterizing and improving the toughness of thick-sectioned 2-1/4 Cr-1Mo electroslag weldments

    SciTech Connect

    Edwards, G.R.; Frost, R.H.

    1980-01-01

    The electroslag welding process produces large single pass welds by consuming a wire electrode in an ohmically heated flux pool. The process has been particularly appealing for thick-section welding because of its high deposition rate. The welding potential and electrode velocity control the deposition rate, heat input, and thermal history of the heat affected zone. The electrode polarity, current density, and flux and metal compositions control electrochemical reactions which have a dominant influence on the weld metal chemistry. The post weld heat treatment strongly affects the final mechanical properties of the weldment, especially in 2-1/4 Cr-1Mo steel. The objective of this program is to characterize the effects of process variables, chemical variables, and post weld heat treatment, and to apply straight-foreword metallurgical knowledge in optimizing the properties of 4-inch thick 2-1/4 Cr-1Mo steel electroslag weldments.

  1. Effects of Preheat on Weldments of NICOP Steel.

    DTIC Science & Technology

    1983-09-01

    in the base and base/HAZ regions and increasing amounts of bainite and auto tempered martensite islands near the fusion line. From the point of view...The microstructures were polygonal and acicular ferrite in the base and base/HAZ regions and increasing amounts of bainite and auto tempered...columbium is allowed to dissolve in austenite the columbium will tend to retard ferrite formation and promote acicular or bainite structure formation

  2. Weldability of modified 9Cr-1Mo steel

    SciTech Connect

    King, J F; Sikka, V K; Santella, M L; Turner, J F; Pickering, E W

    1986-09-01

    The weldability of modified 9Cr-1Mo steel has been investigated by numerous organizations including Oak Ridge National Laboratory over a period of several years. The results of the various studies are summarized. Weldability evaluations have included hot cracking susceptibility, reheat cracking response, hydrogen-assisted cracking susceptibility, and the selection of consumables for three welding processes. Weldment mechanical properties have been determined for the gas tungsten arc, submerged arc, and shielded metal arc welding processes. Dissimilar metal weldments between modified 9Cr-1Mo steel and austenitic stainless steels have been produced with good results. Evaluation of the weldments and various tests has indicated that there are no major concerns regarding the weldability of modified 9Cr-1Mo steel.

  3. Reactor Materials Program -- weldment component toughness of SRS PWS piping materials. Task number: 89-023-1

    SciTech Connect

    Sindelar, R.L.

    1993-02-01

    The mechanical properties of austenitic stainless steel materials from the reactor systems in the unirradiated (baseline) and the irradiated conditions have been developed previously for structural and fracture analyses of the pressure boundary of the SRS reactor Process Water System (PWS) components. Individual mechanical specimen test results were compiled into three separate weldment components or regions, namely, the base, weld, and weld heat-affected-zone (HAZ), for two orientations (L-C and C-L) with respect to the pipe axis of the source materials and for two test temperatures of 25 and 125{degrees}C. Twelve separate categories were thus defined to assess the effect of test conditions on the mechanical properties and to facilitate selection of properties for structural and fracture analyses. The testing results show high fracture toughness of the materials and support the demonstration of PWS pressure boundary structural integrity under all conditions of reactor operation. The fracture toughness of a fourth weldment component, namely, the weld fusion line region, has been measured to evaluate the potential for a region of low toughness in the interface between the Type 308 stainless steel weld metal and the Type 304 stainless steel pipe. The testing details and results of the weld fusion line toughness are contained in this report.

  4. Optimization and Prediction of Angular Distortion and Weldment Characteristics of TIG Square Butt Joints

    NASA Astrophysics Data System (ADS)

    Narang, H. K.; Mahapatra, M. M.; Jha, P. K.; Biswas, P.

    2014-05-01

    Autogenous arc welds with minimum upper weld bead depression and lower weld bead bulging are desired as such welds do not require a second welding pass for filling up the upper bead depressions (UBDs) and characterized with minimum angular distortion. The present paper describes optimization and prediction of angular distortion and weldment characteristics such as upper weld bead depression and lower weld bead bulging of TIG-welded structural steel square butt joints. Full factorial design of experiment was utilized for selecting the combinations of welding process parameter to produce the square butts. A mathematical model was developed to establish the relationship between TIG welding process parameters and responses such as upper bead width, lower bead width, UBD, lower bead height (bulging), weld cross-sectional area, and angular distortions. The optimal welding condition to minimize UBD and lower bead bulging of the TIG butt joints was identified.

  5. Axisymmetric guided wave scattering by cracks in welded steel pipes

    SciTech Connect

    Zhuang, W.; Shah, A.H.; Datta, S.K.

    1997-11-01

    Scattering of axisymmetric guided waves by cracks and weldments of anisotropic bonding material in welded steel pipes is investigated in this paper by a hybrid method employing finite element and modal representation techniques. The study is motivated by the need to develop a quantitative ultrasonic technique to distinguish flaws and bonding materials in welded cylindrical structures. Numerical results for reflection coefficients are presented for a steel pipe with cracks and V-shaped weldments with and without cracks at the interface between the weldment and the steel pipe. It is shown that as the frequency increases, the coefficients of reflection exhibit resonant peaks at the cutoff frequencies of higher guided modes. These peaks become increasingly pronounced as the slope and the length of the crack increase. Numerical results presented have important applications in quantitative nondestructive evaluation.

  6. Effects of titanium and zirconium on iron aluminide weldments

    SciTech Connect

    Mulac, B.L.; Edwards, G.R.; Burt, R.P.; David, S.A.

    1997-12-01

    When gas-tungsten arc welded, iron aluminides form a coarse fusion zone microstructure which is susceptible to hydrogen embrittlement. Titanium inoculation effectively refined the fusion zone microstructure in iron aluminide weldments, but the inoculated weldments had a reduced fracture strength despite the presence of a finer microstructure. The weldments fractured by transgranular cleavage which nucleated at cracked second phase particles. With titanium inoculation, second phase particles in the fusion zone changed shape and also became more concentrated at the grain boundaries, which increased the particle spacing in the fusion zone. The observed decrease in fracture strength with titanium inoculation was attributed to increased spacing of second phase particles in the fusion zone. Current research has focused on the weldability of zirconium- and carbon-alloyed iron aluminides. Preliminary work performed at Oak Ridge National Laboratory has shown that zirconium and carbon additions affect the weldability of the alloy as well as the mechanical properties and fracture behavior of the weldments. A sigmajig hot cracking test apparatus has been constructed and tested at Colorado School of Mines. Preliminary characterization of hot cracking of three zirconium- and carbon-alloyed iron aluminides, each containing a different total concentration of zirconium at a constant zirconium/carbon ratio of ten, is in progress. Future testing will include low zirconium alloys at zirconium/carbon ratios of five and one, as well as high zirconium alloys (1.5 to 2.0 atomic percent) at zirconium/carbon ratios of ten to forty.

  7. Characterization of microstructure of HAZs in as-welded and service condition of P91 pipe weldments

    NASA Astrophysics Data System (ADS)

    Pandey, C.; Giri, A.; Mahapatra, M. M.; Kumar, P.

    2017-01-01

    Steels 9-12% Cr, having the high creep rupture strength are advocated for the modern low polluting thermal power plants. In the present investigation, the P91 pipe weldments have been characterized for microstructural responses in as-welded, post-weld heat treatment (PWHT) and ageing conditions. The PWHT of welded samples were carried out at 760 °C for time of 2 h and ageing at 760 °C for 720 h and 1440 h, respectively. The effect of time has been studied on precipitates size, distribution of precipitates and grain sizes present in various zones of P91 steel weldments. The impact toughness and hardness variation of heat affected zone (HAZ) have also been studied in as-welded condition as well as at different heat treatment condition. A significant change was observed in grain size and precipitates size after each heat treatment condition. The maximum impact toughness of HAZ was obtained after PWHT at 760 °C for 2 h. The main phase observed in weld fusion zone in as-welded, PWHT and ageing conditions were M23C6, MX, M7C3, Fe-rich M3C and M2C. The unwanted Z-phase (NbCrN) was also noticed in weld fusion zone after ageing of 1440 h.

  8. Pulsed Magnetic Welding for Advanced Core and Cladding Steel

    SciTech Connect

    Cao, Guoping; Yang, Yong

    2013-12-19

    To investigate a solid-state joining method, pulsed magnetic welding (PMW), for welding the advanced core and cladding steels to be used in Generation IV systems, with a specific application for fuel pin end-plug welding. As another alternative solid state welding technique, pulsed magnetic welding (PMW) has not been extensively explored on the advanced steels. The resultant weld can be free from microstructure defects (pores, non-metallic inclusions, segregation of alloying elements). More specifically, the following objectives are to be achieved: 1. To design a suitable welding apparatus fixture, and optimize welding parameters for repeatable and acceptable joining of the fuel pin end-plug. The welding will be evaluated using tensile tests for lap joint weldments and helium leak tests for the fuel pin end-plug; 2 Investigate the microstructural and mechanical properties changes in PMW weldments of proposed advanced core and cladding alloys; 3. Simulate the irradiation effects on the PWM weldments using ion irradiation.

  9. Corrrosion of low-nickel weldments in coal gasification atmospheres

    SciTech Connect

    Natesan, K

    1984-12-01

    Coal gasification environments exhibit low oxygen and moderate-to-high sulfur partial pressures; under these conditions, structural alloys welded with high-nickel filler metals are susceptible to the sulfidation mode of attack even though the base metal itself has adequate resistance to sulfidation. To understand the role of nickel in the weldment on the corrosion process, a number of weldments of Incology 800H base metal welded with several commercially available low-nickel filler metals have been tested in mixed oxygen-sulfur atmospheres. Results on the compositional variations and morphological developments obtained from exposed specimens are presented. The results showed that high-nickel weld metal can accelerate the oxidation/sulfidation process. In addition, the weld interface region in all the alloys (irrespective of the nickel content of the filler metal) was susceptibel to accelerated attack in mixed-gas atmospheres; however, weldments with lower-nickel filler metals exhibited smaller scale thicknesses and showed significant promise for application in fossil fuel systems. 4 references, 15 figures, 3 tables.

  10. Creep and rupture properties of virgin 1-1/4Cr-1/2Mo plate and submerged arc weldments

    SciTech Connect

    Ellis, F.V.; Lin, Y.C.; Tordonato, S.

    1995-12-01

    The submerged arc welding process was used to join 19mm thick 1-1/4Cr-1/2Mo steel plate material. Following welding, the weldment was given a renormalizing and tempering heat treatment. Chemical analysis, metallurgical examination, tensile testing and creep rupture testing were performed. For the weld metal, the carbon content was 0.069% and the oxygen content was 0.081%. The measured tensile properties for the base material were within the scatter band for virgin plate material. Creep rupture testing was performed at stresses from 41.4 MPa to 137 MPa and temperatures from 600 C to 680 C. The measured rupture time for the renormalized and tempered SAW weldment was approximately equal to that for minimum strength unexposed base metal. The failure path was the weld metal remote from the fusion interface. The measured rupture strength for the base material was above average compared to that for unexposed base metal. The minimum creep rate and 0.2% offset tertiary time and strain data were determined. Power law, exponential and rational polynomial primary plus steady state creep equations were fit to the data. The minimum creep rate was correlated using a Dorn parameter and the primary creep coefficients were correlated with the minimum creep rate and rupture time. Tertiary creep was described using the exponential strain softening creep equation.

  11. High-pressure structure made of rings with peripheral weldments of reduced thickness

    DOEpatents

    Leventry, Samuel C.

    1988-01-01

    A high-pressure structure having a circular cylindrical metal shell made of metal rings joined together by weldments and which have peripheral areas of reduced shell thickness at the weldments which permit a reduction in the amount of weld metal deposited while still maintaining sufficient circumferential or hoop stress strength.

  12. 16 CFR Figure 2 to Subpart A of... - Cyclone Receiver Weldment

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Cyclone Receiver Weldment 2 Figure 2 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... to Subpart A of Part 1209—Cyclone Receiver Weldment EC03OC91.032 ...

  13. Phased array ultrasonic inspection of Friction Stir Weldments

    NASA Astrophysics Data System (ADS)

    Lamarre, André; Moles, Michael; Lupien, Vincent

    2000-05-01

    Phased array ultrasonic inspection methods have been developed for the rapid inspection of Friction Stir Weldments (FSW) on Delta rocket cryogenic tanks. A comprehensive review was performed to identify NDE methods that are suitable for the detection of defects in this new welding process. The search included a review of traditional and advanced NDE methods that were capable of demonstrating both the sensitivity and inspection rates required for this examination. This paper will discuss the theory behind phased array techniques, fundamentals of several probe designs for FSW configurations, and the advantages of using phased arrays over conventional NDE methods for this applications.

  14. Deep flaws in weldments of aluminum and titanium

    NASA Technical Reports Server (NTRS)

    Masters, J. N.; Engstrom, W. L.; Bixler, W. D.

    1974-01-01

    Surface flawed specimens of 2219-T87 and 6Al-4V STA titanium weldments were tested to determine static failure modes, failure strength, and fatigue flaw growth characteristics. Thicknesses selected for this study were purposely set at values where, for most test conditions, abrupt instability of the flaw at fracture would not be expected. Static tests for the aluminum weldments were performed at room, LN2 and LH2 temperatures. Titanium static tests for tests were performed at room and LH2 temperatures. Results of the static tests were used to plot curves relating initial flaw size to leakage- or failure-stresses (i.e. "failure" locus curves). Cyclic tests, for both materials, were then performed at room temperature, using initial flaws only slightly below the previously established failure locus for typical proof stress levels. Cyclic testing was performed on pairs of specimens, one with and one without a simulated proof test cycle. Comparisons were made then to determine the value and effect of proof testing as affected by the various variables of proof and operating stress, flaw shape, material thickness, and alloy.

  15. Carbonitride population development in 9Cr-1Mo weldments

    SciTech Connect

    Haigh, R.H.; Strangwood, M.; Widgery, D.J.

    1996-12-31

    The development and growth of carbonitrides in modified 9Cr-1Mo weldments has been studied and related to Nb and Ni levels. Carbonitride population in as-deposited welds was found to be largely intralath Fe{sub 3}C needles. High Nb levels were found to promote the formation of a complex needle, containing a core (believed to be Nb-rich M(C,N)). These needles were stable during PWHT of 2 hours at 760 C in low Nb weldments. In the presence of high Nb, transformation to faceted M{sub 23}C{sub 6} occurred. This has been attributed to chromium enrichment of the localized matrix during formation of the Nb-rich cores. VC carbides were observed at lath boundaries in low Nb material. These effects have been considered with respect to equilibrium thermodynamic calculations. Small (20 nm diameter) spherical carbides were observed in the low Ni material. This has been attributed to enrichment of localized regions due to solute rejection from {delta}-ferrite regions.

  16. Investigation of fatigue assessments accuracy for beam weldments considering material data input and FE-mode type

    NASA Astrophysics Data System (ADS)

    Gorash, Yevgen; Comlekci, Tugrul; MacKenzie, Donald

    2017-05-01

    This study investigates the effects of fatigue material data and finite element types on accuracy of residual life assessments under high cycle fatigue. The bending of cross-beam connections is simulated in ANSYS Workbench for different combinations of structural member shapes made of a typical structural steel. The stress analysis of weldments with specific dimensions and loading applied is implemented using solid and shell elements. The stress results are transferred to the fatigue code nCode DesignLife for the residual life prediction. Considering the effects of mean stress using FKM approach, bending and thickness according to BS 7608:2014, fatigue life is predicted using the Volvo method and stress integration rules from ASME Boiler & Pressure Vessel Code. Three different pairs of S-N curves are considered in this work including generic seam weld curves and curves for the equivalent Japanese steel JIS G3106-SM490B. The S-N curve parameters for the steel are identified using the experimental data available from NIMS fatigue data sheets employing least square method and considering thickness and mean stress corrections. The numerical predictions are compared to the available experimental results indicating the most preferable fatigue data input, range of applicability and FE-model formulation to achieve the best accuracy.

  17. An experimental analysis of temperature and stress fields in girth welded 304L stainless steel pipes

    SciTech Connect

    Li, M.; Atteridge, D.G.; Anderson, W.E.; Hubbard, C.R.; Spooner, S.

    1996-12-31

    The thermal and deformation/strain histories were measured by a computer data acquisition system for three 406-mm-diameter, Type 304L stainless steel (SS), schedule 40 (12.7 mm thickness) pipe girth welds. Two welds were standard V groove preparations and completed in six and nine (discontinuous) passes with multiple start-stop positions, while the third one was a narrow groove configuration and finished with four continuous passes with one start-stop position. The thermomechanical history measurements were taken on the pipe inner surface, encompassing the weld centerline (WCL) and heat-affected zone; a total of 47 data acquisition instruments were used for each weld to monitor weld shrinkages, surface temperatures, surface strains, and radial deformations. The experimental data give the following general conclusions: (1) the temperature profiles in the two V groove weldments are, in general, axisymmetric, while the temperature profile in the narrow gap groove weldment is axisymmetric in locations far from WCL, but is not axisymmetric in locations near start-stop position; (2) the strain/deformation histories are controlled by the thermal histories with the final strain/deformation value largely determined by the last one or two passes of welding; (3) the strain/deformation profile in the weldment is not axisymmetric suggesting that the residual stress is not axisymmetrically distributed; (4) the four-pass narrow gap weldment experienced the fewest time and temperature cycles during welding, and has the lowest level of radial deformation among the three pipe weldments indicating that the narrow gap weldment would have the lowest overall residual stress level among the three pipe weldments. Residual stress measurements on the inner surface of four-pass pipe weldment were performed using the neutron diffraction (ND) technique. The ND results show that a tensile zone exists on the pipe inner surface and in the weld and its heat-affected zone (HAZ) area.

  18. Microstructure and Corrosion Behavior of Laser Melted 304L SS Weldment in Nitric Acid Medium

    NASA Astrophysics Data System (ADS)

    Suresh, Girija; Kishor, P. S. V. R. A.; Dasgupta, Arup; Upadhyay, B. N.; Mallika, C.; Kamachi Mudali, U.

    2017-02-01

    The manuscript presents the effect of laser surface melting on the corrosion property of 304L SS weldment in nitric acid medium. 304L SS weldment was prepared by gas tungsten arc welding process and subsequently laser surface melted using Nd:YAG laser. The microstructure and corrosion resistance of laser surface melted 304L SS weldment was evaluated and compared with that of 304L SS as-weldment and 304L SS base. Microstructural evaluation was carried out using optical and scanning electron microscopes attached with energy-dispersive x-ray spectroscopy. Corrosion investigations were carried out in 4 and 8 M nitric acid by potentiodynamic polarization technique. From the results, it was found that laser surface melting of the weldment led to chemical and microstructural homogeneities, accompanied by a substantial decrease in delta ferrite content, that enhanced the corrosion resistance of the weldment in 4 and 8 M nitric acid. However, the enhancement in the corrosion resistance was not substantial. The presence of small amount of delta ferrite (2-4 wt.%) in the laser surface melted specimens was found to be detrimental in nitric acid. X-ray photoelectron spectroscopy studies were carried out to investigate the composition of the passive film.

  19. Microstructure and Corrosion Behavior of Laser Melted 304L SS Weldment in Nitric Acid Medium

    NASA Astrophysics Data System (ADS)

    Suresh, Girija; Kishor, P. S. V. R. A.; Dasgupta, Arup; Upadhyay, B. N.; Mallika, C.; Kamachi Mudali, U.

    2016-12-01

    The manuscript presents the effect of laser surface melting on the corrosion property of 304L SS weldment in nitric acid medium. 304L SS weldment was prepared by gas tungsten arc welding process and subsequently laser surface melted using Nd:YAG laser. The microstructure and corrosion resistance of laser surface melted 304L SS weldment was evaluated and compared with that of 304L SS as-weldment and 304L SS base. Microstructural evaluation was carried out using optical and scanning electron microscopes attached with energy-dispersive x-ray spectroscopy. Corrosion investigations were carried out in 4 and 8 M nitric acid by potentiodynamic polarization technique. From the results, it was found that laser surface melting of the weldment led to chemical and microstructural homogeneities, accompanied by a substantial decrease in delta ferrite content, that enhanced the corrosion resistance of the weldment in 4 and 8 M nitric acid. However, the enhancement in the corrosion resistance was not substantial. The presence of small amount of delta ferrite (2-4 wt.%) in the laser surface melted specimens was found to be detrimental in nitric acid. X-ray photoelectron spectroscopy studies were carried out to investigate the composition of the passive film.

  20. Investigation of weldments in Victoria-class submarine pressure-hull using magnetic flux leakage and Barkhausen noise

    NASA Astrophysics Data System (ADS)

    Samimi, A. A.; Babbar, V.; Krause, T. W.; Clapham, L.

    2014-02-01

    Evaluation of the stress state within submarine hulls can contribute to risk assessments, which provide assurance that in-service induced stresses will not adversely affect the service life of the naval structure. The purpose of this study was to evaluate the feasibility of using magnetic NDE techniques for identification of stresses associated with weldments in two original pressure hulls of Canada's Victoria class submarines. Magnetic Flux Leakage (MFL) and flux-controlled Barkhausen Noise measurements were investigated for identification of patch boundaries and welds in two sections of Victoria-class submarine-hull steel. While MFL showed clear demarcation of weld boundaries, Barkhausen measurements did not provide sufficiently clear response to identify these features in submarine hull samples. For a better understanding of Barkhausen response, uniaxial tensile stress was investigated on separate samples of submarine steel. A nonlinear dependence of Barkhausen response was observed, with a weaker sensitivity to tensile stresses below 200 MPa. This behavior, combined with the presence of substantial surface compressive stresses, was used to explain the observed insensitivity of Barkhausen measurements to the presence of welds.

  1. Fiber laser welding of austenitic steel and commercially pure copper butt joint

    NASA Astrophysics Data System (ADS)

    Kuryntsev, S. V.; Morushkin, A. E.; Gilmutdinov, A. Kh.

    2017-03-01

    The fiber laser welding of austenitic stainless steel and commercially pure copper in butt joint configuration without filler or intermediate material is presented. In order to melt stainless steel directly and melt copper via heat conduction a defocused laser beam was used with an offset to stainless steel. During mechanical tests the weld seam was more durable than heat affected zone of copper so samples without defects could be obtained. Three process variants of offset of the laser beam were applied. The following tests were conducted: tensile test of weldment, intermediate layer microhardness, optical metallography, study of the chemical composition of the intermediate layer, fractography. Measurements of electrical resistivity coefficients of stainless steel, copper and copper-stainless steel weldment were made, which can be interpreted or recalculated as the thermal conductivity coefficient. It shows that electrical resistivity coefficient of cooper-stainless steel weldment higher than that of stainless steel. The width of intermediate layer between stainless steel and commercially pure copper was 41-53 μm, microhardness was 128-170 HV0.01.

  2. Improvement of ultrasonic characteristics in butt-welded joint of austenitic stainless steel using magnetic stirring method

    SciTech Connect

    Tanosaki, M.; Yoshikawa, K.; Arakawa, T.

    1995-08-01

    Magnetic Stirring Method of Tungsten Inert Gas(TIG) Welding are applied to butt-welded joint of austenitic stainless steel. The purpose of this method is to refine the welded structure and to improve the ultrasonic characteristics. In the conventional method of ultrasonic test in austenitic stainless steel weldments, dendritic solidification structure of weldment prevents smooth ultrasonic beam transmission. The tests are performed in three welding conditions; One is conventional TIG welding (without magnetic stirring), the other two are TIG welding using magnetic stirring method. Each test piece is evaluated by observing macro structure of cross section and by several ultrasonic tests examining pulse amplitudes, beam path length and proceeding beam direction. The detectability of artificial notches in weldment is also investigated and compared.

  3. Effect of Laser Surface Melting on the Microstructure and Pitting Corrosion Resistance of 304L SS Weldment

    NASA Astrophysics Data System (ADS)

    Suresh, Girija; Dasgupta, Arup; Kishor, P. S. V. R. A.; Upadhyay, B. N.; Saravanan, T.; Mallika, C.; Mudali, U. Kamachi

    2017-10-01

    The manuscript presents the effect of laser surface melting (LSM) on the microstructural variations and pitting corrosion resistance of 304L SS weldment fabricated by gas tungsten arc welding of 304L SS plates using 308L SS filler wire. The weld region was examined by X-ray radiography for defect detection. LSM of 304L SS weldment was performed using Nd:YAG pulsed laser. Microstructural evaluation was carried out using optical and electron back scatter diffraction techniques. The microstructure of 304L SS base was found to be austenitic, while the weld region of 304L SS weldment contained delta ferrite distributed in austenite matrix. The microstructure of LSM 304L SS weldment was found to be homogeneous austenite matrix with sparsely distributed ferrite. Ferrite measurements showed a decrease in the percentage ferrite in the fusion zone of 304L SS weldment after LSM. A profound enhancement in the pitting corrosion resistance was observed after LSM, which could be attributed to the homogeneous microstructure and decrease in the ferrite content. Pit density was found to be higher in the heat-affected zone of the weldment. Very few pits were observed in the LSM 304L SS weldment compared to the as-weldment.

  4. Creep and Creep-Fatigue of Alloy 617 Weldments

    SciTech Connect

    Wright, Jill K.; Carroll, Laura J.; Wright, Richard N.

    2014-08-01

    Alloy 617 is the primary candidate material for the heat exchanger of a very high temperature gas cooled reactor intended to operate up to 950°C. While this alloy is currently qualified in the ASME Boiler and Pressure Vessel Code for non-nuclear construction, it is not currently allowed for use in nuclear designs. A draft Code Case to qualify Alloy 617 for nuclear pressure boundary applications was submitted in 1992, but was withdrawn prior to approval. Prior to withdrawal of the draft, comments were received indicating that there was insufficient knowledge of the creep and creep-fatigue behavior of Alloy 617 welds. In this report the results of recent experiments and analysis of the creep-rupture behavior of Alloy 617 welds prepared using the gas tungsten arc process with Alloy 617 filler wire. Low cycle fatigue and creep-fatigue properties of weldments are also discussed. The experiments cover a range of temperatures from 750 to 1000°C to support development of a new Code Case to qualify the material for elevated temperature nuclear design. Properties of the welded material are compared to results of extensive characterization of solution annealed plate base metal.

  5. Influence of Weld Cooling Rate on Microstructure and Mechanical Properties of Alloy 718 Weldments

    NASA Astrophysics Data System (ADS)

    Sivaprasad, K.; Ganesh Sundara Raman, S.

    2008-09-01

    Even though alloy 718 is the best for welding among all nickel-base superalloys, the formation of the Laves phase in welds is a major concern. The presence of this phase drastically degrades mechanical properties of the welds. To study the influence of weld cooling rate on microstructure and mechanical properties of alloy 718 weldments, two distinct welding processes were adopted—gas tungsten arc (GTA) and electron beam (EB) welding. The EB welding resulted in finer and relatively discrete Laves phase in lower quantity due to higher cooling rates prevailing in this process. On the other hand, due to lower cooling rates, GTA weld fusion zones exhibited coarse Laves with higher niobium. Depletion of the primary strengthening element niobium in the surrounding regions of Laves promoted crack propagation. Because EB welds had finer and lower amount of Laves, EB weldments exhibited superior mechanical properties compared with GTA weldments.

  6. Effect of heat treatment upon the fatigue-crack growth behavior of Alloy 718 weldments

    SciTech Connect

    James, L.A.; Mills, W.J.

    1981-05-01

    Gas-tungsten-arc weldments in Alloy 718 were studied in fatigue-crack growth test conducted at five temperatures over the range 24--649{degree}C. In general, crack growth rates increased with increasing temperature, and weldments given the conventional'' post-weld heat-treatment generally exhibited crack growth rates that were higher than for weldments given the modified'' (INEL) heat-treatment. Limited testing in the as-welded condition revealed crack growth rates significantly lower than observed for the heat-treated cases, and this was attributed to residual stresses. Three different heats of filler wire were utilized, and no heat-to-heat variations were noted. 23 refs., 9 figs., 6 tabs.

  7. Irradiation effects in low-alloy reactor pressure vessel steels (Heavy-Section Steel Technology Program Series 4 and 5)

    SciTech Connect

    Berggren, R.G.; McGowan, J.J.; Menke, B.H.; Nanstad, R.K.; Thoms, K.R.

    1984-01-01

    Multiple testing is done at two laboratories of typical nuclear pressure vessel materials (both irradiated and unirradiated) and statistical analyses of the test results. Multiple tests are conducted at each of several test temperatures for each material, standard deviations are determined, and results from the two laboratories are compared. The Fourth Heavy-Section Steel Technology (HSST) Irradiation Series, almost completed, was aimed at elastic-plastic and fully plastic fracture toughness of low-copper weldments (current practice welds). A typical nuclear pressure vessel plate steel was included for statistical purposes. The Fifth HSST Irradiation Series, now in progress, is aimed at determining the shape of the K/sub IR/ curve after significant radiation-induced shift of the transition temperatures. This series includes irradiated test specimens of thicknesses up to 100 mm and weldment compositions typical of early nuclear power reactor pressure vessel welds.

  8. Performance of repair welds on service-aged 2-1/4Cr-1Mo girth weldments

    SciTech Connect

    Viswanathan, R.; Gandy, D.; Findlan, S.

    1997-11-01

    This paper discusses the results of evaluations performed on service-aged piping using both conventional postweld heat treatments and temperbead repair techniques. The two repair weldments were accomplished on two 2-1/4Cr-1Mo pipe girth weldments which were removed from a utility hot reheat piping system in the fall of 1992 after 161,000 h of operation at 1,000 F (538 C). Each repair was performed around one-half of the diameter of a pipe girth weldment, while the remaining half of the girth weldment was left in the service-aged condition. Post-repair metallurgical and mechanical test results indicated that both weld repairs produced improved remaining lives when compared to the service-aged girth weldments. Since the two ex-service weldments that were utilized in weld repairs exhibited different stress rupture strengths to start with, the performance of temper bead and postweld heat-treated (PWHT) repair could not be compared directly. It was clear, however, that life extension periods exceeding 30 yr could be achieved by temperbead repairs, with improved toughness and with no loss of stress rupture ductility, tensile strength, or yield strength. The temperbead repair improved the toughness of the service-aged weldment, while the postweld heat-treated repair lowered the HAZ toughness.

  9. Preliminary Analysis of the General Performance and Mechanical Behavior of Irradiated FeCrAl Base Alloys and Weldments

    SciTech Connect

    Gussev, Maxim N.; Field, Kevin G.; Briggs, Samuel A.; Yamamoto, Yukinori

    2016-09-30

    The iron-based, iron-chromium-aluminum (FeCrAl) alloys are promising, robust materials for deployment in current and future nuclear power plants. This class of alloys demonstrates excellent performance in a range of environments and conditions, including high-temperature steam (>1000°C). Furthermore, these alloys have the potential to have prolonged survival under loss-of-coolant accident (LOCA) conditions compared to the more traditional cladding materials that are either Zr-based alloys or austenitic steels. However, one of the issues associated with FeCrAl alloys is cracking during welding. The present project investigates the possibility of mitigating welding-induced cracking via alloying and precise structure control of the weldments; in the frame work of the project, several advanced alloys were developed and are being investigated prior to and after neutron irradiation to provide insight into the radiation tolerance and mechanical performance of the weldments. The present report provides preliminary results on the post-irradiation characterization and mechanical tests performed during United States Fiscal Year (FY) 2016. Chapter 1 provides a general introduction, and Chapter 2 describes the alloy compositions, welding procedure, specimen geometry and manufacturing parameters. Also, a brief discussion of the irradiation at the High Flux Isotope Reactor (HFIR) is provided. Chapter 3 is devoted to the analysis of mechanical tests performed at the hot cell facility; tensile curves and mechanical properties are discussed in detail focusing on the irradiation temperature. Limited fractography results are also presented and analyzed. The discussion highlights the limitations of the testing within a hot cell. Chapter 4 underlines the advantages of in-situ testing and discusses the preliminary results obtained with newly developed miniature specimens. Specimens were moved to the Low Activation Materials Development and Analysis (LAMDA) laboratory and prepared for

  10. Microstructural, compositional, and microhardness variations across a gas-metal arc weldment made with an ultralow-carbon consumable

    NASA Astrophysics Data System (ADS)

    Spanos, G.; Moon, D. W.; Fonda, R. W.; Menon, E. S. K.; Fox, A. G.

    2001-12-01

    An experimental gas-metal arc (GMA) weldment of HSLA-100 steel fabricated with an ultralowcarbon (ULC) consumable of interest for United States Navy applications, designated “ARC100,” was studied to determine the relationships among the microstructure, the solute redistributions at various positions across the weldment, and the local properties (microhardness). These relationships were investigated by a variety of techniques, including microhardness mapping, optical microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) (including compositional X-ray mapping), and parallel electron energy-loss spectroscopy (PEELS). The microconstituents observed in this weld include lath ferrite, degenerate ferrite, lath martensite, retained austenite, and oxide inclusions; no carbides or other solid-state precipitates are present within the weld metal. Microhardness mapping indicates an undermatched weld metal (lower hardness as compared to the base plate) in which the hardest regions are in the first and last top beads, the root passes, and between highly ferritic soft bands associated with the outer portion of each weld bead’s heat-affected zone (HAZ) (within the fusion zone). The majority of the gradient in the substitutional alloying elements (Ni, Cu, Mn, and Cr) occurs within a region of less than about 0.5 mm of the fusion boundary, but the composition still changes even well into the fusion zone. Appreciable segregation of Ni and Cu to solidification cell boundaries occurs, and there is appreciable enrichment of C, Ni, Cu, and Mn in thin films of interlath retained austenite. This ULC weld metal is softer than the base plate due to the preponderance of lath ferrite rather than lath martensite, even at the high cooling rates experienced in this low-heat-input weld. Alternatively, the strength of the weld metal is due to the presence of at least some untempered lath martensite and the fact that the

  11. Underwater wet welding of steel

    SciTech Connect

    Ibarra, S.; Liu, S.; Olson, D.L.

    1995-05-01

    Underwater wet welding is conducted directly in water with the shielded metal arc (SMA) and flux cored arc (FCA) welding processes. Underwater wet welding has been demonstrated as an acceptable repair technique down to 100 meters (325 ft.) in depth, but wet welds have been attempted on carbon steel structures down to 200 meters (650 ft.). The primary purpose of this interpretive report is to document and evaluate current understanding of metallurgical behavior of underwater wet welds so that new welding consumables can be designed and new welding practices can be developed for fabrication and repair of high strength steel structures at greater depths. First the pyrometallurgical and physical metallurgy behaviors of underwater weldments are discussed. Second, modifications of the welding consumables and processes are suggested to enhance the ability to apply wet welding techniques.

  12. 46 CFR 54.05-15 - Weldment toughness tests-procedure qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ENGINEERING PRESSURE VESSELS Toughness Tests § 54.05-15 Weldment toughness tests—procedure qualifications. (a... the weld metal. (2) Three specimens with the notch centered on the fusion line between parent plate... tests may be limited to weld metal only if this is all that is required by § 54.25-15....

  13. 16 CFR Figure 2 to Subpart A of... - Cyclone Receiver Weldment

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Cyclone Receiver Weldment 2 Figure 2 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt. 1209, Subpt. A, Fig. 2 Figure 2...

  14. 16 CFR Figure 2 to Subpart A of... - Cyclone Receiver Weldment

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Cyclone Receiver Weldment 2 Figure 2 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt. 1209, Subpt. A, Fig. 2 Figure 2...

  15. 16 CFR Figure 2 to Subpart A of... - Cyclone Receiver Weldment

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Cyclone Receiver Weldment 2 Figure 2 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt. 1209, Subpt. A, Fig. 2 Figure 2...

  16. 16 CFR Figure 2 to Subpart A of... - Cyclone Receiver Weldment

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Cyclone Receiver Weldment 2 Figure 2 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt. 1209, Subpt. A, Fig. 2 Figure 2...

  17. Effect of heat treatment on the elevated temperature properties of a 2{1/4}Cr-1Mo submerged arc weldment

    SciTech Connect

    Lundin, C.D.; Khan, K.K.

    1995-09-01

    2{1/4}Cr-1Mo steels have been used in power and chemical plants for elevated temperature high pressure components since the 1930`s. Recent concerns involving the service of submerged arc (SA) welded steam piping has resulted in the inception of this study. Because welded piping may be either annealed and tempered (A and T), normalized and tempered (N and T) or subcritically postweld heat treated (PWHT), the aim of this study was the determination of the elevated temperature properties of 2{1/4}Cr-1Mo weldments subjected to these heat treatments after welding. The SA weldment fabricated for this study had a difference in chromium content (0.62%) between the base metal (2.07%) and weld metal (2.69%). The significance of this chromium difference was investigated in addition to the determination of stress rupture properties in the different heat treated conditions. Characterization of the microstructure using analytical techniques indicated that the stability of M{sub 2}C type carbides in the ferritic or bainitic microconstituents dictate the elevated temperature properties of the weld metal. Microscopy of the soft ferrite band revealed presence of fine M{sub 2}C type carbides. This soft ferritic region is strengthened by fine acicular M{sub 2}C carbides along with the interactive solid solution hardening effect of molybdenum in ferrite. In addition, adjacent regions which are stronger than the soft zone exert a constraint effect thereby limiting the rupture potential of this zone. Thus, the soft zone did not contribute to creep failure. 120 refs., 44 figs.

  18. Microstructure, Properties and Weldability of Duplex Stainless Steel 2101

    NASA Astrophysics Data System (ADS)

    Ma, Li; Hu, Shengsun; Shen, Junqi

    2017-01-01

    The continuous development of duplex stainless steels (DSSs) is due to their excellent corrosion resistance in aggressive environments and their mechanical strength, which is usually twice of conventional austenitic stainless steels (ASSs). In this paper, a designed lean duplex stainless steel 2101, with the alloy design of reduced nickel content and increased additions of manganese and nitrogen, is studied by being partly compared with typical ASS 304L steels. The microstructure, mechanical properties, impact toughness, corrosion resistance and weldability of the designed DSS 2101 were conducted. The results demonstrated that both 2101 steel and its weldment show excellent mechanical properties, impact toughness and corrosion resistance, so DSS 2101 exhibits good comprehensive properties and can be used to replace 304L in numerous applications.

  19. Factors Influencing the Microstructural and Mechanical Properties of ULCB Steel Weldments

    DTIC Science & Technology

    1991-12-01

    of carbides producing the poorest overall mechanical properties. The majority of the nonmetallic inclusions identified were spherical, complex ...poorest overall mechanical properties. The majority of the nonmetallic inclusions identified were spherical, complex aluminum-silicates or manganese...700- 180 500 520 BS TEMPERATURE O Figure 4 Relationship between bainite start temperature and strength (Blicharski et a]., 1988, p. 324). 13 C

  20. Proceedings of the Joint Seminar; Hydrogen Management in Steel Weldments, Melbourne, Australia, 23rd October 1996.

    DTIC Science & Technology

    1997-01-01

    718 and 706 [4]. SUMMARY AND CONCLUSIONS 1. Hydrogen induced cracking studies were conducted on A723, Maraging 200, PH 13-8 Mo, Alloy 718 Direct Aged...Interactions at the Bore Surface of a Ta-10W Gun Barrel Liner", MPIF-APMI International Conference on Tungsten and Refractory Metals, Their Alloys ... Phosphorus Sulphur Nickel Chromium Molybdenum CEirw Pcm Wire Composition HeatB 0.10 1.66 0.35 0.009 0.003 2.36 0.28 0.50 0.693 0.283

  1. Study of Residual Stresses and Distortion in Structural Weldments in High-Strength Steels

    DTIC Science & Technology

    1980-11-30

    TCNCSECOND- TECHNICAL PROGRESS REPORT ofI0 CONTRACT N00014-75-0469 I(M.I.T. OSP #82558) .I STUDY OF RESIDUAL STRESSES AND DISTORTION IN STRUCTURAL...MASSACHUSETTS 81 2 19 04 I MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF OCEAN ENGINEERING CAMBRIDGE, MASS. 02139 TECHNICAL PRGRS REPr*TI Contract ...PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER($) Vassilios J. Papazoglou and Contract 100014-75-0469j Koichi Masubuchi (M.I.T. OSP

  2. Investigation of microstructures and residual stresses in laser peened Incoloy 800H weldments

    NASA Astrophysics Data System (ADS)

    Chen, Xizhang; Wang, Jingjun; Fang, Yuanyuan; Madigan, Bruce; Xu, Guifang; Zhou, Jianzhong

    2014-04-01

    Laser Shock Peening (LSP) is an advanced surface enhancement technique to improve the mechanical properties of engineering materials. In the present study, LSP was performed on Incoloy 800H laser weldments. The microstructure and residual stress, two key factors for application of weldments, were investigated via optical and transmission electron microscopy and crystallographic and residual stress X-ray diffraction analysis. Micro-hardness tests were also used to evaluate mechanical properties. Results show that significant grain refinement occurs in the LSP-treated zone where original lath structures are refined to equiaxed grains, and dislocation density increases significantly. Because of the high strain rates produced by LSP, grain deformation by slip is limited, and therefore deformation by grain twinning occurs. The micro-hardness of weld joint increased after LSP with a hardened depth of about 1.2 mm. LSP processed welded joints exhibited high compressive residual stress, and the residual stress distribution was uniform. It is shown that LSP is an effective way to refine microstructure, increase strength and rebalance residual stress which will improve fatigue life and corrosion cracking resistance of Incoloy 800H weldments.

  3. Effect of Multipasses on Microstructure and Electrochemical Behavior of Weldments

    NASA Astrophysics Data System (ADS)

    Makhdoom, Muhammad Atif; Kamran, Muhammad; Awan, Gul Hameed; Mukhtar, Sehrish

    2013-12-01

    Shielded metal arc welding was applied to AISI 1045 medium carbon steel. The microstructural changes and electrochemical corrosion behavior of the heat-affected zone (HAZ), base metal (BM), and weld zone (WZ) were investigated. The effect of welding passes on microstructural changes of BM, HAZ, and WZ were elucidated using optical microscopy, potentiodynamic Tafel scan, and linear polarization resistance (LPR) methods in plain water and 3.5 pct (w/v) NaCl solution under standard temperature and pressure using corrosion kinetic parameters. From microstructural observations, the variations in ferrite morphology in the BM and WZ showed dissimilar electrochemical corrosion behavior and a corrosion rate than that of HAZ.

  4. Modeling of residual stresses by HY-100 weldments

    SciTech Connect

    Zacharia, T.; Taljat, B.; Radhakrishnan, B.

    1997-02-01

    Residual stress distribution in a HY-100 steel disk, induced by GTA spot welding, was analyzed by finite element (FE) formulations and measured by neutron diffraction (ND). Computations used temperature- dependent thermophysical and mechanical properties. FE model predictions are in good agreement with ND data in far heat affected zone (HAZ) and in base metal. Predicted residual stresses in fusion zone and near HAZ were higher than those measured by ND. This discrepancy was attributed to microstructural changes and associated material properties in the HAZ and fusion zone due to phase transformations during the weld thermal cycle.

  5. An improved method to identify grain boundary creep cavitation in 316H austenitic stainless steel.

    PubMed

    Chen, B; Flewitt, P E J; Smith, D J; Jones, C P

    2011-04-01

    Inter-granular creep cavitation damage has been observed in an ex-service 316H austenitic stainless steel thick section weldment. Focused ion beam cross-section milling combined with ion channelling contrast imaging is used to identify the cavitation damage, which is usually associated with the grain boundary carbide precipitates in this material. The results demonstrate that this technique can identify, in particular, the early stage of grain boundary creep cavitation unambiguously in materials with complex phase constituents.

  6. Laser shock-induced mechanical and microstructural modification of welded maraging steel

    SciTech Connect

    Banas, G. ); Elsayed-Ali, H.E. ); Lawrence, F.V. Jr. ); Rigsbee, J.M. )

    1990-03-01

    The effect of laser-induced high-intensity stress waves on the hardness, fatigue resistance, and microstructure in the heat affected zone of welded 18 Ni(250) maraging steel was investigated. Laser-shock processing increased the hardness and fatigue strength of the weldments. Some melting of the surface was involved during laser-shock hardening which produced the reverted austenite phase. Microscopic analyses showed an increased dislocation density in the laser-shocked area.

  7. Microstructural characterization of dissimilar welds between Incoloy 800H and 321 Austenitic Stainless Steel

    SciTech Connect

    Sayiram, G. Arivazhagan, N.

    2015-04-15

    In this work, the microstructural character of dissimilar welds between Incoloy 800H and 321 Stainless Steel has been discussed. The microscopic examination of the base metals, fusion zones and interfaces was characterized using an optical microscope and scanning electron microscopy. The results revealed precipitates of Ti (C, N) in the austenitic matrix along the grain boundaries of the base metals. Migration of grain boundaries in the Inconel 82 weld metal was very extensive when compared to Inconel 617 weldment. Epitaxial growth was observed in the 617 weldment which increases the strength and ductility of the weld metal. Unmixed zone near the fusion line between 321 Stainless Steel and Inconel 82 weld metal was identified. From the results, it has been concluded that Inconel 617 filler metal is a preferable choice for the joint between Incoloy 800H and 321 Stainless Steel. - Highlights: • Failure mechanisms produced by dissimilar welding of Incoloy 800H to AISI 321SS • Influence of filler wire on microstructure properties • Contemplative comparisons of metallurgical aspects of these weldments • Microstructure and chemical studies including metallography, SEM–EDS • EDS-line scan study at interface.

  8. Effect of heat treatment upon the fatigue-crack growth behavior of Alloy 718 weldments. Part I. Macroscopic behavior

    SciTech Connect

    James, L A; Mills, W J

    1981-05-01

    Gas-tungsten-arc weldments in Alloy 718 were studied in fatigue-crack growth tests conducted at five temperatures over the range 24 to 649{sup 0}C. In general, crack growth rates increased with increasing temperature, and weldments given the conventional post-weld heat-treatment generally exhibited crack growth rates that were higher than for weldments given the modified (INEL) heat-treatment. Limited testing in the as-welded condition revealed crack growth rates significantly lower than observed for the heat-treated cases, and this was attributed to residual stresses. Three different heats of filler wire were utilized, and no heat-to-heat variations were noted. 9 figures, 6 tables.

  9. Friction Stir Welding of Steel Alloys

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The friction stir welding process has been developed primarily for the welding of aluminum alloys. Other higher melting allows such, as steels are much more difficult to join. Special attention must be given to pin tool material selection and welding techniques. This paper addresses the joining of steels and other high melting point materials using the friction stir welding process. Pin tool material and welding parameters will be presented. Mechanical properties of weldments will also be presented. Significance: There are many applications for the friction stir welding process other than low melting aluminum alloys. The FSW process can be expanded for use with high melting alloys in the pressure vessel, railroad and ship building industries.

  10. Friction Stir Welding of Steel Alloys

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The friction stir welding process has been developed primarily for the welding of aluminum alloys. Other higher melting allows such, as steels are much more difficult to join. Special attention must be given to pin tool material selection and welding techniques. This paper addresses the joining of steels and other high melting point materials using the friction stir welding process. Pin tool material and welding parameters will be presented. Mechanical properties of weldments will also be presented. Significance: There are many applications for the friction stir welding process other than low melting aluminum alloys. The FSW process can be expanded for use with high melting alloys in the pressure vessel, railroad and ship building industries.

  11. Response of SMA (Shielded Metal Arc) and Narrow Gap HY80 Weldments to Explosive Shock Loading.

    DTIC Science & Technology

    1988-03-01

    soumises A de fortes deformations plastiques sous l’effet d’ondes de choc explosif constitue un aspect important de l𔄀tude des mat6riaux utilis6s pour...structures E7018, des ruptures fragiles compl~tes se sont d~velopp~es A des niveaux de deformation plastique inf~rieurs. L16tude d𔄀chantillons de ces...HY80 were conducted. Five SMA weldments fabricated with various electrodes were explosively tested to compare the shock resistance of undermatched

  12. Numerical Analysis of Welding Residual Stress Relaxation in High-Strength Multilayer Weldment Under Fatigue Loads

    NASA Astrophysics Data System (ADS)

    Yi, Hui-Jun; Lee, Yong-Jun

    2017-08-01

    The primary purpose of this investigation was to study welding residual stress relaxation by repeated loading. A coupling finite element analysis model for prediction of the welding residual stress and the mechanical stress relaxation after external repeated loads was presented. The accuracy of this model was verified through experiments. Also, it is found that the residual stress of weldment is relaxed by external loads, and the greatest amount of relaxation was obtained by early repeated loads. As the repetition count increased, the amount of relaxation became smaller than the amount of relaxation in the early stage.

  13. Development of Advanced 9Cr Ferritic-Martensitic Steels and Austenitic Stainless Steels for Sodium-Cooled Fast Reactor

    SciTech Connect

    Sham, Sam; Tan, Lizhen; Yamamoto, Yukinori

    2013-01-01

    Ferritic-martensitic (FM) steel Grade 92, with or without thermomechanical treatment (TMT), and austenitic stainless steels HT-UPS (high-temperature ultrafine precipitate strengthening) and NF709 were selected as potential candidate structural materials in the U.S. Sodium-cooled Fast Reactor (SFR) program. The objective is to develop advanced steels with improved properties as compared with reference materials such as Grade 91 and Type 316H steels that are currently in nuclear design codes. Composition modification and/or processing optimization (e.g., TMT and cold-work) were performed to improve properties such as resistance to thermal aging, creep, creep-fatigue, fracture, and sodium corrosion. Testings to characterize these properties for the advanced steels were conducted by the Idaho National Laboratory, the Argonne National Laboratory and the Oak Ridge National Laboratory under the U.S. SFR program. This paper focuses on the resistance to thermal aging and creep of the advanced steels. The advanced steels exhibited up to two orders of magnitude increase in creep life compared to the reference materials. Preliminary results on the weldment performance of the advanced steels are also presented. The superior performance of the advanced steels would improve reactor design flexibility, safety margins and economics.

  14. Microstructure evaluation in low alloy steel weld metal from convective heat transfer calculations in three dimensions

    SciTech Connect

    Mundra, K.; DebRoy, T.; Babu, S.S.; David, S.A.

    1995-12-31

    Heat transfer and fluid flow during manual metal arc welding of low alloy steels were investigated by solving the equations of conservation of mass, momentum, and energy in three dimensions. Cooling rates were calculated at various locations in the weldment. Calculated cooling rates were coupled with an existing phase transformation model to predict percentages of acicular, allotriomorphic, and Widmanstaetten ferrites in various low alloy steel welds containing different concentration of V and Mn. Computed microstructures were in good agreement with experiment, indicating promise for predicting weld metal microstructure from the fundamentals of transport phenomena.

  15. Optimized postweld heat treatment procedures for 17-4 PH stainless steels

    SciTech Connect

    Bhaduri, A.K.; Sujith, S.; Srinivasan, G.; Gill, T.P.S.; Mannan, S.L.

    1995-05-01

    The postweld heat treatment (PWHT) procedures for 17-4 PH stainless steel weldments of matching chemistry was optimized vis-a-vis its microstructure prior to welding based on microstructural studies and room-temperature mechanical properties. The 17-4 PH stainless steel was welded in two different prior microstructural conditions (condition A and condition H 1150) and then postweld heat treated to condition H900 or condition H1150, using different heat treatment procedures. Microstructural investigations and room-temperature tensile properties were determined to study the combined effects of prior microstructural and PWHT procedures.

  16. X-ray study of residual stresses in narrow groove TIG weldments. Final technical report, September 1979-March 1984

    SciTech Connect

    Ruud, C.O.; Pangborn, R.N.; Snoha, D.J.

    1985-01-01

    The residual stresses measured in this project in the plane of the plate rolling surface, in the heat-affected zone, adjacent and in a direction normal to the weld fusion line, are greater than those in a direction parallel to the weld fusion line. This is in contradiction to the observation that in single-pass welds the parallel stresses are greater. The maximum residual stresses observed in the weldment studied were nearly or at the yield strength; this stress level is comparable with that shown in welds from thin plates, but no greater; and was at the weld fusion line, or toe, of the weld. A double peak in the plots of stresses normal to the weld line on traverses normal to the weld on the rolled surface of the original plate was attributed to hardenability variation caused by the thermal cycling during multi-pass welding. The stress field of the narrow groove weldment is less extensive than what was predicted for V groove. Stress relief due to cutting the weldment through a plane normal to the weld line caused relief as far as 40% of the plate thickness. The weld repair caused severe perturbations to residual stress symmetry of the weldment.

  17. Influence of low nickel (0.09 wt%) content on microstructure and toughness of P91 steel welds

    NASA Astrophysics Data System (ADS)

    Arivazhagan, B.; Vasudevan, M.; Kamaraj, M.

    2015-05-01

    Modified 9Cr-1Mo (P91) steel is widely used as a high temperature structural material in the fabrication of power plant components. Alloying elements significantly influences the microstructure and mechanical properties of P91 steel weldments. The alloying elements manganese and nickel significantly influence the lower critical phase transformation temperature (AC1) as well as tempering response of welds. In the existing published information there was wide spread use of high Mn+Ni filler wire. In the present study, weldment preparation was completed using GTA filler wire having low Nickel content (Mn+Ni of 0.58 wt% including nickel content of 0.09 wt%). Microstructure and mechanical properties characterization was done. There is a requirement on minimum toughness of 47 Joules for P91 steel tempered welds at room temperature. Microstructural observation revealed that the GTA welds have low δ-ferrite content (<0.5%) in the martensite matrix. In the as-weld condition, the toughness was 28 Joules whereas after PWHT at 760 °C-2 h it was 115 Joules. In the present study, toughness of low nickel weld was higher due to low δ-ferrite content (<0.5%), multipass grain refinement and weld metal deposition of single pass per layer of weldment.

  18. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    NASA Technical Reports Server (NTRS)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  19. An Updated Assessment of Graphitization of Steels in Elevated Temperature Service

    NASA Astrophysics Data System (ADS)

    Foulds, Jude R.; Shingledecker, John P.

    2015-02-01

    Recent experience with damage and failure due to graphitization in electric power plant piping of carbon (C) and carbon-molybdenum (C-Mo) steel suggests that the previously developed time-temperature curves for graphitization prediction, first published over two decades ago, merit review. Recent data were combined with an exhaustive review of available literature. As with the earlier research, available experience data with reported approximate extent of graphitization and nominal service exposure conditions were analyzed for the predictions. When the data were combined, the database consisted of 281 data points. The data are in contrast to the roughly 40 points used in the prior research. The nature of the expanded C steel weldment database was such that the analysis could not effectively discriminate between all of the five graphitization levels used in previous research efforts. In this analysis, it was found that the level of graphitization as a function of time and temperature could be categorized into three broad "risk" ranges—defined as low, moderate, and significant, and that the curves delineating these ranges could be developed in a statistically conservative manner. These conservative time-temperature prediction curves are offered as an update to the previous time-temperature curves. Although the data for C-Mo steel base metal and weldments and on C steel base metal were inadequate for a full quantitative analysis, the experience with these materials cases is presented within the context of the C steel weldment risk curves and preliminary time-temperature conditions warranting concern for graphitization are offered. Finally, a partial validation of the risk curves is presented in examination of power plant piping that had operated for over 400,000 h.

  20. Grain Refinement of AZ31 Magnesium Alloy Weldments by AC Pulsing Technique

    NASA Astrophysics Data System (ADS)

    Kishore Babu, N.; Cross, C. E.

    2012-11-01

    The current study has investigated the influence of alternating current pulsing on the structure and mechanical properties of AZ31 magnesium alloy gas tungsten arc (GTA) weldments. Autogenous full penetration bead-on-plate GTA welds were made under a variety of conditions including variable polarity (VP), variable polarity mixed (VPM), alternating current (AC), and alternating current pulsing (ACPC). AC pulsing resulted in significant refinement of weld metal when compared with the unpulsed conditions. AC pulsing leads to relatively finer and more equiaxed grain structure in GTA welds. In contrast, VP, VPM, and AC welding resulted in predominantly columnar grain structures. The reason for this grain refinement may be attributed to the periodic variations in temperature gradient and solidification rate associated with pulsing as well as weld pool oscillation observed in the ACPC welds. The observed grain refinement was shown to result in an appreciable increase in fusion zone hardness, tensile strength, and ductility.

  1. Creep and tensile properties of alloy 800H-Hastelloy X weldments. [HTGR

    SciTech Connect

    McCoy, H. E.; King, J. F.

    1983-08-01

    Hastelloy X and alloy 800H were joined satisfactorily by the gas tungsten arc welding process with ERNiCr-3 filler and the shielded metal arc welding process with Inco Weld A filler. Test specimens were of two types: (1) made entirely of deposited Inco Weld A and (2) machined transverse across the weldments to include Hastelloy X, filler metal (ERNiCr-3 or Inco Weld A), and alloy 800H. They were aged 2000 and 10,000 h and subjected to short-term tensile and creep tests. Inco Weld A and ERNiCr-3 are both suitable filler metals and result in welds that are stronger than the alloy 800H base metal.

  2. Effects of the Crack Tip Constraint on the Fracture Assessment of an Al 5083-O Weldment for Low Temperature Applications.

    PubMed

    Moon, Dong Hyun; Park, Jeong Yeol; Kim, Myung Hyun

    2017-07-18

    The constraint effect is the key issue in structural integrity assessments based on two parameter fracture mechanics (TPFM) to make a precise prediction of the load-bearing capacity of cracked structural components. In this study, a constraint-based failure assessment diagram (FAD) was used to assess the fracture behavior of an Al 5083-O weldment with various flaws at cryogenic temperature. The results were compared with those of BS 7910 Option 1 FAD, in terms of the maximum allowable stress. A series of fracture toughness tests were conducted with compact tension (CT) specimens at room and cryogenic temperatures. The Q parameter for the Al 5083-O weldment was evaluated to quantify the constraint level, which is the difference between the actual stress, and the Hutchinson-Rice-Rosengren (HRR) stress field near the crack tip. Nonlinear 3D finite element analysis was carried out to calculate the Q parameter at cryogenic temperature. Based on the experimental and numerical results, the influence of the constraint level correction on the allowable applied stress was investigated using a FAD methodology. The results showed that the constraint-based FAD procedure is essential to avoid an overly conservative allowable stress prediction in an Al 5083-O weldment with flaws.

  3. Effects of the Crack Tip Constraint on the Fracture Assessment of an Al 5083-O Weldment for Low Temperature Applications

    PubMed Central

    Moon, Dong Hyun; Park, Jeong Yeol; Kim, Myung Hyun

    2017-01-01

    The constraint effect is the key issue in structural integrity assessments based on two parameter fracture mechanics (TPFM) to make a precise prediction of the load-bearing capacity of cracked structural components. In this study, a constraint-based failure assessment diagram (FAD) was used to assess the fracture behavior of an Al 5083-O weldment with various flaws at cryogenic temperature. The results were compared with those of BS 7910 Option 1 FAD, in terms of the maximum allowable stress. A series of fracture toughness tests were conducted with compact tension (CT) specimens at room and cryogenic temperatures. The Q parameter for the Al 5083-O weldment was evaluated to quantify the constraint level, which is the difference between the actual stress, and the Hutchinson-Rice-Rosengren (HRR) stress field near the crack tip. Nonlinear 3D finite element analysis was carried out to calculate the Q parameter at cryogenic temperature. Based on the experimental and numerical results, the influence of the constraint level correction on the allowable applied stress was investigated using a FAD methodology. The results showed that the constraint-based FAD procedure is essential to avoid an overly conservative allowable stress prediction in an Al 5083-O weldment with flaws. PMID:28773179

  4. Impact properties of 304L stainless steel GTAW joints evaluated by high strain rate of compression tests

    NASA Astrophysics Data System (ADS)

    Lee, Woei-Shyan; Lin, Chi-Feng; Liu, Chen-Yang; Tzeng, Fan-Tzung

    2004-12-01

    This paper presents an investigation into the high velocity impact of 304L stainless steel gas tungsten arc welded (GTAW) joints at strain rates between 10-3 and 7.5 × 103 s-1 using a compressive split-Hopkinson bar. The results show that the impact properties and fracture characteristics of the tested weldments depend strongly on applied strain rate. This rate-dependent behavior is in good agreement with model predictions using the hybrid Zerilli-Armstrong constitutive law. It is determined that the tested weldments fail as a result of adiabatic shearing. The fracture surfaces of the fusion zone and base metal regions are characterized by the presence of elongated dimples. The variation in the observed dimple features with strain rate is consistent with the results of the impact stress-strain curves.

  5. Correlation of flux composition and inclusion characteristics with submerged arc weld metal properties in HY-100 steel

    NASA Astrophysics Data System (ADS)

    Kettell, Kent W.

    1993-09-01

    Submerged arc weldments of HY-100 steel prepared under standard conditions with five commercially available fluxes were analyzed to discern a basis for the variation in mechanical properties associated with different flux use. The variations in flux chemistry resulted in alloyed weldments with diverse weld metal mechanical properties as evident by Charpy impact, tensile, dynamic tear, and microhardness tests. The microstructures and macrostructures were examined using optical and electron microscopy in order to determine the basis for the variations in strength and toughness. Scanning electron microscope and energy dispersive x-ray experiments were performed to determine the size, type, distribution and volume fraction of the non-metallic inclusions in the weld metal. Inclusion characterization revealed that the role of the flux in alloying had a more significant effect on the strength and toughness than did the presence of specific inclusions.

  6. Thermomechanical history measurements on Type 304L stainless steel pipe girth welds

    SciTech Connect

    Li, Ming; Atteridge, D.G.; Anderson, W.E.; Turpin, R.; West, S.L.

    1993-12-31

    Thermal and strain histories were recorded for three 40-cm-diameter (16 inch), Type 304L stainless steel (SS), schedule 40 (1.27 cm thickness) pipe girth welds. Two weld groove preparations were standard V grooves while the third was a narrow groove configuration. The welding parameters for the three pipe welds simulated expected field practice as closely as possible. The narrow gap weld was completed in four continuous passes while the other two welds required six and nine (discontinuous) passes, due to the use of different weld wire diameters. Thermomechanical history measurements were taken on the inner counterbore surface, encompassing the weld centerline and heat-affected zone (HAZ), as well as 10 cm of inner counterbore surface on either side of the weld centerline; a total of 47 data acquisition instruments were used for each weld. These instruments monitored: (1) weld shrinkages parallel to the pipe axis; (2) surface temperatures; (3) surface strains parallel to weld centerline; and (4) radial deformations. Results show that the weld and HAZ experienced cyclic deformation in the radial direction during welding, indicating that the final residual stress distribution in multi-pass pipe weldments is not axisymmetric. Measured radial and axial deformations were smaller for the narrow gap groove than for the standard V grooves, suggesting that the narrow gap groove weldment may have lower residual stress levels than the standard V groove weldments. This study provides the experimental database and a guideline for further computational modeling work.

  7. Recent Aspects on the Effect of Inclusion Characteristics on the Intragranular Ferrite Formation in Low Alloy Steels: A Review

    NASA Astrophysics Data System (ADS)

    Mu, Wangzhong; Jönsson, Pär Göran; Nakajima, Keiji

    2017-04-01

    Intragranular ferrite (IGF), which nucleates from specific inclusion surfaces in low alloy steels, is the desired microstructure to improve mechanical properties of steel such as the toughness. This microstructure is especially important in the coarse grain heat affected zone (CGHAZ) of weldments. The latest review paper focusing on the role of non-metallic inclusions in the IGF formation in steels has been reported by Sarma et al. in 2009 (ISIJ int., 49(2009), 1063-1074). In recent years, large amount of papers have been presented to investigate different issues of this topic. This paper mainly highlights the frontiers of experimental and theoretical investigations on the effects of inclusion characteristics, such as the composition, size distribution and number density, on the IGF formation in low carbon low-alloyed steels, undertaken by the group of Applied Process Metallurgy, KTH Royal Institute of Technology. Related results reported in previous studies are also introduced. Also, plausible future work regarding various items of IGF formation is mentioned in each section. This work aims to give a better control of improving the steel quality during casting and in the heat affected zone (HAZ) of weldment, according to the concept of oxide metallurgy.

  8. Correlation of microstructure with mechanical properties of TIG weldments of Ti-6Al-4V made with and without current pulsing

    SciTech Connect

    Kishore Babu, N.; Ganesh Sundara Raman, S. . E-mail: ganesh@iitm.ac.in; Mythili, R.; Saroja, S.

    2007-07-15

    This paper deals with the influence of direct current pulsing on the microstructure, room temperature hardness and tensile properties at four different temperatures of tungsten inert gas (TIG) weldments of Ti-6Al-4V. Autogenous full-penetration bead-on-plate TIG welds were made with and without direct current pulsing. A few coupons were subjected to a post-weld heat treatment (PWHT) at 900 deg. C. Room temperature hardness and tensile properties at four different temperatures (25, 150, 300 and 450 deg. C) of the weldments in both as-welded and PWHT conditions were studied and correlated with the microstructure. Current pulsing resulted in slight refinement of prior {beta} grains leading to higher hardness, tensile strength and ductility of weldments in the as-welded condition. The post-weld heat treatment at 900 deg. C resulted in improvement in ductility and reduction in strength of weldments (both unpulsed and pulsed) owing to more coarsening of {alpha}, reduction in defect density and decomposition of martensite to equilibrium {alpha} and {beta}. Both pulsed and unpulsed weldments after PWHT exhibited almost the same values of strength and ductility. This may be attributed to the width of the {alpha} plates being almost the same in both welds.

  9. Microstructure characterization and charpy toughness of P91 weldment for as-welded, post-weld heat treatment and normalizing & tempering heat treatment

    NASA Astrophysics Data System (ADS)

    Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Giri, A.

    2017-09-01

    The effect of weld groove design and heat treatment on microstructure evolution and Charpy toughness of P91 pipe weldments was studied. The P91 pipe weldments were subjected to subcritical post weld heat treatment (760 °C-2 h) and normalizing/tempering conditions (normalized-1040 °C/40 min, air cooled; tempered 760 °C/2 h, air cooled) were employed. The influence of subsequent PWHT and N&T treatment on the microstructure of various zone of P91 pipe weldments were also investigated. The present investigation also described the effect of PWHT and N&T treatment on hardness, grain size, precipitate size, inter-particle spacing and fraction area of precipitates present in each zone of P91 pipe weldments. The result indicated great impact of heat treatment on the Charpy toughness and microstructure evolution of P91 weldments. The N&T treatment was found to be more effective heat treatment compared to subsequent PWHT. Charpy toughness value was found to be higher for narrow-groove design as compared to conventional V-groove design.

  10. Formation of nanostructured weldments in the Al-Si system using electrospark welding

    NASA Astrophysics Data System (ADS)

    Milligan, J.; Heard, D. W.; Brochu, M.

    2010-04-01

    Electrospark welding (ESW) electrodes were manufactured from three binary aluminum-silicon alloys consisting of 12 and 17 wt% silicon, produced using chill and sand casting. The electrodes were used to assess the feasibility of producing aluminum-silicon weldments consisting of nano-sized silicon particles embedded in nanostructured aluminum matrix, using the ESW process. Line tests were performed to determine the optimal processing parameters resulting in a high quality deposit. X-ray diffraction (XRD) as well as optical and field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) was performed to determine the composition and microstructure of the depositions. It was determined that a capacitance of 110 μF and a voltage of 100 V resulted in the highest quality deposition. Furthermore it was determined that the ESW process was capable of producing a microstructure consisting of an extremely fine-grained silicon phase ranging from ˜6 to 50 nm for the eutectic composition, and 10-200 nm for the hypereutectic compositions. Finally it was determined that the functional thickness limit of the aluminum-silicon deposit produced under these process parameters was 120 μm.

  11. Effect of heat treatment upon the fatigue-crack growth behavior of Alloy 718 weldments

    SciTech Connect

    Mills, W.J.; James, L.A.

    1981-05-01

    The microstructural features that influenced the room and elevated temperature fatigue-crack growth behavior of as-welded, conventional heat-treated, and modified heat-treated Alloy 718 GTA weldments were studied. Electron fractographic examination of fatigue fracture surfaces revealed that operative fatigue mechanisms were dependent on microstructure, temperatures and stress intensity factor. All specimens exhibited three basic fracture surface appearances at temperatures up to 538{degrees}C: crystallographic faceting at low stress intensity range ({Delta}K) levels, striation, formation at intermediate values, and dimples coupled with striations in the highest ({Delta}K) regime. At 649{degrees}C, the heat-treated welds exhibited extensive intergranular cracking. Laves and {delta} particles in the conventional heat-treated material nucleated microvoids ahead of the advancing crack front and caused on overall acceleration in crack growth rates at intermediate and high {Delta}K levels. The modified heat treatment removed many of these particles from the weld zone, thereby improving its fatigue resistance. The dramatically improved fatigue properties exhibited by the as-welded material was attributed to compressive residual stresses introduced by the welding process. 19 refs., 16 figs.

  12. Development of fuzzy logic system to predict the SAW weldment shape profiles

    NASA Astrophysics Data System (ADS)

    Narang, H. K.; Mahapatra, M. M.; Jha, P. K.; Biswas, P.

    2012-09-01

    A fuzzy model was presented to predict the weldment shape profile of submerged arc welds (SAW) including the shape of heat affected zone (HAZ). The SAW bead-on-plates were welded by following a full factorial design matrix. The design matrix consisted of three levels of input welding process parameters. The welds were cross-sectioned and etched, and the zones were measured. A mapping technique was used to measure the various segments of the weld zones. These mapped zones were used to build a fuzzy logic model. The membership functions of the fuzzy model were chosen for the accurate prediction of the weld zone. The fuzzy model was further tested for a set of test case data. The weld zone predicted by the fuzzy logic model was compared with the experimentally obtained shape profiles and close agreement between the two was noted. The mapping technique developed for the weld zones and the fuzzy logic model can be used for on-line control of the SAW process. From the SAW fuzzy logic model an estimation of the fusion and HAZ can also be developed.

  13. Method for welding an article and terminating the weldment within the perimeter of the article

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor); Snyder, John H. (Inventor); Boerger, Eric J. (Inventor); Borne, Bruce L. (Inventor)

    2000-01-01

    An article is welded, as in weld repair of a defect, by positioning a weld lift-off block at a location on the surface of the article adjacent to the intended location of the end of the weldment on the surface of the article. The weld lift-off block has a wedge shape including a base contacting the surface of the article, and an upper face angled upwardly from the base from a base leading edge. A weld pool is formed on the surface of the article by directly heating the surface of the article using a heat source. The heat source is moved relative to the surface of the article and onto the upper surface of the weld lift-off block by crossing the leading edge of the wedge, without discontinuing the direct heating of the article by the heat source. The heating of the article with the heat source is discontinued only after the heat source is directly heating the upper face of the weld lift-off block, and not the article.

  14. Use of photostress techniques to characterize the mechanical behavior of weldments

    NASA Technical Reports Server (NTRS)

    Gambrell, Samuel C., Jr.

    1991-01-01

    Photoelastic coatings are useful to view strains in a large field and to examine strain gradients in the field. Contrary to strain gages which average strains along their length, photoelastic coatings provide measurements of strain over a gage length of essentially zero (at a point). When testing is done using specimens having welds between parent material, there are, in general, four zones in which strains may be significantly different. These zones are: (1) the weld material; (2) the fusion boundary; (3) the heat affected zone; and (4) the parent material. To date, most all strain measurement on welded specimens has been done using strain gages to measure in the various zones, thereby averaging across the strain gradient and across zone boundaries in some cases. In an effort to eliminate strain averaging, photoelastic coatings were used to characterize the mechanical behavior of weldments when tested in uniaxial tension. Data were taken at various points along the specimen and were used to construct stress-strain curves.

  15. The potential of modified type 310 stainless steel for advanced fossil energy applications

    SciTech Connect

    Swindeman, R.W.

    1992-03-01

    An evaluation was undertaken to determine the potential of modified type 310 stainless steel for fossil energy applications. First, alloy performance criteria for components in several emerging technologies were identified. Then, a brief review of existing alloy technology was undertaken relative to performance criteria. Key issues were the tendency for type 310 stainless steel to embrittle due to the formation of intermetallic phases, the poor resistance of type 310 stainless steel to highly sulfidizing environments, the need to examine the strength and ductility of weldments, and the lack of a long-time data base and criteria for setting allowable stress at temperatures in excess of 800{degrees}C. An activity was outlined that would address several of the key issues.

  16. Welding stainless steels for structures operating at liquid helium temperature

    SciTech Connect

    Witherell, C.E.

    1980-04-18

    Superconducting magnets for fusion energy reactors require massive monolithic stainless steel weldments which must operate at extremely low temperatures under stresses approaching 100 ksi (700 MPa). A three-year study was conducted to determine the feasibility of producing heavy-section welds having usable levels of strength and toughness at 4.2/sup 0/K for fabrication of these structures in Type 304LN plate. Seven welding processes were evaluated. Test weldments in full-thickness plate were made under severe restraint to simulate that of actual structures. Type 316L filler metal was used for most welds. Welds deposited under some conditions and which solidify as primary austenite have exhibited intergranular embrittlement at 4.2/sup 0/K. This is believed to be associated with grain boundary metal carbides or carbonitrides precipitated during reheating of already deposited beads by subsequent passes. Weld deposits which solidify as primary delta ferrite appear immune. Through use of fully austenitic filler metals of low nitrogen content under controlled shielded metal arc welding conditions, and through use of filler metals solidifying as primary delta ferrite where only minimum residuals remain to room temperature, welds of Type 316L composition have been made with 4.2K yield strength matching that of Type 304LN plate and acceptable levels of soundness, ductility and toughness.

  17. Microstructural characterization of weld joints of 9Cr reduced activation ferritic martensitic steel fabricated by different joining methods

    SciTech Connect

    Thomas Paul, V.; Saroja, S.; Albert, S.K.; Jayakumar, T.; Rajendra Kumar, E.

    2014-10-15

    This paper presents a detailed electron microscopy study on the microstructure of various regions of weldment fabricated by three welding methods namely tungsten inert gas welding, electron beam welding and laser beam welding in an indigenously developed 9Cr reduced activation ferritic/martensitic steel. Electron back scatter diffraction studies showed a random micro-texture in all the three welds. Microstructural changes during thermal exposures were studied and corroborated with hardness and optimized conditions for the post weld heat treatment have been identified for this steel. Hollomon–Jaffe parameter has been used to estimate the extent of tempering. The activation energy for the tempering process has been evaluated and found to be corresponding to interstitial diffusion of carbon in ferrite matrix. The type and microchemistry of secondary phases in different regions of the weldment have been identified by analytical transmission electron microscopy. - Highlights: • Comparison of microstructural parameters in TIG, electron beam and laser welds of RAFM steel • EBSD studies to illustrate the absence of preferred orientation and identification of prior austenite grain size using phase identification map • Optimization of PWHT conditions for indigenous RAFM steel • Study of kinetics of tempering and estimation of apparent activation energy of the process.

  18. Microstructural evolution in ultra-low-carbon steel weldments—Part I: Controlled thermal cycling and continuous cooling transformation diagram of the weld metal

    NASA Astrophysics Data System (ADS)

    Fonda, R. W.; Spanos, G.

    2000-09-01

    The transformation behavior and microstructural evolution of the as-deposited weld metal from an ultra-low-carbon (ULC) weldment were characterized by dilatometry, optical microscopy, transmission electron microscopy, and microhardness measurements. These results were used to construct a continuous cooling transformation (CCT) diagram for this weld metal. The major microconstituents observed in this ULC weldment were (in order of decreasing cooling rate) coarse autotempered martensite, fine lath martensite, lath ferrite, and degenerate lath ferrite. No polygonal ferrite was observed. These results were also used to develop criteria to differentiate between the two predominant microstructures in these ULC steels, lath martensite, and lath ferrite, which can look quite similar but have very different properties.

  19. Microstructure and hydrogen induced failure mechanisms in iron-nickel weldments

    NASA Astrophysics Data System (ADS)

    Fenske, Jamey Alan

    difference in the weld metal interfaces was the presence of M 7C3 precipitates in the planar solidification region. The formation of these precipitates, which were found in what was previously referred to as the "featureless-zone," were determined to be dependent on the carbon content of the Fe-base metal and the duration of the post-weld heat treatment. A high density of these ordered 100 nm-long by 10 nm-wide needle-like precipitates were found in the AISI 8630-IN 625 weldment in the 10 hour post-weld heat treatment condition while only the initial stages of their nucleation were evident in the F22-IN 625 15 hour post-weld heat treatment specimen. The study of the fractured specimens revealed that the M7C 3 carbides play a key role in the susceptibility to hydrogen embrittlement of the Fe-Ni butter weldments. The fractures initially nucleate along the isolated Fe-base metal -- discontinuous partially mixed zone interfaces. The M7C3 carbides accumulate hydrogen and then provide a low energy fracture path between the discontinuous partially mixed zones leading to catastrophic failure. The result is a fracture morphology that alternates between flat regions produced by fracture along the discontinuous partially mixed zones and cleavage-like fracture regions produced by fracture along the ordered carbide matrix interfaces.

  20. Effect of copper-rich regions on tensile properties of VPPA weldments of 2219-T87 aluminum

    NASA Technical Reports Server (NTRS)

    Hartman, J. A.; Beil, R. J.; Hahn, G. T.

    1987-01-01

    This study examines the relations between tensile properties and microstructural features of variable polarity plasma arc (VPPA) weldments of 2219-T87 aluminum. Crack initiation and weld failure of transverse tensile specimens of single and multipass weldments were studied. The specimens fractured on the rising portion of the stress-strain curve prior to necking, signifying that an increase in strength would accompany an increase in ductility. Of particular interest is a shallow, typically 0.001-0.003-in. (0.03-0.08-mm) deep, copper-rich region located in the crown and root corners of the weld. This region is a primary source of crack initiation and growth, due to its brittle nature and highly strained location. The brittle regions were removed by electropolishing and machining to determine their effect on weld tensile properties. The removal increased the ductility of the weld specimens, and in the case of single pass welds, actually increased the load carrying capacity. Local strain measurements and metallographic and chemical analyses are presented.

  1. Effect of copper-rich regions on tensile properties of VPPA weldments of 2219-T87 aluminum

    NASA Technical Reports Server (NTRS)

    Hartman, J. A.; Beil, R. J.; Hahn, G. T.

    1987-01-01

    This study examines the relations between tensile properties and microstructural features of variable polarity plasma arc (VPPA) weldments of 2219-T87 aluminum. Crack initiation and weld failure of transverse tensile specimens of single and multipass weldments were studied. The specimens fractured on the rising portion of the stress-strain curve prior to necking, signifying that an increase in strength would accompany an increase in ductility. Of particular interest is a shallow, typically 0.001-0.003-in. (0.03-0.08-mm) deep, copper-rich region located in the crown and root corners of the weld. This region is a primary source of crack initiation and growth, due to its brittle nature and highly strained location. The brittle regions were removed by electropolishing and machining to determine their effect on weld tensile properties. The removal increased the ductility of the weld specimens, and in the case of single pass welds, actually increased the load carrying capacity. Local strain measurements and metallographic and chemical analyses are presented.

  2. Thermophysical property measurements on low alloy high strength carbon steels

    SciTech Connect

    Li, M.; Brooks, J.A.; Atteridge, D.G.; Porter, W.D.

    1997-06-15

    The alloys of interest in this study were AISI Type 4230 and Type 4320 low alloy high strength carbon steels. They are heat-treatable steels and are usually used in the quenched and tempered condition. The Type 4130 has about 0.3% (wt.)C, 0.95%Cr, and 0.2% Mo. The Type 4320 has about 0.2%C, 1.7%Ni, 0.7%Cr, and 0.3% Mo. They are among the most popular alloy steels because of their excellent combination of mechanical properties and are used in both cast and wrought forms for many applications requiring high strength and toughness. However, during the casting operation, carbon segregation to the part surface forms a high carbon content surface layer in the part, which will induce surface cracking in the subsequent quenching process. And, during the welding operation, the critical cooling rate in the heat-affected zone (HAZ) will determine if the weldment is crack-free or not. Thus, the numerical effort to study the thermal history, microstructure evolution and residual stress development during welding and casting is critical to the application of these steels. This modeling effect requires the accurate knowledge of thermophysical properties, such as thermal expansion, solidus and liquidus temperatures, specific heat capacity, and heat of fusion. Unfortunately, these thermophysical properties are unavailable for temperatures over 1,000 C (1,2), thus the need for this study.

  3. Quantitative measurement and modeling of sensitization development in stainless steel

    SciTech Connect

    Bruemmer, S.M.; Atteridge, D.G.

    1992-09-01

    The state-of-the-art to quantitatively measure and model sensitization development in austenitic stainless steels is assessed and critically analyzed. A modeling capability is evolved and validated using a diverse experimental data base. Quantitative predictions are demonstrated for simple and complex thermal and thermomechanical treatments. Commercial stainless steel heats ranging from high-carbon Type 304 and 316 to low-carbon Type 304L and 316L have been examined including many heats which correspond to extra-low-carbon, nuclear-grade compositions. Within certain limits the electrochemical potentiokinetic reactivation (EPR) test was found to give accurate and reproducible measurements of the degree of sensitization (DOS) in Type 304 and 316 stainless steels. EPR test results are used to develop the quantitative data base and evolve/validate the quantitative modeling capability. This thesis represents a first step to evolve methods for the quantitative assessment of structural reliability in stainless steel components and weldments. Assessments will be based on component-specific information concerning material characteristics, fabrication history and service exposure. Methods will enable fabrication (e.g., welding and repair welding) procedures and material aging effects to be evaluated and ensure adequate cracking resistance during the service lifetime of reactor components. This work is being conducted by the Oregon Graduate Institute with interactive input from personnel at Pacific Northwest Laboratory.

  4. Weld repair without PWHT for Cr-Mo steel

    SciTech Connect

    Friedman, L.M.

    1995-12-01

    The Edison Welding Institute and TWI of Cambridge, England have completed a group sponsored project that has been successful in demonstrating the acceptability to weld repair 1{1/4}Cr-{1/2}Mo and 2{1/4}Cr-1Mo steels without PWHT. A detailed SMAW welding procedure was developed for all welding positions that provides excellent weldment properties in the as-welded condition for both the 1{1/4}Cr-{1/2}Mo and 2{1/4}Cr-1Mo steels. This procedure is supported by detailed welding instructions for controlled deposition welding, a welder training document, and instructions for welding of the welder qualification test assembly. The program included a significant amount of mechanical property characterization and performance testing to validate the acceptability of controlled deposition, as-welded repair of the CrMo steels. Another important accomplishment of this program was the development of a set of guidelines that identifies where, when, and how to apply controlled deposition, as-welded repairs for electric utility and petroleum refinery equipment. One final and important result, partly due to this program, is that a new set of rules have been approved for the National Board Inspection Code (ANSI/NB-23) for weld repair of ferritic steel components without PWHT. This is Chapter 3, Supplement 3 in the NBIC Code, ``Welding Methods as Alternatives to Postweld Heat Treatment.``

  5. Elevated temperature mechanical properties of a reactor pressure vessel steel

    NASA Astrophysics Data System (ADS)

    McCoy, H. E.; Rittenhouse, P. L.

    1990-04-01

    A testing program is in progress to define the tensile and creep properties of SA533 Grade B Class 1 steel at temperatures from 371 to 538 °C. The overall objective is to provide the data necessary to obtain ASME Code approval for use of this material for the Modular High-Temperature Gas-Cooled Reactor (MHTGR) vessel during short-term temperature excursions above 371 °C. Testing and evaluation involve three heats of base metal, two submerged arc welds, and a shielded metal arc weld. The creep strengths of the base metal heats and the weldments were found to be equivalent; the weld metal itself is slightly stronger. The data obtained indicate that stress to produce 1% strain will likely be the controlling factor in setting the allowable stresses for design.

  6. Analysis of cracks in stainless steel TIG (tungsten inert gas) welds

    SciTech Connect

    Nakagaki, M.; Marschall, C.; Brust, F.

    1986-12-01

    This report contains the results of a combined experimental and analytical study of ductile crack growth in tungsten inert gas (TIG) weldments of austenitic stainless steel specimens. The substantially greater yield strength of the weld metal relative to the base metal causes more plastic deformation in the base metal adjacent to the weld than in the weld metal. Accordingly, the analytical studies focused on the stress-strain interaction between the crack tip and the weld/base-metal interface. Experimental work involved tests using compact (tension) specimens of three different sizes and pipe bend experiments. The compact specimens were machined from a TIG weldment in Type 304 stainless steel plate. The pipe specimens were also TIG welded using the same welding procedures. Elastic-plastic finite element methods were used to model the experiments. In addition to the J-integral, different crack-tip integral parameters such as ..delta..T/sub p/* and J were evaluated. Also, engineering J-estimation methods were employed to predict the load-carrying capacity of the welded pipe with a circumferential through-wall crack under bending.

  7. Aircraft Steels

    DTIC Science & Technology

    2009-02-19

    NAWCADPAX/TR-2009/ 12 AIRCRAFT STEELS by E. U. Lee R. Taylor C. Lei H. C. Sanders 19 February 2009...MARYLAND NAWCADPAX/TR-2009/ 12 19 February 2009 AIRCRAFT STEELS by E. U. Lee R. Taylor C. Lei H. C. Sanders...Prescribed by ANSI Std. Z39-18 NAWCADPAX/TR-2009/ 12 ii SUMMARY Five high strength and four stainless steels have been studied, identifying their

  8. Fundamental Studies on the Corrosion Behavior of Weldments in Marine Microbial Environments

    DTIC Science & Technology

    1993-11-01

    C** -wild type - Vibrio horveyi - wild type - known to contain SRB - Vibrio natriegens - known to contain algae - Deleya marina (wild type) - known to...reproducibly attack the stainless steel weld prototype, chosen for its intermediate properties. Consortium B contained Vibrio natriegens , which has

  9. Heavy-section steel irradiation program. Progress report, October 1994--March 1995

    SciTech Connect

    Corwin, W.R.

    1995-10-01

    This document is the October 1994-March 1995 Progress Report for the Heavy Section Steel Irradiation Program. The report contains a summary of activities in each of the 14 tasks of the HSSI Program, including: (1) Program management, (2) Fracture toughness shifts in high-copper weldments, (3) Fracture toughness shifts in low upper-shelf welds, (4) Irradiation effects in a commercial low upper-shelf weld, (5) Irradiation effects on weld heat-affected zone and plate materials, (6) Annealing effects in low upper-shelf welds, (7) Microstructural analysis of radiation effects, (8) In-service irradiated and aged material evaluations, (9) Japanese power development reactor vessel steel examination, (10) fracture toughness curve shift method, (11) Special technical assistance, (12) Technical assistance for JCCCNRS, (13) Correlation monitor materials, and (14) Test reactor irradiation coordination. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  10. TRITIUM AGING EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF STAINLESS STEEL BASE METAL AND WELDS

    SciTech Connect

    Morgan, M.

    2009-07-30

    -energy-rate forged are needed for designing and establishing longer tritium-reservoir lifetimes, ranking materials, and, potentially, for qualifying new forging vendors or processes. Measurements on the effects of tritium and decay helium on the fracture toughness properties of CF stainless steels having similar composition, grain size, and mechanical properties to previously studied HERF steels are needed and have not been conducted until now. The compatibility of stainless steel welds with tritium represents another concern for long-term reservoir performance. Weldments have not been well-characterized with respect to tritium embrittlement, although a recent study was completed on the effect of tritium and decay helium on the fracture toughness properties of Type 304L weldments. This study expands the characterization of weldments through measurements of tritium and decay helium effects on the fracture toughness properties of Type 21-6-9 stainless steel. The purpose of this study was to measure and compare the fracture toughness properties of Type 21-6-9 stainless steel for conventional forgings and weldments in the non-charged, hydrogen-charged and tritium-charged-and-aged conditions.

  11. Effect of PTA Hardfaced Interlayer Thickness on Ballistic Performance of Shielded Metal Arc Welded Armor Steel Welds

    NASA Astrophysics Data System (ADS)

    Balakrishnan, M.; Balasubramanian, V.; Madhusudhan Reddy, G.

    2013-03-01

    Ballistic performance of armor steel welds is very poor due to the usage of low strength and low hardness austenitic stainless steel fillers, which are traditionally used to avoid hydrogen induced cracking. In the present investigation, an attempt has been made to study the effect of plasma transferred arc hardfaced interlayer thickness on ballistic performance of shielded metal arc welded armor steel weldments. The usefulness of austenitic stainless steel buttering layer on the armor grade quenched and tempered steel base metal was also considered in this study. Joints were fabricated using three different thickness (4, 5.5, and 7 mm) hardfaced middle layer by plasma transferred arc hardfacing process between the top and bottom layers of austenitic stainless steel using shielded metal arc welding process. Sandwiched joint, in addition with the buttering layer served the dual purpose of weld integrity and ballistic immunity due to the high hardness of hardfacing alloy and the energy absorbing capacity of soft backing weld deposits. This paper will provide some insight into the usefulness of austenitic stainless steel buttering layer on the weld integrity and plasma transferred arc hardfacing layer on ballistic performance enhancement of armor steel welds.

  12. Development of covered electrodes for welding HSLA-100 steel

    SciTech Connect

    DeLoach, J.J. Jr.

    1994-12-31

    HSLA-100 steel is a low-carbon, copper-precipitation-strengthened steel developed by the U.S. Navy as a replacement for HY-100 steel. HSLA-100 has excellent resistance to hydrogen cracking, offering the potential for dramatic savings in fabrication costs through reduction or elimination of preheat and postheat requirements. Unfortunately, s the cracking-resistance of the base metal has improved, the weld metal crack susceptibility has become the primary concern. The objective of the present study is to develop covered electrodes for shielded metal arc welding (SMAW) of HSLA-100. This paper presents the mechanical property evaluation phase of this program. A series of test weldments were fabricated in 3/4-in. thick HSLA-100 plate under nominally constant conditions. The alloy selected for evaluation was a low carbon, Ni-Mn-Mo-Ti system. Results showed that mechanical property goals were achieved with the low-carbon, Ni,Mo-Ti design. Manganese and molybdenum were found to be potent strengtheners and were able to compensate for the reduced carbon and chromium. Nickel also provided effective strengthening. The influence of alloying of impact toughness was complex. In general, increasing nickel decreased upper shelf and CVN transition temperature. Maganese and titanium appeared to generally have a positive effect on impact toughness. The influence of molybdenum was dependent on the level of nickel present.

  13. Identification and Characterization of Intercritical Heat-Affected Zone in As-Welded Grade 91 Weldment

    NASA Astrophysics Data System (ADS)

    Wang, Yiyu; Kannan, Rangasayee; Li, Leijun

    2016-12-01

    A metallurgical method is proposed for locating the intercritical heat-affected zone in the as-welded Grade 91 steel. New austenitic grains, preferentially formed along the original prior austenite grain boundaries, are characterized to contain finer M23C6 carbides and higher strain levels than the original prior austenite grains. Kurdjumov-Sachs Group 1 variant pairs, with a low misorientation of 7 deg within a martensitic block, are identified as the dominant variants in the new PAGs.

  14. Flux composition, microstructure and mechanical properties of HY-100 SAW weldments

    SciTech Connect

    Brothers, D.G.; Kettell, K.W.; Fox, A.G.

    1994-12-31

    The mechanical properties of submerged arc welds (SAW) on high strength steels are sensitive to weld-metal chemistry and thus the chemical composition of the welding consumables. Consumable chemistry determines the size, distribution, and composition of the nonmetallic inclusions present in the weld metal which together with cooling rate determines weld-metal microstructure and thus mechanical properties. Multirun submerged arc welds were made on HY-100 steel and all-weld variables were kept constant except the flux composition for which five different commercial fluxes were investigated. The basicity of each flux was calculated and correlated with weld-metal chemistry and it was found that lower basicity fluxes appeared to generate a higher oxygen activity in the weld-metal leading to more pronounced oxidation of carbon, manganese, and silicon and thus loss of weld-metal yield strength. Inclusion analyses showed the inclusion in the weld-metals to contain MnO, Al{sub 2}O{sub 3}, SiO{sub 2}, and TiO{sub 2}. These results suggest that the optimum flux for welding high-strength steels should have a high enough basicity and MnO content to avoid the loss of alloying elements from the weld metal due to high oxygen activity and to generate sufficient numbers of non-metallic inclusions to keep the DBTT low by forming significant amounts of acicular ferrite.

  15. Effect of Prior and Post-Weld Heat Treatment on Electron Beam Weldments of (α + β) Titanium alloy Ti-5Al-3Mo-1.5V

    NASA Astrophysics Data System (ADS)

    Anil Kumar, V.; Gupta, R. K.; Manwatkar, Sushant K.; Ramkumar, P.; Venkitakrishnan, P. V.

    2016-06-01

    Titanium alloy Ti5Al3Mo1.5V is used in the fabrication of critical engine components for space applications. Double vacuum arc re-melted and (α + β) forged blocks were sliced into 10-mm-thick plates and subjected to electron beam welding (EBW) with five different variants of prior and post-weld heat treatment conditions. Effects of various heat treatment conditions on the mechanical properties of the weldments have been studied. The welded coupons were characterized for microstructure, mechanical properties, and fracture analysis. An optimized heat treatment and welding sequence has been suggested. Weld efficiency of 90% could be achieved. Weldment has shown optimum properties in solution treated and aged condition. Heat-affected zone adjacent to weld fusion line is found to have lowest hardness in all conditions.

  16. Mechanical properties of weldments in experimental Fe-12Mn-0.2Ti and Fe-12Mn-1Mo-0.2Ti alloys for cryogenic service

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.; Devletian, J. H.

    1981-01-01

    Mechanical properties of weldments in two Fe-12Mn experimental alloys designed for cryogenic service were evaluated. Weldments were made using the GTA welding process. Tests to evaluate the weldments were conducted at -196 C and included: equivalent energy fracture toughness tests; autogenous transverse weld, notched transverse weld, and longitudinal weld tensile tests; and all-weld-metal tensile tests. The Fe-12Mn-0.2Ti and Fe-12Mn-1Mo-0.2Ti alloys proved weldable for cryogenic service, with weld metal and heat-affected zone properties comparable with those of the base metal. Optimum properties were achieved in the base alloys, weld metals, and heat-affected zones after a two-step heat treatment consisting of austenitizing at 900 C followed by tempering at 500 C. The Mo-containing alloy offered a marked improvement in cryogenic properties over those of the Mo-free alloy. Molybdenum increased the amount of retained austenite and reduced the amount of epsilon martensite observed in the microstructure of the two alloys.

  17. Stainless steel

    SciTech Connect

    Lula, R.A.

    1985-01-01

    This book discusses the stainless steels for high-strength, heat-resistant or corrosion-resistant applications. It is a treatment of the properties and selection of stainless steels. Up-to-date information covers physical, mechanical and chemical properties of all stainless grades, including the new ferritic and duplex grades. The book covers physical metallurgy as well as processing and service characteristics, including service in corrosive environments. It deals with wrought and cast stainless steels and reviews fabrication from cold-forming to powder metallurgy.

  18. Deformation Microstructure of a Reduced-Activation Ferritic/Martensitic Steel Irradiated in HFIR

    SciTech Connect

    Hashimoto, N.; Klueh, R.L.; Ando, M.; Tanigawa, H.; Sawai, T.; Shiba, K.

    2003-09-15

    In order to determine the contributions of different microstructural features to strength and to deformation mode, microstructure of deformed flat tensile specimens of irradiated reduced activation F82H (IEA heat) base metal (BM) and its tungsten inert-gas (TIG) weldments (weld metal and weld joint) were investigated by transmission electron microscopy (TEM), following fracture surface examination by scanning electron microscopy (SEM). After irradiation, the fracture surfaces of F82H BM and TIG weldment showed a martensitic mixed quasi-cleavage and ductile-dimple fracture. The microstructure of the deformed region of irradiated F82H BM contained dislocation channels. This suggests that dislocation channeling could be the dominant deformation mechanism in this steel, resulting in the loss of strain-hardening capacity. While, the necked region of the irradiated F82H TIG, where showed less hardening than F82H BM, showed deformation bands only. From these results, it is suggested that the pre-irradiation microstructure, especially the dislocation density, could affect the post-irradiation deformation mode.

  19. Ferritic steels for sodium-cooled fast reactors: Design principles and challenges

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Vijayalakshmi, M.

    2010-09-01

    An overview of the current status of development of ferritic steels for emerging fast reactor technologies is presented in this paper. The creep-resistant 9-12Cr ferritic/martensitic steels are classically known for steam generator applications. The excellent void swelling resistance of ferritic steels enabled the identification of their potential for core component applications of fast reactors. Since then, an extensive knowledge base has been generated by identifying the empirical correlations between chemistry of the steels, heat treatment, structure, and properties, in addition to their in-reactor behavior. A few concerns have also been identified which pertain to high-temperature irradiation creep, embrittlement, Type IV cracking in creep-loaded weldments, and hard zone formation in dissimilar joints. The origin of these problems and the methodologies to overcome the limitations are highlighted. Finally, the suitability of the ferritic steels is re-evaluated in the emerging scenario of the fast reactor technology, with a target of achieving better breeding ratio and improved thermal efficiency.

  20. Charpy Impact Properties of Reduced-Activation Ferritic/Martensitic Steels Irradiated in HFIR up to 20 dpa

    SciTech Connect

    Tanigawa, H.; Shiba, K.; Sokolov, M.A.; Klueh, R.L.

    2003-07-15

    The effects of irradiation up to 20 dpa on the Charpy impact properties of reduced-activation ferritic/martensitic steels (RAFs) were investigated. The ductile-brittle transition temperature (DBTT) of F82H-IEA shifted up to around 323K. TIG weldments of F82H showed a fairly small variation on their impact properties. A finer prior austenite grain size in F82H-IEA after a different heat treatment resulted in a 20K lower DBTT compared to F82H-IEA after the standard heat treatment, and that effect was maintained even after irradiation. Helium effects were investigated utilizing Ni-doped F82H, but no obvious evidence of helium effects was obtained. ORNL9Cr-2WVTa and JLF-1 steels showed smaller DBTT shifts compared to F82H-IEA.

  1. Effect of heat treatment upon the fatigue-crack growth behavior of Alloy 718 weldments. Part II. Microscopic behavior

    SciTech Connect

    Mills, W J; James, L A

    1981-05-01

    The microstructural features that influenced the room and elevated temperature fatigue-crack growth behavior of as-welded, conventional heat-treated, and modified heat-treated Alloy 718 GTA weldments were studied. Electron fractographic examination of fatigue fracture surfaces revealed that operative fatigue mechanisms were dependent on microstructure, temperature and stress intensity factor. All specimens exhibited three basic fracture surface appearances at temperatures up to 838{sup 0}C: crystallographic faceting at low stress intensity range ({Delta}K) levels, striation formation at intermediate values, and dimples coupled with striations in the highest {Delta}K regime. At 649{sup 0}C, the heat-treated welds exhibited extensive intergranular cracking. Laves and {delta}particles in the conventional heat-treated material nucleated microvoids ahead of the advancing crack front and caused an overall acceleration in crack growth rates at intermediate and high {Delta}K levels. The modified heat treatment removed many of these particles from the weld zone, thereby improving its fatigue resistance. The dramatically improved fatigue properties exhibited by the as-welded material was attributed to compressive residual stresses introduced by the welding process. 16 figures.

  2. Metallurgical And Mechanical Analyses Of Dissimilar Friction Weldments Of Ferrous And Non-Ferrous Metals For Lightweight Components

    NASA Astrophysics Data System (ADS)

    Figala, G.; Taschauer, M.; Wallner, S.; Buchmayr, B.

    2011-05-01

    The multi-material approach as quite often applied in the automotive and aircraft industry follows the idea of choosing the best performing material combination under specific service requirements. For metal-matrix composites, friction welding is a quite attractive technology, which can provide more insight into the property determining phenomena and processing parameters. A special rotational friction apparatus using a servo motor without brake system was built for the production of dissimilar weldments. The friction welding process was analysed using FEM to describe temperature history, material flow and forging force. By metallographic and mechanical testing, the microstructure and mechanical behaviour in the various subzones of the heat affected zone (HAZ) were determined. In addition, the strain distribution within the HAZ was measured by an optical device in order to characterize the weakest subzone and to study the local hardening behaviour. By variation of the main influencing parameters optimal component performance could be achieved. The fundamental understanding could be also applied for other technologies, like roll bonding.

  3. Fracture toughness shifts in high-copper weldments (series 5 and 6)

    SciTech Connect

    Iskander, S.K.

    1995-10-01

    The specific activities to be performed in this task are the: (1) continuation of Phase 2 of the Fifth Irradiation Series, and (2) completion of the Sixth Irradiation Series, including testing nine irradiated Italian crack-arrest specimens. The test results of the Italian crack-arrest specimens are being analyzed, and full details will be published in a NUREG report currently in preparation. The crack-mouth opening displacement (CMOD) was measured at a distance greater than that prescribed in the American Society for Testing and Materials (ASTM) {open_quotes}Test for Determining Plane-Strain Crack-Arrest Fracture Toughness, K{sub la}, of Ferritic Steels{close_quotes} (E 1221-88). A method for adjusting the CMOD to account for this has been developed and is presented. The correction was {approximately}4% for small specimens and {approximately}2% for the larger ones. As part of this task, irradiation of HSSI weld 73W to a high fluence [5 x 10{sup 19} neutrons/cm{sup 2} ( > 1 MeV)] will be performed to determine whether the K{sub Jc} curve shape change observed in the Fifth HSSI Series is exacerbated. The design and fabrication of the temperature and dosimetry verification capsules are performed under this task, but for purposes of continuity, their progress will be reported under Task 6, where the design of the new irradiation facilities and capsules is performed.

  4. Research on the activating flux gas tungsten arc welding and plasma arc welding for stainless steel

    NASA Astrophysics Data System (ADS)

    Huang, Her-Yueh

    2010-10-01

    A systematic study of the effects of activating flux in the weld morphology, arc profile, and angular distortion and microstructure of two different arc welding processes, namely, Gas Tungsten Arc Welding (GTAW) and Plasma Arc Welding (PAW), was carried out. The results showed that the activating fluxes affected the penetration capability of arc welding on stainless steel. An increase in energy density resulting from the arc constriction and anode spot reduction enhanced the penetration capability. The Depth/Width (D/W) ratio of the weld played a major role in causing angular distortion of the weldment. Also, changes in the cooling rate, due to different heat source characteristics, influenced the microstructure from the fusion line to the centre of the weld.

  5. Fracture Behaviour of Type 304LN Stainless Steel and its Welds

    SciTech Connect

    Dubey, J.S.; Chakravartty, J.K.; Singh, P.K.; Banerjee, S.

    2006-07-01

    SA312 type 304LN stainless steel material, having closer control over impurities and inclusion content, is the intended piping material in the Advanced Heavy Water Reactors. Deformation, fatigue and fracture behaviour of this material and its weldments have been characterized at ambient temperature and at 558 K. The details of the fractographic investigations and stretch zone width measurements are also discussed. The base metals shows high initiation toughness (>500 kJ/m{sup 2}) and large tearing modulus at ambient and operating temperatures. Shielded Metal Arc Welding (SMAW) weld metal shows much much reduced initiation toughness and tearing resistance in comparison to base metal and Gas Tungsten Arc Welding (GTAW) welds. This is attributed to larger density of second phase inclusions in the SMAW weld metal. SZW measurements give a good alternate estimate of the toughness of the materials. Fatigue crack growth rate in SMAW weld metal was found to be comparable to base metal at higher load ratios. (authors)

  6. On flux effects in a low alloy steel from a Swedish reactor pressure vessel

    NASA Astrophysics Data System (ADS)

    Boåsen, Magnus; Efsing, Pål; Ehrnstén, Ulla

    2017-02-01

    This study aims to investigate the presence of Unstable Matrix Defects in irradiated pressure vessel steel from weldments of the Swedish PWR Ringhals 4 (R4). Hardness tests have been performed on low flux (surveillance material) and high flux (Halden reactor) irradiated material samples in combination with heat treatments at temperatures of 330, 360 and 390 °C in order to reveal eventual recovery of any hardening features induced by irradiation. The experiments carried out in this study could not reveal any hardness recovery related to Unstable Matrix Defects at relevant temperatures. However, a difference in hardness recovery was found between the low and the high flux samples at heat treatments at higher temperatures than expected for the annihilation of Unstable Matrix Defects-the observed recovery is here attributed to differences of the solute clusters formed by the high and low flux irradiations.

  7. Fatigue crack initiation life prediction in high strength structural steel welded joints

    NASA Astrophysics Data System (ADS)

    Tricoteaux, A.; Fardoun, F.; Degallaix, S.; Sauvage, F.

    1995-02-01

    The local approach method is used to calculate the fatigue crack initiation/early crack growth lives (N(i)) in high strength structural steel weldments. Weld-toe geometries, welding residual stresses and HAZ (heat affected zone) cyclic mechanical properties are taken into account in the N(i) estimation procedure. Fatigue crack initiation lives are calculated from either a Basquin type or a Manson-Coffin type equation. The local (HAZ) stress and strain amplitudes and the local mean stress are determined from an analysis based on the Neuber rule and the Molski-Glinka energy approach. The accuracy of the different methods is evaluated and discussed. Finally the previous methods are used with HAZ cyclic mechanical properties estimated from hardness measurements.

  8. NDE of stainless steel and on-line leak monitoring of LWRs

    SciTech Connect

    Kupperman, D.S.; Claytor, T.N.; Mathieson, T.; Prine, D.W.

    1985-10-01

    The GARD/ANL acoustic leak detection system is under evaluation in the laboratory. Results of laboratory tests with simulated acoustic leak signals and acoustic signals from field-induced intergranular stress corrosion cracks (IGSCCs) indicate that cross-correlation techniques can be used to locate the position of a leak. Leaks from a 2-in. ball valve and a flange were studied and compared with leaks from IGSCCs and fatigue cracks. The dependence of acoustic signal on flow rate and frequency for the valve and the flange was comparable to that of fatigue cracks (thermal and mechanical) and different from that of IGSCCs. Two pipe-to-endcap weldments with overlays were examined. Because the amount of cracking in the specimens was limited, the emphasis was on trying understand the nature of crack overcalling. Four 60-mm-thick cast stainless steel plates with microstructures ranging from equiaxed to primarily columnar grains have been examined with ultrasonic waves. 13 refs., 23 figs.

  9. Evaluation of cryogenic fracture toughness in SMA-welded 9% Ni steels through modified CTOD test

    NASA Astrophysics Data System (ADS)

    Jang, Jae-il; Yang, Young-chul; Kim, Woo-sik; Kwon, Dongil

    1997-08-01

    As the first step of the study for the safety performance of LNG storage tank based on the concept of fitness-for-purpose, the change of cryogenic toughness within the X-grooved weld HAZ (heat-affected zone) of SMA (shielded metal arc)-welded QLT (quenching, lamellarizing, and tempering)-processed 9% Ni steels, was investigated qualitatively and quantitatively. In general, CTOD (crack tip opening displacement) test is widely used to determine the fracture toughness of steel weldments. But there is no standard or draft for evaluating the toughness of thick weldment with X-groove such as in this case. Therefore, in this study, modified CTOD testing method for fatigue precracking. calculation of CTOD, examination of fractured specimen was proposed and used. And the results of modified test were compared with those of conventional CTOD test and Charpy V-notch impact test. In addition, the relationship between the fracture toughness and microstructure was analyzed by OM, SEM and XRD. The cryogenic toughness in HAZ decreased as the evaluated region approached the fusion line from base metal. The decrease in toughness was apparently caused by the reduction of the retained austenite content and the absence of grain refinement effect in the coarse-grained zone in HAZ. The austenite reduction resulted from the decrease in nucleation sites for α'γ reverse transformation due to the increase in fraction of coarse-grained zone within HAZ. More complex thermal cycles in the mixed zone of weld metal and base metal caused the poor stability of retained austenite in the zone by the redistribution of alloying element in retained austenite. Due to this reason, the toughness drop with decreasing test temperature in F.L. (fusion line)-F.L.+3 mm was larger than that in F.L.+5 mm and F.L.+7 mm.

  10. Life Assessment for Cr-Mo Steel Dissimilar Joints by Various Filler Metals Using Accelerated Creep Testing

    NASA Astrophysics Data System (ADS)

    Petchsang, S.; Phung-on, I.; Poopat, B.

    2016-12-01

    Accelerated creep rupture tests were performed on T22/T91 dissimilar metal joints to determine the fracture location and rupture time of different weldments. Four configurations of deposited filler metal were tested using gas tungsten arc welding to estimate the service life for Cr-Mo steel dissimilar joints at elevated temperatures in power plants. Results indicated that failure in all configurations occurred in the tempered original microstructure and tempered austenite transformation products (martensite or bainite structure) as type IV cracking at the intercritical area of the heat-affected zone (ICHAZ) for both T22 and T91 sides rather than as a consequence of the different filler metals. Creep damage occurred with the formation of precipitations and microvoids. The correlation between applied stress and the Larson-Miller parameter (PLM) was determined to predict the service life of each material configuration. Calculated time-to-failure based on the PLM and test results for both temperature and applied stress parameters gave a reasonable fit. The dissimilar joints exhibited lower creep rupture compared to the base material indicating creep degradation of the weldment.

  11. Investigations Into the Influence of Weld Zone on Formability of Fiber Laser-Welded Advanced High Strength Steel

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, K.; Panda, S. K.; Saha, P.

    2014-04-01

    In this study, two different dual phase steel grades DP980 and DP600, and IFHS steel sheets were laser welded by a 2-kW fiber laser. The weld quality of these three different LWBs was assessed with the help of microstructure, micro-hardness and transverse tensile tests. Tensile testing of longitudinal and miniature samples was performed to evaluate the mechanical properties of the weld zone. Formability of parent materials and LWBs were assessed in bi-axial stretch forming condition by Erichsen cupping test. To validate the weld zone properties, 3-D finite element models of Erichsen cupping test of LWBs was developed, and the failures in the deformed cups were predicted using two theoretical forming limit diagrams. It was observed that hardness of the fusion zone and HAZ in laser welded DP600 and IFHS steels was more compared to the respective parent metal. However, 29% reduction in hardness was observed at the outer HAZ of DP980 steel weldments due to tempering of martensite. Reduction of formability was observed for all the LWBs with two distinct failure patterns, and the maximum reduction in formability was observed in the case of DP980 LWBs. The presence of the soft zone is detrimental in forming of welded DP steels.

  12. Steel Rattler

    NASA Astrophysics Data System (ADS)

    Trudo, Robert A.; Stotts, Larry G.

    1997-07-01

    Steel Rattler is a multi-phased project to determine the feasibility of using commercial off-the-shelf components in an advanced acoustic/seismic unattended ground sensor. This project is supported by the Defense Intelligence Agency through Sandia National Laboratories as the lead development agency. Steel Rattler uses advanced acoustic and seismic detection algorithms to categorize and identify various heavy vehicles down to the number of cylinders in the engine. This detection is accomplished with the capabilities of new, high-speed digital signal processors which analyze both acoustic and seismic data. The resulting analysis is compared against an onboard library of known vehicles and a statistical match is determined. An integrated thermal imager is also employed to capture digital thermal images for subsequent compression and transmission. Information acquired by Steel Rattler in the field is transmitted in small packets by a built-in low-power satellite communication system. The ground station receivers distribute the coded information to multiple analysis sites where the information is reassembled into coherent messages and images.

  13. Use of the double-loop reactivation test to measure sensitization in aged and welded pH 13-8 Mo martensitic stainless steel

    SciTech Connect

    Cieslak, W.R.; Cieslak, M.J.; Hills, C.R.

    1987-01-08

    Electrochemical potentiokinetic reactivation (EPR) testing provides quantitative detection of small degrees of sensitization. We have used double-loop (DL-EPR) testing, a method which has been characterized for use on austenitic stainless steels, to measure sensitization resulting from aging or from welding of PH 13-8 Mo martensitic stainless steel. Aging at either 500/sup 0/C or 620/sup 0/C results in an increase of the reactivation current density. The 500/sup 0/C treatment promotes preferential susceptibility to corrosion along prior austenite grain boundaries, and the 620/sup 0/C treatment promotes preferential susceptibility along martensite interlath boundaries. A narrow band in the heat-affected zone of autogenous weldments also undergoes localized corrosion during the reactivation scan. Increased reactivation current density is likely caused by classic Cr-depletion resulting from carbide precipitation.

  14. Heavy-Section Steel Irradiation Program. Volume 5, No. 2, Progress report, April 1994--September 1994.

    SciTech Connect

    Corwin, W.R.

    1995-07-01

    The Heavy-Section Steel Irradiation (HSSI) Program has been established with its primary goal to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior and the fracture toughness properties of typical pressure-vessel steels as they relate to light-water RPV integrity. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and postirradiation annealing are being examined on a wide range of fracture properties. The HSSI Program is arranged into 14 tasks: (1) program management, (2) fracture toughness curve shift in high-copper weldments (Series 5 and 6), (3) K{sub lc} and K{sub la} curve shifts in low upper-shelf (LUS) welds (Series 8), (4) irradiation effects in a commercial LUS weld (Series 10), (5) irradiation effects on weld heat-affected zone and plate materials (Series 11), (6) annealing effects in LUS welds (Series 9), (7) microstructural and microfracture analysis of irradiation effects, (8) in-service irradiated and aged material evaluations, (9) Japan Power Development Reactor (JPDR) steel examination, (10) fracture toughness curve shift method, (11) special technical assistance, (12) technical assistance for Joint Coordinating Committee on Civilian Nuclear Reactor Safety (JCCCNRS) Working Groups 3 and 12, (13) correlation monitor materials, and (14) test reactor coordination. Progress on each task is reported.

  15. Proceedings of the IEA working group meeting on ferritic/martensitic steels

    SciTech Connect

    Klueh, R.L.

    1995-02-01

    An International Energy Agency (IEA) working group consist- ng of researchers from Japan, the European Union (EU), and the United States, met at the Oak Ridge National Laboratory (ORNL) 16 February 1995 to continue planning a collaborative test program on reduced-activation ferritic/martensitic steels for fusion applications. Plates from a 5-ton, a 1-ton, and three 150 kg heats of reduced-activation martensitic steels have been melted and processed to 7.5- and 15-mm plates in Japan. Plates were delivered in 1994 to the three parties that will participate in the test program. A second 5-ton IEA heat of modified F82H steel was produced in Japan in late 1994, and it was processed into 15- and 25-mm plates, which are to be shipped in February, 1995. Weldments will be produced on plates from this heat, and they will be shipped in April, 1995. At the ORNL meeting, a detailed test program and schedule was presented by the EU representatives, and less detailed programs were presented by the Japanese and US representatives. Detailed program schedules are required from the latter two programs to complete the program planning stage. A meeting is planned for 19--20 September 1995 in Switzerland to continue the planning and coordination of the test program and to present the preliminary results obtained in the collaboration.

  16. Continuous Monitoring of Stress Corrosion Cracking Growth in Type 316L Stainless Steel Weldment Using Induced Current Potential Drop Technique at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Sato, Yasumoto; Atsumi, Takeo; Shoji, Tetsuo

    In this study, induced current potential drop (ICPD) technique was applied to monitor SCC crack growth. The SCC crack monitored was introduced on the internal wall of a pipe specimen in which simulated BWR water flows. The measurement was performed on the external wall of the pipe specimen. It was shown that the ICPD technique permits continuous monitoring of the SCC growth, which initiates from the inner wall of the pipe specimen under elevated temperature.

  17. Supertough Stainless Bearing Steel

    NASA Technical Reports Server (NTRS)

    Olson, Gregory B.

    1995-01-01

    Composition and processing of supertough stainless bearing steel designed with help of computer-aided thermodynamic modeling. Fracture toughness and hardness of steel exceeds those of other bearing steels like 440C stainless bearing steel. Developed for service in fuel and oxidizer turbopumps on Space Shuttle main engine. Because of strength and toughness, also proves useful in other applications like gears and surgical knives.

  18. Heat input and dilution effects in microalloyed steel weld metals

    SciTech Connect

    Hunt, A.C. ); Kluken, A.O. . Div. of Metallurgy); Edwards, G.R. . Center for Welding and Joining Research)

    1994-01-01

    The sensitivity of weld metal microstructure and mechanical properties to variations in both heat input (i.e., cooling rate) and weld dilution in submerged arc (SA) welding of microalloyed steel was examined. Weldments were prepared with weld metal dilutions of approximately 40% and 70% at heat inputs of 2.0, 3.3, 4.6, and 5.3 kJ/mm, using two commercial welding wires and a basic commercial flux. The high dilution welds, which were ordinary bead-on-plate welds, resulted in microstructures that ranged from ferrite with aligned second phase at low heat inputs to acicular ferrite at high heat inputs. Special over-welding techniques were used to make the low dilution welds, allowing use of the same welding parameters as those for the high dilution welds. The technique involved remelting of weld metal to simulate the effect of multipass welding. The microstructure of these welds was predominantly acicular ferrite, independent of heat input. As a consequence, the low dilution welds had superior toughness compared to the high dilution welds.

  19. A comparative study of wide plate behavior of a range of structural steels using the failure assessment diagram

    SciTech Connect

    Bannister, A.C.; Harrison, P.L.

    1995-12-31

    In the field of structural integrity assessments, attention is currently focused on the ability of such methods to conservatively predict the deformation and fracture behavior of structural steels and their weldments. In the current paper, the results of a series of wide plate tests on a range of structural steels are presented and the results assessed in terms of CTOD-strain relationships, BS PD 6493 Levels 2 and 3, and the crack driving force approach. The behavior of the large scale tests and the results of the various analyses are assessed with regard to the stress-strain characteristics of the individual steels. In a second step, the approach is extended to the assessment of a number of wide plate tests comprising welded joints with mismatched strength levels. Over, under and even-matched welded plates are compared with the behavior of normalized and Quenched and Tempered parent plates. The study demonstrates that the behavior of parent material wide plate tests can vary widely depending on the stress-strain characteristics of the material. The different behavior is a result of the consecutive effects of different steel processing conditions, microstructure, yield to tensile strength ratio and strain hardening exponent. These features are also manifested, to a lesser or greater extent, in the results of wide plate tests on welded plates of mismatched strength. Studies on mismatch effects should therefore include equal attention to the stress-strain characteristics of the parent materials as this may, in some circumstances, dominate any effects of weld strength mismatch.

  20. Effect of proof testing on the flaw growth characteristics of 304 stainless steel. [crack propagation in welded joints

    NASA Technical Reports Server (NTRS)

    Finger, R. W.

    1974-01-01

    The effects of proof overload frequency and magnitude on the cyclic crack growth rates of 304 stainless steel weldments were investigated. The welding procedure employed was typical of those used on over-the-road cryogenic vessels. Tests were conducted at room temperature with an overload ratio of 1.50 to determine the effect of overload frequency. Effect of overload magnitude was determined from tests where a room temperature overload was applied between blocks of 1000 cycles applied at 78 K (-320 F). The cyclic stress level used in all tests was typical of the nominal membrane stress generally encountered in full scale vessels. Test results indicate that judicious selection of proof overload frequency and magnitude can reduce crack growth rates for cyclic stress levels.

  1. Hydrogen-induced cold cracking in heat-affected zone of low-carbon high-strength steel

    NASA Astrophysics Data System (ADS)

    Lan, Liangyun; Kong, Xiangwei; Hu, Zhiyong; Qiu, Chunlin

    2014-12-01

    The Y-groove cracking test by submerged arc welding was employed to study the susceptibility of a low-carbon high-strength steel to hydrogen-induced cold cracking (HICC). The morphology of hydrogen cracks was observed using an electron probe microscope. The results showed that the heat-affected zone (HAZ) has a higher susceptibility to HICC than the weld metal and that increasing heat input can improve the HICC resistance of the weldment. The intergranular microcracking is the main HICC mode at the lowest heat input condition, accompanied with some transgranular microcracks attached to complex inclusions. In combination with phase transformation behaviour in sub-zones, the effect of the phase transformation sequence is proposed to try to illustrate the fact that the fine-grained HAZ has higher probability of hydrogen cracking than the coarse-grained HAZ owing to the occurrence of hydrogen enrichment in the fine-grained HAZ after the transformation.

  2. Creep of A508/533 Pressure Vessel Steel

    SciTech Connect

    Richard Wright

    2014-08-01

    ABSTRACT Evaluation of potential Reactor Pressure Vessel (RPV) steels has been carried out as part of the pre-conceptual Very High Temperature Reactor (VHTR) design studies. These design studies have generally focused on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Initially, three candidate materials were identified by this process: conventional light water reactor (LWR) RPV steels A508 and A533, 2¼Cr-1Mo in the annealed condition, and Grade 91 steel. The low strength of 2¼Cr-1Mo at elevated temperature has eliminated this steel from serious consideration as the VHTR RPV candidate material. Discussions with the very few vendors that can potentially produce large forgings for nuclear pressure vessels indicate a strong preference for conventional LWR steels. This preference is based in part on extensive experience with forging these steels for nuclear components. It is also based on the inability to cast large ingots of the Grade 91 steel due to segregation during ingot solidification, thus restricting the possible mass of forging components and increasing the amount of welding required for completion of the RPV. Grade 91 steel is also prone to weld cracking and must be post-weld heat treated to ensure adequate high-temperature strength. There are also questions about the ability to produce, and very importantly, verify the through thickness properties of thick sections of Grade 91 material. The availability of large components, ease of fabrication, and nuclear service experience with the A508 and A533 steels strongly favor their use in the RPV for the VHTR. Lowering the gas outlet temperature for the VHTR to 750°C from 950 to 1000°C, proposed in early concept studies, further strengthens the justification for this material selection. This steel is allowed in the ASME Boiler and Pressure Vessel Code for nuclear service up to 371°C (700°F); certain excursions above that temperature are

  3. The Influence of Thermal Cycles on the Microstructure of Grade 92 Steel

    NASA Astrophysics Data System (ADS)

    Xu, X.; West, G. D.; Siefert, J. A.; Parker, J. D.; Thomson, R. C.

    2017-09-01

    The microstructure in the heat-affected zone (HAZ) of welds made from the 9 wt pct chromium martensitic Grade 92 steel is complex and has not yet been completely understood. There is a lack of systematic microstructural investigations to define the different regions of the microstructure across the HAZ of Grade 92 steel welds as a function of the welding process. In this study, the microstructure in the HAZ of an as-fabricated single-pass bead-on-plate weld on a parent metal of Grade 92 steel was systematically investigated by using an extensive range of electron and ion-microscopy-based techniques. A dilatometer was used to apply controlled thermal cycles to simulate the microstructures in the different regions of the HAZ. A wide range of microstructural properties in the simulated materials were then characterized and compared with the experimental observations from the weld HAZ. It was found that the microstructure in the HAZ of a single-pass Grade 92 steel weld can be categorized as a function of a decreasing peak temperature reached as (1) the completely transformed (CT) region, in which the original matrix is completely reaustenitized with complete dissolution of the pre-existing secondary precipitate particles; (2) the partially transformed (PT) region, where the original matrix is partially reaustenitized along with a partial dissolution of the secondary precipitate particles from the original matrix; and (3) the overtempered (OT) region, where the pre-existing precipitate particles coarsen. The PT region is considered to be the susceptible area for damage in the commonly reported HAZ failures in weldments constructed from these types of steels.

  4. Ultrahigh carbon steels, Damascus steels, and superplasticity

    SciTech Connect

    Sherby, O.D.; Wadsworth, J.

    1997-04-01

    The processing properties of ultrahigh carbon steels (UHCSs) have been studied at Stanford University over the past twenty years. These studies have shown that such steels (1 to 2.1% C) can be made superplastic at elevated temperature and can have remarkable mechanical properties at room temperature. It was the investigation of these UHCSs that eventually brought us to study the myths, magic, and metallurgy of ancient Damascus steels, which in fact, were also ultrahigh carbon steels. These steels were made in India as castings, known as wootz, possibly as far back as the time of Alexander the Great. The best swords are believed to have been forged in Persia from Indian wootz. This paper centers on recent work on superplastic UHCSs and on their relation to Damascus steels. 32 refs., 6 figs.

  5. Effects of flux modifications on high strength steel weld metal

    SciTech Connect

    Franke, G.L.

    1994-12-31

    The performance of high strength steel welds is sensitive to the weld metal chemistry, and that, in turn, is dependent on the composition of the welding consumables. In the case of submerged arc welding, the flux plays an important role in determining the chemistry of the resulting weld metal. The u.S. Navy is conducting a program to gain a basic understanding of fluxes used for welding high strength steels in an effort to be able to better select the appropriate flux, or design a new flux, for a given application. The objective of the present work is to analyze the effects of a systematic chance in flux composition on weld metal chemistry and properties The dry mix of a commercial flux was modified with additions of MnO to produce a series of four experimental flux mixes with target MnO levels from 1 wt% to 4 wt%. A fifth experimental flux mix was produced with an addition of 1/2 wt% CeO{sub 2} to examine the effect of rare earth additions to the flux. Tensile and impact properties and weld metal chemistry were tested for each weldment, and correlations were made with flux composition. Weld metal Mn levels from 1.37 wt% (0.76 wt% flux MnO) to 1.75 wt% (4.26 wt% flux MnO) were achieved with the MnO-added fluxes.The small CeO{sub 2} addition appeared to improve weld metal impact performance it was concluded that a more basic knowledge of welding fluxes can be used in selecting or designing appropriate fluxes for Navy applications. Further work is required to characterize the specific effects of other flux constituents and their interactions on weld metal performance.

  6. Performance of Underwater Weldments

    DTIC Science & Technology

    1990-09-05

    background on the underwater wet and wet-backed SMAW process, including discussion of data gathered from the literature and from industry sources and...for wet-backed welds and HVN = 282 + 566(C.E.) for wet welds 18 TABLE 2.1. EFFECT OF WELDING VARIABLES ON HAZ HARDNESS A. SMAW Only, All Coatings...HARDNESS. 21 TABLE 2.2. EFFECT OF WELDING VARIABLES ON WELD METAL TENSILE STRENGTH A. SMAW Only, All Coatings --95 Observations (All were wet welds.) Range

  7. Assessment of Crack Detection in Heavy-Walled Cast Stainless Steel Piping Welds Using Advanced Low-Frequency Ultrasonic Methods

    SciTech Connect

    Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Denslow, Kayte M.; Diaz, Aaron A.; Doctor, Steven R.

    2007-03-01

    Studies conducted at the Pacific Northwest National Laboratory in Richland, Washington, have focused on assessing the effectiveness and reliability of novel approaches to nondestructive examination (NDE) for inspecting coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the U.S. Nuclear Regulatory Commission on the effectiveness and reliability of advanced NDE methods as related to the inservice inspection of safety-related components in pressurized water reactors (PWRs). This report provides progress, recent developments, and results from an assessment of low frequency ultrasonic testing (UT) for detection of inside surface-breaking cracks in cast stainless steel reactor piping weldments as applied from the outside surface of the components. Vintage centrifugally cast stainless steel piping segments were examined to assess the capability of low-frequency UT to adequately penetrate challenging microstructures and determine acoustic propagation limitations or conditions that may interfere with reliable flaw detection. In addition, welded specimens containing mechanical and thermal fatigue cracks were examined. The specimens were fabricated using vintage centrifugally cast and statically cast stainless steel materials, which are typical of configurations installed in PWR primary coolant circuits. Ultrasonic studies on the vintage centrifugally cast stainless steel piping segments were conducted with a 400-kHz synthetic aperture focusing technique and phased array technology applied at 500 kHz, 750 kHz, and 1.0 MHz. Flaw detection and characterization on the welded specimens was performed with the phased array method operating at the frequencies stated above. This report documents the methodologies used and provides results from laboratory studies to assess baseline material noise, crack detection, and length-sizing capability for low-frequency UT in cast stainless steel piping.

  8. Plasma arc welding Hp-9Ni-4Co-0.30C steel

    SciTech Connect

    Harwig, D.D.; Hunt, J.F.; Theus, G.J.

    1994-12-31

    The plasma arc welding process is used to fabricate the advanced solid rocket motor (ASRM) casing for the Space Shuttle. Plasma arc welding (PAW) was chosen because this process assures a full penetration root pass with the keyhole mode. The HP 9Ni-4Co-0.30C steel was chosen for the ASRM application because the material has excellent strength, toughness, and weldability. The minimum mechanical property requirements of the weldment are 190 ksi yield, 205 ksi ultimate, 8% elongation, 25% reduction in area and 90 ksi/in. fracture toughness. Therefore, a comprehensive development plan was performed to fully characterize plasma arc welding HP 9Ni-4Co-0.30 steel. The test technique systematically varied the essential plasma arc parameters: current, travel speed, plasma gas or wire feed speed while maintaining constant arc length and torch set-up conditions. This PWHT produced the best combination of strength, toughness, and acceptable residual stresses. Variations in land thickness, plasma gas flow rate, current, travel speed, and arc length were characterized by measuring weld bead shape geometry. The weld procedure was found to be tolerant to rather wide parameter variations.

  9. Characterization of microstructures and mechanical properties of Inconel 617/310 stainless steel dissimilar welds

    SciTech Connect

    Shah Hosseini, H. Shamanian, M.; Kermanpur, A.

    2011-04-15

    The microstructure and mechanical properties of Inconel 617/310 austenitic stainless steel dissimilar welds were investigated in this work. Three types of filler materials, Inconel 617, Inconel 82 and 310 austenitic stainless steels were used to obtain dissimilar joint using the gas tungsten arc welding process. Microstructural observations showed that there was no evidence of any possible cracking in the weldments achieved by the nickel-base filler materials. The welds produced by 617 and 310 filler materials displayed the highest and the lowest ultimate tensile strength and total elongation, respectively. The impact test results indicated that all specimens exhibited ductile fracture. Among the fillers, Inconel 617 exhibited superlative fracture toughness (205 J). The mechanical properties of the Inconel 617 filler material were much better than those of other fillers. - Research Highlights: {yields} A fine dendritic structure was seen for the Inconel 617 weld metal. {yields} A number of cracks were initiated when the 310 SS filler metal was used. {yields} All welded samples showed ductile fracture. {yields} The Inconel 617 filler material presents the optimum mechanical properties.

  10. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds

    SciTech Connect

    Bhatt, R.B.; Kamat, H.S.; Ghosal, S.K.; De, P.K.

    1999-10-01

    The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance of pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constituent phases, which are responsible for improved resistance to pitting corrosion.

  11. Comminuting irradiated ferritic steel

    DOEpatents

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  12. Welding Rustproof Steels

    NASA Technical Reports Server (NTRS)

    Hoffmann, W

    1929-01-01

    The following experimental results will perhaps increase the knowledge of the process of welding rustproof steels. The experiments were made with two chrome-steel sheets and with two chrome-steel-nickel sheets having the composition shown in Table I.

  13. UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides

    PubMed Central

    Tseng, Kuang-Hung; Lin, Po-Yu

    2014-01-01

    The purpose of this study was to investigate the difference between tungsten inert gas (TIG) welding of austenitic stainless steel assisted by microparticle oxides and that assisted by nanoparticle oxides. SiO2 and Al2O3 were used to investigate the effects of the thermal stability and the particle size of the activated compounds on the surface appearance, geometric shape, angular distortion, delta ferrite content and Vickers hardness of the UNS S31603 stainless steel TIG weld. The results show that the use of SiO2 leads to a satisfactory surface appearance compared to that of the TIG weld made with Al2O3. The surface appearance of the TIG weld made with nanoparticle oxide has less flux slag compared with the one made with microparticle oxide of the same type. Compared with microparticle SiO2, the TIG welding with nanoparticle SiO2 has the potential benefits of high joint penetration and less angular distortion in the resulting weldment. The TIG welding with nanoparticle Al2O3 does not result in a significant increase in the penetration or reduction of distortion. The TIG welding with microparticle or nanoparticle SiO2 uses a heat source with higher power density, resulting in a higher ferrite content and hardness of the stainless steel weld metal. In contrast, microparticle or nanoparticle Al2O3 results in no significant difference in metallurgical properties compared to that of the C-TIG weld metal. Compared with oxide particle size, the thermal stability of the oxide plays a significant role in enhancing the joint penetration capability of the weld, for the UNS S31603 stainless steel TIG welds made with activated oxides. PMID:28788704

  14. UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides.

    PubMed

    Tseng, Kuang-Hung; Lin, Po-Yu

    2014-06-20

    The purpose of this study was to investigate the difference between tungsten inert gas (TIG) welding of austenitic stainless steel assisted by microparticle oxides and that assisted by nanoparticle oxides. SiO₂ and Al₂O₃ were used to investigate the effects of the thermal stability and the particle size of the activated compounds on the surface appearance, geometric shape, angular distortion, delta ferrite content and Vickers hardness of the UNS S31603 stainless steel TIG weld. The results show that the use of SiO₂ leads to a satisfactory surface appearance compared to that of the TIG weld made with Al₂O₃. The surface appearance of the TIG weld made with nanoparticle oxide has less flux slag compared with the one made with microparticle oxide of the same type. Compared with microparticle SiO₂, the TIG welding with nanoparticle SiO₂ has the potential benefits of high joint penetration and less angular distortion in the resulting weldment. The TIG welding with nanoparticle Al₂O₃ does not result in a significant increase in the penetration or reduction of distortion. The TIG welding with microparticle or nanoparticle SiO₂ uses a heat source with higher power density, resulting in a higher ferrite content and hardness of the stainless steel weld metal. In contrast, microparticle or nanoparticle Al₂O₃ results in no significant difference in metallurgical properties compared to that of the C-TIG weld metal. Compared with oxide particle size, the thermal stability of the oxide plays a significant role in enhancing the joint penetration capability of the weld, for the UNS S31603 stainless steel TIG welds made with activated oxides.

  15. The steel scrap age.

    PubMed

    Pauliuk, Stefan; Milford, Rachel L; Müller, Daniel B; Allwood, Julian M

    2013-04-02

    Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age.

  16. EWI/TWI controlled deposition repair welding procedure for 1{1/4}Cr-{1/2}Mo and 2{1/4}Cr-1Mo steels

    SciTech Connect

    Friedman, L.M.

    1996-06-01

    The Edison Welding Institute (EWI) and TWI of Cambridge, England, have completed a group-sponsored project that has been successful in demonstrating the acceptability to weld repair 1{1/4}Cr-{1/2}Mo and 2{1/4}Cr-1Mo steels without PWHT. A detailed SMAW welding procedure was developed for all welding positions that provides excellent weldment properties in the as-welded condition for both Cr-Mo steels. This procedure is supported by detailed welding instructions for controlled deposition welding, a welder training document, and instructions for welding of the welder qualification test assembly. The program included a significant amount of mechanical property characterization and performance testing to validate the acceptability of controlled deposition, as-welded repair of the Cr-Mo steels. The purpose of the present paper is to present the details of the EWI/TWI controlled deposition welding procedure and to provide data that demonstrates the ability of the procedure to refine and temper the parent steel HAZ.

  17. Experimental determination of TRIP-parameter K for mild- and high-strength low-alloy steels and a super martensitic filler material.

    PubMed

    Neubert, Sebastian; Pittner, Andreas; Rethmeier, Michael

    2016-01-01

    A combined experimental numerical approach is applied to determine the transformation induced plasticity (TRIP)-parameter K for different strength low-alloy steels of grade S355J2+N and S960QL as well as the super martensitic filler CN13-4-IG containing 13 wt% chromium and 4 wt% nickel. The thermo-physical analyses were conducted using a Gleeble (®) 3500 facility. The thermal histories of the specimens to be tested were extracted from corresponding simulations of a real gas metal arc weldment. In contrast to common TRIP-experiments which are based on complex specimens a simple flat specimen was utilized together with an engineering evaluation method. The evaluation method was validated with literature values for the TRIP-parameter. It could be shown that the proposed approach enables a correct description of the TRIP behavior.

  18. Methods of forming steel

    DOEpatents

    Branagan, Daniel J.; Burch, Joseph V.

    2001-01-01

    In one aspect, the invention encompasses a method of forming a steel. A metallic glass is formed and at least a portion of the glass is converted to a crystalline steel material having a nanocrystalline scale grain size. In another aspect, the invention encompasses another method of forming a steel. A molten alloy is formed and cooled the alloy at a rate which forms a metallic glass. The metallic glass is devitrified to convert the glass to a crystalline steel material having a nanocrystalline scale grain size. In yet another aspect, the invention encompasses another method of forming a steel. A first metallic glass steel substrate is provided, and a molten alloy is formed over the first metallic glass steel substrate to heat and devitrify at least some of the underlying metallic glass of the substrate.

  19. Effect of long-term aging on microstructure and local behavior in the heat-affected zone of a Ni–Cr–Mo–V steel welded joint

    SciTech Connect

    Zhu, Ming-Liang Wang, De-Qiang; Xuan, Fu-Zhen

    2014-01-15

    Evolution of microstructure, micro-hardness and micro-tensile strength behavior was investigated in the heat-affected zone of a Ni–Cr–Mo–V steel welded joint after the artificial aging at 350 °C for 3000 h. After detailed characterization of microstructures in optical microscopy, scanning electron microscopy and transmission electron microscopy, it is revealed that the change of martensite–bainite constituent promotes more homogeneous microstructure distribution. The aging treatment facilitates redistribution of carbon and chromium elements along the welded joint, and the micro-hardness is increased slightly through the welds due to enrichment of carbon. The types of precipitates in the weldment mainly include M{sub 3}C, MC, M{sub 2}C and M{sub 23}C{sub 6}. The carbides in base metal, weld metal and coarse-grained heat-affected zone are prone to change from ellipsoidal to platelet form whereas more uniform spherical carbides are observed in the fine-grained zone. Precipitation and coarsening of M{sub 23}C{sub 6} near the fusion line, and formation of MC and M{sub 2}C, are responsible for the tensile strength decrease and its smooth distribution in the aged heat-affected zone. This implies that the thermal aging can relieve strength mismatch in the weldments. - Highlights: • Microstructure homogeneity improved in HAZ after long-term aging. • Tensile strength decreased in HAZ due to precipitation and coarsening of M{sub 23}C{sub 6}. • Strength mismatch in NiCrMoV steel welds was relieved after aging at 350 °C × 3000 h.

  20. 2016 Accomplishments. Tritium aging studies on stainless steel. Forging process effects on the fracture toughness properties of tritium-precharged stainless steel

    SciTech Connect

    Morgan, Michael J.

    2017-01-01

    in the tritium-exposed specimens were similar for all forgings. Another FY16 objective was to prepare fracture toughness specimens from Types 304L and 21-6-9 stainless steel weldments and heat-affected zones (HAZ) for tritium charging.

  1. Detection of Cracks at Welds in Steel Tubing Using Flux Focusing Electromagnetic Probe

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Simpson, John; Namkung, Min

    1994-01-01

    The inspection of weldments in critical pressure vessel joints is a major concern in the nuclear power industry. Corrosive environments can speed the fatigue process and access to the critical area is often limited. Eddy current techniques have begun to be used to help overcome these obstacles [1]. As direct contact and couplants are not required, remote areas can be inspected by simply snaking an eddy current coil into the intake tube of the vessel. The drawback of the eddy current method has been the high sensitivity to small changes in the conductivity and permeability of the test piece which are known to vary at weldments [1]. The flaw detection mechanism of the flux focusing electromagnetic probe can help alleviate these difficulties and provide a unique capability for detecting longitudinal fatigue cracks in critical tube structures. The Flux Focusing Electromagnetic Flaw Detector, originally invented for the detection of fatigue and corrosion damage in aluminum plates [2-3], has been adapted for use in testing steel tubing for longitudinal fatigue cracks. The modified design allows for the probe to be placed axisymmetrically into the tubing, inducing eddy currents in the tube wall. The pickup coil of the probe is fixed slightly below the primary windings and is rotated 90 so that its axis is normal to the tube wall. The magnetic flux of the primary coil is focused through the use of ferromagnetic material so that in the absence of fatigue damage there will be no flux linkage with the pickup coil. The presence of a longitudinal fatigue crack will cause the eddy currents induced in the tube wall to flow around the flaw and directly under the pickup coil. The magnetic field associated with these currents will then link the pickup coil and an unambiguous increase in the output voltage of the probe will be measured. The use of the flux focusing electromagnetic probe is especially suited for the detection of flaws originating at or near tube welds. The probe is

  2. On the microstructure-polarization behavior correlation of a 9Cr-1Mo steel weld joint

    NASA Astrophysics Data System (ADS)

    George, G.; Shaikh, H.; Parvathavarthini, N.; George, R. P.; Khatak, H. S.

    2001-08-01

    The use of 9Cr-1Mo ferritic steel necessitates its fabrication by the process of welding. The heat-affected zone (HAZ) of 9Cr-1Mo ferritic steel is a combination of many microstructures. In the present study, the corrosion properties of the base metal, weld metal, and the various regions of the HAZ are assessed with respect to their microstructures. The various microstructures in the HAZ were simulated by heat treatment of the normalized and tempered base metal at 1463, 1200, and 1138 K for 5 min followed by oil quenching. The microstructure of the base metal in the normalized and tempered condition revealed martensite laths with M23C6 carbides at lath boundaries, and uniform dispersion of fine, acicular M2C. The weld metal showed predominantly martensitic structure with dispersion of carbides. Simulation of the microstructures of the HAZ by heat treatment resulted in the following microstructures: coarse-grained martensite of 75 µm size at 1463 K, fine-grained martensite at 1200 K, and martensite + proeutectoid α-ferrite at 1138 K. In all cases, carbide precipitation was observed in the martensitic matrix. Microhardness measurements of HAZ-simulated base metal showed increasing hardness with increasing heat treatment temperature. The hardness values obtained corresponded very well with the regions of the actual HAZ in the weld joint. Electrochemical polarization studies were carried out on the base metal, weld metal, weldment (base metal + weld metal + HAZ), and the simulated HAZ structures in 0.5 M sulfuric acid solution. Critical current densities ( i crit1 and i crit2), passive current densities ( i pass and i sec-pass), and transpassive potential ( E tp) were the parameters considered for evaluating the corrosion resistance. The HAZ structures simulated at 1463 and 1200 K, corresponding to coarse- and fine-grained martensitic regions of an actual HAZ, had corrosion properties as good as the normalized and tempered base metal. Of the various simulated HAZ

  3. Detection of Cracks at Welds in Steel Tubing Using Flux Focusing Electromagnetic Probe

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Simpson, John; Namkung, Min

    1994-01-01

    The inspection of weldments in critical pressure vessel joints is a major concern in the nuclear power industry. Corrosive environments can speed the fatigue process and access to the critical area is often limited. Eddy current techniques have begun to be used to help overcome these obstacles [1]. As direct contact and couplants are not required, remote areas can be inspected by simply snaking an eddy current coil into the intake tube of the vessel. The drawback of the eddy current method has been the high sensitivity to small changes in the conductivity and permeability of the test piece which are known to vary at weldments [1]. The flaw detection mechanism of the flux focusing electromagnetic probe can help alleviate these difficulties and provide a unique capability for detecting longitudinal fatigue cracks in critical tube structures. The Flux Focusing Electromagnetic Flaw Detector, originally invented for the detection of fatigue and corrosion damage in aluminum plates [2-3], has been adapted for use in testing steel tubing for longitudinal fatigue cracks. The modified design allows for the probe to be placed axisymmetrically into the tubing, inducing eddy currents in the tube wall. The pickup coil of the probe is fixed slightly below the primary windings and is rotated 90 so that its axis is normal to the tube wall. The magnetic flux of the primary coil is focused through the use of ferromagnetic material so that in the absence of fatigue damage there will be no flux linkage with the pickup coil. The presence of a longitudinal fatigue crack will cause the eddy currents induced in the tube wall to flow around the flaw and directly under the pickup coil. The magnetic field associated with these currents will then link the pickup coil and an unambiguous increase in the output voltage of the probe will be measured. The use of the flux focusing electromagnetic probe is especially suited for the detection of flaws originating at or near tube welds. The probe is

  4. Maraging Steel Machining Improvements

    DTIC Science & Technology

    2007-04-23

    APR 2007 2. REPORT TYPE Technical, Success Story 3. DATES COVERED 01-12-2006 to 23-04-2007 4. TITLE AND SUBTITLE Maraging Steel Machining...consumers of cobalt-strengthened maraging steel . An increase in production requires them to reduce the machining time of certain operations producing... maraging steel ; Success Stories 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 1 18. NUMBER OF PAGES 1 19a. NAME OF RESPONSIBLE

  5. Welding irradiated stainless steel

    SciTech Connect

    Kanne, W.R. Jr.; Chandler, G.T.; Nelson, D.Z.; Franco-Ferreira, E.A.

    1993-12-31

    Conventional welding processes produced severe underbead cracking in irradiated stainless steel containing 1 to 33 appm helium from n,a reactions. A shallow penetration overlay technique was successfully demonstrated for welding irradiated stainless steel. The technique was applied to irradiated 304 stainless steel that contained 10 appm helium. Surface cracking, present in conventional welds made on the same steel at the same and lower helium concentrations, was eliminated. Underbead cracking was minimal compared to conventional welding methods. However, cracking in the irradiated material was greater than in tritium charged and aged material at the same helium concentrations. The overlay technique provides a potential method for repair or modification of irradiated reactor materials.

  6. A Study on Optimized Technology for an Automatic Root-pass Welding of Girth Weldment in Pipeline

    NASA Astrophysics Data System (ADS)

    Jeong, J. W.; Kim, I. S.; Kim, W. S.; Kim, Y. P.; Kim, C. M.; Kim, J. S.; Na, H. H.; Choi, J. H.

    2011-01-01

    Since welding process for most pipes with large diameter has been carried out by the manual process, automation of the welding process is necessary for the sake of consistent weld quality and improvement in productivity. Therefore the development of the optimized algorithm to decide the optimal welding condition is an effective technique to prove the feasibility of interface standards and intelligent control technology to increase productivity and reduce the cost of system integration. In this study, an optimized algorithm to predict process variables for root-pass welding of pipeline in STT(Surface Tension Transfer) welding process has been proposed. A regression analysis and RSM(Response Surface Method) have been employed for optimization of the coefficients of linear and 2nd-order interaction models. Not only the fitting of these models were checked and compared by using a variance test (ANOVA), but also the predictions on back-bead width and height for carbon steel using the developed models were carried out.

  7. The Steel Band.

    ERIC Educational Resources Information Center

    Weil, Bruce

    1996-01-01

    Describes studying the steel drum, an import from Trinidad, as an instrument of intellectual growth. Describes how developing a steel drum band provided Montessori middle school students the opportunity to experience some important feelings necessary to emotional growth during this difficult age: competence, usefulness, independence, and…

  8. Steel Industry Wastes.

    ERIC Educational Resources Information Center

    Schmidtke, N. W.; Averill, D. W.

    1978-01-01

    Presents a literature review of wastes from steel industry, covering publications of 1976-77. This review covers: (1) coke production; (2) iron and steel production; (3) rolling operations; and (4) surface treatment. A list of 133 references is also presented. (NM)

  9. High Nitrogen Stainless Steel

    DTIC Science & Technology

    2011-07-19

    Hydrogen Embrittlement in Steel by the Increment Loading Technique. Fractography: After the stress-life fatigue tests, the fracture surface morphology...study was conducted to clarify the mechanical properties and stress corrosion cracking (SCC) resistance of high nitrogen stainless steel (HNSS) plates...Corrosion Cracking 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON

  10. Steel Industry Wastes.

    ERIC Educational Resources Information Center

    Schmidtke, N. W.; Averill, D. W.

    1978-01-01

    Presents a literature review of wastes from steel industry, covering publications of 1976-77. This review covers: (1) coke production; (2) iron and steel production; (3) rolling operations; and (4) surface treatment. A list of 133 references is also presented. (NM)

  11. Effects of nonstandard heat treatment temperatures on tensile and Charpy impact properties of carbon-steel casting repair welds

    SciTech Connect

    Nanstad, R.K.; Goodwin, G.M.; Swindeman, M.J.

    1993-04-01

    This report discusses carbon steel castings which are used for a number of different components in nuclear power plants, including valve bodies and bonnets. Components are often repaired by welding processes, and both welded components and the repair welds are subjected to a variety of postweld heat treatments (PWHT) with temperatures as high as 899{degrees}C (1650{degrees}F), well above the normal 593 to 677{degrees}C (1100 to 1250{degrees}F) temperature range. The temperatures noted are above the A1 transformation temperature for the materials used for these components. A test program was conducted to investigate the potential effects of such ``nonstandard`` PWHTs on mechanical properties of carbon steel casting welds. Four weldments were fabricated, two each with the shielded-metal-arc (SMA) and flux-cored-arc (FCA) processes,with a high-carbon and low-carbon filler metal in each case. All four welds were sectioned and given simulated PWHTs at temperatures from 621 to 899{degrees}C (1150 to 1650{degrees}F) in increments of 56{degrees}C (100{degrees}F) and for times of 5, 10, 20, and 40 h at each temperature. Hardness, tensile, and Charpy V-notch (CVN) impact tests were conducted for the as-welded and heat-treated conditions.

  12. EAST ELEVATION, LTV STEEL (FORMERLY REPUBLIC STEEL), 8" BAR MILL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, LTV STEEL (FORMERLY REPUBLIC STEEL), 8" BAR MILL, BUFFALO PLANT. VIEW LOOKING SOUTHWEST FROM ROLL SHOP. 8" BAR MILL DESIGNED AND BUILT BY DONNER STEEL CO. (PREDECESSOR OF REPUBLIC), 1919-1920. FOR DESCRIPTION OF ORIGINAL MILL SEE "IRON AGE", 116\\4 (23 JULY 1925): 201-204. - LTV Steel, 8-inch Bar Mill, Buffalo Plant, Buffalo, Erie County, NY

  13. Evaluation of pitting corrosion resistance of high-alloyed stainless steels welds for FGD plants in Korea

    SciTech Connect

    Baek, K.K.; Sung, H.J.; Im, C.S.; Hong, I.P.; Kim, D.K.

    1998-12-31

    For successful application of high-alloyed stainless steels for Flue Gas Desulfurization (FGD) plants, pitting corrosion resistance of arc welds of N-added 6%Mo austenitic stainless steels (UNS N 08367) and super duplex stainless steels (UNS S 32550) made with various filler metals were evaluated using the Green Death solution. For Gas Tungsten Arc (GTA) and Gas Metal Arc (GMA) welds of N 08367, Critical Pitting Temperature (CPT) of base metal was 65--70 C, whereas weld made by ERNiCrMo-3 filler metal yielded CPT of 50 C. Welds made by ERNiCrMo-10 or ERNiCrMo-4 filler metals showed CPT of 60--65 C and 65--70C, respectively. For GTA and GMA welds of S 32550, CPT of welds made by ERNiCrMo-3 was 45--50 C, indicating that the filler metal can provide pitting corrosion resistance matching the S 32550 alloy. Thus, a proper pitting corrosion resistance of weldments of high-alloy stainless steels can be achieved by selecting filler metals having at least +10 higher Pitting Resistance Equivalent Number (PRE{sub N}) value than the base metal regardless of the type of arc welding process. The over-alloyed filler metals would compensate preferential segregation of Cr, MO along the dendrite boundary, which made the dendrite core more susceptible to pitting. Nitrogen addition to the GTA welds of N 08367 made with ERNiCrMo-3 failed to improve pitting corrosion resistance, which was attributed to the precipitation of nitrogen in the weld metal in the form of Nb-nitride.

  14. Tensile properties of a titanium modified austenitic stainless steel and the weld joints after neutron irradiation

    SciTech Connect

    Shiba, Kiyoyuki; Ioka, Ikuo; Jitsukawa, Shiro; Hamada, Shozo; Hishinuma, Atkinichi; Robertson, J.P.

    1999-10-01

    Tensile specimens of a titanium modified austenitic stainless steel and its weldments fabricated with Tungsten Inert Gas (TIG) and Electron Beam (EB) welding techniques were irradiated to a peak dose of 19 dpa and a peak helium level of 250 appm in the temperature range between 200 and 400 C in spectrally tailored capsules in the Oak Ridge Research Reactor (ORR) and the High Flux Isotope Reactor (HFIR). The He/dpa ratio of about 13 appm/dpa is similar to the typical helium/.dpa ratio of a fusion reactor environment. The tensile tests were carried out at the irradiation temperature in vacuum. The irradiation caused an increase in yield stress to levels between 670 and 800 MPa depending on the irradiation temperature. Total elongation was reduced to less than 10%, however the specimens failed in a ductile manner. The results were compared with those of the specimens irradiated using irradiation capsules producing larger amount of He. Although the He/dpa ratio affected the microstructural change, the impact on the post irradiation tensile behavior was rather small not only for base metal specimens but also for the weld joint and the weld metal specimens.

  15. Metallurgical and mechanical properties of laser welded high strength low alloy steel

    PubMed Central

    Oyyaravelu, Ramachandran; Kuppan, Palaniyandi; Arivazhagan, Natarajan

    2016-01-01

    The study aimed at investigating the microstructure and mechanical properties of Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) laser welded high strength low alloy (HSLA) SA516 grade 70 boiler steel. The weld joint for a 4 mm thick plate was successfully produced using minimum laser power of 2 kW by employing a single pass without any weld preheat treatment. The micrographs revealed the presence of martensite phase in the weld fusion zone which could be due to faster cooling rate of the laser weldment. A good correlation was found between the microstructural features of the weld joints and their mechanical properties. The highest hardness was found to be in the fusion zone of cap region due to formation of martensite and also enrichment of carbon. The hardness results also showed a narrow soft zone at the heat affected zone (HAZ) adjacent to the weld interface, which has no effect on the weld tensile strength. The yield strength and ultimate tensile strength of the welded joints were 338 MPa and 549 MPa, respectively, which were higher than the candidate metal. These tensile results suggested that the laser welding process had improved the weld strength even without any weld preheat treatment and also the fractography of the tensile fractured samples showed the ductile mode of failure. PMID:27222751

  16. Hydrogen Attack kinetics of 2.25 Cr-1 Mo steel weld metals

    NASA Astrophysics Data System (ADS)

    Parthasarathy, T. A.; Lopez, H. F.; Shewmon, P. G.

    1985-06-01

    The kinetics of Hydrogen Attack (HA) of the base metals and the weld metals of two Q&T 2.25 Cr-1 Mo steel weldments made by different techniques (SMAW and SAW) were studied in the temperature range 460 to 590°C (860 to 1094 °F) and 10 to 23 MPa of hydrogen. A sensitive dilatometer used to measure the rate of HA showed that the weld metals suffered HA at significantly higher rates than the base metals. The SMAW weld metal was inferior to the SAW weld metal and swelled nearly an order of magnitude faster than the base metal. This behavior is due to a significantly higher bubble density, and a resulting higher contribution of power law creep of the matrix. The SAW behavior was intermediate between those of the base metals and the SMAW. For the same hydrogen pressure the operating limit of the SMAW weld would be roughly 100°C lower than that of the base metals, and that of the SAW roughly 50°C lower.

  17. Tensile properties of a titanium modified austenitic stainless steel and the weld joints after neutron irradiation

    SciTech Connect

    Shiba, K.; Ioka, I.; Jitsukawa, S.; Hamada, A.; Hishinuma, A.

    1996-10-01

    Tensile specimens of a titanium modified austenitic stainless steel and its weldments fabricated with Tungsten Inert Gas (TIG) and Electron Beam (EB) welding techniques were irradiated to a peak dose of 19 dpa and a peak helium level of 250 appm in the temperature range between 200 and 400{degrees}C in spectrally tailored capsules in the Oak Ridge Research Reactor (ORR) and the High Flux Isotope Reactor (HFIR). The He/dpa ratio of about 13 appm/dpa is similar to the typical helium/dpa ratio of a fusion reactor environment. The tensile tests were carried out at the irradiation temperature in vacuum. The irradiation caused an increase in yield stress to levels between 670 and 800 MPa depending on the irradiation temperature. Total elongation was reduced to less than 10%, however the specimens failed in a ductile manner. The results were compared with those of the specimens irradiated using irradiation capsules producing larger amount of He. Although the He/dpa ratio affected the microstructural change, the impact on the post irradiation tensile behavior was rather small for not only base metal specimens but also for the weld joint and the weld metal specimens.

  18. Nuclear transmutation in steels

    NASA Astrophysics Data System (ADS)

    Belozerova, A. R.; Shimanskii, G. A.; Belozerov, S. V.

    2009-05-01

    The investigations of the effects of nuclear transmutation in steels that are widely used in nuclear power and research reactors and in steels that are planned for the application in thermonuclear fusion plants, which are employed under the conditions of a prolonged action of neutron irradiation with different spectra, made it possible to study the effects of changes in the isotopic and chemical composition on the tendency of changes in the structural stability of these steels. For the computations of nuclear transmutation in steels, we used a program complex we have previously developed on the basis of algorithms for constructing branched block-type diagrams of nuclide transformations and for locally and globally optimizing these diagrams with the purpose of minimizing systematic errors in the calculation of nuclear transmutation. The dependences obtained were applied onto a Schaeffler diagram for steels used for structural elements of reactors. For the irradiation in fission reactors, we observed only a weak influence of the effects of nuclear transmutation in steels on their structural stability. On the contrary, in the case of irradiation with fusion neutrons, a strong influence of the effects of nuclear transmutation in steels on their structural stability has been noted.

  19. Damascus steel ledeburite class

    NASA Astrophysics Data System (ADS)

    Sukhanov, D. A.; Arkhangelsky, L. B.; Plotnikova, N. V.

    2017-02-01

    Discovered that some of blades Damascus steel has an unusual nature of origin of the excess cementite, which different from the redundant phases of secondary cementite, cementite of ledeburite and primary cementite in iron-carbon alloys. It is revealed that the morphological features of separate particles of cementite in Damascus steels lies in the abnormal size of excess carbides having the shape of irregular prisms. Considered three hypotheses for the formation of excess cementite in the form of faceted prismatic of excess carbides. The first hypothesis is based on thermal fission of cementite of a few isolated grains. The second hypothesis is based on the process of fragmentation cementite during deformation to the separate the pieces. The third hypothesis is based on the transformation of metastable cementite in the stable of angular eutectic carbide. It is shown that the angular carbides are formed within the original metastable colony ledeburite, so they are called “eutectic carbide”. It is established that high-purity white cast iron is converted into of Damascus steel during isothermal soaking at the annealing. It was revealed that some of blades Damascus steel ledeburite class do not contain in its microstructure of crushed ledeburite. It is shown that the pattern of carbide heterogeneity of Damascus steel consists entirely of angular eutectic carbides. Believe that Damascus steel refers to non-heat-resistant steel of ledeburite class, which have similar structural characteristics with semi-heat-resistant die steel or heat-resistant high speed steel, differing from them only in the nature of excess carbide phase.

  20. Challenges and Capabilities for Inspection of Cast Stainless Steel Piping

    SciTech Connect

    Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Diaz, Aaron A.; Doctor, Steven R.

    2007-12-31

    Studies conducted at the Pacific N¬orthwest National Laboratory (PNNL) in Richland, Washington, have focused on developing and evaluating the reliability of nondestructive examination (NDE) approaches for inspecting coarse-grained, cast stainless steel reactor components. The objective of this work is to provide information to the United States Nuclear Regulatory Commission (US NRC) on the utility, effec¬tiveness and limitations of NDE techniques as related to the inservice inspec¬tion of primary system piping components in pressurized water reactors (PWRs). This paper describes results from recent assessments built upon early work with low frequency ultrasonic testing (UT) coupled with synthetic aperture focusing technique (SAFT) signal processing, and has subsequently evolved into an approach using low frequency phased array technology as applied from the outer diameter surface of the piping. In addition, eddy current examination as performed from the inner diameter surface of these piping welds is also reported. Cast stainless steel (CSS) pipe specimens were examined that contain thermal and mechanical fatigue cracks located close to the weld roots and have inside/outside surface geometrical conditions that simulate several PWR primary piping weldments and configurations. In addition, segments of vintage centrifugally cast piping were also examined to understand inherent acoustic noise and scattering due to grain structures and determine consistency of UT responses from different locations. The advanced UT methods were applied from the outside surface of these specimens using automated scanning devices and water coupling. The phased array approach was implemented with a modified instrument operating at low frequencies and composite volumetric images of the samples were generated with 500 kHz, 750 kHz, and 1.0 MHz arrays. Eddy current studies were conducted on the inner diameter surface of these piping welds using a commercially available instrument and a

  1. Steel Pickling Inspection Checklist

    EPA Pesticide Factsheets

    Checklist to establish whether a facility or operations within a facility are subject to and are in compliance with 40 C.F.R Part 63 Subpart CCC (Steel Pickling—HCl Process Facilities and Hydrochloric Acid Regeneration Plants NESHAP).

  2. Structural Amorphous Steels

    NASA Astrophysics Data System (ADS)

    Lu, Z. P.; Liu, C. T.; Thompson, J. R.; Porter, W. D.

    2004-06-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist’s dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed.

  3. Cobalt free maraging steel

    SciTech Connect

    Floreen, S.

    1984-04-17

    The subject invention is directed to ferrous-base alloys, particularly to a cobalt-free maraging steel of novel chemistry characterized by a desired combination of strength and toughness, notwithstanding that cobalt is non-essential.

  4. Glass Stronger than Steel

    DOE R&D Accomplishments Database

    Yarris, Lynn

    2011-03-28

    A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of steel or any other known material, has been developed and tested by a collaboration of researchers from Berkeley Lab and Caltech.

  5. Performance Steel Castings

    DTIC Science & Technology

    2012-09-30

    alloys , foundry, muzzle brake, supply center, tooling, sources Notice Distribution Statement A Format Information Report created in Microsoft Word...Development of Sand Properties 103 Advanced Modeling Dataset.. 105 High Strength Low Alloy (HSLA) Steels 107 Steel Casting and Engineering Support...University, University of Northern Iowa, Non- Ferrous Founders’ Society, QuesTek, buyCASTINGS.com, Spokane Industries, Nova Precision Casting, Waukesha

  6. Life after Steel

    ERIC Educational Resources Information Center

    Mangan, Katherine

    2013-01-01

    Bobby Curran grew up in a working-class neighborhood in Baltimore, finished high school, and followed his grandfather's steel-toed bootprints straight to Sparrows Point, a 3,000-acre sprawl of industry on the Chesapeake Bay. College was not part of the plan. A gritty but well-paying job at the RG Steel plant was Mr. Curran's ticket to a secure…

  7. Joining Steel Armor - Intermix

    DTIC Science & Technology

    1979-03-01

    TARADCOM a d ki Lk A el B~ 0el RWET0 TECHNICAL REPORT NO. 12311 JOINING STEEL ARMOR - INTERMIX March 1979 U U * S* ’ "U .by B. . A.SCEV * U...authorized documents. O "if TECHNICAL REPORT NO. 12311 JOINING STEEL ARMOR - INTERMIX BY B. A. SCHEVO March 1979 AMS: 3197..6D.4329 TARADCOM ARMOR AND...Intermix Process ...... ........ 3 Test Procedures - Intermix Armor ........ ......... 4 Mock Hull ................. ..................... 5 Results

  8. Ferrium M54 Steel

    DTIC Science & Technology

    2015-03-18

    release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Bare and Zn-14% Ni alloy coated Ferrium M54 steels were studied to...Ni alloy coating appears to provide the steel some protection against hydrogen embrittlement/SCC and corrosion fatigue in aqueous 3.5% NaCl...301-342-8069 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 NAWCADPAX/TIM-2014/292 ii SUMMARY Bare and Zn-14% Ni alloy

  9. Life after Steel

    ERIC Educational Resources Information Center

    Mangan, Katherine

    2013-01-01

    Bobby Curran grew up in a working-class neighborhood in Baltimore, finished high school, and followed his grandfather's steel-toed bootprints straight to Sparrows Point, a 3,000-acre sprawl of industry on the Chesapeake Bay. College was not part of the plan. A gritty but well-paying job at the RG Steel plant was Mr. Curran's ticket to a secure…

  10. The role of titanium in the non-metallic inclusions which nucleate acicular ferrite in the submerged arc weld (SAW) fusion zones of Navy HY-100 steel

    SciTech Connect

    Fox, A.G.; Brothers, D.G.

    1995-04-01

    The origin of acicular ferrite in the weld metal of submerged arc weldments on high strength steels is very complex and depends upon the chemical composition for the steel base plate and filler wire, the composition of the flux used during welding and the cooling rate of the weld metal during the transformation of the undercooled metastable austenite. The strength and toughness of weld metal improves as the amount of acicular ferrite increases due its fine basket weave microstructure and so it is important to understand the mechanism of its formation so that the volume fraction of acicular ferrite can be maximized in steel weld metal. The chemical composition of the filler wire mostly determines the final composition of the weld metal although the composition of the base plate is important because of dilution effects. In high strength steels the alloying elements such as carbon, nickel, chromium, copper nd niobium are present to achieve the required strength levels and a fortuitous outcome of this is a continuous cooling transformation (CCT) diagram with features that mean that bainite is the major transformation product during the arc welding of these steels provided a suitable weld power and preheat/interpass temperature is chosen during multi-run welding. Once a suitable weld-metal hardenability and cooling rate has been established the amount of acicular ferrite nucleated will depend on the size, number, distribution and chemical composition of the non-metallic inclusions. Suitable inclusions appear to be in the size range 0.2--2.0 micrometers with a mean size of 0.5 micrometers being about an optimum value. These inclusions usually contain manganese, silicon, aluminum and titanium as their major constituents and do not appear to be exactly spherical but have a faceted or slightly angular appearance.

  11. Articles comprising ferritic stainless steels

    SciTech Connect

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  12. Waste product profile: Steel cans

    SciTech Connect

    Miller, C.

    1996-07-01

    Steel cans are made from tinplate steel, which is produced in basic oxygen furnaces. A thin layer of tin is applied to the can`s inner and outer surfaces to prevent rusting and protect food and beverage flavors. As a result, steel cans are often called tin cans. Steel mills are the largest market for steel cans. Integrated mills use the basic oxygen process to manufacture tinplate, appliances, car bodies, and steel framing. Electric arc furnaces use 100% scrap to produce steel shapes such as railroad ties and bridge spans. Electric arc furnaces are more geographically diverse and tend to have smaller capacities than basic oxygen furnaces. Detinners remove the tin from steel cans for resale to tin using industries. Continued decreases in the amount of tin used in steel cans has lessened the importance of this market. Foundries use scrap as a raw material in making castings and molds for industrial users.

  13. Castings, Steel, Homogenization of Steel Castings

    DTIC Science & Technology

    1942-12-05

    diffraction pattern of quenched and tempered steel castings. 2. Calculations based upon known diffusion rates show: A. Practical homogenizing heat ...will be largely eliminated by either the usual heating for nuenching or a homo- genizing treatment. C. Interdendritic segregation of sulfur will...26 Appendix A - History of the Heat Treatment and Composition of Centrifugal Gun Castings at W-tertown Ar- sen-.l. ..... ..................... 2

  14. Stress Engineering of Multi-pass Welds of Structural Steel to Enhance Structural Integrity

    NASA Astrophysics Data System (ADS)

    Ganguly, Supriyo; Sule, Jibrin; Yakubu, Mustapha Y.

    2016-08-01

    In multi-pass welding, the weld metal and the associated heat-affected zone are subjected to repeated thermal cycling from successive deposition of filler metals. The thermal straining results into multi-mode deformation of the weld metal which causes a variably distributed residual stress field through the thickness and across the weld of a multi-pass weldment. In addition to this, the as-welded fusion zone microstructure shows dendritic formation of grains and segregation of alloying element. This may result in formation of micro-corrosion cells and the problem would aggravate in case of highly alloyed materials. Local mechanical tensioning is an effective way of elimination of the weld tensile residual stress. It has been shown that application of cold rolling is capable not only of removing the residual stress, but depending on its magnitude it may also form beneficial compressive stress state. Multi-pass structural steel welds used as structural alloy in general engineering and structural applications. Such alloys are subjected to severe in-service degradation mechanisms e.g., corrosion and stress corrosion cracking. Welds and the locked-in residual stress in the welded area often initiate the defect which finally results in failure. In the present study, a multi-pass structural steel weld metal was first subjected to post-weld cold rolling which was followed by controlled heating by a fiber laser. Cold straining resulted in redistribution of the internal stress through the thickness and controlled laser processing helps in reforming of the grain structure. However, even with controlled laser, processing the residual stress is reinstated. Therefore, a strategy has been adopted to roll the metal post-laser processing so as to obtain a complete stress-free and recrystallized microstructure.

  15. Profiles in garbage: Steel cans

    SciTech Connect

    Miller, C.

    1998-02-01

    Steel mills are the largest market for steel cans. Integrated mills use the basic oxygen process to manufacture tinplate, appliances, car bodies, and steel framing. Electric arc furnaces use 100% scrap to produce steel shapes such as railroad ties and bridge spans. Electric arc furnaces are more geographically diverse and tend to have smaller capacities than basic oxygen furnaces. Detinners remove the tin from steel cans for resale to tin using industries. With less tin use in steel cans, the importance of the detinning market has declined substantially. Foundries use scrap as a raw material in making castings and molds for industrial users.

  16. View northwest, wharf A, sheet steel bulkhead, steel lift tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northwest, wharf A, sheet steel bulkhead, steel lift tower - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  17. Characterization of HAZ of API X70 Microalloyed Steel Welded by Cold-Wire Tandem Submerged Arc Welding

    NASA Astrophysics Data System (ADS)

    Mohammadijoo, Mohsen; Kenny, Stephen; Collins, Laurie; Henein, Hani; Ivey, Douglas G.

    2017-03-01

    High-strength low-carbon microalloyed steels may be adversely affected by the high-heat input and thermal cycle that they experience during tandem submerged arc welding. The heat-affected zone (HAZ), particularly the coarse-grained heat-affected zone (CGHAZ), i.e., the region adjacent to the fusion line, has been known to show lower fracture toughness compared with the rest of the steel. The deterioration in toughness of the CGHAZ is attributed to the formation of martensite-austenite (M-A) constituents, local brittle zones, and large prior austenite grains (PAG). In the present work, the influence of the addition of a cold wire at various wire feed rates in cold-wire tandem submerged arc welding, a recently developed welding process for pipeline manufacturing, on the microstructure and mechanical properties of the HAZ of a microalloyed steel has been studied. The cold wire moderates the heat input of welding by consuming the heat of the trail electrode. Macrostructural analysis showed a decrease in the CGHAZ size by addition of a cold wire. Microstructural evaluation, using both tint etching optical microscopy and scanning electron microscopy, indicated the formation of finer PAGs and less fraction of M-A constituents with refined morphology within the CGHAZ when the cold wire was fed at 25.4 cm/min. This resulted in an improvement in the HAZ impact fracture toughness. These improvements are attributed to lower actual heat introduced to the weldment and lower peak temperature in the CGHAZ by cold-wire addition. However, a faster feed rate of the cold wire at 76.2 cm/min adversely affected the toughness due to the formation of slender M-A constituents caused by the relatively faster cooling rate in the CGHAZ.

  18. Characterization of HAZ of API X70 Microalloyed Steel Welded by Cold-Wire Tandem Submerged Arc Welding

    NASA Astrophysics Data System (ADS)

    Mohammadijoo, Mohsen; Kenny, Stephen; Collins, Laurie; Henein, Hani; Ivey, Douglas G.

    2017-05-01

    High-strength low-carbon microalloyed steels may be adversely affected by the high-heat input and thermal cycle that they experience during tandem submerged arc welding. The heat-affected zone (HAZ), particularly the coarse-grained heat-affected zone (CGHAZ), i.e., the region adjacent to the fusion line, has been known to show lower fracture toughness compared with the rest of the steel. The deterioration in toughness of the CGHAZ is attributed to the formation of martensite-austenite (M-A) constituents, local brittle zones, and large prior austenite grains (PAG). In the present work, the influence of the addition of a cold wire at various wire feed rates in cold-wire tandem submerged arc welding, a recently developed welding process for pipeline manufacturing, on the microstructure and mechanical properties of the HAZ of a microalloyed steel has been studied. The cold wire moderates the heat input of welding by consuming the heat of the trail electrode. Macrostructural analysis showed a decrease in the CGHAZ size by addition of a cold wire. Microstructural evaluation, using both tint etching optical microscopy and scanning electron microscopy, indicated the formation of finer PAGs and less fraction of M-A constituents with refined morphology within the CGHAZ when the cold wire was fed at 25.4 cm/min. This resulted in an improvement in the HAZ impact fracture toughness. These improvements are attributed to lower actual heat introduced to the weldment and lower peak temperature in the CGHAZ by cold-wire addition. However, a faster feed rate of the cold wire at 76.2 cm/min adversely affected the toughness due to the formation of slender M-A constituents caused by the relatively faster cooling rate in the CGHAZ.

  19. Replacement steel windows

    SciTech Connect

    Brown, M.A.; Condren, S.J.

    1999-07-01

    This paper presents the authors experiences in the investigation, design, and installation of replacement steel windows for two renovation projects at a major university in the northeast: a student residential complex and the law school. The authors review the construction of the existing walls (cast-in-place concrete barrier wall at the student residential complex and brick and stone masonry barrier wall at the law school), and the construction and performance of the original steel windows. To maintain the appearance of these architecturally significant buildings, the university elected to install replacement steel windows. The authors discuss special design consideration for steel windows (versus the more prevalent aluminum replacement window), including available window section profiles, corrosion protection, frame fabrication, and glazing design. The authors also review window flashing concepts they employed for the barrier wall construction, which has no drainage cavity. The authors summarize lessons learned during the window selection, design, fabrication, testing, and installation phases of the projects, and present recommendations for improved durability and water penetration resistance of steel windows.

  20. Superclean steel development

    SciTech Connect

    Richman, R.H.; McNaughton, W.P. )

    1989-12-01

    The Electric Power Research Institute has actively encouraged and sponsored a number of research projects to develop a superclean 3.5NiCrMoV steel for low pressure turbine rotors. Such steel is highly resistant to temper embrittlement and will thus facilitate increased efficiency in electricity generation through the use of higher operating temperatures and improvements in design. The objective of this interim report was to integrate the results that have been generated to date worldwide in the pursuit of superclean steel. The report contains detailed findings that enable the interested utility to evaluate how the results affect utility decision making. A companion document has been written to summarize the findings from this technical report. The results indicate that steels with impurity contents typical of the superclean specification can be manufactured for production rotors with properties that equal or exceed those for conventional 3.5NiCrMoV rotors in every detail. Of particular interest are the results that the superclean steels appear to be virtually resistant to temper embrittlement to a temperature of 500 {degrees}C. 109 refs., 51 figs., 9 tabs.

  1. Trends in steel technology. [Dual phase and HSLA steels

    SciTech Connect

    Not Available

    1980-01-01

    Dual phase steels, composite products, and microalloyed steels are making inroads in the automotive industry applications for bumpers, automotive parts, bodies, mechanical parts, suspension and steering equipment and truck bumpers. New steels are also used to support solar mirrors and cells, in corrosive environments in the oil and gas industry, fusion reactors, and pressure vessels in nuclear power plants. (FS)

  2. Continuous steel production and apparatus

    DOEpatents

    Peaslee, Kent D.; Peter, Jorg J.; Robertson, David G. C.; Thomas, Brian G.; Zhang, Lifeng

    2009-11-17

    A process for continuous refining of steel via multiple distinct reaction vessels for melting, oxidation, reduction, and refining for delivery of steel continuously to, for example, a tundish of a continuous caster system, and associated apparatus.

  3. Brazing titanium to stainless steel

    NASA Technical Reports Server (NTRS)

    Batista, R. I.

    1980-01-01

    Titanium and stainless-steel members are usually joined mechanically for lack of any other effective method. New approach using different brazing alloy and plating steel member with nickel resolves problem. Process must be carried out in inert atmosphere.

  4. Stainless steel tanks

    SciTech Connect

    Hagen, T.

    1995-12-31

    There is currently no recognized code or standard for the design, fabrication and construction of atmospheric and low pressure stainless steel tanks. At the present time these tanks are being designed to individual specifications, manufacturers standards or utilizing other codes and standards that may not be entirely applicable. Recognizing the need, the American Petroleum Institute will be publishing a new appendix to the API STD 650 Standard which will cover stainless steel tanks. The new Appendix was put together by a Task Group of selected individuals from the API Subcommittee of Pressure Vessels and Tanks from the Committee on Refinery Equipment. This paper deals with the development and basis of the new appendix. The new appendix will provide a much needed standard to cover the material, design, fabrication, erection and testing requirements for vertical, cylindrical, austenitic stainless steel aboveground tanks in nonrefrigerated service.

  5. Post-weld Tempered Microstructure and Mechanical Properties of Hybrid Laser-Arc Welded Cast Martensitic Stainless Steel CA6NM

    NASA Astrophysics Data System (ADS)

    Mirakhorli, Fatemeh; Cao, Xinjin; Pham, Xuan-Tan; Wanjara, Priti; Fihey, Jean-Luc

    2016-12-01

    Manufacturing of hydroelectric turbine components involves the assembly of thick-walled stainless steels using conventional multi-pass arc welding processes. By contrast, hybrid laser-arc welding may be an attractive process for assembly of such materials to realize deeper penetration depths, higher production rates, narrower fusion, and heat-affected zones, and lower distortion. In the present work, single-pass hybrid laser-arc welding of 10-mm thick CA6NM, a low carbon martensitic stainless steel, was carried out in the butt joint configuration using a continuous wave fiber laser at its maximum power of 5.2 kW over welding speeds ranging from 0.75 to 1.2 m/minute. The microstructures across the weldment were characterized after post-weld tempering at 873 K (600 °C) for 1 hour. From microscopic examinations, the fusion zone was observed to mainly consist of tempered lath martensite and some residual delta-ferrite. The mechanical properties were evaluated in the post-weld tempered condition and correlated to the microstructures and defects. The ultimate tensile strength and Charpy impact energy values of the fully penetrated welds in the tempered condition were acceptable according to ASTM, ASME, and industrial specifications, which bodes well for the introduction of hybrid laser-arc welding technology for the manufacturing of next generation hydroelectric turbine components.

  6. Weldability Characteristics of Sintered Hot-Forged AISI 4135 Steel Produced through P/M Route by Using Pulsed Current Gas Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Joseph, Joby; Muthukumaran, S.; Pandey, K. S.

    2016-01-01

    Present investigation is an attempt to study the weldability characteristics of sintered hot-forged plates of AISI 4135 steel produced through powder metallurgy (P/M) route using matching filler materials of ER80S B2. Compacts of homogeneously blended elemental powders corresponding to the above steel were prepared on a universal testing machine (UTM) by taking pre-weighed powder blend with a suitable die, punch and bottom insert assembly. Indigenously developed ceramic coating was applied on the entire surface of the compacts in order to protect them from oxidation during sintering. Sintered preforms were hot forged to flat, approximately rectangular plates, welded by pulsed current gas tungsten arc welding (PCGTAW) processes with aforementioned filler materials. Microstructural, tensile and hardness evaluations revealed that PCGTAW process with low heat input could produce weldments of good quality with almost nil defects. It was established that PCGTAW joints possess improved tensile properties compared to the base metal and it was mainly attributed to lower heat input, resulting in finer fusion zone grains and higher fusion zone hardness. Thus, the present investigation opens a new and demanding field in research.

  7. Effects of alloying elements on the strength and cooling rate sensitivity of ultra-low carbon alloy steel weld metals. Technical report

    SciTech Connect

    Vassilaros, M.G.

    1994-03-01

    A study was conducted to evaluate the effect of weld cooling rate on the strength of autogenous GTAW deposited weld metal. The basic weld metal composition was based on a low carbon bainite metallurgical system. The weld metal yield strength goal was 130 ksi, needed to surpass the current HY-13O weld metal requirements. Vacuum Induction Melted (VIM) heats of steel were produced and processed into 3/4` thickness plates. The autogenous gas tungsten arc welds (GTAW) on the parent steel plates were produced under two different heat input conditions. Tensile specimens were produced from the weldments; specimens from certain heats were subjected to gleeble thermal simulations of multi-pass welding conditions using the Gleeble 1500. All specimens were then evaluated for yield and ultimate tensile strength. From the data presented, it was found that the experimental compositions studied were less sensitive to cooling rate than current HY-130 welding consumables. The compositions tested approached the target yield strength of 130 ksi, but further work is necessary in this area.

  8. A-3 steel work completed

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Stennis Space Center engineers celebrated a key milestone in construction of the A-3 Test Stand on April 9 - completion of structural steel work. Workers with Lafayette (La.) Steel Erector Inc. placed the last structural steel beam atop the stand during a noon ceremony attended by more than 100 workers and guests.

  9. A-3 steel work completed

    NASA Image and Video Library

    2009-04-09

    Stennis Space Center engineers celebrated a key milestone in construction of the A-3 Test Stand on April 9 - completion of structural steel work. Workers with Lafayette (La.) Steel Erector Inc. placed the last structural steel beam atop the stand during a noon ceremony attended by more than 100 workers and guests.

  10. A-3 steel work completed

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Stennis Space Center engineers celebrated a key milestone in construction of the A-3 Test Stand on April 9 - completion of structural steel work. Workers with Lafayette (La.) Steel Erector Inc. placed the last structural steel beam atop the stand during a noon ceremony attended by more than 100 workers and guests.

  11. Thermally Stable Nanocrystalline Steel

    NASA Astrophysics Data System (ADS)

    Hulme-Smith, Christopher Neil; Ooi, Shgh Woei; Bhadeshia, Harshad K. D. H.

    2017-10-01

    Two novel nanocrystalline steels were designed to withstand elevated temperatures without catastrophic microstructural changes. In the most successful alloy, a large quantity of nickel was added to stabilize austenite and allow a reduction in the carbon content. A 50 kg cast of the novel alloy was produced and used to verify the formation of nanocrystalline bainite. Synchrotron X-ray diffractometry using in situ heating showed that austenite was able to survive more than 1 hour at 773 K (500 °C) and subsequent cooling to ambient temperature. This is the first reported nanocrystalline steel with high-temperature capability.

  12. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  13. Braze alloy spreading on steel

    NASA Technical Reports Server (NTRS)

    Siewert, T. A.; Heine, R. W.; Lagally, M. G.

    1978-01-01

    Scanning electron microscopy (SEM) and Auger electron microscopy (AEM) were employed to observe elemental surface decomposition resulting from the brazing of a copper-treated steel. Two types of steel were used for the study, stainless steel (treated with a eutectic silver-copper alloy), and low-carbon steel (treated with pure copper). Attention is given to oxygen partial pressure during the processes; a low enough pressure (8 x 10 to the -5th torr) was found to totally inhibit the spreading of the filler material at a fixed heating cycle. With both types of steel, copper treatment enhanced even spreading at a decreased temperature.

  14. Sensitization of stainless steel

    NASA Technical Reports Server (NTRS)

    Nagy, James P.

    1990-01-01

    The objective of this experiment is to determine the corrosion rates of 18-8 stainless steels that have been sensitized at various temperatures and to show the application of phase diagrams. The laboratory instructor will assign each student a temperature, ranging from 550 C to 1050 C, to which the sample will be heated. Further details of the experimental procedure are detailed.

  15. High Temperature Corrosion and Characterization Studies in Flux Cored Arc Welded 2.25Cr-1Mo Power Plant Steel

    NASA Astrophysics Data System (ADS)

    Kumaresh Babu, S. P.; Natarajan, S.

    2010-07-01

    Higher productivity is registered with Flux cored arc welding (FCAW) process in many applications. Further, it combines the characteristics of shielded metal arc welding (SMAW), gas metal arc welding (GMAW), and submerged arc welding (SAW) processes. This article describes the experimental work carried out to evaluate and compare corrosion and its inhibition in SA 387 Gr.22 (2.25Cr-1Mo) steel weldments prepared by FCAW process with four different heat inputs exposed to hydrochloric acid medium at 0.1, 0.5, and 1.0 M concentrations. The parent metal, weld metal, and heat-affected zone are chosen as regions of exposure for the study carried out at 100 °C. Electrochemical polarization techniques such as Tafel line extrapolation (Tafel) and linear polarization resistance (LPR) have been used to measure the corrosion current. The role of hexamine and mixed inhibitor (thiourea + hexamine in 0.5 M HCl), each at 100 ppm concentration is studied in these experiments. Microstructural observation, hardness survey, surface characterization, and morphology using scanning electron microscope (SEM) and x-ray diffraction (XRD) have been made on samples to highlight the nature and extent of film formation. The film is found to contain Fe2Si, FeSi2, FeMn3, Fe7Mo3, Fe3O4, FeO, FeCr, AlO7Fe3SiO3, and KFe4Mn77Si19.

  16. On Improving the Quality of Gas Tungsten Arc Welded 18Ni 250 Maraging Steel Rocket Motor Casings

    NASA Astrophysics Data System (ADS)

    Gupta, Renu N.; Raja, V. S.; Mukherjee, M. K.; Narayana Murty, S. V. S.

    2017-10-01

    In view of their excellent combination of strength and toughness, maraging steels (18Ni 250 grade) are widely used for the fabrication of large sized solid rocket motor casings. Gas tungsten arc welding is commonly employed to fabricate these thin walled metallic casings, as the technique is not only simple but also provides the desired mechanical properties. However, sometimes, radiographic examination of welds reveals typical unacceptable indications requiring weld repair. As a consequence, there is a significant drop in weld efficiency and productivity. In this work, the nature and the cause of the occurrence of these defects have been investigated and an attempt is made to overcome the problem. It has been found that weld has a tendency to form typical Ca and Al oxide inclusions leading to the observed defects. The use of calcium fluoride flux has been found to produce a defect free weld with visible effect on weld bead finish. The flux promotes the separation of inclusions, refines the grain size and leads to significant improvement in mechanical properties of the weldment.

  17. Metallurgical and Corrosion Characterization of POST Weld Heat Treated Duplex Stainless Steel (uns S31803) Joints by Friction Welding Process

    NASA Astrophysics Data System (ADS)

    Asif M., Mohammed; Shrikrishna, Kulkarni Anup; Sathiya, P.

    2016-02-01

    The present study focuses on the metallurgical and corrosion characterization of post weld heat treated duplex stainless steel joints. After friction welding, it was confirmed that there is an increase in ferrite content at weld interface due to dynamic recrystallization. This caused the weldments prone to pitting corrosion attack. Hence the post weld heat treatments were performed at three temperatures 1080∘C, 1150∘C and 1200∘C with 15min of aging time. This was followed by water and oil quenching. The volume fraction of ferrite to austenite ratio was balanced and highest pit nucleation resistance were achieved after PWHT at 1080∘C followed by water quench and at 1150∘C followed by oil quench. This had happened exactly at parameter set containing heating pressure (HP):40 heating time (HT):4 upsetting pressure (UP):80 upsetting time (UP):2 (experiment no. 5). Dual phase presence and absence of precipitates were conformed through TEM which follow Kurdjumov-Sachs relationship. PREN of ferrite was decreasing with increase in temperature and that of austenite increased. The equilibrium temperature for water quenching was around 1100∘C and that for oil quenching was around 1140∘C. The pit depths were found to be in the range of 100nm and width of 1.5-2μm.

  18. Ballistic Testing of Armor Weldments

    DTIC Science & Technology

    1983-11-02

    and properties of armor plate b. Electrode used in weld c. Measured thickness of welded area and plate d. Temperature of plate during firing e...of different thicknesses. Armored vehicle structures of simu- lated sections of armored vehicles are tested for resistance to shock as described...following: a. Ambient temperature at time of testing b. For each round: (1) Type, thickness, and properties of armor (2) Measured location of impact

  19. 77 FR 30589 - SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... Surface Transportation Board SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver Infrastructure Fund North America LP, and Patriot Funding LLC--Control Exemption--Patriot Rail Corp., et al. SteelRiver Infrastructure Partners LP (SRIP LP), SteelRiver...

  20. Ferritic steel melt and FLiBe/steel experiment : melting ferritic steel.

    SciTech Connect

    Troncosa, Kenneth P.; Smith, Brandon M.; Tanaka, Tina Joan

    2004-11-01

    In preparation for developing a Z-pinch IFE power plant, the interaction of ferritic steel with the coolant, FLiBe, must be explored. Sandia National Laboratories Fusion Technology Department was asked to drop molten ferritic steel and FLiBe in a vacuum system and determine the gas byproducts and ability to recycle the steel. We tried various methods of resistive heating of ferritic steel using available power supplies and easily obtained heaters. Although we could melt the steel, we could not cause a drop to fall. This report describes the various experiments that were performed and includes some suggestions and materials needed to be successful. Although the steel was easily melted, it was not possible to drip the molten steel into a FLiBe pool Levitation melting of the drop is likely to be more successful.

  1. History of ultrahigh carbon steels

    SciTech Connect

    Wadsworth, J.; Sherby, O.D.

    1997-06-20

    The history and development of ultrahigh carbon steels (i.e., steels containing between 1 and 2.l percent C and now known as UHCS) are described. The early use of steel compositions containing carbon contents above the eutectoid level is found in ancient weapons from around the world. For example, both Damascus and Japanese sword steels are hypereutectoid steels. Their manufacture and processing is of interest in understanding the role of carbon content in the development of modern steels. Although sporadic examples of UHCS compositions are found in steels examined in the early part of this century, it was not until the mid-1970s that the modern study began. This study had its origin in the development of superplastic behavior in steels and the recognition that increasing the carbon content was of importance in developing that property. The compositions that were optimal for superplasticity involved the development of steels that contained higher carbon contents than conventional modern steels. It was discovered, however, that the room temperature properties of these compositions were of interest in their own right. Following this discovery, a period of intense work began on understanding their manufacture, processing, and properties for both superplastic forming and room temperature applications. The development of superplastic cast irons and iron carbides, as well as those of laminated composites containing UHCS, was an important part of this history.

  2. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  3. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  4. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  5. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  6. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  7. Coated 4340 Steel

    DTIC Science & Technology

    2013-08-26

    plasma vapor NAWCADPAX/TR-2013/252 2 deposition (reference 9), chemical vapor deposition, hot dip galvanizing, anodizing, composite coatings ...electroplating on 4340 steel. Assess the impact of substitute primer and sacrificial coating on corrosion fatigue and SCC, in particular leading ...alternative coatings qualified to MIL-PRE-23377 Class N and an electroplated zinc -nickel alloy passivated with a trivalent chromium solution which is

  8. Ultrahigh Carbon Steel.

    DTIC Science & Technology

    1984-10-01

    ferrite grains, 0.5-2 pm, containing fine spheroidized cementite particles, they have been shown not only to be super - plastic at intermediate...utilized to prepare ferrous laminated composites with super - plastic properties at intermediate temperatures’ 19 Ŗ 1 and with very high impact resistance...as an alloying addition that could alter the super - plastic properties of UHC steels because of its influence on the thermodynam- ics of the Fe-C

  9. Nanoprecipitates in Steels

    SciTech Connect

    Schneibel, Joachim H; Lu, Zhao Ping; Shim, Sang Hoon

    2007-01-01

    The creep strength of ferritic steels can be substantially improved by the incorporation of a high number density of nano-scale dispersoids. Examples for such alloys are the oxide dispersion strengthened steels MA956, MA957, and PM2000. The dispersoids in these steels contain Y and Ti, or Y and Al. They can be as small as a few nanometers in size. Processing is traditionally carried out by mechanical alloying of elemental or pre-alloyed powders mixed with Y{sub 2}O{sub 3} powder. The goal of the present research is to identify alternative ways of producing ultrafine dispersoids. One possible way is internal oxidation, in which reactive elements dissolved in a metallic matrix are selectively oxidized. Internal oxidation experiments were carried out with Fe-Y, Fe-Ti-Y, and Fe-Al-Y precursors. Microstructural analysis showed that dispersoid dimensions as small as 10 nm could be achieved. Atomized Fe-0.25 at% Y powder was internally oxidized and consolidated by hot forging. An increase in the high-temperature creep strength by {approx} 20% was observed. Since it is likely that the composition of the precursor alloys is crucial for maximizing the number density and thermal stability of the oxides, experiments allowing the rapid screening of different compositions have been initiated.

  10. Nanoprecipitates in Steels

    SciTech Connect

    Schneibel, Joachim H; Kad, Bimal

    2008-01-01

    The creep strength of ferritic steels can be substantially improved by the incorporation of a high number density of nano-scale dispersoids. Examples for such alloys are the oxide dispersion strengthened steels MA956, MA957, and PM2000. The dispersoids in these steels contain Y and Ti, or Y and Al. They can be as small as a few nanometers in size. Processing is traditionally carried out by mechanical alloying of elemental or pre-alloyed powders mixed with Y{sub 2}O{sub 3} powder. The goal of the present research is to identify alternative ways of producing ultrafine dispersoids. One possible way is internal oxidation, in which reactive elements dissolved in a metallic matrix are selectively oxidized. Internal oxidation experiments were carried out with Fe-Y, Fe-Ti-Y, and Fe-Al-Y precursors. Microstructural analysis showed that dispersoid dimensions as small as 10 nm could be achieved. Atomized Fe-0.25 at% Y powder was internally oxidized and consolidated by hot forging. An increase in the high-temperature creep strength by {approx} 20% was observed. Since it is likely that the composition of the precursor alloys is crucial for maximizing the number density and thermal stability of the oxides, experiments allowing the rapid screening of different compositions have been initiated.

  11. Stainless Steel Permeability

    SciTech Connect

    Buchenauer, Dean A.; Karnesky, Richard A.

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  12. Ballistic-Failure Mechanisms in Gas Metal Arc Welds of Mil A46100 Armor-Grade Steel: A Computational Investigation

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Snipes, J. S.; Galgalikar, R.; Ramaswami, S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.

    2014-09-01

    In our recent work, a multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process was introduced. The model is of a modular type and comprises five modules, each designed to handle a specific aspect of the GMAW process, i.e.: (i) electro-dynamics of the welding-gun; (ii) radiation-/convection-controlled heat transfer from the electric-arc to the workpiece and mass transfer from the filler-metal consumable electrode to the weld; (iii) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (iv) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; and (v) spatial distribution of the as-welded material mechanical properties. In the present work, the GMAW process model has been upgraded with respect to its predictive capabilities regarding the spatial distribution of the mechanical properties controlling the ballistic-limit (i.e., penetration-resistance) of the weld. The model is upgraded through the introduction of the sixth module in the present work in recognition of the fact that in thick steel GMAW weldments, the overall ballistic performance of the armor may become controlled by the (often inferior) ballistic limits of its weld (fusion and heat-affected) zones. To demonstrate the utility of the upgraded GMAW process model, it is next applied to the case of butt-welding of a prototypical high-hardness armor-grade martensitic steel, MIL A46100. The model predictions concerning the spatial distribution of the material microstructure and ballistic-limit-controlling mechanical properties within the MIL A46100 butt-weld are found to be consistent with prior observations and general expectations.

  13. Process for dezincing galvanized steel

    DOEpatents

    Morgan, W.A.; Dudek, F.J.; Daniels, E.J.

    1998-07-14

    A process is described for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75 C and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (1) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (2) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (3) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (4) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte. 1 fig.

  14. Process for dezincing galvanized steel

    DOEpatents

    Morgan, William A.; Dudek, Frederick J.; Daniels, Edward J.

    1998-01-01

    A process for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75.degree. C. and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (i) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (ii) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (iii) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (iv) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte.

  15. Hydrogen Embrittlement of Gun Steel

    DTIC Science & Technology

    1987-11-01

    8217s HY80 and HY130 steels were checked for the critical hydrogen concentrations which were determined to be 6 ppm for HY8O steel 8 and 3 ppm for HY130...JOTC FILE COPY AD-A188 972 AD 1 TECHNICAL REPORT ARCCB-TR-87030 HYDROGEN EMBRITTLEMENT OF GUN STEEL F’ GERALD L. SPFNCER DTIC DEC 1 5 1987 NOVEMBER...PtEtIOC COVERED HYDROGEN EMBRITTLEHENT OF GUN STEEL Final OG EOTNME 6. PERFORMINGORO EOTNME 7. A*JTNOR(s) S. CONTRACT OR GRANT NUMBER(&) Gerald L

  16. High strength, tough alloy steel

    DOEpatents

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  17. Induction heat treatment of steel

    SciTech Connect

    Semiatin, S.L.; Stutz, D.E.

    1985-01-01

    This book discusses the induction heating. After reviewing heat treating operations for steel and the principles of the heat treatment of steel, an overview of induction heat treating is provided. Next, consideration is given to equipment and equipment selection, coil design, power requirements and temperature control. A discussion of surface and through hardening of steel is provided, including information on frequency and power selection and quenching apparatus. Tempering is considered, followed by information on control of residual stresses, cracking, temper brittleness and the important metallurgical and hardness differences between induction and furnace treated steel.

  18. Effect of prior deformation on sensitization development in stainless steel during continuous cooling

    SciTech Connect

    Simmons, J.W.; Atteridge, D.G.; Bruemmer, S.M. . Dept. of Materials Science and Engineering)

    1991-09-01

    Continuous cooling sensitization (CCS) occurs in austenitic stainless steel (SS) weldment HAZs where the material is subjected to weld-induced plastic deformation, and non-linear heating and cooling cycles. The primary purpose of this investigation was to quantitatively determine the effects of prior deformation on CCS. In addition, these results were used to develop a CCS data base for comparison to a recently published sensitization prediction model (SSDOS). Continuous cooling thermal cycling of specimens from high-carbon Type 316 SSs was performed in a computer-controlled Gleeble thermal simulator. The degree of sensitization (DOS) of thermally treated specimens was quantitatively measured using the electrochemical potentiokinetic reactivation (EPR) test. Prior deformation significantly enhanced the rate of CCS development in the Type 316 SS material. The DOS increased with increasing amounts of prior strain and decreasing cooling rates. Sensitization response was also sensitive to peak cycle temperatures. Continuous cooling sensitization development occurred primarily in the critical temperature range between about 900 and 750{degree}C. Peak cycle temperatures of 1000 and 1050{degree}C retarded sensitization development during subsequent continuous cooling. Strain recovery at elevated temperatures played an important role in reducing the effectiveness of prior deformation in accelerating sensitization kinetics. Due to the effects of recovery, in certain cases, prior strain values of 20% were only as effective as 10% in increasing the rate of sensitization development. Limited transgranular carbide precipitation was observed in 20% prior strain samples depending on specific thermal cycle parameters but was not a significant factor in the present work. The SSDOS model consistently overpredicted the CCS development in both heats of 316 SS studied, regardless of material condition (i.e. mill-annealed, solution-annealed, and pre-strained materials).

  19. Microstructures and microhardness at fusion boundary of 316 stainless steel/Inconel 182 dissimilar welding

    SciTech Connect

    Wang, Wei; Lu, Yonghao; Ding, Xianfei; Shoji, Tetsuo

    2015-09-15

    Microstructures and microhardness at fusion boundary of a weld joint were investigated in a 316 stainless steel/Inconel 182 dissimilar weldment. The results showed that there were two alternately distributed typical fusion boundaries, a narrow random boundary (possessed 15% in length) with a clear sharp interface and an epitaxial fusion one with (100){sub BM}//(100){sub WM} at the joint interface. The composition transition, microstructure and hardness across the fusion boundary strongly depended on the type of the fusion boundary. For the random boundary, there was a clear sharp interface and the composition transition with a width of 100 μm took place symmetrically across the grain boundary. For the epitaxial fusion one, however, there were Type-I and Type-II grain boundaries perpendicular and parallel to the epitaxial fusion boundary, respectively. The composition transition took place in the Inconel 182 weld side. Σ3 boundaries in the HAZ of 316SS side and Σ5 grain boundaries in weld metal were usually observed, despite the type of fusion boundary, however the former was much more in epitaxial fusion boundary. Microhardness was continuously decreased across the random fusion boundary from the side of Inconel 182 to 316SS, but a hardening phenomenon appeared in the epitaxial fusion boundary zone because of its fine cellular microstructure. - Highlights: • Two typical fusion boundaries alternately distributed in the fusion interface • The microstructure, composition and hardness across fusion boundary depended on its type. • Different regions in welded joint have different special CSL value boundaries. • Hardening phenomenon only appeared in the epitaxial fusion boundary.

  20. The industrial ecology of steel

    SciTech Connect

    Considine, Timothy J.; Jablonowski, Christopher; Considine, Donita M.M.; Rao, Prasad G.

    2001-03-26

    This study performs an integrated assessment of new technology adoption in the steel industry. New coke, iron, and steel production technologies are discussed, and their economic and environmental characteristics are compared. Based upon detailed plant level data on cost and physical input-output relations by process, this study develops a simple mathematical optimization model of steel process choice. This model is then expanded to a life cycle context, accounting for environmental emissions generated during the production and transportation of energy and material inputs into steelmaking. This life-cycle optimization model provides a basis for evaluating the environmental impacts of existing and new iron and steel technologies. Five different plant configurations are examined, from conventional integrated steel production to completely scrap-based operations. Two cost criteria are used to evaluate technology choice: private and social cost, with the latter including the environmental damages associated with emissions. While scrap-based technologies clearly generate lower emissions in mass terms, their emissions of sulfur dioxide and nitrogen oxides are significantly higher. Using conventional damage cost estimates reported in the literature suggests that the social costs associated with scrap-based steel production are slightly higher than with integrated steel production. This suggests that adopting a life-cycle viewpoint can substantially affect environmental assessment of new technologies. Finally, this study also examines the impacts of carbon taxes on steel production costs and technology choice.

  1. MINOS Detector Steel Magnetic Measurements

    SciTech Connect

    Robert C. Trendler and Walter F. Jaskierny

    1999-03-03

    Magnetic measurements were made on one steel plate of the MINOS far detector. The conventionally used technique of measuring sense coil voltage induced by step changes in excitation current voltage was successful in providing stable, repeatable measurements. Measurements were made at several locations on the steel and the results are presented.

  2. Hydrogen Embrittlement of Structural Steels

    SciTech Connect

    Somerday, Brian P.; San Marchi, Christopher W

    2014-08-01

    Carbon-manganese steels are candidates for the structural materials in hydrogen gas pipelines; however, it is well known that these steels are susceptible to hydrogen embrittlement. Decades of research and industrial experience have established that hydrogen embrittlement compromises the structural integrity of steel components. This experience has also helped identify the failure modes that can operate in hydrogen containment structures. As a result, there are tangible ideas for managing hydrogen embrittlement in steels and quantifying safety margins for steel hydrogen containment structures. For example, fatigue crack growth aided by hydrogen embrittlement is a well-established failure mode for steel hydrogen containment structures subjected to pressure cycling. This pressure cycling represents one of the key differences in operating conditions between current hydrogen pipelines and those anticipated in a hydrogen delivery infrastructure. Applying structural integrity models in design codes coupled with measurement of relevant material properties allows quantification of the reliability/integrity of steel hydrogen pipelines subjected to pressure cycling. Furthermore, application of these structural integrity models is aided by the development of physics-based predictive models, which provide important insights such as the effects of microstructure on hydrogen-assisted fatigue crack growth. Successful implementation of these structural integrity and physics-based models enhances confidence in the design codes and enables decisions about materials selection and operating conditions for reliable and efficient steel hydrogen pipelines.

  3. Magnetoacoustic stress measurements in steel

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Utrata, D.; Allison, S. G.; Heyman, J. S.

    1985-01-01

    Uniaxial stress effects on the low-field magnetoacoustic interaction have been studied using bulk compressional waves and Rayleigh surface waves in numerous steel samples having various impurity concentrations (Namkung et al., 1984). The results invariably showed that the initial slope of acoustic natural velocity variations, with respect to net induced magnetization parallel to the stress axis, is positive under tension and negative under compression. The results of current measurements in railroad rail steel having about 0.68 wt percent carbon content are typical for medium range carbon steels. The low-field natural velocity slope in this particular type of steel, which is almost zero when unstressed, becomes steeper with increased magnitude of stress in both directions. Hence, the nondestructive determination of the sign of residual stress in railroad wheels and rails is possible using this technique. This paper discusses the basic physical mechanism underlying the experimental observations and presents the results obtained in railroad rail steel.

  4. 2169 Steel Waveform Experiments

    NASA Astrophysics Data System (ADS)

    Furnish, M.; Alexander, C.; Reinhart, W.; Brown, J.

    2013-06-01

    In support of efforts to develop multiscale models of materials, we performed eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn). These experiments provided shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were used, with samples 1 to 5 mm thick. The study focused on dynamic strength determination via the release/reshock paths. Reshock tests with explosively welded impactors produced clean results. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allowed release information to be determined from these free surface samples as well. The sample strength appears to increase with stress from ~1 GPa to ~3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Steel forgings: Second volume

    SciTech Connect

    Nisbett, E.G.; Melilli, A.S.

    1997-12-31

    Steel is supplied in many product forms, most of which are produced in terms of basic dimensions such as width and thickness, or diameter and with length describing quantity. Forgings and castings by contrast are diverse in shape and form and are individually made for a specific purpose, either as self contained units such as crankshafts, valve bodies or turbine rotors, or as discrete components to be fabricated into a larger assembly, as for example a nozzle for a pressure vessel. The specification and testing of forgings is therefore more varied, complex, and demanding than is the case for other product forms. This is augmented by the fact that forgings are often expected to give better reliability and service performance than can be expected when the same part is fabricated from sections of other steel product forms, if this were in fact practical. Given these unique circumstances the exchange of ideas on forging manufacturing techniques and experience, materials data and service experience has been an essential driving force in developing forging techniques and applications in every industrial field. The format of the symposium was similar to that of Williamsburg, focusing on the scope of the subcommittee in the areas of pressure vessel and nuclear forgings, turbine and generator forgings, general industrial forgings, and test methods for forgings. Separate abstracts were prepared for 17 papers.

  6. Connections: Superplasticity, Damascus Steels, Laminated Steels, and Carbon Dating

    NASA Astrophysics Data System (ADS)

    Wadsworth, Jeffrey

    2016-12-01

    In this paper, a description is given of the connections that evolved from the initial development of a family of superplastic plain carbon steels that came to be known as Ultra-High Carbon Steels (UHCS). It was observed that their very high carbon contents were similar, if not identical, to those of Damascus steels. There followed a series of attempts to rediscover how the famous patterns found on Damascus steels blades were formed. At the same time, in order to improve the toughness at room temperature of the newly-developed UHCS, laminated composites were made of alternating layers of UHCS and mild steel (and subsequently other steels and other metals). This led to a study of ancient laminated composites, the motives for their manufacture, and the plausibility of some of the claims relating to the number of layers in the final blades. One apparently ancient laminated composite, recovered in 1837 from the great pyramid of Giza which was constructed in about 2750 B.C., stimulated a carbon dating study of ancient steels. The modern interest in "Bladesmithing" has connections back to many of these ancient weapons.

  7. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  8. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  9. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  10. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  11. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  12. Occupational Profiles in the European Steel Industry.

    ERIC Educational Resources Information Center

    Franz, Hans-Werner; And Others

    The steel industry in Europe has faced great changes, with resulting layoffs and restructuring. Now that the most basic changes seem to be over, it has become evident that the remaining steel industry requires more highly trained workers than was the case previously. Although steel maintenance employees were always highly skilled, steel production…

  13. Improving the toughness of ultrahigh strength steel

    SciTech Connect

    Soto, Koji

    2002-01-01

    The ideal structural steel combines high strength with high fracture toughness. This dissertation discusses the toughening mechanism of the Fe/Co/Ni/Cr/Mo/C steel, AerMet 100, which has the highest toughness/strength combination among all commercial ultrahigh strength steels. The possibility of improving the toughness of this steel was examined by considering several relevant factors.

  14. Influence of M-TIG and A-TIG Welding Process on Microstructure and Mechanical Behavior of 409 Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Vidyarthy, R. S.; Dwivedi, D. K.; Vasudevan, M.

    2017-03-01

    The current study investigates the effects of activating flux tungsten inert gas welding (A-TIG) and multipass tungsten inert gas welding (M-TIG) on the weld morphology, angular distortion, microstructures and mechanical properties when welding 8-mm-thick 409 ferritic stainless steel (FSS). SiO2 was used as activating flux for A-TIG welding, while SUPERTIG ER309L was used as filler for M-TIG welding. Bead-on-plate weld trials were carried out to obtain the full penetration by using different combinations of flux coating density, welding speed and welding current. An optical microscope, field emission scanning microscope (FESEM), and x-ray diffractometer were used for the metallurgical characterizations. Vickers hardness, tensile test, Charpy toughness test, and creep behavior test were carried out to evaluate the mechanical properties of the base and weld metals. Experimental results indicate that the A-TIG process can increase the joint penetration and tends to reduce the angular distortion of the 409 FSS weldment. The A-TIG welded joint also exhibited greater mechanical strength. However, a critically low Charpy toughness was measured for the A-TIG weld fusion zone, which was later sufficiently improved after post weld heat treatment (PWHT). It was concluded that PWHT is mandatory for A-TIG welded 409 FSS.

  15. Influence of M-TIG and A-TIG Welding Process on Microstructure and Mechanical Behavior of 409 Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Vidyarthy, R. S.; Dwivedi, D. K.; Vasudevan, M.

    2017-02-01

    The current study investigates the effects of activating flux tungsten inert gas welding (A-TIG) and multipass tungsten inert gas welding (M-TIG) on the weld morphology, angular distortion, microstructures and mechanical properties when welding 8-mm-thick 409 ferritic stainless steel (FSS). SiO2 was used as activating flux for A-TIG welding, while SUPERTIG ER309L was used as filler for M-TIG welding. Bead-on-plate weld trials were carried out to obtain the full penetration by using different combinations of flux coating density, welding speed and welding current. An optical microscope, field emission scanning microscope (FESEM), and x-ray diffractometer were used for the metallurgical characterizations. Vickers hardness, tensile test, Charpy toughness test, and creep behavior test were carried out to evaluate the mechanical properties of the base and weld metals. Experimental results indicate that the A-TIG process can increase the joint penetration and tends to reduce the angular distortion of the 409 FSS weldment. The A-TIG welded joint also exhibited greater mechanical strength. However, a critically low Charpy toughness was measured for the A-TIG weld fusion zone, which was later sufficiently improved after post weld heat treatment (PWHT). It was concluded that PWHT is mandatory for A-TIG welded 409 FSS.

  16. Microstructure and fatigue resistance of high strength dual phase steel welded with gas metal arc welding and plasma arc welding processes

    NASA Astrophysics Data System (ADS)

    Ahiale, Godwin Kwame; Oh, Yong-Jun; Choi, Won-Doo; Lee, Kwang-Bok; Jung, Jae-Gyu; Nam, Soo Woo

    2013-09-01

    This study presents the microstructure and high cycle fatigue performance of lap shear joints of dual phase steel (DP590) welded using gas metal arc welding (GMAW) and plasma arc welding (PAW) processes. High cycle fatigue tests were conducted on single and double lap joints under a load ratio of 0.1 and a frequency of 20 Hz. In order to establish a basis for comparison, both weldments were fabricated to have the same weld depth in the plate thickness. The PAW specimens exhibited a higher fatigue life, a gentle S-N slope, and a higher fatigue limit than the GMAW specimens. The improvement in the fatigue life of the PAW specimens was primarily attributed to the geometry effect that exhibited lower and wider beads resulting in a lower stress concentration at the weld toe where cracks initiate and propagate. Furthermore, the microstructural constituents in the heat-affected zone (HAZ) of the PAW specimens contributed to the improvement. The higher volume fraction of acicular ferrite in the HAZ beneath the weld toe enhanced the PAW specimen's resistance to fatigue crack growth. The double lap joints displayed a higher fatigue life than the single lap joints without changing the S-N slope.

  17. Hybrid Laser-Arc Welding of 10-mm-Thick Cast Martensitic Stainless Steel CA6NM: As-Welded Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Mirakhorli, Fatemeh; Cao, Xinjin; Pham, Xuan-Tan; Wanjara, Priti; Fihey, Jean-Luc

    2016-07-01

    Cast CA6NM martensitic stainless steel plates, 10 mm in thickness, were welded using hybrid laser-arc welding. The effect of different welding speeds on the as-welded joint integrity was characterized in terms of the weld bead geometry, defects, microstructure, hardness, ultimate tensile strength, and impact energy. Significant defects such as porosity, root humping, underfill, and excessive penetration were observed at a low welding speed (0.5 m/min). However, the underfill depth and excessive penetration in the joints manufactured at welding speeds above 0.75 m/min met the specifications of ISO 12932. Characterization of the as-welded microstructure revealed untempered martensite and residual delta ferrite dispersed at prior-austenite grain boundaries in the fusion zone. In addition, four different heat-affected zones in the weldments were differentiated through hardness mapping and inference from the Fe-Cr-Ni ternary phase diagram. The tensile fracture occurred in the base metal for all the samples and fractographic analysis showed that the crack path is within the martensite matrix, along primary delta ferrite-martensite interfaces and within the primary delta ferrite. Additionally, Charpy impact testing demonstrated slightly higher fracture energy values and deeper dimples on the fracture surface of the welds manufactured at higher welding speeds due to grain refinement and/or lower porosity.

  18. Hypereutectoid high-speed steels

    SciTech Connect

    Kremnev, L.S.

    1986-01-01

    Half of the tungsten and molybdenum contained in R6M5 and R18 steels is concentrated in the undissolved eutectic carbides hindering austenitic grain gowth in hardening and providing the necessary strength and impact strength. This article describes the tungsten-free low-alloy high-speed steel 11M5F with a chemical composition of 1.03-1.10% C, 5.2-5.7% Mo, 3.8-4.2% Cr, 1.3-1.7% V, 0.3-0.6% Si, and 0.3% Ce. The properties of 11M5F and R6M5 steels are examined and compared. The results of production and laboratory tests of the cutting properties of tools of the steels developed showed their high effectiveness, especially of 11M5F steel with 1% A1. The life of tools of the tungsten-free steels is two or three times greater than the life of tools of R6M5 steel.

  19. Welding tritium exposed stainless steel

    SciTech Connect

    Kanne, W.R. Jr.

    1994-11-01

    Stainless steels that are exposed to tritium become unweldable by conventional methods due to buildup of decay helium within the metal matrix. With longer service lives expected for tritium containment systems, methods for welding on tritium exposed material will become important for repair or modification of the systems. Solid-state resistance welding and low-penetration overlay welding have been shown to mitigate helium embrittlement cracking in tritium exposed 304 stainless steel. These processes can also be used on stainless steel containing helium from neutron irradiation, such as occurs in nuclear reactors.

  20. Stainless steel decontamination manipulators

    SciTech Connect

    Sullivan, R.J.

    1986-01-01

    Three, large-volume coverage manipulator systems were designed and built for the Defense Water Processing Facility at the Savannah River Laboratory. These stainless steel systems will be used for high-pressure spray decontamination of waste containers and large process equipment modules. Each system has a manipulator arm, folding boom, and vertical drive and guide structure. Handling capacity is 45 kg, horizontal reach is 4.6 m with a 180-deg swing motion, and the vertical travel is 6 m. The system is remotely removable and replaceable in modules using an overhead crane and an impact wrench. The manipulator arm has seven motions: Shoulder rotation and pivot, elbow pivot, wrist pivot and rotation, and grip open-close. All motions are variable speed and are slip-clutch protected to prevent overloading from external forces (collisions).

  1. Advanced steel reheat furnace

    SciTech Connect

    Moyeda, D.; Sheldon, M.; Koppang, R.; Lanyi, M.; Li, X.; Eleazer, B.

    1997-10-01

    Energy and Environmental Research Corp. (EER) under a contract from the Department of Energy is pursuing the development and demonstration of an Advanced Steel Reheating Furnace. This paper reports the results of Phase 1, Research, which has evaluated an advanced furnace concept incorporating two proven and commercialized technologies previously applied to other high temperature combustion applications: EER`s gas reburn technology (GR) for post combustion NOx control; and Air Product`s oxy-fuel enrichment air (OEA) for improved flame heat transfer in the heating zones of the furnace. The combined technologies feature greater production throughput with associated furnace efficiency improvements; lowered NOx emissions; and better control over the furnace atmosphere, whether oxidizing or reducing, leading to better control over surface finish.

  2. Method for welding chromium molybdenum steels

    SciTech Connect

    Sikka, V.K.

    1986-09-16

    A process is described for welding chromium-molybdenum steels which consist of: subjecting the steel to normalization by heating to above the transformation temperature and cooling in air; subjecting the steel to a partial temper by heating to a temperature less than a full temper; welding the steel using an appropriate filler metal; subjecting the steel to a full temper by heating to a temperature sufficient to optimize strength, reduce stress, increase ductility and reduce hardness.

  3. 2169 steel waveform experiments.

    SciTech Connect

    Furnish, Michael David; Alexander, C. Scott; Reinhart, William Dodd; Brown, Justin L.

    2012-11-01

    In support of LLNL efforts to develop multiscale models of a variety of materials, we have performed a set of eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn, balance predominantly Fe). These experiments provided carefully controlled shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were included in this experiment set to increase the utility of the data set, as were samples ranging in thickness from 1 to 5 mm. Target physical phenomena included the elastic/plastic transition (Hugoniot elastic limit), the Hugoniot, any phase transition phenomena, and the release path (windowed and free-surface). The Hugoniot was found to be nearly linear, with no indications of the Fe phase transition. Releases were non-hysteretic, and relatively consistent between 3- and 5-mmthick samples (the 3 mm samples giving slightly lower wavespeeds on release). Reshock tests with explosively welded impactors produced clean results; those with glue bonds showed transient releases prior to the arrival of the reshock, reducing their usefulness for deriving strength information. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allows release information to be determined from these free surface samples. The sample strength appears to increase with stress from ~1 GPa to ~ 3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model.

  4. JPDR vessel steel examination

    SciTech Connect

    Corwin, W.R.; Broadhead, B.L.; Sokolov, M.A.

    1995-10-01

    There is a need to validate the results of irradiation effects research by the examination of material taken directly from the wall of a pressure vessel which has been irradiated during normal service. This task has been included with the HSSI Program to provide just such an evaluation of material from the wall of the pressure vessel from the JPDR. The JPDR was a small BWR that began operation in 1963. It operated until 1976, accumulating {approximately}17,000 h of operation, of which a little over 14,000 h were with the original 45-MWTh core, and the remaining fraction, late in life, with an upgraded 90-MWTh core. The pressure vessel of the JPDR, fabricated from A 302, grade B, modified steel with an internal weld overlay cladding of 304 stainless steel, is approximately 2 m ID and 73 mm thick. It was fabricated from two shell halves joined by longitudinal seam welds located 180{degrees} from each other. The rolling direction of the shell plates is parallel to the axis of the vessel. It operated at 273{degrees}C and reached a maximum fluence of about 2.3 x 10{sup 18} n/cm{sup 2} (> 1 MeV). The impurity contents in the base metal are 0.10 to 0.11% Cu and 0.010 to 0.017% P with a nickel content of 0.63 to 0.65%. Impurity contents of the weld metal are 0.11 to 0.14% Cu and 0.025 to 0.039% P with a nickel content of 0.59%.

  5. Fabrication of stainless steel foil utilizing chromized steel strip

    NASA Astrophysics Data System (ADS)

    Loria, Edward A.

    1980-10-01

    Stainless steel foil has properties which are, in many respects, unmatched by alternative thin films. The high strength to weight ratio and resistance to corrosion and oxidation at elevated temperatures are generally advantageous. The aerospace and automotive industries have used Type 430 and 304 foil in turbine engine applications. Foil around 2 mils (5.1 × 10-3 cm) thick has been appropriate for the recuperator or heat exchanger and this product has also been used in honeycomb and truss-core structures. Further, such foil has been employed as a wrap to protect tool steel parts from contamination during heat treating. A large part of the high cost of producing stainless steel foil by rolling is due to the complicated and expensive rolling mill and annealing equipment involved. A method will be described which produces (solid) stainless steel foil from chromized (coated) steel which can be cheaper than the conventional processing stainless steel, such as Type 430, from ingot to foil. Also, the material is more ductile and less work hardenable during processing to foil and consequently intermediate annealing treatments are eliminated and scrap losses minimized.

  6. Rebuilding Steam Turbine Generator Reduces Costs at a Steel Mill (Bethlehem Steel Corporation (BSC))

    SciTech Connect

    1999-04-01

    Rebuilding steam turbine generator reduces costs at a steel mill. To remain competitive in the rapidly changing global marketplace, Bethlehem Steel Corporation (BSC), the second largest producer of steel in the United States, was looking for...

  7. Hydrogen embrittlement of structural steels.

    SciTech Connect

    Somerday, Brian P.

    2010-06-01

    Carbon-manganese steels are candidates for the structural materials in hydrogen gas pipelines, however it is well known that these steels are susceptible to hydrogen embrittlement. Decades of research and industrial experience have established that hydrogen embrittlement compromises the structural integrity of steel components. This experience has also helped identify the failure modes that can operate in hydrogen containment structures. As a result, there are tangible ideas for managing hydrogen embrittement in steels and quantifying safety margins for steel hydrogen containment structures. For example, fatigue crack growth aided by hydrogen embrittlement is a key failure mode for steel hydrogen containment structures subjected to pressure cycling. Applying appropriate structural integrity models coupled with measurement of relevant material properties allows quantification of safety margins against fatigue crack growth in hydrogen containment structures. Furthermore, application of these structural integrity models is aided by the development of micromechanics models, which provide important insights such as the hydrogen distribution near defects in steel structures. The principal objective of this project is to enable application of structural integrity models to steel hydrogen pipelines. The new American Society of Mechanical Engineers (ASME) B31.12 design code for hydrogen pipelines includes a fracture mechanics-based design option, which requires material property inputs such as the threshold for rapid cracking and fatigue crack growth rate under cyclic loading. Thus, one focus of this project is to measure the rapid-cracking thresholds and fatigue crack growth rates of line pipe steels in high-pressure hydrogen gas. These properties must be measured for the base materials but more importantly for the welds, which are likely to be most vulnerable to hydrogen embrittlement. The measured properties can be evaluated by predicting the performance of the pipeline

  8. Fatigue handbook: Offshore steel structures

    SciTech Connect

    Almarnaess, A.

    1985-01-01

    The contents of this book are: Overview of Offshore Steel Structures; Loads on Ocean Structures; Fracture Mechanics As a Tool in Fatigue Analysis; Basic Fatigue Properties of Welded Joints; Significance of Defects; Improving the Fatigue Strength of Welded Joints; Effects of Marine Environment and Cathodic Protection on Fatigue of Structural Steels Fatigue of Tubular Joints; Unstable Fracture; Fatigue Life Calculations; and Fatigue in Building Codes Background and Applications.

  9. Process Hood Stand Support Steel

    SciTech Connect

    VAN KATWIJK, C.

    2000-04-03

    This package is written to comply with EN-6-035-00 for upgrade dedication of commercial grade items (CGI). The SNF-5953 CGI package provides the Technical evaluation to identify the critical characteristics and the acceptance criteria associated with the safety function of the Hood Stand Support Steel. Completion of the technical and quality requirements identified in the dedication package will provide enough data to be reasonably assured that CGI Hood Stand Support Steel will perform its SC function.

  10. Analysis of plasma nitrided steels

    NASA Technical Reports Server (NTRS)

    Salik, J.; Ferrante, J.; Honecy, F.; Hoffman, R., Jr.

    1987-01-01

    The analysis of plasma nitrided steels can be divided to two main categories - structural and chemical. Structural analysis can provide information not only on the hardening mechanisms but also on the fundamental processes involved. Chemical analysis can be used to study the kinetics for the nitriding process and its mechanisms. In this paper preliminary results obtained by several techniques of both categories are presented and the applicability of those techniques to the analysis of plasma-nitrided steels is discussed.

  11. Wear of steel by rubber

    NASA Technical Reports Server (NTRS)

    Gent, A. N.; Pulford, C. T. R.

    1978-01-01

    Wear of a steel blade used as a scraper to abrade rubber surfaces has been found to take place much more rapidly on a cis-polyisoprene (natural rubber) surface than on a cis-polybutadiene surface, and much more rapidly in an inert atmosphere than in air. These observations are attributed to the direct attack upon steel of free-radical species generated by mechanical rupture of elastomer molecules during abrasion.

  12. Wear of steel by rubber

    NASA Technical Reports Server (NTRS)

    Gent, A. N.; Pulford, C. T. R.

    1978-01-01

    Wear of a steel blade used as a scraper to abrade rubber surfaces has been found to take place much more rapidly on a cis-polyisoprene (natural rubber) surface than on a cis-polybutadiene surface, and much more rapidly in an inert atmosphere than in air. These observations are attributed to the direct attack upon steel of free-radical species generated by mechanical rupture of elastomer molecules during abrasion.

  13. Development of New Stainless Steel

    SciTech Connect

    Robert F. Buck

    2005-08-30

    A new family of innovative martensitic stainless steels, 521-A, 521-B, and 521-C has been developed by Advanced Steel Technology, LLC (Trafford, PA) as high strength fastener (bolt) materials for use at moderate temperatures in turbine engines, including steam turbines, gas turbines, and aircraft engines. The primary objective of the development program was to create a martensitic stainless steel with high strength at moderate temperatures, and which could replace the expensive nickel-based superalloy IN 718 in some fasteners applications. A secondary objective was to replace conventional 12Cr steels such as AISI 422 used as blades, buckets and shafts that operate at intermediate temperatures in turbine engines with stronger steel. The composition of the new alloys was specifically designed to produce excellent mechanical properties while integrating heat treatment steps into production to reduce energy consumption during manufacturing. As a result, production costs and energy consumption during production of rolled bar products is significantly lower than conventional materials. Successful commercialization of the new alloys would permit the installed cost of certain turbine engines to be reduced without sacrificing high availability or operational flexibility, thereby enhancing the global competitiveness of U.S. turbine engine manufacturers. Moreover, the domestic specialty steel industry would also benefit through increased productivity and reduced operating costs, while increasing their share of the international market for turbine engine fasteners, blades, buckets and shafts.

  14. Review on Cold-Formed Steel Connections

    PubMed Central

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  15. Review on cold-formed steel connections.

    PubMed

    Lee, Yeong Huei; Tan, Cher Siang; Mohammad, Shahrin; Tahir, Mahmood Md; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed.

  16. 38. Photocopy of photograph. STEEL PLANT, BOILERS UNDER CONSTRUCTION IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Photocopy of photograph. STEEL PLANT, BOILERS UNDER CONSTRUCTION IN BOILER PLANT LOCATED EAST OF MAIN STEEL PLANT, 1909. (From the Bethlehem Steel Corporation collection, Seattle, WA) - Irondale Iron & Steel Plant, Port Townsend, Jefferson County, WA

  17. Effect of Different Chromium Additions on the Microstructure and Mechanical Properties of Multipass Weld Joint of Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kang, Dong Hoon; Lee, Hae Woo

    2012-12-01

    The correlation between the mechanical properties and ferrite volume fraction (approximately 40, 50, and 60 Ferrite Number [FN]) in duplex stainless steel weld metals were investigated by changing the Cr content in filler wires with a flux-cored arc-welding (FCAW) process. The interpass temperature was thoroughly maintained under a maximum of 423 K (150 °C), and the heat input was also sustained at a level under 15 KJ/cm in order to minimize defects. The microstructure examination demonstrated that the δ-ferrite volume fraction in the deposited metals increased as the Cr/Ni equivalent ratio increased, and consequently, chromium nitride (Cr2N) precipitation was prone to occur in the ferrite domains due to low solubility of nitrogen in this phase. Thus, more dislocations are pinned by the precipitates, thereby lowering the mobility of the dislocations. Not only can this lead to the strength improvement, but also it can accentuate embrittlement of the weld metal at subzero temperature. Additionally, the solid-solution strengthening by an increase of Cr and Mo content in austenite phase depending on the reduction of austenite proportion also made an impact on the increase of the tensile and yield strength. On the other hand, the impact test (at 293 K, 223 K, and 173 K [20 °C, -50 °C, and -100 °C]) showed that the specimen containing about 40 to 50 FN had the best result. The absorbed energy of about 40 to 50 J sufficiently satisfied the requirements for industrial applications at 223 K (-50 °C), while the ductile-to-brittle transition behavior exhibited in weldment containing 60 FN. As the test temperature decreased under 223 K (-50 °C), a narrow and deep dimple was transformed into a wide and shallow dimple, and a significant portion of the fracture surface was occupied by a flat cleavage facet with river patterns.

  18. Effect of different stages of tensile deformation on micromagnetic parameters in high-strength, low-alloy steel

    SciTech Connect

    Vaidyanathan, S.; Moorthy, V.; Kalyanasundaram, P.; Jayakumar, T.; Raj, B.

    1999-08-01

    The influence of tensile deformation on the magnetic Barkhausen emissions (MBE) and hysteresis loop has been studied in a high-strength, low-alloy steel (HSLA) and its weldment. The magnetic measurements were made both in loaded and unloaded conditions for different stress levels. The root-mean-square (RMS) voltage of the MBE has been used for analysis. This study shows that the preyield and postyield deformation can be identified from the change in the MBE profile. The initial elastic deformation showed a linear increase in the MBE level in the loaded condition, and the MBE level remained constant in the unloaded condition. The microplastic yielding, well below the macroyield stress, significantly reduces the MBE, indicating the operation of grain-boundary dislocation sources below the macroyield stress. This is indicated by the slow increase in the MBE level in the loaded condition and the decrease in the MBE level in the unloaded condition. The macroyielding resulted in a significant increase in the MBE level in the loaded condition and, more clearly, in the unloaded condition. The increase in the MBE level during macroyielding has been attributed to the grain rotation phenomenon, in order to maintain the boundary integrity between adjacent grains, which would preferentially align the magnetic domains along the stress direction. This study shows that MBE during tensile deformation can be classified into four stages: (1) perfectly elastic, (2) microplastic yielding, (3) macroyielding, and (4) progressive plastic deformation. A multimagnetic parameter approach, combining the hysteresis loop and MBE, has been suggested to evaluate the residual stresses.

  19. Multi-Objective Process Optimization of Pulsed Plasma Arc Welding SS400 Steel Pipe with Foamed Aluminum Liner

    NASA Astrophysics Data System (ADS)

    Shih, Jing-Shiang; Tzeng, Yih-Fong; Lin, Young-Fu; Yang, Jin-Bin

    Principal component analysis (PCA) coupled with Taguchi methods are employed in the study for developing multiple quality characteristics optimization of pulsed plasma arc welding SS400 steel pipe with foamed aluminum liner (SPFAL). The quality characteristics investigated are the micro-hardness, the compression strength, and the bending strength of the weldments. Eight control factors selected are the tip aperture (Factor A), plasma base current (Factor B), plasma pulse current (Factor C), duty cycle (Factor D), pulse frequency (Factor E), shielding gas (Factor F), plasma gas (Factor G), and welding velocity (Factor H), respectively. It is shown by the experimental results that the optimal parameter combination of the pulsed plasma arc welding process is A1 (tip aperture: Ø1.5mm), B3 (plasma base current: 30A), C3 (plasma pulse current: 100A), D2 (duty cycle: 50%), E3 (pulse frequency: 300Hz), F2 (shielding gas: 14L/min), G3 (plasma gas: 0.4L/min), and H2 (welding velocity: 4RPM). Moreover, it is ascertained from the analysis of variance (ANOVA) results that plasma base current (B), plasma pulse current (C), duty cycle (D), and welding velocity (H) are the most important control factors in the process design, and thus strict control must be applied to them. They account for 75.02% of the total variance. The experimental results likewise show that the best process design could indeed enhance the multiple quality characteristics of the pulsed plasma arc welded SPFAL as 3020kgf of the bending strength, 13650kgf of the compression strength, and 180.4Hv of the hardness, respectively.

  20. Method of Making Steel Strapping and Strip

    SciTech Connect

    1999-12-10

    Fact sheet written for the Inventions and Innovation Program about a new method for making steel strapping and strip from rod stock produced from scrap steel. There is a large movement in the American steel industry to utilize more recycled steel. Recycled steel melted in the electric arc furnaces of mini-mills is being used as the source of raw materials for an increasing number of products, largely due to its lower price. However, conventional processes for producing steel strapping and cold-rolled strip steel restrict manufacturers from using more than 50% recycled steel. In addition, steel strapping and cold-rolled strip steel traditionally require many production steps. They are produced from primary steel that has been cast into slab, heated, rolled to achieve the desired thickness, and slit to the desired width. The slitting process produces microcracks along the edge of the strapping or strip, which reduce tensile strength. A new continuous process produces steel strapping and 1/2 inch to 6 inch strip steel from the rod and strip stock made from scrap steel in mini-mills. The new process creates steel strapping and strip with improved strength and quality due to the absence of microcracks caused by the conventional slitting process. The finished product is cheaper because of the lower cost associated with using rod ad lower conversion costs. In addition, the higher tensile strength of the product allows for thinner strapping. The process represents a new approach to producing any steel strapping used for bundling and packaging items for storage or transport. In addition, this innovative new process can be used to produce cold-rolled strip steel, a basic raw material for automobile parts, hardware, office equipment, and many other products.

  1. The microstructure of chromium-tungsten steels

    NASA Astrophysics Data System (ADS)

    Klueh, R. L.; Maziasz, P. J.

    1989-03-01

    Chromium-tungsten steels are being developed to replace the Cr-Mo steels for fusion-reactor applications. Eight experimental steels were produced and examined by optical and electron microscopy. Chromium concentrations of 2.25, 5, 9 and 12 pct were used. Steels with these chromium compositions and with 2 pct W and 0.25 pct V were produced. To determine the effect of tungsten and vanadium, three other 2.25Cr steels were produced as follows: an alloy with 2 pct W and 0 pct V and alloys with 0 and 1 pct W and 0.25 pct V. A 9Cr steel containing 2 pct W, 0.25 pct V, and 0.07 pct Ta also was studied. For all alloys, carbon was maintained at 0.1 pct. Two pct tungsten was required in the 2.25Cr steels to produce 100 pct bainite (no polygonal ferrite). The 5Cr and 9Cr steels were 100 pct martensite, but the 12Cr steel contained about 25 pct delta-ferrite. Precipitate morphology and precipitate types varied, depending on the chromium content. For the 2.25Cr steels, M3C and M7C3 were the primary precipitates; for the 9Cr and 12Cr steels, M23C6 was the primary precipitate. The 5Cr steel contained M7C3 and M23C6. All of the steels with vanadium also contained MC.

  2. Submerged arc fillet welds between mild steel and stainless steel

    SciTech Connect

    Kotecki, D.J.; Rajan, V.B.

    1997-02-01

    Submerged arc fillet welds between mild steel and Type 304 stainless steel, made with ER309L wire, may contain no ferrite and be at risk of hot cracking, or they may be sufficiently diluted that they transform to martensite with both hot cracking risk and low ductility. This situation is most prevalent when direct current electrode positive (DCEP) polarity is used and when the flange is the mild steel part of the T-joint. A flux that adds chromium to the weld can somewhat alleviate this tendency. Direct current electrode negative (DCEN) polarity greatly reduces this tendency by limiting dilution. Fillet weld compositions and dilutions are obtained for a number of welding conditions and fluxes.

  3. Nickel release from stainless steels.

    PubMed

    Haudrechy, P; Mantout, B; Frappaz, A; Rousseau, D; Chabeau, G; Faure, M; Claudy, A

    1997-09-01

    In 1994, a study of nickel release and allergic contact dermatitis from nickel-plated metals and stainless steels was published in this journal. It was shown that low-sulfur stainless steel grades like AISI 304, 316L or 430 (S < or = 0.007%) release less than 0.03 microgram/cm2/week of nickel in acid artificial sweat and elicit no reactions in patients already sensitized to nickel. In contrast, nickel-plated samples release around 100 micrograms/cm2/week of Ni and high-sulfur stainless steel (AISI 303-S approximately 0.3%) releases about 1.5 micrograms/cm2/week in this acid artificial sweat. Applied on patients sensitized to nickel, these metals elicit positive reactions in 96% and 14%, respectively, of the patients. The main conclusion was that low-sulfur stainless steels like AISI 304, 316L or 430, even when containing Ni, should not elicit nickel contact dermatitis, while metals having a mean corrosion resistance like a high-sulfur stainless steel (AISI 303) or nickel-plated steel should be avoided. The determining characteristic was in fact the corrosion resistance in chloride media, which, for stainless steels, is connected, among other factors, to the sulfur content. Thus, a question remained concerning the grades with an intermediate sulfur content, around 0.03%, which were not studied. They are the object of the study presented in this paper. 3 tests were performed: leaching experiments, dimethylglyoxime and HNO3 spot tests, and clinical patch tests; however, only stainless steels were tested: a low-sulfur AISI 304 and AISI 303 as references and 3 grades with a sulfur content around 0.03%: AISI 304L, AISI 304L added with Ca, AISI 304L+Cu. Leaching experiments showed that the 4 non-resulfurised grades released less than 0.5 microgram/cm2/week in acid sweat while the reulfurized AISI 303 released around or more than 0.5 microgram/cm2/week. This is explained by the poorer corrosion resistance of the resulfurized grade. Yet all these grades had the same

  4. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  5. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  6. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  7. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  8. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  9. Steel erected at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Workers erect the first fabricated steel girders to arrive at the A-3 Test Stand at Stennis Space Center. Steel work began at the construction site Oct. 29 and is scheduled to continue into next spring.

  10. Steel erected at A-3 Test Stand

    NASA Image and Video Library

    2008-10-29

    Workers erect the first fabricated steel girders to arrive at the A-3 Test Stand at Stennis Space Center. Steel work began at the construction site Oct. 29 and is scheduled to continue into next spring.

  11. Steel erected at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Workers erect the first fabricated steel girders to arrive at the A-3 Test Stand at Stennis Space Center. Steel work began at the construction site Oct. 29 and is scheduled to continue into next spring.

  12. High-temperature brazing of stainless steel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Heisman, R. M.; Mitchell, M. J.

    1978-01-01

    Prevention of iron contamination of platens is eliminated by placing alumina/silica ceramic-fiber blankets between platens and carbon-steel plate. Carbon-steel plates provide rigidity and improve heat transfer.

  13. Electromechanical Surface Hardening of Tubing Steels

    NASA Astrophysics Data System (ADS)

    Fedorova, L. V.; Fedorov, S. K.; Serzhant, A. A.; Golovin, V. V.; Systerov, S. V.

    2017-07-01

    Results of metallographic studies of the structure of steels 38G2S and 37G2F and steels of group D after electromechanical surface hardening of tube specimens over the external diameter are presented.

  14. Corrosion control of steel-reinforced concrete

    NASA Astrophysics Data System (ADS)

    Chung, D. D. L.

    2000-10-01

    The methods and materials for corrosion control of steel-reinforced concrete are reviewed. The methods are steel surface treatment, the use of admixtures in concrete, surface coating on concrete, and cathodic protection.

  15. High-temperature brazing of stainless steel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Heisman, R. M.; Mitchell, M. J.

    1978-01-01

    Prevention of iron contamination of platens is eliminated by placing alumina/silica ceramic-fiber blankets between platens and carbon-steel plate. Carbon-steel plates provide rigidity and improve heat transfer.

  16. New Development of HSLA Steels in China

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-gang; Yang, Cai-fu; Shang, Cheng-jia

    During the last decade, the adjustment and upgrade of steel product structures always be very important tasks in China's iron and steel industry. Since there is a fast growth of steel production in China, a series of research achievements in the technology area of HSLA steels have been made and applied successfully in the actual production, and thereby promoted a rapid development and application of China's HSLA Steel products. However, The China's iron and steel industry is now facing the excess production capacity and under pressure from respects of resource, energy and environment, therefore, it would be an effective way to realize the sustainable development in China's iron and steel industry by strengthening the applications of HSLA steels continuously and positively.

  17. Developments in HSLA steel products

    NASA Astrophysics Data System (ADS)

    Paules, John R.

    1991-01-01

    The technology of microalloyed steels is expanding beyond its original emphasis on low-carbon, severely control-rolled strip and plate products. A variety of economical, high-strength, tough, as-rolled or as-forged microalloyed products are replacing more expensive heat-treated steels. Recrystallization-controlled rolling is being utilized to produce very fine ferrite grain sizes and good toughness in strip, plate and bar products processed with relatively high rolling temperatures. High-strength microalloyed long products such as railroad joint bars, truck frame rails and flat bars for truck trailer construction are replacing heat-treated parts. Microalloyed, medium-carbon forging steels are used extensively for automobile engine and suspension components. Fully pearlitic high-carbon rods are being microalloyed to enhance the properties of wire and springs.

  18. ESF GROUND SUPPORT - STRUCTURAL STEEL ANALYSIS

    SciTech Connect

    T. Misiak

    1996-06-26

    The purpose and objective of this analysis are to expand the level of detail and confirm member sizes for steel sets included in the Ground Support Design Analysis, Reference 5.20. This analysis also provides bounding values and details and defines critical design attributes for alternative configurations of the steel set. One possible configuration for the steel set is presented. This analysis covers the steel set design for the Exploratory Studies Facility (ESF) entire Main Loop 25-foot diameter tunnel.

  19. Corrosion Behavior of Steel Fibrous Concrete

    DTIC Science & Technology

    1977-05-01

    Crvtaiue wi ,rerse sido it necessaty m’d Identify by block number) steel fibrous concrete corrosion cracked fibrous concrete 20 ABST RACT (Continue...dissolved gas in liq- Although chloride ions affect the rate of steel corro- uids. sion in concrete , corrosion can occur without them. Verbeck has...repcrted that steel subjected to a concrete Corrosion of steel will not occur without water. Not environment normally develops a protective oxide film

  20. Steel erected at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Fabricated steel began arriving by truck Oct. 24 for construction of the A-3 Test Stand that will be used to test the engine for the nation's next generation of moon rockets. Within days workers from Lafayette Steel Erector Inc. began assembling the 16 steel stages needed on the foundation and footings poured in the previous year.

  1. Recycling steel automatically - through resource recovery

    SciTech Connect

    Foley, W.J.

    1997-12-01

    Last year, more than 55 percent of all steel cans were recycled. But no matter how effective the local recycling programs may be, some steel cans and other steel products are overlooked and appear in MSW. This missed steel fraction is automatically recycled by resource recovery facilities through magnetic separation. More than three-fourths of the operating resource recovery plants magnetically separate steel cans and other discarded steel items either pre- or post-combustion. Recovering ferrous scrap clearly reduces the post-combustion material that is landfilled and heightens the facilities` environmental performance. Both the resource recovery and steel industries must heighten public awareness of the benefits of automatic steel recycling. Magnetic separation at resource recovery facilities is a simple method of diverting what would otherwise be relegated as solid waste to the landfill. It should be recognized as an increasingly important and valued part of the resource recovery and steel industries` overall recycling efforts. This paper will discuss the status of steel can recycling in the United States, describe how recovered ferrous is beneficiated before recycling by the steel industry, and make recommendations for heightening awareness of the steel recycling contribution made by resource recovery facilities.

  2. Steel erected at A-3 Test Stand

    NASA Image and Video Library

    2008-10-24

    Fabricated steel began arriving by truck Oct. 24 for construction of the A-3 Test Stand that will be used to test the engine for the nation's next generation of moon rockets. Within days workers from Lafayette Steel Erector Inc. began assembling the 16 steel stages needed on the foundation and footings poured in the previous year.

  3. Steel erected at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Fabricated steel began arriving by truck Oct. 24 for construction of the A-3 Test Stand that will be used to test the engine for the nation's next generation of moon rockets. Within days workers from Lafayette Steel Erector Inc. began assembling the 16 steel stages needed on the foundation and footings poured in the previous year.

  4. Steeling and Resilience in Art Education

    ERIC Educational Resources Information Center

    Heise, Donalyn

    2014-01-01

    Steel is an incredibly strong alloy of iron and carbon. Due to its incredible strength and durability, this resilient material is commonly used for constructing buildings. The transitive verb "steeling" is defined in Miriam-Webster dictionary as "to fill with resolution or determination, as in, she 'steeled herself to face the…

  5. Steeling and Resilience in Art Education

    ERIC Educational Resources Information Center

    Heise, Donalyn

    2014-01-01

    Steel is an incredibly strong alloy of iron and carbon. Due to its incredible strength and durability, this resilient material is commonly used for constructing buildings. The transitive verb "steeling" is defined in Miriam-Webster dictionary as "to fill with resolution or determination, as in, she 'steeled herself to face the…

  6. Steel: Price and Policy Issues

    DTIC Science & Technology

    2006-08-31

    semi-finished slab steel. It has no U.S. production assets, though it acquired the leading Canadian producer, Dofasco , in January 2006 and earlier was...Bloomberg.com, “Mittal Makes $22.7 Bln. Unsolicited Bid for Arcelor” (Jan. 27, 2006); Wall St. Journal, “Arcelor Transfers Dofasco Unit to Block...Stelco 56 Canada Y 4.54 4.91 Dofasco 60 Canada Y 4.19 4.99 Steel Dynamics 76 USA Y 3.28 3.15 Altos Hornos de Mexico 78 Mexico Y 3.24 3.01 Ipsco 82 USA

  7. Metallography of maraging 350 steel

    SciTech Connect

    Hutson, S.M.; Merten, C.W.

    1987-01-01

    A technique for etching maraging 350 steel with Glyceregia is described. Surface activation procedures are integral to this technique. Microstructural features revealed by this technique are compared with those obtained with Kalling's reagent, Fry's reagent, and 5% Nital, three etchants commonly used to reveal microstructures of maraging steels. Features which may be simultaneously revealed using Glyceregia include prior austenite grain boundaries, martensitic structure, precipitates, titanium carbo-nitrides, and reverted austenite. The other etchants examined in this investigation typically reveal only a few of the microstructural features detailed above at any one time. 11 refs., 10 figs., 2 tabs.

  8. Plating on stainless steel alloys

    SciTech Connect

    Dini, J.W.; Johnson, H.R.

    1981-09-11

    Quantitative adhesion data are presented for a variety of electroplated stainless steel type alloys. Results show that excellent adhesion can be obtained by using a Wood's nickel strike or a sulfamate nickel strike prior to final plating. Specimens plated after Wood's nickel striking failed in the deposit rather than at the interface between the substrate and the coating. Flyer plate quantitative tests showed that use of anodic treatment in sulfuric acid prior to Wood's nickel striking even further improved adhesion. In contrast activation of stainless steels by immersion or cathodic treatment in hydrochloric acid resulted in very reduced bond strengths with failure always occurring at the interface between the coating and substrate.

  9. Teaching Steel Connections Using an Interactive Virtual Steel Sculpture

    ERIC Educational Resources Information Center

    Moaveni, Saeed; Chou, Karen C.

    2015-01-01

    Steel connections play important roles in the integrity of a structure, and many structural failures are attributed to connection failures. Connections are the glue that holds a structure together. The failures of the Hartford Coliseum in 1977, the Hyatt Regency Hotel in Kansas City in 1980, and the I-35W Bridge in Minneapolis in 2007 are all…

  10. Teaching Steel Connections Using an Interactive Virtual Steel Sculpture

    ERIC Educational Resources Information Center

    Moaveni, Saeed; Chou, Karen C.

    2015-01-01

    Steel connections play important roles in the integrity of a structure, and many structural failures are attributed to connection failures. Connections are the glue that holds a structure together. The failures of the Hartford Coliseum in 1977, the Hyatt Regency Hotel in Kansas City in 1980, and the I-35W Bridge in Minneapolis in 2007 are all…

  11. Superhard Nanocrystalline Homometallic Stainless Steel on Steel for Seamless Coatings

    NASA Technical Reports Server (NTRS)

    Tobin, Eric J.; Hafley, R. (Technical Monitor)

    2002-01-01

    The objective of this work is to deposit nanocrystalline stainless steel onto steel substrates (homometallic) for enhanced wear and corrosion resistance. Homometallic coatings provide superior adhesion, and it has been shown that ultrafine-grained materials exhibit the increased hardness and decreased permeability desired for protective coatings. Nanocrystals will be produced by controlling nucleation and growth and use of an ion beam during deposition by e-beam evaporation or sputtering. Phase I is depositing 31 6L nanocrystalline stainless steel onto 31 6L stainless steel substrates. These coatings exhibit hardnesses comparable to those normally obtained for ceramic coatings such ZrO2, and possess the superior adhesion of seamless, homometallic coatings. Hardening the surface with a similar material also enhances adhesion, by avoiding problems associated with thermal and lattice mismatch. So far we have deposited nanocrystalline homometallic 316L stainless steel coatings by varying the ions and the current density of the ion beams. For all deposition conditions we have produced smooth, uniform, superhard coatings. All coatings exhibit hardness of at least 200% harder than that of bulk materials. Our measurements indicate that there is a direct relationship between nanohardness and the current density of the ion beam. Stress measurements indicate that stress in the films is increasingly proportional to current density of the ion beam. TEM, XPS, and XRD results indicate that the coated layers consist of FCC structure nanocrystallites with a dimension of about 10 to 20 nm. The Ni and Mo concentration of these coating are lower than those of bulk 316L but the concentration of Cr is higher.

  12. Bearing steels in the 21. century

    SciTech Connect

    Tsubota, Kazuichi; Sato, Toshio; Kato, Yoshiyuki; Hiraoka, Kazuhiko; Hayashi, Ryoji

    1998-12-31

    Oxygen content of bearing steel will be reduced to below 3 ppm in the year 2000 if the current trend for the reduction of oxygen in the steel continues. As a result, size of oxide inclusions will become smaller and the fatigue life will be doubled. From the viewpoint of life prediction, cleanliness evaluation methods currently used are not effective. Inclusion Rating Method by Statistics of Extreme is useful for both cleanliness evaluation and fatigue life prediction. Bearings made of suitably heat treated carbon steels or low alloy steels, which possess equivalent fatigue properties to bearing steels, will increase owing to the requirement for lower cost and better formability.

  13. Reduced-activation steels: Future development for improved creep strength

    NASA Astrophysics Data System (ADS)

    Klueh, R. L.

    2008-08-01

    Reduced-activation steels for fusion applications were developed in the 1980s to replace the elevated-temperature commercial steels first considered. The new steels were patterned after the commercial steels, with the objective that the new steels have yield stress and ultimate tensile strength and impact toughness in a Charpy test comparable to or better than the steels they replaced. That objective was achieved in reduced-activation steels developed in Japan, Europe, and the United States. Although tensile and impact toughness of the reduced-activation steels exceed those of the commercial steels they were patterned after, their creep-rupture properties are inferior to some commercial steels they replaced. They are even more inferior to commercial steels developed since the 1980s. In this paper, compositional differences between reduced-activation steels and new commercial steels are examined, and compositions are proposed for development of new-and-improved reduced-activation steels.

  14. Precision machining of steel decahedrons

    NASA Technical Reports Server (NTRS)

    Abernathy, W. J.; Sealy, J. R.

    1972-01-01

    Production of highly accurate decahedron prisms from hardened stainless steel is discussed. Prism is used to check angular alignment of mounting pads of strapdown inertial guidance system. Accuracies obtainable using recommended process and details of operation are described. Photographic illustration of production device is included.

  15. STEFINS: a steel freezing integral simulation program

    SciTech Connect

    Frank, M.V.

    1980-09-01

    STEFINS (STEel Freezing INtegral Simulation) is a computer program for the calculation of the rate of solidification of molten steel on solid steel. Such computations arize when investigating core melt accidents in fast reactors. In principle this problem involves a coupled two-dimensional thermal and hydraulic approach. However, by physically reasonable assumptions a decoupled approach has been developed. The transient solidification of molten steel on a cold wall is solved in the direction normal to the molten steel flow and independent from the solution for the molten steel temperature and Nusselt number along the direction of flow. The solutions to the applicable energy equations have been programmed in cylindrical and slab geometries. Internal gamma heating of steel is included.

  16. Dendritic inhomogeneity of stainless maraging steels

    SciTech Connect

    Krasnikova, S.I.; Drobot, A.V.; Shmelev, A.Y.; Vukelich, S.B.

    1986-03-01

    The authors investigated dendritic inhomogeneity in industrial ingots 630 mm (steel I) in diameter and 500 mm (steel II) in diameter. The variation in the degree of dendritic inhomogeneity was investigated over the height of the ingots and across the sections on an MS-46 microprobe. It was established that the elements can be placed in the following order in accordance with the degree of reduction in the liquation factor: titanium, molybdenum, nickel, chromium, and cobalt. Titanium and molybdenum exhibit forward liquation in both steels, and chromium in steel II. The distribution of nickel and chromium in the steel I ingots and cobalt in the steel II ingots is unconventional. Dendritic inhomogeneity, which must be considered in assigning the heat treatment for finished articles, develops during the crystallization of stainless maraging steels.

  17. Thermal Linear Expansion of Nine Selected AISI Stainless Steels

    DTIC Science & Technology

    1978-04-01

    stainless steels. The nine selected stainless steels are AISI 303, 304, 304L, 316, 317, 321, 347, 410 , and 430. The recoended values Include the...point of the stainless steels. The nine selected stainless steels are AISI 303, 304, 304L, 316, 317, 321, 347, 410 , and 430. The recommended values...Stainless Steel..................................26 8. AISI 410 Stainless Steel..................................29 9. AISI 430 Stainless Steel

  18. Comparative Structural Strength Research of Hardened Carbon Steel and Hot-Rolled Alloy Steel

    NASA Astrophysics Data System (ADS)

    Bogomolov, A. V.; Zhakupov, A. N.; Kanayev, A. T.; Sikach, I. A.; Tugumov, K. K.

    2016-08-01

    Experiments on quantitative evaluation of fatigue strength showed that St5ps and St5sp carbon steels with A400 strength class can be fully applied for erection of constructions and buildings having cyclical loads during operation. Study of corrosion resistance of hardened carbon steel in comparison with hot-rolled alloy steel consists in difference in structures and hence, difference in intensity of electric and chemical processes featuring presence of steel in concrete. Structure of St5sp steel with A400 strength class in surface area has significantly less corrosion rate than ferritic-perlitic structure of 35GS steel with A400 strength class.

  19. [Radioactivity monitoring of steel processing in Croatian steel mills and foundries].

    PubMed

    Sofilić, Tahir; Marjanović, Tihana; Rastovcan-Mioc, Alenka

    2006-03-01

    The last twenty years have seen a number of cases of radioactive pollution in metallurgical industry. Therefore many metal producers have implemented systematic monitoring of radioactivity in their production processes, especially in steel processing, steel being the most applied construction material with the annual world output of over billion tonnes. Learning from the experience of the best known steel producers in Europe and the world Croatian steel mills have introduced radioactivity surveillance and control systems for radioactive elements in steel scrap, semi-finished and finished products. This paper argues in favour of radioactivity surveillance and control systems in steel and steel castings production in Croatia, and describes current systems and solutions available. Since we lack our own standards and regulations to control both domestic and imported steel scrap, semi-finished products (crude steel, hot and cold rolled strip) and finished products, we need to start implementing radioactivity surveillance and control systems in our steel and steel castings production applying the current international recommendations and guidelines, until we build up our own monitoring system and adopt legislation on the national level. This paper gives an overview of the basic types of radioactivity surveillance and control systems, the most frequent requirements to be met, as well as of the measurement and information flow in their application in steel and steel castings production.

  20. Microstructure and Mechanical Properties of HSLA-100 Steel

    DTIC Science & Technology

    1990-12-01

    13 Figure 4. High Strength Bainite Strength Components .................... 20 Figure 5. Bainitic Steel Tempering and DBTT ...21 Figure 6. Tempered Bainite Steel Yield Stress and DBTT .................. 21 Figure 7. HSLA-100 Steel Yield Strength versus Aging...Energy at -84°C ............... 31 Figure 14. HSLA-100 Steel Lot GQH DBTT ............................ 31 Figure 15. HSLA-100 Steel Lot GQH Ductility

  1. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    NASA Astrophysics Data System (ADS)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths (τ (app)) and slip coefficient (β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle (ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  2. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    NASA Astrophysics Data System (ADS)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths ( τ ( app)) and slip coefficient ( β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle ( ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  3. A mortality study among mild steel and stainless steel welders.

    PubMed Central

    Moulin, J J; Wild, P; Haguenoer, J M; Faucon, D; De Gaudemaris, R; Mur, J M; Mereau, M; Gary, Y; Toamain, J P; Birembaut, Y

    1993-01-01

    A mortality study was carried out in conjunction with the European mortality study among welders coordinated by the International Agency for Research on Cancer (IARC). The study was aimed at assessing risks for lung cancer in relation to exposure to asbestos, welding fumes containing chromium and nickel, and tobacco smoke. The study included a cohort of 2721 welders and an internal comparison group of 6683 manual workers employed in 13 factories in France. The mortality of the two cohorts was studied from 1975 to 1988 by the historical prospective method. Job histories of welders were traced including welding processes used, metals welded, and proportion of worktime spent in welding. Data on smoking habits were collected from medical records. The observed number of deaths were compared with those expected (standardised mortality ratio (SMR)) based on national rates with adjustments for age, sex, and calendar time. The smoking habits of 87% of the whole study population were known. The distribution of welders and controls according to smoking was not statistically different. The overall mortality was slightly higher for welders (SMR = 1.02, 95% confidence interval (95% CI) 0.89-1.18) than for controls (SMR = 0.91, 95% CI 0.84-0.99). For lung cancer, the SMR was 1.24 (95% CI 0.75-1.94) for welders, whereas the corresponding value was lower for controls (SMR = 0.94, 95% CI 0.68-1.26). The SMR for lung cancer was 1.59 among non-shipyard mild steel welders (95% CI 0.73-3.02). This contrasted with the results for all stainless steel welders (SMR = 0.92, 95% CI 0.19-2.69), and for stainless steel welders predominantly exposed to chromium VI (SMR = 1.03, 95% CI 0.12-3.71). Moreover, SMRs for lung cancer for mild steel welders tended to increase with duration of exposure and time since first exposure, leading to significant excesses for duration > or = 20 years and latency > or = 20 years. Such a pattern was not found for stainless steel welders. PMID:8457490

  4. Niobium in Microalloyed Rail Steels

    NASA Astrophysics Data System (ADS)

    Ray, A.; Bhadeshia, H. K. D. H.

    Rails generally do not have a homogeneous austenite grain structure across their sections because the degree of plastic strain achieved during hot-rolling depends on location. Here we explore a philosophy in which niobium microalloying may be introduced in order to thermomechanically process the material so that pancaked and refined austenite grains may eventually be achieved in the critical regions of the rail. The essential principle in alloy design involves the avoidance of coarse niobium carbide precipitates in the regions of the steel that contain chemical segregation caused by non-equilibrium solidification. Both pearlitic and cementite-free bainitic rails have been studied. The work is of generic value to the design of high-carbon microalloyed steels.

  5. Longer Life for Steel Structures

    NASA Technical Reports Server (NTRS)

    1990-01-01

    IC 531 is a coating manufactured and marketed by Inorganic Coatings, Inc. The coating was developed by Goddard to protect structures at Kennedy Space Center. It is a high ratio potassium silicate formula. The coating is water based, nontoxic, and nonflammable. It generates no volatile organic compounds nor hazardous chemical waste, and bonds to steel in 30 minutes. At the present time, no one can say for sure how long IC 531's effective lifetime is. Some of the original Goddard test applications of 1976 are still going strong after lengthy exposure to the Sun, salt and moisture. Says IC in company literature: 'IC 531 offers virtually permanent protection for steel. We predict it will protect structures for well beyond 25 years. If necessary, it is infinitely maintainable; if damaged, it can easily be touched up with more IC 531.'

  6. Light microscopy of carbon steels

    SciTech Connect

    Samuels, L.E.

    1998-12-31

    Containing over 1,200 representative micrographs and the information and explanatory text that makes them really useful: composition, condition, etchant, and magnification, and more than 100 graphs and tables, this how to book not only gives everyday working examples, but also discusses the relationship between the constitution, metallurgy, and microstructure of various carbon steel products. Written by a renowned expert in metallography, this definitive work is a must for all those working in this area. Contents include: nomenclature of phases and constituents; phase transformations; low-carbon irons and steels; annealing and normalizing; spheroidization and graphitization; austenitization; transformation of austenite; tempering of martensite; welding; surface oxidation, decarburation; and oxidation scaling; glossary of terms; etching methods; conversion tables.

  7. Steel Industry Energy Bandwidth Study

    SciTech Connect

    none,

    2004-10-01

    ITP conducted a study on energy use and potential savings, or "bandwidth" study, in major steelmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results based on the 2nd law of thermodynamics. The Steel Industry Energy Bandwidth Study (PDF 133 KB) also estimates steel industry energy use in the year 2010, and uses that value as a basis for comparison against the minimum requirements. This energy savings opportunity for 2010 will aid focus on longer term R&D.

  8. Existing Steel Railway Bridges Evaluation

    NASA Astrophysics Data System (ADS)

    Vičan, Josef; Gocál, Jozef; Odrobiňák, Jaroslav; Koteš, Peter

    2016-12-01

    The article describes general principles and basis of evaluation of existing railway bridges based on the concept of load-carrying capacity determination. Compared to the design of a new bridge, the modified reliability level for existing bridges evaluation should be considered due to implementation of the additional data related to bridge condition and behaviour obtained from regular inspections. Based on those data respecting the bridge remaining lifetime, a modification of partial safety factors for actions and materials could be respected in the bridge evaluation process. A great attention is also paid to the specific problems of determination of load-caring capacity of steel railway bridges in service. Recommendation for global analysis and methodology for existing steel bridge superstructure load-carrying capacity determination are described too.

  9. Welding of high chromium steels

    NASA Technical Reports Server (NTRS)

    Miller, W B

    1928-01-01

    A brief description is given of different groups of high chromium steels (rustless iron and stainless steels) according to their composition and more generally accepted names. The welding procedure for a given group will be much the same regardless of the slight variations in chemical composition which may exist within a certain group. Information is given for the tensile properties (yield point and ultimate strength) of metal sheets and welds before and after annealing on coupons one and one-half inches wide. Since welds in rustless iron containing 16 to 18 percent chromium and 7 to 12 percent nickel show the best combination of strength and ductility in the 'as welded' or annealed condition, it is considered the best alloy to use for welded construction.

  10. Nano-composite stainless steel

    DOEpatents

    Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.

    2015-07-14

    A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.

  11. Steel Industry Marginal Opportunity Analysis

    SciTech Connect

    none,

    2005-09-01

    The Steel Industry Marginal Opportunity Analysis (PDF 347 KB) identifies opportunities for developing advanced technologies and estimates both the necessary funding and the potential payoff. This analysis determines what portion of the energy bandwidth can be captured through the adoption of state-of-the-art technology and practices. R&D opportunities for addressing the remainder of the bandwidth are characterized and plotted on a marginal opportunity curve.

  12. Powder Processing of Trip Steel

    DTIC Science & Technology

    1977-04-01

    60, 1967, p. 252-259. 2. AZRIN, M ., OLSON, G. B., and GAGNE, R. A. Inhomogeneous Deformation and Strain-Rate Effects in High-Strength TRIP Steels...Mat. Sci. Eng., v. 23, May 1976, p. 33^1. 3. ANTOLOVICH , S. D., and SINGH, B. On the Toughness Increment Associated with the Austenite to Martensite...1 ATTN: SCCR-2 Naval Research Laboratory, Washington, D. C. 20375 1 ATTN: Dr. J. M . Krafft - Code 8430 Chief of Naval Research, Arlington

  13. A study of Damascus steel

    SciTech Connect

    Berge, P.

    1995-02-16

    The Damascus sword has been an article of fascination for many years to blade collectors and metallurgists alike. The blades were given their name by Europeans who encountered these blades which originated from Damascus, Syria. They are best known for the appearance of the blade face. Genuine Damascus blades show swirling patterns of alternating light and dark regions which are due to the microstructure of the steel. The microstructure consists of arrays of well rounded cementite patterns in a matrix of either pearlite, bainite, or martensite. When this structure is etched the matrix will turn dark leaving the cementite particles light. Although many blades were produced over the centuries, while some of the process is known the making of a genuine Damascus blade today is generally considered a lost art. Many scientists have studied the subject in an attempt to understand the complex process by which the clustered arrays of cementite particles develop in the steel blades. The most prominent theories to date are presented in the General Introduction to this thesis. The thesis is divided into four main parts. In the first part, four proposed mechanisms of cementite cluster sheet formation as they relate to the banding theory are introduced. Experiments to investigate these mechanisms are presented. In Part II, collaborative research focused on the methodology of the reconstructed process for making Damascus steel is presented. In the third part, a study into the graphitization of the reconstructed blades is presented. In Part IV, experimental attempts at producing Damascus steel ingots in the laboratory are presented.

  14. Gas tungsten arc welding and friction stir welding of ultrafine grained AISI 304L stainless steel: Microstructural and mechanical behavior characterization

    SciTech Connect

    Sabooni, S.; Karimzadeh, F.; Enayati, M.H.; Ngan, A.H.W.; Jabbari, H.

    2015-11-15

    In the present study, an ultrafine grained (UFG) AISI 304L stainless steel with the average grain size of 650 nm was successfully welded by both gas tungsten arc welding (GTAW) and friction stir welding (FSW). GTAW was applied without any filler metal. FSW was also performed at a constant rotational speed of 630 rpm and different welding speeds from 20 to 80 mm/min. Microstructural characterization was carried out by High Resolution Scanning Electron Microscopy (HRSEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). Nanoindentation, microhardness measurements and tensile tests were also performed to study the mechanical properties of the base metal and weldments. The results showed that the solidification mode in the GTAW welded sample is FA (ferrite–austenite) type with the microstructure consisting of an austenite matrix embedded with lath type and skeletal type ferrite. The nugget zone microstructure in the FSW welded samples consisted of equiaxed dynamically recrystallized austenite grains with some amount of elongated delta ferrite. Sigma phase precipitates were formed in the region ahead the rotating tool during the heating cycle of FSW, which were finally fragmented into nanometric particles and distributed in the weld nugget. Also there is a high possibility that the existing delta ferrite in the microstructure rapidly transforms into sigma phase particles during the short thermal cycle of FSW. These suggest that high strain and deformation during FSW can promote sigma phase formation. The final austenite grain size in the nugget zone was found to decrease with increasing Zener–Hollomon parameter, which was obtained quantitatively by measuring the peak temperature, calculating the strain rate during FSW and exact examination of hot deformation activation energy by considering the actual grain size before the occurrence of dynamic recrystallization. Mechanical properties observations showed that the welding

  15. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    NASA Astrophysics Data System (ADS)

    Shen, Wenning; Feng, Lajun; Feng, Hui; Cao, Ying; Liu, Lei; Cao, Mo; Ge, Yanfeng

    The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel.

  16. 77 FR 67400 - RG Steel Wheeling, LLC, a Division of RG Steel, LLC, Doing Business as Wheeling Corrugating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... Employment and Training Administration RG Steel Wheeling, LLC, a Division of RG Steel, LLC, Doing Business as..., 2012, applicable to workers of RG Steel Wheeling, LLC, a division of RG Steel, LLC, doing business as... RG Steel, LLC, doing business as Wheeling Corrugating Company, Beech Bottom, West Virginia,...

  17. Nickel: makes stainless steel strong

    USGS Publications Warehouse

    Boland, Maeve A.

    2012-01-01

    Nickel is a silvery-white metal that is used mainly to make stainless steel and other alloys stronger and better able to withstand extreme temperatures and corrosive environments. Nickel was first identified as a unique element in 1751 by Baron Axel Fredrik Cronstedt, a Swedish mineralogist and chemist. He originally called the element kupfernickel because it was found in rock that looked like copper (kupfer) ore and because miners thought that "bad spirits" (nickel) in the rock were making it difficult for them to extract copper from it. Approximately 80 percent of the primary (not recycled) nickel consumed in the United States in 2011 was used in alloys, such as stainless steel and superalloys. Because nickel increases an alloy's resistance to corrosion and its ability to withstand extreme temperatures, equipment and parts made of nickel-bearing alloys are often used in harsh environments, such as those in chemical plants, petroleum refineries, jet engines, power generation facilities, and offshore installations. Medical equipment, cookware, and cutlery are often made of stainless steel because it is easy to clean and sterilize. All U.S. circulating coins except the penny are made of alloys that contain nickel. Nickel alloys are increasingly being used in making rechargeable batteries for portable computers, power tools, and hybrid and electric vehicles. Nickel is also plated onto such items as bathroom fixtures to reduce corrosion and provide an attractive finish.

  18. Utilization of structural steel in buildings.

    PubMed

    Moynihan, Muiris C; Allwood, Julian M

    2014-08-08

    Over one-quarter of steel produced annually is used in the construction of buildings. Making this steel causes carbon dioxide emissions, which climate change experts recommend be reduced by half in the next 37 years. One option to achieve this is to design and build more efficiently, still delivering the same service from buildings but using less steel to do so. To estimate how much steel could be saved from this option, 23 steel-framed building designs are studied, sourced from leading UK engineering firms. The utilization of each beam is found and buildings are analysed to find patterns. The results for over 10 000 beams show that average utilization is below 50% of their capacity. The primary reason for this low value is 'rationalization'-providing extra material to reduce labour costs. By designing for minimum material rather than minimum cost, steel use in buildings could be drastically reduced, leading to an equivalent reduction in 'embodied' carbon emissions.

  19. RESIDUAL STRESS IN HARDENED STEEL CYLINDERS

    DTIC Science & Technology

    ultimate strength of the steel and in some instances caused cracking, and (4) stress patterns of interrupted quench specimens were not consistent enough to warrant a conclusion. (Author)...A study was conducted to (1) measure residual stress in hardened steel solid cylinders, (2) correlate the stress values with heat treatments, and (3...develop a dissolution technique. Residual stress patterns for 12 solid cylinders of 4160 steel, heat treated by various methods, were determined

  20. Cadmium Alternatives for High-Strength Steel

    DTIC Science & Technology

    2011-09-22

    FINAL REPORT Cadmium Alternatives for High-Strength Steel WP-200022 Steven A. Brown Naval Air Warfare Center Aircraft Division Patuxent...ESTCP WP-0022 Final Report “Cadmium Alternatives for High-Strength Steel ” 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Steven...SUPPLEMENTARY NOTES 14. ABSTRACT Testing was conducted for cadmium alternative coating systems IAW the “High Strength Steel Joint Test Protocol for

  1. Evaluation of the Benefits of HSLA Steels

    DTIC Science & Technology

    1989-03-01

    quenched and tempered steels , such as HY80 and HY1OO, require preheat and interpass temperature controls during welding of plates thicker than 1/2 inch...interpass tempera- tures and heat input limitations. Strict adherence to these requirements is mandatory to avoid cracking in hydrogen- sensitive steels ...requirement and excellent weldability of this steel will probably lower produc- tion costs and cracking -related repairs enough to overcome the slight

  2. Solidification Based Grain Refinement in Steels

    DTIC Science & Technology

    2011-09-27

    Please complete the Award Information section below so that technical information can be related to a specific award. Please save the file using the...Technology, Vol. 21, No. 3, pp. 325-333, 2005. 4. Peter. J., Peaslee, K. D.. and Panda , D. "Thermomechanical processing of HSLA wide-flange steel beams...niobium precipitates in HSLA steel". Steel Research International, Vol. 75, No. 1 Lpp. 753-758. 2004. 20. Peter, Joerg; Peaslee, Kent D.; Panda Dhiren

  3. Recycling steel. Conducting a waste audit.

    PubMed

    Crawford, G

    1996-01-01

    This is the second in a series of three articles regarding steel can recycling from foodservice operations of healthcare facilities. This article highlights the basic methods of recycling steel cans, and includes information on conducting a waste audit and negotiating with a hauler regarding the benefits of recycling. The previous article discussed how steel is recycled across the country. The next article will convey a case history of actual foodservice recycling practice from a healthcare facility.

  4. Bending Properties of Al-Steel and Steel-Steel Composite Metal Foams

    NASA Astrophysics Data System (ADS)

    Brown, Judith A.; Vendra, Lakshmi J.; Rabiei, Afsaneh

    2010-11-01

    The performance of new composite metal foams (CMFs) under bending was evaluated with simultaneous acoustic emission (AE) monitoring on samples processed by cast and powder metallurgy (PM) techniques. The results showed high maximum strength in all samples up to 86 MPa with more ductile failure in PM samples. Acoustic emission behavior confirmed that the dominating failure mechanism of cast CMF is the brittle fracture of intermetallic phases that mostly exist at the interface of the steel spheres with the aluminum matrix, whereas in PM samples (100 pct steel), the failure is governed by the propagation of preexisting microporosities in the matrix resulting in a complete ductile failure. SEM imaging of the fracture surfaces supported these findings.

  5. The Structure and Mechanical Properties of Bridge Steel Weldings With Glass-Steel Liners

    NASA Astrophysics Data System (ADS)

    Muzalev, V. N.; Semukhin, B. S.; Danilov, V. I.

    2016-04-01

    A new technology is developed for welding multi-span bridge constructions. The mechanical properties and structure of the low-carbon bridge steel welds have been studied. The welding parameters and application of steel-glass liners provide for long-term service of steel constructions in conformity with the welding industry specifications.

  6. Corrosion of stainless steel, 2. edition

    SciTech Connect

    Sedriks, A.J.

    1996-10-01

    The book describes corrosion characteristics in all the major and minor groups of stainless steels, namely, in austenitic, ferritic, martensitic, duplex, and precipitation hardenable steels. Several chapters are spent on those special forms of corrosion that are investigated in the great detail in stainless steels, namely, pitting corrosion, crevice corrosion, and stress corrosion cracking. The influences of thermal treatment (heat affected zone cases), composition, and microstructure on corrosion are given good coverage. Corrosive environments include high temperature oxidation, sulfidation as well as acids, alkalis, various different petroleum plant environments, and even human body fluids (stainless steels are commonly used prosthetic materials).

  7. Recycling steel automatically -- through resource recovery

    SciTech Connect

    Crawford, G.L.

    1996-12-31

    More than three-fourths of the operating resource recovery plants magnetically separate steel cans and other discarded steel items either pre- or post-combustion. This last year, 121 resource recovery facilities combusted about 14% of the solid waste for communities across the US. Automatic recycling of steel clearly reduces the post-combustion material that is landfilled and heightens the facilities environmental performance through tangible recycling achievement. Even though about one out of every six steel cans is recycled automatically through resource recovery, not many people are aware of automatic recycling of steel cans through resource recovery. How many people know that their local resource recovery plant is insuring that virtually all of their food, beverage and general purpose cans--including paint and aerosol--are being recycled so easily and efficiently? Magnetic separation at resource recovery facilities is a fundamentally simple and desirable method of diverting what would otherwise be relegated as solid waste to the landfill. It should be recognized as an increasingly important and valued part of the resource recovery and steel industries overall recycling efforts. This paper will provide the latest information on steel recycled automatically from resource recovery facilities within the total context of all recycling accomplished annually by the steel industry. Most important, recommendations are provided for building public awareness of the automatic steel recycling contribution made so solidly by resource recovery facilities.

  8. Modified 43XX Steels for High Toughness

    DTIC Science & Technology

    1980-04-01

    AL AMMRC TR 80-20 MODIFIED 43XX STEELS FOR HIGH TOUGHNESS T CS.,•, °x ,•, o o,,o,,,sD T I W4 AftELECTE APRIL 1980 J N.J. Kar, V.F. Zackay and E.R...carried out. Isohra tasomions in these steels resulted inn bbaainni 11-v DI FOR Z 47 RITIOW OF I NOV695 IS OBSOLETE UCASFE SECURITY UCLASSIFIEDINOFTI PAGE...this investigation for Si-modified AISI 4330 steel appear to be superior to those for unmodified AISI 4340 and 300-M steels , whilst the strength-tough

  9. 30. Photocopy of photograph. STEEL PLANT, OPEN HEARTH FURNACE CHARGING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Photocopy of photograph. STEEL PLANT, OPEN HEARTH FURNACE CHARGING CREW, 1910. (From the Bethlehem Steel Corporation Colletion, Seattle, WA) - Irondale Iron & Steel Plant, Port Townsend, Jefferson County, WA

  10. 37. Photocopy of photograph. STEEL PLANT, OPEN HOUSE INSIDE PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. Photocopy of photograph. STEEL PLANT, OPEN HOUSE INSIDE PLANT AT TIME OF ITS OPENING, 1910. (From the Bethlehem Steel Corporation Collection, Seattle, WA) - Irondale Iron & Steel Plant, Port Townsend, Jefferson County, WA

  11. North and west facades of crucible steel building; looking southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North and west facades of crucible steel building; looking southeast - Bethlehem Steel Corporation, South Bethlehem Works, Crucible Steel Plant, Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  12. Hydrogen in heavy wall submerged arc weld-joints of 2 1/4 Cr- 1 Mo steel after different soaking treatments

    SciTech Connect

    Dittrich, S.; Heuser, A.; Grote, G.

    1994-12-31

    The very important necessity of preventing hydrogen-induced cracks during the welding of 2 1/4 Cr - 1 Mo vessels requires reliable specifications for the dehydrogenation of the welded joints. A real evaluation of the hydrogen risk can only be based on actual figures which have been determined in original joints. For the tests, a 4-3/4 in. (120 mm) thick plate of 2-1/4 Cr - I Mo steel was used. Submerged arc welding was performed with an EB-3 wire and an agglomerated flux which has been used in the past decade for the above application. Immediately after welding, three different dehydrogenation treatments were performed: 2 h at 535{degrees}F (280{degrees}C), 4 h at 660{degrees}F (250{degrees}C), and 1 h at 1150{degrees}F (620{degrees}C). The results show that in all cases, the maximum level of hydrogen was found in the upper half of the joint. Especially interesting are the results of the diffusible hydrogen since its level is directly responsible for the delayed hydrogen cracks. The recommendation gained from the performed investigations is to modify the often-raised requirements of an intermediate stress relieving of highly stressed weldments. Both treatments, 2 h at 535{degrees}F (280{degrees}C) and 4 h at 660{degrees}F (250{degrees}C), result in a diffusible hydrogen content significantly below the critical limit. The application of 4 h at 550{degrees}F (250{degrees}C) even leads to hydrogen contents which are nearly as low as given by an intermediate stress relieving.

  13. Steel shear walls, behavior, modeling and design

    SciTech Connect

    Astaneh-Asl, Abolhassan

    2008-07-08

    In recent years steel shear walls have become one of the more efficient lateral load resisting systems in tall buildings. The basic steel shear wall system consists of a steel plate welded to boundary steel columns and boundary steel beams. In some cases the boundary columns have been concrete-filled steel tubes. Seismic behavior of steel shear wall systems during actual earthquakes and based on laboratory cyclic tests indicates that the systems are quite ductile and can be designed in an economical way to have sufficient stiffness, strength, ductility and energy dissipation capacity to resist seismic effects of strong earthquakes. This paper, after summarizing the past research, presents the results of two tests of an innovative steel shear wall system where the boundary elements are concrete-filled tubes. Then, a review of currently available analytical models of steel shear walls is provided with a discussion of capabilities and limitations of each model. We have observed that the tension only 'strip model', forming the basis of the current AISC seismic design provisions for steel shear walls, is not capable of predicting the behavior of steel shear walls with length-to-thickness ratio less than about 600 which is the range most common in buildings. The main reasons for such shortcomings of the AISC seismic design provisions for steel shear walls is that it ignores the compression field in the shear walls, which can be significant in typical shear walls. The AISC method also is not capable of incorporating stresses in the shear wall due to overturning moments. A more rational seismic design procedure for design of shear walls proposed in 2000 by the author is summarized in the paper. The design method, based on procedures used for design of steel plate girders, takes into account both tension and compression stress fields and is applicable to all values of length-to-thickness ratios of steel shear walls. The method is also capable of including the effect of

  14. Controlling DC permeability in cast steels

    NASA Astrophysics Data System (ADS)

    Sumner, Aaran; Gerada, Chris; Brown, Neil; Clare, Adam

    2017-05-01

    Annealing (at multiple cooling rates) and quenching (with tempering) was performed on specimens of cast steel of varying composition. The aim was to devise a method for selecting the steel with the highest permeability, from any given range of steels, and then increasing the permeability by heat treatment. Metallographic samples were imaged using optical microscopy to show the effect of the applied heat treatments on the microstructure. Commonly cast steels can have DC permeability altered by the careful selection of a heat treatment. Increases of up to 381% were achieved by annealing using a cooling rate of 6.0 °C/min. Annealing was found to cause the carbon present in the steel to migrate from grain boundaries and from within ferrite crystals into adjacent pearlite crystals. The migration of the carbon resulted in less carbon at grain boundaries and within ferrite crystals reducing the number of pinning sites between magnetic domains. This gives rise to a higher permeability. Quenching then tempering was found to cause the formation of small ferrite crystals with the carbon content of the steel predominately held in the martensitic crystal structures. The results show that with any given range of steel compositions the highest baseline DC permeability will be found with the steel that has the highest iron content and the lowest carbon content. For the samples tested in this paper a cooling rate of 4.5 °C/min resulted in the relative permeability of the sample with the highest baseline permeability, AS4, increasing from 783 to 1479 at 0.5 T. This paper shows how heat treatments commonly applied to hypoeutectoid cast steels, to improve their mechanical performance, can be used to also enhance electromagnetic properties of these alloys. The use of cast steels allows the creation of DC components for electrical machines not possible by the widely used method of stacking of electrical grade sheet steels.

  15. Summary of Research 1997, Department of Mechanical Engineering.

    DTIC Science & Technology

    1999-01-01

    consumables and parent steels for naval shipbuilding applications. SUMMARY: In recent years the U.S. Navy has been replacing the HY80 -100 series of high...of High-Strength, Low-Alloy (HSLA) Steels and Their Weldments 29 Modeling and Simulation of Damage and Cracks in Solid Rocket Propellant Materials 41...mechanical properties of Navy high strength steels and their weldments so that new weld consumables and parent steels for Naval applications can be

  16. Corrosion Behavior of IF Steel in Various Media and Its Comparison with Mild Steel

    NASA Astrophysics Data System (ADS)

    Singh, G. P.; Moon, A. P.; Sengupta, S.; Deo, G.; Sangal, S.; Mondal, K.

    2015-05-01

    The present work discusses corrosion behavior of an interstitial-free (IF) steel in 0.6 M NaCl, 1 M NaOH, and 1 M HCl solutions, and its comparison with mild steel (MS). Dynamics polarization and AC Impedance Spectroscopy explain different polarization behaviors of the steel samples. All the steels were exposed to open atmosphere for 100 days, and to 0.6 M NaCl salt fog for 30 days. Scanning electron microscopy, x-ray diffraction, and Raman and Fourier Transformed Infrared Spectroscopy were used to characterize microstructure of the steels, rust constituents, and morphologies. Corrosion behavior of the steels has close relation with the morphology and constituents of the rusts. It has been observed that the corrosion in the IF and MS steels is uniform in nature.

  17. Clean steel technology -- Fundamental to the development of high performance steels

    SciTech Connect

    Wilson, A.D.

    1999-07-01

    The use of clean steel technology (low sulfur with calcium treatment for inclusion shape control) is a fundamental building block in the development of high performance plate steels. A brief review will be presented of the benefits of calcium treatment and its effect on non-metallic inclusions (sulfides and oxides) and reducing sulfur levels. During the past thirty years the requirements for low sulfur levels have been reduced from 0.010% maximum to 0.001% maximum. The effects of clean steel practices on specific properties will be reviewed including tensile ductility, Charpy V-notch and fracture toughness, fatigue crack propagation and hydrogen-induced-cracking resistance. Traditional low sulfur plate steel applications have included pressure vessels. offshore platforms, plastic injection molds and line-pipe skelp. More recent applications will be discussed including bridge steels, high strength structural steels to 130 ksi (897 MPa) minimum yield strength, 9% nickel steels for cryogenic applications, and military armor.

  18. High Strength Steel Welding Research

    DTIC Science & Technology

    2007-11-02

    22000 C to 15000 C. - Kluken and Gr6ng [57] considered three major growth processes: collision, 0S diffusion, and Ostwald ripening. They excluded...0- zz * 22000 - * 21000 *20000 0 0 0 0 0 .51o.5225o . Figure 4.7 Temperature profiles at indicated heights for a UMAW process with 220-ppm hydrogen...steel weld metal. With increasing S100 -- 1 0.-Pt I -. , -s ll ie (XO oil - a - IS - 3S0 o 0.20 -- 30 t* \\+ 0~4xo- bg s0o 10 10 IV 60o I0D ISO 0o 0o OION

  19. [Initial stages of steel biocorrosion].

    PubMed

    Zhigletsova, S K; Rodin, V B; Kobelev, V S; Aleksandrova, N V; Rasulova, G E; Kholodenko, V P

    2000-01-01

    Initial stages of corrosion of mild steel induced by Klebsiela rhinoscleromatis BO2 were studied in various media. The effect of the microorganism was detected 8-10 h after inoculation. The number of viable cells were virtually unchanged within one month in all media, but the corrosive activity of the strain decreased. The corrosive activity of microorganisms can be determined by spectrophotometry even only after incubation for 24 h. At a low level of organic substrate, even strong colonization with microorganisms does not inevitably result in a significant damage to metals.

  20. Chromizing of 3Cr Steel

    SciTech Connect

    Ravi, Vilupanur; Harrison, Bradley; Koch, Jordan; Ly, Alexander; Schissler, Andrew; Pint, Bruce A; Haynes, James A

    2011-01-01

    Grade 315 steel (Fe-2.9 Cr-1.7 W-0.7 Mo-0.3 Mn-0.3 Si-0.2 V-0.1 Ni-0.13 C-0.01 N) was chromized by the halide-activated pack cementation (HAPC) process. Key process parameters, i.e., coating temperatures and pack compositions, were investigated. Ammonium chloride-activated packs in the 700-1000 C range produced coatings nominally in the 1-8 {micro}m range, as determined by optical and scanning electron microscopy (SEM). Coatings applied in the 900-1000 C temperature range resulted in Cr-rich coatings. The predominant phase in the coating was identified as Cr23C6 by X-ray diffraction. In addition, the presence of chromium nitride, Cr2N, was observed in the coating. The power generation industry is faced with an ever-increasing demand for energy while simultaneously having to reduce carbon emissions. These goals can be facilitated by increasing plant efficiency through the use of higher operating temperatures and pressures. Traditional construction materials, e.g., the ferritic Grade 22 high strength low alloy steel, are limited to operations below {approx} 550 C. Therefore, new materials are required for future plants designed to operate up to 650 C and possibly higher. These new materials need to have improved tensile strength, ductility, toughness, corrosion resistance, and creep properties at elevated temperatures. Oak Ridge National Laboratory (ORNL) is investigating the oxidation and creep behavior of various coatings on Grade 315 steel (Fe-2.9 Cr-1.7 W-0.7 Mo-0.3 Mn-0.3 Si-0.2 V-0.1 Ni-0.13 C-0.01 N), a super-bainitic steel developed for superior creep properties. Thin, chemical vapor-deposited (CVD) aluminide coatings were used to compensate for the reduced corrosion and oxidation resistance that resulted from the low chromium content of the alloy. However, the aluminized Grade 315 alloys performed less-than-favorably under conditions relevant to fossil boilers, leading to the conclusion that higher chromium contents are required for the formation of

  1. Help for the Steel Industry

    NASA Astrophysics Data System (ADS)

    1991-01-01

    A collaboration between NASA Lewis Research Center (LRC) and Gladwin Engineering resulted in the adaptation of aerospace high temperature metal technology to the continuous casting of steel. The continuous process is more efficient because it takes less time and labor. A high temperature material, once used on the X-15 research plane, was applied to metal rollers by a LRC developed spraying technique. Lewis Research Center also supplied mold prototype of metal composites, reducing erosion and promoting thermal conductivity. Rollers that previously cracked due to thermal fatigue, lasted longer. Gladwin's sales have increased, and additional NASA-developed innovations are anticipated.

  2. Multiple Impacts on Monolithic Steel

    DTIC Science & Technology

    1982-04-01

    Two-dimensional computer code , . Eulerian computer code Shaped-charge penetration Multiple impact .6, ABYRAC• ( - ms i N twSMW Mni/ffir b? Wok nuftd...material was copper with a yield stress in shear of 1.3 kbar. Before impact, the velocity of the penetrators was 5.0 km/s and the diameter, 3 mm. The steel...target was semi-infinite with a yield stress in shear of 6.8 kbar. Five impact situations were considered: (1) one impact by a 27.0- m-long penetrator

  3. Titanium "irons" and titanium "steels"

    NASA Astrophysics Data System (ADS)

    Firstov, S. A.; Tkachenko, S. V.; Kuz'menko, N. N.

    2009-01-01

    Special features of the structure and properties of promising structural alloys based on the Ti-Si system are described. The similarity of the diagrams of phase equilibria of the Fe-Si and Fe-C systems makes it possible to classify the alloys of the Ti-Si system into titanium "steels" and "irons" depending on the silicon content. Results of studies of the effects of alloying, heat treatment, and thermomechanical treatment on the phase and structural transformations and on some properties of alloys based on the Ti-Si system are presented.

  4. METHOD FOR JOINING ALUMINUM TO STAINLESS STEEL

    DOEpatents

    Lemon, L.C.

    1960-05-24

    Aluminum may be joined to stainless steel without the use of flux by tinning the aluminum with a tin solder containing 1% silver and 1% lead, tinning the stainless steel with a 50% lead 50% tin solder, and then sweating the tinned surfaces together.

  5. Chem I Supplement: Chemistry of Steel Making.

    ERIC Educational Resources Information Center

    Sellers, Neal

    1980-01-01

    Provides information about the chemistry of steel making applicable to teaching secondary school science. Generalized chemical reactions describe the manufacture of steel from iron ore. Also discussed are raw materials, processing choices, and how various furnaces (blast, direct reduction, open hearth, basic oxygen, electric) work. (CS)

  6. Mineral resource of the month: steel

    USGS Publications Warehouse

    Fenton, Michael D.

    2007-01-01

    About 96 million metric tons of steel was produced in the United States last year — more than any other metal. And the $3.46 billion of iron and steel scrap exported was also the highest of any metal scrap export, helping to reduce the U.S. trade deficit.

  7. African Drum and Steel Pan Ensembles.

    ERIC Educational Resources Information Center

    Sunkett, Mark E.

    2000-01-01

    Discusses how to develop both African drum and steel pan ensembles providing information on teacher preparation, instrument choice, beginning the ensemble, and lesson planning. Includes additional information for the drum ensembles. Lists references and instructional materials, sources of drums and pans, and common note layout/range for steel pan…

  8. Ellie Mannette: Master of the Steel Drum.

    ERIC Educational Resources Information Center

    Svaline, J. Marc

    2001-01-01

    Presents an interview with Elliot ("Ellie") Mannette who has played a major role in the development and application of steel drums. States that he has spent most of his life designing and teaching the steel drums. Covers interview topics and background information on Mannette. (CMK)

  9. A recycling process for dezincing steel scrap

    SciTech Connect

    Dudek, F.J.; Daniels, E.J. ); Morgan, W.A.; Kellner, A.W.; Harrison, J. )

    1992-01-01

    In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

  10. A recycling process for dezincing steel scrap

    SciTech Connect

    Dudek, F.J.; Daniels, E.J.; Morgan, W.A.; Kellner, A.W.; Harrison, J.

    1992-08-01

    In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

  11. Low Mn alloy steel for cryogenic service

    DOEpatents

    Morris, J.W. Jr.; Niikura, M.

    A ferritic cryogenic steel which has a relatively low (about 4 to 6%) manganese content and which has been made suitable for use at cryogenic temperatures by a thermal cycling treatment followed by a final tempering. The steel includes 4 to 6% manganese, 0.02 to 0.06% carbon, 0.1 to 0.4% molybdenum and 0 to 3% nickel.

  12. History dependence of magnetomechanical properties of steel

    NASA Astrophysics Data System (ADS)

    Melquiond, F.; Mouroux, A.; Jouglar, J.; Vuillermoz, P. L.; Weinstock, H.

    1996-05-01

    Magnetomechanical measurements using a superconducting SQUID magnetic gradiometer and a tensile-testing machine have been performed on a variety of steel specimens to determine the change in magnetization due to applied stress and the possible application of the observed behavior as a new form of nondestructive evaluation in steel. This study builds on earlier related measurements.

  13. Why Not Start a Steel Band?

    ERIC Educational Resources Information Center

    Svaline, J. Marc

    1995-01-01

    Suggests expanding the eclectic nature of a band program by creating a steel band, a Caribbean-based percussion ensemble. The steel band complements multicultural education and attracts students to the music program. Discusses maintenance, repertoire, and performance. Includes classification of pans and a list of schools with established programs.…

  14. Forming "dynamic" membranes on stainless steel

    NASA Technical Reports Server (NTRS)

    Brandon, C. A.; Gaddis, J. L.

    1979-01-01

    "Dynamic" zirconium polyacrylic membrane is formed directly on stainless steel substrate without excessive corrosion of steel. Membrane is potentially useful in removal of contaminated chemicals from solution through reversed osmosis. Application includes use in filtration and desalination equipment, and in textile industry for separation of dyes from aqueous solvents.

  15. Ellie Mannette: Master of the Steel Drum.

    ERIC Educational Resources Information Center

    Svaline, J. Marc

    2001-01-01

    Presents an interview with Elliot ("Ellie") Mannette who has played a major role in the development and application of steel drums. States that he has spent most of his life designing and teaching the steel drums. Covers interview topics and background information on Mannette. (CMK)

  16. Method for welding chromium molybdenum steels

    DOEpatents

    Sikka, Vinod K.

    1986-01-01

    Chromium-molybdenum steels exhibit a weakening after welding in an area adjacent to the weld. This invention is an improved method for welding to eliminate the weakness by subjecting normalized steel to a partial temper prior to welding and subsequently fully tempering the welded article for optimum strength and ductility.

  17. The Mechanical Metallurgy of Armour Steels

    DTIC Science & Technology

    2016-10-01

    battlefield threats and continue to be highly competitive armour materials . The relationship between armour steel mechanical properties, specifically...their mechanical metallurgy, and ballistic performance is explained, where such performance is primarily determined by material strength, hardness and...armour materials . However, the factors that are most important for the ballistic and structural performance of armour steels are not commonly well

  18. Diffusion brazing nickel-plated stainless steel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Mitchell, M. J.

    1976-01-01

    To bond parts, sandwich assembly is made up of aluminum core, aluminum face sheet with brazing alloy interface, and nickel plated stainless steel part. Sandwich is placed between bottom and top glide sheet that is placed in stainless steel retort where assembly is bonded at 580 C.

  19. Chem I Supplement: Chemistry of Steel Making.

    ERIC Educational Resources Information Center

    Sellers, Neal

    1980-01-01

    Provides information about the chemistry of steel making applicable to teaching secondary school science. Generalized chemical reactions describe the manufacture of steel from iron ore. Also discussed are raw materials, processing choices, and how various furnaces (blast, direct reduction, open hearth, basic oxygen, electric) work. (CS)

  20. Diffusion brazing nickel-plated stainless steel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Mitchell, M. J.

    1976-01-01

    To bond parts, sandwich assembly is made up of aluminum core, aluminum face sheet with brazing alloy interface, and nickel plated stainless steel part. Sandwich is placed between bottom and top glide sheet that is placed in stainless steel retort where assembly is bonded at 580 C.

  1. Tubercles and Localized Corrosion on Carbon Steel

    DTIC Science & Technology

    2010-12-01

    with symbiotic relationships and nutrient cycling. Miller and Tiller [14] indicated, "iron bacteria , which, together with the ferric hydroxide...conclude localized corrosion directly under the tubercles or a role for bacteria in their formation. 15. SUBJECT TERMS tubercle, carbon steel... bacteria in their formation. Introduction It is well established that tubercles formed on austenitic 300 series (304 or 316) stainless steel in

  2. The comparison of frictional resistance in titanium, self-ligating stainless steel, and stainless steel brackets using stainless steel and TMA archwires: An in vitro study

    PubMed Central

    Khalid, Syed Altaf; Kumar, Vadivel; Jayaram, Prithviraj

    2012-01-01

    Aim: The aim of the study was to compare the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and titanium molybdenum alloy (TMA) archwires. Materials and Methods: We compared the frictional resistance in 0.018 slot and 0.022 slot of the three brackets – titanium, self-ligating stainless steel, and conventional stainless steel – using stainless steel archwires and TMA archwires. An in vitro study of simulated canine retraction was undertaken to evaluate the difference in frictional resistance between titanium, self-ligating stainless steel, and stainless steel brackets, using stainless steel and TMA archwires. Results and Conclusion: We compared the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and TMA archwires, with the help of Instron Universal Testing Machine. One-way analysis of variance (ANOVA), Student's “t” test, and post hoc multiple range test at level of <0.05 showed statistically significant difference in the mean values of all groups. Results demonstrated that the titanium, self-ligating stainless steel, and stainless steel brackets of 0.018-inch and 0.022-inch slot had no significant variations in frictional résistance. The self-ligating bracket with TMA archwires showed relatively less frictional resistance compared with the other groups. The titanium bracket with TMA archwires showed relatively less frictional resistance compared with the stainless steel brackets. PMID:23066253

  3. The comparison of frictional resistance in titanium, self-ligating stainless steel, and stainless steel brackets using stainless steel and TMA archwires: An in vitro study.

    PubMed

    Khalid, Syed Altaf; Kumar, Vadivel; Jayaram, Prithviraj

    2012-08-01

    The aim of the study was to compare the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and titanium molybdenum alloy (TMA) archwires. We compared the frictional resistance in 0.018 slot and 0.022 slot of the three brackets - titanium, self-ligating stainless steel, and conventional stainless steel - using stainless steel archwires and TMA archwires. An in vitro study of simulated canine retraction was undertaken to evaluate the difference in frictional resistance between titanium, self-ligating stainless steel, and stainless steel brackets, using stainless steel and TMA archwires. We compared the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and TMA archwires, with the help of Instron Universal Testing Machine. One-way analysis of variance (ANOVA), Student's "t" test, and post hoc multiple range test at level of <0.05 showed statistically significant difference in the mean values of all groups. Results demonstrated that the titanium, self-ligating stainless steel, and stainless steel brackets of 0.018-inch and 0.022-inch slot had no significant variations in frictional résistance. The self-ligating bracket with TMA archwires showed relatively less frictional resistance compared with the other groups. The titanium bracket with TMA archwires showed relatively less frictional resistance compared with the stainless steel brackets.

  4. Stress corrosion cracking of stainless steels

    NASA Astrophysics Data System (ADS)

    Hehemann, R. F.

    1985-11-01

    The similarities and differences in the stress corrosion cracking response of ferritic and austenitic stainless steels in chloride solutions will be examined. Both classes of materials exhibit a cracking potential: similar transient response (to loading) of the potential in open circuit tests or the current in potentiostatic tests and similar enrichment of chromium and depletion of iron in the film associated with localized corrosion processes. The ferritic steels are more resistant to localized corrosion than are the austenitic steels, which is responsible for the difference in the influence of prior thermal and mechanical history on cracking susceptibility of the two types of steel. Similarities in the fractography of stress corrosion cracks and those produced by brittle delayed failure during cathodic charging of the ferritic steels indicate that hydrogen embrittlement is involved in the failure process.

  5. Hydrogen transport in iron and steel

    NASA Technical Reports Server (NTRS)

    Louthan, M. R., Jr.; Derrick, R. G.; Donovan, J. A.; Caskey, G. R., Jr.

    1976-01-01

    The permeabilities of protium, deuterium, and tritium in foil specimens of Marz grade iron, 4130 steel, Armco iron, HP-9-4-20, and T-1 steels were studied at hydrogen pressures between 0.02 and 0.5 MPa over the temperature range 260-700 K. The permeability was measured by a pressure-rise method, deuterium counting with a detector, and radioactivity counting. Good agreement is found between the measurement techniques used. It is shown that the permeabilities of protium, deuterium, and tritium in iron and T-1 steel at temperatures as low as 260 K are in good agreement with the equation proposed by Gonzalez (1967). However, the permeabilities of HP-9-4-20 and 4130 steel to hydrogen are typically lower than predicted. The isotope effect on hydrogen permeability of HP-9-4-20, 4130 and T-1 steels, and high-purity iron can be estimated by an inverse square root of mass correction.

  6. An understanding of HSLA-65 plate steels

    NASA Astrophysics Data System (ADS)

    Sampath, K.

    2006-02-01

    HSLA-65 plate steels can be produced using one of five plate manufacturing techniques: normalizing, controlled rolling (CR), controlled rolling followed by accelerated cooling (CR-AC), direct quenching and tempering (DQT), or conventional quenching and tempering (Q&T). The HSLA-65 steels are characterized by low carbon content and low alloy content, and they exhibit a low carbon equivalent that allows improved plate weldability. These characteristics in turn (a) provide the steel plate with a refined microstructure that ensures high strength and toughness; (b) eliminate or substantially reduce the need for preheating during welding; (c) resist susceptibility to hydrogen-assisted cracking (HAC) in the weld heat affected zone (HAZ) when fusion (arc) welded using low heat-input conditions; and (d) depending on section thickness, facilitate high heat-input welding (about 2 kJ/mm) without significant loss of strength or toughness in the HAZ. However, application of this plate manufacturing process and of these controls produces significant differences in the metallurgical structure and range of mechanical properties of the HSLA-65 plate steels both among themselves and versus conventional higher strength steel (HSS) plates. For example, among the HSLA-65 plate steels, those produced by Q&T exhibit minimal variability in mechanical properties, especially in thicker plates. Besides variability in mechanical properties depending on plate thickness, the CR and CR-AC plate steels exhibit a relatively higher yield strength to ultimate tensile strength (YS/UTS) ratio than do DQT and Q&T steels. Such differences in processing and properties of HSLA-65 plate steels could potentially affect the selection and control of various secondary fabrication practices, including arc welding. Consequently, fabricators must exercise extreme caution when transferring allowable limits of certified secondary fabrication practices from one type of HSLA-65 plate steel to another, even for the

  7. Automated Steel Cleanliness Analysis Tool (ASCAT)

    SciTech Connect

    Gary Casuccio; Michael Potter; Fred Schwerer; Dr. Richard J. Fruehan; Dr. Scott Story

    2005-12-30

    The objective of this study was to develop the Automated Steel Cleanliness Analysis Tool (ASCATTM) to permit steelmakers to evaluate the quality of the steel through the analysis of individual inclusions. By characterizing individual inclusions, determinations can be made as to the cleanliness of the steel. Understanding the complicating effects of inclusions in the steelmaking process and on the resulting properties of steel allows the steel producer to increase throughput, better control the process, reduce remelts, and improve the quality of the product. The ASCAT (Figure 1) is a steel-smart inclusion analysis tool developed around a customized next-generation computer controlled scanning electron microscopy (NG-CCSEM) hardware platform that permits acquisition of inclusion size and composition data at a rate never before possible in SEM-based instruments. With built-in customized ''intelligent'' software, the inclusion data is automatically sorted into clusters representing different inclusion types to define the characteristics of a particular heat (Figure 2). The ASCAT represents an innovative new tool for the collection of statistically meaningful data on inclusions, and provides a means of understanding the complicated effects of inclusions in the steel making process and on the resulting properties of steel. Research conducted by RJLG with AISI (American Iron and Steel Institute) and SMA (Steel Manufactures of America) members indicates that the ASCAT has application in high-grade bar, sheet, plate, tin products, pipes, SBQ, tire cord, welding rod, and specialty steels and alloys where control of inclusions, whether natural or engineered, are crucial to their specification for a given end-use. Example applications include castability of calcium treated steel; interstitial free (IF) degasser grade slag conditioning practice; tundish clogging and erosion minimization; degasser circulation and optimization; quality assessment/steel cleanliness; slab, billet

  8. Superstrength of nanograined steel with nanoscale intermetallic precipitates transformed from shock-compressed martensitic steel

    NASA Astrophysics Data System (ADS)

    Yu, Hailiang; Yan, Ming; Lu, Cheng; Tieu, Anh Kiet; Li, Huijun; Zhu, Qiang; Godbole, Ajit; Li, Jintao; Su, Lihong; Kong, Charlie

    2016-11-01

    An increasing number of industrial applications need superstrength steels. It is known that refined grains and nanoscale precipitates can increase strength. The hardest martensitic steel reported to date is C0.8 steel, whose nanohardness can reach 11.9 GPa through incremental interstitial solid solution strengthening. Here we report a nanograined (NG) steel dispersed with nanoscale precipitates which has an extraordinarily high hardness of 19.1 GPa. The NG steel (shock-compressed Armox 500T steel) was obtained under these conditions: high strain rate of 1.2 μs-1, high temperature rise rate of 600 Kμs-1 and high pressure of 17 GPa. The mean grain size achieved was 39 nm and reinforcing precipitates were indexed in the NG steel. The strength of the NG steel is expected to be ~3950 MPa. The discovery of the NG steel offers a general pathway for designing new advanced steel materials with exceptional hardness and excellent strength.

  9. Superstrength of nanograined steel with nanoscale intermetallic precipitates transformed from shock-compressed martensitic steel

    PubMed Central

    Yu, Hailiang; Yan, Ming; Lu, Cheng; Tieu, Anh Kiet; Li, Huijun; Zhu, Qiang; Godbole, Ajit; Li, Jintao; Su, Lihong; Kong, Charlie

    2016-01-01

    An increasing number of industrial applications need superstrength steels. It is known that refined grains and nanoscale precipitates can increase strength. The hardest martensitic steel reported to date is C0.8 steel, whose nanohardness can reach 11.9 GPa through incremental interstitial solid solution strengthening. Here we report a nanograined (NG) steel dispersed with nanoscale precipitates which has an extraordinarily high hardness of 19.1 GPa. The NG steel (shock-compressed Armox 500T steel) was obtained under these conditions: high strain rate of 1.2 μs−1, high temperature rise rate of 600 Kμs−1 and high pressure of 17 GPa. The mean grain size achieved was 39 nm and reinforcing precipitates were indexed in the NG steel. The strength of the NG steel is expected to be ~3950 MPa. The discovery of the NG steel offers a general pathway for designing new advanced steel materials with exceptional hardness and excellent strength. PMID:27892460

  10. 29 CFR 1926.757 - Open web steel joists.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Open web steel joists. 1926.757 Section 1926.757 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.757 Open web steel joists... and columns are not framed in at least two directions with solid web structural steel members, a...

  11. 29 CFR 1926.757 - Open web steel joists.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Open web steel joists. 1926.757 Section 1926.757 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.757 Open web steel joists... and columns are not framed in at least two directions with solid web structural steel members, a...

  12. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  13. 49 CFR 178.504 - Standards for steel drums.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for steel drums. 178.504 Section 178.504...-bulk Performance-Oriented Packaging Standards § 178.504 Standards for steel drums. (a) The following are identification codes for steel drums: (1) 1A1 for a non-removable head steel drum; and (2) 1A2...

  14. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover...

  15. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover...

  16. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  17. 19 CFR 360.101 - Steel import licensing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 3 2012-04-01 2012-04-01 false Steel import licensing. 360.101 Section 360.101 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.101 Steel import licensing. (a) In general. (1) All imports of basic steel...

  18. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  19. 49 CFR 178.504 - Standards for steel drums.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Standards for steel drums. 178.504 Section 178.504...-Oriented Packaging Standards § 178.504 Standards for steel drums. (a) The following are identification codes for steel drums: (1) 1A1 for a non-removable head steel drum; and (2) 1A2 for a removable...

  20. 19 CFR 360.101 - Steel import licensing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 3 2013-04-01 2013-04-01 false Steel import licensing. 360.101 Section 360.101 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.101 Steel import licensing. (a) In general. (1) All imports of basic steel...

  1. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover...

  2. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  3. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  4. 49 CFR 178.504 - Standards for steel drums.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Standards for steel drums. 178.504 Section 178.504...-Oriented Packaging Standards § 178.504 Standards for steel drums. (a) The following are identification codes for steel drums: (1) 1A1 for a non-removable head steel drum; and (2) 1A2 for a removable...

  5. 19 CFR 360.101 - Steel import licensing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 3 2014-04-01 2014-04-01 false Steel import licensing. 360.101 Section 360.101 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.101 Steel import licensing. (a) In general. (1) All imports of basic steel...

  6. 19 CFR 360.101 - Steel import licensing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 3 2011-04-01 2011-04-01 false Steel import licensing. 360.101 Section 360.101 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.101 Steel import licensing. (a) In general. (1) All imports of basic steel...

  7. 49 CFR 178.504 - Standards for steel drums.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Standards for steel drums. 178.504 Section 178.504...-Oriented Packaging Standards § 178.504 Standards for steel drums. (a) The following are identification codes for steel drums: (1) 1A1 for a non-removable head steel drum; and (2) 1A2 for a removable...

  8. 49 CFR 178.504 - Standards for steel drums.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Standards for steel drums. 178.504 Section 178.504...-Oriented Packaging Standards § 178.504 Standards for steel drums. (a) The following are identification codes for steel drums: (1) 1A1 for a non-removable head steel drum; and (2) 1A2 for a removable...

  9. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  10. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  11. 75 FR 8746 - Certain Steel Grating From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... COMMISSION Certain Steel Grating From China AGENCY: United States International Trade Commission. ACTION... retarded, by reason of subsidized and less-than-fair-value imports from China of certain steel gratings... ``certain steel grating, consisting of two or more pieces of steel, including load- bearing pieces and...

  12. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  13. 19 CFR 360.101 - Steel import licensing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Steel import licensing. 360.101 Section 360.101 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.101 Steel import licensing. (a) In general. (1) All imports of basic steel...

  14. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover...

  15. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover...

  16. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  17. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  18. 29 CFR 1926.757 - Open web steel joists.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Open web steel joists. 1926.757 Section 1926.757 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.757 Open web steel joists... and columns are not framed in at least two directions with solid web structural steel members, a...

  19. 29 CFR 1926.757 - Open web steel joists.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Open web steel joists. 1926.757 Section 1926.757 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.757 Open web steel joists... and columns are not framed in at least two directions with solid web structural steel members, a...

  20. 29 CFR 1926.757 - Open web steel joists.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Open web steel joists. 1926.757 Section 1926.757 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.757 Open web steel joists... and columns are not framed in at least two directions with solid web structural steel members, a...