Science.gov

Sample records for 9l gliosarcoma model

  1. Distribution of hematoporphyrin derivative in the rat 9l gliosarcoma brain tumor analyzed by digital video fluorescence microscopy.

    PubMed

    Boggan, J E; Walter, R; Edwards, M S; Borcich, J K; Davis, R L; Koonce, M; Berns, M W

    1984-12-01

    A digital video fluorescence microscopy technique was used to evaluate the distribution of hematoporphyrin derivative (HPD) in the rat intracerebral 9L gliosarcoma brain-tumor model at 4, 24, 48, and 72 hours after intravenous administration of 10 mg/kg of the drug. Compared to surrounding normal brain, there was significant preferential uptake of HPD into the tumor. In sections surveyed, fluorescence reached a maximum value by 24 hours; however, only 33% to 44% of the tumor was fluorescent. In contrast, fluorescence within the surrounding normal brain was maximum at 4 hours, but was present in less than 1% of the brain tissue evaluated. The effect of HPD sensitization to a laser light dose (633 nm) of 30 joules/sq cm delivered through the intact skull was evaluated histologically in 10 rats. A patchy coagulation necrosis, possibly corresponding to the distribution of HPD fluorescence seen within the tumor, was observed. There was evidence that photoradiation therapy (PRT) affects defective tumor vasculature and that a direct tumor cell toxicity spared normal brain tissue. Despite these findings, limited uptake of HPD in tumor and the brain adjacent to tumor may decrease the effectiveness of PRT in the 9L gliosarcoma brain-tumor model. Because of the similarity between the capillary system of the 9L tumor and human brain tumors, PRT may have a limited therapeutic effect in patients with malignant brain tumors. PMID:6239014

  2. Cell cycle dependence of protophorphyrin IX generation in 9L rat gliosarcoma

    NASA Astrophysics Data System (ADS)

    Luo, Shiming; Da, Xing; Chen, Qun

    2006-09-01

    Photodynamic therapy (PDT) is a cancer therapy that utilizes optical energy to activate a photosensitizer drug in a target tissue. Always, the curative effect is dependent on the light fluence, the concentration of the photosensitizer and the concentration of the oxygen. To date, Protophorphyrin IX (PpIX) as the only one endogenous photosensitizer is widely used in PDT of brain tumors. Since PpIX is synthesized in intracellular structure, and is likely dependent on the phase of the cell cycle. The cell cycle dependence of PpIX production is thus investigated in the current work in 9L gliosarcoma cells.

  3. Efficacy of pyropheophorbide-a-hexyl ether for photodynamic therapy of rat 9L gliosarcoma

    NASA Astrophysics Data System (ADS)

    Autry-Conwell, Susan A.; Edwards, Benjamin F.; Boggan, James E.; Gandour-Edwards, Regina; Pandey, Ravindra K.; Dougherty, Thomas J.

    1993-06-01

    In preliminary studies, the efficacy of a new photosensitizer, pyropheophorbide-(alpha) - hexyl ether (HPPH #23), for use in photodynamic therapy (PDT) was assessed using the rat 9L gliosarcoma tumor model in subcutaneous flank tumors, intracranial tumors, and in vivo. Flank and intracranial tumors were irradiated with 75 - 203 J/cm2 24 hours after 0.3 - 0.6 mg/kg IV injection of HPPH #23. At 24 hours post-PDT, and flank tumors showed a range of necrosis at the highest laser dose from 50 - 100%. The overlying skin and underlying muscle were spared. Intracranial tumors exhibited moderate to severe hemorrhagic necrosis. Areas of brain adjacent to tumor within the irradiated field also showed some damage. In vitro phototoxicity of HPPH #23 was compared to that of Photofrin II (PhII). Cells growing in culture dishes were exposed to HPPH #23 or PhII for 20 hours, washed free of unbound drug, then irradiated at 2.5 J/cm2, 17 mW/cm2 at 665 nm (HPPH #23) or 630 nm (PhII). Irradiated cultures were maintained in dark incubators for an additional 4 - 5 days, and phototoxic inhibition of cell proliferation was quantified by the sulphorhodamine B spectrophotometric assay. Under identical irradiation conditions, the IC50 for HPPH #23 (0.25 (mu) g/ml) was 10-fold lower than that of PhII (2.5 (mu) g/ml). Complete cell kill was achieved at sensitizer doses of 0.5 (mu) g/ml (HPPH #23) and 5.0 (mu) g/ml (PhII).

  4. Preferential Effect of Synchrotron Microbeam Radiation Therapy on Intracerebral 9L Gliosarcoma Vascular Networks

    SciTech Connect

    Bouchet, Audrey; Lemasson, Benjamin; Le Duc, Geraldine; Maisin, Cecile; Braeuer-Krisch, Elke; Siegbahn, Erik Albert; Renaud, Luc; Khalil, Enam; Remy, Chantal; Poillot, Cathy; Bravin, Alberto; Laissue, Jean A.; Barbier, Emmanuel L.; Serduc, Raphael

    2010-12-01

    Purpose: Synchrotron microbeam radiation therapy (MRT) relies on spatial fractionation of the incident photon beam into parallel micron-wide beams. Our aim was to analyze the effects of MRT on normal brain and 9L gliosarcoma tissues, particularly on blood vessels. Methods and Materials: Responses to MRT (two arrays, one lateral, one anteroposterior (2 x 400 Gy), intersecting orthogonally in the tumor region) were studied during 6 weeks using MRI, immunohistochemistry, and vascular endothelial growth factor Western blot. Results: MRT increased the median survival time of irradiated rats (x3.25), significantly increased blood vessel permeability, and inhibited tumor growth; a cytotoxic effect on 9L cells was detected 5 days after irradiation. Significant decreases in tumoral blood volume fraction and vessel diameter were measured from 8 days after irradiation, due to loss of endothelial cells in tumors as detected by immunochemistry. Edema was observed in the normal brain exposed to both crossfired arrays about 6 weeks after irradiation. This edema was associated with changes in blood vessel morphology and an overexpression of vascular endothelial growth factor. Conversely, vascular parameters and vessel morphology in brain regions exposed to one of the two arrays were not damaged, and there was no loss of vascular endothelia. Conclusions: We show for the first time that preferential damage of MRT to tumor vessels versus preservation of radioresistant normal brain vessels contributes to the efficient palliation of 9L gliosarcomas in rats. Molecular pathways of repair mechanisms in normal and tumoral vascular networks after MRT may be essential for the improvement of such differential effects on the vasculature.

  5. The radiation response of cells from 9L gliosarcoma tumours is correlated with [F18]-EF5 uptake

    PubMed Central

    KOCH, CAMERON J.; SHUMAN, ANNE L.; JENKINS, WALTER T.; KACHUR, ALEXANDER V.; KARP, JOEL S.; FREIFELDER, RICHARD; DOLBIER, WILLIAM R.; EVANS, SYDNEY M.

    2014-01-01

    Purpose Tumour hypoxia affects cancer biology and therapy-resistance in both animals and humans. The purpose of this study was to determine whether EF5 ([2-(2-nitro-1-H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)-acetamide]) binding and/or radioactive drug uptake correlated with single-dose radiation response in 9L gliosarcoma tumours. Materials and methods Twenty-two 9L tumours were grown in male Fischer rats. Rats were administered low specific activity 18F-EF5 and their tumours irradiated and assessed for cell survival and hypoxia. Hypoxia assays included EF5 binding measured by antibodies against bound-drug adducts and gamma counts of 18F-EF5 tumour uptake compared with uptake by normal muscle and blood. These assays were compared with cellular radiation response (in vivo to in vitro assay). In six cases, uptake of tumour versus muscle was also assayed using images from a PET (positron emission tomography) camera (PENN G-PET). Results The intertumoural variation in radiation response of 9L tumour-cells was significantly correlated with uptake of 18F-labelled EF5 (i.e., including both bound and non-bound drug) using either tumour to muscle or tumour to blood gamma count ratios. In the tumours where imaging was performed, there was a significant correlation between the image analysis and gamma count analysis. Intertumoural variation in cellular radiation response of the same 22 tumours was also correlated with mean flow cytometry signal due to EF5 binding. Conclusion To our knowledge, this is the first animal model/drug combination demonstrating a correlation of radioresponse for tumour-cells from individual tumours with drug metabolism using either immunohistochemical or non-invasive techniques. PMID:19995239

  6. Post-acute response of 9L gliosarcoma to Photofrin-mediated PDT in athymic nude mice.

    PubMed

    Zhang, Xuepeng; Jiang, Feng; Kalkanis, Steven N; Zhang, ZhengGang; Hong, Xin; Yang, Hongyan; Chopp, Michael

    2007-11-01

    The objective of this study is to measure the chronic responses of 9L glioma and normal brain to photodynamic therapy (PDT). Tumor size, proliferation activity of glioma cells, and vascular endothelial growth factor (VEGF) expression in both the tumor area and the brain adjacent to tumor (BAT) were observed 7 days after clinically relevant doses of PDT treatment. 9L Gliosarcoma cells were implanted into the brain of 20 athymic nude mice. Fifteen mice were injected intraperitoneally with Photofrin at a dose of 2 mg/kg on day 6 after tumor implantation and were treated with laser at different optical doses of 40 J/cm(2) (n = 5), 80 J/cm(2) (n = 5), and 120 J/cm(2) (n = 5) at 24 h after Photofrin injection, respectively. The remaining five tumor-bearing mice served as a tumor-only control. All animals were killed 14 days after tumor implantation. Hematoxylin and eosin and immunostaining were performed to assess tumor volume, VEGF expression in the tumor and the BAT, as well as Ki67 expression in the tumor area. The tumor volume of the mice receiving 80 or 120 J/cm(2) group was significantly smaller than the control group (p < 0.01). VEGF immunoreactivity in the BAT was significantly increased in the 120 J/cm(2) PDT-treated mice (p < 0.001), compared with the immunoreactivity seen in untreated mice and those receiving Photofrin and lower optical doses. No significant differences were detected in the proliferation of glioma cells and VEGF expression in the tumor area between these groups. These data indicate that PDT can shrink tumor, especially at the high light dose, and that PDT induces expression of VEGF in the BAT, which is associated with tumor recurrence. Therefore, PDT combined with anti-angiogenic agents may be an effective treatment strategy for glioma. PMID:17505777

  7. Increased efficacy of chemo- and radio-therapy by a hemoglobin solution in the 9L gliosarcoma.

    PubMed

    Teicher, B A; Dupuis, N P; Emi, Y; Ikebe, M; Kakeji, Y; Menon, K

    1995-01-01

    Tissue oxygen tensions were measured in the rat 9L gliosarcoma under conditions of normal air breathing or carbogen breathing and after intravenous administration of a hemoglobin solution with air breathing or carbogen breathing. Administration of the hemoglobin decreased the level of hypoxia in the tumors. Treatment of the animals with the antiangiogenic combination of TNP-470 and minocycline also increased tumor oxygenation compared with untreated controls. Treatment with the antiangiogenic agents along with administration of the hemoglobin solution/carbogen breathing decreased the hypoxic fraction (% pO2 readings < or = 5 mmHg) from 71 % to 30%. Treatment of the tumor-bearing animals with BCNU or adriamycin modestly reduced hypoxia in the tumors, while treatment with fractionated radiation markedly increased hypoxia in the tumors. Tumor growth delay was used to assess the response of the subcutaneous tumor to the various treatment combinations. There was a strong correlation between increased therapeutic response and decreased tumor hypoxia. Tumor growth delay from BCNU increased from 5.3 days to 16.4 days with TNP-470/-minocycline/hemoglobin solution/carbogen. Similarly, the tumor growth delay from adriamycin increased from 3.9 days to 17.0 days with TNP-470/minocycline/hemoglobin solution/carbogen. Finally, the tumor growth delay from fractionated radiation increased from 4.8 days to 13.3 days with TNP-470/minocycline/hemoglobin solution/carbogen. When etanidazole was added to the complete radiation regimen, the tumor growth delay increased further to 20.5 days. These data show that the addition of non-toxic agents that increase tumor oxygenation to cytotoxic therapies can markedly increase therapeutic response. PMID:7669943

  8. Selective enhancement of radiation response of herpes simplex virus thymidine kinase transduced 9L gliosarcoma cells in vitro and in vivo by antiviral agents

    SciTech Connect

    Kim, Jae Ho; Kim, Sang Hie; Kolozsvary, A.

    1995-11-01

    The purpose of this investigation was to demonstrate in a well-characterized tumor model that the radiosensitivity of tumor cells transduced with a herpes simplex virus thymidine kinase gene (HS-tk) would be selectively enhanced by antiviral agents. Rat 9L gliosarcoma cells transduced with a retroviral vector containing an HS-tk gene, 9L-tk cells were exposed to various doses or irradiation under either in vitro or in vivo conditions. The radiation sensitizing potential of two antiviral drugs, bromovinyl deoxyuridine (BVdU) and dihydroxymethyl ethyl methyl guanine (acyclovir), was evaluated in vitro. The radiosensitizing ability of BVdU was also evaluated with a 9L-tk tumor growing in the rat brain. Tumors growing in the right hemisphere of rat brains were irradiated stereotactically with single-dose irradiation. The radiation response of 9L-tk cells was selectively enhanced by antiviral agents relative to nontransduced cells. In the cell culture, when a 24-h drug exposure (20 {mu}g/ml) preceded radiation, the sensitizer enhancement ratio (SER) for BVdU and acyclovir was 1.4 {plus_minus} 0.1 and 1.3 {plus_minus} 0.1, respectively. Exposure of cells to 10 {mu}g/ml acyclovir for two 24-h periods both pre- and postirradiation resulted in a SER of 1.6 {plus_minus} 0.1. In vivo, a significant increase in median survival time of rats with 9L-tk tumors was found when BVdU was administered prior to single-dose irradiation relative to the survival time of similar rats receiving radiation alone. An antiviral agent can enhance cell killing by radiation with selective action in cells transduced with the herpes simplex virus thymidine kinase gene. The results suggest that the three-pronged therapy of HS-tk gene transduction, systemically administered antiviral drug, and stereotactically targeted radiation therapy will improve the effectiveness of radiation therapy for the treatment of radioresistant tumors. 25 refs., 6 figs.

  9. In vivo L-DOPA production by genetically modified primary rat fibroblast or 9L gliosarcoma cell grafts via coexpression of GTPcyclohydrolase I with tyrosine hydroxylase.

    PubMed

    Leff, S E; Rendahl, K G; Spratt, S K; Kang, U J; Mandel, R J

    1998-06-01

    To investigate the biochemical requirements for in vivo L-DOPA production by cells genetically modified ex vivo in a rat model of Parkinson's disease (PD), rat syngeneic 9L gliosarcoma and primary Fischer dermal fibroblasts (FDFs) were transduced with retroviral vectors encoding the human tyrosine hydroxylase 2 (hTH2) and human GTP cyclohydrolase I (hGTPCHI) cDNAs. As GTPCHI is a rate-limiting enzyme in the pathway for synthesis of the essential TH cofactor, tetrahydrobiopterin (BH4), only hTH2 and GTPCHI cotransduced cultured cells produced L-DOPA in the absence of added BH4. As striatal BH4 levels in 6-hydroxydopamine (6-OHDA)-lesioned rats are minimal, the effects of cotransduction with hTH2 and hGTPCHI on L-DOPA synthesis by striatal grafts of either 9L cells or FDFs in unilateral 6-OHDA-lesioned rats were tested. Microdialysis experiments showed that those subjects that received cells cotransduced with hTH2 and hGTPCHI produced significantly higher levels of L-DOPA than animals that received either hTH2 or untransduced cells. However, animals that received transduced FDF grafts showed a progressive loss of transgene expression until expression was undetectable 5 weeks after engraftment. In FDF-engrafted animals, no differential effect of hTH2 vs hTH2 + hGTPCHI transgene expression on apomorphine-induced rotation was observed. The differences in L-DOPA production found with cells transduced with hTH2 alone and those cotransduced with hTH2 and hGTPCHI show that BH4 is critical to the restoration of the capacity for L-DOPA production and that GTPCHI expression is an effective means of supplying BH4 in this rat model of PD. PMID:9628761

  10. Long-term immunological memory in the resistance of rats to transplanted intracerebral 9L gliosarcoma (9LGS) following subcutaneous immunization with 9LGS cells.

    PubMed

    Smilowitz, H M; Joel, D D; Slatkin, D N; Micca, P L; Nawrocky, M M; Youngs, K; Tu, W; Coderre, J A

    2000-01-01

    Glioblastoma multiforme (GBM) is the most common primary human brain tumor. About 7000 new cases are diagnosed yearly in the USA. Despite current neurosurgical and postoperative radiotherapeutic tumor cytoreduction methods, in most cases occult foci of tumor cells infiltrate surrounding edematous brain tissues and cause recurrent disease within one year. GBM is almost invariably fatal within a few years after it is diagnosed. Our goal is to achieve long-term control of GBM by combining immunoprophylaxis with a radiation-based technique, such as boron neutron-capture therapy (BNCT), potentially capable of specifically targeting the infiltrating tumor cells while sparing the surrounding normal brain tissue. It has long been known that the subcutaneous (sc) injection of irradiated cells or untreated cultured cells (and the removal of the resulting tumors) derived from the well characterized, highly immunogenic 9L gliosarcoma (9LGS) rat model into young isogenic rats can prevent tumor growth after subsequent sc or intracranial (ic) injection of untreated, otherwise lethal 9LGS cells. In this study we have confirmed, quantified and extended those findings to study the efficacy of such immunological memory in normal aging rats and in aging rats previously treated for ic 9LGS tumors by BNCT. (1) The sc injection of 5,000,000 untreated 9LGS cells and the surgical removal of the resulting tumors (method A) protected 80% of normal young rats from an ic challenge with 10,000 untreated 9LGS cells, and a single sc injection of 5,000,000 lethally X-irradiated 9LGS cells (method B) protected 66% of them, but multiple sc injections with a crude particulate fraction prepared from 9LGS cells were not protective. Protection is long-lasting since contralateral ic rechallenge of six-month survivors with an injection of 10,000 viable 9LGS cells resulted in 100% survival. (2) Normal one-year-old rats were only slightly less protected than were normal young rats, approximately 70% rather

  11. Irradiation of intracerebral 9L gliosarcoma by a single array of microplanar x-ray beams from a synchrotron: balance between curing and sparing

    NASA Astrophysics Data System (ADS)

    Regnard, Pierrick; LeDuc, Géraldine; Bräuer-Krisch, Elke; Troprès, Irène; Siegbahn, Erik Albert; Kusak, Audrey; Clair, Charlotte; Bernard, Hélène; Dallery, Dominique; Laissue, Jean A.; Bravin, Alberto

    2008-02-01

    The purpose of this work was the understanding of microbeam radiation therapy at the ESRF in order to find the best compromise between curing of tumors and sparing of normal tissues, to obtain a better understanding of survival curves and to report its efficiency. This method uses synchrotron-generated x-ray microbeams. Rats were implanted with 9L gliosarcomas and the tumors were diagnosed by MRI. They were irradiated 14 days after implantation by arrays of 25 µm wide microbeams in unidirectional mode, with a skin entrance dose of 625 Gy. The effect of using 200 or 100 µm center-to-center spacing between the microbeams was compared. The median survival time (post-implantation) was 40 and 67 days at 200 and 100 µm spacing, respectively. However, 72% of rats irradiated at 100 µm spacing showed abnormal clinical signs and weight patterns, whereas only 12% of rats were affected at 200 µm spacing. In parallel, histological lesions of the normal brain were found in the 100 µm series only. Although the increase in lifespan was equal to 273% and 102% for the 100 and 200 µm series, respectively, the 200 µm spacing protocol provides a better sparing of healthy tissue and may prove useful in combination with other radiation modalities or additional drugs.

  12. The therapeutic ratio in BNCT: Assessment using the Rat 9L gliosarcoma brain tumor and spinal cord models

    SciTech Connect

    Coderre, J.A.; Micca, P.L.; Nawrocky, M.M.; Fisher, C.D.; Bywaters, A.; Morris, G.M.; Hopewell, J.W.

    1996-10-01

    During any radiation therapy, the therapeutic tumor dose is limited by the tolerance of the surrounding normal tissue within the treatment volume. The short ranges of the products of the {sup 10}B(n,{alpha}){sup 7}Li reaction produced during boron neutron capture therapy (BNCT) present an opportunity to increase the therapeutic ratio (tumor dose/normal tissue dose) to levels unprecedented in photon radiotherapy. The mixed radiation field produced during BNCT comprises radiations with different linear energy transfer (LET) and different relative biological effectiveness (RBE). The short ranges of the two high-LET products of the `B(n,a)`Li reaction make the microdistribution of the boron relative to target cell nuclei of particular importance. Due to the tissue specific distribution of different boron compounds, the term RBE is inappropriate in defining the biological effectiveness of the {sup 10}B(n,{alpha}){sup 7}Li reaction. To distinguish these differences from true RBEs we have used the term {open_quotes}compound biological effectiveness{close_quotes} (CBE) factor. The latter can be defined as the product of the true, geometry-independent, RBE for these particles times a {open_quotes}boron localization factor{close_quotes}, which will most likely be different for each particular boron compound. To express the total BNCT dose in a common unit, and to compare BNCT doses with the effects of conventional photon irradiation, multiplicative factors (RBEs and CBEs) are applied to the physical absorbed radiation doses from each high-LET component. The total effective BNCT dose is then expressed as the sum of RBE-corrected physical absorbed doses with the unit Gray-equivalent (Gy-Eq).

  13. Model selection in magnetic resonance imaging measurements of vascular permeability: Gadomer in a 9L model of rat cerebral tumor.

    PubMed

    Ewing, James R; Brown, Stephen L; Lu, Mei; Panda, Swayamprava; Ding, Guangliang; Knight, Robert A; Cao, Yue; Jiang, Quan; Nagaraja, Tavarekere N; Churchman, Jamie L; Fenstermacher, Joseph D

    2006-03-01

    Vasculature in and around the cerebral tumor exhibits a wide range of permeabilities, from normal capillaries with essentially no blood-brain barrier (BBB) leakage to a tumor vasculature that freely passes even such large molecules as albumin. In measuring BBB permeability by magnetic resonance imaging (MRI), various contrast agents, sampling intervals, and contrast distribution models can be selected, each with its effect on the measurement's outcome. Using Gadomer, a large paramagnetic contrast agent, and MRI measures of T(1) over a 25-min period, BBB permeability was estimated in 15 Fischer rats with day-16 9L cerebral gliomas. Three vascular models were developed: (1) impermeable (normal BBB); (2) moderate influx (leakage without efflux); and (3) fast leakage with bidirectional exchange. For data analysis, these form nested models. Model 1 estimates only vascular plasma volume, v(D), Model 2 (the Patlak graphical approach) v(D) and the influx transfer constant K(i). Model 3 estimates v(D), K(i), and the reverse transfer constant, k(b), through which the extravascular distribution space, v(e), is calculated. For this contrast agent and experimental duration, Model 3 proved the best model, yielding the following central tumor means (+/-s.d.; n = 15): v(D) = 0.07 +/- 0.03 for K(i) = 0.0105 +/- 0.005 min(-1) and v(e) = 0.10 +/- 0.04. Model 2 K(i) estimates were approximately 30% of Model 3, but highly correlated (r = 0.80, P < 0.0003). Sizable inhomogeneity in v(D), K(i), and k(b) appeared within each tumor. We conclude that employing nested models enables accurate assessment of transfer constants among areas where BBB permeability, contrast agent distribution volumes, and signal-to-noise vary. PMID:16079791

  14. Magnetic Targeting of Novel Heparinized Iron Oxide Nanoparticles Evaluated in a 9L-glioma mouse model

    PubMed Central

    Zhang, Jian; Shin, Meong Cheol; Yang, Victor C.

    2013-01-01

    Purpose A novel PEGylated and heparinized magnetic iron oxide nano-platform (DNPH) was synthesized for simultaneous magnetic resonance imaging (MRI) and tumor targeting. Methods Starch-coated magnetic iron oxide nanoparticles (“D”) were crosslinked, aminated (DN) and then simultaneously PEGylated and heparinized with different feed ratios of PEG and heparin (DNPH1-4). DNPH products were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID). The magentic targeting of DNPH3, with appropriate amounts of conjugated PEG and heparin, in a mouse 9L-glioma subcutaneous tumor model was confirmed by magnetic resonance imaging (MRI)/electron spin resonance (ESR). Results DNPH3 showed long circulating properties in vivo (half-life > 8 h, more than 60-fold longer than that of parent D) and low reticuloendothelial system (RES) recognition in liver and spleen. Protamine, a model cationic protein, was efficiently loaded onto DNPH3 with a maxium loading content of 26.4 μg/mg Fe. Magnetic capture of DNPH3 in tumor site with optimized conditions (I.D. of 12 mg/kg, targeting time of 45 min) was up to 29.42 μg Fe/g tissue (12.26% I.D./g tissue). Conclusion DNPH3 showed the potential to be used as a platform for cationic proteins for simultaneous tumor targeting and imaging. PMID:24065589

  15. Primary Multifocal Gliosarcoma of the Spinal Cord

    PubMed Central

    Kumar, Ramesh M.; Finn, Michael

    2016-01-01

    Gliosarcoma (GS) is a rare and exceedingly malignant neoplasm of the central nervous system. It displays clinical features similar to glioblastoma, yet is histologically unique as it harbors both gliomatous and sarcomatous cellular components. Involvement of the neuro-axis is predominantly limited to the cerebral parenchyma and meninges. Primary GS of the spinal cord is rarely encountered. We report a case of a 54 year old male who presented with 2 months of progressive, bilateral lower extremity sensory deficits. Magnetic resonance imaging of the neuro-axis revealed multiple intradural lesions involving the cervical and thoracic spinal cord without evidence of intracranial involvement. Surgical resection of a dural based, extramedullary cervical lesion and two exophytic, intramedullary thoracic lesions revealed gliosarcoma, WHO grade IV. The patient died approximately 11 months after presentation. This report confirms that GS is not limited to supratentorial involvement and can primarily affect the spinal cord. PMID:27134708

  16. Genetic Alterations in Gliosarcoma and Giant Cell Glioblastoma.

    PubMed

    Oh, Ji Eun; Ohta, Takashi; Nonoguchi, Naosuke; Satomi, Kaishi; Capper, David; Pierscianek, Daniela; Sure, Ulrich; Vital, Anne; Paulus, Werner; Mittelbronn, Michel; Antonelli, Manila; Kleihues, Paul; Giangaspero, Felice; Ohgaki, Hiroko

    2016-07-01

    The majority of glioblastomas develop rapidly with a short clinical history (primary glioblastoma IDH wild-type), whereas secondary glioblastomas progress from diffuse astrocytoma or anaplastic astrocytoma. IDH mutations are the genetic hallmark of secondary glioblastomas. Gliosarcomas and giant cell glioblastomas are rare histological glioblastoma variants, which usually develop rapidly. We determined the genetic patterns of 36 gliosarcomas and 19 giant cell glioblastomas. IDH1 and IDH2 mutations were absent in all 36 gliosarcomas and in 18 of 19 giant cell glioblastomas analyzed, indicating that they are histological variants of primary glioblastoma. Furthermore, LOH 10q (88%) and TERT promoter mutations (83%) were frequent in gliosarcomas. Copy number profiling using the 450k methylome array in 5 gliosarcomas revealed CDKN2A homozygous deletion (3 cases), trisomy chromosome 7 (2 cases), and monosomy chromosome 10 (2 cases). Giant cell glioblastomas had LOH 10q in 50% and LOH 19q in 42% of cases. ATRX loss was detected immunohistochemically in 19% of giant cell glioblastomas, but absent in 17 gliosarcomas. These and previous results suggest that gliosarcomas are a variant of, and genetically similar to, primary glioblastomas, except for a lack of EGFR amplification, while giant cell glioblastoma occupies a hybrid position between primary and secondary glioblastomas. PMID:26443480

  17. Gliosarcoma with liposarcomatous component, bone infiltration and extracranial growth.

    PubMed

    Borota, O C; Scheie, D; Bjerkhagen, B; Jacobsen, E A; Skullerud, K

    2006-01-01

    Gliosarcoma is a highly malignant brain tumor consisting of both a glioblastoma and a mesenchymal component. The latter typically resembles fibrosarcoma, but differentiation patterns resembling osteosarcoma, chondrosarcoma, angiosarcoma and rhabdomyosarcoma have also been described. Molecular-genetic studies have shown that both glioblastoma and the mesenchymal component share identical cytogenetic abnormalities or mutations, suggesting a monoclonal origin from glial cells. We report an unusual case of gliosarcoma that presented as a large intracerebral tumor with infiltration of the temporal bone and the soft tissues in the infratemporal fossa. Microscopically, the tumor consisted of alternating areas of glioblastoma and fibrosarcoma. Focally, areas ofosteosarcomatous and liposarcomatous differentiation were found. Although gliosarcoma with transcranial penetration is very rare, it should be suspected in case of intracranial tumor with glioblastoma-imaging features, infiltration of bone and extracranial growth. Our case of liposarcomatous differentiation in gliosarcoma--together with another very recently reported similar case--expands the morphologic heterogeneity of this peculiar brain tumor. PMID:16866302

  18. Cell proliferation kinetics and radiation response in 9L tumor spheroids

    SciTech Connect

    Sweigert, S.E.

    1984-05-01

    Cell kinetic parameters, including population doubling-time, cell cycle time, and growth fraction, were measured in 9L gliosarcoma spheroids. These parameters were studied as the spheroids grew from 50 ..mu..m to over 900 ..mu..m in diameter. Experiments relating the cell kinetic parameters to the radiation response of 9L spheroids were also carried out. The major findings were that the average cell cycle time (T/sub c/), is considerably longer in large spheroids than in exponentially-growing monolayers, the radiosensitivity of noncycling (but still viable) cells in spheroids is not significantly different from that of cycling spheroid cells, and the radiation-induced division delay is approximately twice as long in spheroid cells as in monolayer cells given equal radiation doses. The cell loss factor for spheroids of various sizes was calculated, by using the measured kinetic parameters in the basic equations for growth of a cell population. 157 references, 6 figures, 3 tables.

  19. Radiotherapy plus concomitant temozolomide in primary gliosarcoma.

    PubMed

    Adeberg, Sebastian; Bernhardt, Denise; Harrabi, Semi Ben; Diehl, Christian; Koelsche, Christian; Rieken, Stefan; Unterberg, Andreas; von Deimling, Andreas; Debus, Juergen

    2016-06-01

    Clinical guidelines for gliosarcoma (GSM) are poorly defined and GSM patients are usually treated in accordance with existing guidelines for glioblastoma (GBM), with maximal surgical resection followed by chemoradiation with temozolomide (TMZ). However, it is not clear yet if GSM patients profit from TMZ therapy and if O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation is crucial. We retrospectively evaluated 37 patients with histologically proven, primary GSM who had received radiation therapy since the temozolomide era (post-2005). Twenty-five patients (67.6 %) received combined chemoradiation with temozolomide, and 12 cases (32.4 %) received radiation therapy alone. Molecular markers were determined retrospectively. Survival and correlations were calculated using log-rank, univariate, and multivariate Cox proportional hazards-ratio analyses. All cases were isocitrate dehydrogenase 1 (IDH1) wildtype, MGMT promoter methylation could be observed in 33.3 % of the assessable cases (10/30) and TERT promoter mutation was seen in a high frequency of 86.7 % (26/30). The influence of TMZ therapy on overall survival (OS) was significantly improved compared with cases in which radiation therapy alone was performed (13.9 vs. 9.9 months; p = 0.045), independently of MGMT promoter methylation. The positive effect of TMZ on OS was confirmed in this study's multivariate analyses (p = 0.04), after adjusting our results for potential confounders. In conclusion, this study demonstrates that concomitant TMZ together with radiation therapy increases GSM-patient survival independent of MGMT promoter methylation. Thus, GSM can be treated in accordance to GBM guidelines. MGMT promoter methylation was infrequent and TERT promoter mutation common without influencing the survival rates. The mechanisms of TMZ effects in GSM are still not fully understood and merit further clinical and molecular-genetic and -biological evaluation. PMID:27025857

  20. Boron neutron capture therapy of intracerebral rat gliosarcomas.

    PubMed Central

    Joel, D D; Fairchild, R G; Laissue, J A; Saraf, S K; Kalef-Ezra, J A; Slatkin, D N

    1990-01-01

    The efficacy of boron neutron capture therapy (BNCT) for the treatment of intracerebrally implanted rat gliosarcomas was tested. Preferential accumulation of 10B in tumors was achieved by continuous infusion of the sulfhydryl borane dimer, Na4(10)B24H22S2, at a rate of 45-50 micrograms of 10B per g of body weight per day from day 11 to day 14 after tumor initiation (day 0). This infusion schedule resulted in average blood 10B concentrations of 35 micrograms/ml in a group of 12 gliosarcoma-bearing rats and 45 micrograms/ml in a group of 10 similar gliosarcoma-bearing rats treated by BNCT. Estimated tumor 10B levels in these two groups were 26 and 34 micrograms/g, respectively. On day 14, boron-treated and non-boron-treated rats were exposed to 5.0 or 7.5 MW.min of radiation from the Brookhaven Medical Research Reactor that yielded thermal neutron fluences of approximately 2.0 x 10(12) or approximately 3.0 x 10(12) n/cm2, respectively, in the tumors. Untreated rats had a median postinitiation survival time of 21 days. Reactor radiation alone increased median postinitiation survival time to 26 (5.0 MW.min) or 28 (7.5 MW.min) days. The 12 rats that received 5 MW.min of BNCT had a median postinitiation survival time of 60 days. Two of these animals survived greater than 15 months. In the 7.5 MW.min group, the median survival time is not calculable since 6 of the 10 animals remain alive greater than 10 months after BNCT. The estimated radiation doses to tumors in the two BNCT groups were 14.2 and 25.6 Gy equivalents, respectively. Similar gliosarcoma-bearing rats treated with 15.0 or 22.5 Gy of 250-kilovolt peak x-rays had median survival times of only 26 or 31 days, respectively, after tumor initiation. Images PMID:2263630

  1. Evolution of DNA aptamers for malignant brain tumor gliosarcoma cell recognition and clinical tissue imaging.

    PubMed

    Wu, Qiaoyi; Wu, Liang; Wang, Yuzhe; Zhu, Zhi; Song, Yanling; Tan, Yuyu; Wang, Xing-Fu; Li, Jiuxing; Kang, Dezhi; Yang, Chaoyong James

    2016-06-15

    Gliosarcoma, a variant of glioblastoma multiforme (GBM), is a highly invasive malignant tumor. Unfortunately, this disease still marked by poor prognosis regardless of modern treatments. It is of great significance to discover specific molecular probes targeting gliosarcoma for early cancer diagnosis and therapy. Herein, we have selected a group of DNA aptamers with high affinity and selectivity against gliosarcoma cells K308 using cell-SELEX. All the dissociation constants of these aptamers against gliosarcoma cells were in the nanomolar range and aptamer WQY-9 has the highest affinity and good selectivity among them. Furthermore, truncated aptamer sequence, WQY-9-B, shows similar recognition ability to aptamer WQY-9. In addition, WQY-9-B was found to be able to bind selectively and internalize into cytoplasm of target cancer cell at 37 °C. More importantly, compared to a random sequence, aptamer WQY-9-B showed excellent recognition rate (73.3%) for tissue sections of clinical gliosarcoma samples. These data suggests that aptamer WQY-9-B has excellent potential as an effective molecular probe for gliosarcoma diagnosis. PMID:26802746

  2. Efficacy of local polymer-based and systemic delivery of the anti-glutamatergic agents riluzole and memantine in rat glioma models

    PubMed Central

    Yohay, Kaleb; Tyler, Betty; Weaver, Kyle D.; Pardo, Andrea C.; Gincel, Dan; Blakeley, Jaishri; Brem, Henry; Rothstein, Jeffrey D.

    2015-01-01

    Object The poor outcome of malignant gliomas is largely due to local invasiveness. Previous studies suggest that gliomas secrete excess glutamate and destroy surrounding normal peritumoral brain by means of excitotoxic mechanisms. In this study the authors assessed the effect on survival of 2 glutamate modulators (riluzole and memantine) in rodent glioma models. Methods In an in vitro growth inhibition assay, F98 and 9L cells were exposed to riluzole and memantine. Mouse cerebellar organotypic cultures were implanted with F98 glioma cells and treated with radiation, radiation + riluzole, or vehicle and assessed for tumor growth. Safety and tolerability of intracranially implanted riluzole and memantine CPP:SA polymers were tested in F344 rats. The efficacy of these drugs was tested against the 9L model and riluzole was further tested with and without radiation therapy (RT). Results In vitro assays showed effective growth inhibition of both drugs on F98 and 9L cell lines. F98 organotypic cultures showed reduced growth of tumors treated with radiation and riluzole in comparison with untreated cultures or cultures treated with radiation or riluzole alone. Three separate efficacy experiments all showed that localized delivery of riluzole or memantine is efficacious against the 9L gliosarcoma tumor in vivo. Systemic riluzole monotherapy was ineffective; however, riluzole given with RT resulted in improved survival. Conclusions Riluzole and memantine can be safely and effectively delivered intracranially via polymer in rat glioma models. Both drugs demonstrate efficacy against the 9L gliosarcoma and F98 glioma in vitro and in vivo. Although systemic riluzole proved ineffective in increasing survival, riluzole acted synergistically with radiation and increased survival compared with RT or riluzole alone. PMID:24484234

  3. Cerebral gliosarcoma: Analysis of 16 patients and review of literature

    PubMed Central

    Singh, Gajendra; Das, Kuntal K.; Sharma, Pradeep; Guruprasad, B.; Jaiswal, Sushila; Mehrotra, Anant; Srivastava, Arun K.; Sahu, Rabi N.; Jaiswal, Awadhesh K.; Behari, Sanjay

    2015-01-01

    Background: Gliosarcoma (GS), a subtype of glioblastoma (GBM), is a rare primary neoplasm of the central nervous system. Certain features like temporal lobe affinity, tendency for extraneural metastasis and poorer outcome compared to GBM indicate that GS may indeed be a separate clinicopathologic entity. This led us to revisit this entity in our settings. Materials and Methods: Between 2009 and 2014, 16 cases of histologically proven GSs (14 primary, two secondary) were treated. Patient data were retrieved retrospectively. Statistical analysis was performed with? Statistical Package for Social Sciences, version 17.0. (Chicago, Illinois, USA). Survival was analyzed by Kaplan–Meier method. Results: GS predominantly affected males in their fifth decade of life. Raised intracranial pressure was the most common mode of clinical presentation. Temporal lobe was the most commonly affected part of the brain and majority of primary and all of secondary GBM were located peripherally. In 7 (43.8%) patients, tumor was radiologically well-demarcated and enhanced strongly and homogenously on contrast as compared to 9 (56.2%) patients where the tumor was ill-defined and showed heterogenous patchy or ring enhancement. Extent of excision was total in seven patients (43.8%), near total in 4 (25%) and subtotal in five patients (31.2%). Median survival was 6 months. Patients with well-demarcated, enhancing mass on imaging intraoperatively had firm tumors with a good plane of cleavage and had a better survival (8 months) compared to those in whom the tumor radiologically and intraoperatively mimicked GBM (2 months). Conclusion: GS is associated with poor survival (median survival 6 months). Radiological and intraoperative findings help categorize these tumors into GBM like GS and meningioma like GS. While the former histologically mimics GBM and has very poor survival (2 months), GS with meningioma like feature tends to have better survival (8 months). PMID:26396606

  4. Primary gliosarcoma with long-survival: report of two cases and review of literature

    PubMed Central

    Huo, Zhen; Yang, Di; Shen, Jie; Li, Yuan; Wu, Huanwen; Meng, Yunxiao; Zhang, Shuying; Luo, Yufeng; Cao, Jinling; Liang, Zhiyong

    2014-01-01

    Background: Gliosarcoma (GS) is a rare high-grade malignant tumor with poor prognosis. The survival period of GS ranges from 4 to 18.5 months. Rarely would it be over 40 months. Survival of intraventricular GS is less than 8 months. Methods: There were 2 cases of primary gliosarcoma in our hospital with long-term survival after resection, with one of pure intraventricular origin. We confirmed that our diagnosis was correct by light microscopy, GFAP immunohistochemistry and histochemistry of reticular fiber staining. Results: In the first case, a 47-year-old man with intraventricular gliosarcoma survived for 130 months after surgery. In another case, a 63-year-old woman survived for 4 years after resection. Both cases of GS exhibited biphasic glioblastoma and fibrosarcoma with necrosis. According to the review of surgical records, complete tumor resections, including extended resections were carried out in both cases. The two patients received postoperative radiation therapy and chemotherapy without any further recurrence and metastasis. Conclusions: We reported two cases of GS with long survival. The presented cases demonstrate that, in rare instances, gliosarcoma may show prolonged survival with after surgical excision combined with radiotherapy and chemotherapy. PMID:25337286

  5. Clinical outcome of gliosarcoma compared with glioblastoma multiforme: a clinical study in Chinese patients.

    PubMed

    Zhang, Guobin; Huang, Shengyue; Zhang, Junting; Wu, Zhen; Lin, Song; Wang, Yonggang

    2016-04-01

    Gliosarcoma (GSM) is a rare biphasic neoplasms of the central nervous system composed of a glioblastoma multiforme (GBM) admixed with a sarcomatous component. In clinical practice GSM is generally managed similarly to GBM. However, there are conflicting reports regarding their clinical aggressiveness, cell line of origin and possible prognosis compared with those of GBM. The objective of this study was to compare clinic-pathological features in GSM patients with the GBM patients during the same study period. 518 patients with GBM were treated at our hospital between 2008 and 2013, among them 51 were GSM. In this series the GSMs represented 9.8 % of all GBMs and included 58.8 % male with a median age of 44.7 years. The locations, all supratentorial, included temporal in 41.2 %, frontal in 25.5 %, parietal in 19.6 %, and occipital in 13.7 %. All patients underwent tumor resection followed by post-operative radiation and adjuvant chemotherapy. The O6-methylguanine-DNA methyltransferase promoter methylation studies were significantly more frequent in the GBMs than GSMs (80.1 % vs. 44.7 %, P < 0.001). The median progression free survival and overall survival for the patients with GSM were 8.0 and 13.0 months, respectively, as compared with 9.0 and 14.0 months in the GBM group (log rank test P = 0.001 and 0.004, respectively). The Cox proportional hazards regression model indicated that the extent of tumor resection (HR = 1.518, P = 0.009) and pathological types (HR = 0.608, P = 0.002) were the significant prognostic factors in our own series. With regard to clinical features and outcomes, GSM and GBM cannot be distinguished clinically. GSM in China may be managed similarly to GBM, with maximal safe surgical resection followed by chemo-radiotherapy. Our study adds further evidence to support GSM as a unique clinical entity with a likely worse prognosis than GBM. PMID:26725096

  6. Gliosarcomas arising from the pineal gland region: uncommon localization and rare tumors.

    PubMed

    Sugita, Yasuo; Terasaki, Mizuhiko; Tanigawa, Ken; Ohshima, Koichi; Morioka, Motohiro; Higaki, Koichi; Nakagawa, Setsuko; Shimokawa, Shoko; Nakashima, Susumu

    2016-02-01

    Gliosarcomas are a variant of glioblastomas and present a biphasic pattern, with coexisting glial and mesenchymal components. In this study, two unusual cases are presented. Case 1 is a 52-year-old woman with a headache and memory disturbance for a month. Case 2 is an 18-year-old man with a headache lasting two weeks. In both cases, an MRI revealed enhancing T1-low to iso, T2-iso to high intensity lesions in the pineal gland region. Histologically, in case 1, the tumor showed spindle cell proliferation with disorganized fascicles and cellular pleomorphism. Tumor cells variously exhibited oncocytic transformation. Immunohistochemically, most of the spindle tumor cells were positive for myoglobin and desmin. Some of the tumor cells were positive for GFAP and S-100 protein. On the other hand, all tumor cells were positive for CD133, Musashi1, and SOX-2 which are the markers of neural stem cells. In case 2, the tumor showed monotonous proliferation of short spindle cells with disorganized fascicles and cellular atypism. The morphological distinction between glial and mesenchymal components was not apparent. Immunohistochemically, most of the spindle tumor cells were positive for desmin. Glial tumor cells that were dispersed within the sarcoma as single cells were positive for GFAP. In addition, all tumor cells were positive for CD133, Musashi1 and SOX-2. Based on these microscopic appearances, and immunohistochemical findings, these cases were diagnosed as gliosarcomas arising from the pineal gland region. These results also indicated that pluripotential cancer stem cells differentiated into glial and muscle cell lines at the time of tumor growth. In a survey of previous publications on gliosarcoma arising from the pineal gland, these cases are the second and third reports found in English scientific writings. PMID:26183264

  7. Delayed onset of paresis in rats with experimental intramedullary spinal cord gliosarcoma following intratumoral administration of the paclitaxel delivery system OncoGel

    PubMed Central

    Tyler, Betty M.; Hdeib, Alia; Caplan, Justin; Legnani, Federico G.; Fowers, Kirk D.; Brem, Henry; Jallo, George; Pradilla, Gustavo

    2014-01-01

    Object Treatment options for anaplastic or malignant intramedullary spinal cord tumors (IMSCTs) remain limited. Paclitaxel has potent cytotoxicity against experimental intracranial gliomas and could be beneficial in the treatment of IMSCTs, but poor CNS penetration and significant toxicity limit its use. Such limitations could be overcome with local intratumoral delivery. Paclitaxel has been previously incorporated into a biodegradable gel depot delivery system (OncoGel) and in this study the authors evaluated the safety of intramedullary injections of OncoGel in rats and its efficacy against an intramedullary rat gliosarcoma. Methods Safety of intramedullary OncoGel was tested in 12 Fischer-344 rats using OncoGel concentrations of 1.5 and 6.0 mg/ml (5 μl); median survival and functional motor scores (Basso-Beattie-Bresnahan [BBB] scale) were compared with those obtained with placebo (ReGel) and medium-only injections. Efficacy of OncoGel was tested in 61 Fischer-344 rats implanted with an intramedullary injection of 9L gliosarcoma containing 100,000 cells in 5 μl of medium, and randomized to receive OncoGel administered on the same day (in 32 rats) or 5 days after tumor implantation (in 29 rats) using either 1.5 mg/ml or 3.0 mg/ml doses of paclitaxel. Median survival and BBB scores were compared with those of ReGel-treated and tumor-only rats. Animals were killed after the onset of deficits for histopathological analysis. Results OncoGel was safe for intramedullary injection in rats in doses up to 5 μl of 3.0 mg/ml of paclitaxel; a dose of 5 μl of 6.0 mg/ml caused rapid deterioration in BBB scores. OncoGel at concentrations of 1.5 mg/ml and 3.0 mg/ml paclitaxel given on both Day 0 and Day 5 prolonged median survival and preserved BBB scores compared with controls. OncoGel 1.5 mg/ml produced 62.5% long-term survivors when delivered on Day 0. A comparison between the 1.5 mg/ml and the 3.0 mg/ml doses showed higher median survival with the 1.5 mg/ml dose on Day 0

  8. Human and rat glioma growth, invasion, and vascularization in a novel chick embryo brain tumor model.

    PubMed

    Cretu, Alexandra; Fotos, Joseph S; Little, Brian W; Galileo, Deni S

    2005-01-01

    The mechanisms that control the insidiously invasive nature of malignant gliomas are poorly understood, and their study would be facilitated by an in vivo model that is easy to manipulate and inexpensive. The developing chick embryo brain was assessed as a new xenograft model for the production, growth, and study of human and rat glioma cell lines. Three established glioma lines (U-87 MG, C6, and 9L) were injected into chick embryo brain ventricles on embryonic day (E) 5 and brains were examined after several days to two weeks after injection. All glioma lines survived, produced vascularized intraventricular tumors, and invaded the brain in a manner similar to that in rodents. Rat C6 glioma cells spread along vasculature and also invaded the neural tissue. Human U-87 glioma cells migrated along vasculature and exhibited slight invasion of neural tissue. Rat 9L gliosarcoma cells were highly motile, but migrated only along the vasculature. A derivative of 9L cells that stably expressed the cell surface adhesion molecule NgCAM/L1 was produced and also injected into chick embryo brain ventricles to see if this protein could facilitate tumor cell migration away from the vasculature into areas such as axonal tracts. 9L/NgCAM cells, however, did not migrate away from the vasculature and, thus, this protein alone cannot be responsible for diffuse invasiveness of some gliomas. 9L/NgCAM cell motility was assessed in vitro using sophisticated time-lapse microscopy and quantitative analysis, and was significantly altered compared to parental 9L cells. These studies demonstrate that the chick embryo brain is a successful and novel xenograft model for mammalian gliomas and demonstrate the potential usefulness of this new model for studying glioma tumor cell growth, vascularization, and invasiveness. PMID:16158250

  9. Clinical management and survival outcomes of gliosarcomas in the era of multimodality therapy.

    PubMed

    Damodaran, Omprakash; van Heerden, Jolandi; Nowak, Anna K; Bynevelt, Michael; McDonald, Kerrie; Marsh, Julie; Lee, Gabriel

    2014-03-01

    Gliosarcoma (GSM) is a rare primary malignant brain tumour accounting for less than 0.5% of all intracranial tumours. It has a biphasic histological composition, demonstrating both gliomatous and sarcomatous elements. In clinical practice GSM are generally managed similarly to glioblastoma multiforme (GBM). However, unique features including its clinical propensity for extra-cranial metastasis, distinct radiological features and possible worse prognosis than GBM suggest that GSM may be a distinct clinico-pathological entity. Hence we reviewed patterns of care and outcomes for a series of Australian patients diagnosed with GSM in the era of combined chemo-radiotherapy. Patients were identified by searching the Australian Genomics and Clinical Outcomes of Glioma (AGOG) database and the Western Australian Interhospital Neurosurgical database. Nineteen patients with GSM were identified. Of these, 15 patients were diagnosed with primary GSM and four patients developed secondary GSM after radiation therapy for primary GBM. For comparative purposes, 408 primary GBM patients were identified from the AGOG database during the same study period. The overall median survival for all primary GSM patients was 9.7 months. In comparison the overall median survival for GBM patients recruited to the AGOG database over the same period was 12.2 months. The median survival for secondary GSM patients from the time of diagnosis was 5 months. Primary and secondary GSM pose a great clinical challenge due to their rarity. Our study adds further evidence to support GSM as a unique clinical entity with a likely worse prognosis than GBM. PMID:24332268

  10. Brachium Pontis Gliosarcoma With Well-Differentiated Cartilaginous Tissue: A Case Report.

    PubMed

    Wang, Lei; Xie, Yuanyang; Liu, Yan; Tan, Jun; Chen, Zhongliang; Xiao, Yu; Xia, Ying; Peng, Zefeng

    2015-10-01

    Gliosarcoma (GS) belongs to World Health Organization grade IV neoplasm and displaying glial and mesenchymal differentiation. Only rare cases of GS have been reported in the brachium pontis and 4th ventricle region. Here, we report a rare case of GS located on brachium pontis region and extending into the 4th ventricle with well-differentiated cartilaginous metaplasia. A 28-year-old male patient experienced intermittent headache, vomiting, and gait disorders for 3 months. Magnetic resonance imaging (MRI) showed a heterogeneous ring-enhancement lesion with weak central enhancement in left brachium pontis and 4th ventricle region. Histology revealed the GS was constituted with glial and sarcomatous elements. After immunohistochemical analysis, a diagnosis of GS with cartilaginous differentiation was then made.Symptoms of GS, including headache, aphasia, hemiparesis, cognitive decline, and seizures, mainly determined by the location. The clinical manifestation and radiologic characteristic is not significantly different from that of glioblastoma. The grade of resection is the significant factor related to prognosis of GS, and the clinical effect of adjuvant radiotherapy and chemotherapy need further study. Reporting additional cases would be of great help in better understanding of this location and pathologic type of GS. PMID:26496287

  11. Identical mutations of the p53 tumor suppressor gene in the gliomatous and the sarcomatous components of gliosarcomas suggest a common origin from glial cells

    SciTech Connect

    Biernat, W.; Aguzzi, A.; Sure, U.

    1995-09-01

    Gliosarcomas are morphologically heterogeneous tumors of the central nervous system composed of gliomatous and sarcomatous components. The histogenesis of the latter is still a matter of debate. As mutations of the p53 tumor suppressor gene represent an early event in the development of gliomas, we attempted to determine whether both components of gliosarcomas share identical alterations of the p53 gene. Using single-strand conformation analysis (SSCA) and direct DNA sequencing of the p53 gene, we analyzed dissected gliomatous and sarcomatous parts of 12 formalin-fixed, paraffin-embedded gliosarcomas. The two tumors that contained a p53 alteration were found to carry the identical mutation (exon 5; codon 151, CCC {r_arrow} TCC; codon 173, GTG {r_arrow} GTA) in the gliomatous and the sarcomatous components. These findings suggest a common origin of the two cellular components from neoplastic glial cells. 37 refs., 3 figs., 1 tab.

  12. Identification and characterization of rat Bcl9l gene in silico.

    PubMed

    Katoh, Yuriko; Katoh, Masaru

    2005-03-01

    Drosophila wingless (wg), shaggy (sgg), armadillo (arm), legless (lgs), pygopus (pygo), pangolin (pan), and engrailed (en) are segment polarity genes implicated in Wg-Arm (WNT-beta-catenin) pathway. Drosophila lgs encodes nuclear scaffold protein functioning as positive regulator for Wg-Arm pathway. Cancer-associated genes BCL9 and BCL9L are human homologs for Drosophila lgs. Here, we identified and characterized rat Bcl9l gene by using bioinformatics. Rat Bcl9l gene, consisting of eight exons, was located within AC124034.4 and AC105645.5 genome sequences. Bcl9l gene was linked to Blr1 gene at rat chromosome 8q22 in the tail-to-tail manner with an interval less than 2 kb. Rat Bcl9l gene was found to encode a 1494-aa Bcl9l protein, which showed 97.7% and 94.2% total-amino-acid identity with mouse Bcl9l and human BCL9L, respectively. B9H1-B9H6 domains, originally identified as conserved regions among mammalian BCL9 and BCL9L homologs, were also identified within rat Bcl9l. B9H1 and B9H2 domains corresponded to HD1 and HD2 domains of Drosophila lgs, functioning as binding regions for Pygo and Arm, respectively. B9H4 domain was characterized by multiple Ser-Pro repeats. Thr 954 within B9H4 domain of rat Bcl9l was conserved in mammalian BCL9 and BCL9L homologs. Phylogenetic analysis revealed that mammalian Bcl9l homologs were more related to human BCL9 than to Drosophila lgs. This is the first report on rat Bcl9l gene. PMID:15703843

  13. Arylethynyl Substituted 9,lO-Anthraquinones: Tunable Stokes Shifts by Substitution and Solvent Polarity

    NASA Technical Reports Server (NTRS)

    Yang, Jinhua; Dass, Amala; Rawashdeh, Abdel-Monem M.; Sotiriou-Leventis, Chariklia; Panzner, Matthew J.; Tyson, Daniel S.; Kinder, James D.; Leventis, Nicholas

    2004-01-01

    2-Arylethynyl- and 2,6- and 2,7-diarylethynyl-substituted 9,lO-anthraquinones were synthesized via Sonogashira coupling reactions of 2-bromo-, 2,6-dibromo-, and 2,7-dibromo-9,10- anthraquinone with para-substituted phenylacetylenes. While the redox properties of those compounds are almost insensitive to substitution, their absorption maxima are linearly related to the Hammett constants with different slopes for electron donors and electron acceptors. ABI compounds are photoluminescent both in solution (quantum yields of emission <= 6 %), and as solids. The emission spectra have the characteristics of charge-transfer bands with large Stokes shifts (100-250 nm). The charge-transfer character of the emitting state is supported by large dipole moment differences between the ground and the excited state as concluded on the basis of molecular modeling and Lippert-Mataga correlations of the Stokes shifts with solvent polarity. Maximum Stokes shifts are attained by both electron-donating and -withdrawing groups. This is explained by a destabilization of the HOMO by electron donors and a stabilization of the LUMO by electron acceptors. X-ray crystallographic analysis of, for example, 2,7-bisphenylethynfl- 9,lO-anthraquinone reveals a monoclinic P21In space group and no indication for pi-overlap that would promote quenching, thus explaining emission from the solid state. Representative reduced forms of the title compounds were isolated as stable acetates of the corresponding dihydrs-9,10- anthraquinones. The emission of these compounds is blue-shifted relative to the parent oxidized forms and is attributed to internal transitions in the dihydro-9,lO-anthraquinone core.

  14. Sarcomatoid carcinoma of the jejunum presenting as obscure gastrointestinal bleeding in a patient with a history of gliosarcoma

    PubMed Central

    Alfonso Puentes, Nidia; Jimenez-Alfaro Larrazabal, Carmen; García Higuera, Maria Isabel

    2014-01-01

    Small bowel malignant tumors are rare and sarcomatoid carcinomas have rarely been reported at this site. We report a 56-year-old woman, with history of an excised gliosarcoma, who presented with recurrent obscure gastrointestinal bleeding. She underwent endoscopy and colonoscopy, which failed to identify the cause of the bleeding. The abdominal computed tomography scan located a tumor in the small bowel. Pathology revealed a jejunal sarcomatoid carcinoma. She developed tumor recurrence and multiple liver metastases shortly after surgery. Immunohistochemistry is required for accurate diagnosis. Sarcomatoid carcinoma is a rare cause of obscure gastrointestinal bleeding, which is associated with a poor prognosis. PMID:24759341

  15. Characterization of a canine glioma cell line as related to established experimental brain tumor models.

    PubMed

    Rainov, N G; Koch, S; Sena-Esteves, M; Berens, M E

    2000-07-01

    A large animal tumor model for anaplastic glioma has been recently developed using immunotolerant allogeneic Beagle dogs and an established canine glioma cell line, J3T. This model offers advantages in terms of tumor morphology and similarity to human anaplastic glioma. The present study was aimed at evaluating the biological characteristics of the J3T canine glioma cell line as related to experimental gene therapy studies. Furthermore, development and morphology of canine brain tumors in a xenogeneic immunodeficient SCID mouse model was investigated. It was demonstrated that cultured J3T cells can be efficiently infected by adenovirus (AV), herpes-simplex type I (HSV), or retrovirus (RV) vectors, as well as by non-virus vectors such as cationic liposome/DNA complexes. Thus, in terms of infectability and transfectability, J3T cells seem to be closer to human glioma than the 9L rodent gliosarcoma. Cytotoxicity of selection antibiotics such as G418, puromycin, and hygromycin on J3T cells essentially resemble cytotoxicity seen with other established glioma lines, for example, 9L, U87, or U343. RV-mediated HSV-TK/GCV gene therapy demonstrated comparable LD50 for TK-expressing and control (non-expressing) J3T and 9L cells treated with Ganciclovir. Further, it was proven that J3T cells are tumorigenic and may grow heterotopically and orthotopically in a xenogeneic immunodeficient host, the SCID mouse, although morphology and growth pattern of these xenogeneic tumors differ from the demonstrated invasive phenotype in the Beagle dog. PMID:10901232

  16. Uptake of [sup 10]B in gliosarcomas following the injection of gluthathione monoethyl ester and sulfhydryl borane

    SciTech Connect

    Joel, D.D.; Slatkin, D.N.; Coderre, J.A.

    1992-01-01

    The sulfhydryl borane Na[sub 2][sup 10]B[sub 12]H[sub 11]SH (BSH) was developed as a capture agent for BNCT about 20 years ago and is the compound currently used clinically in Japan for BNCT of malignant brain tumors. Tumor [sup 10]B concentrations following the infusion of the oxidized BSH, a disulfide dimer (Na[sub 4][sup 10]B[sub 24]H[sub 22]S[sub 2]), are nearly twice those obtained following administration of equal amounts of boron as BSH. Also, the rate of decrease of tumor [sup 10]B concentration is slower after dimer infusion than after BSH infusion. When BNCT was administered to rats bearing intracerebral gliosarcomas, the animals infused with dimer had a significant longer median survival time. Dimer, on the other hand, induces a moderately severe, but reversible, hepatotoxicity which may complicate its use in humans. Intracellular glutathione plays an important role in defense against radical-mediated tissue injury. Glutathione monoesters have been reported to have a protective effective on cisplatin toxicity and on radical-induced acute pancreatitis. We investigated the possibility of reducing dimer-induced hepatotoxicity by pre-administration of GSH-ME. The results indicate that not only does the pre-administration of GSH-ME markedly reduce dimer-induced hepatotoxicity, but also results in nearly a doubling of tumor boron concentration. Furthermore, GSH-ME markedly increases tumor boron uptake and retention following administration of BSH.

  17. Uptake of {sup 10}B in gliosarcomas following the injection of gluthathione monoethyl ester and sulfhydryl borane

    SciTech Connect

    Joel, D.D.; Slatkin, D.N.; Coderre, J.A.

    1992-12-31

    The sulfhydryl borane Na{sub 2}{sup 10}B{sub 12}H{sub 11}SH (BSH) was developed as a capture agent for BNCT about 20 years ago and is the compound currently used clinically in Japan for BNCT of malignant brain tumors. Tumor {sup 10}B concentrations following the infusion of the oxidized BSH, a disulfide dimer (Na{sub 4}{sup 10}B{sub 24}H{sub 22}S{sub 2}), are nearly twice those obtained following administration of equal amounts of boron as BSH. Also, the rate of decrease of tumor {sup 10}B concentration is slower after dimer infusion than after BSH infusion. When BNCT was administered to rats bearing intracerebral gliosarcomas, the animals infused with dimer had a significant longer median survival time. Dimer, on the other hand, induces a moderately severe, but reversible, hepatotoxicity which may complicate its use in humans. Intracellular glutathione plays an important role in defense against radical-mediated tissue injury. Glutathione monoesters have been reported to have a protective effective on cisplatin toxicity and on radical-induced acute pancreatitis. We investigated the possibility of reducing dimer-induced hepatotoxicity by pre-administration of GSH-ME. The results indicate that not only does the pre-administration of GSH-ME markedly reduce dimer-induced hepatotoxicity, but also results in nearly a doubling of tumor boron concentration. Furthermore, GSH-ME markedly increases tumor boron uptake and retention following administration of BSH.

  18. Ataxia-Pancytopenia Syndrome Is Caused by Missense Mutations in SAMD9L.

    PubMed

    Chen, Dong-Hui; Below, Jennifer E; Shimamura, Akiko; Keel, Sioban B; Matsushita, Mark; Wolff, John; Sul, Youngmee; Bonkowski, Emily; Castella, Maria; Taniguchi, Toshiyasu; Nickerson, Deborah; Papayannopoulou, Thalia; Bird, Thomas D; Raskind, Wendy H

    2016-06-01

    Ataxia-pancytopenia (AP) syndrome is characterized by cerebellar ataxia, variable hematologic cytopenias, and predisposition to marrow failure and myeloid leukemia, sometimes associated with monosomy 7. Here, in the four-generation family UW-AP, linkage analysis revealed four regions that provided the maximal LOD scores possible, one of which was in a commonly microdeleted chromosome 7q region. Exome sequencing identified a missense mutation (c.2640C>A, p.His880Gln) in the sterile alpha motif domain containing 9-like gene (SAMD9L) that completely cosegregated with disease. By targeted sequencing of SAMD9L, we subsequently identified a different missense mutation (c.3587G>C, p.Cys1196Ser) in affected members of the first described family with AP syndrome, Li-AP. Neither variant is reported in the public databases, both affect highly conserved amino acid residues, and both are predicted to be damaging. With time in culture, lymphoblastic cell lines (LCLs) from two affected individuals in family UW-AP exhibited copy-neutral loss of heterozygosity for large portions of the long arm of chromosome 7, resulting in retention of only the wild-type SAMD9L allele. Newly established LCLs from both individuals demonstrated the same phenomenon. In addition, targeted capture and sequencing of SAMD9L in uncultured blood DNA from both individuals showed bias toward the wild-type allele. These observations indicate in vivo hematopoietic mosaicism. The hematopoietic cytopenias that characterize AP syndrome and the selective advantage for clones that have lost the mutant allele support the postulated role of SAMD9L in the regulation of cell proliferation. Furthermore, we show that AP syndrome is distinct from the dyskeratoses congenita telomeropathies, with which it shares some clinical characteristics. PMID:27259050

  19. Longitudinal in vivo monitoring of rodent glioma models through thinned skull using laser speckle contrast imaging

    NASA Astrophysics Data System (ADS)

    Rege, Abhishek; Seifert, Alan C.; Schlattman, Dan; Ouyang, Yu; Li, Khan W.; Basaldella, Luca; Brem, Henry; Tyler, Betty M.; Thakor, Nitish V.

    2012-12-01

    Laser speckle contrast imaging (LSCI) is a contrast agent free imaging technique suited for longitudinal assessment of vascular remodeling that accompanies brain tumor growth. We report the use of LSCI to monitor vascular changes in a rodent glioma model. Ten rats are inoculated with 9L gliosarcoma cells, and the angiogenic response is monitored five times over two weeks through a thinned skull imaging window. We are able to visualize neovascularization and measure the number of vessels per unit area to assess quantitatively the microvessel density (MVD). Spatial spread of MVD reveals regions of high MVD that may correspond to tumor location. Whole-field average MVD values increase with time in the tumor group but are fairly stable in the control groups. Statistical analysis shows significant differences in MVD values between the tumor group and both saline-receiving and unperturbed control groups over the two-week period (p<0.05). In conclusion, LSCI is suitable for investigation of tumor angiogenesis in rodent models. In addition, the statistical difference (p<0.02) between MVD values of the tumor (24.40±1.41) and control groups (15.40±1.60) on the 14th day after inoculation suggests a potential use of LSCI in the clinic in distinguishing tumor environments from normal vasculature.

  20. Long-term Survival (>13 Years) in a Child With Recurrent Diffuse Pontine Gliosarcoma: A Case Report

    PubMed Central

    Burzynski, Stanislaw R.; Janicki, Tomasz J.; Marszalek, Ania

    2014-01-01

    Pediatric gliosarcoma (GS) is a rare variant of glioblastoma multiforme. The authors describe the case of an unusual pontine location of GS in a 9-year-old boy who was initially diagnosed with low-grade astrocytoma (LGA) that was successfully controlled for 4 years. Subsequently, his brain tumor transformed into a GS. Prior treatment of his LGA included subtotal tumor resection 3 times, standard radiation therapy, and Gamma Knife procedure twice. His LGA was also treated with a standard chemotherapy regimen of carboplatin and vincristine, and his GS with subtotal resection, high-dose cyclophosphamide, and thiotepa with stem cell rescue and temozolomide. Unfortunately, he developed disseminated disease with multiple lesions and leptomeningeal involvement including a tumor occupying 80% of the pons. Upon presentation at our clinic, he had rapidly progressing disease. He received treatment with antineoplastons (ANP) A10 and AS2-1 for 6 years and 10 months under special exception to our phase II protocol BT-22. During his treatment with ANP his tumor stabilized, then decreased, and, ultimately, did not show any metabolic activity. The patient’s response was evaluated by magnetic resonance imaging and positron emission tomography scans. His pathology diagnosis was confirmed by external neuropathologists, and his response to the treatment was determined by central radiology review. He experienced the following treatment-related, reversible toxicities with ANP: fatigue, xerostomia and urinary frequency (grade 1), diarrhea, incontinence and urine color change (grade 2), and grade 4 hypernatremia. His condition continued to improve after treatment with ANP and, currently, he complains only of residual neurological deficit from his previous surgery. He achieved a complete response, and his overall and progression-free survival is in excess of 13 years. This report indicates that it is possible to obtain long-term survival of a child with a highly aggressive recurrent GS

  1. The importance of choice of anaesthetics in studying radiation effects in the 9L rat glioma.

    PubMed Central

    Pavlovic, M.; Wróblewski, K.; Manevich, Y.; Kim, S.; Biaglow, J. E.

    1996-01-01

    In the present study we demonstrate that the glycolysis of the tumour 9L glioma, in vivo, may be manipulated with ketamine/xylazine combinations of anaesthetics. Xylazine alone or in combination with ketamine causes hyperglycaemia which is enhanced by glucose injections. Intracellular tumour pH is acidified when glucose is administered with ketamine/xylazine. However, the combination of inorganic phosphate and insulin with ketamine/xylazine and glucose caused an alkaline shift in the tumour pH as measured by 31P NMR. The anaesthetic combination of ketamine/acepromazine did not produce alterations in blood glucose or in tumour pH status as detected by 31P NMR spectroscopy. These results demonstrate dramatic effects of ketamine/xylazine on the acidification or alkalinisation of the cells of 9L glioma. These altered metabolic states are of potential therapeutic importance. The choice of xylazine alone would be useful for chemotherapy and hyperthermia modalities, both known to be dependent upon glucose metabolism and resultant acidification. PMID:8763885

  2. PDT-induced apoptosis: investigations using two malignant brain tumor models

    NASA Astrophysics Data System (ADS)

    Lilge, Lothar D.; Menzies, Keir; Bisland, Stuart K.; Lin, Annie; Wilson, Brian C.

    2002-06-01

    PDT included necrosis in brain tissue and an intracranial tumor has been quantified for various photosensitizers, and it has been shown to be dependent on the sub-cellular localization of these photosensitizers. In quantifying non- necrotic biological endpoints, such as PDT induced apoptosis, the expression and translation of apoptosis inhibiting or promoting genes is of considerable importance. We studied the susceptibility of two glioblastoma cell lines to under go apoptotic cell death following photodynamic treatment with either Photofrin or delta-aminolevulinic acid (delta) ALA) in vivo. Murine 9L Gliosarcoma cells or human U87 Glioblastoma cells were implanted into the cortex of rats, and following 12 or 14 days of growth respectively, subjected to either Photofrin-mediated PDT or ALA-mediated PDT. 9L gliosarcoma cells express the phosphatase Tensin homologue (PTEN) tumor suppressor gene while in U87 cells PTEN is mutated. Differences in the Photofrin mediated PDT induced apoptosis were noted between the two different cell lines in vivo, suggesting that Photofrin mediated PDT may be dependent on apoptotic pathways. ALA induced PPIX showed higher selectivity towards 9L than Photofrin mediated PDT. These studies suggests that PDT could be used as an effective treatment for intracranial neoplasm. Endogenous photosensitizers such as ALA could be used to promote apoptosis in tumor cells due to PDT treatment and thereby minimize the extent of necrotic infarction in the surrounding normal brain.

  3. A Systematic Review on the Characteristics, Treatments and Outcomes of the Patients with Primary Spinal Glioblastomas or Gliosarcomas Reported in Literature until March 2015

    PubMed Central

    Beyer, Stefanie; von Bueren, André O.; Klautke, Gunther; Guckenberger, Matthias; Kortmann, Rolf-Dieter

    2016-01-01

    Our aim was to determine the characteristics, treatments and outcomes of patients with primary spinal glioblastomas (GB) or gliosarcomas (GS) reported in literature until March 2015. PubMed and Web of Science were searched for peer-reviewed articles pertaining to cases of glioblastomas / gliosarcomas with primary spinal origin, using predefined search terms. Furthermore we performed hand searches tracking the references from the selected papers. Eighty-two articles published between 1938 and March 2015 were eligible. They reported on 157 patients. Median age at diagnosis was 22 years. The proportion of patients who received adjuvant chemo- or radiotherapy clearly increased from the time before 1980 until present. Median overall survival from diagnosis was 8.0 ± 0.9 months. On univariate analysis age influenced overall survival, whereas tumor location, gender and the extent of initial resection did not. Outcomes did not differ between children (< 18 years) and adults. However, the patients who were treated after 1980 achieved longer survival times than the patients treated before. On multivariable analysis only age (< 60 years) and the time period of treatment (≥ 1980) were confirmed as positive independent prognostic factors. In conclusion, primary spinal GB / GS mainly affect younger patients and are associated with a dismal prognosis. However, most likely due to the increasing use of adjuvant treatment, modest therapeutic progress has been achieved over recent decades. The characteristics and treatments of primary spinal glioblastomas should be entered into a central registry in order to gain more information about the ideal treatment approach in the future. PMID:26859136

  4. Phase II and pharmacogenomics study of enzastaurin plus temozolomide during and following radiation therapy in patients with newly diagnosed glioblastoma multiforme and gliosarcoma

    PubMed Central

    Butowski, Nicholas; Chang, Susan M.; Lamborn, Kathleen R.; Polley, Mei–Yin; Pieper, Russell; Costello, Joseph F.; Vandenberg, Scott; Parvataneni, Rupa; Nicole, Angelina; Sneed, Patricia K.; Clarke, Jennifer; Hsieh, Emily; Costa, Bruno M.; Reis, Rui M.; Hristova-Kazmierski, Maria; Nicol, Steven J.; Thornton, Donald E.; Prados, Michael D.

    2011-01-01

    This open-label, single-arm, phase II study combined enzastaurin with temozolomide plus radiation therapy (RT) to treat glioblastoma multiforme (GBM) and gliosarcoma. Adults with newly diagnosed disease and Karnofsky performance status (KPS) ≥ 60 were enrolled. Treatment was started within 5 weeks after surgical diagnosis. RT consisted of 60 Gy over 6 weeks. Temozolomide was given at 75 mg/m2 daily during RT and then adjuvantly at 200 mg/m2 daily for 5 days, followed by a 23-day break. Enzastaurin was given once daily during RT and in the adjuvant period at 250 mg/day. Cycles were 28 days. The primary end point was overall survival (OS). Progression-free survival (PFS), toxicity, and correlations between efficacy and molecular markers analyzed from tumor tissue samples were also evaluated. A prospectively planned analysis compared OS and PFS of the current trial with outcomes from 3 historical phase II trials that combined novel agents with temozolomide plus RT in patients with GBM or gliosarcoma. Sixty-six patients were enrolled. The treatment regimen was well tolerated. OS (median, 74 weeks) and PFS (median, 36 weeks) results from the current trial were comparable to those from a prior phase II study using erlotininb and were significantly better than those from 2 other previous studies that used thalidomide or cis-retinoic acid, all in combination with temozolomide plus RT. A positive correlation between O-6-methylguanine-DNA methyltransferase promoter methylation and OS was observed. Adjusting for age and KPS, no other biomarker was associated with survival outcome. Correlation of relevant biomarkers with OS may be useful in future trials. PMID:21896554

  5. Phase II and pharmacogenomics study of enzastaurin plus temozolomide during and following radiation therapy in patients with newly diagnosed glioblastoma multiforme and gliosarcoma.

    PubMed

    Butowski, Nicholas; Chang, Susan M; Lamborn, Kathleen R; Polley, Mei-Yin; Pieper, Russell; Costello, Joseph F; Vandenberg, Scott; Parvataneni, Rupa; Nicole, Angelina; Sneed, Patricia K; Clarke, Jennifer; Hsieh, Emily; Costa, Bruno M; Reis, Rui M; Hristova-Kazmierski, Maria; Nicol, Steven J; Thornton, Donald E; Prados, Michael D

    2011-12-01

    This open-label, single-arm, phase II study combined enzastaurin with temozolomide plus radiation therapy (RT) to treat glioblastoma multiforme (GBM) and gliosarcoma. Adults with newly diagnosed disease and Karnofsky performance status (KPS) ≥ 60 were enrolled. Treatment was started within 5 weeks after surgical diagnosis. RT consisted of 60 Gy over 6 weeks. Temozolomide was given at 75 mg/m(2) daily during RT and then adjuvantly at 200 mg/m(2) daily for 5 days, followed by a 23-day break. Enzastaurin was given once daily during RT and in the adjuvant period at 250 mg/day. Cycles were 28 days. The primary end point was overall survival (OS). Progression-free survival (PFS), toxicity, and correlations between efficacy and molecular markers analyzed from tumor tissue samples were also evaluated. A prospectively planned analysis compared OS and PFS of the current trial with outcomes from 3 historical phase II trials that combined novel agents with temozolomide plus RT in patients with GBM or gliosarcoma. Sixty-six patients were enrolled. The treatment regimen was well tolerated. OS (median, 74 weeks) and PFS (median, 36 weeks) results from the current trial were comparable to those from a prior phase II study using erlotinib and were significantly better than those from 2 other previous studies that used thalidomide or cis-retinoic acid, all in combination with temozolomide plus RT. A positive correlation between O-6-methylguanine-DNA methyltransferase promoter methylation and OS was observed. Adjusting for age and KPS, no other biomarker was associated with survival outcome. Correlation of relevant biomarkers with OS may be useful in future trials. PMID:21896554

  6. Phase II Study of Erlotinib Plus Temozolomide During and After Radiation Therapy in Patients With Newly Diagnosed Glioblastoma Multiforme or Gliosarcoma

    PubMed Central

    Prados, Michael D.; Chang, Susan M.; Butowski, Nicholas; DeBoer, Rebecca; Parvataneni, Rupa; Carliner, Hannah; Kabuubi, Paul; Ayers-Ringler, Jennifer; Rabbitt, Jane; Page, Margaretta; Fedoroff, Anne; Sneed, Penny K.; Berger, Mitchel S.; McDermott, Michael W.; Parsa, Andrew T.; Vandenberg, Scott; James, C. David; Lamborn, Kathleen R.; Stokoe, David; Haas-Kogan, Daphne A.

    2009-01-01

    Purpose This open-label, prospective, single-arm, phase II study combined erlotinib with radiation therapy (XRT) and temozolomide to treat glioblastoma multiforme (GBM) and gliosarcoma. The objectives were to determine efficacy of this treatment as measured by survival and to explore the relationship between molecular markers and treatment response. Patients and Methods Sixty-five eligible adults with newly diagnosed GBM or gliosarcoma were enrolled. We intended to treat patients not currently treated with enzyme-inducing antiepileptic drugs (EIAEDs) with 100 mg/d of erlotinib during XRT and 150 mg/d after XRT. Patients receiving EIAEDs were to receive 200 mg/d of erlotinib during XRT and 300 mg/d after XRT. After XRT, the erlotinib dose was escalated until patients developed tolerable grade 2 rash or until the maximum allowed dose was reached. All patients received temozolomide during and after XRT. Molecular markers of epidermal growth factor receptor (EGFR), EGFRvIII, phosphatase and tensin homolog (PTEN), and methylation status of the promotor region of the MGMT gene were analyzed from tumor tissue. Survival was compared with outcomes from two historical phase II trials. Results Median survival was 19.3 months in the current study and 14.1 months in the combined historical control studies, with a hazard ratio for survival (treated/control) of 0.64 (95% CI, 0.45 to 0.91). Treatment was well tolerated. There was a strong positive correlation between MGMT promotor methylation and survival, as well as an association between MGMT promotor-methylated tumors and PTEN positivity shown by immunohistochemistry with improved survival. Conclusion Patients treated with the combination of erlotinib and temozolomide during and following radiotherapy had better survival than historical controls. Additional studies are warranted. PMID:19075262

  7. An Individual Patient Data Meta-Analysis on Characteristics, Treatments and Outcomes of Glioblastoma/ Gliosarcoma Patients with Metastases Outside of the Central Nervous System

    PubMed Central

    Kerber, Michael J.; Baumert, Brigitta G.; Kortmann, Rolf Dieter; Müller, Klaus

    2015-01-01

    Purpose To determine the characteristics, treatments and outcomes of patients with glioblastoma multiforme (GBM) or gliosarcoma (GS) and metastases outside of the central nervous system (CNS). Methods PubMed and Web of Science searches for peer-reviewed articles pertaining to GBM/ GS patients with metastatic dissemination were conducted using the keywords gliosarcoma, glioblastoma, GBM, metastasis, metastases and metastatic. Additionally, we performed hand search following the references from the selected papers. Cases with metastases to the CNS were excluded and evaluated in a separate study. Results 109 articles published between 1928 and 2013 were eligible. They reported on 150 patients. We observed a remarkable increase in the number of cases per decade over time. Median overall survival from diagnosis of metastasis (OSM+) was 6.0 ± 0.8 months and median overall survival from initial diagnosis (OSID) 13 ± 2.4 months. On univariate analyses, gender, age, the histological subtype, the time interval between initial diagnosis and diagnosis of metastasis and pulmonary involvement did not influence OSM+. We did not observe any substantial treatment progress. A comparison of the present cohort with 84 GBM/ GS patients with exclusive CNS dissemination suggests that metastases outside the CNS are related to a slightly more favorable outcome. Conclusions The occurrence of extra-CNS metastasis from GBM/ GS is associated with a dismal prognosis, however it seems to compare slightly favorable to CNS dissemination. Crucial treatment progress has not been achieved over recent decades. A central registry should be considered to consecutively gain more information about the ideal therapeutic approach. PMID:25860797

  8. A Systematic Review on the Characteristics, Treatments and Outcomes of the Patients with Primary Spinal Glioblastomas or Gliosarcomas Reported in Literature until March 2015.

    PubMed

    Beyer, Stefanie; von Bueren, André O; Klautke, Gunther; Guckenberger, Matthias; Kortmann, Rolf-Dieter; Pietschmann, Sophie; Müller, Klaus

    2016-01-01

    Our aim was to determine the characteristics, treatments and outcomes of patients with primary spinal glioblastomas (GB) or gliosarcomas (GS) reported in literature until March 2015. PubMed and Web of Science were searched for peer-reviewed articles pertaining to cases of glioblastomas / gliosarcomas with primary spinal origin, using predefined search terms. Furthermore we performed hand searches tracking the references from the selected papers. Eighty-two articles published between 1938 and March 2015 were eligible. They reported on 157 patients. Median age at diagnosis was 22 years. The proportion of patients who received adjuvant chemo- or radiotherapy clearly increased from the time before 1980 until present. Median overall survival from diagnosis was 8.0 ± 0.9 months. On univariate analysis age influenced overall survival, whereas tumor location, gender and the extent of initial resection did not. Outcomes did not differ between children (< 18 years) and adults. However, the patients who were treated after 1980 achieved longer survival times than the patients treated before. On multivariable analysis only age (< 60 years) and the time period of treatment (≥ 1980) were confirmed as positive independent prognostic factors. In conclusion, primary spinal GB / GS mainly affect younger patients and are associated with a dismal prognosis. However, most likely due to the increasing use of adjuvant treatment, modest therapeutic progress has been achieved over recent decades. The characteristics and treatments of primary spinal glioblastomas should be entered into a central registry in order to gain more information about the ideal treatment approach in the future. PMID:26859136

  9. Delivery of Transferrin-Conjugated Polysaccharide Nanoparticles in 9L Gliosacoma Cells.

    PubMed

    Jeong, Young-Il; Kim, Young-Wook; Jung, Shin; Pei, Jian; Wen, Min; Li, Song-Yuan; Ryu, Hyang-Hwa; Lim, Jung Cheol; Jang, Woo-Youl; Kim, In-Young; Moon, Kyung-Sub; Jung, Tae-Young

    2015-01-01

    To investigate the possibility of drug targeting via the transferrin receptor-mediated pathway, iron-saturated transferrin was conjugated with chitosan (Tr-chitosan) and complexed with doxorubicin-conjugated methoxy poly(ethylene glycol)-b-dextran succinate (DEX-DOX). DEX-DOX nanoparticles have spherical morphologies with less than 150 nm particle sizes. When Tr-chitosan was complexed with DEX-DOX nanoparticles (TR nanoparticle), particle sizes were increased to higher than 200 nm. Viability of 9L cells with treatment of doxorubicin (DOX) or DEX-DOX nanoparticle was dose-dependently decreased regardless of transferrin receptor blocking. However, cytotoxicity of TR nanoparticles was reduced by blocking of transferrin receptor. Flow cytometric analysis and confocal microscopic observation showed that fluorescence intensity of tumor cells with treatment of TR nanoparticles was significantly decreased by blocking of transferring receptor while DEX-DOX nanoparticles were not affected by blocking of transferring receptor. These results indicated that TR nanoparticles are promising candidates for brain tumor drug delivery. PMID:26328315

  10. Impact of IUdR on Rat 9L glioma cell survival for 25-35 keV photon-activated auger electron therapy.

    PubMed

    Alvarez, Diane; Hogstrom, Kenneth R; Brown, Thomas A D; Ii, Kenneth L Matthews; Dugas, Joseph P; Ham, Kyungmin; Varnes, Marie E

    2014-12-01

    The goal of the current study was to measure the energy dependence of survival of rat 9L glioma cells labeled with iododeoxyuridine (IUdR) that underwent photon-activated Auger electron therapy using 25-35 keV monochromatic X rays, i.e., above and below the K-edge energy of iodine. Rat 9L glioma cells were selected because of their radioresistance, ability to be implanted for future in vivo studies and analogy to radioresistant human gliomas. Survival curves were measured for a 4 MV X-ray beam and synchrotron produced monochromatic 35, 30 and 25 keV X-ray beams. IUdR was incorporated into the DNA at levels of 0, 9 and 18% thymidine replacement for 4 MV and 35 keV and 0 and 18% thymidine replacement for 30 and 25 keV. For 10 combinations of beam energy and thymidine replacement, 62 data sets (3-13 per combination) provided 776 data points (47-148 per combination). Survival versus dose data taken for the same combination, but on different days, were merged by including the zero-dose points in the nonlinear, chi-squared data fitting using the linear-quadratic model and letting the best estimate to the zero-dose plating efficiency for each of the different days be a fitting parameter. When comparing two survival curves, the ratio of doses resulting in 10% survival gave sensitization enhancement ratios (SER10) from which contributions due to linear energy transfer (LET) (SER10,LET), IUdR radiosensitization (SER10,RS), the Auger effect (SER10,AE) and the total of all effects (SER10,T) were determined. At 4 MV and 35, 30 and 25 keV, SER10,LET values were 1.00, 1.08 ± 0.03, 1.22 ± 0.02 and 1.37 ± 0.02, respectively. At 4 MV SER10,RS values for 9 and 18% IUdR were 1.28 ± 0.02 and 1.40 ± 0.02, respectively. Assuming LET effects were independent of percentage IUdR and radiosensitization effects were independent of energy, SER10,AE values for 18% IUdR at 35, 30 and 25 keV were 1.35 ± 0.05, 1.06 ± 0.03 and 0.98 ± 0.03, respectively. The value for 9% IUdR at 35 keV was 1

  11. Tissue pO{sub 2} of Orthotopic 9L and C6 Gliomas and Tumor-Specific Response to Radiotherapy and Hyperoxygenation

    SciTech Connect

    Khan, Nadeem Li Hongbin; Hou, Huagang; Lariviere, Jean P.; Gladstone, David J.; Demidenko, Eugene; Swartz, Harold M.

    2009-03-01

    Purpose: Tumor hypoxia is a well-known therapeutic problem; however, a lack of methods for repeated measurements of glioma partial pressure of oxygen (pO{sub 2}) limits the ability to optimize the therapeutic approaches. We report the effects of 9.3 Gy of radiation and carbogen inhalation on orthotopic 9L and C6 gliomas and on the contralateral brain pO{sub 2} in rats using a new and potentially widely useful method, multisite in vivo electron paramagnetic resonance oximetry. Methods and Materials: Intracerebral 9L and C6 tumors were established in the left hemisphere of syngeneic rats, and electron paramagnetic resonance oximetry was successfully used for repeated tissue pO{sub 2} measurements after 9.3 Gy of radiation and during carbogen breathing for 5 consecutive days. Results: Intracerebral 9L gliomas had a pO{sub 2} of 30-32 mm Hg and C6 gliomas were relatively hypoxic, with a pO{sub 2} of 12-14 mm Hg (p < 0.05). The tissue pO{sub 2} of the contralateral brain was 40-45 mm Hg in rats with either 9L or C6 gliomas. Irradiation resulted in a significant increase in pO{sub 2} of the 9L gliomas only. A significant increase in the pO{sub 2} of the 9L and C6 gliomas was observed in rats breathing carbogen, but this effect decreased during 5 days of repeated experiments in the 9L gliomas. Conclusion: These results highlight the tumor-specific effect of radiation (9.3.Gy) on tissue pO{sub 2} and the different responses to carbogen inhalation. The ability of electron paramagnetic resonance oximetry to provide direct repeated measurements of tissue pO{sub 2} could have a vital role in understanding the dynamics of hypoxia during therapy that could then be optimized by scheduling doses at times of improved tumor oxygenation.

  12. An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14

    SciTech Connect

    Mortimer, Jenny C.; Faria-Blanc, Nuno; Yu, Xiaolan; Tryfona, Theodora; Sorieul, Mathias; Ng, Yao Z.; Zhang, Zhinong; Stott, Katherine; Anders, Nadine; Dupree, Paul

    2015-06-04

    Xylan is a crucial component of many plant primary and secondary cell walls. However, the structure and function of xylan in the dicotyledon primary cell wall is not well understood. Here, we characterized a xylan that is specific to tissues enriched in Arabidopsis primary cell walls. Unlike previously described xylans, this xylan carries a pentose linked 1–2 to the α-1,2-d-glucuronic acid (GlcA) side chains on the β-1,4-Xyl backbone. The frequent and precisely regular spacing of GlcA substitutions every six xylosyl residues along the backbone is also unlike that previously observed in secondary cell wall xylan. Molecular genetics, in vitro assays, and expression data suggest that IRX9L, IRX10L and IRX14 are required for xylan backbone synthesis in primary cell wall synthesising tissues. IRX9 and IRX10 are not involved in the primary cell wall xylan synthesis but are functionally exchangeable with IRX9L and IRX10L. GUX3 is the only glucuronyltransferase required for the addition of the GlcA decorations on the xylan. The differences in xylan structure in primary versus secondary cell walls might reflect the different roles in cross-linking and interaction with other cell wall components.

  13. An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14

    DOE PAGESBeta

    Mortimer, Jenny C.; Faria-Blanc, Nuno; Yu, Xiaolan; Tryfona, Theodora; Sorieul, Mathias; Ng, Yao Z.; Zhang, Zhinong; Stott, Katherine; Anders, Nadine; Dupree, Paul

    2015-06-04

    Xylan is a crucial component of many plant primary and secondary cell walls. However, the structure and function of xylan in the dicotyledon primary cell wall is not well understood. Here, we characterized a xylan that is specific to tissues enriched in Arabidopsis primary cell walls. Unlike previously described xylans, this xylan carries a pentose linked 1–2 to the α-1,2-d-glucuronic acid (GlcA) side chains on the β-1,4-Xyl backbone. The frequent and precisely regular spacing of GlcA substitutions every six xylosyl residues along the backbone is also unlike that previously observed in secondary cell wall xylan. Molecular genetics, in vitro assays,more » and expression data suggest that IRX9L, IRX10L and IRX14 are required for xylan backbone synthesis in primary cell wall synthesising tissues. IRX9 and IRX10 are not involved in the primary cell wall xylan synthesis but are functionally exchangeable with IRX9L and IRX10L. GUX3 is the only glucuronyltransferase required for the addition of the GlcA decorations on the xylan. The differences in xylan structure in primary versus secondary cell walls might reflect the different roles in cross-linking and interaction with other cell wall components.« less

  14. LEF1 and B9L shield β-catenin from inactivation by Axin, desensitizing colorectal cancer cells to tankyrase inhibitors.

    PubMed

    de la Roche, Marc; Ibrahim, Ashraf E K; Mieszczanek, Juliusz; Bienz, Mariann

    2014-03-01

    Hyperactive β-catenin drives colorectal cancer, yet inhibiting its activity remains a formidable challenge. Interest is mounting in tankyrase inhibitors (TNKSi), which destabilize β-catenin through stabilizing Axin. Here, we confirm that TNKSi inhibit Wnt-induced transcription, similarly to carnosate, which reduces the transcriptional activity of β-catenin by blocking its binding to BCL9, and attenuates intestinal tumors in Apc(Min) mice. By contrast, β-catenin's activity is unresponsive to TNKSi in colorectal cancer cells and in cells after prolonged Wnt stimulation. This TNKSi insensitivity is conferred by β-catenin's association with LEF1 and BCL9-2/B9L, which accumulate during Wnt stimulation, thereby providing a feed-forward loop that converts transient into chronic β-catenin signaling. This limits the therapeutic value of TNKSi in colorectal carcinomas, most of which express high LEF1 levels. Our study provides proof-of-concept that the successful inhibition of oncogenic β-catenin in colorectal cancer requires the targeting of its interaction with LEF1 and/or BCL9/B9L, as exemplified by carnosate. PMID:24419084

  15. An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14

    PubMed Central

    Mortimer, Jenny C; Faria-Blanc, Nuno; Yu, Xiaolan; Tryfona, Theodora; Sorieul, Mathias; Ng, Yao Z; Zhang, Zhinong; Stott, Katherine; Anders, Nadine; Dupree, Paul

    2015-01-01

    Xylan is a crucial component of many plant primary and secondary cell walls. However, the structure and function of xylan in the dicotyledon primary cell wall is not well understood. Here, we characterized a xylan that is specific to tissues enriched in Arabidopsis primary cell walls. Unlike previously described xylans, this xylan carries a pentose linked 1–2 to the α-1,2-d-glucuronic acid (GlcA) side chains on the β-1,4-Xyl backbone. The frequent and precisely regular spacing of GlcA substitutions every six xylosyl residues along the backbone is also unlike that previously observed in secondary cell wall xylan. Molecular genetics, in vitro assays, and expression data suggest that IRX9L, IRX10L and IRX14 are required for xylan backbone synthesis in primary cell wall synthesising tissues. IRX9 and IRX10 are not involved in the primary cell wall xylan synthesis but are functionally exchangeable with IRX9L and IRX10L. GUX3 is the only glucuronyltransferase required for the addition of the GlcA decorations on the xylan. The differences in xylan structure in primary versus secondary cell walls might reflect the different roles in cross-linking and interaction with other cell wall components. PMID:26043357

  16. Response of 9L rat brain tumor multicellular spheroids to single and fractionated doses of 1,3-bis(2-chloroethyl)-1-nitrosourea.

    PubMed

    Sano, Y; Hoshino, T; Barker, M; Deen, D F

    1984-02-01

    This study was designed to examine the relative effect of each of four fractions of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) against 9L rat brain tumor multicellular spheroids and to compare the results of the cell survival and growth delay assays. Similar levels of cell kill resulted when BCNU was administered either as single fractions of 1.5, 3.0, 4.5, or 6.0 micrograms/ml for 1 hr or as one to four fractions of 1.5 micrograms/ml that were administered sequentially for 1 hr each. Survival was increased if the assay was delayed until 24 hr after drug treatment, which indicates that 9L cells in spheroids recover from BCNU-induced potentially lethal damage. When BCNU was administered in 1.5-micrograms/ml fractions, plating efficiencies depended markedly on the interval between the fractions. The 12-hr protocol produced an overall higher cell kill. Fractionation schedules of 24 and 36 hr produced less cell kill than did the other schedules. Survival plateaued for the last three treatments with BCNU in the 36-hr schedule. Cells in S phase at the time of administration of the initial 1.5-micrograms/ml fraction of BCNU moved into G1- and G2-M phases by 12 hr after treatment. For time periods longer than 12 hr, cells began to appear in the BCNU-resistant S phase. Thus, the movement of cells into the drug-sensitive and -resistant phases after the first fraction correlates well with the corresponding overall cytotoxic effect produced by treatment with the combined BCNU (1.5 micrograms/ml) fractions. For a higher concentration (3.0 micrograms/ml for 1 hr), maximum cell kill was reached within the 12- to 18-hr interval, after which cell kill plateaued. Cells were not found in the S-phase fraction 12 to 36 hr after the first treatment with 3.0 micrograms/ml; maximum cell kill for the fractionated protocols resulted at these times. Therefore, BCNU, which is classified as a cell cycle-nonspecific drug, can induce a partial synchrony in 9L spheroid cells, which determines

  17. Preparation of curcumin loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) nanofibers and their in vitro antitumor activity against Glioma 9L cells

    NASA Astrophysics Data System (ADS)

    Guo, Gang; Fu, Shaozhi; Zhou, Liangxue; Liang, Hang; Fan, Min; Luo, Feng; Qian, Zhiyong; Wei, Yuquan

    2011-09-01

    The purpose of this work was to develop implantable curcumin-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL, PCEC) nanofibers, which might have potential application in cancer therapy. Curcumin was incorporated into biodegradable PCEC nanofibers by electrospinning method. The surface morphology of the composite nanofibers was characterized on Scanning Electron Microscope (SEM). The average diameter of the nanofibers was 2.3-4.5μm. In vitro release behavior of curcumin from the fiber mats was also studied in detail. The in vitro cytotoxicity assay showed that the PCEC fibers themselves did not affect the growth of rat Glioma 9L cells. Antitumor activity of the curcumin-loaded fibers against the cells was kept over the whole experiment process, while the antitumor activity of pure curcumin disappeared within 48 h. These results strongly suggested that the curcumin/PCEC composite nanofibers might have potential application for postoperative chemotherapy of brain cancers.

  18. WE-E-BRE-08: Impact of IUdR in Rat 9L Glioma Cell Survival for 25–35 KeV Photo-Activated Auger Electron Therapy

    SciTech Connect

    Alvarez, D; Hogstrom, K; Brown, T; Dugas, J; Varnes, M; Matthews, K

    2014-06-15

    Purpose: To determine the biological effect from Auger electrons with 9% and 18% iododeoxyuridine (IUdR) incorporated into the DNA of rat 9L glioma cells at photon energies above and below the K-edge of iodine (33.2 keV). Methods: Rat 9L glioma cell survival versus dose curves with 0%, 9%, and 18% thymidine replacement with IUdR were measured using four irradiation energies (4 MV x-rays; monochromatic 35, 30, and 25 keV synchrotron photons). For each of 11 conditions (Energy, %IUdR) survival curves were fit to the data (826 cell cultures) using the linear-quadratic model. The ratio of doses resulting in 10% survival gave sensitization enhancement ratios (SER10) from which contributions due to linear-energy transfer (LET), radiosensitization (RS), and Auger effect (AE) were extracted. Results: At 35, 30, and 25 keV, SER10,LET values were 1.08±0.03, 1.22±0.02, and 1.37±0.02, respectively. At 4 MV SER10,RS values for 9% and 18% IUdR were 1.28±0.02 and 1.40±0.02, respectively. Assuming LET effects are independent of %IUdR and radiosensitization effects are independent of energy, SER10,AE values for 18% IUdR at 35, 30, and 25 keV were 1.35±0.05, 1.06±0.03, and 0.98±0.03, respectively; values for 9% IUdR at 35 and 25 keV were 1.01±0.04 and 0.82±0.02, respectively. Conclusion: For 18% IUdR the radiosensitization effect of 1.40 and the Auger effect of 1.35 at 35 keV are equally important to the combined effect of 1.90. No measureable Auger effect was observed for energies below the K-edge at 20 and 25 keV, as expected. The insignificant Auger effect at 9% IUdR was not expected. Additional data (40–70 keV) and radiobiological modeling are being acquired to better understand the energy dependence of Auger electron therapy with IUdR. Funding support in part by the National Science Foundation Graduate Research Fellowship Program and in part by Contract No. W81XWH-10-1-0005 awarded by the U.S. Army Research Acquisition Activity. This paper does not necessarily

  19. Thapsigargin-induced grp78 expression is mediated by the increase of cytosolic free calcium in 9L rat brain tumor cells.

    PubMed

    Chen, L Y; Chiang, A S; Hung, J J; Hung, H I; Lai, Y K

    2000-06-01

    Exposure of 9L rat brain tumor cells to 300 nM thapsigargin (TG), a sarcoendoplasmic Ca(2+)-ATPases inhibitor, leads to an immediate suppression of general protein synthesis followed by an enhanced synthesis of the 78-kDa glucose-regulated protein, GRP78. Synthesis of GRP78 increases significantly and continues to rise after 4 h of treatment, and this process coincides with the accumulation of grp78 mRNA. TG-induced grp78 expression can be suppressed by the cytosolic free calcium ([Ca(2+)](c)) chelator dibromo-1, 2-bis(aminophenoxy)ethane N,N,N',N'-tetraacetic acid (BAPTA) in a concentration-dependent manner. Induction of grp78 is completely abolished in the presence of 20 microM BAPTA under which the TG-induced increase of [Ca(2+)](c) is also completely prevented. By adding ethyleneglycol bis(beta-aminoethyl)ether-N,N,N',N' tetraacetic acid in the foregoing experiments, in a condition such that endoplasmic reticulum calcium ([Ca(2+)](ER)) is depleted and calcium influx from outside is prevented, TG-induced grp78 expression is also abolished. These data lead us to conclude that increase in [Ca(2+)](c), together with the depletion of [Ca(2+)](ER), are the major causes of TG-induced grp78 expression in 9L rat brain tumor cells. By using electrophoretic mobility shift assays (EMSA), we found that the nuclear extracts prepared from TG-treated cells exhibit an increase in binding activity toward the extended grp78 promoter as well as the individual cis-acting regulatory elements, CRE and CORE. Moreover, this increase in binding activity is also reduced by BAPTA. By competitory assays using the cis-acting regulatory elements as the competitors as well as the EMSA probes, we further show that all of the tested cis elements-CRE, CORE, and C1-are involved in the basal as well as in the TG-induced expression of grp78 and that the protein factor(s) that binds to the C1 region plays an important role in the formation and maintenance of the transcription complex. PMID:10861839

  20. Site-Directed Mutagenesis of IRX9, IRX9L and IRX14 Proteins Involved in Xylan Biosynthesis: Glycosyltransferase Activity Is Not Required for IRX9 Function in Arabidopsis

    PubMed Central

    Ren, Yanfang; Hansen, Sara Fasmer; Ebert, Berit; Lau, Jane; Scheller, Henrik Vibe

    2014-01-01

    Xylans constitute the main non-cellulosic polysaccharide in the secondary cell walls of plants. Several genes predicted to encode glycosyltransferases are required for the synthesis of the xylan backbone even though it is a homopolymer consisting entirely of β-1,4-linked xylose residues. The putative glycosyltransferases IRX9, IRX14, and IRX10 (or the paralogs IRX9L, IRX14L, and IRX10L) are required for xylan backbone synthesis in Arabidopsis. To investigate the function of IRX9, IRX9L, and IRX14, we identified amino acid residues known to be essential for catalytic function in homologous mammalian proteins and generated modified cDNA clones encoding proteins where these residues would be mutated. The mutated gene constructs were used to transform wild-type Arabidopsis plants and the irx9 and irx14 mutants, which are deficient in xylan synthesis. The ability of the mutated proteins to complement the mutants was investigated by measuring growth, determining cell wall composition, and microscopic analysis of stem cross-sections of the transgenic plants. The six different mutated versions of IRX9 and IRX9-L were all able to complement the irx9 mutant phenotype, indicating that residues known to be essential for glycosyltransferases function in homologous proteins are not essential for the biological function of IRX9/IRX9L. Two out of three mutated IRX14 complemented the irx14 mutant, including a mutant in the predicted catalytic amino acid. A IRX14 protein mutated in the substrate-binding DxD motif did not complement the irx14 mutant. Thus, substrate binding is important for IRX14 function but catalytic activity may not be essential for the function of the protein. The data indicate that IRX9/IRX9L have an essential structural function, most likely by interacting with the IRX10/IRX10L proteins, but do not have an essential catalytic function. Most likely IRX14 also has primarily a structural role, but it cannot be excluded that the protein has an important enzymatic

  1. PDE5 Inhibitors Enhance Tumor Permeability and Efficacy of Chemotherapy in a Rat Brain Tumor Model

    PubMed Central

    Black, Keith L.; Yin, Dali; Ong, John M.; Hu, Jinwei; Konda, Bindu M.; Wang, Xiao; Ko, MinHee K.; Bayan, Jennifer-Ann; Sacapano, Manuel R.; Espinoza, Andreas; Morris-Irvin, Dwain K; Shu, Yan

    2008-01-01

    The blood-brain tumor barrier (BTB) significantly limits delivery of therapeutic concentrations of chemotherapy to brain tumors. A novel approach to selectively increase drug delivery is pharmacologic modulation of signaling molecules that regulate BTB permeability, such as those in cGMP signaling. Here we show that oral administration of sildenafil (Viagra) and vardenafil (Levitra), inhibitors of cGMP-specific PDE5, selectively increased tumor capillary permeability in 9L gliosarcoma-bearing rats with no significant increase in normal brain capillaries. Tumor-bearing rats treated with the chemotherapy agent, adriamycin, in combination with vardenafil survived significantly longer than rats treated with adriamycin alone. The selective increase in tumor capillary permeability appears to be mediated by a selective increase in tumor cGMP levels and increased vesicular transport through tumor capillaries, and could be attenuated by iberiotoxin, a selective inhibitor for calcium-dependent potassium (KCa) channels, that are effectors in cGMP signaling. The effect by sildenafil could be further increased by simultaneously using another BTB “opener”, bradykinin. Collectively, this data demonstrates that oral administration of PDE5 inhibitors selectively increases BTB permeability and enhance anti-tumor efficacy for a chemotherapeutic agent. These findings have significant implications for improving delivery of anti-tumor agents to brain tumors. PMID:18674521

  2. Hematopoietic Stem Cell Therapy to Countermeasure Cancer in Astronauts during Exploration of Deep Space

    NASA Technical Reports Server (NTRS)

    Ohi, S.; Kindred, R. P.; Roach, A-N.; Edossa, A.; Kim, B. C.; Gonda, S. R.; Emami, K.

    2004-01-01

    Exposure to cosmic radiation can cause chromosomal mutations, which may lead to cancer in astronauts engaged in space exploration. Therefore, our goals are to develop countermeasures to prevent space-induced cancer using hematopoietic stem cell therapy (HSCT) and gene therapy. This presentation focuses on HSCT for cancer. Our previous experiments on a simulated, space-induced immuno-deficiency model (mouse hind limb unloading ) indicated that transplanted hematopoietic stem cells (HSCs) could enhance the host's immunity by effectively eliminating bacterial infection (Ohi S, et. al. J Grav Physiol 10, P63-64, 2003; Ohi S, et. al. Proceedings of the Space Technology and Applications International Forum (STAIF) . American Institute of Physics, New York, pp. 938-950, 2004). Hence, we hypothesized that the HSCs might be effective in combating cancer as well. Studies of cocultured mouse HSCs with beta-galactosidase marked rat gliosarcoma spheroids (9L/lacZ), a cancer model, indicated antagonistic interactions , resulting in destruction of the spheroids by HSCs. Trypan Blue dye-exclusion assays were consistent with the conclusion. These results show potential usehlness of HSCT for cancer. Currently, the NASA Hydrodynamic Focusing Bioreactor (HFB), a space analog tissue/cell culture system, is being used to study invasion of the gliosarcoma (GS) spheroids into mouse brain with or without co-cultured HSCs. This may simulate the metastasis of gliosarcoma to brain. There is a tendency for the HSCs to inhibit invasion of GS spheroids into brain, as evidenced by the X-gal staining.

  3. Enhancement in blood-tumor barrier permeability and delivery of liposomal doxorubicin using focused ultrasound and microbubbles: evaluation during tumor progression in a rat glioma model

    NASA Astrophysics Data System (ADS)

    Aryal, Muna; Park, Juyoung; Vykhodtseva, Natalia; Zhang, Yong-Zhi; McDannold, Nathan

    2015-03-01

    Effective drug delivery to brain tumors is often challenging because of the heterogeneous permeability of the ‘blood tumor barrier’ (BTB) along with other factors such as increased interstitial pressure and drug efflux pumps. Focused ultrasound (FUS) combined with microbubbles can enhance the permeability of the BTB in brain tumors, as well as the blood-brain barrier in the surrounding tissue. In this study, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to characterize the FUS-induced permeability changes of the BTB in a rat glioma model at different times after implantation. 9L gliosarcoma cells were implanted in both hemispheres in male rats. At day 9, 14, or 17 days after implantation, FUS-induced BTB disruption using 690 kHz ultrasound and definity microbubbles was performed in one tumor in each animal. Before FUS, liposomal doxorubicin was administered at a dose of 5.67 mg kg-1. This chemotherapy agent was previously shown to improve survival in animal glioma models. The transfer coefficient Ktrans describing extravasation of the MRI contrast agent Gd-DTPA was measured via DCE-MRI before and after sonication. We found that tumor doxorubicin concentrations increased monotonically (823  ±  600, 1817  ±  732 and 2432  ±  448 ng g-1) in the control tumors at 9, 14 and 17 d. With FUS-induced BTB disruption, the doxorubicin concentrations were enhanced significantly (P < 0.05, P < 0.01, and P < 0.0001 at days 9, 14, and 17, respectively) and were greater than the control tumors by a factor of two or more (2222  ±  784, 3687  ±  796 and 5658  ±  821 ng g-1) regardless of the stage of tumor growth. The transfer coefficient Ktrans was significantly (P < 0.05) enhanced compared to control tumors only at day 9 but not at day 14 or 17. These results suggest that FUS-induced enhancements in tumor drug delivery are relatively consistent over time, at least in this tumor model. These results are

  4. Identification of AREG and PLK1 pathway modulation as a potential key of the response of intracranial 9L tumor to microbeam radiation therapy.

    PubMed

    Bouchet, Audrey; Sakakini, Nathalie; Atifi, Michèle El; Le Clec'h, Céline; Bräuer-Krisch, Elke; Rogalev, Léonid; Laissue, Jean Albert; Rihet, Pascal; Le Duc, Géraldine; Pelletier, Laurent

    2015-06-01

    Synchrotron microbeam radiation therapy (MRT) relies on the spatial fractionation of a synchrotron beam into parallel micron-wide beams allowing deposition of hectogray doses. MRT controls the intracranial tumor growth in rodent models while sparing normal brain tissues. Our aim was to identify the early biological processes underlying the differential effect of MRT on tumor and normal brain tissues. The expression of 28,000 transcripts was tested by microarray 6 hr after unidirectional MRT (400 Gy, 50 µm-wide microbeams, 200 µm spacing). The specific response of tumor tissues to MRT consisted in the significant transcriptomic modulation of 431 probesets (316 genes). Among them, 30 were not detected in normal brain tissues, neither before nor after MRT. Areg, Trib3 and Nppb were down-regulated, whereas all others were up-regulated. Twenty-two had similar expression profiles during the 2 weeks observed after MRT, including Ccnb1, Cdc20, Pttg1 and Plk1 related to the mitotic role of the Polo-like kinase (Plk) pathway. The up-regulation of Areg expression may indicate the emergence of survival processes in tumor cells triggered by the irradiation; while the modulation of the "mitotic role of Plk1" pathway, which relates to cytokinetic features of the tumor observed histologically after MRT, may partially explain the control of tumor growth by MRT. The identification of these tumor-specific responses permit to consider new strategies that might potentiate the antitumoral effect of MRT. PMID:25382544

  5. Inhibition of TNFα-induced iNOS expression in HSV-tk transduced 9L glioblastoma cell lines by Marasmius oreades substances through NF-κB- and MAPK-dependent mechanisms.

    PubMed

    Ruimi, Nili; Petrova, Roumyana D; Agbaria, Riad; Sussan, Sherbel; Wasser, Solomon P; Reznick, Abraham Z; Mahajna, Jamal

    2010-12-01

    Nitric oxide (NO) is a gaseous, radical molecule that plays a role in various physiological processes. Previously, we reported that transduction of murine colon cancer cells (MC38) with herpes simplex virus thymidine kinase (HSV-tk) gene resulted in a significant over-expression of cyclooxygenase-2 (COX-2) and activation of NF-kB pathway. In this study we show that TNFα, but not LPS, was significantly able to stimulate the production of NO in HSV-tk transduced 9L glioblastoma cell lines, mediated by the up-regulation of iNOS transcript and iNOS protein. The TNFα-induced up-regulation of iNOS expression was mediated by MAPK and NF-κB signaling pathways as revealed by using selective pharmaceutical inhibitors. A culture liquid extract of the edible and medicinal mushroom Marasmius oreades that was previously shown to inhibit iNOS expression in MCF-7 was utilized to prepare fractions and evaluate their ability to affect TNFα-induced iNOS expression in HSV tk transduced 9L cell lines. While most of the tested fractions were shown to inhibit TNFα-induced iNOS expression, they targeted different signaling pathways in a selective fashion. Here, we report that fraction SiSiF1 interfered with IKBα phosphorylation and consequently interfered with NF-κB activation pathway. SiSiF1 showed minimal interference with the phosphorylation of p38 and JNK proteins. In contrast, fraction SiSiF3 selectively inhibited the phosphorylation of p38 and fractions SiSiF4 and SiSiF5 selectively inhibited the phosphorylation of JNK with no observed effect against IKBα and p38 phosphorylation. Our data illustrate the complexity of iNOS regulation in HSV tk transduced 9L cell lines and also the richness of natural products with bioactive substances that may act synergistically through different signaling pathways to affect iNOS gene expression. PMID:20224909

  6. Design of a Phase I Clinical Trial to Evaluate M032, a Genetically Engineered HSV-1 Expressing IL-12, in Patients with Recurrent/Progressive Glioblastoma Multiforme, Anaplastic Astrocytoma, or Gliosarcoma.

    PubMed

    Patel, Daxa M; Foreman, Paul M; Nabors, L Burt; Riley, Kristen O; Gillespie, G Yancey; Markert, James M

    2016-06-01

    M032 is a second-generation oncolytic herpes simplex virus (oHSV) that selectively replicates in tumor cells. M032 kills tumor cells directly through oncolytic replication and then proceeds to infect tumor cells in proximity, continuing the process of tumor destruction. In addition to this direct oncolytic activity, the virus carries a therapeutic payload-thus acting as a gene therapy vector-and causes the tumor cell to synthesize and secrete the immunity-stimulating protein interleukin-12 (IL-12) before cell death. (1) Human IL-12 is expressed and promotes an immune response against surviving tumor cells, increasing the antitumor effect of the therapy. IL-12 also produces an antiangiogenic effect, by interfering with the production of new tumor blood vessels necessary for tumor growth. Thus, M032 oHSV exerts antitumor effects through three distinct potential mechanisms. The virus has also been genetically engineered to minimize toxic effects for the patient. Preclinical animal models support the safety of intracranial inoculation with M032 in two relevant species (mouse and nonhuman primate). This clinical protocol outlines the dose-escalating phase I study for evaluation of M032 in patients with recurrent or progressive malignant glioma. PMID:27314913

  7. Clinical Predictive Models for Chemotherapy-Induced Febrile Neutropenia in Breast Cancer Patients: A Validation Study

    PubMed Central

    Zhu, Liling; Su, Fengxi; Jia, Weijuan; Deng, Xiaogeng

    2014-01-01

    Background Predictive models for febrile neutropenia (FN) would be informative for physicians in clinical decision making. This study aims to validate a predictive model (Jenkin’s model) that comprises pretreatment hematological parameters in early-stage breast cancer patients. Patients and Methods A total of 428 breast cancer patients who received neoadjuvant/adjuvant chemotherapy without any prophylactic use of colony-stimulating factor were included. Pretreatment absolute neutrophil counts (ANC) and absolute lymphocyte counts (ALC) were used by the Jenkin’s model to assess the risk of FN. In addition, we modified the threshold of Jenkin’s model and generated Model-A and B. We also developed Model-C by incorporating the absolute monocyte count (AMC) as a predictor into Model-A. The rates of FN in the 1st chemotherapy cycle were calculated. A valid model should be able to significantly identify high-risk subgroup of patients with FN rate >20%. Results Jenkin’s model (Predicted as high-risk when ANC≦3.1*10∧9/L;ALC≦1.5*10∧9/L) did not identify any subgroups with significantly high risk (>20%) of FN in our population, even if we used different thresholds in Model-A(ANC≦4.4*10∧9/L;ALC≦2.1*10∧9/L) or B(ANC≦3.8*10∧9/L;ALC≦1.8*10∧9/L). However, with AMC added as an additional predictor, Model-C(ANC≦4.4*10∧9/L;ALC≦2.1*10∧9/L; AMC≦0.28*10∧9/L) identified a subgroup of patients with a significantly high risk of FN (23.1%). Conclusions In our population, Jenkin’s model, cannot accurately identify patients with a significant risk of FN. The threshold should be changed and the AMC should be incorporated as a predictor, to have excellent predictive ability. PMID:24945817

  8. Gene transfer into experimental brain tumors mediated by adenovirus, herpes simplex virus, and retrovirus vectors.

    PubMed

    Boviatsis, E J; Chase, M; Wei, M X; Tamiya, T; Hurford, R K; Kowall, N W; Tepper, R I; Breakefield, X O; Chiocca, E A

    1994-02-01

    Three vectors derived from retrovirus, herpes simplex virus type 1 (HSV), and adenovirus were compared in cultured rat 9L gliosarcoma cells for gene transfer efficiency and in a 9L rat brain tumor model for histologic pattern and distribution of foreign gene delivery, as well as for associated tumor necrosis and inflammation. At a multiplicity of infection of 1, in vitro transfer of a foreign gene (lacZ from Escherichia coli) into cells was more efficient with either the replication-defective retrovirus vector or the replication-conditional thymidine kinase (TK)-deficient HSV vector than with the replication-defective adenovirus vector. In vivo, stereotactic injections of each vector into rat brain tumors revealed three main histopathologic findings: (i) retrovirus and HSV vector-mediated gene transfer was relatively selective for cells within the tumor, whereas adenovirus vector-mediated gene transfer occurred into several types of endogenous neural cells, as well as into cells within the tumor; (ii) gene transfer to multiple infiltrating tumor deposits without apparent gene transfer to intervening normal brain tissue occurred uniquely in one animal inoculated with the HSV vector, and (iii) extensive necrosis and selective inflammation in the tumor were evident with the HSV vector, whereas there was minimal evidence of tumor necrosis and inflammation with either the retrovirus or adenovirus vectors. PMID:8186298

  9. Assessment of Proton Microbeam Analysis of 11B for Quantitative Microdistribution Analysis of Boronated Neutron Capture Agent Analogs in Biological Tissues

    SciTech Connect

    Bench, G; Grant, P G; Ueda, D L; Autry-Conwell, S A; Hou, Y; Boggan, J E

    2002-12-04

    Purpose: To assess the {sup 11}B(p, {alpha}){sup 8}Be* nuclear reaction for quantitatively mapping the in-vivo sub-cellular distribution of boron within gliosarcoma tumors treated with boronated neutron capture therapy agent (NCTA) analogs. Materials and Methods: Intracranial tumors were produced in Fisher 344 rats using a 9L gliosarcoma model. Fourteen days later, the majority of rats were treated with f-boronophenylalanine and sacrificed 30 or 180 minutes after intravenous injection. Freeze dried tumor cryosections were imaged using the {sup 11}B(p, {alpha}){sup 8}Be* nuclear reaction and proton microbeams obtained from the nuclear microprobe at Lawrence Livermore National Laboratory. Results/Discussion: With{sup 11}B(p, {alpha}){sup 8}Be* analysis, {sup 11}B distributions within cells can be quantitatively imaged with spatial resolutions down to 1.5 {micro}m, minimum detection limits of 0.8 mg/kg and acquisition times of several hours. These capabilities offer advantages over alpha track autoradiography, electron energy loss spectroscopy and secondary ion mass spectrometry (SIMS) for 'B quantitation in tissues. However, the spatial resolution, multi-isotope capability and analysis times achieved with SIMS are superior to those achieved with {sup 11}B(p, {alpha}){sup 8}Be* analysis. Conclusions: When accuracy in quantitation is crucial, the assessing the microdistribution of {sup 11}B. {sup 11}B(p, {alpha}){sup 8}Be* reaction is well suited for Otherwise, SIMS may well be better suited to image the microdistribution of boron associated with NCTAs in biological tissues.

  10. Exploiting apoptosis in photodynamic therapy: is it possible?

    NASA Astrophysics Data System (ADS)

    Rendon, Cesar A.; Lilge, Lothar D.

    2003-06-01

    Glioblastoma Multiforme is the most common form of malignant brain tumors and accounts for approximately 25% of all primary brain tumors. Only 5% of these patients survive longer than 2 years. The standard form of treatment is radiation therapy and surgery if the site is accessible. Different forms of adjuvant chemotherapy have been largely proven unsuccessful. Another form of adjuvant therapy, Photodynamic Therapy (PDT), has undergone preliminary trials showing some promising results but at the cost of increased side effects like rise in intracranial blood pressure and neurological deficiency. Apoptotic cell kill used as a biological treatment endpoint can possibly ameliorate these side effects. This study evaluates the significance of apoptotic cell death in the 9L rat gliosarcoma using the aminolevulinic acid (ALA) induced endogenous photosensitizer Protophorphyrin IX (PpIX). A strong influence of drug incubation time with cell kill was observed. The percentage of apoptotic cell death was less than 10% for 2 and 4 hours incubation times and irradiation times ensuring up to 70 and 80% cell kill respectively. Accumulation of PpIX in the mitochondria and cytoplasm was quantified by confocal fluorescence microscopy showing a linear relationship of PpIX fluorescence with concentration. The possibility of an in vitro threshold in the PDT dose is discussed, above which cell repair mechanisms may become exhausted. In conclusion for the range of parameters investigated, apoptotic cell kill may be hard to exploit therapeutically in this tumor model.

  11. Intra-cerebral ventricular infusion of 5-iodo-2-deoxyuridine (IUDR) as a radiosensitizer in the treatment of a rat glioma

    SciTech Connect

    Deutsch, M.; Rewers, A.B.; Redgate, S.; Fisher, E.R.; Boggs, S.S. )

    1990-07-01

    The efficacy of 5-iodo-2-deoxyuridine (IUDR) as a radiosensitizer when administered by continuous infusion into the cerebral spinal fluid (CSF) of the lateral cerebral ventricle was evaluated in a 9L gliosarcoma rat brain tumor model. Stereotactic implantation of a 5 x 10(4) tumor cell suspension into the left caudate nucleus was carried out in four groups of 10 rats each. Control animals had a median survival of 16.9 days (range 16-21 days). IUDR, 8.4 mg over 7 days administered by continuous infusion into the left lateral ventricle produced a slight survival advantage (median survival 21.5 days, range 12-56). Irradiation of the entire brain, 8 Gy on days 4, 6 and 7 after tumor cell implantation also produced a slight improvement in survival (median 19.5 days, range 17-34). The combination of radiation and IUDR infusion into the CSF produced a marked survival advantage (median 30.5, range 22-54) compared to the control and single modality treatment groups. This is the first demonstration of the effectiveness of IUDR as a radiosensitizer when administered into the lateral cerebral ventricle in the treatment of an intraparenchymal brain tumor.

  12. 5-Iodo-2-deoxyuridine administered into the lateral cerebral ventricle as a radiosensitizer in the treatment of disseminated glioma

    SciTech Connect

    Deutsch, M.; Rewers, A.B.; Redgate, E.S.; Fisher, E.R.; Boggs, S.S. )

    1989-09-06

    A rat brain tumor model (Fischer 344 rats) with the clinical and pathological features of dissemination via the cerebrospinal fluid (CSF) pathways was used to demonstrate the efficacy of 5-iodo-2-deoxyuridine (IUDR) as a radiosensitizer when it is administered directly into the CSF. Stereotaxic implantation of 9L gliosarcoma cells (5 X 10(5)) into the CSF of the lateral cerebral ventricle resulted in widespread dissemination and median survival of 18.5 and 20 days (range, 10-22) in two experiments. A continuous 7-day infusion of IUDR into the CSF starting on the day of tumor implantation did not provide any beneficial effect. Irradiation of the cranial spinal axis with 800 rad on days 4, 6, and 7 after implantation achieved an increase in survival time that was modest but statistically significant. However, the combination of IUDR infusion and radiotherapy resulted in marked improvement in survival time and a 10% cure rate (two of 20 rats). This is the first demonstration in vivo that IUDR administered into the CSF can be a potent radiosensitizer.

  13. Modeling

    SciTech Connect

    Loth, E.; Tryggvason, G.; Tsuji, Y.; Elghobashi, S. E.; Crowe, Clayton T.; Berlemont, A.; Reeks, M.; Simonin, O.; Frank, Th; Onishi, Yasuo; Van Wachem, B.

    2005-09-01

    Slurry flows occur in many circumstances, including chemical manufacturing processes, pipeline transfer of coal, sand, and minerals; mud flows; and disposal of dredged materials. In this section we discuss slurry flow applications related to radioactive waste management. The Hanford tank waste solids and interstitial liquids will be mixed to form a slurry so it can be pumped out for retrieval and treatment. The waste is very complex chemically and physically. The ARIEL code is used to model the chemical interactions and fluid dynamics of the waste.

  14. BPA uptake in rat tissues after partial hepatectomy

    SciTech Connect

    Slatkin, D.N.; Nawrocky, M.M.; Coderre, J.A.; Fisher, C.D.; Joel, D.D.; Lombardo, D.T.; Micca, P.L.

    1996-12-31

    In boron neutron capture therapy (BNCT), boron given as boronophenylalanine (BPA) accumulates transiently not only in tumors but also in normal tissues. Average boron concentrations in transplanted 9L gliosarcoma tumors of 20 rats were 2.5 to 3.7 times concentrations found in blood. Although boron levels in a variety of tissues were also higher than blood the concentrations were less than the lowest found in the tumor. Further note than although BPA is a structural analogue of phenylalanine (Phe), the pathway of BPA uptake into regenerating liver may not be linked to Phe uptake mechanisms.

  15. Thrombocytopenia model with minimal manipulation of blood cells allowing whole blood assessment of platelet function.

    PubMed

    Tiedemann Skipper, Mette; Rubak, Peter; Halfdan Larsen, Ole; Hvas, Anne-Mette

    2016-06-01

    In vitro models of thrombocytopenia are useful research tools. Previously published models have shortcomings altering properties of platelets and other blood components. The aim of the present study was to develop a whole blood method to induce thrombocytopenia with minimal manipulation, and to describe platelet function in induced thrombocytopenia in individuals with healthy platelets. Hirudin anticoagulated blood was obtained from 20 healthy volunteers. One part of the blood was gently centrifuged at 130g for 15 minutes. The platelet-rich plasma was replaced with phosphate-buffered saline to establish thrombocytopenia. Various levels of thrombocytopenia were achieved by combining different volumes of baseline whole blood and thrombocytopenic blood. Platelet counts were measured by flow cytometry (Navios, Beckman Coulter) and routine haematological analyser (Sysmex XE-5000). Platelet function was analysed by impedance aggregometry (Multiplate® Analyzer, Roche) and by flow cytometry (Navios, Beckman Coulter) using collagen, adenosine diphosphate, thrombin receptor activating peptide-6 and ristocetin as agonists. Median baseline platelet count was 227×10(9)/l. The in vitro model yielded median platelet counts at 51×10(9)/l (range 26-93×10(9)/l). We observed minor, yet significant, changes in platelet size and maturity from baseline to modelled thrombocytopenia. In the thrombocytopenic samples, significant and positive linear associations were found between platelet count and platelet aggregation across all agonists (all p-values<0.001). Platelet function assessed by flow cytometry showed minimal alterations in the thrombocytopenic samples. A new whole blood-based model of thrombocytopenia was established and validated. This new model serves as a useful future tool, particularly to explore platelet function in patients with thrombocytopenia. PMID:26555800

  16. Operation of a Four-Cylinder 1.9L Propane Fueled HCCI Engine

    SciTech Connect

    Flowers, D; Aceves, S M; Martinez-Frias, J; Smith, J R; Au, M; Girard, J; Dibble, R

    2001-03-15

    A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbocharged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm. This work is intended to characterize the HCCI operation of the engine in this configuration that has been minimally modified from the base Diesel engine. The performance (BMEP, IMEP, efficiency, etc) and emissions (THC, CO, NOx) of the engine are presented, as are combustion process results based on heat release analysis of the pressure traces from each cylinder.

  17. Bevacizumab and Cediranib Maleate in Treating Patients With Metastatic or Unresectable Solid Tumor, Lymphoma, Intracranial Glioblastoma, Gliosarcoma or Anaplastic Astrocytoma

    ClinicalTrials.gov

    2014-02-14

    Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  18. Metronomic photodynamic therapy (mPDT) for intracranial neoplasm: physiological, biological, and dosimetry considerations

    NASA Astrophysics Data System (ADS)

    Bisland, Stuart L.; Lilge, Lothar; Lin, Annie; Wilson, Brian C.

    2003-10-01

    Metronomic photodynamic therapy (mPDT), a procedure in which both the photosensitizer and light are delivered continuously so that the individual doses overlap pharmacologically is introduced. The fundamental hypothesis in mPDT is that by providing therapy at low fluence over extended periods of time, there is potential for improved selectivity in tumor cell kill through non necrotic pathways. This is especially important in the treatment of malignant brain tumors, in which selectivity between damage to tumor cells versus normal brain tissue is critical. Previous studies have shown that low-dose PDT using aminolevulinic acid (ALA)-induced protoporphyrin IX (PiIX) can induce apoptosis in tumor cells without causing necrosis in either tumor or normal brain tissue nor apoptosis in the latter. However, in order to achieve tumor control, multiple PDT treatments, such as hyper fractionation or metronomic delivery, are required, where the frequency and duration of the treatment are determined by the levels of apoptosis achieved in relationship to tumor cell doubling times, mPDT poses two substantial technical challenges: extended delivery of ALA and implantation of interstitial devices for extended light delivery at a sufficiently high enough density to achieve low fluence exposure to the brain adjacent to tumor or the entire hemisphere. In a rat model we evaluated the feasibility of delivering sustained ALA administration via the drinking water for up to 10 days without loss of PPIX selectivity. Post mortem quantitative spectrofluorimetry of tumor, normal brain and other tissues demonstrates a 4 times higher PPIX concentration in the 9L gliosarcoma model without noticeable toxicity. Light sources and delivery devices based either on laser diode or light emitting diode (LED) coupled to an implanted optical fiber were shown to be feasible. The maximum permissible spacing of cylindrical isotropic emitters is determined using known apoptotic indices and the necrosis

  19. Comparative assessment of single-dose and fractionated boron neutron capture therapy

    SciTech Connect

    Coderre, J.A.; Micca, P.L.; Fisher, C.D.

    1995-12-01

    The effects of fractionating boron neutron capture therapy (BNCT) were evaluated in the intracerebral rat 9L gliosarcoma and rat spinal cord models using the Brookhaven Medical Research Reactor (BMRR) thermal neutron beam. The amino acid analog p-boronophenylalanine (BPA) was administered prior to each exposure to the thermal neutron beam. The total physical absorbed dose to the tumor during BNCT using BPA was 91% high-linear energy transfer (LET) radiation. Two tumor doses of 5.2 Gy spaced 48 h apart (n = 14) or three tumor doses of 5.2 Gy, each separated by 48 h (n = 10), produced 50 and 60% long-term (>1 year) survivors, respectively. The outcome of neither the two nor the three fractions of radiation was statistically different from that of the corresponding single-fraction group. In the rat spinal cord, the ED{sub 50} for radiation myelopathy (as indicated by limb paralysis within 7 months) after exposure to the thermal beam alone was 13.6 {+-} 0.4 Gy. Dividing the beam-only irradiation into two or four consecutive daily fractions increased the ED{sub 50} to 14.7 {+-} 0.2 Gy and 15.5 {+-} 0.4 Gy, respectively. Thermal neutron irradiation in the presence of BPA resulted in an ED{sub 50} for myelopathy of 13.8 {+-} 0.6 Gy after a single fraction and 14.9 {+-} 0.9 Gy after two fractions. An increase in the number of fractions to four resulted in an ED{sub 50} of 14.3 {+-} 0.6 Gy. The total physical absorbed dose to the blood in the vasculature of the spinal cord during BNCT using BPA was 80% high-LET radiation. It was observed that fractionation was of minor significance in the amelioration of damage to the normal central nervous system in the rat after boron neutron capture irradiation. 30 refs., 5 figs., 3 tabs.

  20. Inhibition of angiogenesis and tumor growth in the brain. Suppression of endothelial cell turnover by penicillamine and the depletion of copper, an angiogenic cofactor.

    PubMed Central

    Brem, S. S.; Zagzag, D.; Tsanaclis, A. M.; Gately, S.; Elkouby, M. P.; Brien, S. E.

    1990-01-01

    Microvascular proliferation, a hallmark of malignant brain tumors, represents an attractive target of anticancer research, especially because of the quiescent nonproliferative endothelium of the normal brain. Cerebral neoplasms sequester copper, a trace metal that modulates angiogenesis. Using a rabbit brain tumor model, normocupremic animals developed large vascularized VX2 carcinomas. By contrast, small, circumscribed, relatively avascular tumors were found in the brains of rabbits copper-depleted by diet and penicillamine treatment (CDPT). The CDPT rabbits showed a significant decrease in serum copper, copper staining of tumor cell nuclei, microvascular density, the tumor volume, endothelial cell turnover, and an increase in the vascular permeability (breakdown of the blood-brain barrier), as well as peritumoral brain edema. In non-tumor-bearing animals, CDPT did not alter the vascular permeability or the brain water content. CDPT also inhibited the intracerebral growth of the 9L gliosarcoma in F-344 rats, with a similar increase of the peritumoral vascular permeability and the brain water content. CDPT failed to inhibit tumor growth and the vascularization of the VX2 carcinoma in the thigh muscle or the metastases to the lung, findings that may reflect regional differences in the responsiveness of the endothelium, the distribution of copper, or the activity of cuproenzymes. Metabolic and pharmacologic withdrawal of copper suppresses intracerebral tumor angiogenesis; angiosuppression is a novel biologic response modifier for the in situ control of tumor growth in the brain. Images Figure 2 Figure 4 Figure 5 Figure 6 Figure 8 Figure 10 Figure 12 Figure 15 Figure 16 PMID:1700617

  1. Impact of Focused Ultrasound-enhanced Drug Delivery on Survival in Rats with Glioma

    NASA Astrophysics Data System (ADS)

    Treat, Lisa Hsu; Zhang, Yongzhi; McDannold, Nathan; Hynynen, Kullervo

    2009-04-01

    Malignancies of the brain remain difficult to treat with chemotherapy because the selective permeability of the blood-brain barrier (BBB) blocks many potent agents from reaching their target. Previous studies have illustrated the feasibility of drug and antibody delivery across the BBB using MRI-guided focused ultrasound. In this study, we investigated the impact of focused ultrasound-enhanced delivery of doxorubicin on survival in rats with aggressive glioma. Sprague-Dawley rats were implanted with 9 L gliosarcoma cells in the brain. Eight days after implantation, each rat received one of the following: (1) no treatment (control), (2) a single treatment with microbubble-enhanced MRI-guided focused ultrasound (FUS only), (3) a single treatment with i.v. liposomal doxorubicin (DOX only), or (4) a single treatment with microbubble-enhanced MRI-guided focused ultrasound and concurrent i.v. injections of liposomal doxorubicin (FUS+DOX). The survival time from implantation to death or euthanasia was recorded. We observed a modest but significant increase in median survival time in rats treated with combined MRI-guided focused ultrasound chemotherapy, compared to chemotherapy alone (p<0.001). There was no significant improvement in survival between those who received stand-alone chemotherapy and those who did not receive any treatment (p>0.10). Our study demonstrates for the first time a therapeutic benefit achieved with ultrasound-enhanced drug delivery across the blood-brain barrier. This confirmation of efficacy in an in vivo tumor model indicates that targeted drug delivery using MRI-guided focused ultrasound has the potential to have a major impact on the treatment of patients with brain tumors and other neurological disorders.

  2. Phase I/II study of sorafenib in combination with temsirolimus for recurrent glioblastoma or gliosarcoma: North American Brain Tumor Consortium study 05-02

    PubMed Central

    Lee, Eudocia Q.; Kuhn, John; Lamborn, Kathleen R.; Abrey, Lauren; DeAngelis, Lisa M.; Lieberman, Frank; Robins, H. Ian; Chang, Susan M.; Yung, W. K. Alfred; Drappatz, Jan; Mehta, Minesh P.; Levin, Victor A.; Aldape, Kenneth; Dancey, Janet E.; Wright, John J.; Prados, Michael D.; Cloughesy, Timothy F.; Gilbert, Mark R.; Wen, Patrick Y.

    2012-01-01

    The activity of single-agent targeted molecular therapies in glioblastoma has been limited to date. The North American Brain Tumor Consortium examined the safety, pharmacokinetics, and efficacy of combination therapy with sorafenib, a small molecule inhibitor of Raf, vascular endothelial growth factor receptor 2, and platelet-derived growth factor receptor–β, and temsirolimus (CCI-779), an inhibitor of mammalian target of rapamycin. This was a phase I/II study. The phase I component used a standard 3 × 3 dose escalation scheme to determine the safety and tolerability of this combination therapy. The phase II component used a 2-stage design; the primary endpoint was 6-month progression-free survival (PFS6) rate. Thirteen patients enrolled in the phase I component. The maximum tolerated dosage (MTD) for combination therapy was sorafenib 800 mg daily and temsirolimus 25 mg once weekly. At the MTD, grade 3 thrombocytopenia was the dose-limiting toxicity. Eighteen patients were treated in the phase II component. At interim analysis, the study was terminated and did not proceed to the second stage. No patients remained progression free at 6 months. Median PFS was 8 weeks. The toxicity of this combination therapy resulted in a maximum tolerated dose of temsirolimus that was only one-tenth of the single-agent dose. Minimal activity in recurrent glioblastoma multiforme was seen at the MTD of the 2 combined agents. PMID:23099651

  3. Phase I/II study of sorafenib in combination with temsirolimus for recurrent glioblastoma or gliosarcoma: North American Brain Tumor Consortium study 05-02.

    PubMed

    Lee, Eudocia Q; Kuhn, John; Lamborn, Kathleen R; Abrey, Lauren; DeAngelis, Lisa M; Lieberman, Frank; Robins, H Ian; Chang, Susan M; Yung, W K Alfred; Drappatz, Jan; Mehta, Minesh P; Levin, Victor A; Aldape, Kenneth; Dancey, Janet E; Wright, John J; Prados, Michael D; Cloughesy, Timothy F; Gilbert, Mark R; Wen, Patrick Y

    2012-12-01

    The activity of single-agent targeted molecular therapies in glioblastoma has been limited to date. The North American Brain Tumor Consortium examined the safety, pharmacokinetics, and efficacy of combination therapy with sorafenib, a small molecule inhibitor of Raf, vascular endothelial growth factor receptor 2, and platelet-derived growth factor receptor-β, and temsirolimus (CCI-779), an inhibitor of mammalian target of rapamycin. This was a phase I/II study. The phase I component used a standard 3 × 3 dose escalation scheme to determine the safety and tolerability of this combination therapy. The phase II component used a 2-stage design; the primary endpoint was 6-month progression-free survival (PFS6) rate. Thirteen patients enrolled in the phase I component. The maximum tolerated dosage (MTD) for combination therapy was sorafenib 800 mg daily and temsirolimus 25 mg once weekly. At the MTD, grade 3 thrombocytopenia was the dose-limiting toxicity. Eighteen patients were treated in the phase II component. At interim analysis, the study was terminated and did not proceed to the second stage. No patients remained progression free at 6 months. Median PFS was 8 weeks. The toxicity of this combination therapy resulted in a maximum tolerated dose of temsirolimus that was only one-tenth of the single-agent dose. Minimal activity in recurrent glioblastoma multiforme was seen at the MTD of the 2 combined agents. PMID:23099651

  4. Determination of radiobiological parameters for the safe clinical application of BNCT

    SciTech Connect

    Hopewell, J.W.; Morris, G.M.; Coderre, J.A.

    1993-12-31

    In the present report the effects of BNCT irradiation on the skin and spinal cord of Fischer 344 rats, for known concentrations of {sup 10}B in the blood and these normal tissues, are compared with the effects of the neutron beam alone or photon irradiation. The biological effectiveness of irradiation in the presence of the capture agents BSH and BPA have been compared. Irradiations were carried out using the thermal beam of the Brookhaven Medical Research Reactor (BMRR). Therapy experiments were also carried out as part of this study, using the rat 9L-gliosarcoma cell line, in order to establish the potential therapeutic advantage that might be achieved using the above capture agents. This cell line grows as a solid tumor in vivo as well as in vitro. The implications of these findings, with respect to the clinical use of the Petten HBII based epithermal neutron beam, will be discussed.

  5. Boron neutron capture therapy of glioblastoma multiforme using the p- boronophenylalanine-fructose complex and epithermal neutrons

    SciTech Connect

    Coderre, J.A.; Chanana, A.D.; Joel, D.D.; Liu, H.B.; Slatkin, D.N.; Wielopolski, L.; Bergland, R.; Elowitz, E.; Chadha, M.

    1994-12-31

    The amino acid analogue p-boronophenylalanine (BPA) is under investigation as a neutron capture agent for BNCT of glioblastoma multiforme. A series of patients undergoing surgical removal of tumor received BPA orally as the free amino acid. Favorable tumor/blood boron concentration ratios were obtained but the absolute amount of boron in the tumor would have been insufficient for BNCT. BPA can be solubilized at neutral pH by complexation with fructose (BPA-F). Studies with rats suggest that intraperitoneal injection of BPA-F complex produces a much higher tumor boron concentration to rat intracerebral 9L gliosarcoma that were possible with oral BPA. Higher boron concentrations have allowed higher tumor radiation doses to be delivered while maintaining the dose to the normal brain vascular endothelium below the threshold of tolerance. The experience to date of the administration of BPA-F to one patient is provided in this report.

  6. Leadership Models.

    ERIC Educational Resources Information Center

    Freeman, Thomas J.

    This paper discusses six different models of organizational structure and leadership, including the scalar chain or pyramid model, the continuum model, the grid model, the linking pin model, the contingency model, and the circle or democratic model. Each model is examined in a separate section that describes the model and its development, lists…

  7. Models and role models.

    PubMed

    ten Cate, Jacob M

    2015-01-01

    Developing experimental models to understand dental caries has been the theme in our research group. Our first, the pH-cycling model, was developed to investigate the chemical reactions in enamel or dentine, which lead to dental caries. It aimed to leverage our understanding of the fluoride mode of action and was also utilized for the formulation of oral care products. In addition, we made use of intra-oral (in situ) models to study other features of the oral environment that drive the de/remineralization balance in individual patients. This model addressed basic questions, such as how enamel and dentine are affected by challenges in the oral cavity, as well as practical issues related to fluoride toothpaste efficacy. The observation that perhaps fluoride is not sufficiently potent to reduce dental caries in the present-day society triggered us to expand our knowledge in the bacterial aetiology of dental caries. For this we developed the Amsterdam Active Attachment biofilm model. Different from studies on planktonic ('single') bacteria, this biofilm model captures bacteria in a habitat similar to dental plaque. With data from the combination of these models, it should be possible to study separate processes which together may lead to dental caries. Also products and novel agents could be evaluated that interfere with either of the processes. Having these separate models in place, a suggestion is made to design computer models to encompass the available information. Models but also role models are of the utmost importance in bringing and guiding research and researchers. PMID:25871413

  8. MODEL DEVELOPMENT - DOSE MODELS

    EPA Science Inventory

    Model Development

    Humans are exposed to mixtures of chemicals from multiple pathways and routes. These exposures may result from a single event or may accumulate over time if multiple exposure events occur. The traditional approach of assessing risk from a single chemica...

  9. In vitro influence of hypoxia on bioluminescence imaging in brain tumor cells

    NASA Astrophysics Data System (ADS)

    Moriyama, Eduardo H.; Jarvi, Mark; Niedre, Mark; Mocanu, Joseph D.; Moriyama, Yumi; Li, Buhong; Lilge, Lothar; Wilson, Brian C.

    2007-02-01

    Bioluminescence Imaging (BLI) has been employed as an imaging modality to identify and characterize fundamental processes related to cancer development and response at cellular and molecular levels. This technique is based on the reaction of luciferin with oxygen in the presence of luciferase and ATP. A major concern in this technique is that tumors are generally hypoxic, either constitutively and/or as a result of treatment, therefore the oxygen available for the bioluminescence reaction could possibly be reduced to limiting levels, and thus leading to underestimation of the actual number of luciferase-labeled cells during in vivo procedures. In this report, we present the initial in vitro results of the oxygen dependence of the bioluminescence signal in rat gliosarcoma 9L cells tagged with the luciferase gene (9L luc cells). Bioluminescence photon emission from cells exposed to different oxygen tensions was detected by a sensitive CCD camera upon exposure to luciferin. The results showed that bioluminescence signal decreased at administered pO II levels below about 5%, falling by approximately 50% at 0.2% pO II. Additional experiments showed that changes in BLI was due to the cell inability to maintain normal levels of ATP during the hypoxic period reducing the ATP concentration to limiting levels for BLI.

  10. Synthesis, Radiolabeling and Biological Evaluation of (R)- and (S)-2-Amino-3-[18F]Fluoro-2-Methylpropanoic Acid (FAMP) and (R)- and (S)-3-[18F]Fluoro-2-Methyl-2-N-(Methylamino)propanoic Acid (NMeFAMP) as Potential PET Radioligands for Imaging Brain Tumors

    PubMed Central

    Yu, Weiping; McConathy, Jonathan; Williams, Larry; Camp, Vernon M.; Malveaux, Eugene J.; Zhang, Zhaobin; Olson, Jeffrey J.; Goodman, Mark M.

    2009-01-01

    The non-natural amino acids (R)- and (S)-2-amino-3-fluoro-2-methylpropanoic acid 5 and (R)- and (S)-3-fluoro-2-methyl-2-N-(methylamino)propanoic acid 8 were synthesized in shorter reaction sequences than in the original report starting from enantiomerically pure (S)- and (R)-α-methyl-serine, respectively. The reaction sequence provided the cyclic sulfamidate precursors for radiosynthesis of (R)- and (S)-[18F]5 and (R)- and (S)-[18F]8 in fewer steps than in the original report. (R)- and (S)-[18F]5 and(R)- and (S)-[18F]8 were synthesized by no-carrier-added nucleophilic [18F]fluorination in 52–66% decay-corrected-yields with radiochemical purity over 99%. The cell assays showed that all four compounds were substrates for amino acid transport and enter 9L rat gliosarcoma cells in vitro at least in part by system-A amino acid transport. The biodistribution studies demonstrated that in vivo tumor to normal brain ratios for all compounds were high with ratios of 20:1 to115:1 in rats with intracranial 9L tumors. The (R)- enantiomers of [18F]5 and [18F]8 demonstrated higher tumor uptake in vivo compared to the (S)- enantiomers. PMID:20028004

  11. Operation of a Four-Cylinder 1.9L Propane Fueled Homogeneous Charge Compression Ignition Engine: Basic Operating Characteristics and Cylinder-to-Cylinder Effects

    SciTech Connect

    Flowers, D; Aceves, S M; Martinez-Frias, J; Smith, J R; Au, M; Girard, J; Dibble, R

    2001-03-12

    A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbocharged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm. This work is intended to characterize the HCCI operation of the engine in this configuration that has been minimally modified from the base Diesel engine. The performance (BMEP, IMEP, efficiency, etc) and emissions (THC, CO, NOx) of the engine are presented, as are combustion process results based on heat release analysis of the pressure traces from each cylinder.

  12. Promoting Models

    NASA Astrophysics Data System (ADS)

    Li, Qin; Zhao, Yongxin; Wu, Xiaofeng; Liu, Si

    There can be multitudinous models specifying aspects of the same system. Each model has a bias towards one aspect. These models often override in specific aspects though they have different expressions. A specification written in one model can be refined by introducing additional information from other models. The paper proposes a concept of promoting models which is a methodology to obtain refinements with support from cooperating models. It refines a primary model by integrating the information from a secondary model. The promotion principle is not merely an academic point, but also a reliable and robust engineering technique which can be used to develop software and hardware systems. It can also check the consistency between two specifications from different models. A case of modeling a simple online shopping system with the cooperation of the guarded design model and CSP model illustrates the practicability of the promotion principle.

  13. Seasonal differences of model predictability and the impact of SST in the Pacific

    NASA Astrophysics Data System (ADS)

    Lang, X. M.; Wang, H. J.

    2005-01-01

    Both seasonal potential predictability and the impact of SST in the Pacific on the forecast skill over China are investigated by using a 9-level global atmospheric general circulation model developed at the Institute of Atmospheric Physics under the Chinese Academy of Sciences (IAP9L-ACCM). For each year during 1970 to 1999, the ensemble consists of seven integrations started from consecutive observational daily atmospheric fields and forced by observational monthly SST. For boreal winter, spring and summer, the variance ratios of the SST-forced variability to the total variability and the differences in the spatial correlation coefficients of seasonal mean fields in special years versus normal years are computed respectively. It follows that there are slightly inter-seasonal differences in the model potential predictability in the Tropics. At northern middle and high latitudes, prediction skill is generally low in spring and relatively high either in summer for surface air temperature and middle and upper tropospheric geopotential height or in winter for wind and precipitation. In general, prediction skill rises notably in western China, especially in northwestern China, when SST anomalies (SSTA) in the Ni (n) over tildeo-3 region are significant. Moreover, particular attention should be paid to the SSTA in the North Pacific (NP) if one aims to predict summer climate over the eastern part of China, i.e., northeastern China, North China and southeastern China.

  14. Response surface methodology for the modeling and optimization of oil-in-water emulsion separation using gas sparging assisted microfiltration.

    PubMed

    Fouladitajar, Amir; Zokaee Ashtiani, Farzin; Dabir, Bahram; Rezaei, Hamid; Valizadeh, Bardiya

    2015-02-01

    Response surface methodology (RSM) and central composite design (CCD) were used to develop models for optimization and modeling of a gas sparging assisted microfiltration of oil-in-water (o/w) emulsion. The effect of gas flow rate (Q G ), oil concentration (C oil ), transmembrane pressure (TMP), and liquid flow rate (Q L ) on the permeate flux and oil rejection were studied by RSM. Two sets of experiments were designed to investigate the effects of different gas-liquid two-phase flow regimes; low and high gas flow rates. Two separate RSM models were developed for each experimental set. The oil concentration and TMP were found to be the most significant factors influencing both permeate flux and rejection. Also, the interaction between these parameters was the most significant one. At low Q G , the more the gas flow rate, the higher the permeate flux; however, in the high gas flow rate region, higher Q G did not necessarily improve the permeate flux. In the case of rejection, gas and liquid flow rates were found to be insignificant. The optimum process conditions were found to be the following: Q G  = 1.0 (L/min), C oil  = 1,290 (mg/L), TMP = 1.58 (bar), and Q L  = 3.0 (L/min). Under these optimal conditions, maximum permeate flux and rejection (%) were 115.9 (L/m(2)h) and 81.1 %, respectively. PMID:25182429

  15. Models, Part IV: Inquiry Models.

    ERIC Educational Resources Information Center

    Callison, Daniel

    2002-01-01

    Discusses models for information skills that include inquiry-oriented activities. Highlights include WebQuest, which uses Internet resources supplemented with videoconferencing; Minnesota's Inquiry Process based on the Big Six model for information problem-solving; Indiana's Student Inquiry Model; constructivist learning models for inquiry; and…

  16. Supermatrix models

    SciTech Connect

    Yost, S.A.

    1991-05-01

    Radom matrix models based on an integral over supermatrices are proposed as a natural extension of bosonic matrix models. The subtle nature of superspace integration allows these models to have very different properties from the analogous bosonic models. Two choices of integration slice are investigated. One leads to a perturbative structure which is reminiscent of, and perhaps identical to, the usual Hermitian matrix models. Another leads to an eigenvalue reduction which can be described by a two component plasma in one dimension. A stationary point of the model is described.

  17. Supermatrix models

    SciTech Connect

    Yost, S.A. . Dept. of Physics and Astronomy)

    1992-09-30

    In this paper, random matrix models based on an integral over supermatrices are proposed as a natural extension of bosonic matrix models. The subtle nature of superspace integration allows these models to have very different properties from the analogous bosonic models. Two choices of integration slice are investigated. One leads to a perturbative structure which is reminiscent of, and perhaps identical to, the usual Hermitian matrix models. Another leads to an eigenvalue reduction which can be described by a two-component plasma in one dimension. A stationary point of the model is described.

  18. MODELS - 3

    EPA Science Inventory

    Models-3 is a third generation air quality modeling system that contains a variety of tools to perform research and analysis of critical environmental questions and problems. These tools provide regulatory analysts and scientists with quicker results, greater scientific accuracy ...

  19. ENTRAINMENT MODELS

    EPA Science Inventory

    This presentation presented information on entrainment models. Entrainment models use entrainment hypotheses to express the continuity equation. The advantage is that plume boundaries are known. A major disadvantage is that the problems that can be solved are rather simple. The ...

  20. Turbulence modeling

    NASA Technical Reports Server (NTRS)

    Rubesin, Morris W.

    1987-01-01

    Recent developments at several levels of statistical turbulence modeling applicable to aerodynamics are briefly surveyed. Emphasis is on examples of model improvements for transonic, two-dimensional flows. Experience with the development of these improved models is cited to suggest methods of accelerating the modeling process necessary to keep abreast of the rapid movement of computational fluid dynamics into the computation of complex three-dimensional flows.

  1. Waveguide model

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A model is presented which quantifies the electromagnetic modes (field configurations) in the immediate vicinity of the rectenna element. Specifically, the waveguide model characterizes the electromagnetic modes generated by planar waves normal to the array. The model applies only to incidence normal to the array.

  2. Phoenix model

    EPA Science Inventory

    Phoenix (formerly referred to as the Second Generation Model or SGM) is a global general equilibrium model designed to analyze energy-economy-climate related questions and policy implications in the medium- to long-term. This model disaggregates the global economy into 26 industr...

  3. Radiation Models

    ERIC Educational Resources Information Center

    James, W. G. G.

    1970-01-01

    Discusses the historical development of both the wave and the corpuscular photon model of light. Suggests that students should be informed that the two models are complementary and that each model successfully describes a wide range of radiation phenomena. Cites 19 references which might be of interest to physics teachers and students. (LC)

  4. Hydrological models are mediating models

    NASA Astrophysics Data System (ADS)

    Babel, L. V.; Karssenberg, D.

    2013-08-01

    Despite the increasing role of models in hydrological research and decision-making processes, only few accounts of the nature and function of models exist in hydrology. Earlier considerations have traditionally been conducted while making a clear distinction between physically-based and conceptual models. A new philosophical account, primarily based on the fields of physics and economics, transcends classes of models and scientific disciplines by considering models as "mediators" between theory and observations. The core of this approach lies in identifying models as (1) being only partially dependent on theory and observations, (2) integrating non-deductive elements in their construction, and (3) carrying the role of instruments of scientific enquiry about both theory and the world. The applicability of this approach to hydrology is evaluated in the present article. Three widely used hydrological models, each showing a different degree of apparent physicality, are confronted to the main characteristics of the "mediating models" concept. We argue that irrespective of their kind, hydrological models depend on both theory and observations, rather than merely on one of these two domains. Their construction is additionally involving a large number of miscellaneous, external ingredients, such as past experiences, model objectives, knowledge and preferences of the modeller, as well as hardware and software resources. We show that hydrological models convey the role of instruments in scientific practice by mediating between theory and the world. It results from these considerations that the traditional distinction between physically-based and conceptual models is necessarily too simplistic and refers at best to the stage at which theory and observations are steering model construction. The large variety of ingredients involved in model construction would deserve closer attention, for being rarely explicitly presented in peer-reviewed literature. We believe that devoting

  5. Model Experiments and Model Descriptions

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Ko, Malcolm K. W.; Weisenstein, Debra; Scott, Courtney J.; Shia, Run-Lie; Rodriguez, Jose; Sze, N. D.; Vohralik, Peter; Randeniya, Lakshman; Plumb, Ian

    1999-01-01

    The Second Workshop on Stratospheric Models and Measurements Workshop (M&M II) is the continuation of the effort previously started in the first Workshop (M&M I, Prather and Remsberg [1993]) held in 1992. As originally stated, the aim of M&M is to provide a foundation for establishing the credibility of stratospheric models used in environmental assessments of the ozone response to chlorofluorocarbons, aircraft emissions, and other climate-chemistry interactions. To accomplish this, a set of measurements of the present day atmosphere was selected. The intent was that successful simulations of the set of measurements should become the prerequisite for the acceptance of these models as having a reliable prediction for future ozone behavior. This section is divided into two: model experiment and model descriptions. In the model experiment, participant were given the charge to design a number of experiments that would use observations to test whether models are using the correct mechanisms to simulate the distributions of ozone and other trace gases in the atmosphere. The purpose is closely tied to the needs to reduce the uncertainties in the model predicted responses of stratospheric ozone to perturbations. The specifications for the experiments were sent out to the modeling community in June 1997. Twenty eight modeling groups responded to the requests for input. The first part of this section discusses the different modeling group, along with the experiments performed. Part two of this section, gives brief descriptions of each model as provided by the individual modeling groups.

  6. Model Reduction in Groundwater Modeling

    NASA Astrophysics Data System (ADS)

    Yeh, W. W. G.

    2014-12-01

    Model reduction has been shown to be a very effective method for reducing the computational burden of large-scale simulations. Model reduction techniques preserve much of the physical knowledge of the system and primarily seek to remove components from the model that do not provide significant information of interest. Proper Orthogonal Decomposition (POD) is a model reduction technique by which a system of ordinary equations is projected onto a much smaller subspace in such a way that the span of the subspace is equal to the span of the original full model space. Basically, the POD technique selects a small number of orthonormal basis functions (principal components) that span the spatial variability of the solutions. In this way the state variable (head) is approximated by a linear combination of these basis functions and, using a Galerkin projection, the dimension of the problem is significantly reduced. It has been shown that for a highly discritized model, the reduced model can be two to three orders of magnitude smaller than the original model and runs 1,000 faster. More importantly, the reduced model captures the dominating characteristics of the full model and produces sufficiently accurate solutions. One of the major tasks in the development of the reduced model is the selection of snapshots which are used to determine the dominant eigenvectors. This paper discusses ways to optimize the snapshot selection. Additionally, the paper also discusses applications of the reduced model to parameter estimation, Monte Carlo simulation and experimental design in groundwater modeling.

  7. Modeling Pharmacokinetics.

    PubMed

    Bois, Frederic Y; Brochot, Céline

    2016-01-01

    Pharmacokinetics is the study of the fate of xenobiotics in a living organism. Physiologically based pharmacokinetic (PBPK) models provide realistic descriptions of xenobiotics' absorption, distribution, metabolism, and excretion processes. They model the body as a set of homogeneous compartments representing organs, and their parameters refer to anatomical, physiological, biochemical, and physicochemical entities. They offer a quantitative mechanistic framework to understand and simulate the time-course of the concentration of a substance in various organs and body fluids. These models are well suited for performing extrapolations inherent to toxicology and pharmacology (e.g., between species or doses) and for integrating data obtained from various sources (e.g., in vitro or in vivo experiments, structure-activity models). In this chapter, we describe the practical development and basic use of a PBPK model from model building to model simulations, through implementation with an easily accessible free software. PMID:27311461

  8. Ventilation Model

    SciTech Connect

    H. Yang

    1999-11-04

    The purpose of this analysis and model report (AMR) for the Ventilation Model is to analyze the effects of pre-closure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts and provide heat removal data to support EBS design. It will also provide input data (initial conditions, and time varying boundary conditions) for the EBS post-closure performance assessment and the EBS Water Distribution and Removal Process Model. The objective of the analysis is to develop, describe, and apply calculation methods and models that can be used to predict thermal conditions within emplacement drifts under forced ventilation during the pre-closure period. The scope of this analysis includes: (1) Provide a general description of effects and heat transfer process of emplacement drift ventilation. (2) Develop a modeling approach to simulate the impacts of pre-closure ventilation on the thermal conditions in emplacement drifts. (3) Identify and document inputs to be used for modeling emplacement ventilation. (4) Perform calculations of temperatures and heat removal in the emplacement drift. (5) Address general considerations of the effect of water/moisture removal by ventilation on the repository thermal conditions. The numerical modeling in this document will be limited to heat-only modeling and calculations. Only a preliminary assessment of the heat/moisture ventilation effects and modeling method will be performed in this revision. Modeling of moisture effects on heat removal and emplacement drift temperature may be performed in the future.

  9. Climate Models

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.

    2012-01-01

    Climate models is a very broad topic, so a single volume can only offer a small sampling of relevant research activities. This volume of 14 chapters includes descriptions of a variety of modeling studies for a variety of geographic regions by an international roster of authors. The climate research community generally uses the rubric climate models to refer to organized sets of computer instructions that produce simulations of climate evolution. The code is based on physical relationships that describe the shared variability of meteorological parameters such as temperature, humidity, precipitation rate, circulation, radiation fluxes, etc. Three-dimensional climate models are integrated over time in order to compute the temporal and spatial variations of these parameters. Model domains can be global or regional and the horizontal and vertical resolutions of the computational grid vary from model to model. Considering the entire climate system requires accounting for interactions between solar insolation, atmospheric, oceanic and continental processes, the latter including land hydrology and vegetation. Model simulations may concentrate on one or more of these components, but the most sophisticated models will estimate the mutual interactions of all of these environments. Advances in computer technology have prompted investments in more complex model configurations that consider more phenomena interactions than were possible with yesterday s computers. However, not every attempt to add to the computational layers is rewarded by better model performance. Extensive research is required to test and document any advantages gained by greater sophistication in model formulation. One purpose for publishing climate model research results is to present purported advances for evaluation by the scientific community.

  10. Phenomenological models

    SciTech Connect

    Braby, L.A.

    1990-09-01

    The biological effects of ionizing radiation exposure are the result of a complex sequence of physical, chemical, biochemical, and physiological interactions. One way to begin a search for an understanding of health effects of radiation is through the development of phenomenological models of the response. Many models have been presented and tested in the slowly evolving process of characterizing cellular response. A range of models covering different endpoints and phenomena has developed in parallel. Many of these models employ similar assumptions about some underlying processes while differing about the nature of others. An attempt is made to organize many of the models into groups with similar features and to compare the consequences of those features with the actual experimental observations. It is assumed that by showing that some assumptions are inconsistent with experimental observations, the job of devising and testing mechanistic models can be simplified. 43 refs., 13 figs.

  11. Building models

    SciTech Connect

    Burr, M.T.

    1995-04-01

    As developers make progress on independent power projects around the world, models for success are beginning to emerge. Different models are evolving to create ownership structures that accomoate a complex system of regulatory requirements. Other frameworks make use of previously untapped fuel resources, or establish new sources of financing; however, not all models may be applied to a given project. This article explores how developers are finding new alternatives for overcoming development challenges that are common to projects in many countries.

  12. Ventilation Model

    SciTech Connect

    V. Chipman

    2002-10-05

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. The purposes of Revision 01 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post

  13. Model Selection for Geostatistical Models

    SciTech Connect

    Hoeting, Jennifer A.; Davis, Richard A.; Merton, Andrew A.; Thompson, Sandra E.

    2006-02-01

    We consider the problem of model selection for geospatial data. Spatial correlation is typically ignored in the selection of explanatory variables and this can influence model selection results. For example, the inclusion or exclusion of particular explanatory variables may not be apparent when spatial correlation is ignored. To address this problem, we consider the Akaike Information Criterion (AIC) as applied to a geostatistical model. We offer a heuristic derivation of the AIC in this context and provide simulation results that show that using AIC for a geostatistical model is superior to the often used approach of ignoring spatial correlation in the selection of explanatory variables. These ideas are further demonstrated via a model for lizard abundance. We also employ the principle of minimum description length (MDL) to variable selection for the geostatistical model. The effect of sampling design on the selection of explanatory covariates is also explored.

  14. Turbulence modeling

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.

    1995-01-01

    The objective of this work is to develop, verify, and incorporate the baseline two-equation turbulence models which account for the effects of compressibility into the three-dimensional Reynolds averaged Navier-Stokes (RANS) code and to provide documented descriptions of the models and their numerical procedures so that they can be implemented into 3-D CFD codes for engineering applications.

  15. Budget Model.

    ERIC Educational Resources Information Center

    Washington State Board for Community Coll. Education, Olympia.

    Computerized formula-driven budget models are used by the Washington community college system to define resource needs for legislative budget requests and to distribute legislative appropriations among 22 community college districts. This manual outlines the sources of information needed to operate the model and illustrates the principles on which…

  16. Dispersion Modeling.

    ERIC Educational Resources Information Center

    Budiansky, Stephen

    1980-01-01

    This article discusses the need for more accurate and complete input data and field verification of the various models of air pollutant dispension. Consideration should be given to changing the form of air quality standards based on enhanced dispersion modeling techniques. (Author/RE)

  17. Modeling Sunspots

    ERIC Educational Resources Information Center

    Oh, Phil Seok; Oh, Sung Jin

    2013-01-01

    Modeling in science has been studied by education researchers for decades and is now being applied broadly in school. It is among the scientific practices featured in the "Next Generation Science Standards" ("NGSS") (Achieve Inc. 2013). This article describes modeling activities in an extracurricular science club in a high…

  18. Phonological Models.

    ERIC Educational Resources Information Center

    Ballard, W.L.

    1968-01-01

    The article discusses models of synchronic and diachronic phonology and suggests changes in them. The basic generative model of phonology is outlined with the author's reinterpretations. The systematic phonemic level is questioned in terms of its unreality with respect to linguistic performance and its lack of validity with respect to historical…

  19. Zitterbewegung modeling

    SciTech Connect

    Hestenes, D. )

    1993-03-01

    Guidelines for constructing point particle models of the electron with [ital zitterbewegung] and other features of the Dirac theory are discussed. Such models may at least be useful approximations to the Dirac theory, but the more exciting possibility is that this approach may lead to a more fundamental reality. 6 refs.

  20. OSPREY Model

    SciTech Connect

    Veronica J. Rutledge

    2013-01-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of off-gas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data is obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data and parameters were input into the adsorption model to develop models specific for krypton adsorption. The same can be done for iodine, xenon, and tritium. The model will be validated with experimental breakthrough curves. Customers will be given access to

  1. Phenomenological models.

    PubMed

    Braby, L A

    1991-01-01

    The biological effects of ionizing radiation exposure are the result of a complex sequence of physical, chemical, biochemical, and physiological interactions which are modified by characteristics of the radiation, the timing of its administration, the chemical and physical environment, and the nature of the biological system. However, it is generally agreed that the health effects in animals originate from changes in individual cells, or possibly small groups of cells, and that these cellular changes are initiated by ionizations and excitations produced by the passage of charged particles through the cells. One way to begin a search for an understanding of health effects of radiation is through the development of phenomenological models of the response. Many models have been presented and tested in the slowly evolving process of characterizing cellular response. Different phenomena (LET dependence, dose rate effect, oxygen effect etc.) and different end points (cell survival, aberration formation, transformation, etc.) have been observed, and no single model has been developed to cover all of them. Instead, a range of models covering different end points and phenomena have developed in parallel. Many of these models employ similar assumptions about some underlying processes while differing about the nature of others. An attempt is made to organize many of the models into groups with similar features and to compare the consequences of those features with the actual experimental observations. It is assumed that by showing that some assumptions are inconsistent with experimental observations, the job of devising and testing mechanistic models can be simplified. PMID:1811477

  2. Stereometric Modelling

    NASA Astrophysics Data System (ADS)

    Grimaldi, P.

    2012-07-01

    These mandatory guidelines are provided for preparation of papers accepted for publication in the series of Volumes of The The stereometric modelling means modelling achieved with : - the use of a pair of virtual cameras, with parallel axes and positioned at a mutual distance average of 1/10 of the distance camera-object (in practice the realization and use of a stereometric camera in the modeling program); - the shot visualization in two distinct windows - the stereoscopic viewing of the shot while modelling. Since the definition of "3D vision" is inaccurately referred to as the simple perspective of an object, it is required to add the word stereo so that "3D stereo vision " shall stand for "three-dimensional view" and ,therefore, measure the width, height and depth of the surveyed image. Thanks to the development of a stereo metric model , either real or virtual, through the "materialization", either real or virtual, of the optical-stereo metric model made visible with a stereoscope. It is feasible a continuous on line updating of the cultural heritage with the help of photogrammetry and stereometric modelling. The catalogue of the Architectonic Photogrammetry Laboratory of Politecnico di Bari is available on line at: http://rappresentazione.stereofot.it:591/StereoFot/FMPro?-db=StereoFot.fp5&-lay=Scheda&-format=cerca.htm&-view

  3. Model hydrographs

    USGS Publications Warehouse

    Mitchell, W.D.

    1972-01-01

    Model hydrographs are composed of pairs of dimensionless ratios, arrayed in tabular form, which, when modified by the appropriate values of rainfall exceed and by the time and areal characteristics of the drainage basin, satisfactorily represent the flood hydrograph for the basin. Model bydrographs are developed from a dimensionless translation hydrograph, having a time base of T hours and appropriately modified for storm duration by routing through reservoir storage, S=kOx. Models fall into two distinct classes: (1) those for which the value of x is unity and which have all the characteristics of true unit hydrographs and (2) those for which the value of x is other than unity and to which the unit-hydrograph principles of proportionality and superposition do not apply. Twenty-six families of linear models and eight families of nonlinear models in tabular form from the principal subject of this report. Supplemental discussions describe the development of the models and illustrate their application. Other sections of the report, supplemental to the tables, describe methods of determining the hydrograph characteristics, T, k, and x, both from observed hydrograph and from the physical characteristics of the drainage basin. Five illustrative examples of use show that the models, when properly converted to incorporate actual rainfall excess and the time and areal characteristics of the drainage basins, do indeed satisfactorily represent the observed flood hydrographs for the basins.

  4. Programming models

    SciTech Connect

    Daniel, David J; Mc Pherson, Allen; Thorp, John R; Barrett, Richard; Clay, Robert; De Supinski, Bronis; Dube, Evi; Heroux, Mike; Janssen, Curtis; Langer, Steve; Laros, Jim

    2011-01-14

    A programming model is a set of software technologies that support the expression of algorithms and provide applications with an abstract representation of the capabilities of the underlying hardware architecture. The primary goals are productivity, portability and performance.

  5. Energy Models

    EPA Science Inventory

    Energy models characterize the energy system, its evolution, and its interactions with the broader economy. The energy system consists of primary resources, including both fossil fuels and renewables; power plants, refineries, and other technologies to process and convert these r...

  6. Vorinostat and Radiation Therapy Followed by Maintenance Therapy With Vorinostat in Treating Younger Patients With Newly Diagnosed Diffuse Intrinsic Pontine Glioma

    ClinicalTrials.gov

    2016-08-24

    Childhood Glioblastoma; Untreated Childhood Anaplastic Astrocytoma; Untreated Childhood Anaplastic Oligoastrocytoma; Untreated Childhood Brain Stem Glioma; Untreated Childhood Giant Cell Glioblastoma; Untreated Childhood Gliosarcoma

  7. A Phase I Study of Mebendazole for the Treatment of Pediatric Gliomas

    ClinicalTrials.gov

    2016-07-08

    Pilomyxoid Astrocytoma; Pilocytic Astrocytoma; Glioma, Astrocytic; Optic Nerve Glioma; Pleomorphic Xanthoastrocytoma; Glioblastoma Multiforme; Anaplastic Astrocytoma; Gliosarcoma; Diffuse Intrinsic Pontine Glioma; DIPG; Low-grade Glioma; Brainstem Glioma

  8. Temsirolimus and Perifosine in Treating Patients With Recurrent or Progressive Malignant Glioma

    ClinicalTrials.gov

    2016-07-06

    Adult Anaplastic Astrocytoma; Adult Anaplastic Oligodendroglioma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Oligodendroglioma; Recurrent Adult Brain Neoplasm

  9. Erlotinib Hydrochloride and Isotretinoin in Treating Patients With Recurrent Malignant Glioma

    ClinicalTrials.gov

    2015-07-27

    Adult Anaplastic Astrocytoma; Adult Anaplastic Oligodendroglioma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Oligodendroglioma; Recurrent Adult Brain Tumor

  10. WEE1 Inhibitor MK-1775 and Local Radiation Therapy in Treating Younger Patients With Newly Diagnosed Diffuse Intrinsic Pontine Gliomas

    ClinicalTrials.gov

    2016-07-20

    Untreated Childhood Anaplastic Astrocytoma; Untreated Childhood Anaplastic Oligodendroglioma; Untreated Childhood Brain Stem Glioma; Untreated Childhood Giant Cell Glioblastoma; Untreated Childhood Glioblastoma; Untreated Childhood Gliosarcoma

  11. Oncolytic HSV-1716 in Treating Younger Patients With Refractory or Recurrent High Grade Glioma That Can Be Removed By Surgery

    ClinicalTrials.gov

    2016-05-26

    Recurrent Childhood Anaplastic Astrocytoma; Recurrent Childhood Anaplastic Oligoastrocytoma; Recurrent Childhood Anaplastic Oligodendroglioma; Recurrent Childhood Giant Cell Glioblastoma; Recurrent Childhood Glioblastoma; Recurrent Childhood Gliomatosis Cerebri; Recurrent Childhood Gliosarcoma

  12. Plerixafor After Radiation Therapy and Temozolomide in Treating Patients With Newly Diagnosed High Grade Glioma

    ClinicalTrials.gov

    2016-04-21

    Adult Ependymoblastoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Medulloblastoma; Adult Mixed Glioma; Adult Oligodendroglial Tumors; Adult Pineoblastoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET)

  13. p28 in Treating Younger Patients With Recurrent or Progressive Central Nervous System Tumors

    ClinicalTrials.gov

    2015-10-19

    Teratoid Tumor, Atypical; Choroid Plexus Neoplasms; Anaplastic Astrocytoma; Anaplastic Oligodendroglioma; Brainstem Tumors; Giant Cell Glioblastoma; Glioblastoma; Gliosarcoma; Medulloblastoma; Neuroectodermal Tumor, Primitive

  14. Combination Adenovirus + Pembrolizumab to Trigger Immune Virus Effects

    ClinicalTrials.gov

    2016-09-08

    Brain Cancer; Brain Neoplasm; Glioma; Glioblastoma; Gliosarcoma; Malignant Brain Tumor; Neoplasm, Neuroepithelial; Neuroectodermal Tumors; Neoplasm by Histologic Type; Neoplasm, Nerve Tissue; Nervous System Diseases

  15. Sunitinib in Treating Patients With Recurrent Malignant Gliomas

    ClinicalTrials.gov

    2016-01-29

    Adult Anaplastic Astrocytoma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pineal Gland Astrocytoma

  16. Veliparib, Radiation Therapy, and Temozolomide in Treating Younger Patients With Newly Diagnosed Diffuse Pontine Gliomas

    ClinicalTrials.gov

    2016-08-04

    Childhood Mixed Glioma; Untreated Childhood Anaplastic Astrocytoma; Untreated Childhood Brain Stem Glioma; Untreated Childhood Fibrillary Astrocytoma; Untreated Childhood Giant Cell Glioblastoma; Untreated Childhood Glioblastoma; Untreated Childhood Gliosarcoma

  17. Mechanistic models

    SciTech Connect

    Curtis, S.B.

    1990-09-01

    Several models and theories are reviewed that incorporate the idea of radiation-induced lesions (repairable and/or irreparable) that can be related to molecular lesions in the DNA molecule. Usually the DNA double-strand or chromatin break is suggested as the critical lesion. In the models, the shoulder on the low-LET survival curve is hypothesized as being due to one (or more) of the following three mechanisms: (1) ``interaction`` of lesions produced by statistically independent particle tracks; (2) nonlinear (i.e., linear-quadratic) increase in the yield of initial lesions, and (3) saturation of repair processes at high dose. Comparisons are made between the various approaches. Several significant advances in model development are discussed; in particular, a description of the matrix formulation of the Markov versions of the RMR and LPL models is given. The more advanced theories have incorporated statistical fluctuations in various aspects of the energy-loss and lesion-formation process. An important direction is the inclusion of physical and chemical processes into the formulations by incorporating relevant track structure theory (Monte Carlo track simulations) and chemical reactions of radiation-induced radicals. At the biological end, identification of repair genes and how they operate as well as a better understanding of how DNA misjoinings lead to lethal chromosome aberrations are needed for appropriate inclusion into the theories. More effort is necessary to model the complex end point of radiation-induced carcinogenesis.

  18. Mechanistic models

    SciTech Connect

    Curtis, S.B.

    1990-09-01

    Several models and theories are reviewed that incorporate the idea of radiation-induced lesions (repairable and/or irreparable) that can be related to molecular lesions in the DNA molecule. Usually the DNA double-strand or chromatin break is suggested as the critical lesion. In the models, the shoulder on the low-LET survival curve is hypothesized as being due to one (or more) of the following three mechanisms: (1) interaction'' of lesions produced by statistically independent particle tracks; (2) nonlinear (i.e., linear-quadratic) increase in the yield of initial lesions, and (3) saturation of repair processes at high dose. Comparisons are made between the various approaches. Several significant advances in model development are discussed; in particular, a description of the matrix formulation of the Markov versions of the RMR and LPL models is given. The more advanced theories have incorporated statistical fluctuations in various aspects of the energy-loss and lesion-formation process. An important direction is the inclusion of physical and chemical processes into the formulations by incorporating relevant track structure theory (Monte Carlo track simulations) and chemical reactions of radiation-induced radicals. At the biological end, identification of repair genes and how they operate as well as a better understanding of how DNA misjoinings lead to lethal chromosome aberrations are needed for appropriate inclusion into the theories. More effort is necessary to model the complex end point of radiation-induced carcinogenesis.

  19. Modeling reality

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1990-01-01

    Although powerful computers have allowed complex physical and manmade hardware systems to be modeled successfully, we have encountered persistent problems with the reliability of computer models for systems involving human learning, human action, and human organizations. This is not a misfortune; unlike physical and manmade systems, human systems do not operate under a fixed set of laws. The rules governing the actions allowable in the system can be changed without warning at any moment, and can evolve over time. That the governing laws are inherently unpredictable raises serious questions about the reliability of models when applied to human situations. In these domains, computers are better used, not for prediction and planning, but for aiding humans. Examples are systems that help humans speculate about possible futures, offer advice about possible actions in a domain, systems that gather information from the networks, and systems that track and support work flows in organizations.

  20. A new model of chronic intermittent hypoxia in humans: effect on ventilation, sleep, and blood pressure

    PubMed Central

    Tamisier, R.; Gilmartin, G. S.; Launois, S. H.; Pépin, J. L.; Nespoulet, H.; Thomas, R.; Lévy, P.; Weiss, J. W.

    2009-01-01

    Obstructive sleep apnea is characterized by repetitive nocturnal upper airway obstructions that are associated with sleep disruption and cyclic intermittent hypoxia (CIH) The cyclic oscillations in O2 saturation are thought to contribute to cardiovascular and other morbidity, but animal and patient studies of the pathogenic link between CIH and these diseases have been complicated by species differences and by the effects of confounding factors such as obesity, hypertension, and impaired glucose metabolism. To minimize these limitations, we set up a model of nocturnal CIH in healthy humans. We delivered O2 for 15 s every 2 min during sleep while subjects breathed 13% O2 in a hypoxic tent to create 30 cycles/h of cyclic desaturation-reoxygenation [saturation of peripheral O2 (SpO2) range: 95–85%]. We exposed subjects overnight for 8–9 h/day for 2 wk (10 subjects) and 4 wk (8 subjects). CIH exposure induced respiratory disturbances (central apnea hypopnea index: 3.0 ± 1.9 to 31.1 ± 9.6 events/h of sleep at 2 wk). Exposure to CIH for 14 days induced an increase in slopes of hypoxic and hypercapnic ventilatory responses (1.5 ± 0.6 to 3.1 ± 1.2 l·min−1·% drop in SpO2 and 2.2 ± 1.0 to 3.3 ± 0.9 l·min−1·mmHg CO2−1, respectively), consistent with hypoxic acclimatization. Waking normoxic arterial pressure increased significantly at 2 wk at systolic (114 ± 2 to 122 ± 2 mmHg) and for diastolic at 4 wk (71 ± 1.3 to 74 ± 1.7 mmHg). We propose this model as a new technique to study the cardiovascular and metabolic consequences of CIH in human volunteers. PMID:19228987

  1. Molecular Modeling

    NASA Astrophysics Data System (ADS)

    Holmes, Jon L.

    1999-06-01

    Molecular modeling has trickled down from the realm of pharmaceutical and research laboratories into the realm of undergraduate chemistry instruction. It has opened avenues for the visualization of chemical concepts that previously were difficult or impossible to convey. I am sure that many of you have developed exercises using the various molecular modeling tools. It is the desire of this Journal to become an avenue for you to share these exercises among your colleagues. It is to this end that Ron Starkey has agreed to edit such a column and to publish not only the description of such exercises, but also the software documents they use. The WWW is the obvious medium to distribute this combination and so accepted submissions will appear online as a feature of JCE Internet. Typical molecular modeling exercise: finding conformation energies. Molecular Modeling Exercises and Experiments is the latest feature column of JCE Internet, joining Conceptual Questions and Challenge Problems, Hal's Picks, and Mathcad in the Chemistry Curriculum. JCE Internet continues to seek submissions in these areas of interest and submissions of general interest. If you have developed materials and would like to submit them, please see our Guide to Submissions for more information. The Chemical Education Resource Shelf, Equipment Buyers Guide, and WWW Site Review would also like to hear about chemistry textbooks and software, equipment, and WWW sites, respectively. Please consult JCE Internet Features to learn more about these resources at JCE Online. Email Announcements Would you like to be informed by email when the latest issue of the Journal is available online? when a new JCE Software title is shipping? when a new JCE Internet article has been published or is available for Open Review? when your subscription is about to expire? A new feature of JCE Online makes this possible. Visit our Guestbook to learn how. When

  2. Supernova models

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1980-01-01

    Recent progress in understanding the observed properties of Type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the /sup 56/Ni produced therein is reviewed. Within the context of this model for Type I explosions and the 1978 model for Type II explosions, the expected nucleosynthesis and gamma-line spectra from both kinds of supernovae are presented. Finally, a qualitatively new approach to the problem of massive star death and Type II supernovae based upon a combination of rotation and thermonuclear burning is discussed.

  3. Atmospheric Modeling

    EPA Science Inventory

    Although air quality models have been applied historically to address issues specific to ambient air quality standards (i.e., one criteria pollutant at a time) or welfare (e.g.. acid deposition or visibility impairment). they are inherently multipollutant based. Therefore. in pri...

  4. Ensemble Models

    EPA Science Inventory

    Ensemble forecasting has been used for operational numerical weather prediction in the United States and Europe since the early 1990s. An ensemble of weather or climate forecasts is used to characterize the two main sources of uncertainty in computer models of physical systems: ...

  5. Modeling Convection

    ERIC Educational Resources Information Center

    Ebert, James R.; Elliott, Nancy A.; Hurteau, Laura; Schulz, Amanda

    2004-01-01

    Students must understand the fundamental process of convection before they can grasp a wide variety of Earth processes, many of which may seem abstract because of the scales on which they operate. Presentation of a very visual, concrete model prior to instruction on these topics may facilitate students' understanding of processes that are largely…

  6. Painting models

    NASA Astrophysics Data System (ADS)

    Baart, F.; Donchyts, G.; van Dam, A.; Plieger, M.

    2015-12-01

    The emergence of interactive art has blurred the line between electronic, computer graphics and art. Here we apply this art form to numerical models. Here we show how the transformation of a numerical model into an interactive painting can both provide insights and solve real world problems. The cases that are used as an example include forensic reconstructions, dredging optimization, barrier design. The system can be fed using any source of time varying vector fields, such as hydrodynamic models. The cases used here, the Indian Ocean (HYCOM), the Wadden Sea (Delft3D Curvilinear), San Francisco Bay (3Di subgrid and Delft3D Flexible Mesh), show that the method used is suitable for different time and spatial scales. High resolution numerical models become interactive paintings by exchanging their velocity fields with a high resolution (>=1M cells) image based flow visualization that runs in a html5 compatible web browser. The image based flow visualization combines three images into a new image: the current image, a drawing, and a uv + mask field. The advection scheme that computes the resultant image is executed in the graphics card using WebGL, allowing for 1M grid cells at 60Hz performance on mediocre graphic cards. The software is provided as open source software. By using different sources for a drawing one can gain insight into several aspects of the velocity fields. These aspects include not only the commonly represented magnitude and direction, but also divergence, topology and turbulence .

  7. Entrepreneurship Models.

    ERIC Educational Resources Information Center

    Finger Lakes Regional Education Center for Economic Development, Mount Morris, NY.

    This guide describes seven model programs that were developed by the Finger Lakes Regional Center for Economic Development (New York) to meet the training needs of female and minority entrepreneurs to help their businesses survive and grow and to assist disabled and dislocated workers and youth in beginning small businesses. The first three models…

  8. Modeling Lessons

    ERIC Educational Resources Information Center

    Casey, Katherine

    2011-01-01

    As teachers learn new pedagogical strategies, they crave explicit demonstrations that show them how the new strategies will work with their students in their classrooms. Successful instructional coaches, therefore, understand the importance of modeling lessons to help teachers develop a vision of effective instruction. The author, an experienced…

  9. Modeling Muscles

    ERIC Educational Resources Information Center

    Goodwyn, Lauren; Salm, Sarah

    2007-01-01

    Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…

  10. Criticality Model

    SciTech Connect

    A. Alsaed

    2004-09-14

    The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of this analysis is to document the criticality computational method. The criticality

  11. Modeling Molecules

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The molecule modeling method known as Multibody Order (N) Dynamics, or MBO(N)D, was developed by Moldyn, Inc. at Goddard Space Flight Center through funding provided by the SBIR program. The software can model the dynamics of molecules through technology which stimulates low-frequency molecular motions and properties, such as movements among a molecule's constituent parts. With MBO(N)D, a molecule is substructured into a set of interconnected rigid and flexible bodies. These bodies replace the computation burden of mapping individual atoms. Moldyn's technology cuts computation time while increasing accuracy. The MBO(N)D technology is available as Insight II 97.0 from Molecular Simulations, Inc. Currently the technology is used to account for forces on spacecraft parts and to perform molecular analyses for pharmaceutical purposes. It permits the solution of molecular dynamics problems on a moderate workstation, as opposed to on a supercomputer.

  12. Dendrite Model

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Dr. Donald Gilles, the Discipline Scientist for Materials Science in NASA's Microgravity Materials Science and Applications Department, demonstrates to Carl Dohrman a model of dendrites, the branch-like structures found in many metals and alloys. Dohrman was recently selected by the American Society for Metals International as their 1999 ASM International Foundation National Merit Scholar. The University of Illinois at Urbana-Champaign freshman recently toured NASA's materials science facilities at the Marshall Space Flight Center.

  13. Model checking

    NASA Technical Reports Server (NTRS)

    Dill, David L.

    1995-01-01

    Automatic formal verification methods for finite-state systems, also known as model-checking, successfully reduce labor costs since they are mostly automatic. Model checkers explicitly or implicitly enumerate the reachable state space of a system, whose behavior is described implicitly, perhaps by a program or a collection of finite automata. Simple properties, such as mutual exclusion or absence of deadlock, can be checked by inspecting individual states. More complex properties, such as lack of starvation, require search for cycles in the state graph with particular properties. Specifications to be checked may consist of built-in properties, such as deadlock or 'unspecified receptions' of messages, another program or implicit description, to be compared with a simulation, bisimulation, or language inclusion relation, or an assertion in one of several temporal logics. Finite-state verification tools are beginning to have a significant impact in commercial designs. There are many success stories of verification tools finding bugs in protocols or hardware controllers. In some cases, these tools have been incorporated into design methodology. Research in finite-state verification has been advancing rapidly, and is showing no signs of slowing down. Recent results include probabilistic algorithms for verification, exploitation of symmetry and independent events, and the use symbolic representations for Boolean functions and systems of linear inequalities. One of the most exciting areas for further research is the combination of model-checking with theorem-proving methods.

  14. Modeling biomembranes.

    SciTech Connect

    Plimpton, Steven James; Heffernan, Julieanne; Sasaki, Darryl Yoshio; Frischknecht, Amalie Lucile; Stevens, Mark Jackson; Frink, Laura J. Douglas

    2005-11-01

    Understanding the properties and behavior of biomembranes is fundamental to many biological processes and technologies. Microdomains in biomembranes or ''lipid rafts'' are now known to be an integral part of cell signaling, vesicle formation, fusion processes, protein trafficking, and viral and toxin infection processes. Understanding how microdomains form, how they depend on membrane constituents, and how they act not only has biological implications, but also will impact Sandia's effort in development of membranes that structurally adapt to their environment in a controlled manner. To provide such understanding, we created physically-based models of biomembranes. Molecular dynamics (MD) simulations and classical density functional theory (DFT) calculations using these models were applied to phenomena such as microdomain formation, membrane fusion, pattern formation, and protein insertion. Because lipid dynamics and self-organization in membranes occur on length and time scales beyond atomistic MD, we used coarse-grained models of double tail lipid molecules that spontaneously self-assemble into bilayers. DFT provided equilibrium information on membrane structure. Experimental work was performed to further help elucidate the fundamental membrane organization principles.

  15. The Score Model Containing Chinese Medicine Syndrome Element of Blood Stasis Presented a Better Performance Compared to APRI and FIB-4 in Diagnosing Advanced Fibrosis in Patients with Chronic Hepatitis B.

    PubMed

    Chi, Xiao-Ling; Shi, Mei-Jie; Xiao, Huan-Ming; Xie, Yu-Bao; Cai, Gao-Shu

    2016-01-01

    This study aims to explore a useful noninvasive assessment containing TCM syndrome elements for liver fibrosis in CHB patients. The demographic, clinical, and pathological data were retrospectively collected from 709 CHB patients who had ALT less than 2 times the upper limit of normal from April 2009 to October 2012. Logistical regression and area under receiver-operator curve (AUROC) were used to determine the diagnostic performances of simple tests for advanced fibrosis (Scheuer stage, F ≥ 3). Results showed that the most common TCM syndrome element observed in this CHB population was dampness and Qi stagnation, followed by blood stasis, by heat, and less by Qi deficiency and Yin deficiency. The logistical regression analysis identified AST ≥ 35 IU/L, PLT ≤ 161 × 10(9)/L, and TCM syndrome element of blood stasis as the independent risk factors for advanced fibrosis. Therefore, a score model containing these three factors was established and tested. The score model containing blood stasis resulted in a higher AUC (AUC = 0.936) compared with APRI (AUC = 0.731) and FIB-4 (AUC = 0.709). The study suggested that the score model containing TCM syndrome element of blood stasis could be used as a useful diagnostic tool for advanced fibrosis in CHB patients and presented a better performance compared to APRI and FIB-4. PMID:26904141

  16. Minor changes in the macrocyclic ligands but major consequences on the efficiency of gold nanoparticles designed for radiosensitization.

    PubMed

    Laurent, G; Bernhard, C; Dufort, S; Jiménez Sánchez, G; Bazzi, R; Boschetti, F; Moreau, M; Vu, T H; Collin, B; Oudot, A; Herath, N; Requardt, H; Laurent, S; Vander Elst, L; Muller, R; Dutreix, M; Meyer, M; Brunotte, F; Perriat, P; Lux, F; Tillement, O; Le Duc, G; Denat, F; Roux, S

    2016-06-01

    Many studies have been devoted to adapting the design of gold nanoparticles to efficiently exploit their promising capability to enhance the effects of radiotherapy. In particular, the addition of magnetic resonance imaging modality constitutes an attractive strategy for enhancing the selectivity of radiotherapy since it allows the determination of the most suited delay between the injection of nanoparticles and irradiation. This requires the functionalization of the gold core by an organic shell composed of thiolated gadolinium chelates. The risk of nephrogenic systemic fibrosis induced by the release of gadolinium ions should encourage the use of macrocyclic chelators which form highly stable and inert complexes with gadolinium ions. In this context, three types of gold nanoparticles (Au@DTDOTA, Au@TADOTA and Au@TADOTAGA) combining MRI, nuclear imaging and radiosensitization have been developed with different macrocyclic ligands anchored onto the gold cores. Despite similarities in size and organic shell composition, the distribution of gadolinium chelate-coated gold nanoparticles (Au@TADOTA-Gd and Au@TADOTAGA-Gd) in the tumor zone is clearly different. As a result, the intravenous injection of Au@TADOTAGA-Gd prior to the irradiation of 9L gliosarcoma bearing rats leads to the highest increase in lifespan whereas the radiophysical effects of Au@TADOTAGA-Gd and Au@TADOTA-Gd are very similar. PMID:27244570

  17. Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma

    PubMed Central

    Treat, Lisa H.; McDannold, Nathan; Zhang, Yongzhi; Vykhodtseva, Natalia; Hynynen, Kullervo

    2012-01-01

    The blood-brain barrier (BBB) inhibits the entry of the majority of chemotherapeutic agents into the brain. Previous studies have illustrated the feasibility of drug delivery across the BBB using focused ultrasound (FUS) and microbubbles. Here, we investigated the effect of FUS-enhanced delivery of doxorubicin on survival in rats with and 9L gliosarcoma cells inoculated in the brain. Each rat received either: (1) no treatment (control; N=11), (2) FUS only (N=9), (3) i.v. liposomal doxorubicin (DOX only; N=17), or (4) FUS with concurrent i.v. injections of liposomal doxorubicin (FUS+DOX; N=20). Post-treatment MRI showed that FUS+DOX reduced tumor growth compared to DOX only. Further, we observed a modest but significant increase in median survival time after a single treatment FUS+DOX treatment (p=0.0007), whereas neither DOX nor FUS had any significant impact on survival on its own. These results suggest that combined ultrasound-mediated BBB disruption may significantly increase the antineoplastic efficacy of liposomal doxorubicin in the brain. PMID:22818878

  18. Pronounced antitumor effects and tumor radiosensitization of double suicide gene therapy.

    PubMed

    Rogulski, K R; Zhang, K; Kolozsvary, A; Kim, J H; Freytag, S O

    1997-11-01

    The efficacy of HSV-1 thymidine kinase (TK) and Escherichia coli cytosine deaminase (CD) suicide gene therapies as cancer treatments are currently being examined in humans. We demonstrated previously that compared to single suicide gene therapy, greater levels of targeted cytotoxicity and radiosensitization can be achieved in vitro by genetically modifying tumor cells to express CD and HSV-1 TK concomitantly, as a fusion protein. In the present study, the efficacy of the combined double suicide gene therapy/radiotherapy approach was examined in vivo. Nude mice were injected either s.c. or i.m. with 9L gliosarcoma cells expressing an E. coli CD/HSV-1 TK fusion gene. Double suicide gene therapy using 5-fluorocytosine (500 mg/kg) and ganciclovir (30 mg/kg) proved to be markedly better at delaying tumor growth and achieving a tumor cure than single suicide gene therapy, which used 5-fluorocytosine or ganciclovir administered independently. Importantly, double suicide gene therapy was highly effective against large experimental tumors (>2 cm3), reducing tumor volume an average of 99% and producing a 40% tumor cure. Moreover, double suicide gene therapy profoundly potentiated the antitumor effects of radiation. The results indicate that double suicide gene therapy, particularly when coupled with radiotherapy, may represent a highly effective means of eradicating tumors. PMID:9815600

  19. Brain response to photodynamic therapy and Photofrin, nonsulfonated aluminum phthalocyanine and tin purpurin

    NASA Astrophysics Data System (ADS)

    Dereski, Mary O.; Madigan, Lara; Chopp, Michael

    1995-03-01

    Photodynamic therapy (PDT) with PhotofrinR, nonsulfonated aluminum phthalocyanine (AlClPc), and tin ethyl etiopurpurin I (SnET2) was investigated on normal and tumored (9L gliosarcoma) rat brain. Rats were injected 48 h prior to PDT (3 - 280 J/cm2, 100 mW/cm2) with PhotofrinR (12.5 mg/kg) and AlClPc (2.0 mg/kg) and 24 h prior with SnET2 (1.0 mg/kg). Substantial lesions were present in normal brain with PhotofrinR and with AlClPc at all energy levels. No lesions were present with SnET2. Tumor response for PhotofrinR and AlClPc did not occur with doses less than 140 J/cm2. Drug concentrations for tumored/contralateral hemisphere for PhotofrinR and AlClPc were 1.86 and 7.86, respectively. These data indicate: (1) normal brain is more sensitive than the tumored brain with PhotofrinR and AlClPc, and (2) normal brain sensitivity to SnET2 is less than that with PhotofrinR and AlClPc.

  20. Assessment of the biodistribution of an [18F]FDG-loaded perfluorocarbon double emulsion using dynamic micro-PET in rats

    PubMed Central

    Fabiilli, Mario L.; Piert, Morand R.; Koeppe, Robert A.; Sherman, Phillip S.; Quesada, Carole A.; Kripfgans, Oliver D.

    2013-01-01

    Perfluorocarbon (PFC) double emulsions loaded with a water-soluble, therapeutic agent can be triggered by ultrasound in a process known as acoustic droplet vaporization (ADV). Elucidating the stability and biodistribution of these sonosensitive vehicles and encapsulated agents are critical in developing targeted drug delivery strategies using ultrasound. [18F]fluorodeoxyglucose (FDG) was encapsulated in a PFC double emulsion and the in vitro diffusion of FDG was assessed using a Franz diffusion cell. Using dynamic micro positron emission tomography (micro-PET) and direct tissue sampling, the biodistribution of FDG administered as a solution (i.e. non-emulsified) or as an emulsion was studied in Fisher 344 rats (n = 6) bearing subcutaneous 9L gliosarcoma. Standardized uptake values (SUVs) and area under the curve of the SUV (AUCSUV) of FDG were calculated for various tissues. The FDG flux from the emulsion decreased by up to a factor of 6.9 compared to the FDG solution. FDG uptake, calculated from the AUCSUV, decreased by 36% and 44% for brain and tumor, respectively, when comparing FDG solution versus FDG emulsion (p < 0.01). Decreases in AUCSUV in highly metabolic tissues such as brain and tumor demonstrated retention of FDG within the double emulsion. No statistically significant differences in lung AUCSUV were observed, suggesting minimal accumulation of the emulsion in the pulmonary capillary bed. The liver AUCSUV increased by 356% for the FDG emulsion, thus indicating significant hepatic retention of the emulsion. PMID:23613440

  1. Dimers of Melampomagnolide B Exhibit Potent Anticancer Activity against Hematological and Solid Tumor Cells.

    PubMed

    Janganati, Venumadhav; Ponder, Jessica; Jordan, Craig T; Borrelli, Michael J; Penthala, Narsimha Reddy; Crooks, Peter A

    2015-11-25

    Novel carbamate (7a-7h) and carbonate (7i, 7j, and 8) dimers of melampomagnolide B have been synthesized by reaction of the melampomagnolide-B-triazole carbamate synthon 6 with various terminal diamino- and dihydroxyalkanes. Dimeric carbamate products 7b, 7c, and 7f exhibited potent growth inhibition (GI50 = 0.16-0.99 μM) against the majority of cell lines in the NCI panel of 60 human hematological and solid tumor cell lines. Compound 7f and 8 exhibited anticancer activity that was 300-fold and 1 × 10(6)-fold more cytotoxic than DMAPT, respectively, at a concentration of 10 μM against rat 9L-SF gliosarcoma cells. Compounds 7a-7j and 8 were also screened against M9-ENL1 and acute myelogenous leukemia (AML) primary cell lines and exhibited 2- to 10-fold more potent antileukemic activity against M9-ENL1 cells (EC50 = 0.57-2.90 μM) when compared to parthenolide (EC50 = 6.0) and showed potent antileukemic activity against five primary AML cell lines (EC50 = 0.76-7.3 μM). PMID:26540463

  2. Sorption behavior and modeling of endocrine-disrupting chemicals on natural sediments: role of biofilm covered on surface.

    PubMed

    Ding, Haixia; Li, Yi; Hou, Jun; Wang, Qing; Wu, Yue

    2015-01-01

    The surfaces of natural sediments are ubiquitously coated by biofilms that increase the content of organic matter in sediments. However, it is less understood whether the biofilms act as a sorbent or a barrier of mass transfer from water column to sediment phase. This study focused on the role of biofilms coverage on sediments in the sorption of bisphenol A (BPA), 17α-ethinyl estradiol (EE2), and 4-nonylphenols (4-NP) as model compounds for endocrine-disrupting chemicals (EDCs). The OC-normalized distribution coefficients (k OC) for BPA, EE2 and 4-NP ranged from 10(1.87) to 10(3.09) l/kg, the k OC of EE2 was slightly higher (10(2.23) l/kg) for sediment after H2O2 oxidation than before (10(1.93) l/kg). A two-stage model with a fast section and slow section was employed to describe the sorption process (r (2) > 0.95). The model results showed that the fast sorption section played a main role in the sorption process, while the slow section determined the extent of the reaction (the second-phase partition coefficient (k p2) ranged from 11.7 to 118.9 l/kg). The ratios of the mass transfer rate constant of the two stages for the natural sediment ranged from 6.0 to 7.2, which were somewhat lower than those for soil samples. These results indicated that the biofilm coverage on sediment may act as a barrier in mass transfer from water to sediment and scarcely increased the sorption capacity of sediments. PMID:25146118

  3. 10. MOVABLE BED SEDIMENTATION MODELS. DOGTOOTH BEND MODEL (MODEL SCALE: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. MOVABLE BED SEDIMENTATION MODELS. DOGTOOTH BEND MODEL (MODEL SCALE: 1' = 400' HORIZONTAL, 1' = 100' VERTICAL), AND GREENVILLE BRIDGE MODEL (MODEL SCALE: 1' = 360' HORIZONTAL, 1' = 100' VERTICAL). - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  4. Students' Models of Curve Fitting: A Models and Modeling Perspective

    ERIC Educational Resources Information Center

    Gupta, Shweta

    2010-01-01

    The Models and Modeling Perspectives (MMP) has evolved out of research that began 26 years ago. MMP researchers use Model Eliciting Activities (MEAs) to elicit students' mental models. In this study MMP was used as the conceptual framework to investigate the nature of students' models of curve fitting in a problem-solving environment consisting of…

  5. Biomimetic modelling.

    PubMed Central

    Vincent, Julian F V

    2003-01-01

    Biomimetics is seen as a path from biology to engineering. The only path from engineering to biology in current use is the application of engineering concepts and models to biological systems. However, there is another pathway: the verification of biological mechanisms by manufacture, leading to an iterative process between biology and engineering in which the new understanding that the engineering implementation of a biological system can bring is fed back into biology, allowing a more complete and certain understanding and the possibility of further revelations for application in engineering. This is a pathway as yet unformalized, and one that offers the possibility that engineers can also be scientists. PMID:14561351

  6. Asparagus Spears as a Model to Study Heteroxylan Biosynthesis during Secondary Wall Development

    PubMed Central

    Wu, Aimin; Picard, Kelsey; Lampugnani, Edwin R.; Cheetamun, Roshan; Beahan, Cherie; Cassin, Andrew; Lonsdale, Andrew; Doblin, Monika S.; Bacic, Antony

    2015-01-01

    Garden asparagus (Asparagus officinalis L.) is a commercially important crop species utilized for its excellent source of vitamins, minerals and dietary fiber. However, after harvest the tissue hardens and its quality rapidly deteriorates because spear cell walls become rigidified due to lignification and substantial increases in heteroxylan content. This latter observation prompted us to investigate the in vitro xylan xylosyltransferase (XylT) activity in asparagus. The current model system for studying heteroxylan biosynthesis, Arabidopsis, whilst a powerful genetic system, displays relatively low xylan XylT activity in in vitro microsomal preparations compared with garden asparagus therefore hampering our ability to study the molecular mechanism(s) of heteroxylan assembly. Here, we analyzed physiological and biochemical changes of garden asparagus spears stored at 4 °C after harvest and detected a high level of xylan XylT activity that accounts for this increased heteroxylan. The xylan XylT catalytic activity is at least thirteen-fold higher than that reported for previously published species, including Arabidopsis and grasses. A biochemical assay was optimized and up to seven successive Xyl residues were incorporated to extend the xylotetraose (Xyl4) acceptor backbone. To further elucidate the xylan biosynthesis mechanism, we used RNA-seq to generate an Asparagus reference transcriptome and identified five putative xylan biosynthetic genes (AoIRX9, AoIRX9-L, AoIRX10, AoIRX14_A, AoIRX14_B) with AoIRX9 having an expression profile that is distinct from the other genes. We propose that Asparagus provides an ideal biochemical system to investigate the biochemical aspects of heteroxylan biosynthesis and also offers the additional benefit of being able to study the lignification process during plant stem maturation. PMID:25894575

  7. Asparagus Spears as a Model to Study Heteroxylan Biosynthesis during Secondary Wall Development.

    PubMed

    Song, Lili; Zeng, Wei; Wu, Aimin; Picard, Kelsey; Lampugnani, Edwin R; Cheetamun, Roshan; Beahan, Cherie; Cassin, Andrew; Lonsdale, Andrew; Doblin, Monika S; Bacic, Antony

    2015-01-01

    Garden asparagus (Asparagus officinalis L.) is a commercially important crop species utilized for its excellent source of vitamins, minerals and dietary fiber. However, after harvest the tissue hardens and its quality rapidly deteriorates because spear cell walls become rigidified due to lignification and substantial increases in heteroxylan content. This latter observation prompted us to investigate the in vitro xylan xylosyltransferase (XylT) activity in asparagus. The current model system for studying heteroxylan biosynthesis, Arabidopsis, whilst a powerful genetic system, displays relatively low xylan XylT activity in in vitro microsomal preparations compared with garden asparagus therefore hampering our ability to study the molecular mechanism(s) of heteroxylan assembly. Here, we analyzed physiological and biochemical changes of garden asparagus spears stored at 4 °C after harvest and detected a high level of xylan XylT activity that accounts for this increased heteroxylan. The xylan XylT catalytic activity is at least thirteen-fold higher than that reported for previously published species, including Arabidopsis and grasses. A biochemical assay was optimized and up to seven successive Xyl residues were incorporated to extend the xylotetraose (Xyl4) acceptor backbone. To further elucidate the xylan biosynthesis mechanism, we used RNA-seq to generate an Asparagus reference transcriptome and identified five putative xylan biosynthetic genes (AoIRX9, AoIRX9-L, AoIRX10, AoIRX14_A, AoIRX14_B) with AoIRX9 having an expression profile that is distinct from the other genes. We propose that Asparagus provides an ideal biochemical system to investigate the biochemical aspects of heteroxylan biosynthesis and also offers the additional benefit of being able to study the lignification process during plant stem maturation. PMID:25894575

  8. Convection-enhanced delivery of camptothecin-loaded polymer nanoparticles for treatment of intracranial tumors

    PubMed Central

    Sawyer, Andrew J.; Saucier-Sawyer, Jennifer K.; Booth, Carmen J.; Liu, Jie; Patel, Toral; Piepmeier, Joseph M.

    2011-01-01

    Direct delivery of chemotherapy agents to the brain via degradable polymer delivery systems—such as Gliadel®—is a clinically proven method for treatment of glioblastoma multiforme, but there are important limitations with the current technology—including the requirement for surgery, profound local tissue toxicity, and limitations in diffusional penetration of agents—that limit its application and effectiveness. Here, we demonstrate another technique for direct, controlled delivery of chemotherapy to the brain that provides therapeutic benefit with fewer limitations. In our new approach, camptothecin (CPT)-loaded poly(lacticco-glycolic acid) (PLGA) nanoparticles are infused via convection-enhanced delivery (CED) to a stereotactically defined location in the brain, allowing simultaneous control of location, spread, and duration of drug release. To test this approach, CPT-PLGA nanoparticles (~100 nm in diameter) were synthesized with 25% drug loading. When these nanoparticles were incubated in culture with 9L gliosarcoma cells, the IC50 of CPT-PLGA nanoparticles was 0.04 µM, compared to 0.3 µM for CPT alone. CPT-PLGA nanoparticles stereotactically delivered by CED improved survival in rats with intracranial 9L tumors: the median survival for rats treated with CPT-PLGA nanoparticles (22 days) was significantly longer than unloaded nanoparticles (15 days) and free CPT infusion (17 days). CPT-PLGA nanoparticle treatment also produced significantly more long-term survivors (30% of animals were free of disease at 60 days) than any other treatment. CPT was present in tissues harvested up to 53 days post-infusion, indicating prolonged residence at the local site of administration. These are the first results to demonstrate the effectiveness of combining polymer-controlled release nanoparticles with CED in treating fatal intracranial tumors. PMID:21691426

  9. Intracellular distribution of various boron compounds for use in boron neutron capture therapy.

    PubMed

    Nguyen, T; Brownell, G L; Holden, S A; Teicher, B A

    1993-01-01

    The neutron capture reaction in boron (10B(n, alpha)7Li) generates two short-range particles with high linear energy transfer. The effect of neutron capture therapy depends on the selective localization of 10B atoms in target cells. The determination of the distribution of boron compounds in cancer cells at the subcellular level is required for the understanding of the effect of this treatment. The monomeric sulfhydryl borane (BSH) compound has been used clinically in Japan and preclinically in the U.S.A. Recently, new compounds have been developed: a dimeric sulfhydryl borane (BSSB), a boronophenylalanine (BPA), and two porphyrin complexes (BOPP and VCDP). This study demonstrates that the porphyrin complexes (BOPP and VCDP) are more cytotoxic than the other three compounds to the rat 9L gliosarcoma cell line. Using atomic absorption spectrophotometry to determine boron content for cellular uptake studies of these agents, we found that of the five compounds tested BOPP (25 microM) exposure resulted in the greatest boron uptake averaging 305 ng B/10(6) cells. BSSB (500 microM) was second averaging 93 ng B/10(6) cells, BSH (500 microM) third averaging 62 ng B/10(6) cells, VCDP (25 microM) fourth averaging 58 ng B/10(6) cells, and BPA (500 microM) fifth averaging 7.4 ng B/10(6) cells. Data on the distribution of boron in the nuclei, mitochondria, lysosomes, microsomes, and cytosomes of 9L cells are also presented. PMID:8424808

  10. Modeling fatigue.

    PubMed Central

    Sumner, Walton; Xu, Jin Zhong

    2002-01-01

    The American Board of Family Practice is developing a patient simulation program to evaluate diagnostic and management skills. The simulator must give temporally and physiologically reasonable answers to symptom questions such as "Have you been tired?" A three-step process generates symptom histories. In the first step, the simulator determines points in time where it should calculate instantaneous symptom status. In the second step, a Bayesian network implementing a roughly physiologic model of the symptom generates a value on a severity scale at each sampling time. Positive, zero, and negative values represent increased, normal, and decreased status, as applicable. The simulator plots these values over time. In the third step, another Bayesian network inspects this plot and reports how the symptom changed over time. This mechanism handles major trends, multiple and concurrent symptom causes, and gradually effective treatments. Other temporal insights, such as observations about short-term symptom relief, require complimentary mechanisms. PMID:12463924

  11. Modeling uncertainty: quicksand for water temperature modeling

    USGS Publications Warehouse

    Bartholow, John M.

    2003-01-01

    Uncertainty has been a hot topic relative to science generally, and modeling specifically. Modeling uncertainty comes in various forms: measured data, limited model domain, model parameter estimation, model structure, sensitivity to inputs, modelers themselves, and users of the results. This paper will address important components of uncertainty in modeling water temperatures, and discuss several areas that need attention as the modeling community grapples with how to incorporate uncertainty into modeling without getting stuck in the quicksand that prevents constructive contributions to policy making. The material, and in particular the reference, are meant to supplement the presentation given at this conference.

  12. Pre-Modeling Ensures Accurate Solid Models

    ERIC Educational Resources Information Center

    Gow, George

    2010-01-01

    Successful solid modeling requires a well-organized design tree. The design tree is a list of all the object's features and the sequential order in which they are modeled. The solid-modeling process is faster and less prone to modeling errors when the design tree is a simple and geometrically logical definition of the modeled object. Few high…

  13. Carboranyl Nucleosides & Oligonucleotides for Neutron Capture Therapy Final Report

    SciTech Connect

    Schinazi, Raymond F.

    2004-12-01

    This proposal enabled us to synthesize and develop boron-rich nucleosides and oligonucleotide analogues for boron neutron capture therapy (BNCT) and the treatment of various malignancies. First, we determined the relationship between structure, cellular accumulation and tissue distribution of 5-o-carboranyl-2'-deoxyuridine (D-CDU) and its derivatives D-ribo-CU and 5-o-carboranyluracil (CU), to potentially target brain and other solid tumors for neutron capture therapy. Synthesized carborane containing nucleoside derivatives of CDU, D- and L-enantiomers of CDU, D-ribo-CU and CU were used. We measured tissue disposition in xenografted mice bearing 9479 human prostate tumors xenografts and in rats bearing 9L gliosarcoma isografts in their flanks and intracranially. The accumulation of D-CDU, 1-({beta}-L-arabinosyl)-5-o-carboranyluracil, D-ribo-CU, and CU were also studied in LnCap human prostate tumor cells and their retention was measured in male nude mice bearing LnCap and 9479 human prostate tumor xenografts. D-CDU, D-ribo-CU and CU levels were measured after administration in mice bearing 9479 human prostate tumors in their flanks. D-CDU achieved high cellular concentrations in LnCap cells and up to 2.5% of the total cellular compound was recovered in the 5'-monophosphorylated form. D-CDU cellular concentrations were similar in LnCap and 9479 tumor xenografts. Studies in tumor bearing animals indicated that increasing the number of hydroxyl moieties in the sugar constituent of the carboranyl nucleosides lead to increased rate and extent of renal elimination, a decrease in serum half-lives and an increased tissue specificity. Tumor/brain ratios were greatest for CDU and D-ribo-CU, while tumor/prostate ratios were greatest with CU. CDU and D-ribo-CU have potential for BNCT of brain malignancies, while CU may be further developed for prostate cancer. A method was developed for the solid phase synthesis of oligonucleotides containing (ocarboran-1-yl

  14. Skylab Model

    NASA Technical Reports Server (NTRS)

    1967-01-01

    This photograph is of a model of the Skylab with the Command/Service Module being docked. In an early effort to extend the use of Apollo for further applications, NASA established the Apollo Applications Program (AAP) in August of 1965. The AAP was to include long duration Earth orbital missions during which astronauts would carry out scientific, technological, and engineering experiments in space by utilizing modified Saturn launch vehicles and the Apollo spacecraft. Established in 1970, the Skylab Program was the forerurner of the AAP. The goals of the Skylab were to enrich our scientific knowledge of the Earth, the Sun, the stars, and cosmic space; to study the effects of weightlessness on living organisms, including man; to study the effects of the processing and manufacturing of materials utilizing the absence of gravity; and to conduct Earth resource observations. The Skylab also conducted 19 selected experiments submitted by high school students. Skylab's 3 different 3-man crews spent up to 84 days in Earth orbit. The Marshall Space Flight Center (MSFC) had responsibility for developing and integrating most of the major components of the Skylab: the Orbital Workshop (OWS), Airlock Module (AM), Multiple Docking Adapter (MDA), Apollo Telescope Mount (ATM), Payload Shroud (PS), and most of the experiments. MSFC was also responsible for providing the Saturn IB launch vehicles for three Apollo spacecraft and crews and a Saturn V launch vehicle for the Skylab.

  15. CISNET lung models: Comparison of model assumptions and model structures

    PubMed Central

    McMahon, Pamela M.; Hazelton, William; Kimmel, Marek; Clarke, Lauren

    2012-01-01

    Sophisticated modeling techniques can be powerful tools to help us understand the effects of cancer control interventions on population trends in cancer incidence and mortality. Readers of journal articles are however rarely supplied with modeling details. Six modeling groups collaborated as part of the National Cancer Institute’s Cancer Intervention and Surveillance Modeling Network (CISNET) to investigate the contribution of US tobacco control efforts towards reducing lung cancer deaths over the period 1975 to 2000. The models included in this monograph were developed independently and use distinct, complementary approaches towards modeling the natural history of lung cancer. The models used the same data for inputs and agreed on the design of the analysis and the outcome measures. This article highlights aspects of the models that are most relevant to similarities of or differences between the results. Structured comparisons can increase the transparency of these complex models. PMID:22882887

  16. Building Mental Models by Dissecting Physical Models

    ERIC Educational Resources Information Center

    Srivastava, Anveshna

    2016-01-01

    When students build physical models from prefabricated components to learn about model systems, there is an implicit trade-off between the physical degrees of freedom in building the model and the intensity of instructor supervision needed. Models that are too flexible, permitting multiple possible constructions require greater supervision to…

  17. I&C Modeling in SPAR Models

    SciTech Connect

    John A. Schroeder

    2012-06-01

    The Standardized Plant Analysis Risk (SPAR) models for the U.S. commercial nuclear power plants currently have very limited instrumentation and control (I&C) modeling [1]. Most of the I&C components in the operating plant SPAR models are related to the reactor protection system. This was identified as a finding during the industry peer review of SPAR models. While the Emergency Safeguard Features (ESF) actuation and control system was incorporated into the Peach Bottom Unit 2 SPAR model in a recent effort [2], various approaches to expend resources for detailed I&C modeling in other SPAR models are investigated.

  18. Comparative Protein Structure Modeling Using Modeller

    PubMed Central

    Eswar, Narayanan; Marti-Renom, Marc A.; Madhusudhan, M.S.; Eramian, David; Shen, Min-yi; Pieper, Ursula

    2014-01-01

    Functional characterization of a protein sequence is one of the most frequent problems in biology. This task is usually facilitated by accurate three-dimensional (3-D) structure of the studied protein. In the absence of an experimentally determined structure, comparative or homology modeling can sometimes provide a useful 3-D model for a protein that is related to at least one known protein structure. Comparative modeling predicts the 3-D structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. PMID:18428767

  19. Forward model nonlinearity versus inverse model nonlinearity

    USGS Publications Warehouse

    Mehl, S.

    2007-01-01

    The issue of concern is the impact of forward model nonlinearity on the nonlinearity of the inverse model. The question posed is, "Does increased nonlinearity in the head solution (forward model) always result in increased nonlinearity in the inverse solution (estimation of hydraulic conductivity)?" It is shown that the two nonlinearities are separate, and it is not universally true that increased forward model nonlinearity increases inverse model nonlinearity. ?? 2007 National Ground Water Association.

  20. Next-generation sequencing in systemic mastocytosis: Derivation of a mutation-augmented clinical prognostic model for survival.

    PubMed

    Pardanani, Animesh; Lasho, Terra; Elala, Yoseph; Wassie, Emnet; Finke, Christy; Reichard, Kaaren K; Chen, Dong; Hanson, Curtis A; Ketterling, Rhett P; Tefferi, Ayalew

    2016-09-01

    In routine practice, the World Health Organization classification of systemic mastocytosis (SM) is also the de facto prognostic system; a core value is distinguishing indolent (ISM) from advanced SM (includes aggressive SM [ASM], SM with associated hematological neoplasm [SM-AHN] and mast cell leukemia [MCL]). We sequenced 27 genes in 150 SM patients to identify mutations that could be integrated into a clinical-molecular prognostic model for survival. Forty four patients (29%) had ISM, 25 (17%) ASM, 80 (53%) SM-AHN and 1 (0.7%) MCL; overall KITD816V prevalence was 75%. In 87 patients, 148 non-KIT mutations were detected; the most frequently mutated genes were TET2 (29%), ASXL1 (17%), and CBL (11%), with significantly higher mutation frequency in SM-AHN > ASM > ISM (P < 0.0001). In advanced SM, ASXL1 and RUNX1 mutations were associated with inferior survival. In multivariate analysis, age > 60 years (HR = 2.4), hemoglobin < 10 g/dL or transfusion-dependence (HR = 1.7), platelet count < 150 × 10(9) /L (HR = 3.2), serum albumin < 3.5 g/dL (HR = 2.6), and ASXL1 mutation (HR = 2.3) were associated with inferior survival. A mutation-augmented prognostic scoring system (MAPSS) based on these parameters stratified advanced SM patients into high-, intermediate-, and low-risk groups with median survival of 5, 21 and 86 months, respectively (P < 0.0001). These data should optimize risk-stratification and treatment selection for advanced SM patients. Am. J. Hematol. 91:888-893, 2016. © 2016 Wiley Periodicals, Inc. PMID:27214377

  1. Effects of maternal low-protein diet on parameters of locomotor activity in a rat model of cerebral palsy.

    PubMed

    Silva, Kássia Oliveira Gomes da; Pereira, Sabrina da Conceição; Portovedo, Mariana; Milanski, Marciane; Galindo, Lígia Cristina Monteiro; Guzmán-Quevedo, Omar; Manhães-de-Castro, Raul; Toscano, Ana Elisa

    2016-08-01

    Children with cerebral palsy have feeding difficulties that can contribute to undernutrition. The aim of this study was to investigate the effect of early undernutrition on locomotor activity and the expression of the myofibrillar protein MuRF-1 in an experimental model of cerebral palsy (CP). In order to achieve this aim, pregnant rats were divided into two groups according to the diet provided: Normal Protein (NP, n=9) and Low Protein (LP, n=12) groups. After birth, the pups were divided into four groups: Normal Protein Sham (NPS, n=16), Normal Protein Cerebral Palsy (NPCP, n=21), Low Protein Sham (LPS, n=20) and Low Protein Cerebral Palsy (LPCP, n=18) groups. The experimental cerebral palsy protocol consisted of two episodes of anoxia at birth and during the first days of life. Each day, nitrogen flow was used (9l/min during 12min). After nitrogen exposure, sensorimotor restriction was performed 16h per day, from the 2nd to the 28th postnatal day (PND). Locomotor activity was evaluated at 8th, 14th, 17th, 21th and 28th PND. At PND 29, soleus muscles were collected to analyse myofibrillar protein MuRF-1. Our results show that CP animals decreased body weight (p<0.001), which were associated with alterations of various parameters of locomotor activity (p<0.05), compared to their control. Undernourished animals also showed a decrease (p<0.05) in body weight and locomotor activity parameters. Moreover, CP decreased MuRF-1 levels in nourished rats (p=0.015) but not in undernourished rats. In summary, perinatal undernutrition exacerbated the negative effects of cerebral palsy on locomotor activity and muscle atrophy, but it appears not be mediated by changes in MuRF-1 levels. PMID:27211347

  2. Modeling cholera outbreaks

    PubMed Central

    Longini, Ira M.; Morris, J. Glenn

    2014-01-01

    Mathematical modeling can be a valuable tool for studying infectious disease outbreak dynamics and simulating the effects of possible interventions. Here, we describe approaches to modeling cholera outbreaks and how models have been applied to explore intervention strategies, particularly in Haiti. Mathematical models can play an important role in formulating and evaluating complex cholera outbreak response options. Major challenges to cholera modeling are insufficient data for calibrating models and the need to tailor models for different outbreak scenarios. PMID:23412687

  3. Uncertainty Modeling Via Frequency Domain Model Validation

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Andrisani, Dominick, II

    1999-01-01

    Abstract The majority of literature on robust control assumes that a design model is available and that the uncertainty model bounds the actual variations about the nominal model. However, methods for generating accurate design models have not received as much attention in the literature. The influence of the level of accuracy of the uncertainty model on closed loop performance has received even less attention. The research reported herein is an initial step in applying and extending the concept of model validation to the problem of obtaining practical uncertainty models for robust control analysis and design applications. An extension of model validation called 'sequential validation' is presented and applied to a simple spring-mass-damper system to establish the feasibility of the approach and demonstrate the benefits of the new developments.

  4. Model selection for logistic regression models

    NASA Astrophysics Data System (ADS)

    Duller, Christine

    2012-09-01

    Model selection for logistic regression models decides which of some given potential regressors have an effect and hence should be included in the final model. The second interesting question is whether a certain factor is heterogeneous among some subsets, i.e. whether the model should include a random intercept or not. In this paper these questions will be answered with classical as well as with Bayesian methods. The application show some results of recent research projects in medicine and business administration.

  5. Modeling transient rootzone salinity (SWS Model)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The combined, water quality criteria for irrigation, water and ion processes in soils, and plant and soil response is sufficiently complex that adequate analysis requires computer models. Models for management are also needed but these models must consider that the input requirements must be reasona...

  6. China model: Energy modeling the modern dynasty

    SciTech Connect

    Shaw, Jason

    1996-05-01

    In this paper a node-based microeconomic analysis is used to model the Chinese energy system. This model is run across multiple periods employing Lagrangian Relaxation techniques to achieve general equilibrium. Later, carbon dioxide emissions are added and the model is run to answer the question, {open_quotes}How can greenhouse gas emissions be reduced{close_quotes}?

  7. "Bohr's Atomic Model."

    ERIC Educational Resources Information Center

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  8. Multilevel Model Prediction

    ERIC Educational Resources Information Center

    Frees, Edward W.; Kim, Jee-Seon

    2006-01-01

    Multilevel models are proven tools in social research for modeling complex, hierarchical systems. In multilevel modeling, statistical inference is based largely on quantification of random variables. This paper distinguishes among three types of random variables in multilevel modeling--model disturbances, random coefficients, and future response…

  9. Building mental models by dissecting physical models.

    PubMed

    Srivastava, Anveshna

    2016-01-01

    When students build physical models from prefabricated components to learn about model systems, there is an implicit trade-off between the physical degrees of freedom in building the model and the intensity of instructor supervision needed. Models that are too flexible, permitting multiple possible constructions require greater supervision to ensure focused learning; models that are too constrained require less supervision, but can be constructed mechanically, with little to no conceptual engagement. We propose "model-dissection" as an alternative to "model-building," whereby instructors could make efficient use of supervisory resources, while simultaneously promoting focused learning. We report empirical results from a study conducted with biology undergraduate students, where we demonstrate that asking them to "dissect" out specific conceptual structures from an already built 3D physical model leads to a significant improvement in performance than asking them to build the 3D model from simpler components. Using questionnaires to measure understanding both before and after model-based interventions for two cohorts of students, we find that both the "builders" and the "dissectors" improve in the post-test, but it is the latter group who show statistically significant improvement. These results, in addition to the intrinsic time-efficiency of "model dissection," suggest that it could be a valuable pedagogical tool. PMID:26712513

  10. SHADOZ (Southern Hemisphere ADditional OZonesondes): An Ozonesonde Network for Satellite Validation, Climatology and Modeling

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Schmidlin, Francis J.; Oltmans, Samuel J.; McPeters, Richard D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    In the past 5 years, new tropical ozone data products have been developed from TOMS and other satellites, During this period, global chemical-transport models have been used for ozone assessment studies. However, there has been a lack of independent ozone profiles in the tropics for evaluation of the data sets and models. In 1998, NASA's Goddard Space Flight Center, Wallops Flight Facility and NOAA's CMDL (Climate Monitoring and Diagnostics Lab), began a 2-year project to collect a consistent data set by augmenting ozonesonde launches at southern hemisphere tropical sites The measurements are available to the scientific community at a single electronic location - the SHADOZ website at NASA/Goddard: http://code9l6.gsfc.nasa.gov/Data services/Shadoz/shadoz hmpg2.html. Stations in SHADOZ include four islands in the Pacific: Fiji, Tahiti, San Cristobal (Galapagos) and American Samoa. Two sites are at and in the Atlantic: Natal (Brazil) and Ascension Island. Three other sites span Africa (Nairobi and Irene, South Africa) and the Indian Ocean (Reunion Island and Watukosek in Java, Indonesia). All SHADOZ sites are using ECC-type sondes, with the conversion from JMD sondes at Java in 1999, but there are variations in sonde preparation technique and data processing. During the 1998-1999 period, more than 550 sondes were incorporated into the SHADOZ data base. Examples from these measurements illustrate the tropical wave-one pattern in total ozone which is easily detectable by satellite. They also show that the wave-one pattern appears to be in the troposphere, as assumed in creating the modified-residual tropospheric ozone data product from TOMS. SHADOZ will add data from intensive field campaigns from time to time. Recent contributions to the SHADOZ archive are from the INDOEX (Indian Ocean Experiment January-March 1999)sondes at the Maldives (5N, 73E) and 27 sondes on the US NOAA oceanographic vessel, the FIN Ronald H Brown between Virginia (US) and Mauritius via Cape

  11. Geologic Framework Model Analysis Model Report

    SciTech Connect

    R. Clayton

    2000-12-19

    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M&O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the

  12. Models of Magnetism.

    ERIC Educational Resources Information Center

    Borges, A. Tarciso; Gilbert, John K.

    1998-01-01

    Investigates the mental models that people construct about magnetic phenomena. Involves students, physics teachers, engineers, and practitioners. Proposes five models following a progression from simple description to a field model. Contains 28 references. (DDR)

  13. Educating with Aircraft Models

    ERIC Educational Resources Information Center

    Steele, Hobie

    1976-01-01

    Described is utilization of aircraft models, model aircraft clubs, and model aircraft magazines to promote student interest in aerospace education. The addresses for clubs and magazines are included. (SL)

  14. Forest succession models

    SciTech Connect

    Shugart, H.H. Jr.; West, D.C.

    1980-05-01

    Studies in succession attempt to determine the changes in species composition and other ecosystem attributes expected to occur over periods of time. Mathematical models developed in forestry and ecology to study ecological succession are reviewed. Tree models, gap models and forest models are discussed. Model validation or testing procedures are described. Model applications can involve evaluating large-scale and long-term changes in the ambient levels of pollutants and assessing the effects of climate change on the environment. (RJC)

  15. Orbital Debris Modeling

    NASA Technical Reports Server (NTRS)

    Liou, J. C.

    2012-01-01

    Presentation outlne: (1) The NASA Orbital Debris (OD) Engineering Model -- A mathematical model capable of predicting OD impact risks for the ISS and other critical space assets (2) The NASA OD Evolutionary Model -- A physical model capable of predicting future debris environment based on user-specified scenarios (3) The NASA Standard Satellite Breakup Model -- A model describing the outcome of a satellite breakup (explosion or collision)

  16. Continuous system modeling

    NASA Technical Reports Server (NTRS)

    Cellier, Francois E.

    1991-01-01

    A comprehensive and systematic introduction is presented for the concepts associated with 'modeling', involving the transition from a physical system down to an abstract description of that system in the form of a set of differential and/or difference equations, and basing its treatment of modeling on the mathematics of dynamical systems. Attention is given to the principles of passive electrical circuit modeling, planar mechanical systems modeling, hierarchical modular modeling of continuous systems, and bond-graph modeling. Also discussed are modeling in equilibrium thermodynamics, population dynamics, and system dynamics, inductive reasoning, artificial neural networks, and automated model synthesis.

  17. Regularized Structural Equation Modeling

    PubMed Central

    Jacobucci, Ross; Grimm, Kevin J.; McArdle, John J.

    2016-01-01

    A new method is proposed that extends the use of regularization in both lasso and ridge regression to structural equation models. The method is termed regularized structural equation modeling (RegSEM). RegSEM penalizes specific parameters in structural equation models, with the goal of creating easier to understand and simpler models. Although regularization has gained wide adoption in regression, very little has transferred to models with latent variables. By adding penalties to specific parameters in a structural equation model, researchers have a high level of flexibility in reducing model complexity, overcoming poor fitting models, and the creation of models that are more likely to generalize to new samples. The proposed method was evaluated through a simulation study, two illustrative examples involving a measurement model, and one empirical example involving the structural part of the model to demonstrate RegSEM’s utility. PMID:27398019

  18. ROCK PROPERTIES MODEL ANALYSIS MODEL REPORT

    SciTech Connect

    Clinton Lum

    2002-02-04

    The purpose of this Analysis and Model Report (AMR) is to document Rock Properties Model (RPM) 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties models are intended principally for use as input to numerical physical-process modeling, such as of ground-water flow and/or radionuclide transport. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. This work was conducted in accordance with the following planning documents: WA-0344, ''3-D Rock Properties Modeling for FY 1998'' (SNL 1997, WA-0358), ''3-D Rock Properties Modeling for FY 1999'' (SNL 1999), and the technical development plan, Rock Properties Model Version 3.1, (CRWMS M&O 1999c). The Interim Change Notice (ICNs), ICN 02 and ICN 03, of this AMR were prepared as part of activities being conducted under the Technical Work Plan, TWP-NBS-GS-000003, ''Technical Work Plan for the Integrated Site Model, Process Model Report, Revision 01'' (CRWMS M&O 2000b). The purpose of ICN 03 is to record changes in data input status due to data qualification and verification activities. These work plans describe the scope, objectives, tasks, methodology, and implementing procedures for model construction. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The work scope for this activity consists of the following: (1) Conversion of the input data (laboratory measured porosity data, x-ray diffraction mineralogy, petrophysical calculations of bound water, and petrophysical calculations of porosity) for each borehole into stratigraphic coordinates; (2) Re-sampling and merging of data sets; (3) Development of geostatistical simulations of porosity; (4

  19. Better models are more effectively connected models

    NASA Astrophysics Data System (ADS)

    Nunes, João Pedro; Bielders, Charles; Darboux, Frederic; Fiener, Peter; Finger, David; Turnbull-Lloyd, Laura; Wainwright, John

    2016-04-01

    The concept of hydrologic and geomorphologic connectivity describes the processes and pathways which link sources (e.g. rainfall, snow and ice melt, springs, eroded areas and barren lands) to accumulation areas (e.g. foot slopes, streams, aquifers, reservoirs), and the spatial variations thereof. There are many examples of hydrological and sediment connectivity on a watershed scale; in consequence, a process-based understanding of connectivity is crucial to help managers understand their systems and adopt adequate measures for flood prevention, pollution mitigation and soil protection, among others. Modelling is often used as a tool to understand and predict fluxes within a catchment by complementing observations with model results. Catchment models should therefore be able to reproduce the linkages, and thus the connectivity of water and sediment fluxes within the systems under simulation. In modelling, a high level of spatial and temporal detail is desirable to ensure taking into account a maximum number of components, which then enables connectivity to emerge from the simulated structures and functions. However, computational constraints and, in many cases, lack of data prevent the representation of all relevant processes and spatial/temporal variability in most models. In most cases, therefore, the level of detail selected for modelling is too coarse to represent the system in a way in which connectivity can emerge; a problem which can be circumvented by representing fine-scale structures and processes within coarser scale models using a variety of approaches. This poster focuses on the results of ongoing discussions on modelling connectivity held during several workshops within COST Action Connecteur. It assesses the current state of the art of incorporating the concept of connectivity in hydrological and sediment models, as well as the attitudes of modellers towards this issue. The discussion will focus on the different approaches through which connectivity

  20. PREDICTIVE MODELS. Enhanced Oil Recovery Model

    SciTech Connect

    Ray, R.M.

    1992-02-26

    PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1 chemical flooding; 2 carbon dioxide miscible flooding; 3 in-situ combustion; 4 polymer flooding; and 5 steamflood. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes. The IBM PC/AT version includes a plotting capability to produces a graphic picture of the predictive model results.

  1. Interstitial hyperthermia of experimental brain tumor using implant heating system.

    PubMed

    Kobayashi, T; Tanaka, T; Kida, Y; Matsui, M; Ikeda, T

    1989-07-01

    New experimental system of induction hyperthermia for brain tumor using ferromagnetic implant with low Curie point has been developed. The metal implant is cylindrical needle and made of Fe-Pt alloy with low Curie point suitable for hyperthermia (50-60 degrees C). Induction coil and generator which produce maximum power of 200W and variable frequency of 100-500kHz, yielding magnetic power of 16.7Oe, have been developed. Interstitial hyperthermia was made on rat brain tumor model (T9 gliosarcoma) by this system. Significant effects of single hyperthermia (45 degrees C for 30 minutes) were observed by the extension of life span and morphological changes of the tumor. PMID:2778493

  2. Biosphere Model Report

    SciTech Connect

    D. W. Wu

    2003-07-16

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).

  3. Biosphere Model Report

    SciTech Connect

    M. A. Wasiolek

    2003-10-27

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).

  4. AIDS Epidemiological models

    NASA Astrophysics Data System (ADS)

    Rahmani, Fouad Lazhar

    2010-11-01

    The aim of this paper is to present mathematical modelling of the spread of infection in the context of the transmission of the human immunodeficiency virus (HIV) and the acquired immune deficiency syndrome (AIDS). These models are based in part on the models suggested in the field of th AIDS mathematical modelling as reported by ISHAM [6].

  5. On Multiobjective Evolution Model

    NASA Astrophysics Data System (ADS)

    Ahmed, E.; Elettreby, M. F.

    Self-Organized Criticality (SOC) phenomena could have a significant effect on the dynamics of ecosystems. The Bak-Sneppen (BS) model is a simple and robust model of biological evolution that exhibits punctuated equilibrium behavior. Here, we will introduce random version of BS model. We also generalize the single objective BS model to a multiobjective one.

  6. Biomass Scenario Model

    SciTech Connect

    2015-09-01

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

  7. Multimodeling and Model Abstraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The multiplicity of models of the same process or phenomenon is the commonplace in environmental modeling. Last 10 years brought marked interest to making use of the variety of conceptual approaches instead of attempting to find the best model or using a single preferred model. Two systematic approa...

  8. Qualitative Student Models.

    ERIC Educational Resources Information Center

    Clancey, William J.

    The concept of a qualitative model is used as the focus of this review of qualitative student models in order to compare alternative computational models and to contrast domain requirements. The report is divided into eight sections: (1) Origins and Goals (adaptive instruction, qualitative models of processes, components of an artificial…

  9. The Instrumental Model

    ERIC Educational Resources Information Center

    Yeates, Devin Rodney

    2011-01-01

    The goal of this dissertation is to enable better predictive models by engaging raw experimental data through the Instrumental Model. The Instrumental Model captures the protocols and procedures of experimental data analysis. The approach is formalized by encoding the Instrumental Model in an XML record. Decoupling the raw experimental data from…

  10. Generative Models of Disfluency

    ERIC Educational Resources Information Center

    Miller, Timothy A.

    2010-01-01

    This thesis describes a generative model for representing disfluent phenomena in human speech. This model makes use of observed syntactic structure present in disfluent speech, and uses a right-corner transform on syntax trees to model this structure in a very natural way. Specifically, the phenomenon of speech repair is modeled by explicitly…

  11. Efficient polarimetric BRDF model.

    PubMed

    Renhorn, Ingmar G E; Hallberg, Tomas; Boreman, Glenn D

    2015-11-30

    The purpose of the present manuscript is to present a polarimetric bidirectional reflectance distribution function (BRDF) model suitable for hyperspectral and polarimetric signature modelling. The model is based on a further development of a previously published four-parameter model that has been generalized in order to account for different types of surface structures (generalized Gaussian distribution). A generalization of the Lambertian diffuse model is presented. The pBRDF-functions are normalized using numerical integration. Using directional-hemispherical reflectance (DHR) measurements, three of the four basic parameters can be determined for any wavelength. This simplifies considerably the development of multispectral polarimetric BRDF applications. The scattering parameter has to be determined from at least one BRDF measurement. The model deals with linear polarized radiation; and in similarity with e.g. the facet model depolarization is not included. The model is very general and can inherently model extreme surfaces such as mirrors and Lambertian surfaces. The complex mixture of sources is described by the sum of two basic models, a generalized Gaussian/Fresnel model and a generalized Lambertian model. Although the physics inspired model has some ad hoc features, the predictive power of the model is impressive over a wide range of angles and scattering magnitudes. The model has been applied successfully to painted surfaces, both dull and glossy and also on metallic bead blasted surfaces. The simple and efficient model should be attractive for polarimetric simulations and polarimetric remote sensing. PMID:26698753

  12. Calibrated Properties Model

    SciTech Connect

    C.F. Ahlers, H.H. Liu

    2001-12-18

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the AMR Development Plan for U0035 Calibrated Properties Model REV00 (CRWMS M&O 1999c). These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions.

  13. Calibrated Properties Model

    SciTech Connect

    C. Ahlers; H. Liu

    2000-03-12

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the ''AMR Development Plan for U0035 Calibrated Properties Model REV00. These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions.

  14. Introduction to Adjoint Models

    NASA Technical Reports Server (NTRS)

    Errico, Ronald M.

    2015-01-01

    In this lecture, some fundamentals of adjoint models will be described. This includes a basic derivation of tangent linear and corresponding adjoint models from a parent nonlinear model, the interpretation of adjoint-derived sensitivity fields, a description of methods of automatic differentiation, and the use of adjoint models to solve various optimization problems, including singular vectors. Concluding remarks will attempt to correct common misconceptions about adjoint models and their utilization.

  15. Stable models of superacceleration

    SciTech Connect

    Kaplinghat, Manoj; Rajaraman, Arvind

    2007-05-15

    We discuss an instability in a large class of models where dark energy is coupled to matter. In these models the mass of the scalar field is much larger than the expansion rate of the Universe. We find models in which this instability is absent, and show that these models generically predict an apparent equation of state for dark energy smaller than -1, i.e., superacceleration. These models have no acausal behavior or ghosts.

  16. ADAPT model: Model use, calibration and validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents an overview of the Agricultural Drainage and Pesticide Transport (ADAPT) model and a case study to illustrate the calibration and validation steps for predicting subsurface tile drainage and nitrate-N losses from an agricultural system. The ADAPT model is a daily time step field ...

  17. WASP TRANSPORT MODELING AND WASP ECOLOGICAL MODELING

    EPA Science Inventory

    A combination of lectures, demonstrations, and hands-on excercises will be used to introduce pollutant transport modeling with the U.S. EPA's general water quality model, WASP (Water Quality Analysis Simulation Program). WASP features include a user-friendly Windows-based interfa...

  18. Geochemistry Model Validation Report: External Accumulation Model

    SciTech Connect

    K. Zarrabi

    2001-09-27

    The purpose of this Analysis and Modeling Report (AMR) is to validate the External Accumulation Model that predicts accumulation of fissile materials in fractures and lithophysae in the rock beneath a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. (Lithophysae are voids in the rock having concentric shells of finely crystalline alkali feldspar, quartz, and other materials that were formed due to entrapped gas that later escaped, DOE 1998, p. A-25.) The intended use of this model is to estimate the quantities of external accumulation of fissile material for use in external criticality risk assessments for different types of degrading WPs: U.S. Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The scope of the model validation is to (1) describe the model and the parameters used to develop the model, (2) provide rationale for selection of the parameters by comparisons with measured values, and (3) demonstrate that the parameters chosen are the most conservative selection for external criticality risk calculations. To demonstrate the applicability of the model, a Pu-ceramic WP is used as an example. The model begins with a source term from separately documented EQ6 calculations; where the source term is defined as the composition versus time of the water flowing out of a breached waste package (WP). Next, PHREEQC, is used to simulate the transport and interaction of the source term with the resident water and fractured tuff below the repository. In these simulations the primary mechanism for accumulation is mixing of the high pH, actinide-laden source term with resident water; thus lowering the pH values sufficiently for fissile minerals to become insoluble and precipitate. In the final section of the model, the outputs from PHREEQC, are processed to produce mass of accumulation

  19. Indium-111-Photofrin-II scintillation scan

    SciTech Connect

    Origitano, T.C.; Karesh, S.M.; Reichman, O.H.; Henkin, R.E.; Caron, M.J.

    1989-04-01

    Photodynamic therapy is under intense investigation as an adjuvant treatment for malignant glial tumors of the central nervous system. Photofrin-II (HpD-II) is currently the most actively investigated photosensitizing agent. A crucial issue regarding the safe and efficacious usage of HpD-II-based photodynamic therapy is the individual in vivo kinetics of tumor uptake and retention, compared with normal brain clearance. The optimal time for photoactivation of sensitized tumor must be known to ensure a high target-to-nontarget ratio, resulting in the maximal tumor destruction while preserving normal brain. Our laboratory developed a radionuclide scan based on 111indium (111In)-labeled HpD-II to evaluate HpD-II localization and clearance noninvasively within a canine model of intracerebral gliosarcoma. Synthesis of the 111In-HpD-II complex in greater than 90% yield is achieved by a simple, rapid labeling method. Radiochemical purity and stability were verified by high-performance liquid chromatography. Using the canine model of intracerebral gliosarcoma, we followed the uptake of 111In-HpD-II in tumors with serial scintillation scanning. Localization of the tumor by 111In-HpD-II has been verified by contrast-enhanced computed tomographic scan followed by gross and histological examination of the enhancing brain region. Total body biodistribution of 111In-HpD-II at various times after injection has been evaluated. The ratio of uptake in tumor compared with surrounding brain peaked at 72 hours after injection. The knowledge of regional distribution and concentration of a photosensitizing agent within a tumor mass and surrounding brain allows for the most efficacious timing and localization of a photoactivating source.

  20. Trapped Radiation Model Uncertainties: Model-Data and Model-Model Comparisons

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    2000-01-01

    The standard AP8 and AE8 models for predicting trapped proton and electron environments have been compared with several sets of flight data to evaluate model uncertainties. Model comparisons are made with flux and dose measurements made on various U.S. low-Earth orbit satellites (APEX, CRRES, DMSP, LDEF, NOAA) and Space Shuttle flights, on Russian satellites (Photon-8, Cosmos-1887, Cosmos-2044), and on the Russian Mir Space Station. This report gives the details of the model-data comparisons-summary results in terms of empirical model uncertainty factors that can be applied for spacecraft design applications are given in a combination report. The results of model-model comparisons are also presented from standard AP8 and AE8 model predictions compared with the European Space Agency versions of AP8 and AE8 and with Russian-trapped radiation models.

  1. Model Validation Status Review

    SciTech Connect

    E.L. Hardin

    2001-11-28

    The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified, and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M&O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and

  2. Trapped Radiation Model Uncertainties: Model-Data and Model-Model Comparisons

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    2000-01-01

    The standard AP8 and AE8 models for predicting trapped proton and electron environments have been compared with several sets of flight data to evaluate model uncertainties. Model comparisons are made with flux and dose measurements made on various U.S. low-Earth orbit satellites (APEX, CRRES, DMSP. LDEF, NOAA) and Space Shuttle flights, on Russian satellites (Photon-8, Cosmos-1887, Cosmos-2044), and on the Russian Mir space station. This report gives the details of the model-data comparisons -- summary results in terms of empirical model uncertainty factors that can be applied for spacecraft design applications are given in a companion report. The results of model-model comparisons are also presented from standard AP8 and AE8 model predictions compared with the European Space Agency versions of AP8 and AE8 and with Russian trapped radiation models.

  3. The Syncardia(™) total artificial heart: in vivo, in vitro, and computational modeling studies.

    PubMed

    Slepian, Marvin J; Alemu, Yared; Girdhar, Gaurav; Soares, João Silva; Smith, Richard G; Einav, Shmuel; Bluestein, Danny

    2013-01-18

    The SynCardia(™) total artificial heart (TAH) is the only FDA-approved TAH in the world. The SynCardia(™) TAH is a pneumatically driven, pulsatile system capable of flows of >9L/min. The TAH is indicated for use as a bridge to transplantation (BTT) in patients at imminent risk of death from non-reversible bi-ventricular failure. In the Pivotal US approval trial the TAH achieved a BTT rate of >79%. Recently a multi-center, post-market approval study similarly demonstrated a comparable BTT rate. A major milestone was recently achieved for the TAH, with over 1100 TAHs having been implanted to date, with the bulk of implantation occurring at an ever increasing rate in the past few years. The TAH is most commonly utilized to save the lives of patients dying from end-stage bi-ventricular heart failure associated with ischemic or non-ischemic dilated cardiomyopathy. Beyond progressive chronic heart failure, the TAH has demonstrated great efficacy in supporting patients with acute irreversible heart failure associated with massive acute myocardial infarction. In recent years several diverse clinical scenarios have also proven to be well served by the TAH including severe heart failure associated with advanced congenital heart disease. failed or burned-out transplants, infiltrative and restrictive cardiomyopathies and failed ventricular assist devices. Looking to the future a major unmet need remains in providing total heart support for children and small adults. As such, the present TAH design must be scaled to fit the smaller patient, while providing equivalent, if not superior flow characteristics, shear profiles and overall device thrombogenicity. To aid in the development of a new "pediatric," TAH an engineering methodology known as "Device Thrombogenicity Emulation (DTE)", that we have recently developed and described, is being employed. Recently, to further our engineering understanding of the TAH, as steps towards next generation designs we have: (1) assessed of

  4. The Syncardia™ total artificial heart: in vivo, in vitro, and computational modeling studies

    PubMed Central

    Slepian, Marvin J.; Alemu, Yared; Soares, João Silva; Smith, Richard G.; Einav, Shmuel; Bluestein, Danny

    2014-01-01

    The SynCardia™ total artificial heart (TAH) is the only FDA-approved TAH in the world. The SynCardia™ TAH is a pneumatically driven, pulsatile system capable of flows of >9 L/min. The TAH is indicated for use as a bridge to transplantation (BTT) in patients at imminent risk of death from non-reversible bi-ventricular failure. In the Pivotal US approval trial the TAH achieved a BTT rate of >79%. Recently a multi-center, post-market approval study similarly demonstrated a comparable BTT rate. A major milestone was recently achieved for the TAH, with over 1100 TAHs having been implanted to date, with the bulk of implantation occurring at an ever increasing rate in the past few years. The TAH is most commonly utilized to save the lives of patients dying from end-stage bi-ventricular heart failure associated with ischemic or non-ischemic dilated cardiomyopathy. Beyond progressive chronic heart failure, the TAH has demonstrated great efficacy in supporting patients with acute irreversible heart failure associated with massive acute myocardial infarction. In recent years several diverse clinical scenarios have also proven to be well served by the TAH including severe heart failure associated with advanced congenital heart disease. failed or burned-out transplants, infiltrative and restrictive cardiomyopathies and failed ventricular assist devices. Looking to the future a major unmet need remains in providing total heart support for children and small adults. As such, the present TAH design must be scaled to fit the smaller patient, while providing equivalent, if not superior flow characteristics, shear profiles and overall device thrombogenicity. To aid in the development of a new “pediatric,” TAH an engineering methodology known as “Device Thrombogenicity Emulation (DTE)”, that we have recently developed and described, is being employed. Recently, to further our engineering understanding of the TAH, as steps towards next generation designs we have: (1

  5. Modeling extragalactic bowshocks. I. The model.

    NASA Astrophysics Data System (ADS)

    Ferruit, P.; Binette, L.; Sutherland, R. S.; Pecontal, E.

    1997-06-01

    To probe the effects of the nuclear activity on the host galaxy, it is essential to disentangle the relative contribution of shock excitation from that of photoionization. One milestone towards this goal is the ability to model the bowshock structures created by the interaction of radio ejecta with their surrounding medium. We have built a bowshock model based on TDA's one (Taylor, Dyson & Axon, 1992MNRAS.255..351T) which was itself derived from an earlier work on Herbig-Haro objects. Since TDA's original model supplied the astronomers with only [OIII]λ5007 fluxes and profiles for various models of bowshocks, we undertook to include magnetic fields and to incorporate all of the atomic data tables of the code Mappings Ic for the computation of ionization states, cooling rates and line emissivities of the gas. This new model allows us to map line ratios and profiles of extragalactic bowshocks for all major lines of astrophysical interest. In this first paper, we present our model, analyse the gas behavior along the bowshock and give some examples of model results.

  6. Modeling Hydrothermal Mineralization: Fractal or Multifrcatal Models?

    NASA Astrophysics Data System (ADS)

    Cheng, Q.

    2004-05-01

    Hydrothermal mineralization occurs when the natural geo-processes involve the interaction of ore material-carrying hydrothermal fluids with rocks in the earth's crust in a specific geological environment. Mineralization can cause element concentration enrichment or depletion in the country rocks. Local enrichment may form ore body that can be mined for profit at the current economic and technological conditions. To understand the spatial distribution of element concentration enrichment or depletion caused by mineralization in a mineral district is essential for mineral exploration and mineral prediction. Grade-tonnage model and mineral deposits size distribution model are common models used for characterizing mineral deposits. This paper proposes a non-linear mineralization model on the basis of a modified classical igneous differentiation mineralization model to describe the generation of multifractal distribution of element concentration in the country rocks as well as grade-tonnage fractal/multifractal distribution of ore deposits that have been often observed in hydrothermal mineralization. This work may also lead to a singularity model to explain the common properties of mineralization and mineralization-associated geochemical anomaly diversity and the generalized self-similarity of the anomalies. The model has been applied to a case study of mineral deposits prediction and mineral resource assessment in the Abitibi district, northern Ontario, Canada.

  7. Modeling volatility using state space models.

    PubMed

    Timmer, J; Weigend, A S

    1997-08-01

    In time series problems, noise can be divided into two categories: dynamic noise which drives the process, and observational noise which is added in the measurement process, but does not influence future values of the system. In this framework, we show that empirical volatilities (the squared relative returns of prices) exhibit a significant amount of observational noise. To model and predict their time evolution adequately, we estimate state space models that explicitly include observational noise. We obtain relaxation times for shocks in the logarithm of volatility ranging from three weeks (for foreign exchange) to three to five months (for stock indices). In most cases, a two-dimensional hidden state is required to yield residuals that are consistent with white noise. We compare these results with ordinary autoregressive models (without a hidden state) and find that autoregressive models underestimate the relaxation times by about two orders of magnitude since they do not distinguish between observational and dynamic noise. This new interpretation of the dynamics of volatility in terms of relaxators in a state space model carries over to stochastic volatility models and to GARCH models, and is useful for several problems in finance, including risk management and the pricing of derivative securities. Data sets used: Olsen & Associates high frequency DEM/USD foreign exchange rates (8 years). Nikkei 225 index (40 years). Dow Jones Industrial Average (25 years). PMID:9730016

  8. Energy-consumption modelling

    SciTech Connect

    Reiter, E.R.

    1980-01-01

    A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

  9. Holographic twin Higgs model.

    PubMed

    Geller, Michael; Telem, Ofri

    2015-05-15

    We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at m_{KK}, naturally allowing for m_{KK} beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider. PMID:26024160

  10. Stochastic modeling of rainfall

    SciTech Connect

    Guttorp, P.

    1996-12-31

    We review several approaches in the literature for stochastic modeling of rainfall, and discuss some of their advantages and disadvantages. While stochastic precipitation models have been around at least since the 1850`s, the last two decades have seen an increased development of models based (more or less) on the physical processes involved in precipitation. There are interesting questions of scale and measurement that pertain to these modeling efforts. Recent modeling efforts aim at including meteorological variables, and may be useful for regional down-scaling of general circulation models.

  11. Reliability model generator

    NASA Technical Reports Server (NTRS)

    McMann, Catherine M. (Inventor); Cohen, Gerald C. (Inventor)

    1991-01-01

    An improved method and system for automatically generating reliability models for use with a reliability evaluation tool is described. The reliability model generator of the present invention includes means for storing a plurality of low level reliability models which represent the reliability characteristics for low level system components. In addition, the present invention includes means for defining the interconnection of the low level reliability models via a system architecture description. In accordance with the principles of the present invention, a reliability model for the entire system is automatically generated by aggregating the low level reliability models based on the system architecture description.

  12. Gear mesh compliance modeling

    NASA Technical Reports Server (NTRS)

    Savage, M.; Caldwell, R. J.; Wisor, G. D.; Lewicki, D. G.

    1986-01-01

    A computer model has been constructed to simulate the compliance and load sharing in a spur gear mesh. The model adds the effect of rim deflections to previously developed state-of-the-art gear tooth deflection models. The effects of deflections on mesh compliance and load sharing are examined. The model can treat gear meshes composed to two external gears or an external gear driving an internal gear. The model includes deflection contributions from the bending and shear in the teeth, the Hertzian contact deformations, and primary and secondary rotations of the gear rims. The model shows that rimmed gears increase mesh compliance and, in some cases, improve load sharing.

  13. Gear mesh compliance modeling

    NASA Technical Reports Server (NTRS)

    Savage, M.; Caldwell, R. J.; Wisor, G. D.; Lewicki, D. G.

    1987-01-01

    A computer model has been constructed to simulate the compliance and load sharing in a spur gear mesh. The model adds the effect of rim deflections to previously developed state-of-the-art gear tooth deflection models. The effects of deflections on mesh compliance and load sharing are examined. The model can treat gear meshes composed of two external gears or an external gear driving an internal gear. The model includes deflection contributions from the bending and shear in the teeth, the Hertzian contact deformations, and primary and secondary rotations of the gear rims. The model shows that rimmed gears increase mesh compliance and, in some cases, improve load sharing.

  14. Reduced Vector Preisach Model

    NASA Technical Reports Server (NTRS)

    Patel, Umesh D.; Torre, Edward Della; Day, John H. (Technical Monitor)

    2002-01-01

    A new vector Preisach model, called the Reduced Vector Preisach model (RVPM), was developed for fast computations. This model, derived from the Simplified Vector Preisach model (SVPM), has individual components that like the SVPM are calculated independently using coupled selection rules for the state vector computation. However, the RVPM does not require the rotational correction. Therefore, it provides a practical alternative for computing the magnetic susceptibility using a differential approach. A vector version, using the framework of the DOK model, is implemented. Simulation results for the reduced vector Preisach model are also presented.

  15. Modeling Guru: Knowledge Base for NASA Modelers

    NASA Astrophysics Data System (ADS)

    Seablom, M. S.; Wojcik, G. S.; van Aartsen, B. H.

    2009-05-01

    Modeling Guru is an on-line knowledge-sharing resource for anyone involved with or interested in NASA's scientific models or High End Computing (HEC) systems. Developed and maintained by the NASA's Software Integration and Visualization Office (SIVO) and the NASA Center for Computational Sciences (NCCS), Modeling Guru's combined forums and knowledge base for research and collaboration is becoming a repository for the accumulated expertise of NASA's scientific modeling and HEC communities. All NASA modelers and associates are encouraged to participate and provide knowledge about the models and systems so that other users may benefit from their experience. Modeling Guru is divided into a hierarchy of communities, each with its own set forums and knowledge base documents. Current modeling communities include those for space science, land and atmospheric dynamics, atmospheric chemistry, and oceanography. In addition, there are communities focused on NCCS systems, HEC tools and libraries, and programming and scripting languages. Anyone may view most of the content on Modeling Guru (available at http://modelingguru.nasa.gov/), but you must log in to post messages and subscribe to community postings. The site offers a full range of "Web 2.0" features, including discussion forums, "wiki" document generation, document uploading, RSS feeds, search tools, blogs, email notification, and "breadcrumb" links. A discussion (a.k.a. forum "thread") is used to post comments, solicit feedback, or ask questions. If marked as a question, SIVO will monitor the thread, and normally respond within a day. Discussions can include embedded images, tables, and formatting through the use of the Rich Text Editor. Also, the user can add "Tags" to their thread to facilitate later searches. The "knowledge base" is comprised of documents that are used to capture and share expertise with others. The default "wiki" document lets users edit within the browser so others can easily collaborate on the

  16. A future of the model organism model

    PubMed Central

    Rine, Jasper

    2014-01-01

    Changes in technology are fundamentally reframing our concept of what constitutes a model organism. Nevertheless, research advances in the more traditional model organisms have enabled fresh and exciting opportunities for young scientists to establish new careers and offer the hope of comprehensive understanding of fundamental processes in life. New advances in translational research can be expected to heighten the importance of basic research in model organisms and expand opportunities. However, researchers must take special care and implement new resources to enable the newest members of the community to engage fully with the remarkable legacy of information in these fields. PMID:24577733

  17. 75 FR 39804 - Airworthiness Directives; The Boeing Company Model 757 Airplanes, Model 767 Airplanes, and Model...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... Model 757 Airplanes, Model 767 Airplanes, and Model 777-200 and -300 Series Airplanes AGENCY: Federal... directive (AD) for certain Model 757 airplanes, Model 767 airplanes, and Model 777-200 and -300 series...) that would apply to certain Model 757 airplanes, Model 767 airplanes, and Model 777-200 and -300...

  18. Develop a Model Component

    NASA Technical Reports Server (NTRS)

    Ensey, Tyler S.

    2013-01-01

    During my internship at NASA, I was a model developer for Ground Support Equipment (GSE). The purpose of a model developer is to develop and unit test model component libraries (fluid, electrical, gas, etc.). The models are designed to simulate software for GSE (Ground Special Power, Crew Access Arm, Cryo, Fire and Leak Detection System, Environmental Control System (ECS), etc. .) before they are implemented into hardware. These models support verifying local control and remote software for End-Item Software Under Test (SUT). The model simulates the physical behavior (function, state, limits and 110) of each end-item and it's dependencies as defined in the Subsystem Interface Table, Software Requirements & Design Specification (SRDS), Ground Integrated Schematic (GIS), and System Mechanical Schematic.(SMS). The software of each specific model component is simulated through MATLAB's Simulink program. The intensiv model development life cycle is a.s follows: Identify source documents; identify model scope; update schedule; preliminary design review; develop model requirements; update model.. scope; update schedule; detailed design review; create/modify library component; implement library components reference; implement subsystem components; develop a test script; run the test script; develop users guide; send model out for peer review; the model is sent out for verifictionlvalidation; if there is empirical data, a validation data package is generated; if there is not empirical data, a verification package is generated; the test results are then reviewed; and finally, the user. requests accreditation, and a statement of accreditation is prepared. Once each component model is reviewed and approved, they are intertwined together into one integrated model. This integrated model is then tested itself, through a test script and autotest, so that it can be concluded that all models work conjointly, for a single purpose. The component I was assigned, specifically, was a

  19. Biosphere Model Report

    SciTech Connect

    D.W. Wu; A.J. Smith

    2004-11-08

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), TSPA-LA. The ERMYN provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs) (Section 6.2), the reference biosphere (Section 6.1.1), the human receptor (Section 6.1.2), and approximations (Sections 6.3.1.4 and 6.3.2.4); (3) Building a mathematical model using the biosphere conceptual model (Section 6.3) and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); (8) Validating the ERMYN by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).

  20. [MODELING INFLAMMATORY EDEMA: ARE THE MODELS INTERCHANGEABLE].

    PubMed

    Hanh, Cong Hong; Khaziakhmetova, V N; Ziganshina, L E

    2015-01-01

    Experimental modeling of inflammatory edema by sub-plantar injection of carrageenan and formalin in mice and rats is widely used to evaluate potential anti-inflammatory activity of new drugs. This systematic analysis of published data showed that carrageenan induced paw edema model is used for evaluating the anti-inflammatory activity mostly in rats rather than mice. Formalin induced paw edema in rats and mice is used primarily for evaluation of the analgesic activity of drugs. Taken together, the results of this systematic review of available literature on edema modeling substantiate recommendation to use carrageenan paw edema in rats and formalin paw edema in mice as complementary, but not interchangeable models of inflammation. PMID:26591204

  1. Model documention: Commercial Sector Energy Model. [CSEM

    SciTech Connect

    Not Available

    1984-08-10

    The CSEM forecasts floorspace area and demand for natural gas, electricity and fuel oil for six building categories in four Census regions. Real disposable personal income, population and real fuel prices are the major exogenous drivers of these forecasts. The commercial model uses the coefficients from the three econometric submodules to calculate building floorspace, end-use fuel choices, and utilization (enegy use per square foot) for the three major fuels. Separately from these structural components the model also calculates energy use for the minor fuels liquefied petroleum gas, kerosene, coal and motor gasoline. Through the use of accounting equations, the commercial model combines the structural components to get total commercial energy use over the major fuels. It then adds in the minor fuels, passes the information back to the other models and writes reports.

  2. Aerosol Modeling for the Global Model Initiative

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.

    2001-01-01

    The goal of this project is to develop an aerosol module to be used within the framework of the Global Modeling Initiative (GMI). The model development work will be preformed jointly by the University of Michigan and AER, using existing aerosol models at the two institutions as starting points. The GMI aerosol model will be tested, evaluated against observations, and then applied to assessment of the effects of aircraft sulfur emissions as needed by the NASA Subsonic Assessment in 2001. The work includes the following tasks: 1. Implementation of the sulfur cycle within GMI, including sources, sinks, and aqueous conversion of sulfur. Aerosol modules will be added as they are developed and the GMI schedule permits. 2. Addition of aerosol types other than sulfate particles, including dust, soot, organic carbon, and black carbon. 3. Development of new and more efficient parameterizations for treating sulfate aerosol nucleation, condensation, and coagulation among different particle sizes and types.

  3. Nonlinear Modeling by Assembling Piecewise Linear Models

    NASA Technical Reports Server (NTRS)

    Yao, Weigang; Liou, Meng-Sing

    2013-01-01

    To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.

  4. Aggregation in ecosystem models and model stability

    NASA Astrophysics Data System (ADS)

    Giricheva, Evgeniya

    2015-05-01

    Using a multimodal approach to research ecosystems improves usage of available information on an object. This study presents several models of the Bering Sea ecosystem. The ecosystem is considered as a closed object, that is, the influence of the environment is not provided. We then add the links with the external medium in the models. The models differ in terms of the degree and method of grouping components. Our method is based on the differences in habitat and food source of groups, which allows us to determine the grouping of species with a greater effect on system dynamics. In particular, we determine whether benthic fish aggregation or pelagic fish aggregation can change the consumption structure of some groups of species, and consequently, the behavior of the entire model system.

  5. PREDICTIVE MODELS. Enhanced Oil Recovery Model

    SciTech Connect

    Ray, R.M.

    1992-02-26

    PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1 chemical flooding, where soap-like surfactants are injected into the reservoir to wash out the oil; 2 carbon dioxide miscible flooding, where carbon dioxide mixes with the lighter hydrocarbons making the oil easier to displace; 3 in-situ combustion, which uses the heat from burning some of the underground oil to thin the product; 4 polymer flooding, where thick, cohesive material is pumped into a reservoir to push the oil through the underground rock; and 5 steamflood, where pressurized steam is injected underground to thin the oil. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes.

  6. X-33 RCS model

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Model support system and instumentation cabling of the 1% scale X-33 reaction control system model. Installed in the Unitary Plan Wind Tunnel for supersonic testing. In building 1251, test section #2.

  7. Mass modeling for bars

    NASA Technical Reports Server (NTRS)

    Butler, Thomas G.

    1987-01-01

    Methods of modeling mass for bars are surveyed. A method for extending John Archer's concept of consistent mass beyond just translational inertia effects is included. Recommendations are given for various types of modeling situations.

  8. Bounding Species Distribution Models

    NASA Technical Reports Server (NTRS)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  9. Bounding species distribution models

    USGS Publications Warehouse

    Stohlgren, T.J.; Jarnevich, C.S.; Esaias, W.E.; Morisette, J.T.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used. ?? 2011 Current Zoology.

  10. SEDIMENT GEOCHEMICAL MODEL

    EPA Science Inventory

    Until recently, sediment geochemical models (diagenetic models) have been only able to explain sedimentary flux and concentration profiles for a few simplified geochemical cycles (e.g., nitrogen, carbon and sulfur). However with advances in numerical methods, increased accuracy ...

  11. Of Molecules and Models.

    ERIC Educational Resources Information Center

    Brinner, Bonnie

    1992-01-01

    Presents an activity in which models help students visualize both the DNA process and transcription. After constructing DNA, RNA messenger, and RNA transfer molecules; students model cells, protein synthesis, codons, and RNA movement. (MDH)

  12. Modeling Infectious Diseases

    MedlinePlus

    ... MIDAS models require a breadth of knowledge, the network draws together an interdisciplinary team of researchers with expertise in epidemiology, infectious diseases, computational biology, statistics, social sciences, physics, computer sciences and informatics. In 2006, MIDAS modelers simulated ...

  13. Modeling DNA Replication.

    ERIC Educational Resources Information Center

    Bennett, Joan

    1998-01-01

    Recommends the use of a model of DNA made out of Velcro to help students visualize the steps of DNA replication. Includes a materials list, construction directions, and details of the demonstration using the model parts. (DDR)

  14. Communication system modeling

    NASA Technical Reports Server (NTRS)

    Holland, L. D.; Walsh, J. R., Jr.; Wetherington, R. D.

    1971-01-01

    This report presents the results of work on communications systems modeling and covers three different areas of modeling. The first of these deals with the modeling of signals in communication systems in the frequency domain and the calculation of spectra for various modulations. These techniques are applied in determining the frequency spectra produced by a unified carrier system, the down-link portion of the Command and Communications System (CCS). The second modeling area covers the modeling of portions of a communication system on a block basis. A detailed analysis and modeling effort based on control theory is presented along with its application to modeling of the automatic frequency control system of an FM transmitter. A third topic discussed is a method for approximate modeling of stiff systems using state variable techniques.

  15. TMDL RUSLE MODEL

    EPA Science Inventory

    We developed a simplified spreadsheet modeling approach for characterizing and prioritizing sources of sediment loadings from watersheds in the United States. A simplified modeling approach was developed to evaluate sediment loadings from watersheds and selected land segments. ...

  16. Modeling EERE deployment programs

    SciTech Connect

    Cort, K. A.; Hostick, D. J.; Belzer, D. B.; Livingston, O. V.

    2007-11-01

    The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge for future research.

  17. Consistent model driven architecture

    NASA Astrophysics Data System (ADS)

    Niepostyn, Stanisław J.

    2015-09-01

    The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.

  18. System Advisor Model

    2010-03-01

    The System Advisor Model (SAM) is a performance and economic model designed to facilitate decision making for people involved in the renewable energy industry, ranging from project managers and engineers to incentive program designers, technology developers, and researchers.

  19. Comparison of Decision Models

    NASA Technical Reports Server (NTRS)

    Feinberg, A.; Miles, J. R. F.; Smith, J. H.; Scheuer, E. M.

    1986-01-01

    Two methods of multiattribute decision analysis compared in report. One method employs linear utility model. Other utilizes multiplicative utility model. Report based on interviews with experts in automotive technology to obtain their preferences regarding 10 new types of vehicles.

  20. Protein solubility modeling

    NASA Technical Reports Server (NTRS)

    Agena, S. M.; Pusey, M. L.; Bogle, I. D.

    1999-01-01

    A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. Copyright 1999 John Wiley & Sons, Inc.

  1. METEOROLOGICAL AND TRANSPORT MODELING

    EPA Science Inventory

    Advanced air quality simulation models, such as CMAQ, as well as other transport and dispersion models, require accurate and detailed meteorology fields. These meteorology fields include primary 3-dimensional dynamical and thermodynamical variables (e.g., winds, temperature, mo...

  2. Soil moisture modeling review

    NASA Technical Reports Server (NTRS)

    Hildreth, W. W.

    1978-01-01

    A determination of the state of the art in soil moisture transport modeling based on physical or physiological principles was made. It was found that soil moisture models based on physical principles have been under development for more than 10 years. However, these models were shown to represent infiltration and redistribution of soil moisture quite well. Evapotranspiration has not been as adequately incorporated into the models.

  3. Future of groundwater modeling

    USGS Publications Warehouse

    Langevin, Christian D.; Panday, Sorab

    2012-01-01

    With an increasing need to better manage water resources, the future of groundwater modeling is bright and exciting. However, while the past can be described and the present is known, the future of groundwater modeling, just like a groundwater model result, is highly uncertain and any prediction is probably not going to be entirely representative. Thus we acknowledge this as we present our vision of where groundwater modeling may be headed.

  4. Modeling of spacecraft charging

    NASA Technical Reports Server (NTRS)

    Whipple, E. C., Jr.

    1977-01-01

    Three types of modeling of spacecraft charging are discussed: statistical models, parametric models, and physical models. Local time dependence of circuit upset for DoD and communication satellites, and electron current to a sphere with an assumed Debye potential distribution are presented. Four regions were involved in spacecraft charging: (1) undisturbed plasma, (2) plasma sheath region, (3) spacecraft surface, and (4) spacecraft equivalent circuit.

  5. Hierarchical Bass model

    NASA Astrophysics Data System (ADS)

    Tashiro, Tohru

    2014-03-01

    We propose a new model about diffusion of a product which includes a memory of how many adopters or advertisements a non-adopter met, where (non-)adopters mean people (not) possessing the product. This effect is lacking in the Bass model. As an application, we utilize the model to fit the iPod sales data, and so the better agreement is obtained than the Bass model.

  6. Modeling the Pacific Ocean

    SciTech Connect

    Johnson, M.A.; O'Brien, J.J. )

    1990-01-01

    Two numerical models utilizing primitive equations (two momentum equations and a mass continuity equation) simulate the oceanography of the Pacific Ocean from 20{degrees}S to 50{degrees}N. The authors examine the abundant model data through visualization , by animating the appropriate model fields and viewing the time history of each model simulation as a color movie. The animations are used to aid understanding of ocean circulation.

  7. Avionics Architecture Modelling Language

    NASA Astrophysics Data System (ADS)

    Alana, Elena; Naranjo, Hector; Valencia, Raul; Medina, Alberto; Honvault, Christophe; Rugina, Ana; Panunzia, Marco; Dellandrea, Brice; Garcia, Gerald

    2014-08-01

    This paper presents the ESA AAML (Avionics Architecture Modelling Language) study, which aimed at advancing the avionics engineering practices towards a model-based approach by (i) identifying and prioritising the avionics-relevant analyses, (ii) specifying the modelling language features necessary to support the identified analyses, and (iii) recommending/prototyping software tooling to demonstrate the automation of the selected analyses based on a modelling language and compliant with the defined specification.

  8. Current sheet model

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The model of a rectenna based on the current sheet equivalency of a large planar array is described. The model is mathematically characterized by expression for the fraction of the incident plane wave that is reflected from the sheet. The model is conceptually justified for normal incidence by comparing it to the waveguide model in which evanescent modes, present as beyond and cutoff, correspond to the near field components which become negligible at any significant distance from the antenna array.

  9. Modeling Complex Calorimeters

    NASA Technical Reports Server (NTRS)

    Figueroa-Feliciano, Enectali

    2004-01-01

    We have developed a software suite that models complex calorimeters in the time and frequency domain. These models can reproduce all measurements that we currently do in a lab setting, like IV curves, impedance measurements, noise measurements, and pulse generation. Since all these measurements are modeled from one set of parameters, we can fully describe a detector and characterize its behavior. This leads to a model than can be used effectively for engineering and design of detectors for particular applications.

  10. Mathematical circulatory system model

    NASA Technical Reports Server (NTRS)

    Lakin, William D. (Inventor); Stevens, Scott A. (Inventor)

    2010-01-01

    A system and method of modeling a circulatory system including a regulatory mechanism parameter. In one embodiment, a regulatory mechanism parameter in a lumped parameter model is represented as a logistic function. In another embodiment, the circulatory system model includes a compliant vessel, the model having a parameter representing a change in pressure due to contraction of smooth muscles of a wall of the vessel.

  11. Campus Energy Modeling Platform

    2014-09-19

    NREL's Campus Energy Modeling project provides a suite of simulation tools for integrated, data driven energy modeling of commercial buildings and campuses using Simulink. The tools enable development of fully interconnected models for commercial campus energy infrastructure, including electrical distribution systems, district heating and cooling, onsite generation (both conventional and renewable), building loads, energy storage, and control systems.

  12. Models, Norms and Sharing.

    ERIC Educational Resources Information Center

    Harris, Mary B.

    To investigate the effect of modeling on altruism, 156 third and fifth grade children were exposed to a model who either shared with them, gave to a charity, or refused to share. The test apparatus, identified as a game, consisted of a box with signal lights and a chute through which marbles were dispensed. Subjects and the model played the game…

  13. Biophysical and spectral modeling

    NASA Technical Reports Server (NTRS)

    Goel, N. S. (Principal Investigator)

    1982-01-01

    Activities and results of a project to develop strategies for modeling vegetative canopy reflectance are reported. Specific tasks included the inversion of canopy reflectance models to estimate agronomic variables (particularly leaf area index) from in-situ reflectance measurements, and a study of possible uses of ecological models in analyzing temporal profiles of greenness.

  14. A Model Chemistry Class.

    ERIC Educational Resources Information Center

    Summerlin, Lee; Borgford, Christie

    1989-01-01

    Described is an activity which uses a 96-well reaction plate and soda straws to construct a model of the periodic table of the elements. The model illustrates the ionization energies of the various elements. Construction of the model and related concepts are discussed. (CW)

  15. What Is a Model?

    ERIC Educational Resources Information Center

    McNamara, James F.

    1996-01-01

    Uses R.A. Ackoff's connotations to define "model" as noun, adjective, and verb. Researchers should use various types of models (iconic, analogue, or symbolic) for three purposes: to reveal reality, to explain the past and present, and to predict and control the future. Herbert Simon's process model for administrative decision making has widespread…

  16. Crushed Salt Constitutive Model

    SciTech Connect

    Callahan, G.D.

    1999-02-01

    The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well.

  17. Modeling rapidly rotating stars

    NASA Astrophysics Data System (ADS)

    Rieutord, M.

    2006-06-01

    We review the quest of modeling rapidly rotating stars during the past 40 years and detail the challenges to be taken up by models facing new data from interferometry, seismology, spectroscopy... We then present the progress of the ESTER project aimed at giving a physically self-consistent model for the structure and evolution of rapidly rotating stars.

  18. Retrofitted supersymmetric models

    NASA Astrophysics Data System (ADS)

    Bose, Manatosh

    This thesis explores several models of metastable dynamic supersymmetry breaking (MDSB) and a supersymmetric model of hybrid inflation. All of these models possess discrete R-symmetries. We specially focus on the retrofitted models for supersymmetry breaking models. At first we construct retrofitted models of gravity mediation. In these models we explore the genericity of the so-called "split supersymmetry." We show that with the simplest models, where the goldstino multiplet is neutral under the discrete R-symmetry, a split spectrum is not generic. However if the goldstino superfield is charged under some symmetry other than the R-symmetry, then a split spectrum is achievable but not generic. We also present a gravity mediated model where the fine tuning of the Z-boson mass is dictated by a discrete choice rather than a continuous tuning. Then we construct retrofitted models of gauge mediated SUSY breaking. We show that, in these models, if the approximate R-symmetry of the theory is spontaneously broken, the messenger scale is fixed; if explicitly broken by retrofitted couplings, a very small dimensionless number is required; if supergravity corrections are responsible for the symmetry breaking, at least two moderately small couplings are required, and that there is a large range of possible messenger scales. Finally we switch our attention to small field hybrid inflation. We construct a model that yields a spectral index ns = 0.96. Here, we also briefly discuss the possibility of relating the scale of inflation with the dynamics responsible for supersymmetry breaking.

  19. Modeling Natural Selection

    ERIC Educational Resources Information Center

    Bogiages, Christopher A.; Lotter, Christine

    2011-01-01

    In their research, scientists generate, test, and modify scientific models. These models can be shared with others and demonstrate a scientist's understanding of how the natural world works. Similarly, students can generate and modify models to gain a better understanding of the content, process, and nature of science (Kenyon, Schwarz, and Hug…

  20. A Model Performance

    ERIC Educational Resources Information Center

    Thornton, Bradley D.; Smalley, Robert A.

    2008-01-01

    Building information modeling (BIM) uses three-dimensional modeling concepts, information technology and interoperable software to design, construct and operate a facility. However, BIM can be more than a tool for virtual modeling--it can provide schools with a 3-D walkthrough of a project while it still is on the electronic drawing board. BIM can…

  1. Impact-GMI Model

    2007-03-22

    IMPACT-GMI is an atmospheric chemical transport model designed to run on massively parallel computers. It is designed to model trace pollutants in the atmosphere. It includes models for emission, chemistry and deposition of pollutants. It can be used to assess air quality and its impact on future climate change.

  2. Surface complexation modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adsorption-desorption reactions are important processes that affect the transport of contaminants in the environment. Surface complexation models are chemical models that can account for the effects of variable chemical conditions, such as pH, on adsorption reactions. These models define specific ...

  3. SECOND GENERATION MODEL

    EPA Science Inventory

    One of the environmental and economic models that the U.S. EPA uses to assess climate change policies is the Second Generation Model (SGM). SGM is a 13 region, 24 sector computable general equilibrium (CGE) model of the world that can be used to estimate the domestic and intern...

  4. Progress in mix modeling

    SciTech Connect

    Harrison, A.K.

    1997-03-14

    We have identified the Cranfill multifluid turbulence model (Cranfill, 1992) as a starting point for development of subgrid models of instability, turbulent and mixing processes. We have differenced the closed system of equations in conservation form, and coded them in the object-oriented hydrodynamics code FLAG, which is to be used as a testbed for such models.

  5. Modeling EERE Deployment Programs

    SciTech Connect

    Cort, K. A.; Hostick, D. J.; Belzer, D. B.; Livingston, O. V.

    2007-11-01

    This report compiles information and conclusions gathered as part of the “Modeling EERE Deployment Programs” project. The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge in which future research is needed.

  6. Modern Media Education Models

    ERIC Educational Resources Information Center

    Fedorov, Alexander

    2011-01-01

    The author supposed that media education models can be divided into the following groups: (1) educational-information models (the study of the theory, history, language of media culture, etc.), based on the cultural, aesthetic, semiotic, socio-cultural theories of media education; (2) educational-ethical models (the study of moral, religions,…

  7. Rock Properties Model

    SciTech Connect

    C. Lum

    2004-09-16

    The purpose of this model report is to document the Rock Properties Model version 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties model provides mean matrix and lithophysae porosity, and the cross-correlated mean bulk density as direct input to the ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021, REV 02 (BSC 2004 [DIRS 170042]). The constraints, caveats, and limitations associated with this model are discussed in Section 6.6 and 8.2. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7. The revision of this model report was performed as part of activities being conducted under the ''Technical Work Plan for: The Integrated Site Model, Revision 05'' (BSC 2004 [DIRS 169635]). The purpose of this revision is to bring the report up to current procedural requirements and address the Regulatory Integration Team evaluation comments. The work plan describes the scope, objectives, tasks, methodology, and procedures for this process.

  8. Modeling Climate Dynamically

    ERIC Educational Resources Information Center

    Walsh, Jim; McGehee, Richard

    2013-01-01

    A dynamical systems approach to energy balance models of climate is presented, focusing on low order, or conceptual, models. Included are global average and latitude-dependent, surface temperature models. The development and analysis of the differential equations and corresponding bifurcation diagrams provides a host of appropriate material for…

  9. Model Breaking Points Conceptualized

    ERIC Educational Resources Information Center

    Vig, Rozy; Murray, Eileen; Star, Jon R.

    2014-01-01

    Current curriculum initiatives (e.g., National Governors Association Center for Best Practices and Council of Chief State School Officers 2010) advocate that models be used in the mathematics classroom. However, despite their apparent promise, there comes a point when models break, a point in the mathematical problem space where the model cannot,…

  10. URBAN AIRSHED MODEL (UAM)

    EPA Science Inventory

    The Urban Airshed Model (UAM) is an urban scale, three-dimensional, grid type, numerical simulation model. The model incorporates a condensed photochemical kinetics mechanism for urban atmospheres. The UAM is designed for computing ozone (O3) concentrations under short-term, epis...

  11. Model Rockets and Microchips.

    ERIC Educational Resources Information Center

    Fitzsimmons, Charles P.

    1986-01-01

    Points out the instructional applications and program possibilities of a unit on model rocketry. Describes the ways that microcomputers can assist in model rocket design and in problem calculations. Provides a descriptive listing of model rocket software for the Apple II microcomputer. (ML)

  12. New Directions for Modeling?

    ERIC Educational Resources Information Center

    Mason, Thomas R.

    1976-01-01

    Noting the disappointing results of past experimentation with computer modeling technology in higher education, the author discusses developments which promise potential: communication between model builders and users, interaction between large- and small-scale models, interface with operating data systems, emphasis on outcomes, and continued…

  13. General Graded Response Model.

    ERIC Educational Resources Information Center

    Samejima, Fumiko

    This paper describes the graded response model. The graded response model represents a family of mathematical models that deal with ordered polytomous categories, such as: (1) letter grading; (2) an attitude survey with "strongly disagree, disagree, agree, and strongly agree" choices; (3) partial credit given in accord with an individual's degree…

  14. Models for Products

    ERIC Educational Resources Information Center

    Speiser, Bob; Walter, Chuck

    2011-01-01

    This paper explores how models can support productive thinking. For us a model is a "thing", a tool to help make sense of something. We restrict attention to specific models for whole-number multiplication, hence the wording of the title. They support evolving thinking in large measure through the ways their users redesign them. They assume new…

  15. REGULATORY AIR QUALITY MODELS

    EPA Science Inventory

    Appendix W to 40CFR Part 51 (Guideline on Air Quality Models) specifies the models to be used for purposes of permitting, PSD, and SIPs. Through a formal regulatory process this modeling guidance is periodically updated to reflect current science. In the most recent action, thr...

  16. Molecular Models in Biology

    ERIC Educational Resources Information Center

    Goodman, Richard E.

    1970-01-01

    Describes types of molecular models (ball-and-stick, framework, and space-filling) and evaluates commercially available kits. Gives instructions for constructive models from polystyrene balls and pipe-cleaners. Models are useful for class demonstrations although not sufficiently accurate for research use. Illustrations show biologically important…

  17. Modeling and Remodeling Writing

    ERIC Educational Resources Information Center

    Hayes, John R.

    2012-01-01

    In Section 1 of this article, the author discusses the succession of models of adult writing that he and his colleagues have proposed from 1980 to the present. He notes the most important changes that differentiate earlier and later models and discusses reasons for the changes. In Section 2, he describes his recent efforts to model young…

  18. IR DIAL performance modeling

    SciTech Connect

    Sharlemann, E.T.

    1994-07-01

    We are developing a DIAL performance model for CALIOPE at LLNL. The intent of the model is to provide quick and interactive parameter sensitivity calculations with immediate graphical output. A brief overview of the features of the performance model is given, along with an example of performance calculations for a non-CALIOPE application.

  19. Global Timber Model (GTM)

    EPA Science Inventory

    GTM is an economic model capable of examining global forestry land-use, management, and trade responses to policies. In responding to a policy, the model captures afforestation, forest management, and avoided deforestation behavior. The model estimates harvests in industrial fore...

  20. Hierarchical Models of Attitude.

    ERIC Educational Resources Information Center

    Reddy, Srinivas K.; LaBarbera, Priscilla A.

    1985-01-01

    The application and use of hierarchical models is illustrated, using the example of the structure of attitudes toward a new product and a print advertisement. Subjects were college students who responded to seven-point bipolar scales. Hierarchical models were better than nonhierarchical models in conceptualizing attitude but not intention. (GDC)

  1. Generalized Latent Trait Models.

    ERIC Educational Resources Information Center

    Moustaki, Irini; Knott, Martin

    2000-01-01

    Discusses a general model framework within which manifest variables with different distributions in the exponential family can be analyzed with a latent trait model. Presents a unified maximum likelihood method for estimating the parameters of the generalized latent trait model and discusses the scoring of individuals on the latent dimensions.…

  2. Modelling Vocabulary Loss

    ERIC Educational Resources Information Center

    Meara, Paul

    2004-01-01

    This paper describes some simple simulation models of vocabulary attrition. The attrition process is modelled using a random autonomous Boolean network model, and some parallels with real attrition data are drawn. The paper argues that applying a complex systems approach to attrition can provide some important insights, which suggest that real…

  3. Modelling MIZ dynamics in a global model

    NASA Astrophysics Data System (ADS)

    Rynders, Stefanie; Aksenov, Yevgeny; Feltham, Daniel; Nurser, George; Naveira Garabato, Alberto

    2016-04-01

    Exposure of large, previously ice-covered areas of the Arctic Ocean to the wind and surface ocean waves results in the Arctic pack ice cover becoming more fragmented and mobile, with large regions of ice cover evolving into the Marginal Ice Zone (MIZ). The need for better climate predictions, along with growing economic activity in the Polar Oceans, necessitates climate and forecasting models that can simulate fragmented sea ice with a greater fidelity. Current models are not fully fit for the purpose, since they neither model surface ocean waves in the MIZ, nor account for the effect of floe fragmentation on drag, nor include sea ice rheology that represents both the now thinner pack ice and MIZ ice dynamics. All these processes affect the momentum transfer to the ocean. We present initial results from a global ocean model NEMO (Nucleus for European Modelling of the Ocean) coupled to the Los Alamos sea ice model CICE. The model setup implements a novel rheological formulation for sea ice dynamics, accounting for ice floe collisions, thus offering a seamless framework for pack ice and MIZ simulations. The effect of surface waves on ice motion is included through wave pressure and the turbulent kinetic energy of ice floes. In the multidecadal model integrations we examine MIZ and basin scale sea ice and oceanic responses to the changes in ice dynamics. We analyse model sensitivities and attribute them to key sea ice and ocean dynamical mechanisms. The results suggest that the effect of the new ice rheology is confined to the MIZ. However with the current increase in summer MIZ area, which is projected to continue and may become the dominant type of sea ice in the Arctic, we argue that the effects of the combined sea ice rheology will be noticeable in large areas of the Arctic Ocean, affecting sea ice and ocean. With this study we assert that to make more accurate sea ice predictions in the changing Arctic, models need to include MIZ dynamics and physics.

  4. Advances in Watershed Models and Modeling

    NASA Astrophysics Data System (ADS)

    Yeh, G. T.; Zhang, F.

    2015-12-01

    The development of watershed models and their applications to real-world problems has evolved significantly since 1960's. Watershed models can be classified based on what media are included, what processes are dealt with, and what approaches are taken. In term of media, a watershed may include segregated overland regime, river-canal-open channel networks, ponds-reservoirs-small lakes, and subsurface media. It may also include integrated media of all these or a partial set of these as well as man-made control structures. In term of processes, a watershed model may deal with coupled or decoupled hydrological and biogeochemical cycles. These processes include fluid flow, thermal transport, salinity transport, sediment transport, reactive transport, and biota and microbe kinetics. In terms of approaches, either parametric or physics-based approach can be taken. This talk discusses the evolution of watershed models in the past sixty years. The advances of watershed models center around their increasing design capability to foster these segregated or integrated media and coupled or decoupled processes. Widely used models developed by academia, research institutes, government agencies, and private industries will be reviewed in terms of the media and processes included as well as approaches taken. Many types of potential benchmark problems in general can be proposed and will be discussed. This presentation will focus on three benchmark problems of biogeochemical cycles. These three problems, dealing with water quality transport, will be formulated in terms of reactive transport. Simulation results will be illustrated using WASH123D, a watershed model developed and continuously updated by the author and his PhD graduates. Keywords: Hydrological Cycles, Biogeochemical Cycles, Biota Kinetics, Parametric Approach, Physics-based Approach, Reactive Transport.

  5. Modeling agriculture in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Drewniak, B.; Song, J.; Prell, J.; Kotamarthi, V. R.; Jacob, R.

    2013-04-01

    The potential impact of climate change on agriculture is uncertain. In addition, agriculture could influence above- and below-ground carbon storage. Development of models that represent agriculture is necessary to address these impacts. We have developed an approach to integrate agriculture representations for three crop types - maize, soybean, and spring wheat - into the coupled carbon-nitrogen version of the Community Land Model (CLM), to help address these questions. Here we present the new model, CLM-Crop, validated against observations from two AmeriFlux sites in the United States, planted with maize and soybean. Seasonal carbon fluxes compared well with field measurements for soybean, but not as well for maize. CLM-Crop yields were comparable with observations in countries such as the United States, Argentina, and China, although the generality of the crop model and its lack of technology and irrigation made direct comparison difficult. CLM-Crop was compared against the standard CLM3.5, which simulates crops as grass. The comparison showed improvement in gross primary productivity in regions where crops are the dominant vegetation cover. Crop yields and productivity were negatively correlated with temperature and positively correlated with precipitation, in agreement with other modeling studies. In case studies with the new crop model looking at impacts of residue management and planting date on crop yield, we found that increased residue returned to the litter pool increased crop yield, while reduced residue returns resulted in yield decreases. Using climate controls to signal planting date caused different responses in different crops. Maize and soybean had opposite reactions: when low temperature threshold resulted in early planting, maize responded with a loss of yield, but soybean yields increased. Our improvements in CLM demonstrate a new capability in the model - simulating agriculture in a realistic way, complete with fertilizer and residue management

  6. Pediatric Computational Models

    NASA Astrophysics Data System (ADS)

    Soni, Bharat K.; Kim, Jong-Eun; Ito, Yasushi; Wagner, Christina D.; Yang, King-Hay

    A computational model is a computer program that attempts to simulate a behavior of a complex system by solving mathematical equations associated with principles and laws of physics. Computational models can be used to predict the body's response to injury-producing conditions that cannot be simulated experimentally or measured in surrogate/animal experiments. Computational modeling also provides means by which valid experimental animal and cadaveric data can be extrapolated to a living person. Widely used computational models for injury biomechanics include multibody dynamics and finite element (FE) models. Both multibody and FE methods have been used extensively to study adult impact biomechanics in the past couple of decades.

  7. UZ Colloid Transport Model

    SciTech Connect

    M. McGraw

    2000-04-13

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.

  8. Pilot model hypothesis testing

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.; Berry, P. W.

    1982-01-01

    The aircraft control time history predicted by the optimal control pilot model and actual pilot tracking data obtained from NASA Langley's differential maneuvering simulator (DMS) are analyzed. The analysis is performed using a hypothesis testing scheme modified to allow for changes in the true hypothesis. A finite number of pilot models, each with different hypothesized internal model representations of the aircraft dynamics, are constructed. The hypothesis testing scheme determines the relative probability that each pilot model best matches the DMS data. By observing the changes in probabilities, it is possible to determine when the pilot changes control strategy and which hypothesized pilot model best represent's the pilot's control behavior.

  9. Models of Goldstone gauginos

    NASA Astrophysics Data System (ADS)

    Alves, Daniele S. M.; Galloway, Jamison; McCullough, Matthew; Weiner, Neal

    2016-04-01

    Models with Dirac gauginos are appealing scenarios for physics beyond the Standard Model. They have smaller radiative corrections to scalar soft masses, a suppression of certain supersymmetry (SUSY) production processes at the LHC, and ameliorated flavor constraints. Unfortunately, they are generically plagued by tachyons charged under the Standard Model, and attempts to eliminate such states typically spoil the positive features. The recently proposed "Goldstone gaugino" mechanism provides a simple realization of Dirac gauginos that is automatically free of dangerous tachyonic states. We provide details on this mechanism and explore models for its origin. In particular, we find SUSY QCD models that realize this idea simply and discuss scenarios for unification.

  10. The FREZCHEM Model

    NASA Astrophysics Data System (ADS)

    Marion, Giles M.; Kargel, Jeffrey S.

    Implementation of the Pitzer approach is through the FREZCHEM (FREEZING CHEMISTRY) model, which is at the core of this work. This model was originally designed to simulate salt chemistries and freezing processes at low temperatures (-54 to 25°C) and 1 atm pressure. Over the years, this model has been broadened to include more chemistries (from 16 to 58 solid phases), a broader temperature range for some chemistries (to 113°C), and incorporation of a pressure dependence (1 to 1000 bars) into the model. Implementation, parameterization, validation, and limitations of the FREZCHEM model are extensively discussed in Chapter 3.

  11. Surrogate waveform models

    NASA Astrophysics Data System (ADS)

    Blackman, Jonathan; Field, Scott; Galley, Chad; Scheel, Mark; Szilagyi, Bela; Tiglio, Manuel

    2015-04-01

    With the advanced detector era just around the corner, there is a strong need for fast and accurate models of gravitational waveforms from compact binary coalescence. Fast surrogate models can be built out of an accurate but slow waveform model with minimal to no loss in accuracy, but may require a large number of evaluations of the underlying model. This may be prohibitively expensive if the underlying is extremely slow, for example if we wish to build a surrogate for numerical relativity. We examine alternate choices to building surrogate models which allow for a more sparse set of input waveforms. Research supported in part by NSERC.

  12. CRAC2 model description

    SciTech Connect

    Ritchie, L.T.; Alpert, D.J.; Burke, R.P.; Johnson, J.D.; Ostmeyer, R.M.; Aldrich, D.C.; Blond, R.M.

    1984-03-01

    The CRAC2 computer code is a revised version of CRAC (Calculation of Reactor Accident Consequences) which was developed for the Reactor Safety Study. This document provides an overview of the CRAC2 code and a description of each of the models used. Significant improvements incorporated into CRAC2 include an improved weather sequence sampling technique, a new evacuation model, and new output capabilities. In addition, refinements have been made to the atmospheric transport and deposition model. Details of the modeling differences between CRAC2 and CRAC are emphasized in the model descriptions.

  13. Adaptive background model

    NASA Astrophysics Data System (ADS)

    Lu, Xiaochun; Xiao, Yijun; Chai, Zhi; Wang, Bangping

    2007-11-01

    An adaptive background model aiming at outdoor vehicle detection is presented in this paper. This model is an improved model of PICA (pixel intensity classification algorithm), it classifies pixels into K-distributions by color similarity, and then a hypothesis that the background pixel color appears in image sequence with a high frequency is used to evaluate all the distributions to determine which presents the current background color. As experiments show, the model presented in this paper is a robust, adaptive and flexible model, which can deal with situations like camera motions, lighting changes and so on.

  14. Complex matrix model duality

    SciTech Connect

    Brown, T. W.

    2011-04-15

    The same complex matrix model calculates both tachyon scattering for the c=1 noncritical string at the self-dual radius and certain correlation functions of operators which preserve half the supersymmetry in N=4 super-Yang-Mills theory. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich-Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces.

  15. Modelling Farm Animal Welfare

    PubMed Central

    Collins, Lisa M.; Part, Chérie E.

    2013-01-01

    Simple Summary In this review paper we discuss the different modeling techniques that have been used in animal welfare research to date. We look at what questions they have been used to answer, the advantages and pitfalls of the methods, and how future research can best use these approaches to answer some of the most important upcoming questions in farm animal welfare. Abstract The use of models in the life sciences has greatly expanded in scope and advanced in technique in recent decades. However, the range, type and complexity of models used in farm animal welfare is comparatively poor, despite the great scope for use of modeling in this field of research. In this paper, we review the different modeling approaches used in farm animal welfare science to date, discussing the types of questions they have been used to answer, the merits and problems associated with the method, and possible future applications of each technique. We find that the most frequently published types of model used in farm animal welfare are conceptual and assessment models; two types of model that are frequently (though not exclusively) based on expert opinion. Simulation, optimization, scenario, and systems modeling approaches are rarer in animal welfare, despite being commonly used in other related fields. Finally, common issues such as a lack of quantitative data to parameterize models, and model selection and validation are discussed throughout the review, with possible solutions and alternative approaches suggested. PMID:26487411

  16. TEAMS Model Analyzer

    NASA Technical Reports Server (NTRS)

    Tijidjian, Raffi P.

    2010-01-01

    The TEAMS model analyzer is a supporting tool developed to work with models created with TEAMS (Testability, Engineering, and Maintenance System), which was developed by QSI. In an effort to reduce the time spent in the manual process that each TEAMS modeler must perform in the preparation of reporting for model reviews, a new tool has been developed as an aid to models developed in TEAMS. The software allows for the viewing, reporting, and checking of TEAMS models that are checked into the TEAMS model database. The software allows the user to selectively model in a hierarchical tree outline view that displays the components, failure modes, and ports. The reporting features allow the user to quickly gather statistics about the model, and generate an input/output report pertaining to all of the components. Rules can be automatically validated against the model, with a report generated containing resulting inconsistencies. In addition to reducing manual effort, this software also provides an automated process framework for the Verification and Validation (V&V) effort that will follow development of these models. The aid of such an automated tool would have a significant impact on the V&V process.

  17. Animal models of atherosclerosis

    PubMed Central

    Kapourchali, Fatemeh Ramezani; Surendiran, Gangadaran; Chen, Li; Uitz, Elisabeth; Bahadori, Babak; Moghadasian, Mohammed H

    2014-01-01

    In this mini-review several commonly used animal models of atherosclerosis have been discussed. Among them, emphasis has been made on mice, rabbits, pigs and non-human primates. Although these animal models have played a significant role in our understanding of induction of atherosclerotic lesions, we still lack a reliable animal model for regression of the disease. Researchers have reported several genetically modified and transgenic animal models that replicate human atherosclerosis, however each of current animal models have some limitations. Among these animal models, the apolipoprotein (apo) E-knockout (KO) mice have been used extensively because they develop spontaneous atherosclerosis. Furthermore, atherosclerotic lesions developed in this model depending on experimental design may resemble humans’ stable and unstable atherosclerotic lesions. This mouse model of hypercholesterolemia and atherosclerosis has been also used to investigate the impact of oxidative stress and inflammation on atherogenesis. Low density lipoprotein (LDL)-r-KO mice are a model of human familial hypercholesterolemia. However, unlike apo E-KO mice, the LDL-r-KO mice do not develop spontaneous atherosclerosis. Both apo E-KO and LDL-r-KO mice have been employed to generate other relevant mouse models of cardiovascular disease through breeding strategies. In addition to mice, rabbits have been used extensively particularly to understand the mechanisms of cholesterol-induced atherosclerosis. The present review paper details the characteristics of animal models that are used in atherosclerosis research. PMID:24868511

  18. Calibrated Properties Model

    SciTech Connect

    T. Ghezzehej

    2004-10-04

    The purpose of this model report is to document the calibrated properties model that provides calibrated property sets for unsaturated zone (UZ) flow and transport process models (UZ models). The calibration of the property sets is performed through inverse modeling. This work followed, and was planned in, ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Sections 1.2.6 and 2.1.1.6). Direct inputs to this model report were derived from the following upstream analysis and model reports: ''Analysis of Hydrologic Properties Data'' (BSC 2004 [DIRS 170038]); ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2004 [DIRS 169855]); ''Simulation of Net Infiltration for Present-Day and Potential Future Climates'' (BSC 2004 [DIRS 170007]); ''Geologic Framework Model'' (GFM2000) (BSC 2004 [DIRS 170029]). Additionally, this model report incorporates errata of the previous version and closure of the Key Technical Issue agreement TSPAI 3.26 (Section 6.2.2 and Appendix B), and it is revised for improved transparency.

  19. A model of strength

    USGS Publications Warehouse

    Johnson, Douglas H.; Cook, R.D.

    2013-01-01

    In her AAAS News & Notes piece "Can the Southwest manage its thirst?" (26 July, p. 362), K. Wren quotes Ajay Kalra, who advocates a particular method for predicting Colorado River streamflow "because it eschews complex physical climate models for a statistical data-driven modeling approach." A preference for data-driven models may be appropriate in this individual situation, but it is not so generally, Data-driven models often come with a warning against extrapolating beyond the range of the data used to develop the models. When the future is like the past, data-driven models can work well for prediction, but it is easy to over-model local or transient phenomena, often leading to predictive inaccuracy (1). Mechanistic models are built on established knowledge of the process that connects the response variables with the predictors, using information obtained outside of an extant data set. One may shy away from a mechanistic approach when the underlying process is judged to be too complicated, but good predictive models can be constructed with statistical components that account for ingredients missing in the mechanistic analysis. Models with sound mechanistic components are more generally applicable and robust than data-driven models.

  20. Dimers of melampomagnolide B exhibit potent anticancer activity against hematological and solid tumor cells

    PubMed Central

    Janganati, Venumadhav; Ponder, Jessica; Jordan, Craig T.; Borrelli, Michael J.; Penthala, Narsimha Reddy; Crooks, Peter A.

    2016-01-01

    A series of novel carbamate and carbonate dimers of melampomagnolide B (MMB) have been synthesized by reaction of the MMB-triazole carbamate synthon 6 with various terminal diamino and dihydroxy alkanes. The resulting dimeric products 7b, 7c and 7f were selected and evaluated for anticancer activity against a panel of 60 human hematological and solid tumor cell lines. The most active compounds, 7b, 7c and 7f, exhibited GI50 values in the range 250-780 nM against the majority of leukemia cell lines in the tumor cell panel. Specifically, compounds 7b and 7f exhibited potent growth inhibition against non-small cell lung cancer cell lines NCI-H522 (GI50 = 160 nM) and HOP-92 (GI50 = 170 nM), respectively. Also, compound 7f also potently inhibited the growth of melanoma cell lines LOX IMVI, MALME-3M, and UACC-62 (GI50 values = 170, 190 and 190 nM, respectively); breast cancer cell line MDA-MB-468 (GI50 = 190 nM); colon cancer cell line HCT-116 (GI50 = 190 nM); and renal cancer cell line RXF 393 (GI50 = 160 nM). Compound 7f and the simple dicarbonate dimer of MMB (8) showed anticancer activity 300-fold and 1 × 106-fold, respectively, more cytotoxic than 7f and DMAPT at a concentration of 10 μM against rat 9L-SF gliosarcoma cells. The dimeric compounds 7a-7j & 8 were also screened for antileukemic activity against M9-ENL1 acute myelogenous leukemia (AML) cells and primary AML cell specimens. These compounds exhibited two to twelve-fold more potent antileukemic activity (EC50 = 0.5-2.9 μM) against the M9-ENL1 cell line when compared to parthenolide (EC50 = 6.0 μM). The dimeric analogues were also active against the primary AML cell specimens in the nanomolar to lower micromolar range and exhibited two to ten-fold more potent antileukemic activity (EC50 = 0.86-4.2 μM) when compared to parthenolide (EC50 = 2.5-16 μM). Thus, dimer 7f exhibited promising anticancer activity against a variety of both hematological and solid human tumor cell lines, while dimer 8 was

  1. Minor changes in the macrocyclic ligands but major consequences on the efficiency of gold nanoparticles designed for radiosensitization

    NASA Astrophysics Data System (ADS)

    Laurent, G.; Bernhard, C.; Dufort, S.; Jiménez Sánchez, G.; Bazzi, R.; Boschetti, F.; Moreau, M.; Vu, T. H.; Collin, B.; Oudot, A.; Herath, N.; Requardt, H.; Laurent, S.; Vander Elst, L.; Muller, R.; Dutreix, M.; Meyer, M.; Brunotte, F.; Perriat, P.; Lux, F.; Tillement, O.; Le Duc, G.; Denat, F.; Roux, S.

    2016-06-01

    Many studies have been devoted to adapting the design of gold nanoparticles to efficiently exploit their promising capability to enhance the effects of radiotherapy. In particular, the addition of magnetic resonance imaging modality constitutes an attractive strategy for enhancing the selectivity of radiotherapy since it allows the determination of the most suited delay between the injection of nanoparticles and irradiation. This requires the functionalization of the gold core by an organic shell composed of thiolated gadolinium chelates. The risk of nephrogenic systemic fibrosis induced by the release of gadolinium ions should encourage the use of macrocyclic chelators which form highly stable and inert complexes with gadolinium ions. In this context, three types of gold nanoparticles (Au@DTDOTA, Au@TADOTA and Au@TADOTAGA) combining MRI, nuclear imaging and radiosensitization have been developed with different macrocyclic ligands anchored onto the gold cores. Despite similarities in size and organic shell composition, the distribution of gadolinium chelate-coated gold nanoparticles (Au@TADOTA-Gd and Au@TADOTAGA-Gd) in the tumor zone is clearly different. As a result, the intravenous injection of Au@TADOTAGA-Gd prior to the irradiation of 9L gliosarcoma bearing rats leads to the highest increase in lifespan whereas the radiophysical effects of Au@TADOTAGA-Gd and Au@TADOTA-Gd are very similar.Many studies have been devoted to adapting the design of gold nanoparticles to efficiently exploit their promising capability to enhance the effects of radiotherapy. In particular, the addition of magnetic resonance imaging modality constitutes an attractive strategy for enhancing the selectivity of radiotherapy since it allows the determination of the most suited delay between the injection of nanoparticles and irradiation. This requires the functionalization of the gold core by an organic shell composed of thiolated gadolinium chelates. The risk of nephrogenic systemic

  2. Titan atmospheric models intercomparison

    NASA Astrophysics Data System (ADS)

    Pernot, P.

    2008-09-01

    Several groups over the world have developed independently models of the photochemistry of Titan. The Cassini mission reveals daily that the chemical complexity is beyond our expectations e. g. observation of heavy positive and negative ions..., and the models are updated accordingly. At this stage, there is no consensus on the various input parameters, and it becomes increasingly difficult to compare outputs form different models. An ISSI team of experts of those models will be gathered shortly to proceed to an intercomparison, i.e. to assess how the models behave, given identical sets of inputs (collectively defined). Expected discrepancies will have to be elucidated and reduced. This intercomparison will also be an occasion to estimate explicitly the importance of various physicalchemical processes on model predictions versus observations. More robust and validated models are expected from this study for the interpretation of Titanrelated data.

  3. Multiscale Modeling of Recrystallization

    SciTech Connect

    Godfrey, A.W.; Holm, E.A.; Hughes, D.A.; Lesar, R.; Miodownik, M.A.

    1998-12-07

    We propose a multi length scale approach to modeling recrystallization which links a dislocation model, a cell growth model and a macroscopic model. Although this methodology and linking framework will be applied to recrystallization, it is also applicable to other types of phase transformations in bulk and layered materials. Critical processes such as the dislocation structure evolution, nucleation, the evolution of crystal orientations into a preferred texture, and grain size evolution all operate at different length scales. In this paper we focus on incorporating experimental measurements of dislocation substructures, rnisorientation measurements of dislocation boundaries, and dislocation simulations into a mesoscopic model of cell growth. In particular, we show how feeding information from the dislocation model into the cell growth model can create realistic initial microstructure.

  4. Toward Scientific Numerical Modeling

    NASA Technical Reports Server (NTRS)

    Kleb, Bil

    2007-01-01

    Ultimately, scientific numerical models need quantified output uncertainties so that modeling can evolve to better match reality. Documenting model input uncertainties and verifying that numerical models are translated into code correctly, however, are necessary first steps toward that goal. Without known input parameter uncertainties, model sensitivities are all one can determine, and without code verification, output uncertainties are simply not reliable. To address these two shortcomings, two proposals are offered: (1) an unobtrusive mechanism to document input parameter uncertainties in situ and (2) an adaptation of the Scientific Method to numerical model development and deployment. Because these two steps require changes in the computational simulation community to bear fruit, they are presented in terms of the Beckhard-Harris-Gleicher change model.

  5. Foam process models.

    SciTech Connect

    Moffat, Harry K.; Noble, David R.; Baer, Thomas A.; Adolf, Douglas Brian; Rao, Rekha Ranjana; Mondy, Lisa Ann

    2008-09-01

    In this report, we summarize our work on developing a production level foam processing computational model suitable for predicting the self-expansion of foam in complex geometries. The model is based on a finite element representation of the equations of motion, with the movement of the free surface represented using the level set method, and has been implemented in SIERRA/ARIA. An empirically based time- and temperature-dependent density model is used to encapsulate the complex physics of foam nucleation and growth in a numerically tractable model. The change in density with time is at the heart of the foam self-expansion as it creates the motion of the foam. This continuum-level model uses an homogenized description of foam, which does not include the gas explicitly. Results from the model are compared to temperature-instrumented flow visualization experiments giving the location of the foam front as a function of time for our EFAR model system.

  6. Minimal quiver standard model

    SciTech Connect

    Berenstein, David; Pinansky, Samuel

    2007-05-01

    This paper discusses the minimal quiver gauge theory embedding of the standard model that could arise from brane world type string theory constructions. It is based on the low energy effective field theory of D branes in the perturbative regime. The model differs from the standard model by the addition of one extra massive gauge boson, and contains only one additional parameter to the standard model: the mass of this new particle. The coupling of this new particle to the standard model is uniquely determined by input from the standard model and consistency conditions of perturbative string theory. We also study some aspects of the phenomenology of this model and bounds on its possible observation at the Large Hadron Collider.

  7. Modelling structured data with Probabilistic Graphical Models

    NASA Astrophysics Data System (ADS)

    Forbes, F.

    2016-05-01

    Most clustering and classification methods are based on the assumption that the objects to be clustered are independent. However, in more and more modern applications, data are structured in a way that makes this assumption not realistic and potentially misleading. A typical example that can be viewed as a clustering task is image segmentation where the objects are the pixels on a regular grid and depend on neighbouring pixels on this grid. Also, when data are geographically located, it is of interest to cluster data with an underlying dependence structure accounting for some spatial localisation. These spatial interactions can be naturally encoded via a graph not necessarily regular as a grid. Data sets can then be modelled via Markov random fields and mixture models (e.g. the so-called MRF and Hidden MRF). More generally, probabilistic graphical models are tools that can be used to represent and manipulate data in a structured way while modeling uncertainty. This chapter introduces the basic concepts. The two main classes of probabilistic graphical models are considered: Bayesian networks and Markov networks. The key concept of conditional independence and its link to Markov properties is presented. The main problems that can be solved with such tools are described. Some illustrations are given associated with some practical work.

  8. Ventilation Model Report

    SciTech Connect

    V. Chipman; J. Case

    2002-12-20

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. Revision 01 ICN 01 included the results of the unqualified software code MULTIFLUX to assess the influence of moisture on the ventilation efficiency. The purposes of Revision 02 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of

  9. Integrated modeling, data transfers, and physical models

    NASA Astrophysics Data System (ADS)

    Brookshire, D. S.; Chermak, J. M.

    2003-04-01

    Difficulties in developing precise economic policy models for water reallocation and re-regulation in various regional and transboundary settings has been exacerbated not only by climate issues but also by institutional changes reflected in the promulgation of environmental laws, changing regional populations, and an increased focus on water quality standards. As complexity of the water issues have increased, model development at a micro-policy level is necessary to capture difficult institutional nuances and represent the differing national, regional and stakeholders' viewpoints. More often than not, adequate "local" or specific micro-data are not available in all settings for modeling and policy decisions. Economic policy analysis increasingly deals with this problem through data transfers (transferring results from one study area to another) and significant progress has been made in understanding the issue of the dimensionality of data transfers. This paper explores the conceptual and empirical dimensions of data transfers in the context of integrated modeling when the transfers are not only from the behavioral, but also from the hard sciences. We begin by exploring the domain of transfer issues associated with policy analyses that directly consider uncertainty in both the behavioral and physical science settings. We then, through a stylized, hybrid, economic-engineering model of water supply and demand in the Middle Rio Grand Valley of New Mexico (USA) analyze the impacts of; (1) the relative uncertainty of data transfers methods, (2) the uncertainty of climate data and, (3) the uncertainly of population growth. These efforts are motivated by the need to address the relative importance of more accurate data both from the physical sciences as well as from demography and economics for policy analyses. We evaluate the impacts by empirically addressing (within the Middle Rio Grand model): (1) How much does the surrounding uncertainty of the benefit transfer

  10. Phyloclimatic modeling: combining phylogenetics and bioclimatic modeling.

    PubMed

    Yesson, C; Culham, A

    2006-10-01

    We investigate the impact of past climates on plant diversification by tracking the "footprint" of climate change on a phylogenetic tree. Diversity within the cosmopolitan carnivorous plant genus Drosera (Droseraceae) is focused within Mediterranean climate regions. We explore whether this diversity is temporally linked to Mediterranean-type climatic shifts of the mid-Miocene and whether climate preferences are conservative over phylogenetic timescales. Phyloclimatic modeling combines environmental niche (bioclimatic) modeling with phylogenetics in order to study evolutionary patterns in relation to climate change. We present the largest and most complete such example to date using Drosera. The bioclimatic models of extant species demonstrate clear phylogenetic patterns; this is particularly evident for the tuberous sundews from southwestern Australia (subgenus Ergaleium). We employ a method for establishing confidence intervals of node ages on a phylogeny using replicates from a Bayesian phylogenetic analysis. This chronogram shows that many clades, including subgenus Ergaleium and section Bryastrum, diversified during the establishment of the Mediterranean-type climate. Ancestral reconstructions of bioclimatic models demonstrate a pattern of preference for this climate type within these groups. Ancestral bioclimatic models are projected into palaeo-climate reconstructions for the time periods indicated by the chronogram. We present two such examples that each generate plausible estimates of ancestral lineage distribution, which are similar to their current distributions. This is the first study to attempt bioclimatic projections on evolutionary time scales. The sundews appear to have diversified in response to local climate development. Some groups are specialized for Mediterranean climates, others show wide-ranging generalism. This demonstrates that Phyloclimatic modeling could be repeated for other plant groups and is fundamental to the understanding of

  11. Modeling agriculture in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Drewniak, B.; Song, J.; Prell, J.; Kotamarthi, V. R.; Jacob, R.

    2012-12-01

    The potential impact of climate change on agriculture is uncertain. In addition, agriculture could influence above- and below-ground carbon storage. Development of models that represent agriculture is necessary to address these impacts. We have developed an approach to integrate agriculture representations for three crop types - maize, soybean, and spring wheat - into the coupled carbon-nitrogen version of the Community Land Model (CLM), to help address these questions. Here we present the new model, CLM-Crop, validated against observations from two AmeriFlux sites in the United States, planted with maize and soybean. Seasonal carbon fluxes compared well with field measurements. CLM-Crop yields were comparable with observations in some regions, although the generality of the crop model and its lack of technology and irrigation made direct comparison difficult. CLM-Crop was compared against the standard CLM3.5, which simulates crops as grass. The comparison showed improvement in gross primary productivity in regions where crops are the dominant vegetation cover. Crop yields and productivity were negatively correlated with temperature and positively correlated with precipitation. In case studies with the new crop model looking at impacts of residue management and planting date on crop yield, we found that increased residue returned to the litter pool increased crop yield, while reduced residue returns resulted in yield decreases. Using climate controls to signal planting date caused different responses in different crops. Maize and soybean had opposite reactions: when low temperature threshold resulted in early planting, maize responded with a loss of yield, but soybean yields increased. Our improvements in CLM demonstrate a new capability in the model - simulating agriculture in a realistic way, complete with fertilizer and residue management practices. Results are encouraging, with improved representation of human influences on the land surface and the potentially

  12. Loehlin's original models and model contributions.

    PubMed

    McArdle, John J

    2014-11-01

    This is a short story about John C. Loehlin who is now at the University of Texas at Austin, dealing with his original simulation models and developments, which led to his current latent variable models. This talk was initially presented at a special meeting for John before the BGA in Rhode Island, and I was very pleased to contribute. It probably goes without saying, but John helped create this important society, has been a key contributor to this journal for several decades, and he deserves a lot for this leadership. PMID:25367673

  13. Modeling local dependence in longitudinal IRT models.

    PubMed

    Olsbjerg, Maja; Christensen, Karl Bang

    2015-12-01

    Measuring change in a latent variable over time is often done using the same instrument at several time points. This can lead to dependence between responses across time points for the same person yielding within person correlations that are stronger than what can be attributed to the latent variable. Ignoring this can lead to biased estimates of changes in the latent variable. In this paper we propose a method for modeling local dependence in the longitudinal 2PL model. It is based on the concept of item splitting, and makes it possible to correctly estimate change in the latent variable. PMID:25552424

  14. Constitutive models in LAME.

    SciTech Connect

    Hammerand, Daniel Carl; Scherzinger, William Mark

    2007-09-01

    The Library of Advanced Materials for Engineering (LAME) provides a common repository for constitutive models that can be used in computational solid mechanics codes. A number of models including both hypoelastic (rate) and hyperelastic (total strain) constitutive forms have been implemented in LAME. The structure and testing of LAME is described in Scherzinger and Hammerand ([3] and [4]). The purpose of the present report is to describe the material models which have already been implemented into LAME. The descriptions are designed to give useful information to both analysts and code developers. Thus far, 33 non-ITAR/non-CRADA protected material models have been incorporated. These include everything from the simple isotropic linear elastic models to a number of elastic-plastic models for metals to models for honeycomb, foams, potting epoxies and rubber. A complete description of each model is outside the scope of the current report. Rather, the aim here is to delineate the properties, state variables, functions, and methods for each model. However, a brief description of some of the constitutive details is provided for a number of the material models. Where appropriate, the SAND reports available for each model have been cited. Many models have state variable aliases for some or all of their state variables. These alias names can be used for outputting desired quantities. The state variable aliases available for results output have been listed in this report. However, not all models use these aliases. For those models, no state variable names are listed. Nevertheless, the number of state variables employed by each model is always given. Currently, there are four possible functions for a material model. This report lists which of these four methods are employed in each material model. As far as analysts are concerned, this information is included only for the awareness purposes. The analyst can take confidence in the fact that model has been properly implemented

  15. Quantitative Rheological Model Selection

    NASA Astrophysics Data System (ADS)

    Freund, Jonathan; Ewoldt, Randy

    2014-11-01

    The more parameters in a rheological the better it will reproduce available data, though this does not mean that it is necessarily a better justified model. Good fits are only part of model selection. We employ a Bayesian inference approach that quantifies model suitability by balancing closeness to data against both the number of model parameters and their a priori uncertainty. The penalty depends upon prior-to-calibration expectation of the viable range of values that model parameters might take, which we discuss as an essential aspect of the selection criterion. Models that are physically grounded are usually accompanied by tighter physical constraints on their respective parameters. The analysis reflects a basic principle: models grounded in physics can be expected to enjoy greater generality and perform better away from where they are calibrated. In contrast, purely empirical models can provide comparable fits, but the model selection framework penalizes their a priori uncertainty. We demonstrate the approach by selecting the best-justified number of modes in a Multi-mode Maxwell description of PVA-Borax. We also quantify relative merits of the Maxwell model relative to powerlaw fits and purely empirical fits for PVA-Borax, a viscoelastic liquid, and gluten.

  16. Geochemical modeling: a review

    SciTech Connect

    Jenne, E.A.

    1981-06-01

    Two general families of geochemical models presently exist. The ion speciation-solubility group of geochemical models contain submodels to first calculate a distribution of aqueous species and to secondly test the hypothesis that the water is near equilibrium with particular solid phases. These models may or may not calculate the adsorption of dissolved constituents and simulate the dissolution and precipitation (mass transfer) of solid phases. Another family of geochemical models, the reaction path models, simulates the stepwise precipitation of solid phases as a result of reacting specified amounts of water and rock. Reaction path models first perform an aqueous speciation of the dissolved constituents of the water, test solubility hypotheses, then perform the reaction path modeling. Certain improvements in the present versions of these models would enhance their value and usefulness to applications in nuclear-waste isolation, etc. Mass-transfer calculations of limited extent are certainly within the capabilities of state-of-the-art models. However, the reaction path models require an expansion of their thermodynamic data bases and systematic validation before they are generally accepted.

  17. Differential Topic Models.

    PubMed

    Chen, Changyou; Buntine, Wray; Ding, Nan; Xie, Lexing; Du, Lan

    2015-02-01

    In applications we may want to compare different document collections: they could have shared content but also different and unique aspects in particular collections. This task has been called comparative text mining or cross-collection modeling. We present a differential topic model for this application that models both topic differences and similarities. For this we use hierarchical Bayesian nonparametric models. Moreover, we found it was important to properly model power-law phenomena in topic-word distributions and thus we used the full Pitman-Yor process rather than just a Dirichlet process. Furthermore, we propose the transformed Pitman-Yor process (TPYP) to incorporate prior knowledge such as vocabulary variations in different collections into the model. To deal with the non-conjugate issue between model prior and likelihood in the TPYP, we thus propose an efficient sampling algorithm using a data augmentation technique based on the multinomial theorem. Experimental results show the model discovers interesting aspects of different collections. We also show the proposed MCMC based algorithm achieves a dramatically reduced test perplexity compared to some existing topic models. Finally, we show our model outperforms the state-of-the-art for document classification/ideology prediction on a number of text collections. PMID:26353238

  18. The Earth System Model

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  19. Kp forecast models

    NASA Astrophysics Data System (ADS)

    Meng, C.; Wing, S.; Johnson, J. R.; Jen, J.; Carr, S.; Sibeck, D. G.; Costello, K.; Freeman, J.; Balikhin, M.; Bechtold, K.; Vandegriff, J.

    2004-12-01

    Magnetically active times, e.g., Kp > 5, are notoriously difficult to predict, precisely when the predictions are crucial to the space weather users. Taking advantage of the routinely available solar wind measurements at Langrangian point (L1) and nowcast Kps, Kp forecast models based on neural networks were developed with the focus on improving the forecast for active times. In order to satisfy different needs and operational constraints, three models were developed: (1) model that inputs nowcast Kp, solar wind parameters, and predict Kp 1 hr ahead; (2) model with the same input as (1) and predict Kp 4 hr ahead; and (3) model that inputs only solar wind parameters and predict Kp 1 hr ahead (the exact prediction lead time depends on the solar wind speed and the location of the solar wind monitor). Extensive evaluations of these models and other major operational Kp forecast models show that while the new models can predict Kps more accurately for all activities, the most dramatic improvements occur for moderate and active times. The evaluations of the models over 2 solar cycles, 1975-2001, show that solar wind driven models predict Kp more accurately during solar maximum than solar minimum. This result, as well as information dynamics analysis of Kp, suggests that geospace is more dominated by internal dynamics during solar minimum than solar maximum, when it is more directly driven by external inputs, namely solar wind and IMF.

  20. Preliminary DIAL model

    SciTech Connect

    Gentry, S.; Taylor, J.; Stephenson, D.

    1994-06-01

    A unique end-to-end LIDAR sensor model has been developed supporting the concept development stage of the CALIOPE UV DIAL and UV laser-induced-fluorescence (LIF) efforts. The model focuses on preserving the temporal and spectral nature of signals as they pass through the atmosphere, are collected by the optics, detected by the sensor, and processed by the sensor electronics and algorithms. This is done by developing accurate component sub-models with realistic inputs and outputs, as well as internal noise sources and operating parameters. These sub-models are then configured using data-flow diagrams to operate together to reflect the performance of the entire DIAL system. This modeling philosophy allows the developer to have a realistic indication of the nature of signals throughout the system and to design components and processing in a realistic environment. Current component models include atmospheric absorption and scattering losses, plume absorption and scattering losses, background, telescope and optical filter models, PMT (photomultiplier tube) with realistic noise sources, amplifier operation and noise, A/D converter operation, noise and distortion, pulse averaging, and DIAL computation. Preliminary results of the model will be presented indicating the expected model operation depicting the October field test at the NTS spill test facility. Indications will be given concerning near-term upgrades to the model.

  1. Turbulence modeling and experiments

    NASA Technical Reports Server (NTRS)

    Shabbir, Aamir

    1992-01-01

    The best way of verifying turbulence is to do a direct comparison between the various terms and their models. The success of this approach depends upon the availability of the data for the exact correlations (both experimental and DNS). The other approach involves numerically solving the differential equations and then comparing the results with the data. The results of such a computation will depend upon the accuracy of all the modeled terms and constants. Because of this it is sometimes difficult to find the cause of a poor performance by a model. However, such a calculation is still meaningful in other ways as it shows how a complete Reynolds stress model performs. Thirteen homogeneous flows are numerically computed using the second order closure models. We concentrate only on those models which use a linear (or quasi-linear) model for the rapid term. This, therefore, includes the Launder, Reece and Rodi (LRR) model; the isotropization of production (IP) model; and the Speziale, Sarkar, and Gatski (SSG) model. Which of the three models performs better is examined along with what are their weaknesses, if any. The other work reported deal with the experimental balances of the second moment equations for a buoyant plume. Despite the tremendous amount of activity toward the second order closure modeling of turbulence, very little experimental information is available about the budgets of the second moment equations. Part of the problem stems from our inability to measure the pressure correlations. However, if everything else appearing in these equations is known from the experiment, pressure correlations can be obtained as the closing terms. This is the closest we can come to in obtaining these terms from experiment, and despite the measurement errors which might be present in such balances, the resulting information will be extremely useful for the turbulence modelers. The purpose of this part of the work was to provide such balances of the Reynolds stress and heat

  2. [Mathematical models of hysteresis

    SciTech Connect

    Mayergoyz, I.D.

    1991-01-01

    The research described in this proposal is currently being supported by the US Department of Energy under the contract Mathematical Models of Hysteresis''. Thus, before discussing the proposed research in detail, it is worthwhile to describe and summarize the main results achieved in the course of our work under the above contract. Our ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories''. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. Our research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. Our study has by and large been centered around the following topics: various generalizations and extensions of the classical Preisach model, finding of necessary and sufficient conditions for the representation of actual hysteretic nonlinearities by various Preisach type models, solution of identification problems for these models, numerical implementation and experimental testing of Preisach type models. Although the study of Preisach type models has constituted the main direction of the research, some effort has also been made to establish some interesting connections between these models and such topics as: the critical state model for superconducting hysteresis, the classical Stoner-Wohlfarth model of vector magnetic hysteresis, thermal activation type models for viscosity, magnetostrictive hysteresis and neural networks.

  3. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration.

    PubMed

    Chertok, Beata; David, Allan E; Yang, Victor C

    2010-08-01

    This study aimed to examine the applicability of polyethyleneimine (PEI)-modified magnetic nanoparticles (GPEI) as a potential vascular drug/gene carrier to brain tumors. In vitro, GPEI exhibited high cell association and low cell toxicity--properties which are highly desirable for intracellular drug/gene delivery. In addition, a high saturation magnetization of 93 emu/g Fe was expected to facilitate magnetic targeting of GPEI to brain tumor lesions. However, following intravenous administration, GPEI could not be magnetically accumulated in tumors of rats harboring orthotopic 9L-gliosarcomas due to its poor pharmacokinetic properties, reflected by a negligibly low plasma AUC of 12 +/- 3 microg Fe/ml min. To improve "passive" GPEI presentation to brain tumor vasculature for subsequent "active" magnetic capture, we examined the intra-carotid route as an alternative for nanoparticle administration. Intra-carotid administration in conjunction with magnetic targeting resulted in 30-fold (p=0.002) increase in tumor entrapment of GPEI compared to that seen with intravenous administration. In addition, magnetic accumulation of cationic GPEI (zeta-potential = + 37.2 mV) in tumor lesions was 5.2-fold higher (p=0.004) than that achieved with slightly anionic G100 (zeta-potential= -12 mV) following intra-carotid administration, while no significant accumulation difference was detected between the two types of nanoparticles in the contra-lateral brain (p=0.187). These promising results warrant further investigation of GPEI as a potential cell-permeable, magnetically-responsive platform for brain tumor delivery of drugs and genes. PMID:20494439

  4. An update on the clinical trial of BNCT at the BMRR

    SciTech Connect

    Ma, R.; Capala, J.; Chanana, A.D.; Coderre, J.A.; Diaz, A.Z.

    1999-09-01

    Boron neutron capture therapy (BNCT) was proposed more than six decades ago. It is a binary treatment modality that requires selective delivery of a {sup 10}B-labeled compound to a tumor and slow neutron irradiation of the tumor-bearing tissues. In order to improve the penetration of the neutron beam, an epithermal neutron beam was developed at the Brookhaven Medical Research Reactor (BMRR). This epithermal neutron beam can deliver relatively high thermal neutron fluence at depth without severe skin damage. Boronophenylalanine-fructose (BPA-F), a nontoxic boron carrier, was found to preferentially accumulate in tumor cells following intravenous infusion in patients with GBM. In preclinical BNCT studies in rats bearing 9L gliosarcoma, BPA-mediated BNCT was shown to be more efficacious than photon irradiation. In 1994, improvements in the neutron beam and in the understanding of the radiobiology of BPA-mediated BNCT led to the initiation of BNCT trials for human GBM at BMRR using BPA-F and epithermal neutrons. The primary objective of the phase I/II clinical trial of BPA-mediated BNCT at BMRR is to evaluate the safety of the BPA-F-mediated BNCT using epithermal neutrons in patients with GBM at a series of escalating BNCT doses. An incidental objective is to evaluate the therapeutic effectiveness of BNCT at each dose level. For each dose escalation group, the average brain dose (ABD) is escalated, as well as the minimum tumor dose. In summary, the BNCT procedure employed in the phase I/II clinical trial of BPA-F-mediated BNCT for GBM at BNL was found to be safe in all patients. The palliation afforded by a single session of BNCT compares favorably with palliation provided by fractionated photon therapy and adjuvant chemotherapy. If no evidence of radiation-induced brain toxicity is found in the current protocol, BNCT radiation dose will be further escalated.

  5. Indirect radio-chemo-beta therapy: a targeted approach to increase biological efficiency of x-rays based on energy

    NASA Astrophysics Data System (ADS)

    Oktaria, Sianne; Corde, Stéphanie; Lerch, Michael L. F.; Konstantinov, Konstantin; Rosenfeld, Anatoly B.; Tehei, Moeava

    2015-10-01

    Despite the use of multimodal treatments incorporating surgery, chemotherapy and radiotherapy, local control of gliomas remains a major challenge. The potential of a new treatment approach called indirect radio-chemo-beta therapy using the synergy created by combining methotrexate (MTX) with bromodeoxyuridine (BrUdR) under optimum energy x-ray irradiation is assessed. 9L rat gliosarcoma cells pre-treated with 0.01 μM MTX and/or 10 μM BrUdR were irradiated in vitro with 50 kVp, 125 kVp, 250 kVp, 6 MV and 10 MV x-rays. The cytotoxicity was assessed using clonogenic survival as the radiobiological endpoint. The photon energy with maximum effect was determined using radiation sensitization enhancement factors at 10% clonogenic survival (SER10%). The cell cycle distribution was investigated using flow cytometric analysis with propidium iodide staining. Incorporation of BrUdR in the DNA was detected by the fluorescence of labelled anti-BrUdR antibodies. The radiation sensitization enhancement exhibits energy dependence with a maximum of 2.3 at 125 kVp for the combined drug treated cells. At this energy, the shape of the clonogenic survival curve of the pharmacological agents treated cells changes substantially. This change is interpreted as an increased lethality of the local radiation environment and is attributed to supplemented inhibition of DNA repair. Radiation induced chemo-beta therapy was demonstrated in vitro by the targeted activation of combined pharmacological agents with optimized energy tuning of x-ray beams on 9 L cells. Our results show that this is a highly effective form of chemo-radiation therapy.

  6. Polymer-Protein Hydrogel Nanomatrix for Stabilization of Indocyanine Green towards Targeted Fluorescence and Photoacoustic Bio-imaging

    PubMed Central

    Yoon, Hyung Ki; Ray, Aniruddha; Lee, Yong-Eun Koo; Kim, Gwangseong; Wang, Xueding; Kopelman, Raoul

    2013-01-01

    Indocyanine green (ICG) is an optical contrast agent commonly used for a variety of imaging applications. However, certain limitations of the free dye molecule, concerning its low stability, uncontrolled aggregation and lack of targeting ability, have limited its use. Presented here is a method of embedding ICG in a novel polymer/protein hybrid nanocarrier so as to overcome the above inherent drawbacks of the free molecule. The hybrid nanocarrier consists of a non-toxic and biocompatible polyacrylamide nanoparticle (PAA NP) matrix that incorporates human serum albumin (HSA). This nanocarrier was synthesized through pre-conjugation with HSA and amine functionalized monomer, followed by polymerization using biodegradable cross-linkers, in a water-in-oil emulsion. The ICG dye is loaded into the HSA conjugated PAA nanoparticles (HSA–PAA NPs) through post-loading. Compared to the PAA polymer matrix, the presence of hydrophobic pockets in the HSA–PAA NPs further increases the chemical and physical stability of ICG. This is manifested by lowering the chemical degradation rates under physiological conditions, as well as by improving the thermal- and photo-stability of the dye. A targeting moiety, F3–Cys peptide, was attached to the surface of the NPs, for selective delivery to specific cancer cell lines. The suitability of these NPs for optical imaging applications was demonstrated by performing fluorescence imaging on a rat gliosarcoma cell line (9L). We also present the photoacoustic response of the HSA–PAA NPs, used as imaging contrast agents, in the spectral window of 700 nm to 800 nm. PMID:24224083

  7. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration

    PubMed Central

    Chertok, Beata; David, Allan E.; Yang, Victor C.

    2010-01-01

    This study aimed to examine the applicability of polyethyleneimine (PEI)-modified magnetic nanoparticles (GPEI) as a potential vascular drug/gene carrier to brain tumors. In vitro, GPEI exhibited high cell association and low cell toxicity – properties which are highly desirable for intracellular drug/gene delivery. In addition, a high saturation magnetization of 93 emu/g Fe was expected to facilitate magnetic targeting of GPEI to brain tumor lesions. However, following intravenous administration, GPEI could not be magnetically accumulated in tumors of rats harboring orthotopic 9L-gliosarcomas due to its poor pharmacokinetic properties, reflected by a negligibly low plasma AUC of 12 ± 3 μg Fe/ml*min. To improve “passive” GPEI presentation to brain tumor vasculature for subsequent “active” magnetic capture, we examined the intra-carotid route as an alternative for nanoparticle administration. Intra-carotid administration in conjunction with magnetic targeting resulted in 30-fold (p = 0.002) increase in tumor entrapment of GPEI compared to that seen with intravenous administration. In addition, magnetic accumulation of cationic GPEI (ζ-potential = + 37.2 mV) in tumor lesions was 5.2-fold higher (p = 0.004) than that achieved with slightly anionic G100 (ζ-potential = −12 mV) following intra-carotid administration, while no significant accumulation difference was detected between the two types of nanoparticles in the contra-lateral brain (p = 0.187). These promising results warrant further investigation of GPEI as a potential cell-permeable, magnetically-responsive platform for brain tumor delivery of drugs and genes. PMID:20494439

  8. Polymer-Protein Hydrogel Nanomatrix for Stabilization of Indocyanine Green towards Targeted Fluorescence and Photoacoustic Bio-imaging.

    PubMed

    Yoon, Hyung Ki; Ray, Aniruddha; Lee, Yong-Eun Koo; Kim, Gwangseong; Wang, Xueding; Kopelman, Raoul

    2013-11-01

    Indocyanine green (ICG) is an optical contrast agent commonly used for a variety of imaging applications. However, certain limitations of the free dye molecule, concerning its low stability, uncontrolled aggregation and lack of targeting ability, have limited its use. Presented here is a method of embedding ICG in a novel polymer/protein hybrid nanocarrier so as to overcome the above inherent drawbacks of the free molecule. The hybrid nanocarrier consists of a non-toxic and biocompatible polyacrylamide nanoparticle (PAA NP) matrix that incorporates human serum albumin (HSA). This nanocarrier was synthesized through pre-conjugation with HSA and amine functionalized monomer, followed by polymerization using biodegradable cross-linkers, in a water-in-oil emulsion. The ICG dye is loaded into the HSA conjugated PAA nanoparticles (HSA-PAA NPs) through post-loading. Compared to the PAA polymer matrix, the presence of hydrophobic pockets in the HSA-PAA NPs further increases the chemical and physical stability of ICG. This is manifested by lowering the chemical degradation rates under physiological conditions, as well as by improving the thermal- and photo-stability of the dye. A targeting moiety, F3-Cys peptide, was attached to the surface of the NPs, for selective delivery to specific cancer cell lines. The suitability of these NPs for optical imaging applications was demonstrated by performing fluorescence imaging on a rat gliosarcoma cell line (9L). We also present the photoacoustic response of the HSA-PAA NPs, used as imaging contrast agents, in the spectral window of 700 nm to 800 nm. PMID:24224083

  9. A Rasch Hierarchical Measurement Model.

    ERIC Educational Resources Information Center

    Maier, Kimberly S.

    This paper describes a model that integrates an item response theory (IRT) Rasch model and a hierarchical linear model and presents a method of estimating model parameter values that does not rely on large-sample theory and normal approximations. The model resulting from the integration of a hierarchical linear model and the Rasch model allows one…

  10. Generalized Multilevel Structural Equation Modeling

    ERIC Educational Resources Information Center

    Rabe-Hesketh, Sophia; Skrondal, Anders; Pickles, Andrew

    2004-01-01

    A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent…

  11. Modeling Imports in a Keynesian Expenditure Model

    ERIC Educational Resources Information Center

    Findlay, David W.

    2010-01-01

    The author discusses several issues that instructors of introductory macroeconomics courses should consider when introducing imports in the Keynesian expenditure model. The analysis suggests that the specification of the import function should partially, if not completely, be the result of a simple discussion about the spending and import…

  12. Probabilistic Mesomechanical Fatigue Model

    NASA Technical Reports Server (NTRS)

    Tryon, Robert G.

    1997-01-01

    A probabilistic mesomechanical fatigue life model is proposed to link the microstructural material heterogeneities to the statistical scatter in the macrostructural response. The macrostructure is modeled as an ensemble of microelements. Cracks nucleation within the microelements and grow from the microelements to final fracture. Variations of the microelement properties are defined using statistical parameters. A micromechanical slip band decohesion model is used to determine the crack nucleation life and size. A crack tip opening displacement model is used to determine the small crack growth life and size. Paris law is used to determine the long crack growth life. The models are combined in a Monte Carlo simulation to determine the statistical distribution of total fatigue life for the macrostructure. The modeled response is compared to trends in experimental observations from the literature.

  13. Animal models of fibromyalgia

    PubMed Central

    2013-01-01

    Animal models of disease states are valuable tools for developing new treatments and investigating underlying mechanisms. They should mimic the symptoms and pathology of the disease and importantly be predictive of effective treatments. Fibromyalgia is characterized by chronic widespread pain with associated co-morbid symptoms that include fatigue, depression, anxiety and sleep dysfunction. In this review, we present different animal models that mimic the signs and symptoms of fibromyalgia. These models are induced by a wide variety of methods that include repeated muscle insults, depletion of biogenic amines, and stress. All potential models produce widespread and long-lasting hyperalgesia without overt peripheral tissue damage and thus mimic the clinical presentation of fibromyalgia. We describe the methods for induction of the model, pathophysiological mechanisms for each model, and treatment profiles. PMID:24314231

  14. Multiscale Cancer Modeling

    PubMed Central

    Macklin, Paul; Cristini, Vittorio

    2013-01-01

    Simulating cancer behavior across multiple biological scales in space and time, i.e., multiscale cancer modeling, is increasingly being recognized as a powerful tool to refine hypotheses, focus experiments, and enable more accurate predictions. A growing number of examples illustrate the value of this approach in providing quantitative insight on the initiation, progression, and treatment of cancer. In this review, we introduce the most recent and important multiscale cancer modeling works that have successfully established a mechanistic link between different biological scales. Biophysical, biochemical, and biomechanical factors are considered in these models. We also discuss innovative, cutting-edge modeling methods that are moving predictive multiscale cancer modeling toward clinical application. Furthermore, because the development of multiscale cancer models requires a new level of collaboration among scientists from a variety of fields such as biology, medicine, physics, mathematics, engineering, and computer science, an innovative Web-based infrastructure is needed to support this growing community. PMID:21529163

  15. Outside users payload model

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The outside users payload model which is a continuation of documents and replaces and supersedes the July 1984 edition is presented. The time period covered by this model is 1985 through 2000. The following sections are included: (1) definition of the scope of the model; (2) discussion of the methodology used; (3) overview of total demand; (4) summary of the estimated market segmentation by launch vehicle; (5) summary of the estimated market segmentation by user type; (6) details of the STS market forecast; (7) summary of transponder trends; (8) model overview by mission category; and (9) detailed mission models. All known non-NASA, non-DOD reimbursable payloads forecast to be flown by non-Soviet-block countries are included in this model with the exception of Spacelab payloads and small self contained payloads. Certain DOD-sponsored or cosponsored payloads are included if they are reimbursable launches.

  16. Teaching macromolecular modeling.

    PubMed

    Harvey, S C; Tan, R K

    1992-12-01

    Training newcomers to the field of macromolecular modeling is as difficult as is training beginners in x-ray crystallography, nuclear magnetic resonance, or other methods in structural biology. In one or two lectures, the most that can be conveyed is a general sense of the relationship between modeling and other structural methods. If a full semester is available, then students can be taught how molecular structures are built, manipulated, refined, and analyzed on a computer. Here we describe a one-semester modeling course that combines lectures, discussions, and a laboratory using a commercial modeling package. In the laboratory, students carry out prescribed exercises that are coordinated to the lectures, and they complete a term project on a modeling problem of their choice. The goal is to give students an understanding of what kinds of problems can be attacked by molecular modeling methods and which problems are beyond the current capabilities of those methods. PMID:1489919

  17. Extended frequency turbofan model

    NASA Technical Reports Server (NTRS)

    Mason, J. R.; Park, J. W.; Jaekel, R. F.

    1980-01-01

    The fan model was developed using two dimensional modeling techniques to add dynamic radial coupling between the core stream and the bypass stream of the fan. When incorporated into a complete TF-30 engine simulation, the fan model greatly improved compression system frequency response to planar inlet pressure disturbances up to 100 Hz. The improved simulation also matched engine stability limits at 15 Hz, whereas the one dimensional fan model required twice the inlet pressure amplitude to stall the simulation. With verification of the two dimensional fan model, this program formulated a high frequency F-100(3) engine simulation using row by row compression system characteristics. In addition to the F-100(3) remote splitter fan, the program modified the model fan characteristics to simulate a proximate splitter version of the F-100(3) engine.

  18. Cloud model bat algorithm.

    PubMed

    Zhou, Yongquan; Xie, Jian; Li, Liangliang; Ma, Mingzhi

    2014-01-01

    Bat algorithm (BA) is a novel stochastic global optimization algorithm. Cloud model is an effective tool in transforming between qualitative concepts and their quantitative representation. Based on the bat echolocation mechanism and excellent characteristics of cloud model on uncertainty knowledge representation, a new cloud model bat algorithm (CBA) is proposed. This paper focuses on remodeling echolocation model based on living and preying characteristics of bats, utilizing the transformation theory of cloud model to depict the qualitative concept: "bats approach their prey." Furthermore, Lévy flight mode and population information communication mechanism of bats are introduced to balance the advantage between exploration and exploitation. The simulation results show that the cloud model bat algorithm has good performance on functions optimization. PMID:24967425

  19. Energy balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1981-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved, and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  20. Models for poloidal divertors

    SciTech Connect

    Post, D.E.; Heifetz, D.; Petravic, M.

    1982-07-01

    Recent progress in models for poloidal divertors has both helped to explain current divertor experiments and contributed significantly to design efforts for future large tokamak (INTOR, etc.) divertor systems. These models range in sophistication from zero-dimensional treatments and dimensional analysis to two-dimensional models for plasma and neutral particle transport which include a wide variety of atomic and molecular processes as well as detailed treatments of the plasma-wall interaction. This paper presents a brief review of some of these models, describing the physics and approximations involved in each model. We discuss the wide variety of physics necessary for a comprehensive description of poloidal divertors. To illustrate the progress in models for poloidal divertors, we discuss some of our recent work as typical examples of the kinds of calculations being done.

  1. Load Model Data Tool

    SciTech Connect

    David Chassin, Pavel Etingov

    2013-04-30

    The LMDT software automates the process of the load composite model data preparation in the format supported by the major power system software vendors (GE and Siemens). Proper representation of the load composite model in power system dynamic analysis is very important. Software tools for power system simulation like GE PSLF and Siemens PSSE already include algorithms for the load composite modeling. However, these tools require that the input information on composite load to be provided in custom formats. Preparation of this data is time consuming and requires multiple manual operations. The LMDT software enables to automate this process. Software is designed to generate composite load model data. It uses the default load composition data, motor information, and bus information as an input. Software processes the input information and produces load composition model. Generated model can be stored in .dyd format supported by GE PSLF package or .dyr format supported by Siemens PSSE package.

  2. Load Model Data Tool

    2013-04-30

    The LMDT software automates the process of the load composite model data preparation in the format supported by the major power system software vendors (GE and Siemens). Proper representation of the load composite model in power system dynamic analysis is very important. Software tools for power system simulation like GE PSLF and Siemens PSSE already include algorithms for the load composite modeling. However, these tools require that the input information on composite load to bemore » provided in custom formats. Preparation of this data is time consuming and requires multiple manual operations. The LMDT software enables to automate this process. Software is designed to generate composite load model data. It uses the default load composition data, motor information, and bus information as an input. Software processes the input information and produces load composition model. Generated model can be stored in .dyd format supported by GE PSLF package or .dyr format supported by Siemens PSSE package.« less

  3. Liftoff Model for MELCOR.

    SciTech Connect

    Young, Michael F.

    2015-07-01

    Aerosol particles that deposit on surfaces may be subsequently resuspended by air flowing over the surface. A review of models for this liftoff process is presented and compared to available data. Based on this review, a model that agrees with existing data and is readily computed is presented for incorporation into a system level code such as MELCOR. Liftoff Model for MELCOR July 2015 4 This page is intentionally blank

  4. Invariant turbulence models

    NASA Astrophysics Data System (ADS)

    Bihlo, Alexander; Dos Santos Cardoso-Bihlo, Elsa Maria; Nave, Jean-Christophe; Popovych, Roman

    2012-11-01

    Various subgrid-scale closure models break the invariance of the Euler or Navier-Stokes equations and thus violate the geometric structure of these equations. A method is shown which allows one to systematically derive invariant turbulence models starting from non-invariant turbulence models and thus to correct artificial symmetry-breaking. The method is illustrated by finding invariant hyperdiffusion schemes to be applied in the two-dimensional turbulence problem.

  5. Modelling Pediatric Kinematics

    PubMed Central

    van Ratingen, M.R.; Wismans, J.

    1998-01-01

    In the field of pediatric biomechanics, crash dummy and numerical model development suffers from too limited human subject data to directly establish response and injury values. In order to create child crash dummies and numerical models it is necessary to combine the results from real world accident and reconstruction data, scaled adult data and data from animal testing with limited child volunteer data. This paper presents the functional and biomechanical targets for child crash dummies and numerical models.

  6. Acid rain: Mesoscale model

    NASA Technical Reports Server (NTRS)

    Hsu, H. M.

    1980-01-01

    A mesoscale numerical model of the Florida peninsula was formulated and applied to a dry, neutral atmosphere. The prospective use of the STAR-100 computer for the submesoscale model is discussed. The numerical model presented is tested under synoptically undisturbed conditions. Two cases, differing only in the direction of the prevailing geostrophic wind, are examined: a prevailing southwest wind and a prevailing southeast wind, both 6 m/sec at all levels initially.

  7. AREST model description

    SciTech Connect

    Engel, D.W.; McGrail, B.P.

    1993-11-01

    The Office of Civilian Radioactive Waste Management and the Power Reactor and Nuclear Fuel Development Corporation of Japan (PNC) have supported the development of the Analytical Repository Source-Term (AREST) at Pacific Northwest Laboratory. AREST is a computer model developed to evaluate radionuclide release from an underground geologic repository. The AREST code can be used to calculate/estimate the amount and rate of each radionuclide that is released from the engineered barrier system (EBS) of the repository. The EBS is the man-made or disrupted area of the repository. AREST was designed as a system-level models to simulate the behavior of the total repository by combining process-level models for the release from an individual waste package or container. AREST contains primarily analytical models for calculating the release/transport of radionuclides to the lost rock that surrounds each waste package. Analytical models were used because of the small computational overhead that allows all the input parameters to be derived from a statistical distribution. Recently, a one-dimensional numerical model was also incorporated into AREST, to allow for more detailed modeling of the transport process with arbitrary length decay chains. The next step in modeling the EBS, is to develop a model that couples the probabilistic capabilities of AREST with a more detailed process model. This model will need to look at the reactive coupling of the processes that are involved with the release process. Such coupling would include: (1) the dissolution of the waste form, (2) the geochemical modeling of the groundwater, (3) the corrosion of the container overpacking, and (4) the backfill material, just to name a few. Several of these coupled processes are already incorporated in the current version of AREST.

  8. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  9. Computer Models of Proteins

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Dr. Marc Pusey (seated) and Dr. Craig Kundrot use computers to analyze x-ray maps and generate three-dimensional models of protein structures. With this information, scientists at Marshall Space Flight Center can learn how proteins are made and how they work. The computer screen depicts a proten structure as a ball-and-stick model. Other models depict the actual volume occupied by the atoms, or the ribbon-like structures that are crucial to a protein's function.

  10. Rat Endovascular Perforation Model

    PubMed Central

    Sehba, Fatima A.

    2014-01-01

    Experimental animal models of aneurysmal subarachnoid hemorrhage (SAH) have provided a wealth of information on the mechanisms of brain injury. The Rat endovascular perforation model (EVP) replicates the early pathophysiology of SAH and hence is frequently used to study early brain injury following SAH. This paper presents a brief review of historical development of the EVP model, details the technique used to create SAH and considerations necessary to overcome technical challenges. PMID:25213427

  11. The XXC models

    NASA Astrophysics Data System (ADS)

    Maassarani, Z.

    1998-07-01

    A class of recently introduced multi-states XX models is generalized to include a deformation parameter. This corresponds to an additional nearest-neighbor CC interaction in the defining quadratic Hamiltonian. Complete integrability of the one-dimensional models is shown in the context of the quantum inverse scattering method. The new R-matrix is derived. The diagonalization of the XXC models is carried out using the algebraic Bethe ansatz.

  12. HOMER® Micropower Optimization Model

    SciTech Connect

    Lilienthal, P.

    2005-01-01

    NREL has developed the HOMER micropower optimization model. The model can analyze all of the available small power technologies individually and in hybrid configurations to identify least-cost solutions to energy requirements. This capability is valuable to a diverse set of energy professionals and applications. NREL has actively supported its growing user base and developed training programs around the model. These activities are helping to grow the global market for solar technologies.

  13. Solid model design simplification

    SciTech Connect

    Ames, A.L.; Rivera, J.J.; Webb, A.J.; Hensinger, D.M.

    1997-12-01

    This paper documents an investigation of approaches to improving the quality of Pro/Engineer-created solid model data for use by downstream applications. The investigation identified a number of sources of problems caused by deficiencies in Pro/Engineer`s geometric engine, and developed prototype software capable of detecting many of these problems and guiding users towards simplified, useable models. The prototype software was tested using Sandia production solid models, and provided significant leverage in attacking the simplification problem.

  14. Conceptual IT model

    NASA Astrophysics Data System (ADS)

    Arnaoudova, Kristina; Stanchev, Peter

    2015-11-01

    The business processes are the key asset for every organization. The design of the business process models is the foremost concern and target among an organization's functions. Business processes and their proper management are intensely dependent on the performance of software applications and technology solutions. The paper is attempt for definition of new Conceptual model of IT service provider, it could be examined as IT focused Enterprise model, part of Enterprise Architecture (EA) school.

  15. Modeling Frequency Comb Sources

    NASA Astrophysics Data System (ADS)

    Li, Feng; Yuan, Jinhui; Kang, Zhe; Li, Qian; Wai, P. K. A.

    2016-06-01

    Frequency comb sources have revolutionized metrology and spectroscopy and found applications in many fields. Stable, low-cost, high-quality frequency comb sources are important to these applications. Modeling of the frequency comb sources will help the understanding of the operation mechanism and optimization of the design of such sources. In this paper,we review the theoretical models used and recent progress of the modeling of frequency comb sources.

  16. The Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; Freiere deCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2010-01-01

    The goals of the Integrated Medical Model (IMM) are to develop an integrated, quantified, evidence-based decision support tool useful to crew health and mission planners and to help align science, technology, and operational activities intended to optimize crew health, safety, and mission success. Presentation slides address scope and approach, beneficiaries of IMM capabilities, history, risk components, conceptual models, development steps, and the evidence base. Space adaptation syndrome is used to demonstrate the model's capabilities.

  17. Atmospheric prediction model survey

    NASA Technical Reports Server (NTRS)

    Wellck, R. E.

    1976-01-01

    As part of the SEASAT Satellite program of NASA, a survey of representative primitive equation atmospheric prediction models that exist in the world today was written for the Jet Propulsion Laboratory. Seventeen models developed by eleven different operational and research centers throughout the world are included in the survey. The surveys are tutorial in nature describing the features of the various models in a systematic manner.

  18. Multidimensional reactor kinetics modeling

    SciTech Connect

    Diamond, D.J.

    1996-11-01

    There is general agreement that for many light water reactor transient calculations, it is-necessary to use a multidimensional neutron kinetics model coupled to a thermal-hydraulics model for satisfactory results. These calculations are needed for a variety of applications for licensing safety analysis, probabilistic risk assessment (PRA), operational support, and training. The latter three applications have always required best-estimate models, but in the past applications for licensing could be satisfied with relatively simple models. By using more sophisticated best-estimate models, the consequences of these calculations are better understood, and the potential for gaining relief from restrictive operating limits increases. Hence, for all of the aforementioned applications, it is important to have the ability to do best-estimate calculations with multidimensional neutron kinetics models. coupled to sophisticated thermal-hydraulic models. Specifically, this paper reviews the status of multidimensional neutron kinetics modeling which would be used in conjunction with thermal-hydraulic models to do core dynamics calculations, either coupled to a complete NSSS representation or in isolation. In addition, the paper makes recommendations as to what should be the state-of-the-art for the next ten years. The review is an update to a previous review of the status as of ten years ago. The general requirements for a core dynamics code and the modeling available for such a code, discussed in that review, are still applicable. The emphasis in the current review is on the neutron kinetics assuming that the necessary thermal-hydraulic capability exists. In addition to discussing the basic neutron kinetics, discussion is given of related modeling (other than thermal- hydraulics). The capabilities and limitations of current computer codes are presented to understand the state-of-the-art and to help clarify the future direction of model development in this area.

  19. Photovoltaic array performance model.

    SciTech Connect

    Kratochvil, Jay A.; Boyson, William Earl; King, David L.

    2004-08-01

    This document summarizes the equations and applications associated with the photovoltaic array performance model developed at Sandia National Laboratories over the last twelve years. Electrical, thermal, and optical characteristics for photovoltaic modules are included in the model, and the model is designed to use hourly solar resource and meteorological data. The versatility and accuracy of the model has been validated for flat-plate modules (all technologies) and for concentrator modules, as well as for large arrays of modules. Applications include system design and sizing, 'translation' of field performance measurements to standard reporting conditions, system performance optimization, and real-time comparison of measured versus expected system performance.

  20. Coronal Magnetic Field Models

    NASA Astrophysics Data System (ADS)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2015-07-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  1. Computer Modeling and Simulation

    SciTech Connect

    Pronskikh, V. S.

    2014-05-09

    Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes

  2. Multifamily Envelope Leakage Model

    SciTech Connect

    Faakye, O.; Griffiths, D.

    2015-05-01

    The objective of the 2013 research project was to develop the model for predicting fully guarded test results (FGT), using unguarded test data and specific building features of apartment units. The model developed has a coefficient of determination R2 value of 0.53 with a root mean square error (RMSE) of 0.13. Both statistical metrics indicate that the model is relatively strong. When tested against data that was not included in the development of the model, prediction accuracy was within 19%, which is reasonable given that seasonal differences in blower door measurements can vary by as much as 25%.

  3. Model Driven Engineering

    NASA Astrophysics Data System (ADS)

    Gaševic, Dragan; Djuric, Dragan; Devedžic, Vladan

    A relevant initiative from the software engineering community called Model Driven Engineering (MDE) is being developed in parallel with the Semantic Web (Mellor et al. 2003a). The MDE approach to software development suggests that one should first develop a model of the system under study, which is then transformed into the real thing (i.e., an executable software entity). The most important research initiative in this area is the Model Driven Architecture (MDA), which is Model Driven Architecture being developed under the umbrella of the Object Management Group (OMG). This chapter describes the basic concepts of this software engineering effort.

  4. Modeling plant morphogenesis.

    PubMed

    Prusinkiewicz, Przemyslaw; Rolland-Lagan, Anne-Gaëlle

    2006-02-01

    Applications of computational techniques to developmental plant biology include the processing of experimental data and the construction of simulation models. Substantial progress has been made in these areas over the past few years. Complex image-processing techniques are used to integrate sequences of two-dimensional images into three-dimensional descriptions of development over time and to extract useful quantitative traits. Large amounts of data are integrated into empirical models of developing plant organs and entire plants. Mechanistic models link molecular-level phenomena with the resulting phenotypes. Several models shed light on the possible properties of active auxin transport and its role in plant morphogenesis. PMID:16376602

  5. Particle bed reactor modeling

    NASA Technical Reports Server (NTRS)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    1993-01-01

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  6. Theory of Chemical Modeling

    NASA Astrophysics Data System (ADS)

    Kühn, Michael

    In order to deal with the complexity of natural systems simplified models are employed to illustrate the principal and regulatory factors controlling a chemical system. Following the aphorism of Albert Einstein: Everything should be made as simple as possible, but not simpler, models need not to be completely realistic to be useful (Stumm and Morgan 1996), but need to meet a successful balance between realism and practicality. Properly constructed, a model is neither too simplified that it is unrealistic nor too detailed that it cannot be readily evaluated and applied to the problem of interest (Bethke 1996). The results of a model have to be at least partially observable or experimentally verifiable (Zhu and Anderson 2002). Geochemical modeling theories are presented here in a sequence of increasing complexity from geochemical equilibrium models to kinetic, reaction path, and finally coupled transport and reaction models. The description is far from complete but provides the needs for the set up of reactive transport models of hydrothermal systems as done within subsequent chapters. Extensive reviews of geochemical models in general can be found in the literature (Appelo and Postma 1999, Bethke 1996, Melchior and Bassett 1990, Nordstrom and Ball 1984, Paschke and van der Heijde 1996).

  7. Lightning return stroke models

    NASA Technical Reports Server (NTRS)

    Lin, Y. T.; Uman, M. A.; Standler, R. B.

    1980-01-01

    We test the two most commonly used lightning return stroke models, Bruce-Golde and transmission line, against subsequent stroke electric and magnetic field wave forms measured simultaneously at near and distant stations and show that these models are inadequate to describe the experimental data. We then propose a new return stroke model that is physically plausible and that yields good approximations to the measured two-station fields. Using the new model, we derive return stroke charge and current statistics for about 100 subsequent strokes.

  8. Model Error Budgets

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    2008-01-01

    An error budget is a commonly used tool in design of complex aerospace systems. It represents system performance requirements in terms of allowable errors and flows these down through a hierarchical structure to lower assemblies and components. The requirements may simply be 'allocated' based upon heuristics or experience, or they may be designed through use of physics-based models. This paper presents a basis for developing an error budget for models of the system, as opposed to the system itself. The need for model error budgets arises when system models are a principle design agent as is increasingly more common for poorly testable high performance space systems.

  9. DISJUNCTIVE NORMAL SHAPE MODELS

    PubMed Central

    Ramesh, Nisha; Mesadi, Fitsum; Cetin, Mujdat; Tasdizen, Tolga

    2016-01-01

    A novel implicit parametric shape model is proposed for segmentation and analysis of medical images. Functions representing the shape of an object can be approximated as a union of N polytopes. Each polytope is obtained by the intersection of M half-spaces. The shape function can be approximated as a disjunction of conjunctions, using the disjunctive normal form. The shape model is initialized using seed points defined by the user. We define a cost function based on the Chan-Vese energy functional. The model is differentiable, hence, gradient based optimization algorithms are used to find the model parameters. PMID:27403233

  10. Wind power prediction models

    NASA Technical Reports Server (NTRS)

    Levy, R.; Mcginness, H.

    1976-01-01

    Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.

  11. Kp forecast models

    NASA Astrophysics Data System (ADS)

    Wing, S.; Johnson, J. R.; Jen, J.; Meng, C.-I.; Sibeck, D. G.; Bechtold, K.; Freeman, J.; Costello, K.; Balikhin, M.; Takahashi, K.

    2005-04-01

    Magnetically active times, e.g., Kp > 5, are notoriously difficult to predict, precisely the times when such predictions are crucial to the space weather users. Taking advantage of the routinely available solar wind measurements at Langrangian point (L1) and nowcast Kps, Kp forecast models based on neural networks were developed with the focus on improving the forecast for active times. To satisfy different needs and operational constraints, three models were developed: (1) a model that inputs nowcast Kp and solar wind parameters and predicts Kp 1 hour ahead; (2) a model with the same input as model 1 and predicts Kp 4 hour ahead; and (3) a model that inputs only solar wind parameters and predicts Kp 1 hour ahead (the exact prediction lead time depends on the solar wind speed and the location of the solar wind monitor). Extensive evaluations of these models and other major operational Kp forecast models show that while the new models can predict Kps more accurately for all activities, the most dramatic improvements occur for moderate and active times. Information dynamics analysis of Kp suggests that geospace is more dominated by internal dynamics near solar minimum than near solar maximum, when it is more directly driven by external inputs, namely solar wind and interplanetary magnetic field (IMF).

  12. Kp forecast models

    NASA Astrophysics Data System (ADS)

    Wing, S.; Johnson, J. R.; Meng, C.; Takahashi, K.

    2005-05-01

    Magnetically active times, e.g., Kp > 5, are notoriously difficult to predict, precisely the times when such predictions are crucial to the space weather users. Taking advantage of the routinely available solar wind measurements at Langrangian point (L1) and nowcast Kps, Kp forecast models based on neural networks were developed with the focus on improving the forecast for active times. To satisfy different needs and operational constraints, three models were developed: (1) a model that inputs nowcast Kp and solar wind parameters and predicts Kp 1 hr ahead; (2) a model with the same input as model 1 and predicts Kp 4 hr ahead; and (3) a model that inputs only solar wind parameters and predicts Kp 1 hr ahead (the exact prediction lead time depends on the solar wind speed and the location of the solar wind monitor.) Extensive evaluations of these models and other major operational Kp forecast models show that, while the new models can predict Kps more accurately for all activities, the most dramatic improvements occur for moderate and active times. Information dynamics analysis of Kp, suggests that geospace is more dominated by internal dynamics near solar minimum than near solar maximum, when it is more directly driven by external inputs, namely solar wind and interplanetary magnetic field (IMF).

  13. Models of Reality.

    SciTech Connect

    Brown-VanHoozer, S. A.

    1999-06-02

    Conscious awareness of our environment is based on a feedback loop comprised of sensory input transmitted to the central nervous system leading to construction of our ''model of the world,'' (Lewis et al, 1982). We then assimilate the neurological model at the unconscious level into information we can later consciously consider useful in identifying belief systems and behaviors for designing diverse systems. Thus, we can avoid potential problems based on our open-to-error perceived reality of the world. By understanding how our model of reality is organized, we allow ourselves to transcend content and develop insight into how effective choices and belief systems are generated through sensory derived processes. These are the processes which provide the designer the ability to meta model (build a model of a model) the user; consequently, matching the mental model of the user with that of the designer's and, coincidentally, forming rapport between the two participants. The information shared between the participants is neither assumed nor generalized, it is closer to equivocal; thus minimizing error through a sharing of each other's model of reality. How to identify individual mental mechanisms or processes, how to organize the individual strategies of these mechanisms into useful patterns, and to formulate these into models for success and knowledge based outcomes is the subject of the discussion that follows.

  14. The LISA Integrated Model

    NASA Technical Reports Server (NTRS)

    Merkowitz, Stephen M.

    2002-01-01

    The Laser Interferometer Space Antenna (LISA) space mission has unique needs that argue for an aggressive modeling effort. These models ultimately need to forecast and interrelate the behavior of the science input, structure, optics, control systems, and many other factors that affect the performance of the flight hardware. In addition, many components of these integrated models will also be used separately for the evaluation and investigation of design choices, technology development and integration and test. This article presents an overview of the LISA integrated modeling effort.

  15. Radiation Environment Modeling for Spacecraft Design: New Model Developments

    NASA Technical Reports Server (NTRS)

    Barth, Janet; Xapsos, Mike; Lauenstein, Jean-Marie; Ladbury, Ray

    2006-01-01

    A viewgraph presentation on various new space radiation environment models for spacecraft design is described. The topics include: 1) The Space Radiatio Environment; 2) Effects of Space Environments on Systems; 3) Space Radiatio Environment Model Use During Space Mission Development and Operations; 4) Space Radiation Hazards for Humans; 5) "Standard" Space Radiation Environment Models; 6) Concerns about Standard Models; 7) Inadequacies of Current Models; 8) Development of New Models; 9) New Model Developments: Proton Belt Models; 10) Coverage of New Proton Models; 11) Comparison of TPM-1, PSB97, AP-8; 12) New Model Developments: Electron Belt Models; 13) Coverage of New Electron Models; 14) Comparison of "Worst Case" POLE, CRESELE, and FLUMIC Models with the AE-8 Model; 15) New Model Developments: Galactic Cosmic Ray Model; 16) Comparison of NASA, MSU, CIT Models with ACE Instrument Data; 17) New Model Developmemts: Solar Proton Model; 18) Comparison of ESP, JPL91, KIng/Stassinopoulos, and PSYCHIC Models; 19) New Model Developments: Solar Heavy Ion Model; 20) Comparison of CREME96 to CREDO Measurements During 2000 and 2002; 21) PSYCHIC Heavy ion Model; 22) Model Standardization; 23) Working Group Meeting on New Standard Radiation Belt and Space Plasma Models; and 24) Summary.

  16. Groundwater Model Validation

    SciTech Connect

    Ahmed E. Hassan

    2006-01-24

    Models have an inherent uncertainty. The difficulty in fully characterizing the subsurface environment makes uncertainty an integral component of groundwater flow and transport models, which dictates the need for continuous monitoring and improvement. Building and sustaining confidence in closure decisions and monitoring networks based on models of subsurface conditions require developing confidence in the models through an iterative process. The definition of model validation is postulated as a confidence building and long-term iterative process (Hassan, 2004a). Model validation should be viewed as a process not an end result. Following Hassan (2004b), an approach is proposed for the validation process of stochastic groundwater models. The approach is briefly summarized herein and detailed analyses of acceptance criteria for stochastic realizations and of using validation data to reduce input parameter uncertainty are presented and applied to two case studies. During the validation process for stochastic models, a question arises as to the sufficiency of the number of acceptable model realizations (in terms of conformity with validation data). Using a hierarchical approach to make this determination is proposed. This approach is based on computing five measures or metrics and following a decision tree to determine if a sufficient number of realizations attain satisfactory scores regarding how they represent the field data used for calibration (old) and used for validation (new). The first two of these measures are applied to hypothetical scenarios using the first case study and assuming field data consistent with the model or significantly different from the model results. In both cases it is shown how the two measures would lead to the appropriate decision about the model performance. Standard statistical tests are used to evaluate these measures with the results indicating they are appropriate measures for evaluating model realizations. The use of validation

  17. Why business models matter.

    PubMed

    Magretta, Joan

    2002-05-01

    "Business model" was one of the great buzz-words of the Internet boom. A company didn't need a strategy, a special competence, or even any customers--all it needed was a Web-based business model that promised wild profits in some distant, ill-defined future. Many people--investors, entrepreneurs, and executives alike--fell for the fantasy and got burned. And as the inevitable counterreaction played out, the concept of the business model fell out of fashion nearly as quickly as the .com appendage itself. That's a shame. As Joan Magretta explains, a good business model remains essential to every successful organization, whether it's a new venture or an established player. To help managers apply the concept successfully, she defines what a business model is and how it complements a smart competitive strategy. Business models are, at heart, stories that explain how enterprises work. Like a good story, a robust business model contains precisely delineated characters, plausible motivations, and a plot that turns on an insight about value. It answers certain questions: Who is the customer? How do we make money? What underlying economic logic explains how we can deliver value to customers at an appropriate cost? Every viable organization is built on a sound business model, but a business model isn't a strategy, even though many people use the terms interchangeably. Business models describe, as a system, how the pieces of a business fit together. But they don't factor in one critical dimension of performance: competition. That's the job of strategy. Illustrated with examples from companies like American Express, EuroDisney, WalMart, and Dell Computer, this article clarifies the concepts of business models and strategy, which are fundamental to every company's performance. PMID:12024761

  18. Biosphere Process Model Report

    SciTech Connect

    J. Schmitt

    2000-05-25

    To evaluate the postclosure performance of a potential monitored geologic repository at Yucca Mountain, a Total System Performance Assessment (TSPA) will be conducted. Nine Process Model Reports (PMRs), including this document, are being developed to summarize the technical basis for each of the process models supporting the TSPA model. These reports cover the following areas: (1) Integrated Site Model; (2) Unsaturated Zone Flow and Transport; (3) Near Field Environment; (4) Engineered Barrier System Degradation, Flow, and Transport; (5) Waste Package Degradation; (6) Waste Form Degradation; (7) Saturated Zone Flow and Transport; (8) Biosphere; and (9) Disruptive Events. Analysis/Model Reports (AMRs) contain the more detailed technical information used to support TSPA and the PMRs. The AMRs consists of data, analyses, models, software, and supporting documentation that will be used to defend the applicability of each process model for evaluating the postclosure performance of the potential Yucca Mountain repository system. This documentation will ensure the traceability of information from its source through its ultimate use in the TSPA-Site Recommendation (SR) and in the National Environmental Policy Act (NEPA) analysis processes. The objective of the Biosphere PMR is to summarize (1) the development of the biosphere model, and (2) the Biosphere Dose Conversion Factors (BDCFs) developed for use in TSPA. The Biosphere PMR does not present or summarize estimates of potential radiation doses to human receptors. Dose calculations are performed as part of TSPA and will be presented in the TSPA documentation. The biosphere model is a component of the process to evaluate postclosure repository performance and regulatory compliance for a potential monitored geologic repository at Yucca Mountain, Nevada. The biosphere model describes those exposure pathways in the biosphere by which radionuclides released from a potential repository could reach a human receptor

  19. Bayesian Data-Model Fit Assessment for Structural Equation Modeling

    ERIC Educational Resources Information Center

    Levy, Roy

    2011-01-01

    Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…

  20. Spiral model pilot project information model

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The objective was an evaluation of the Spiral Model (SM) development approach to allow NASA Marshall to develop an experience base of that software management methodology. A discussion is presented of the Information Model (IM) that was used as part of the SM methodology. A key concept of the SM is the establishment of an IM to be used by management to track the progress of a project. The IM is the set of metrics that is to be measured and reported throughout the life of the project. These metrics measure both the product and the process to ensure the quality of the final delivery item and to ensure the project met programmatic guidelines. The beauty of the SM, along with the IM, is the ability to measure not only the correctness of the specification and implementation of the requirements but to also obtain a measure of customer satisfaction.

  1. Model Minority Stereotype Reconsidered.

    ERIC Educational Resources Information Center

    Kobayashi, Futoshi

    This paper explores the origin and historical background of the "model minority" stereotype. It includes evidence illustrating problems resulting from the artificial grouping of Asian Americans as one ethnic group and the stereotype's influence on young Asian Americans. In the 1960s, the U.S. media began to portray the model minority through…

  2. Modelling with Magnets.

    ERIC Educational Resources Information Center

    Gabel, Dorothy; And Others

    1992-01-01

    Chemistry can be described on three levels: sensory, molecular, and symbolic. Proposes a particle approach to teaching chemistry that uses magnets to aid students construct molecular models and solve particle problems. Includes examples of Johnstone's model of chemistry phenomena, a problem worksheet, and a student concept mastery sheet. (MDH)

  3. Modeling for Insights

    SciTech Connect

    Jacob J. Jacobson; Gretchen Matthern

    2007-04-01

    System Dynamics is a computer-aided approach to evaluating the interrelationships of different components and activities within complex systems. Recently, System Dynamics models have been developed in areas such as policy design, biological and medical modeling, energy and the environmental analysis, and in various other areas in the natural and social sciences. The real power of System Dynamic modeling is gaining insights into total system behavior as time, and system parameters are adjusted and the effects are visualized in real time. System Dynamic models allow decision makers and stakeholders to explore long-term behavior and performance of complex systems, especially in the context of dynamic processes and changing scenarios without having to wait decades to obtain field data or risk failure if a poor management or design approach is used. The Idaho National Laboratory recently has been developing a System Dynamic model of the US Nuclear Fuel Cycle. The model is intended to be used to identify and understand interactions throughout the entire nuclear fuel cycle and suggest sustainable development strategies. This paper describes the basic framework of the current model and presents examples of useful insights gained from the model thus far with respect to sustainable development of nuclear power.

  4. SUSY GUT Model Building

    SciTech Connect

    Raby, Stuart

    2008-11-23

    In this talk I discuss the evolution of SUSY GUT model building as I see it. Starting with 4 dimensional model building, I then consider orbifold GUTs in 5 dimensions and finally orbifold GUTs embedded into the E{sub 8}xE{sub 8} heterotic string.

  5. Erosion by Wind: Modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Models of wind erosion are used to investigate fundamental processes and guide resource management. Many models are similar in that - temporal variables control soil wind erodibility; erosion begins when friction velocity exceeds a threshold; and transport capacity for saltation/creep is proportion...

  6. Validation of mesoscale models

    NASA Technical Reports Server (NTRS)

    Kuo, Bill; Warner, Tom; Benjamin, Stan; Koch, Steve; Staniforth, Andrew

    1993-01-01

    The topics discussed include the following: verification of cloud prediction from the PSU/NCAR mesoscale model; results form MAPS/NGM verification comparisons and MAPS observation sensitivity tests to ACARS and profiler data; systematic errors and mesoscale verification for a mesoscale model; and the COMPARE Project and the CME.

  7. Models in Biology.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Addresses the most popular models currently being chosen for biological research and the reasons behind those choices. Among the current favorites are zebra fish, fruit flies, mice, monkeys, and yeast. Concludes with a brief examination of the ethical issues involved, and why some animals may need to be replaced in research with model systems.…

  8. Models and Metaphors

    ERIC Educational Resources Information Center

    Ivie, Stanley D.

    2007-01-01

    Humanity delights in spinning conceptual models of the world. These models, in turn, mirror their respective root metaphors. Three root metaphors--spiritual, organic, and mechanical--have dominated western thought. The spiritual metaphor runs from Plato, through Hegel, and connects with Montessori. The organic metaphor extends from Aristotle,…

  9. PHOTOCHEMICAL BOX MODEL (PBM)

    EPA Science Inventory

    This magnetic tape contains the FORTRAN source code, sample input data, and sample output data for the Photochemical Box Model (PBM). The PBM is a simple stationary single-cell model with a variable height lid designed to provide volume-integrated hour averages of O3 and other ph...

  10. Flowfield modeling and diagnostics

    SciTech Connect

    Gupta, A.K.; Lilley, D.G.

    1985-01-01

    This textbook is devoted solely to flowfield modeling and diagnostics; their practical use, recent and current research, and projected developments and trends. It provides an account of the use of a broad range of techniques in industrial and research practice, both with and without combustion. Application ideas are complemented by details about experimental and modeling techniques.

  11. Model Children's Code.

    ERIC Educational Resources Information Center

    New Mexico Univ., Albuquerque. American Indian Law Center.

    The Model Children's Code was developed to provide a legally correct model code that American Indian tribes can use to enact children's codes that fulfill their legal, cultural and economic needs. Code sections cover the court system, jurisdiction, juvenile offender procedures, minor-in-need-of-care, and termination. Almost every Code section is…

  12. Automated Student Model Improvement

    ERIC Educational Resources Information Center

    Koedinger, Kenneth R.; McLaughlin, Elizabeth A.; Stamper, John C.

    2012-01-01

    Student modeling plays a critical role in developing and improving instruction and instructional technologies. We present a technique for automated improvement of student models that leverages the DataShop repository, crowd sourcing, and a version of the Learning Factors Analysis algorithm. We demonstrate this method on eleven educational…

  13. Updating Situation Models

    ERIC Educational Resources Information Center

    Zwaan, Rolf A.; Madden, Carol J.

    2004-01-01

    The authors examined how situation models are updated during text comprehension. If comprehenders keep track of the evolving situation, they should update their models such that the most current information, the here and now, is more available than outdated information. Contrary to this updating hypothesis, E. J. O'Brien, M. L. Rizzella, J. E.…

  14. Canister Model, Systems Analysis

    1993-09-29

    This packges provides a computer simulation of a systems model for packaging nuclear waste and spent nuclear fuel in canisters. The canister model calculates overall programmatic cost, number of canisters, and fuel and waste inventories for the Idaho Chemical Processing Plant (other initial conditions can be entered).

  15. Acid rain: Microphysical model

    NASA Technical Reports Server (NTRS)

    Dingle, A. N.

    1980-01-01

    A microphysical model was used to simulate the case of a ground cloud without dilution by entrainment and without precipitation. The numerical integration techniques of the model are presented. The droplet size spectra versus time and the droplet molalities for each value of time are discussed.

  16. Model Cities Training Program.

    ERIC Educational Resources Information Center

    Tennessee Univ., Chattanooga.

    The Model Cities Training Program, the first in the country, is a 10-session course to be conducted in seminar form under the direction of the University of Tennessee at Chattanooga. The objective is to enable the 50 members of the Community Development Administration Board of Directors to: acquire knowledge of the structure of the Model Cities…

  17. Connectionist Modelling and Education.

    ERIC Educational Resources Information Center

    Evers, Colin W.

    2000-01-01

    Provides a detailed, technical introduction to the state of cognitive science research, in particular the rise of the "new cognitive science," especially artificial neural net (ANN) models. Explains one influential ANN model and describes diverse applications and their implications for education. (EV)

  18. Animal models for osteoporosis.

    PubMed

    Turner, R T; Maran, A; Lotinun, S; Hefferan, T; Evans, G L; Zhang, M; Sibonga, J D

    2001-01-01

    Animal models will continue to be important tools in the quest to understand the contribution of specific genes to establishment of peak bone mass and optimal bone architecture, as well as the genetic basis for a predisposition toward accelerated bone loss in the presence of co-morbidity factors such as estrogen deficiency. Existing animal models will continue to be useful for modeling changes in bone metabolism and architecture induced by well-defined local and systemic factors. However, there is a critical unfulfilled need to develop and validate better animal models to allow fruitful investigation of the interaction of the multitude of factors which precipitate senile osteoporosis. Well characterized and validated animal models that can be recommended for investigation of the etiology, prevention and treatment of several forms of osteoporosis have been listed in Table 1. Also listed are models which are provisionally recommended. These latter models have potential but are inadequately characterized, deviate significantly from the human response, require careful choice of strain or age, or are not practical for most investigators to adopt. It cannot be stressed strongly enough that the enormous potential of laboratory animals as models for osteoporosis can only be realized if great care is taken in the choice of an appropriate species, age, experimental design, and measurements. Poor choices will results in misinterpretation of results which ultimately can bring harm to patients who suffer from osteoporosis by delaying advancement of knowledge. PMID:11704974

  19. Solar Atmosphere Models

    NASA Astrophysics Data System (ADS)

    Rutten, R. J.

    2002-12-01

    This contribution honoring Kees de Jager's 80th birthday is a review of "one-dimensional" solar atmosphere modeling that followed on the initial "Utrecht Reference Photosphere" of Heintze, Hubenet & de Jager (1964). My starting point is the Bilderberg conference, convened by de Jager in 1967 at the time when NLTE radiative transfer theory became mature. The resulting Bilderberg model was quickly superseded by the HSRA and later by the VAL-FAL sequence of increasingly sophisticated NLTE continuum-fitting models from Harvard. They became the "standard models" of solar atmosphere physics, but Holweger's relatively simple LTE line-fitting model still persists as a favorite of solar abundance determiners. After a brief model inventory I discuss subsequent work on the major modeling issues (coherency, NLTE, dynamics) listed as to-do items by de Jager in 1968. The present conclusion is that one-dimensional modeling recovers Schwarzschild's (1906) finding that the lower solar atmosphere is grosso modo in radiative equilibrium. This is a boon for applications regarding the solar atmosphere as one-dimensional stellar example - but the real sun, including all the intricate phenomena that now constitute the mainstay of solar physics, is vastly more interesting.

  20. Modelling Hadronic Matter

    NASA Astrophysics Data System (ADS)

    Menezes, Débora P.

    2016-04-01

    Hadron physics stands somewhere in the diffuse intersection between nuclear and particle physics and relies largely on the use of models. Historically, around 1930, the first nuclear physics models known as the liquid drop model and the semi-empirical mass formula established the grounds for the study of nuclei properties and nuclear structure. These two models are parameter dependent. Nowadays, around 500 hundred non-relativistic (Skyrme-type) and relativistic models are available in the literature and largely used and the vast majority are parameter dependent models. In this review I discuss some of the shortcomings of using non-relativistic models and the advantages of using relativistic ones when applying them to describe hadronic matter. I also show possible applications of relativistic models to physical situations that cover part of the QCD phase diagram: I mention how the description of compact objects can be done, how heavy-ion collisions can be investigated and particle fractions obtained and show the relation between liquid-gas phase transitions and the pasta phase.

  1. Pathological Gambling: Psychiatric Models

    ERIC Educational Resources Information Center

    Westphal, James R.

    2008-01-01

    Three psychiatric conceptual models: addictive, obsessive-compulsive spectrum and mood spectrum disorder have been proposed for pathological gambling. The objectives of this paper are to (1) evaluate the evidence base from the most recent reviews of each model, (2) update the evidence through 2007 and (3) summarize the status of the evidence for…

  2. Reliability model generator specification

    NASA Technical Reports Server (NTRS)

    Cohen, Gerald C.; Mccann, Catherine

    1990-01-01

    The Reliability Model Generator (RMG), a program which produces reliability models from block diagrams for ASSIST, the interface for the reliability evaluation tool SURE is described. An account is given of motivation for RMG and the implemented algorithms are discussed. The appendices contain the algorithms and two detailed traces of examples.

  3. STREAM WATER QUALITY MODEL

    EPA Science Inventory

    QUAL2K (or Q2K) is a river and stream water quality model that is intended to represent a modernized version of the QUAL2E (or Q2E) model (Brown and Barnwell 1987). Q2K is similar to Q2E in the following respects:

    • One dimensional. The channel is well-mixed vertically a...

    • Fictional models in science

      NASA Astrophysics Data System (ADS)

      Morrison, Margaret

      2014-02-01

      When James Clerk Maxwell set out his famous equations 150 years ago, his model of electromagnetism included a piece of pure fiction: an invisible, all-pervasive "aether" made up of elastic vortices separated by electric charges. Margaret Morrison explores how this and other "fictional" models shape science.

    • Composite Load Model Evaluation

      SciTech Connect

      Lu, Ning; Qiao, Hong

      2007-09-30

      The WECC load modeling task force has dedicated its effort in the past few years to develop a composite load model that can represent behaviors of different end-user components. The modeling structure of the composite load model is recommended by the WECC load modeling task force. GE Energy has implemented this composite load model with a new function CMPLDW in its power system simulation software package, PSLF. For the last several years, Bonneville Power Administration (BPA) has taken the lead and collaborated with GE Energy to develop the new composite load model. Pacific Northwest National Laboratory (PNNL) and BPA joint force and conducted the evaluation of the CMPLDW and test its parameter settings to make sure that: • the model initializes properly, • all the parameter settings are functioning, and • the simulation results are as expected. The PNNL effort focused on testing the CMPLDW in a 4-bus system. An exhaustive testing on each parameter setting has been performed to guarantee each setting works. This report is a summary of the PNNL testing results and conclusions.

    • HYBRID RECEPTOR MODELS

      EPA Science Inventory

      A hybrid receptor model is a specified mathematical procedure which uses not only the ambient species concentration measurements that form the input data for a pure receptor model, but in addition source emission rates or atmospheric dispersion or transformation information chara...

    • The Leadership Training Model.

      ERIC Educational Resources Information Center

      Parker, Jeanette P.

      1983-01-01

      The article proposes a model for developing leadership among gifted students. Four components of the model are identified and sample subskills described: cognition (exploration, research); problem solving (incubation, creative thinking); interpersonal communication (self realization, cooperation, conflict resolution); and decision making skills…

    • Animal models for osteoporosis

      NASA Technical Reports Server (NTRS)

      Turner, R. T.; Maran, A.; Lotinun, S.; Hefferan, T.; Evans, G. L.; Zhang, M.; Sibonga, J. D.

      2001-01-01

      Animal models will continue to be important tools in the quest to understand the contribution of specific genes to establishment of peak bone mass and optimal bone architecture, as well as the genetic basis for a predisposition toward accelerated bone loss in the presence of co-morbidity factors such as estrogen deficiency. Existing animal models will continue to be useful for modeling changes in bone metabolism and architecture induced by well-defined local and systemic factors. However, there is a critical unfulfilled need to develop and validate better animal models to allow fruitful investigation of the interaction of the multitude of factors which precipitate senile osteoporosis. Well characterized and validated animal models that can be recommended for investigation of the etiology, prevention and treatment of several forms of osteoporosis have been listed in Table 1. Also listed are models which are provisionally recommended. These latter models have potential but are inadequately characterized, deviate significantly from the human response, require careful choice of strain or age, or are not practical for most investigators to adopt. It cannot be stressed strongly enough that the enormous potential of laboratory animals as models for osteoporosis can only be realized if great care is taken in the choice of an appropriate species, age, experimental design, and measurements. Poor choices will results in misinterpretation of results which ultimately can bring harm to patients who suffer from osteoporosis by delaying advancement of knowledge.

    • Structural Equation Model Trees

      ERIC Educational Resources Information Center

      Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

      2013-01-01

      In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

    • Modeling Water Filtration

      ERIC Educational Resources Information Center

      Parks, Melissa

      2014-01-01

      Model-eliciting activities (MEAs) are not new to those in engineering or mathematics, but they were new to Melissa Parks. Model-eliciting activities are simulated real-world problems that integrate engineering, mathematical, and scientific thinking as students find solutions for specific scenarios. During this process, students generate solutions…

    • Computational Modeling of Tires

      NASA Technical Reports Server (NTRS)

      Noor, Ahmed K. (Compiler); Tanner, John A. (Compiler)

      1995-01-01

      This document contains presentations and discussions from the joint UVA/NASA Workshop on Computational Modeling of Tires. The workshop attendees represented NASA, the Army and Air force, tire companies, commercial software developers, and academia. The workshop objectives were to assess the state of technology in the computational modeling of tires and to provide guidelines for future research.

    • AGRICULTURAL SIMULATION MODEL (AGSIM)

      EPA Science Inventory

      AGSIM is a large-scale econometric simulation model of regional crop and national livestock production in the United States. The model was initially developed to analyze the aggregate economic impacts of a wide variety issues facing agriculture, such as technological change, pest...

    • Generalized gamma frailty model.

      PubMed

      Balakrishnan, N; Peng, Yingwei

      2006-08-30

      In this article, we present a frailty model using the generalized gamma distribution as the frailty distribution. It is a power generalization of the popular gamma frailty model. It also includes other frailty models such as the lognormal and Weibull frailty models as special cases. The flexibility of this frailty distribution makes it possible to detect a complex frailty distribution structure which may otherwise be missed. Due to the intractable integrals in the likelihood function and its derivatives, we propose to approximate the integrals either by Monte Carlo simulation or by a quadrature method and then determine the maximum likelihood estimates of the parameters in the model. We explore the properties of the proposed frailty model and the computation method through a simulation study. The study shows that the proposed model can potentially reduce errors in the estimation, and that it provides a viable alternative for correlated data. The merits of proposed model are demonstrated in analysing the effects of sublingual nitroglycerin and oral isosorbide dinitrate on angina pectoris of coronary heart disease patients based on the data set in Danahy et al. (sustained hemodynamic and antianginal effect of high dose oral isosorbide dinitrate. Circulation 1977; 55:381-387). PMID:16220516

    • Humane Education: A Model

      ERIC Educational Resources Information Center

      Dobson, Russell; And Others

      1976-01-01

      A two part hypothetical model of education incorporating basic beliefs of man with educational practice is presented for consideration by educators. Basic elements of the model include purpose, experience, formative evaluation, philosophy, knowledge, learning, goals, curriculum, instruction, and parental involvement. Journal may be ordered from…

    • Stereolithography models. Final report

      SciTech Connect

      Smith, R.E.

      1995-03-01

      This report describes the first stereolithographic models made, which proved in a new release of ProEngineer software (Parametric Technologies, or PTC) and 3D Systems (Valencia, California) software for the SLA 250 machine. They are a model of benzene and the {alpha}-carbon backbone of the variable region of an antibody.

    • Metaphorical Models in Chemistry.

      ERIC Educational Resources Information Center

      Rosenfeld, Stuart; Bhusan, Nalini

      1995-01-01

      What happens when students of chemistry fail to recognize the metaphorical status of certain models and interpret them literally? Suggests that such failures lead students to form perceptions of phenomena that can be misleading. Argues that the key to making good use of metaphorical models is a recognition of their metaphorical status. Examines…

    • Modeling and simulation

      SciTech Connect

      Hanham, R.; Vogt, W.G.; Mickle, M.H.

      1986-01-01

      This book presents the papers given at a conference on computerized simulation. Topics considered at the conference included expert systems, modeling in electric power systems, power systems operating strategies, energy analysis, a linear programming approach to optimum load shedding in transmission systems, econometrics, simulation in natural gas engineering, solar energy studies, artificial intelligence, vision systems, hydrology, multiprocessors, and flow models.

    • Postinstability models in elasticity

      NASA Technical Reports Server (NTRS)

      Zak, M.

      1984-01-01

      It is demonstrated that the instability caused by the failure of hyperbolicity in elasticity and associated with the problem of unpredictability in classical mechanics expresses the incompleteness of the original model of an elastic medium. The instability as well as the ill-posedness of the Cauchy problem are eliminated by reformulating the original model.

    • Foundations of Biomolecular Modeling

      PubMed Central

      Jorgensen, William L.

      2014-01-01

      The 2013 Nobel Prize in Chemistry has been awarded to Martin Kaplus, Michael Levitt, and Arieh Warshel for “Development of Multiscale Models for Complex Chemical Systems”. The honored work from the 1970s has provided a foundation for the widespread activities today in modeling organic and biomolecular systems. PMID:24315087

    • Model State Efforts.

      ERIC Educational Resources Information Center

      Morgan, Gwen

      Models of state involvement in training child care providers are briefly discussed and the employers' role in training is explored. Six criteria for states that are taken as models are identified, and four are described. Various state activities are described for each criterion. It is noted that little is known about employer and other private…

  1. Mathematical models of hysteresis

    SciTech Connect

    1998-08-01

    The ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema (not the entire input variations) leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. The origin of such tools can be traced back to the landmark paper of Preisach. Their research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. During the past four years, the study has been by and large centered around the following topics: (1) further development of Scalar and vector Preisach-type models of hysteresis; (2) experimental testing of Preisach-type models of hysteresis; (3) development of new models for viscosity (aftereffect) in hysteretic systems; (4) development of mathematical models for superconducting hysteresis in the case of gradual resistive transitions; (5) software implementation of Preisach-type models of hysteresis; and (6) development of new ideas which have emerged in the course of the research work. The author briefly describes the main scientific results obtained in the areas outlined above.

  2. Model-Based Reasoning

    ERIC Educational Resources Information Center

    Ifenthaler, Dirk; Seel, Norbert M.

    2013-01-01

    In this paper, there will be a particular focus on mental models and their application to inductive reasoning within the realm of instruction. A basic assumption of this study is the observation that the construction of mental models and related reasoning is a slowly developing capability of cognitive systems that emerges effectively with proper…

  3. A night sky model.

    NASA Astrophysics Data System (ADS)

    Erpylev, N. P.; Smirnov, M. A.; Bagrov, A. V.

    A night sky model is proposed. It includes different components of light polution, such as solar twilight, moon scattered light, zodiacal light, Milky Way, air glow and artificial light pollution. The model is designed for calculating the efficiency of astronomical installations.

  4. Modeling HIV Cure

    NASA Astrophysics Data System (ADS)

    Perelson, Alan; Conway, Jessica; Cao, Youfang

    A large effort is being made to find a means to cure HIV infection. I will present a dynamical model of post-treatment control (PTC) or ``functional cure'' of HIV-infection. Some patients treated with suppressive antiviral therapy have been taken off of therapy and then spontaneously control HIV infection such that the amount of virus in the circulation is maintained undetectable by clinical assays for years. The model explains PTC occurring in some patients by having a parameter regime in which the model exhibits bistability, with both a low and high steady state viral load being stable. The model makes a number of predictions about how to attain the low PTC steady state. Bistability in this model depends upon the immune response becoming exhausted when over stimulated. I will also present a generalization of the model in which immunotherapy can be used to reverse immune exhaustion and compare model predictions with experiments in SIV infected macaques given immunotherapy and then taken off of antiretroviral therapy. Lastly, if time permits, I will discuss one of the hurdles to true HIV eradication, latently infected cells, and present clinical trial data and a new model addressing pharmacological means of flushing out the latent reservoir. Supported by NIH Grants AI028433 and OD011095.

  5. Prewhirl Jet Model

    NASA Technical Reports Server (NTRS)

    Meng, S. Y.; Jensen, M.; Jackson, E. D.

    1985-01-01

    Simple accurate model of centrifugal or rocket engine pumps provides information necessary to design inducer backflow deflector, backflow eliminator and prewhirl jet in jet mixing zones. Jet design based on this model shows improvement in inducer suction performance and reduced cavitation damage.

  6. MULTIMEDIA EXPOSURE MODELING

    EPA Science Inventory

    This task addresses a number of issues that arise in multimedia modeling with an emphasis on interactions among the atmosphere and multiple other environmental media. Approaches for working with multiple types of models and the data sets are being developed. Proper software tool...

  7. Using Models Effectively

    ERIC Educational Resources Information Center

    Eichinger, John

    2005-01-01

    Models are crucial to science teaching and learning, yet they can create unforeseen and overlooked challenges for students and teachers. For example, consider the time-tested clay volcano that relies on a vinegar and-baking-soda mixture for its "eruption." Based on a classroom demonstration of that geologic model, elementary students may interpret…

  8. SOSS ICN Model Validation

    NASA Technical Reports Server (NTRS)

    Zhu, Zhifan

    2016-01-01

    Under the NASA-KAIA-KARI ATM research collaboration agreement, SOSS ICN Model has been developed for Incheon International Airport. This presentation describes the model validation work in the project. The presentation will show the results and analysis of the validation.

  9. MODELING THE AMES TEST

    EPA Science Inventory

    Despite the value and widespread use of the Ames test, little attention has been focused on standardizing quantitative methods of analyzing these data. In this paper, a realistic and statistically tractable model is developed for the evaluation of Ames-type data. The model assume...

  10. VENTURI SCRUBBER PERFORMANCE MODEL

    EPA Science Inventory

    The paper presents a new model for predicting the particle collection performance of venturi scrubbers. It assumes that particles are collected by atomized liquid only in the throat section. The particle collection mechanism is inertial impaction, and the model uses a single drop...

  11. Modeling Carbon Exchange

    NASA Technical Reports Server (NTRS)

    Sellers, Piers

    2012-01-01

    Model results will be reviewed to assess different methods for bounding the terrestrial role in the global carbon cycle. It is proposed that a series of climate model runs could be scoped that would tighten the limits on the "missing sink" of terrestrial carbon and could also direct future satellite image analyses to search for its geographical location and understand its seasonal dynamics.

  12. Warm Inflation Model Building

    NASA Astrophysics Data System (ADS)

    Bastero-Gil, Mar; Berera, Arjun

    We review the main aspects of the warm inflation scenario, focusing on the inflationary dynamics and the predictions related to the primordial spectrum of perturbations, to be compared with the recent cosmological observations. We study in detail three different classes of inflationary models, chaotic, hybrid models and hilltop models, and discuss their embedding into supersymmetric models and the consequences for model building of the warm inflationary dynamics based on first principles calculations. Due to the extra friction term introduced in the inflaton background evolution generated by the dissipative dynamics, inflation can take place generically for smaller values of the field, and larger values of couplings and masses. When the dissipative dynamics dominates over the expansion, in the so-called strong dissipative regime, inflation proceeds with sub-Planckian inflaton values. Models can be naturally embedded into a supergravity framework, with SUGRA corrections suppressed by the Planck mass now under control, for a larger class of Kähler potentials. In particular, this provides a simpler solution to the "eta" problem in supersymmetric hybrid inflation, without restricting the Kähler potentials compatible with inflation. For chaotic models dissipation leads to a smaller prediction for the tensor-to-scalar ratio and a less tilted spectrum when compared to the cold inflation scenario. We find in particular that a small component of dissipation renders the quartic model now consistent with the current CMB data.

  13. Modeling and Interrogative Strategies.

    ERIC Educational Resources Information Center

    Denney, Douglas R.

    Three studies to determine the effects of adult models on interrogative strategies of children (ages 6-11) are reviewed. Two issues are analyzed: (1) the comparative effectiveness of various types of modeling procedures for changing rule-governed behaviors, and (2) the interaction between observational learning and the developmental level of the…

  14. Modelling University Governance

    ERIC Educational Resources Information Center

    Trakman, Leon

    2008-01-01

    Twentieth century governance models used in public universities are subject to increasing doubt across the English-speaking world. Governments question if public universities are being efficiently governed; if their boards of trustees are adequately fulfilling their trust obligations towards multiple stakeholders; and if collegial models of…

  15. Dynamical models of happiness.

    PubMed

    Sprott, J C

    2005-01-01

    A sequence of models for the time evolution of one's happiness in response to external events is described. These models with added nonlinearities can produce stable oscillations and chaos even without external events. Potential implications for psychotherapy and a personal approach to life are discussed. PMID:15629066

  16. Evaluating Causal Models.

    ERIC Educational Resources Information Center

    Watt, James H., Jr.

    Pointing out that linear causal models can organize the interrelationships of a large number of variables, this paper contends that such models are particularly useful to mass communication research, which must by necessity deal with complex systems of variables. The paper first outlines briefly the philosophical requirements for establishing a…

  17. Ionospheric modelling for navigation

    NASA Astrophysics Data System (ADS)

    Aragon Angel, M. A.

    Signals transmitted to and from satellites for communication and navigation purposes must pass through the ionosphere Ionospheric irregularities most common at equatorial latitudes although they could occur anywhere can have a major impact on system performance and reliability and commercial navigation service satellite-based providers need to account for their effects For a GNSS single-frequency receiver the Slant Total Electron Content STEC must be known by the user through broadcast corrections In this context there are several sets of broadcast parameters that can be defined to take into account this ionospheric term The chosen model to generate the ionospheric correction coefficients for the present study is the NeQuick model although with a number of adaptations intended to improve effective ionospheric effect modelling performances The aim of this study is to describe a possible adaptation to the NeQuick model for real time purposes and suitable for single frequency users Therefore it will be necessary to determine the performance of this modified NeQuick model in correcting the ionospheric delay In order to generate the ionospheric corrections for single frequency receivers using the NeQuick model a certain approach should be followed to adapt the performance of NeQuick since this model was originally developed to provide TEC using averaged monthly information of the solar activity and not daily one Thus to use NeQuick for real time applications as an ionospheric broadcasted model such as Klobuchar solar daily information at the user point

  18. A Model for Implementation.

    ERIC Educational Resources Information Center

    O'Connor-Petruso, Sharon Anne

    2003-01-01

    Describes the Constructural Multi-Modalities Model for MST (math, science, and technology) Inquiry Units. The MST Model uses an interdisciplinary and constructivist approach and allows teachers to create lesson plans that: integrate MST in tandem; adhere to local, state, and national standards; and actively engage students' differentiated learning…

  19. Dual-Schemata Model

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tadahiro; Sawaragi, Tetsuo

    In this paper, a new machine-learning method, called Dual-Schemata model, is presented. Dual-Schemata model is a kind of self-organizational machine learning methods for an autonomous robot interacting with an unknown dynamical environment. This is based on Piaget's Schema model, that is a classical psychological model to explain memory and cognitive development of human beings. Our Dual-Schemata model is developed as a computational model of Piaget's Schema model, especially focusing on sensori-motor developing period. This developmental process is characterized by a couple of two mutually-interacting dynamics; one is a dynamics formed by assimilation and accommodation, and the other dynamics is formed by equilibration and differentiation. By these dynamics schema system enables an agent to act well in a real world. This schema's differentiation process corresponds to a symbol formation process occurring within an autonomous agent when it interacts with an unknown, dynamically changing environment. Experiment results obtained from an autonomous facial robot in which our model is embedded are presented; an autonomous facial robot becomes able to chase a ball moving in various ways without any rewards nor teaching signals from outside. Moreover, emergence of concepts on the target movements within a robot is shown and discussed in terms of fuzzy logics on set-subset inclusive relationships.

  20. THE AQUATOX MODEL

    EPA Science Inventory

    This lecture will present AQUATOX, an aquatic ecosystem simulation model developed by Dr. Dick Park and supported by the U.S. EPA. The AQUATOX model predicts the fate of various pollutants, such as nutrients and organic chemicals, and their effects on the ecosystem, including fi...

  1. Modeling Antibody Diversity.

    ERIC Educational Resources Information Center

    Baker, William P.; Moore, Cathy Ronstadt

    1998-01-01

    Understanding antibody structure and function is difficult for many students. The rearrangement of constant and variable regions during antibody differentiation can be effectively simulated using a paper model. Describes a hands-on laboratory exercise which allows students to model antibody diversity using readily available resources. (PVD)

  2. String Model Building

    SciTech Connect

    Raby, Stuart

    2010-02-10

    In this talk I review some recent progress in heterotic and F theory model building. I then consider work in progress attempting to find the F theory dual to a class of heterotic orbifold models which come quite close to the MSSM.

  3. Earth and ocean modeling

    NASA Technical Reports Server (NTRS)

    Knezovich, F. M.

    1976-01-01

    A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.

  4. ATMOSPHERIC MODEL DEVELOPMENT

    EPA Science Inventory

    This task provides credible state of the art air quality models and guidance for use in implementation of National Ambient Air Quality Standards for ozone and PM. This research effort is to develop and improve air quality models, such as the Community Multiscale Air Quality (CMA...

  5. Bitzer's Model Reconstructed.

    ERIC Educational Resources Information Center

    Lybarger, Scott; Smith, Craig R.

    1996-01-01

    Reconstructs Lloyd Bitzer's situational model to serve as a guide for the generation of multiperspectival critical assessments of rhetorical discourse. Uses two of President Bush's speeches on the drug crisis to illustrate how the reconstructed model can account for such modern problems as multiple audiences, perceptions, and exigencies. (PA)

  6. Radiation risk estimation models

    SciTech Connect

    Hoel, D.G.

    1987-11-01

    Cancer risk models and their relationship to ionizing radiation are discussed. There are many model assumptions and risk factors that have a large quantitative impact on the cancer risk estimates. Other health end points such as mental retardation may be an even more serious risk than cancer for those with in utero exposures. 8 references.

  7. Model for Coastal Restoration

    SciTech Connect

    Thom, Ronald M.; Judd, Chaeli

    2007-07-27

    Successful restoration of wetland habitats depends on both our understanding of our system and our ability to characterize it. By developing a conceptual model, looking at different spatial scales and integrating diverse data streams: GIS datasets and NASA products, we were able to develop a dynamic model for site prioritization based on both qualitative and quantitative relationships found in the coastal environment.

  8. The EMEFS model evaluation

    SciTech Connect

    Barchet, W.R. ); Dennis, R.L. ); Seilkop, S.K. ); Banic, C.M.; Davies, D.; Hoff, R.M.; Macdonald, A.M.; Mickle, R.E.; Padro, J.; Puckett, K. ); Byun, D.; McHenry, J.N.

    1991-12-01

    The binational Eulerian Model Evaluation Field Study (EMEFS) consisted of several coordinated data gathering and model evaluation activities. In the EMEFS, data were collected by five air and precipitation monitoring networks between June 1988 and June 1990. Model evaluation is continuing. This interim report summarizes the progress made in the evaluation of the Regional Acid Deposition Model (RADM) and the Acid Deposition and Oxidant Model (ADOM) through the December 1990 completion of a State of Science and Technology report on model evaluation for the National Acid Precipitation Assessment Program (NAPAP). Because various assessment applications of RADM had to be evaluated for NAPAP, the report emphasizes the RADM component of the evaluation. A protocol for the evaluation was developed by the model evaluation team and defined the observed and predicted values to be used and the methods by which the observed and predicted values were to be compared. Scatter plots and time series of predicted and observed values were used to present the comparisons graphically. Difference statistics and correlations were used to quantify model performance. 64 refs., 34 figs., 6 tabs.

  9. Multilevel Mixture Factor Models

    ERIC Educational Resources Information Center

    Varriale, Roberta; Vermunt, Jeroen K.

    2012-01-01

    Factor analysis is a statistical method for describing the associations among sets of observed variables in terms of a small number of underlying continuous latent variables. Various authors have proposed multilevel extensions of the factor model for the analysis of data sets with a hierarchical structure. These Multilevel Factor Models (MFMs)…

  10. Tacit Models and Infinity.

    ERIC Educational Resources Information Center

    Fischbein, Efraim

    2001-01-01

    Analyses several examples of tacit influences exerted by mental models on the interpretation of various mathematical concepts in the domain of actual infinity. Specifically addresses the unconscious effect of the figural-pictorial models of statements related to the infinite sets of geometrical points related to the concepts of function and…

  11. Video Self-Modeling

    ERIC Educational Resources Information Center

    Buggey, Tom; Ogle, Lindsey

    2012-01-01

    Video self-modeling (VSM) first appeared on the psychology and education stage in the early 1970s. The practical applications of VSM were limited by lack of access to tools for editing video, which is necessary for almost all self-modeling videos. Thus, VSM remained in the research domain until the advent of camcorders and VCR/DVD players and,…

  12. Modelling extended chromospheres

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1986-01-01

    Attention is given to the concept that the warm, partially ionized plasma (presently called chromosphere) associated with such stars as Alpha Boo and Rho Per extends outwards at least several photospheric radii. Calculations are presented for the Mg II K line in light of two input model atmospheres. Specific predictions are deduced from the results obtained by each of the two models.

  13. Enrollment Projection Model.

    ERIC Educational Resources Information Center

    Gustafson, B. Kerry; Hample, Stephen R.

    General documentation for the Enrollment Projection Model used by the Maryland Council for Higher Education (MCHE) is provided. The manual is directed toward both the potential users of the model as well as others interested in enrollment projections. The first four chapters offer administrators or planners insight into the derivation of the…

  14. [Predictive models for ART].

    PubMed

    Arvis, P; Guivarc'h-Levêque, A; Varlan, E; Colella, C; Lehert, P

    2013-02-01

    A predictive model is a mathematical expression estimating the probability of pregnancy, by combining predictive variables, or indicators. Its development requires three successive phases: formulation of the model, its validation--internal then external--and the impact study. Its performance is assessed by its discrimination and its calibration. Numerous models were proposed, for spontaneous pregnancies, IUI and IVF, but with rather poor results, and their external validation was seldom carried out and was mainly inconclusive. The impact study-consisting in ascertaining whether their use improves medical practice--was exceptionally done. The ideal ART predictive model is a "Center specific" model, helping physicians to choose between abstention, IUI and IVF, by providing a reliable cumulative rate of pregnancy for each option. This tool would allow to rationalize the practices, by avoiding premature, late, or hopeless treatments. The model would also allow to compare the performances between ART Centers based on objective criteria. Today the best solution is to adjust the existing models to one's own practice, by considering models validated with variables describing the treated population, whilst adjusting the calculation to the Center's performances. PMID:23182786

  15. Applied model validation

    NASA Astrophysics Data System (ADS)

    Davies, A. D.

    1985-07-01

    The NBS Center for Fire Research (CFR) conducts scientific research bearing on the fire safety of buildings, vehicles, tunnels and other inhabited structures. Data from controlled fire experiments are collected, analyzed and reduced to the analytical formulas that appear to underly the observed phenomena. These results and more general physical principles are then combined into models to predict the development of environments that may be hostile to humans. This is a progress report of an applied model validation case study. The subject model is Transport of Fire, Smoke and Gases (FAST). Products from a fire in a burn room exit through a connected corridor to outdoors. Cooler counterflow air in a lower layer feeds the fire. The model predicts corridor layer temperatures and thicknesses vs. time, given enclosure, fire and ambient specifications. Data have been collected from 38 tests using several fire sizes, but have not been reduced. Corresponding model results, and model and test documentation are yet to come. Considerable modeling and calculation is needed to convert instrument readings to test results comparable with model outputs so that residual differences may be determined.

  16. Unitary Response Regression Models

    ERIC Educational Resources Information Center

    Lipovetsky, S.

    2007-01-01

    The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…

  17. Animal models of tinnitus.

    PubMed

    Brozoski, Thomas J; Bauer, Carol A

    2016-08-01

    Presented is a thematic review of animal tinnitus models from a functional perspective. Chronic tinnitus is a persistent subjective sound sensation, emergent typically after hearing loss. Although the sensation is experientially simple, it appears to have central a nervous system substrate of unexpected complexity that includes areas outside of those classically defined as auditory. Over the past 27 years animal models have significantly contributed to understanding tinnitus' complex neurophysiology. In that time, a diversity of models have been developed, each with its own strengths and limitations. None has clearly become a standard. Animal models trace their origin to the 1988 experiments of Jastreboff and colleagues. All subsequent models derive some of their features from those experiments. Common features include behavior-dependent psychophysical determination, acoustic conditions that contrast objective sound and silence, and inclusion of at least one normal-hearing control group. In the present review, animal models have been categorized as either interrogative or reflexive. Interrogative models use emitted behavior under voluntary control to indicate hearing. An example would be pressing a lever to obtain food in the presence of a particular sound. In this type of model animals are interrogated about their auditory sensations, analogous to asking a patient, "What do you hear?" These models require at least some training and motivation management, and reflect the perception of tinnitus. Reflexive models, in contrast, employ acoustic modulation of an auditory reflex, such as the acoustic startle response. An unexpected loud sound will elicit a reflexive motor response from many species, including humans. Although involuntary, acoustic startle can be modified by a lower-level preceding event, including a silent sound gap. Sound-gap modulation of acoustic startle appears to discriminate tinnitus in animals as well as humans, and requires no training or

  18. Simplified Models for Dark Matter Model Building

    NASA Astrophysics Data System (ADS)

    DiFranzo, Anthony Paul

    The largest mass component of the universe is a longstanding mystery to the physics community. As a glaring source of new physics beyond the Standard Model, there is a large effort to uncover the quantum nature of dark matter. Many probes have been formed to search for this elusive matter; cultivating a rich environment for a phenomenologist. In addition to the primary probes---colliders, direct detection, and indirect detection---each with their own complexities, there is a plethora of prospects to illuminate our unanswered questions. In this work, phenomenological techniques for studying dark matter and other possible hints of new physics will be discussed. This work primarily focuses on the use of Simplified Models, which are intended to be a compromise between generality and validity of the theoretical description. They are often used to parameterize a particular search, develop a well-defined sense of complementarity between searches, or motivate new search strategies. Explicit examples of such models and how they may be used will be the highlight of each chapter.

  19. Turbulence Modeling: A NASA Perspective

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.

    2001-01-01

    This paper presents turbulence modeling from NASA's perspective. The topics include: 1) Hierarchy of Solution Methods; 2) Turbulence Modeling Focus; 3) Linear Eddy Viscosity Models; and 4) Nonlinear Eddy Viscosity Algebraic Stress Models.

  20. BioVapor Model Evaluation

    EPA Science Inventory

    General background on modeling and specifics of modeling vapor intrusion are given. Three classical model applications are described and related to the problem of petroleum vapor intrusion. These indicate the need for model calibration and uncertainty analysis. Evaluation of Bi...

  1. Australia's Next Top Fraction Model

    ERIC Educational Resources Information Center

    Gould, Peter

    2013-01-01

    Peter Gould suggests Australia's next top fraction model should be a linear model rather than an area model. He provides a convincing argument and gives examples of ways to introduce a linear model in primary classrooms.

  2. Staged Models for Interdisciplinary Research.

    PubMed

    Lafuerza, Luis F; Dyson, Louise; Edmonds, Bruce; McKane, Alan J

    2016-01-01

    Modellers of complex biological or social systems are often faced with an invidious choice: to use simple models with few mechanisms that can be fully analysed, or to construct complicated models that include all the features which are thought relevant. The former ensures rigour, the latter relevance. We discuss a method that combines these two approaches, beginning with a complex model and then modelling the complicated model with simpler models. The resulting "chain" of models ensures some rigour and relevance. We illustrate this process on a complex model of voting intentions, constructing a reduced model which agrees well with the predictions of the full model. Experiments with variations of the simpler model yield additional insights which are hidden by the complexity of the full model. This approach facilitated collaboration between social scientists and physicists-the complex model was specified based on the social science literature, and the simpler model constrained to agree (in core aspects) with the complicated model. PMID:27362836

  3. Modeling glacial climates

    NASA Technical Reports Server (NTRS)

    North, G. R.; Crowley, T. J.

    1984-01-01

    Mathematical climate modelling has matured as a discipline to the point that it is useful in paleoclimatology. As an example a new two dimensional energy balance model is described and applied to several problems of current interest. The model includes the seasonal cycle and the detailed land-sea geographical distribution. By examining the changes in the seasonal cycle when external perturbations are forced upon the climate system it is possible to construct hypotheses about the origin of midlatitude ice sheets and polar ice caps. In particular the model predicts a rather sudden potential for glaciation over large areas when the Earth's orbital elements are only slightly altered. Similarly, the drift of continents or the change of atmospheric carbon dioxide over geological time induces radical changes in continental ice cover. With the advance of computer technology and improved understanding of the individual components of the climate system, these ideas will be tested in far more realistic models in the near future.

  4. Modeling ocean circulation

    SciTech Connect

    Semtner, A.J.

    1995-09-08

    Ocean numerical models have become quite realistic over the past several years as a result of improved methods, faster computers, and global data sets. Models now treat basin-scale to global domains while retaining the fine spatial scales that are important for modeling the transport of heat, salt, and other properties over vast distances. Simulations are reproducing observed satellite results on the energetics of strong currents and are properly showing diverse aspects of thermodynamic and dynamic ocean responses ranging from deep-water production of El Nino. Now models can represent not only currents but also the consequences for climate, biology, and geo-chemistry over time spans for months to decades. However, much remains to be understood from models about ocean circulation on longer time scales, including the evolution of the dominant water masses, the predictability of climate, and the ocean`s influence on global change. 34 refs., 6 figs.

  5. Strength Modeling Report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Lee, P.; Wong, S.

    1985-01-01

    Strength modeling is a complex and multi-dimensional issue. There are numerous parameters to the problem of characterizing human strength, most notably: (1) position and orientation of body joints; (2) isometric versus dynamic strength; (3) effector force versus joint torque; (4) instantaneous versus steady force; (5) active force versus reactive force; (6) presence or absence of gravity; (7) body somatotype and composition; (8) body (segment) masses; (9) muscle group envolvement; (10) muscle size; (11) fatigue; and (12) practice (training) or familiarity. In surveying the available literature on strength measurement and modeling an attempt was made to examine as many of these parameters as possible. The conclusions reached at this point toward the feasibility of implementing computationally reasonable human strength models. The assessment of accuracy of any model against a specific individual, however, will probably not be possible on any realistic scale. Taken statistically, strength modeling may be an effective tool for general questions of task feasibility and strength requirements.

  6. Linear models: permutation methods

    USGS Publications Warehouse

    Cade, B.S.

    2005-01-01

    Permutation tests (see Permutation Based Inference) for the linear model have applications in behavioral studies when traditional parametric assumptions about the error term in a linear model are not tenable. Improved validity of Type I error rates can be achieved with properly constructed permutation tests. Perhaps more importantly, increased statistical power, improved robustness to effects of outliers, and detection of alternative distributional differences can be achieved by coupling permutation inference with alternative linear model estimators. For example, it is well-known that estimates of the mean in linear model are extremely sensitive to even a single outlying value of the dependent variable compared to estimates of the median [7, 19]. Traditionally, linear modeling focused on estimating changes in the center of distributions (means or medians). However, quantile regression allows distributional changes to be estimated in all or any selected part of a distribution or responses, providing a more complete statistical picture that has relevance to many biological questions [6]...

  7. Modeling earthquake dynamics

    NASA Astrophysics Data System (ADS)

    Charpentier, Arthur; Durand, Marilou

    2015-07-01

    In this paper, we investigate questions arising in Parsons and Geist (Bull Seismol Soc Am 102:1-11, 2012). Pseudo causal models connecting magnitudes and waiting times are considered, through generalized regression. We do use conditional model (magnitude given previous waiting time, and conversely) as an extension to joint distribution model described in Nikoloulopoulos and Karlis (Environmetrics 19: 251-269, 2008). On the one hand, we fit a Pareto distribution for earthquake magnitudes, where the tail index is a function of waiting time following previous earthquake; on the other hand, waiting times are modeled using a Gamma or a Weibull distribution, where parameters are functions of the magnitude of the previous earthquake. We use those two models, alternatively, to generate the dynamics of earthquake occurrence, and to estimate the probability of occurrence of several earthquakes within a year or a decade.

  8. Cardiovascular modeling and diagnostics

    SciTech Connect

    Kangas, L.J.; Keller, P.E.; Hashem, S.; Kouzes, R.T.

    1995-12-31

    In this paper, a novel approach to modeling and diagnosing the cardiovascular system is introduced. A model exhibits a subset of the dynamics of the cardiovascular behavior of an individual by using a recurrent artificial neural network. Potentially, a model will be incorporated into a cardiovascular diagnostic system. This approach is unique in that each cardiovascular model is developed from physiological measurements of an individual. Any differences between the modeled variables and the variables of an individual at a given time are used for diagnosis. This approach also exploits sensor fusion to optimize the utilization of biomedical sensors. The advantage of sensor fusion has been demonstrated in applications including control and diagnostics of mechanical and chemical processes.

  9. A Preliminary Jupiter Model

    NASA Astrophysics Data System (ADS)

    Hubbard, W. B.; Militzer, B.

    2016-03-01

    In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen-helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second- and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses and a hydrogen-helium-rich envelope with approximately three times solar metallicity.

  10. Fuzzy object modeling

    NASA Astrophysics Data System (ADS)

    Udupa, Jayaram K.; Odhner, Dewey; Falcao, Alexandre X.; Ciesielski, Krzysztof C.; Miranda, Paulo A. V.; Vaideeswaran, Pavithra; Mishra, Shipra; Grevera, George J.; Saboury, Babak; Torigian, Drew A.

    2011-03-01

    To make Quantitative Radiology (QR) a reality in routine clinical practice, computerized automatic anatomy recognition (AAR) becomes essential. As part of this larger goal, we present in this paper a novel fuzzy strategy for building bodywide group-wise anatomic models. They have the potential to handle uncertainties and variability in anatomy naturally and to be integrated with the fuzzy connectedness framework for image segmentation. Our approach is to build a family of models, called the Virtual Quantitative Human, representing normal adult subjects at a chosen resolution of the population variables (gender, age). Models are represented hierarchically, the descendents representing organs contained in parent organs. Based on an index of fuzziness of the models, 32 thorax data sets, and 10 organs defined in them, we found that the hierarchical approach to modeling can effectively handle the non-linear relationships in position, scale, and orientation that exist among organs in different patients.

  11. Integrated Environmental Control Model

    1999-09-03

    IECM is a powerful multimedia engineering software program for simulating an integrated coal-fired power plant. It provides a capability to model various conventional and advanced processes for controlling air pollutant emissions from coal-fired power plants before, during, or after combustion. The principal purpose of the model is to calculate the performance, emissions, and cost of power plant configurations employing alternative environmental control methods. The model consists of various control technology modules, which may be integratedmore » into a complete utility plant in any desired combination. In contrast to conventional deterministic models, the IECM offers the unique capability to assign probabilistic values to all model input parameters, and to obtain probabilistic outputs in the form of cumulative distribution functions indicating the likelihood of dofferent costs and performance results. A Graphical Use Interface (GUI) facilitates the configuration of the technologies, entry of data, and retrieval of results.« less

  12. Direct insolation models

    SciTech Connect

    Bird, R.; Hulstrom, R.L.

    1980-01-01

    Several recently published models of the direct component of the broadband insolation are compared for clear sky conditions. The comparison includes seven simple models and one rigorous model that is used as a basis for determining accuracy. Where possible, the comparison is made between the results of each model for each atmospheric constituent (H/sub 2/O, CO/sub 2/, O/sub 3/, O/sub 2/, aerosol and molecular scattering) separately as well as for the combined effect of all of the constituents. Two optimum simple models of varying degrees of complexity are developed as a result of this comparison. The study indicates: aerosols dominate the attenuation of the direct beam for reasonable atmospheric conditions; molecular scattering is next in importance; water vapor is an important absorber; and carbon dioxide and oxygen are relatively unimportant as attenuators of the broadband solar energy.

  13. Varicella infection modeling.

    SciTech Connect

    Jones, Katherine A.; Finley, Patrick D.; Moore, Thomas W.; Nozick, Linda Karen; Martin, Nathaniel; Bandlow, Alisa; Detry, Richard Joseph; Evans, Leland B.; Berger, Taylor Eugen

    2013-09-01

    Infectious diseases can spread rapidly through healthcare facilities, resulting in widespread illness among vulnerable patients. Computational models of disease spread are useful for evaluating mitigation strategies under different scenarios. This report describes two infectious disease models built for the US Department of Veteran Affairs (VA) motivated by a Varicella outbreak in a VA facility. The first model simulates disease spread within a notional contact network representing staff and patients. Several interventions, along with initial infection counts and intervention delay, were evaluated for effectiveness at preventing disease spread. The second model adds staff categories, location, scheduling, and variable contact rates to improve resolution. This model achieved more accurate infection counts and enabled a more rigorous evaluation of comparative effectiveness of interventions.

  14. Nonlinear Beat Cepheid Models

    NASA Astrophysics Data System (ADS)

    Kolláth, Z.; Beaulieu, J. P.; Buchler, J. R.; Yecko, P.

    1998-07-01

    The numerical hydrodynamic modeling of beat Cepheid behavior has been a long-standing quest in which purely radiative models have failed miserably. We find that beat pulsations occur naturally when turbulent convection is accounted for in our hydrodynamics codes. The development of a relaxation code and of a Floquet stability analysis greatly facilitates the search for and analysis of beat Cepheid models. The conditions for the occurrence of beat behavior can be understood easily and at a fundamental level with the help of amplitude equations. Here a discriminant \\Dscr arises whose sign decides whether single-mode or double-mode pulsations can occur in a model, and this \\Dscr depends only on the values of the nonlinear coupling coefficients between the fundamental and the first overtone modes. For radiative models \\Dscr is always found to be negative, but with sufficiently strong turbulent convection its sign reverses.

  15. Kalman filter modeling

    NASA Technical Reports Server (NTRS)

    Brown, R. G.

    1984-01-01

    The formulation of appropriate state-space models for Kalman filtering applications is studied. The so-called model is completely specified by four matrix parameters and the initial conditions of the recursive equations. Once these are determined, the die is cast, and the way in which the measurements are weighted is determined foreverafter. Thus, finding a model that fits the physical situation at hand is all important. Also, it is often the most difficult aspect of designing a Kalman filter. Formulation of discrete state models from the spectral density and ARMA random process descriptions is discussed. Finally, it is pointed out that many common processes encountered in applied work (such as band-limited white noise) simply do not lend themselves very well to Kalman filter modeling.

  16. XAFS Model Compound Library

    DOE Data Explorer

    Newville, Matthew

    The XAFS Model Compound Library contains XAFS data on model compounds. The term "model" compounds refers to compounds of homogeneous and well-known crystallographic or molecular structure. Each data file in this library has an associated atoms.inp file that can be converted to a feff.inp file using the program ATOMS. (See the related Searchable Atoms.inp Archive at http://cars9.uchicago.edu/~newville/adb/) This Library exists because XAFS data on model compounds is useful for several reasons, including comparing to unknown data for "fingerprinting" and testing calculations and analysis methods. The collection here is currently limited, but is growing. The focus to date has been on inorganic compounds and minerals of interest to the geochemical community. [Copied, with editing, from http://cars9.uchicago.edu/~newville/ModelLib/

  17. Animal Models of Glaucoma

    PubMed Central

    A. Bouhenni, Rachida; Dunmire, Jeffrey; Sewell, Abby; Edward, Deepak P.

    2012-01-01

    Glaucoma is a heterogeneous group of disorders that progressively lead to blindness due to loss of retinal ganglion cells and damage to the optic nerve. It is a leading cause of blindness and visual impairment worldwide. Although research in the field of glaucoma is substantial, the pathophysiologic mechanisms causing the disease are not completely understood. A wide variety of animal models have been used to study glaucoma. These include monkeys, dogs, cats, rodents, and several other species. Although these models have provided valuable information about the disease, there is still no ideal model for studying glaucoma due to its complexity. In this paper we present a summary of most of the animal models that have been developed and used for the study of the different types of glaucoma, the strengths and limitations associated with each species use, and some potential criteria to develop a suitable model. PMID:22665989

  18. Protein Model Database

    SciTech Connect

    Fidelis, K; Adzhubej, A; Kryshtafovych, A; Daniluk, P

    2005-02-23

    The phenomenal success of the genome sequencing projects reveals the power of completeness in revolutionizing biological science. Currently it is possible to sequence entire organisms at a time, allowing for a systemic rather than fractional view of their organization and the various genome-encoded functions. There is an international plan to move towards a similar goal in the area of protein structure. This will not be achieved by experiment alone, but rather by a combination of efforts in crystallography, NMR spectroscopy, and computational modeling. Only a small fraction of structures are expected to be identified experimentally, the remainder to be modeled. Presently there is no organized infrastructure to critically evaluate and present these data to the biological community. The goal of the Protein Model Database project is to create such infrastructure, including (1) public database of theoretically derived protein structures; (2) reliable annotation of protein model quality, (3) novel structure analysis tools, and (4) access to the highest quality modeling techniques available.

  19. Testing bow shock models

    NASA Astrophysics Data System (ADS)

    Alrefay, Thamer; Meziane, Karim; Hamza, A. M.

    2016-07-01

    Space plasmas studies of bow shock dynamics, given the fundamental transport role and impact natural transition boundaries, have continued to attract much interest. With the overwhelming availability of data collected by various space science missions, several empirical models have been put forward to account for the location of the Earth's bow shock. Various solar wind and IMF measured parameters are used to constrain the proposed models published in the literature. For each of these empirical models, the bow shock nose velocity, at the standoff distance, is computed; each of these velocities is then compared with the observed shock speed as determined from a multipoint measurement provided by the Cluster quartet. The present study reveals to what extent the model parameters used are significant and determinant, and suggests that some empirical models are more accurate than others are.

  20. VENTILATION MODEL REPORT

    SciTech Connect

    V. Chipman

    2002-10-31

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses.