Sample records for a-14 high-al basalts

  1. Derivation of Apollo 14 High-Al Basalts at Discrete Times: Rb-Sr Isotopic Constraints

    NASA Technical Reports Server (NTRS)

    Hui. Hejiu; Neal, Clive, R.; Shih, Chi-Yu; Nyquist, Laurence E.

    2012-01-01

    Pristine Apollo 14 (A-14) high-Al basalts represent the oldest volcanic deposits returned from the Moon [1,2] and are relatively enriched in Al2O3 (>11 wt%) compared to other mare basalts (7-11 wt%). Literature Rb-Sr isotopic data suggest there are at least three different eruption episodes for the A-14 high-Al basalts spanning the age range approx.4.3 Ga to approx.3.95 Ga [1,3]. Therefore, the high-Al basalts may record lunar mantle evolution between the formation of lunar crust (approx.4.4 Ga) and the main basin-filling mare volcanism (<3.85 Ga) [4]. The high-Al basalts were originally classified into five compositional groups [5,6], and then regrouped into three with a possible fourth comprising 14072 based on the whole-rock incompatible trace element (ITE) ratios and Rb-Sr radiometric ages [7]. However, Rb-Sr ages of these basalts from different laboratories may not be consistent with each other because of the use of different 87Rb decay constants [8] and different isochron derivation methods over the last four decades. This study involved a literature search for Rb-Sr isotopic data previously reported for the high-Al basalts. With the re-calculated Rb-Sr radiometric ages, eruption episodes of A-14 high-Al basalts were determined, and their petrogenesis was investigated in light of the "new" Rb-Sr isotopic data and published trace element abundances of these basalts.

  2. Derivation of Apollo 14 High-Al Basalts at Discrete Times: Rb-Sr Isotopic Constraints

    NASA Astrophysics Data System (ADS)

    Hui, H.; Neal, C. R.; Shih, C.-Y.; Nyquist, L. E.

    2012-03-01

    Four eruption episodes were identified for A-14 high-Al basalts. Rb-Sr isotopic data and ITE ratios show that their parental melt compositions of are correlated through mixing of evolved components with a relatively primitive magma ocean cumulate.

  3. Petrogenesis of the Northwest Africa 4898 high-Al mare basalt

    NASA Astrophysics Data System (ADS)

    Li, Shaolin; Hsu, Weibiao; Guan, Yunbin; Wang, Linyan; Wang, Ying

    2016-07-01

    Northwest Africa (NWA) 4898 is the only low-Ti, high-Al basaltic lunar meteorite yet recognized. It predominantly consists of pyroxene (53.8 vol%) and plagioclase (38.6 vol%). Pyroxene has a wide range of compositions (En12-62Fs25-62Wo11-36), which display a continuous trend from Mg-rich cores toward Ca-rich mantles and then to Fe-rich rims. Plagioclase has relatively restricted compositions (An87-96Or0-1Ab4-13), and was transformed to maskelynite. The REE zoning of all silicate minerals was not significantly modified by shock metamorphism and weathering. Relatively large (up to 1 mm) olivine phenocrysts have homogenous inner parts with Fo ~74 and sharply decrease to 64 within the thin out rims (~30 μm in width). Four types of inclusions with a variety of textures and modal mineralogy were identified in olivine phenocrysts. The contrasting morphologies of these inclusions and the chemical zoning of olivine phenocrysts suggest NWA 4898 underwent at least two stages of crystallization. The aluminous chromite in NWA 4898 reveals that its high alumina character was inherited from the parental magma, rather than by fractional crystallization. The mineral chemistry and major element compositions of NWA 4898 are different from those of 12038 and Luna 16 basalts, but resemble those of Apollo 14 high-Al basalts. However, the trace element compositions demonstrate that NWA 4898 and Apollo 14 high-Al basalts could not have been derived from the same mantle source. REE compositions of its parental magma indicate that NWA 4898 probably originated from a unique depleted mantle source that has not been sampled yet. Unlike Apollo 14 high-Al basalts, which assimilated KREEPy materials during their formation, NWA 4898 could have formed by closed-system fractional crystallization.

  4. Derivation of Apollo 14 High-Al Basalts from Distinct Source Regions at Discrete Times: New Constraints

    NASA Technical Reports Server (NTRS)

    Neal, C. R.; Shih, C.-Y.; Reese, Y.; Nyquist, L. E.; Kramer, G. Y.

    2006-01-01

    Apollo 14 basalts occur predominantly as clasts in breccias, but represent the oldest volcanic products that were returned from the Moon [1]. These basalts are relatively enriched in Al2O3 (11-16 wt%) compared to other mare basalts (7-11 wt%) and were originally classified into 5 compositional groups [2,3]. Neal et al. [4] proposed that a continuum of compositions existed. These were related through assimilation (of KREEP) and fractional crystallization (AFC). Age data, however, show that at least three volcanic episodes are recorded in the sample collection [1,5,6]. Recent work has demonstrated that there are three, possibly four groups of basalts in the Apollo 14 sample collection that were erupted from different source regions at different times [7]. This conclusion was based upon incompatible trace element (ITE) ratios of elements that should not be fractionated from one another during partial melting (Fig. 1). These groups are defined as Group A (Groups 4 & 5 of [3]), Group B (Groups 1 & 2 of [3]), and Group C (Group 3 of [3]). Basalt 14072 is distinct from Groups A-C.

  5. Geochronology and petrogenesis of Apollo 14 very high potassium mare basalts

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Bansal, B. M.; Wiesmann, H.; Nyquist, L. E.; Bogard, D. D.

    1986-01-01

    Rb-Sr, K-Ar, and Sm-Nd isotopic studies were undertaken for two Apollo 14 very high potassium (VHK) highly radiogenic mare basaltic clasts from breccias 14305 and 14168. Rb-Sr data indicate ages of 3.83 + or - 0.08 b.y., and 3.82 + or - 0.12 b.y. for samples 14305 and 14168 respectively, for lambda(Rb-87) = 0.0 139/b.y. Their corresponding initial Sr-87/Sr-86 ratios are nearly identical, as well as their Ar-39 to Ar-40 age spectra, and it is proposed that they were derived from the same flow. The Sm-Nd isotopic data of whole rock and mineral separates for the two VHK basalts define an internal isochrone age of 3.94 + or - 0.16 b.y. for lambda (Sm-147) = 0.00654/b.y. and an initial Nd-143/Nd-144 of 0.50673 + or - 21. The similarity in isotopic ages suggests that VHK basalts crystallized from a melt about 3.85 b.y. ago. VHK basalts show very large Rb/Sr fractionation but no significant Sm/Nd fractionation at the time of crystallization. The source material had a Rb/Sr ratio similar to those of Apollo 14 high-Al mare basalts and a nearly chrondritic Sm/Nd ratio. Basalt/granite interaction was found to be responsible for the extreme enrichments of Rb/Sr and K/La during the formation of VHK basalts. It is concluded that K, Rb-rich components of granitic wall rocks in the highland crust were selectively introduced into ascending hot high-Al mare basaltic magma upon contact.

  6. Very high potassium (VHK) basalt - Complications in mare basalt petrogenesis

    NASA Technical Reports Server (NTRS)

    Shervais, J. W.; Taylor, L. A.; Laul, J. C.; Shih, C.-Y.; Nyquist, L. E.

    1985-01-01

    The first comprehensive report on the petrology and geochemistry of Apollo 14 VHK (Very High Potassium) basalts and their implications for lunar evolution is presented. The reported data are most consistent with the hypothesis that VHK basalts formed through the partial assimilation of granite by a normal low-Ti, high-Al mare basalt magma. Assimilation was preceded by the diffusion-controlled exchange of alkalis and Ba between basalt magma and the low-temperature melt fraction of the granite. Hypotheses involving volatile/nonvolatile fractionations or long-term enrichment of the source regions in K are inconsistent with the suprachondritic Ba/La ratios and low initial Sr-87/Sr-86 ratios of VHK basalt. An important implication of this conclusion is that granite should be a significant component of the lunar crust at the Apollo 14 site.

  7. High alumina (HA) and very high potassium (VHK) basalt clasts from Apollo 14 breccias. I - Mineralogy and Petrology - Evidence of crystallization from evolving magmas

    NASA Technical Reports Server (NTRS)

    Neal, C. R.; Taylor, L. A.; Patchen, A. D.

    1989-01-01

    The mineralogy and petrography of very high potassium (VHK) and high alumina (HA) basalts from the Apollo 14 site provide an insight into their magmatic evolution. Generally, their parageneses are similar, with olivine and chromite the early liquidus phases, followed by plagioclase and pyroxene, which crystallized together. Although late-stage ilmenite and FeNi metal occur in both VHK and HA samples, the VHKs also crystallize K-feldspar and Fa-rich olivine. Zoning of constituent minerals is similar for both basalt types, demonstrating that the parental magmas for both HA and VHK basalts became enriched in K, Na, Ca, Fe, and Ti and depleted in Mg and Al as crystallization proceeded. Enrichment of K in the VHK basalts is above that expected from normal fractional crystallization.

  8. Petrogenesis of high-Ti and low-Ti basalts: high-pressure and high-temperature experimental study

    NASA Astrophysics Data System (ADS)

    Yang, J.; WANG, C.; Jin, Z.

    2017-12-01

    Geochemical and petrological studies have revealed the existence of high-Ti and low-Ti basalts in large igneous provinces. However, the petrogenesis of them are still under debate. Several different mechanisms have been proposed: (1) the high-Ti basalts are formed by the melting of mantle plume containing recycled oceanic crust or delaminated lower crust (Spandler et al., 2008) while low-Ti basalts are formed by the melting of subcontinental lithospheric mantle (Xiao et al., 2004); (2) both of them are from mantle plume or asthenospheric source, but the production of high-Ti basalts are associated with the thick lithosphere and relevant low degrees of melting while the low-Ti basalts are controlled by the thin lithosphere with high degrees of melting (Arndt et al., 1993; Xu et al., 2001). Almost all authors emphasize the role of partial melting but less discuss the crystallization differentiation process. The low Mg# (< 0.7) of these basalts provides that they are far away from direct melting of mantle peridotite. In addition, seismic data indicate unusually high seismic velocities bodies beneath LIPs which explained by the fractionated cumulates from picritic magmas (Farnetani et al., 1996). Therefore, we believed that the crystallization differentiation process might play a more significant role in the genesis of high-Ti and low-Ti basalts. In order to investigate the generation of these basalts, a series of high pressure and high temperature partial crystallization experiments were performed by using piston-cylinder and multi-anvil press at pressures of 1.5, 3.0 and 5.0 GPa and a temperature range of 1200-1700°. Two synthetic picrite glass with different chemical compositions were used as starting materials. Our experimental results show that Ti is preferred to be concentrated in the residual melt during crystallization differentiation. For the same melt fraction, the residual melt of higher pressure experiments has relatively higher TiO2 concentration and

  9. Structure of shock compressed model basaltic glass: Insights from O K-edge X-ray Raman scattering and high-resolution 27Al NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Sung Keun; Park, Sun Young; Kim, Hyo-Im; Tschauner, Oliver; Asimow, Paul; Bai, Ligang; Xiao, Yuming; Chow, Paul

    2012-03-01

    The detailed atomic structures of shock compressed basaltic glasses are not well understood. Here, we explore the structures of shock compressed silicate glass with a diopside-anorthite eutectic composition (Di64An36), a common Fe-free model basaltic composition, using oxygen K-edge X-ray Raman scattering and high- resolution 27Al solid-state NMR spectroscopy and report previously unknown details of shock-induced changes in the atomic configurations. A topologically driven densification of the Di64An36 glass is indicated by the increase in oxygen K-edge energy for the glass upon shock compression. The first experimental evidence of the increase in the fraction of highly coordinated Al in shock compressed glass is found in the 27Al NMR spectra. This unambiguous evidence of shock-induced changes in Al coordination environments provides atomistic insights into shock compression in basaltic glasses and allows us to microscopically constrain the magnitude of impact events or relevant processes involving natural basalts on Earth and planetary surfaces.

  10. High alumina (HA) and very high potassium (VHK) basalt clasts from Apollo 14 breccias. II - Whole rock geochemistry - Further evidence for combined assimilation and fractional crystallization within the lunar crust

    NASA Technical Reports Server (NTRS)

    Neal, C. R.; Taylor, L. A.; Schmitt, R. A.; Hughes, S. S.; Lindstrom, M. M.

    1989-01-01

    The understanding of basalt petrogenesis at the Apollo 14 site has increased markedly due to the study of 'new' samples from breccia 'pull-apart' efforts. Whole-rock compositions of 26 new high alumina (HA) and 7 very high potassium (VHK) basalts emphasize the importance of combined assimilation and fractional crystallization in a lunar regime. Previously formulated models for HA and VHK basalt petrogenesis are modified in order to accomodate these new data, although modeling parameters are essentially the same. The required range in HA basalt compositions is generated by the assimilation of KREEP by a 'primitive' parental magma. The VHK basalts can be generated by three parental HA basalts assimilating granite. Results indicate that VHK basalt compositions are dominated by the parental magma, and only up to 8 percent granite assimilation is required. This modeling indicates that at least three VHK basalt flows must be present at the Apollo 14 site.

  11. Importance of lunar granite and KREEP in very high potassium (VHK) basalt petrogenesis

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Taylor, Lawrence A.; Lindstrom, Marilyn M.

    1988-01-01

    Analysis of five very high potassium (VHK) basalts from Apollo 14 breccia 14303 shows the presence of a KREEP component. An assimilation and fractional crystallization model is presented to describe the basalt evolution. The influence of granite assimilation on the basalt evolution is discussed. The presence of VHK basalts containing only a granite signature and those with both granite and KREEP signatures suggests that there are at least two different VHK basalt flows at the Apollo 14 site.

  12. Anhydrous PT phase relations of an Aleutian high-MgO basalt: an investigation of the role of olivine-liquid reaction in the generation of arc high-alumina basalts

    NASA Astrophysics Data System (ADS)

    Draper, David S.; Johnston, A. Dana

    1992-12-01

    We report results of anhydrous 1 atm and piston-cylinder experiments on ID16, an Aleutian high-magnesia basalt (HMB), designed to investigate potential petrogenetic links between arc high-alumina basalts (HABs) and less common HMBs. ID16 is multiply saturated with a plagioclase/spinel iherzolite mineral assemblage (olivine, plagioclase, clinopyroxene, orthopyroxene, spinel) immediately beneath the 12 kbar liquidus. Derivative liquids produced at high temperatures in the 10 20 kbar melting interval of ID16 have compositions resembling those published of many moderate-CaO HABs, although lower-temperature liquids are poorer in CaO and richer in alkalies than are typical HABs. Isomolar pseudoternary projections and numerical mass-balance modeling suggest that derivative melts of ID16 enter into a complex reaction relationship with olivine at 10 kbar and 1,200° C 1,150° C. We sought to test such a mechanism to explain the lack of liquidus olivine in anhydrous experiments on mafic high-alumina basalts such as SSS. 1.4 (Johnston 1986). These derivative liquids, however, do not resemble typical arc high-alumina basalts, suggesting that olivine-liquid reaction does not account for Johnston's (1986) observations. Instead, we suggest that olivine can be brought onto the liquidus of such compositions only through the involvement of H2O, which will affect the influence of bulk CaO, MgO, and Al2O3 contents on the identity of HAB liquidus phases (olivine or plagioclase) at pressures less than ˜12 kbar.

  13. Rapid high-silica magma generation in basalt-dominated rift settings

    NASA Astrophysics Data System (ADS)

    Berg, Sylvia E.; Troll, Valentin R.; Burchardt, Steffi; Deegan, Frances M.; Riishuus, Morten S.; Whitehouse, Martin J.; Harris, Chris; Freda, Carmela; Ellis, Ben S.; Krumbholz, Michael; Gústafsson, Ludvik E.

    2015-04-01

    crustal recycling as a key process. Our results therefore provide a mechanism and a time-scale for rapid, voluminous silicic magma generation in modern and ancient basalt-dominated rift setting, such as Afar, Taupo, and potentially early Earth. The Neogene plume-related rift flank setting of NE-Iceland may thus constitute a plausible geodynamic and compositional analogue for generating silicic (continental) crust in the subduction-free setting of a young Earth (e.g. ≥3 Ga [14]). [1] Bunsen, R. 1851. Ann. Phys. Chem. 159, 197-272. [2] MacDonald R., et al., 1987. Mineral. Mag. 51, 183-202. [3] Jonasson, K., 2007. J. Geodyn. 43, 101-117. [4] Martin, E., et al., 2011. Earth Planet. Sci. Lett. 311, 28-38. [5] Charreteur, G., et al., 2013.Contrib. Mineral. Petr. 166, 471- 490. [6] Willbold, E., et al., 2009. Earth Planet. Sci. Lett. 279, 44-52. [7] Reimink, J.R., et al., 2014. Nat. Geosci. 7, 529-533. [8] Gústafsson, L.E., et al., 1989. Jökull 39, 75-89. [9] Meade, F.C., et al., 2014. Nat. comm. 5. [10] Óskarsson, B.V., Riishuus, M.S., 2013. J. Volcanol. Geoth. Res. 267, 92-118. [11] Carley, T.L., et al., 2014. Earth Planet. Sci. Lett. 405, 85-97. [12] Trail, D., et al., 2007. Geochem. Geophys. Geosyst.8, Q06014. [13] Harrison, T.M. et al., 2008. Earth Planet. Sci. Lett.268, 476-486. [14] Kamber, B. S., et al., 2005. Earth Planet. Sci. Lett. 240, 276-290.

  14. High-Mg basalts as a Signal of Magma System Replenishment at Lopevi Island, Vanuatu

    NASA Astrophysics Data System (ADS)

    Stewart, R. B.; Smith, I. E.; Turner, M. B.; Cronin, S. J.

    2007-05-01

    Lopevi is is a basalt to basaltic andesite island stratovolcano in central Vanuatu and is part of a long-lived, mature Island Arc chain. Central Vanuatu is tectonically influenced by the subduction of the D'Entrecasteaux zone. Primitive rock types that have been identified from the arc include picrites, ankaramites and high MgO basalts. High MgO rocks are generally considered to be a relatively rare component of arc-type magma suites but as detailed sequence sampling of individual volcanoes occurs, they have been identified more often. Here we report on the occurrence of high-Mg basalts in a sequence of lavas erupted in the last 100 years from Lopevi volcano. Activity at Lopevi is characteristically intermittent with eruptive sequences occurring over a c. 6 year period, separated by longer periods of repose. A major eruptive episode in 1939 caused evacuation of the island and the next eruptive episode in the 1960's also led to evacuation. The 1960's cycle of activity ended in 1982. The most recent phase of activity commenced in 1998 with a return to eruption of more siliceous, high alumina basaltic andesite. Geochemical data show that the 1960's lavas were different from those erupted earlier and later. They are olivine basalts with up to 9 wt percent MgO, 70 ppm Ni and 300 ppm Cr; Al2O3 content is about 12 wt percent. The 2003 lavas and pre-1960's lavas, in contrast, are basaltic andesites with c. 4 wt percent MgO, less than 25 ppm Ni, less than 100 ppm Cr and c. 20 wt percent Al2O3. The 1960's Lopevi sequence of eruptions represents an injection of a more primitive, high MgO magma at the end of a 21 year quiescent period after the major eruptions of 1939. Injection of small batches of more primitive magmas over decadal time periods at Lopevi marks the initiation of a new magmatic cycle. The occurrence of high MgO magmas as part of a cycle that includes typically low MgO arc type rocks demonstrates a consanguineous relationship and shows that high MgO arc type

  15. The basalts of Mare Frigoris

    NASA Astrophysics Data System (ADS)

    Kramer, G. Y.; Jaiswal, B.; Hawke, B. R.; Öhman, T.; Giguere, T. A.; Johnson, K.

    2015-10-01

    This paper discusses the methodology and results of a detailed investigation of Mare Frigoris using remote sensing data from Clementine, Lunar Prospector, and Lunar Reconnaissance Orbiter, with the objective of mapping and characterizing the compositions and eruptive history of its volcanic units. With the exception of two units in the west, Mare Frigoris and Lacus Mortis are filled with basalts having low-TiO2 to very low TiO2, low-FeO, and high-Al2O3 abundances. These compositions indicate that most of the basalts in Frigoris are high-Al basalts—a potentially undersampled, yet important group in the lunar sample collection for its clues about the heterogeneity of the lunar mantle. Thorium abundances of most of the mare basalts in Frigoris are also low, although much of the mare surface appears elevated due to contamination from impact gardening with the surrounding high-Th Imbrium ejecta. There are, however, a few regional thorium anomalies that are coincident with cryptomare units in the east, the two youngest mare basalt units, and some of the scattered pyroclastic deposits and volcanic constructs. In addition, Mare Frigoris lies directly over the northern extent of the major conduit for a magma plumbing system that fed many of the basalts that filled Oceanus Procellarum, as interpreted by Andrews-Hanna et al. (2014) using data from the Gravity Recovery and Interior Laboratory mission. The relationship between this deep-reaching magma conduit and the largest extent of high-Al basalts on the Moon makes Mare Frigoris an intriguing location for further investigation of the lunar mantle.

  16. A potpourri of pristine moon rocks, including a VHK mare basalt and a unique, augite-rich Apollo 17 anorthosite

    NASA Astrophysics Data System (ADS)

    Warren, Paul H.; Shirley, David N.; Kallemeyn, Gregory W.

    1986-09-01

    Analysis of previously unstudied Apollo lithic fragments continues to yield surprising results. Among this year's samples is a small anorthosite fragment, 76504,18, the first pristine anorthosite found from Apollo 17. This unique lithology strongly resembles the main type of Apollo anorthosites ferroan anorthosites), but 76504,18 has a far higher ratio (about 9) of high-Ca pyroxene to low-Ca pyroxene, higher Na in its plagioclase, higher contents of incompatible elements such as REE, and a higher Eu/Al ratio. Assuming that 76504,18 is a cumulate with less than 45% trapped liquid, its parent melt probably had a negative Eu anomaly. In all these respects, 76504,18 seems more likely than (other) ferroan anorthosites to be closely related to typical mare basalts. Apparrently this anorthosite was among the latest to form by plagioclase flotation abovbe a primordial magmasphere; typical mare basalt source regions probably accumulated at about the same time or even earlier. Another previusly unstudied fragment, 14181c,is a VKH (very high potassium) basalt that is similar in most respects to typical (``aluminous'') Apollo 14 mare basalt but has a K/La ratio of 1050. This lithology probably formed after a normal Apollo 14 mare basaltic melt partially assimilated granite. New data for siderophile elements in Apollo 1 mare basalts indicate that only the lowest of earlier data are trustworthy a being free of laboratory contamination.

  17. Petrogenesis of mare basalts - A record of lunar volcanism

    NASA Astrophysics Data System (ADS)

    Neal, Clive R.; Taylor, Lawrence A.

    1992-06-01

    The classification, sources, and overall petrogenesis of mare basalts are reviewed. All mare basalt analyses are used to define a sixfold classification scheme using TiO2 contents as the primary division. A secondary division is made using Al2O3 contents, and a tertiary division is defined using K contents. Such divisions and subdivisions yield a classification containing 12 categories, of which six are accounted for by the existing Apollo and Luna collections. A variety of postmagma-generation such as fractional crystallization, either alone or combined with wallrock assimilation, are invoked to explain the compositional ranges of the various mare basalt suites. High-Ti mare basalts are found at Apollo 1 and Apollo 17 sites; the A-11 basalts contain lower TiO2 abundances, a considerably larger range in trace-element contents, and the only occurrence of high-Ti/high-K mare basalts. The low-Ti basalts exhibit a wide range of major-and trace-element compositions and require source heterogeneity, fractional crystallization, and some assimilation.

  18. Valence of Ti, V, and Cr in Apollo 14 aluminous basalts 14053 and 14072

    NASA Astrophysics Data System (ADS)

    Simon, Steven B.; Sutton, Stephen R.

    2017-09-01

    The valences of Ti, V, and Cr in olivine and pyroxene, important indicators of the fO2 of the source region of their host rocks, can be readily measured nondestructively by XANES (X-ray absorption near edge structure) spectroscopy, but little such work has been done on lunar rocks, and there is some uncertainty regarding the presence of Ti3+ in lunar silicates and the redox state of the lunar mantle. This is the first study involving direct XANES measurement of valences of multivalent cations in lunar rocks. Because high alumina activity facilitates substitution of Ti cations into octahedral rather than tetrahedral sites in pyroxene and Ti3+ only enters octahedral sites, two aluminous basalts from Apollo 14, 14053 and 14072, were studied. Most pyroxene contains little or no detectable Ti3+, but in both samples relatively early, magnesian pyroxene was found that has Ti valences that are not within error of 4; in 14053, this component has an average Ti valence of 3.81 ± 0.06 (i.e., Ti3+/[Ti3+ + Ti4+ = 0.19]). This pyroxene has relatively low atomic Ti/Al ratios (<0.4) due to crystallization before plagioclase, contrary to the long-held belief that lunar pyroxene with Ti/Al > 0.5 contains Ti3+ and pyroxene with lower ratios does not. Later pyroxene, with lower Mg/Fe and higher Ti/Al ratios, has higher proportions of Ti (all Ti4+) in tetrahedral sites. All pyroxene analyzed contains divalent Cr, ranging from 15 to 30% of the Cr present, and all but one analysis spot contains divalent V, accounting for 0 to 40% (typically 20-30%) of the V present. Three analyses of olivine in 14053 do not show any Ti3+, but Ti valences in 14072 olivine range from 4 down to 3.70 ± 0.10. In 14053 olivine, 50% of the Cr and 60% of the V are divalent. In 14072 olivine, the divalent percentages are 20% for Cr and 20-60% for V. These results indicate significant proportions of divalent Cr and V and limited amounts of trivalent Ti in the parental melts, especially when crystal

  19. High δ56Fe values in Samoan basalts

    NASA Astrophysics Data System (ADS)

    Konter, J. G.; Pietruszka, A. J.; Hanan, B. B.; Finlayson, V.

    2014-12-01

    Fe isotope fractionation spans ~0-0.4 permil in igneous systems, which cannot all be attributed to variable source compositions since peridotites barely overlap these compositions. Other processes may fractionate Fe isotopes such as variations in the degree of partial melting, magmatic differentiation, fluid addition related to the final stages of melt evolution, and kinetic fractionation related to diffusion. An important observation in igneous systems is the trend of increasing Fe isotope values against an index of magmatic fractionation (e.g. SiO2; [1]). The data strongly curve from δ56Fe >0.3 permil for SiO2 >70 wt% down to values around 0.09 permil from ~65 wt% down to 40 wt% SiO2 of basalts. However, ocean island basalts (OIBs) have a slightly larger δ56Fe variability than mid ocean ridge basalts (MORBs; [e.g. 2]). We present Fe isotope data on samples from the Samoan Islands (OIB) that have unusually high δ56Fe values for their SiO2 content. We rule out alteration by using fresh samples, and further test for the effects of magmatic processes on the δ56Fe values. In order to model the largest possible fractionation, unusually small degrees of melting with extreme fractionation factors are modeled with fractional crystallization of olivine alone, but such processing fails to fractionate the Fe isotopes to the observed values. Moreover, Samoan lavas likely also fractionated clinopyroxene, and its lower fractionation factor would limit the final δ56Fe value of the melt. We therefore suggest the mantle source of Samoan lavas must have had unusually high δ56Fe. However, there is no clear correlation with the highly radiogenic isotope signatures that reflect the unique source compositions of Samoa. Instead, increasing melt extraction correlates with lower δ56Fe values in peridotites assumed to be driven by the preference for the melt phase by heavy Fe3+, while high values may be related to metasomatism [3]. The latter would be in line with metasomatized

  20. Is formation segregation melts in basaltic lava flows a viable analogue to melt generation in basaltic systems?

    NASA Astrophysics Data System (ADS)

    Thordarson, Thorvaldur; Sigmarsson, Olgeir; Hartley, Margaret E.; Miller, Jay

    2010-05-01

    Pahoehoe sheet lobes commonly exhibit a three-fold structural division into upper crust, core and lower crust, where the core corresponds to the liquid portion of an active lobe sealed by crust. Segregations are common in pahoehoe lavas and are confined to the core of individual lobes. Field relations and volume considerations indicate that segregation is initiated by generation of volatile-rich melt at or near the lower crust to core boundary via in-situ crystallization. Once buoyant, the segregated melt rises through the core during last stages of flow emplacement and accumulates at the base of the upper crust. The segregated melt is preserved as vesicular and aphyric, material within well-defined vesicle cylinders and horizontal vesicle sheets that make up 1-4% of the total lobe volume. We have undertaken a detailed sampling and chemical analysis of segregations and their host lava from three pahoehoe flow fields; two in Iceland and one in the Columbia River Basalt Group (CRBG). The Icelandic examples are: the olivine-tholeiite Thjorsa lava (24 cubic km) of the Bardarbunga-Veidivotn volcanic system and mildly alkalic Surtsey lavas (1.2 cubic km) of the Vestmannaeyjar volcanic system. The CRBG example is the tholeiitic ‘high-MgO group' Levering lava (>100? cubic km) of the N2 Grande Ronde Basalt. The thicknesses of the sampled lobes ranges from 2.3 to 14 m and each lobe feature well developed network of segregation structures [1,2,3]. Our whole-rock analyses show that the segregated melt is significantly more evolved than the host lava, with enrichment factors of 1.25 (Thjorsa) to 2.25 (Surtsey) for incompatible trace elements (Ba, Zr). Calculations indicate that the segregation melt was formed by 20 to 50% closed-system fractional crystallization of plagioclase (plus minor pyroxene and/or olivine). A more striking feature is the whole-rock composition of the segregations. In the olivine-tholeiite Thjorsa lava the segregations exhibit quartz tholeiite

  1. Al-augite and Cr-diopside ultramafic xenoliths in basaltic rocks from western United States

    USGS Publications Warehouse

    Wilshire, H.G.; Shervais, J.W.

    1975-01-01

    Ultramafic xenoliths in basalts from the western United States are divided into Al-augite and Cr-diopside groups. The Al-augite group is characterized by Al, Ti-rich augites, comparatively Fe-rich olivine and orthopyroxene, and Al-rich spinel, the Cr-diopside group by Cr-rich clinopyroxene and spinel and by Mg-rich olivine and pyroxenes. Both groups have a wide range of subtypes, but the Al-augite group is dominated by augite-rich varieties, and the Cr-diopside group by olivine-rich lherzolites. ?? 1975.

  2. Sulfur Concentration of High-FeO* Basalts at Sulfide Saturation at High Pressures and Temperatures - Implications for Deep Sulfur Cycle on Mars (Invited)

    NASA Astrophysics Data System (ADS)

    Dasgupta, R.; Ding, S.

    2013-12-01

    One of the chief influences of magma in the mantles terrestrial planets is its role in outgassing and ingassing of key volatiles and thus affecting planetary dynamics and climate over long timescales. For Mars, magmatic release of greenhouse gases has been argued to be a major factor in creating warm ancient climate. However, the responsible magmatic gas has not been unequivocally identified. SO2 or H2S could have been the main greenhouse gases, yet the magmatic outflux of S from the martian mantle is poorly constrained. Righter et al. [1] showed that the use of sulfur content at sulfide saturation (SCSS) models based on low-FeO*, high-alumina terrestrial basalts to martian basalts leads to significant error. However, experiments on high-FeO* basalts remain limited to ≤0.8 GPa [1], although the onset of melting in the martian mantle may take place at 250-400 km depth (3-5 GPa) [2]. To constrain SCSS of martian magmas at mantle conditions, we simulated basalt-sulfide melt equilibria using two synthesized meteorite compositions, i.e., Yamato980459 (FeO* ˜17 wt.%; Al2O3 ˜6 wt.%) and NWA2990 (FeO* ˜16 wt.%; Al2O3 ˜9 wt.%) in both anhydrous and hydrous conditions at 1-3 GPa and 1500-1700 °C. Experiments were conducted in graphite capsules, using an end-loaded piston cylinder device. Sulfur contents of sulfide melt-saturated experimental quenched basalts were determined using electron microprobe. Our experimental results show that SCSS decreases with increasing pressure and increases with increasing temperature and melt hydration. Based on our experimental SCSS and those from previous low-pressure experiments on high-FeO* martian basalts [2], we developed a new parameterization to predict martian basalt SCSS as a function of depth, temperature, and melt composition. Our model suggests that at the conditions of last equilibration with the sulfide-saturated mantle [2], martian basalts may contain as high as 3500-4700 ppm S and thus S-rich gases might have caused the

  3. Basalts, gabbroic cumulates and andesite generation in the Lesser Antilles - An experimental perspective

    NASA Astrophysics Data System (ADS)

    Pichavant, M.; Di Carlo, I.; Lesne, P.; Wulput, L.; Maury, R. C.; Macdonald, R.

    2012-12-01

    New experiments have been performed to explore the petrological relationships between basaltic magmas, gabbroic cumulates, amphibole (Amph) crystallization and andesite generation in the Lesser Antilles arc. Four natural basalt starting materials representative of typical high-MgO (HMB) and high-Al2O3 (HAB) along the arc have been selected. Results are combined with previous experimental work on mafic melts from Mt Pelée and St Vincent. Under H2O-saturated conditions, Amph stability is about 25°C higher in HMB than HAB, being limited to a maximum of1050-1100°C at 10 kbar. Amph is the liquidus phase for the 3 high-Al2O3 basalts above 4 kbar (> 6 wt% H2O in melt), and very close to the liquidus for the high-MgO basalt at 10 kbar (9-10 wt% H2O in melt). Derivative liquids from the crystallization of Amph-bearing assemblages are basaltic to dacitic, depending on parental melt composition, extent of crystallization and experimental fO2. Fractionation of > 20 wt% Amph is necessary to produce andesitic-dacitic liquids from basaltic parents. Amph composition reflects the Al/Si and Mg# of their parental melts. It generally divides into two groups, one Si-poor and Al-rich (pargasite: gabbroic cumulates, basalts, andesites) and the other Si-rich and Al-poor (edenite: dioritic cumulates, andesites, dacites). The systematic presence of Amph in gabbroic cumulate blocks, its near-absence in basaltic to andesitic lavas, plus the compositional contrast between the two Amph groups, suggest the existence of an Amph-free "window" along the P-T-X magma evolution trend. In gabbroic cumulates, Amph shows systematic differences between islands (similar Mg# but higher AlIV in Martinique than in St Vincent). Our experimental results suggest that the origin of the St Vincent gabbroic assemblages can be traced back to residual melts generated from the crystallization of high-MgO basalts. However, Amph with the highest AlIV(eg, Martinique, Montserrat) have not been reproduced in our

  4. Naming Lunar Mare Basalts: Quo Vadimus Redux

    NASA Astrophysics Data System (ADS)

    Ryder, G.

    1999-01-01

    and ordering. Classification functions as a primary tool of perception, opening up ways of seeing things and sealing off others. Lacking a classification, mare-basalt petrology appears immature with little consensual perception of the qualities and signifigances of the basalts. The appearance may or may not be the reality, but it demonstrates a need for a functioning, communicatory classification, in particular for the dissemination of ideas and the furtherance of studies. Names are inconsistent both among lunar rocks and between lunar and terrestrial rocks. Samples are labeled by elements, chemistry with tags, chemistry cast into mineralogy, or a mineralogical attribute (respective examples A 14 VHK A 17 high-Ti Group B 1, A 15 quartz-normative, A-12 pigeonite). Such inconsistency is bound to lead to confusion. Chemical descriptions mean different things in mildly different contexts: A low-K Fra Mauro basalt (not a basalt!) contains slightly more K than an Apollo 11 high-K basalt. High-alumina means more than about 11% Al2O3 for mare basalts, but 21% for highlands "basalts." Volcanic KREEP basalts, about 18% Al2O3, are not (usually) qualified with "high-alumina." Yet for terrestrial basalts, high-alumina means more than about 17% Al2O3, Further, even very-low-Ti mare basalts have Ti abundances (about 0.5-1.5% Ti02) as great as typical terrestrial basalts. Thus, parallels between lunar and terrestrial nomenclatures are nonexistent (reinforced by the fact that a mare-basalt composition found on Earth would be too ultramafic to name basalt at all). A separate type of name exists for mare-basalt glasses, which are identified by site, color, and a letter for any subsequent distinctions, e.g., A15 Green Glass C. While the inconsistencies cited above by themselves make nomenclature arcane, a greater source of difficulty is the common use of acronyms such as VHK and VLT. Most of these are partly chemical acronyms, but degrading the symbol Ti to T (for instance) makes them

  5. Searching for neuKREEP: An EMP study of Apollo 11 Group A basalts

    NASA Technical Reports Server (NTRS)

    Jerde, Eric A.; Taylor, Lawrence A.

    1993-01-01

    The Apollo 11 and 17 landing sites are characterized by the presence of high-Ti basalts (TiO2 greater than 6 percent). The Group A basalts of Apollo 11 have elevated K compositions (greater than 2000 ppm); and are enriched in incompatible trace elements relative to the other types of high-Ti basalt found in the region. These unique basalts also are the youngest of all high-Ti basalts, with an age of 3.56 +/- 0.02 Ga. Recent modelling of the Apollo 11 Group A basalts by Jerde et al. has demonstrated that this unique variety of high-Ti basalt may have formed through fractionation of a liquid with the composition of the Apollo 11 orange glass, coupled with assimilation of evolved material (dubbed neuKREEP and having similarities to lunar quartz monzodiorite). Assimilation of this material would impart its REE signature on the liquid, resulting in the elevated REE abundances observed. Minerals such as whitlockite which contain a large portion of the REE budget can be expected to reflect the REE characteristics of the assimilant. To this end, an examination of the whitlockite present in the Apollo 11 Group A basalts was undertaken to search for evidence of the neuKREEP material assimilated.

  6. Probing the atomic structure of basaltic melts generated by partial melting of upper mantle peridotite (KLB-1): Insights from high-resolution solid-state NMR study

    NASA Astrophysics Data System (ADS)

    Park, S. Y.; Lee, S. K.

    2015-12-01

    Probing the structural disorder in multi-component silicate glasses and melts with varying composition is essential to reveal the change of macroscopic properties in natural silicate melts. While a number of NMR studies for the structure of multi-component silicate glasses and melts including basaltic and andesitic glasses have been reported (e.g., Park and Lee, Geochim. Cosmochim. Acta, 2012, 80, 125; Park and Lee, Geochim. Cosmochim. Acta, 2014, 26, 42), many challenges still remain. The composition of multi-component basaltic melts vary with temperature, pressure, and melt fraction (Kushiro, Annu. Rev. Earth Planet. Sci., 2001, 71, 107). Especially, the eutectic point (the composition of first melt) of nepheline-forsterite-quartz (the simplest model of basaltic melts) moves with pressure from silica-saturated to highly undersaturated and alkaline melts. The composition of basaltic melts generated by partial melting of upper mantle peridotite (KLB-1, the xenolith from Kilbourne Hole) also vary with pressure. In this study we report experimental results for the effects of composition on the atomic structure of Na2O-MgO-Al2O3-SiO2 (NMAS) glasses in nepheline (NaAlSiO4)-forsterite (Mg2SiO4)-quartz (SiO2) eutectic composition and basaltic glasses generated by partial melting of upper mantle peridotite (KLB-1) using high-resolution multi-nuclear solid-state NMR. The Al-27 3QMAS (triple quantum magic angle spinning) NMR spectra of NMAS glasses in nepheline-forsterite-quartz eutectic composition show only [4]Al. The Al-27 3QMAS NMR spectra of KLB-1 basaltic glasses show mostly [4]Al and a non-negligible fraction of [5]Al. The fraction of [5]Al, the degree of configurational disorder, increases from 0 at XMgO [MgO/(MgO+Al2O3)]=0.55 to ~3% at XMgO=0.79 in KLB-1 basaltic glasses while only [4]Al are observed in nepheline-forsterite-quartz eutectic composition. The current experimental results provide that the fraction of [5]Al abruptly increases by the effect of

  7. Rare-earth element geochemistry and the origin of andesites and basalts of the Taupo Volcanic Zone, New Zealand

    USGS Publications Warehouse

    Cole, J.W.; Cashman, K.V.; Rankin, P.C.

    1983-01-01

    Two types of basalt (a high-Al basalt associated with the rhyolitic centres north of Taupo and a "low-Al" basalt erupted from Red Crater, Tongariro Volcanic Centre) and five types of andesite (labradorite andesite, labradorite-pyroxene andesite, hornblende andesite, pyroxene low-Si andesite and olivine andesite/low-Si andesite) occur in the Taupo Volcanic Zone (TVZ), North Island, New Zealand. Rare-earth abundances for both basalts and andesites are particularly enriched in light rare-earth elements. High-Al basalts are more enriched than the "low-Al" basalt and have values comparable to the andesites. Labradorite and labradorite-pyroxene andesites all have negative Eu anomalies and hornblende andesites all have negative Ce anomalies. The former is probably due to changing plagioclase composition during fractionation and the latter to late-stage hydration of the magma. Least-squares mixing models indicate that neither high-Al nor "low-Al" basalts are likely sources for labradorite/labradorite-pyroxene andesites. High-Al basalts are considered to result from fractionation of olivine and clinopyroxene from a garnet-free peridotite at the top of the mantle wedge. Labradorite/labradorite-pyroxene andesites are mainly associated with an older NW-trending arc. The source is likely to be garnet-free but it is not certain whether the andesites result from partial melting of the top of the subducting plate or a hydrated lower portion of the mantle wedge. Pyroxene low-Si andesites probably result from cumulation of pyroxene and calcic plagioclase within labradorite-pyroxene andesites, and hornblende andesites by late-stage hydration of labradorite-pyroxene andesite magma. Olivine andesites, low-Si andesites and "low-Al" basalts are related to the NNE-trending Taupo-Hikurangi arc structure. Although the initial source material is different for these lavas they have probably undergone a similar history to the labradorite/labradorite-pyroxene andesites. All lavas show evidence

  8. High-Mg subduction-related Tertiary basalts in Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Morra, V.; Secchi, F. A. G.; Melluso, L.; Franciosi, L.

    1997-03-01

    The Oligo-Miocene volcanics (32-15 Ma), which occur in the Oligo-Miocene Sardinian Rift, were interpreted in the literature as an intracontinental volcanic arc built upon continental crust about 30 km thick. They are characterized by a close field association of dominantly andesites and acid ignimbrites, with subordinate basalts. In this paper we deal with the origin and evolution of recently discovered high-magnesia basalts aged ca. 18 Ma occurring in the Montresta area, northern Sardinia, relevant to the petrogenesis of the Cenozoic volcanics of Sardinia. The igneous rocks of the Montresta area form a tholeiitic, subduction-related suite. Major-element variation from the high-magnesia basalts (HMB) to high-alumina basalts (HAB) are consistent with crystal/liquid fractionation dominated by olivine and clinopyroxene. Proportions of plagioclase and titanomagnetite increase from HAB to andesites. Initial {87Sr }/{86Sr } ratios increase with differentiation from 0.70398 for the HMB to 0.70592 for the andesites. This suggests concomitant crustal contamination. The geochemical characteristics of the high-magnesia basalts are typical of subduction-related magmas, with negative Nb, Zr and Ti spikes in mantle-normalized diagrams. It is proposed that these high-magnesia basalts were produced by partial melting of a mantle source characterized by large-ion lithophile elements (LILE) enrichment related principally to dehydration of subducted oceanic crust. Chondrite-normalized rare earth elements (REE) patterns indicate that the lavas are somewhat enriched in light rare earth elements (LREE), with flat heavy rare earth elements (HREE) patterns. This evidence is consistent with a spinel-bearing mantle source. The sub-parallel chondrite-normalized patterns show enrichment with differentiation, with a greater increase of LREE than HREE. The occurrence of high-magnesia basalts at 18 Ma in Sardinia appears to be correlated with and favoured by pronounced extensional tectonics at

  9. Coatings on Atacama Desert Basalt: A Possible Analog for Coatings on Gusev Plains Basalt

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Golden, D. C.; Amundson, R.; Chong-Diaz, G.; Ming, D. W.

    2007-01-01

    Surface coatings on Gusev Plains basalt have been observed and may contain hematite and nanophase Fe-oxides along with enrichments in P, S, Cl, and K relative to the underlying rock. The Gusev coatings may be derived from the dissolution of adhering soil and/or parent rock along with the addition of S and Cl from outside sources. Transient water for dissolution could be sourced from melting snow during periods of high obliquity, acid fog, and/or ground water (Haskin et al., 2005). Coatings on basalt in the hyper-arid (less than 2mm y(sup -1)) Atacama Desert may assist in understanding the chemistry, mineralogy and formation mechanisms of the Gusev basalt coatings. The Atacama Desert climate is proposed to be analogous to a paleo-Mars climate that was characterized by limited aqueous activity when the Gusev coatings could have formed. The objectives of this work are to (i) determine the chemical nature and extent of surface coatings on Atacama Desert basalt, and (ii) assess coating formation mechanisms in the Atacama Desert. Preliminary backscattered electron imaging of Atacama basalt thin-sections indicated that the coatings are as thick as 20 m. The boundary between the coating and the basalt labradorite, ilmenite, and augite grains was abrupt indicating that the basalt minerals underwent no chemical dissolution. The Atacama coatings have been added to the basalt instead of being derived from basalt chemical weathering. Semi-quantitative energy dispersive spectroscopy shows the coatings to be chemically homogeneous. The coating is depleted in Ca (0.9 wt% CaO) and enriched in K (1.3 wt.% K2O) and Si (69.1 wt.% SiO2) relative to the augite and labradorite grains. A dust source enriched in Si (e.g., poorly crystalline silica) and K and depleted in Ca appears to have been added to the basalt surface. Unlike the Gusev coatings, no P, S, and Cl enrichment was observed. However, Fe (3.2 wt.% FeO) was present in the Atacama coatings suggesting the present of Fe

  10. Volatiles in High-K Lunar Basalts

    NASA Technical Reports Server (NTRS)

    Barnes, Jessica J.; McCubbin, Francis M.; Messenger, Scott R.; Nguyen, Ann; Boyce, Jeremy

    2017-01-01

    Chlorine is an unusual isotopic system, being essentially unfractionated ((delta)Cl-37 approximately 0 per mille ) between bulk terrestrial samples and chondritic meteorites and yet showing large variations in lunar (approximately -4 to +81 per mille), martian, and vestan (HED) samples. Among lunar samples, the volatile-bearing mineral apatite (Ca5(PO4)3[F,Cl,OH]) has been studied for volatiles in K-, REE-, and P (KREEP), very high potassium (VHK), low-Ti and high-Ti basalts, as well as samples from the lunar highlands. These studies revealed a positive correlation between in-situ (delta)Cl-37 measurements and bulk incompatible trace elements (ITEs) and ratios. Such trends were interpreted to originate from Cl isotopic fractionation during the degassing of metal chlorides during or shortly after the differentiation of the Moon via a magma ocean. In this study, we investigate the volatile inventories of a group of samples for which new-era volatile data have yet to be reported - the high-K (greater than 2000 ppm bulk K2O), high-Ti, trace element-rich mare basalts. We used isotope imaging on the Cameca NanoSIMS 50L at JSC to obtain the Cl isotopic composition [((Cl-37/(35)Clsample/C-37l/(35)Clstandard)-1)×1000, to get a value in per thousand (per mille)] which ranges from approximately -2.7 +/- 2 per mille to +16.1 +/- 2 per mille (2sigma), as well as volatile abundances (F & Cl) of apatite in samples 10017, 10024 & 10049. Simply following prior models, as lunar rocks with high bulk-rock abundances of ITEs we might expect the high-K, high-Ti basalts to contain apatite characterized by heavily fractionated (delta)Cl-37 values, i.e., Cl obtained from mixing between unfractionated mantle Cl (approximately 0 per mille) and the urKREEP reservoir (possibly fractionated to greater than +25 per mille.). However, the data obtained for the studied samples do not conform to either the early degassing or mixing models. Existing petrogentic models for the origin of the high

  11. Early and Late Alkali Igneous Pulses and a High-3He Plume Origin for the Deccan Flood Basalts.

    PubMed

    Basu, A R; Renne, P R; Dasgupta, D K; Teichmann, F; Poreda, R J

    1993-08-13

    Several alkalic igneous complexes of nephelinite-carbonatite affinities occur in extensional zones around a region of high heat flow and positive gravity anomaly within the continental flood basalt (CFB) province of Deccan, India. Biotites from two of the complexes yield (40)Ar/(39)Ar dates of 68.53 +/- 0.16 and 68.57 +/- 0.08 million years. Biotite from a third complex, which intrudes the flood basalts, yields an (40)Ar/(39)Ar date of 64.96 +/- 0.1 1 million years. The complexes thus represent early and late magmatism with respect to the main pulse of CFB volcanism 65 million years ago. Rocks from the older complexes show a (3)He/(4)He ratio of 14.0 times the air ratio, an initial (87)Sr/(86)Sr ratio of 0.70483, and other geochemical characteristics similar to ocean island basalts; the later alkalic pulse shows isotopic evidence of crustal contamination. The data document 3.5 million years of incubation of a primitive, high-(3)He mantle plume before the rapid eruption of the Deccan CFB.

  12. Effect of Forging Parameters on Low Cycle Fatigue Behaviour of Al/Basalt Short Fiber Metal Matrix Composites

    PubMed Central

    Karthigeyan, R.; Ranganath, G.

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface. PMID:24298207

  13. Effect of forging parameters on low cycle fatigue behaviour of Al/basalt short fiber metal matrix composites.

    PubMed

    Karthigeyan, R; Ranganath, G

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  14. Experimental crystallization of chrome spinel in FAMOUS basalt 527-1-1

    NASA Astrophysics Data System (ADS)

    Fisk, Martin R.; Bence, A. E.

    1980-06-01

    FAMOUS basalt 527-1-1 (a high-Mg oceanic pillow basalt) has three generations of spinel which can be distinguished petrographically and chemically. The first generation (Group I) have reaction coronas and are high in Al 2O 3. The second generation (Group II) have no reaction coronas and are high in Cr 2O 3 and the third generation (Group III) are small, late-stage spinels with intermediate Al 2O 3 and Cr 2O 3. Experimental synthesis of spinels from fused rock powder of this basalt was carried out at temperatures of 1175-1270°C and oxygen fugacities of 10 -5.5 to 10 -10 atm at 1 atm pressure. Spinel is the liquidus phase at oxygen fugacities of 10 -8.5 atm and higher but it does not crystallize at any temperature at oxygen fugacities less than 10 -9.5. The composition of our spinels synthesized at 1230-1250°C and 10 -9 atm f O 2 are most similar to the high-Cr spinels (Group II) found in the rock. Spinels synthesized at 1200°C and 10 -8.5 atm O 2 are chemically similar to the Group III spinels in 527-1-1. We did not synthesize spinel at any temperature or oxygen fugacity that are similar to the high-Al (Group I) spinel found in 527-1-1. These results indicate that the high-Cr (Group II) spinel is the liquidus phase in 527-1-1 at low pressure and Group III spinel crystallize below the liquidus (˜1200°C) after eruption of the basalt on the sea floor. The high-Al spinel (Group I) could have crystallized at high pressure or from a magma enriched in Al and perhaps Mg compared to 527-1-1.

  15. Geochemistry of 24 Ma Basalts from Northeast Egypt: Implications for Small-Scale Convection Beneath the East African Rift System

    NASA Astrophysics Data System (ADS)

    Endress, C. A.; Furman, T.; Ali Abu El-Rus, M.

    2009-12-01

    Basalts ~24 Ma in the Cairo-Suez and Fayyum districts of NE Egypt represent the youngest and northernmost lavas potentially associated with the initiation of rifting of the Red Sea. The age of these basalts corresponds to a time period of significant regional magmatism that occurred subsequent to emplacement of 30 Ma flood basalts attributed to the Afar Plume in Ethiopia and Yemen. Beginning ~28 Ma, widespread magmatism occurred across supra-equatorial Africa in Hoggar (Algeria), Tibesti (Chad), Darfur (Sudan), Turkana (Kenya) and Samalat, Bahariya, Quesir and the Sinai Peninsula (Egypt) (e.g. Allegre et al., 1981; Meneisy, 1990; Baldridge et al., 1991; Wilson and Guiraud, 1992; Furman et al., 2006; Lucassen et al., 2008). Available geochemical and isotopic data indicate that Hoggar and Darfur basalts are similar to Turkana lavas, although no direct link between the N African lavas and the Kenya Plume has been made. New geochemical data on the NE Egyptian basalts provide insight into the thermochemical, isotopic, and mineralogical characteristics of the mantle beneath the region in which they were emplaced. The basalts are subalkaline with OIB-like incompatible trace element abundances and homogeneous major element, trace element and isotopic geochemistry. They display relatively flat ITE patterns, with notable positive Pb and negative P anomalies. Isotopic (143Nd/144Nd = 0.51274-0.51285, 87Sr/86Sr = 0.7049-0.7050) and trace element signatures (Ce/Pb = 16-22, Ba/Nb = 9-14, and La/Nb = 0.9-1.0) are consistent with melting of a sub-lithospheric source that has been slightly contaminated by continental crust during ascent and emplacement. The Pb isotopic ratios (206Pb/204Pb = 18.53-18.62, 207Pb/204Pb = 15.59-15.64, and 208Pb/204Pb = 38.80-39.00) in the Egyptian basalts are close to the range of those found in the 30 Ma Ethiopian flood basalts, which are distinct from the more highly radiogenic, high-μ type signature seen in basalts from Turkana, Darfur, and Hoggar

  16. The Plumbing System of a Highly Explosive Basaltic Volcano: Sunset Crater, AZ

    NASA Astrophysics Data System (ADS)

    Allison, C. M.; Roggensack, K.; Clarke, A. B.

    2015-12-01

    We seek to better understand highly explosive basaltic eruptions with specific focus on magmatic volatile solubility in alkali basalts and the magma plumbing system. Sunset Crater, an alkali basalt (~3.7 wt.% alkalis) scoria cone volcano, erupted explosively in 1085 AD. We analyzed 125 primary melt inclusions (MIs) from Sunset Crater tephra deposited by 2 subplinian phases and 1 Strombolian explosion to compare magma volatiles and storage conditions. We picked rapidly quenched free olivine crystals and selected large volume MIs (50-180 μm) located toward crystal cores. MIs are faceted and exhibit little major element composition variability with minor post entrapment crystallization (2-10%). MIs are relatively dry but CO2-rich. Water content varies from 0.4 wt.% to 1.5 wt.% while carbon dioxide abundance ranges between 1,150 ppm and 3,250 ppm. Most MIs contain >1 wt.% H2O and >2,150 ppm CO2. All observed MIs contain a vapor bubble, so we are evaluating MI vapor bubbles with Raman spectroscopy and re-homogenization experiments to determine the full volatile budget. Because knowledge of volatile solubility is critical to accurately interpret results from MI analyses, we measured H2O-CO2 solubility in the Sunset Crater bulk composition. Fluid-saturated experiments at 4 and 6 kbar indicate shallower entrapment pressures for these MIs than values calculated for this composition using existing models. Assuming fluid saturation, MIs record depths from 6 km to 14 km, including groupings suggesting two pauses for longer-term storage at ~6 km and ~10.5 km. We do not observe any significant differences in MIs from phases exhibiting different eruptive styles, suggesting that while a high CO2 content may drive rapid magma ascent and be partly responsible for highly explosive eruptions, shallower processes may govern the final eruptive character. To track shallow processes during magma ascent from depth of MI-entrapment up to the surface, we are examining MI re-entrants.

  17. [Determination of Total Iron and Fe2+ in Basalt].

    PubMed

    Liu, Jian-xun; Chen, Mei-rong; Jian, Zheng-guo; Wu, Gang; Wu, Zhi-shen

    2015-08-01

    Basalt is the raw material of basalt fiber. The content of FeO and Fe2O3 has a great impact on the properties of basalt fibers. ICP-OES and dichromate method were used to test total Fe and Fe(2+) in basalt. Suitable instrument parameters and analysis lines of Fe were chosen for ICP-OES. The relative standard deviation (RSD) of ICP-OES is 2.2%, and the recovery is in the range of 98%~101%. The method shows simple, rapid and highly accurate for determination of total Fe and Fe(2+) in basalt. The RSD of ICP-OES and dichromate method is 0.42% and 1.4%, respectively.

  18. Experimentally reproduced textures and mineral chemistries of high-titanium mare basalts

    NASA Technical Reports Server (NTRS)

    Usselman, T. M.; Lofgren, G. E.; Williams, R. J.; Donaldson, C. H.

    1975-01-01

    Many of the textures, morphologies, and mineral chemistries of the high-titanium mare basalts have been experimentally duplicated using single-stage cooling histories. Lunar high-titanium mare basalts are modeled in a 1 m thick gravitationally differentiating flow based on cooling rates, thermal models, and modal olivine contents. The low-pressure equilibrium phase relations of a synthetic high-titanium basalt composition were investigated as a function of oxygen fugacity, and petrographic criteria are developed for the recognition of phenocrysts which were present in the liquid at the time of eruption.

  19. Characterization and utilization potential of basalt rock from East-Lampung district

    NASA Astrophysics Data System (ADS)

    Isnugroho, K.; Hendronursito, Y.; Birawidha, D. C.

    2018-01-01

    The aim of this research was to study the petrography and chemical properties of basalt rock from East Lampung district, Lampung province. Petrography analysis was performed using a polarization microscope, and analysis of chemical composition using X-RF method. From the analysis of basalt rock samples, the mineral composition consists of pyroxene, plagioclase, olivine, and opaque minerals. Basic mass of basalt rock samples is, composed of plagioclase and pyroxene with subhedral-anhedral shape, forming intergranular texture, and uniform distribution. Mineral plagioclase is colorless and blade shape, transformed into opaque minerals with a size of <0.2 mm, whereas pyroxene present among the blades of plagioclase, with a greenish tint looked and a size of <0.006 mm. Mineral opaque has a rectangular shape to irregular, with a size of <0.16 mm. The chemical composition of basalt rock samples, consisting of 37.76-59.64 SiO2; 10.10-20.93 Fe2O3; 11.77-14.32 Al2O3; 5.57-14.75 CaO; 5.37-9.15 MgO; 1.40-3.34 Na2O. From the calculation, obtained the value of acidity ratio (Ma) = 3.81. With these values, indicate that the basalt rock from East Lampung district has the potential to be utilized as stone wool fiber.

  20. The Effect of Shock on the Amorphous Component in Altered Basalt

    NASA Technical Reports Server (NTRS)

    Eckley, S. A.; Wright, S. P.; Rampe, E. B.; Niles, P. B.

    2017-01-01

    Investigation of the geochemical and mineralogical composition of the Martian surface provides insight into the geologic history of the predominantly basaltic crust. The Chemistry and Mineralogy (CheMin) instrument onboard the Curiosity rover has returned the first X-Ray diffraction data from the Martian surface. However, large proportions (27 +/- 14 with some estimates as high as 50 weight percentage) of an amorphous component have been reported. As a remedy to this problem, mass balance equations using geochemistry, volatile chemistry, and mineralogy have been employed to constrain the geochemistry of the amorphous component. However, "the nature and number of amorphous phases that constitute the amorphous component is not unequivocally known". Multiple hypotheses have been proposed to explain the origin of this amorphous component: Allophane (Al2O); Basaltic glass (Volcanic and impact); Palagonite (Altered basaltic glass); Hisingerite (Fe (sup 3 plus)-bearing phyllosilicate); S/Cl-rich component (sulfates and/or akaganeite); Nanophase ferric oxide component (npOx). Establishing a multi-phase amorphous component from a basaltic precursor that has undergone physical and chemical weathering within geochemical constraints is of paramount importance to better understand the composition of a large portion of the Martian surface (up to 50 weight percentage). Shocked basalts from Lonar Crater in India are valuable analogs for the Martian surface because it is a well-preserved impact crater in a basaltic target. Having undergone pre- and post-shock aqueous alteration, these rocks provide crucial data regarding the effect of shock on the amorphous component in altered basalt. By conducting mass balance equations similar to what has been performed for Gale crater materials, we attempt to calculate the geochemistry of the amorphous component in altered basalts ranging from unshocked to Class 5 (Table 1). This has the potential to reveal the nature and origin (i.e. primary

  1. Recent volcanism in the Siqueiros transform fault: Picritic basalts and implications for MORB magma genesis

    USGS Publications Warehouse

    Perfit, M.R.; Fornari, D.J.; Ridley, W.I.; Kirk, P.D.; Casey, J.; Kastens, K.A.; Reynolds, J.R.; Edwards, M.; Desonie, D.; Shuster, R.; Paradis, S.

    1996-01-01

    Small constructional volcanic landforms and very fresh-looking lava flows are present along one of the inferred active strike-slip faults that connect two small spreading centers (A and B) in the western portion of the Siqueiros transform domain. The most primitive lavas (picritic and olivine-phyric basalts), exclusively recovered from the young-looking flows within the A-B strike-slip fault, contain millimeter-sized olivine phenocrysts (up to 20 modal%) that have a limited compositional range (Fo91.5-Fo89.5) and complexly zoned Cr-Al spinels. High-MgO (9.5-10.6 wt%) glasses sampled from the young lava flows contain 1-7% olivine phenocrysts (Fo90.5-Fo89) that could have formed by equilibrium crystallization from basaltic melts with Mg# values between 71 and 74. These high MgO (and high Al2O3) glasses may be near-primary melts from incompatible-element depleted oceanic mantle and little modified by crustal mixing and/or fractionation processes. Phase chemistry and major element systematics indicate that the picritic basalts are not primary liquids and formed by the accumulation of olivine and minor spinel from high-MgO melts (10% < MgO < 14%). Compared to typical N-MORB from the East Pacific Rise, the Siqueiros lavas are more primitive and depleted in incompatible elements. Phase equilibria calculations and comparisons with experimental data and trace element modeling support this hypothesis. They indicate such primary mid-ocean ridge basalt magmas formed by 10-18% accumulative decompression melting in the spinel peridotite field (but small amounts of melting in the garnet peridotite field are not precluded). The compositional variations of the primitive magmas may result from the accumulation of different small batch melt fractions from a polybaric melting column.

  2. Synthesis of a spinifex-textured basalt as an analog to Gusev crater basalts, Mars

    NASA Astrophysics Data System (ADS)

    Bost, Nicolas; Westall, Frances; Gaillard, Fabrice; Ramboz, Claire; Foucher, Frédéric

    2012-05-01

    Analyses by the Mars Exploration Rover (MER), Spirit, of Martian basalts from Gusev crater show that they are chemically very different from terrestrial basalts, being characterized in particular by high Mg- and Fe-contents. To provide suitable analog basalts for the International Space Analogue Rockstore (ISAR), a collection of analog rocks and minerals for preparing in situ space missions, especially, the upcoming Mars mission MSL-2011 and the future international Mars-2018 mission, it is necessary to synthesize Martian basalts. The aim of this study was therefore to synthesize Martian basalt analogs to the Gusev crater basalts, based on the geochemical data from the MER rover Spirit. We present the results of two experiments, one producing a quench-cooled basalt (<1 h) and one producing a more slowly cooled basalt (1 day). Pyroxene and olivine textures produced in the more slowly cooled basalt were surprisingly similar to spinifex textures in komatiites, a volcanic rock type very common on the early Earth. These kinds of ultramafic rocks and their associated alteration products may have important astrobiological implications when associated with aqueous environments. Such rocks could provide habitats for chemolithotrophic microorganisms, while the glass and phyllosilicate derivatives can fix organic compounds.

  3. Sulfur concentration of mare basalts at sulfide saturation at high pressures and temperatures-Implications for S in the lunar mantle

    NASA Astrophysics Data System (ADS)

    Ding, S.; Hough, T.; Dasgupta, R.

    2016-12-01

    Low estimate of S in the bulk silicate moon (BSM) [e.g., 1] suggests that sulfide in the lunar mantle is likely exhausted during melting. This agrees with estimates of HSE depletion in the BSM [2], but challenges the S-rich core proposed by previous studies [e.g., 3]. A key parameter to constrain the fate of sulfide during mantle melting is the sulfur carrying capacity of the mantle melts (SCSS). However, the SCSS of variably high-Ti lunar basalts at high P-Tare unknown. Basalt-sulfide melt equilibria experiments were run in graphite capsules using a piston cylinder at 1.0-2.5 GPa and 1400-1600 °C, on high-Ti (Apollo11, 11.1 wt.%; [4]) and intermediate-Ti (Luna16, 5 wt.%; [5]) mare basalts. At 1.5 GPa, SCSS of Apollo11 increases from 3940 ppm S to 5860 ppm, as temperature increases from 1400 °C to 1600 °C. And at 1500 °C, SCSS decreases from 5350 ppm S to 3830 ppm, as pressure increases from 1 to 2.5 GPa. SCSS of Luna16 shows a similar P-T dependence. Previous models [e.g., 6] tend to overestimate the SCSS values determined in our study, with the model overprediction increasing with increasing melt TiO2. Consequently, we derive a new SCSS parameterization for high-FeO* silicate melts of variable TiO2content. At multiple saturation points [e.g., 7], the SCSS of primary lunar melts is 3500-5500 ppm. With these values, 0.02-0.05 wt.% sulfide (70-200 ppm S) in the mantle can be consumed by 2-6% melting. In order to generate primary lunar basalts with S of 800-1000 ppm [1], sulfide in the mantle must be exhausted, and the mode of sulfide cannot exceed 0.025 wt.% (100 ppm S). This estimate corresponds with lower end values in the terrestrial mantle and further agrees with previous calculations of HSE depletion in the BSM [2]. [1] Hauri et al.,2015, EPSL; [2] Day et al.,2007, Science; [3] Jing et al., 2014, EPSL; [4] Synder et al.,1992, GCA; [5] Warren & Taylor, 2014, Treatise on Geochemistry; [6] Li & Ripley, 2009, Econ.Geol ; [7] Krawczynski & Grove, 2012, GCA.

  4. Phase equilibria modeling in igneous petrology: use of COMAGMAT model for simulating fractionation of ferro-basaltic magmas and the genesis of high-alumina basalt

    NASA Astrophysics Data System (ADS)

    Ariskin, Alexei A.

    1999-05-01

    assuming isobaric crystallization of a parental HMB magma at a variety of pressures and a separate set of simulations assuming fractionation during continuous magma ascent from a depth of 60 km. These results indicate that the Klyuchevskoi trend can be produced by ˜40% fractionation of Ol-Aug-Sp±Opx assemblages during ascent of the parental HMB magma over the pressure range 19-7 kbar with the rate of decompression being 0.33 kbar/% crystallized (at 1350-1110°C), with ˜2 wt.% of H 2O in the initial melt and ˜3 wt.% of H 2O in the resultant high-Al basalt.

  5. The electronic structure of iron in rhyolitic and basaltic glasses at high pressure

    NASA Astrophysics Data System (ADS)

    Solomatova, N. V.; Jackson, J. M.; Sturhahn, W.; Roskosz, M.

    2016-12-01

    The physical properties of silicate melts within the Earth's mantle affect the chemical and thermal evolution of the Earth's interior. To understand melting processes within the Earth, it is imperative to determine the structure of silicate melts at high pressure. It has been proposed that iron-bearing silicate melts may exist in the lower mantle just above the core-mantle boundary [1]. The behavior of iron in mantle melts is poorly understood, but can be experimentally approximated by iron-bearing silicate glasses. Previous studies have conflicting conclusions on whether iron in lower mantle silicate melts goes through a high-spin to low-spin transition [2-4]. Additionally, the average coordination environment of iron in glasses is poorly constrained. XANES experiments on basaltic glasses have demonstrated that both four and six-fold coordinated iron may exist in significant amounts regardless of oxidation state [5] while conventional Mössbauer experiments have observed five-fold coordinated Fe2+ with small amounts of four and six-fold coordinated Fe2+ [6]. In an attempt to resolve these discrepancies, we have measured the hyperfine parameters of iron-bearing rhyolitic glass up to 115 GPa and basaltic glass up to 92 GPa in a neon pressure medium using time-resolved synchrotron Mössbauer spectroscopy at the Advanced Photon Source (Argonne National Laboratory, IL). We observed changes in the hyperfine parameters likely due to coordination changes as a result of increasing pressure. Our results indicate that iron does not undergo a high-spin to low-spin transition within the pressure range investigated. Changes in the electronic configuration, such as the spin state of iron affects the compressibility and thermal properties of melts. With the assumption that silica glasses can be used to model structural behavior in silicate melts, our study predicts that iron in chemically-complex silica-rich melts in the lower mantle likely exists in a high-spin state. Select

  6. Micro-FTIR Spectroscopy of Experimentally Shocked Basaltic Andesite (SP Flow, AZ)

    NASA Astrophysics Data System (ADS)

    Johnson, J. R.; Jaret, S.; Glotch, T. D.; Sims, M.

    2017-12-01

    As part of an ongoing systematic study of experimental shock transformations in plagioclase using micro-Raman and micro-FTIR thermal infrared hyperspectral imaging and point spectroscopy [1-7], we report new micro-FTIR results on experimentally shocked, fine-grained basaltic andesite from SP Flow (AZ). This sample has relatively high primary glass content and an average plagioclase composition of labradorite/bytownite. The powder propellant gun at the Johnson Space Center was used to conduct the original shock experiments at peak pressures from 15 to 60 GPa [6-8], from which <10 mm fragments were recovered. Polished thin sections were made from portions of these fragments, and micro-FTIR point spectra were collected from 400-4000 cm-1 (2.5-25 µm) using a spot size of 40 x 40 mm at 8 cm-1 spectral sampling. Micro-FTIR hyperspectral maps of thin sections were acquired using the same instrument equipped with a 16 pixel HgCdTe linear array detector to provide spectra between 7000 and 715 cm-1 (1.4-14.0 µm) at 25 µm/pixel and 8 cm-1 spectral sampling (see figure for color composite and band depth images from unshocked sample). Micro-FTIR results show that the unshocked sample is dominated by the glassy matrix (light green in the color composite), with contributions from plagioclase and pyroxene. Initial analyses suggest that the SP Flow samples become dominantly amorphous at relatively low shock pressures, reflective of the high primary glass content and consistent with macro-scale spectra from [7]. Results from additional shock pressures and Raman spectra will be presented at the conference. Future work will include (1) Raman and FTIR analyses of basalt from Grand Falls (AZ), which has minimal primary glass content and relatively higher calcic plagioclase than SP Flow; and (2) comparison of these basalts to results from shocked plagioclase and to similar analyses of naturally shocked samples from Ries and Lonar Craters. [1] Jaret, S. et al., 11th Internat. Geo

  7. Rates of mineral dissolution and carbonation in peridotite and basalt

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Matter, J. M.

    2009-12-01

    used a relatively high ratio of olivine:fluid (1:4), (c) they generally used high fluid NaCl contents, and (d) they consistently used high NaHCO3 and/or KHCO3 (alkali-bicarbonate) concentrations. In agreement with the ASU group, we consider that alkali-bicarbonate is the crucial catalyst, provided PCO2 is high.This raises the question of whether alkali-carbonate could also catalyze labradorite and basalt carbonation. ARC and ASU data extrapolated to low T and low PCO2 agree with natural carbonation rates in Oman. Our geological observations suggest that higher temperature peridotite carbonation went to completion (all Mg as MgCO3, all Si as quartz), perhaps because reaction-driven cracking maintained reactive surface area and permeability despite formation of reaction products in pore space and armoring of remaining olivine reactants. We are not aware of comparable observations on present-day carbonation of basalt. (1) Kelemen & Matter, PNAS 2008 (2) O’Connor et al., DOE Final Report ARC-TR-04-002, 2004 (3) Gerdemann et al., Environ. Sci. Technol. 2007 (4) Chizmeshya et al., DOE Final Report 924162, 2007

  8. Ultramafic lavas and pyroxene-spinifex high-Mg basaltic dykes from the Othris ophiolite complex, Greece

    NASA Astrophysics Data System (ADS)

    Baziotis, Ioannis; Economou-Eliopoulos, Maria; Asimow, Paul

    2017-04-01

    This study aims to constrain the physico-chemical conditions and processes associated with the origin of ultramafic lavas of the Agrilia formation and high-Mg basaltic dykes in the Pournari area within the Othris ophiolite complex, a supra-subduction zone ophiolite of Mesozoic age (Paraskevopoulos & Economou, 1986; Barth et al., 2008). Hand-sample-scale spinifex texture is lacking from the ultramafic lavas and, despite whole-rock MgO contents greater than 31 wt.%, we infer an upper bound of 17 wt.% MgO for the erupted liquid, and thus identify these lavas as picrites containing accumulated olivine. We use textural and compositional criteria to divide the crystals within the Agrilia lavas between pre-eruptive and post-eruptive growth phases. The high-Mg basaltic dyke margins display a distinctive thin-section-scale micro-spinifex texture of skeletal and plumose Al- and Fe-rich clinopyroxene surrounded by large crystals of orthopyroxene. Normally zoned clinopyroxene in the Agrilia lavas and clinopyroxene of various textures (skeletal, needle- and dendritic-like) and sizes in the Pournari dykes display anomalous enrichment in Al2O3 and FeO* with decreasing MgO that require rapid, disequilibrium growth. Quantitative characteristics of the micro-spinifex pyroxene textures (<10 μm in width and 50-100 μm in length) imply a cooling rate for the marginal parts of the Pournari dykes of at least 25 °K/hr and more likely 45-55 °K/hr (Faure et al., 2004) and rapid growth of clinopyroxene crystals at a linear rate of about 10-6 m/s (Welsch et al., 2016). MELTS models of the crystallization sequence of the Pournari dykes indicate that progressive low-pressure (500 bar) fractional crystallization of the ultramafic dyke liquid occurred under oxidized (QFM+2.0) and hydrous (at least 0.5 wt.% H2O) conditions. A hydrous magmatic parent for the Othris ophiolite as a whole is further supported by preliminary investigation of melt inclusions (5-20 μm in diameter) in fresh chromite

  9. Basalt-flow imaging using a high-resolution directional borehole radar

    USGS Publications Warehouse

    Moulton, C.W.; Wright, D.L.; Hutton, S.R.; Smith, D.V.G.; Abraham, J.D.

    2002-01-01

    A new high-resolution directional borehole radar-logging tool (DBOR tool) was used to log three wells at the Idaho National Engineering and Environmental Laboratory (INEEL). The radar system uses identical directional cavity-backed monopole transmitting and receiving antennas that can be mechanically rotated while the tool is stationary or moving slowly in a borehole. Faster reconnaissance logging with no antenna rotation was also done to find zones of interest. The microprocessor-controlled motor/encoder in the tool can rotate the antennas azimuthally, to a commanded angle, accurate to a within few degrees. The three logged wells in the unsaturated zone at the INEEL had been cored with good core recovery through most zones. After coring, PVC casing was installed in the wells. The unsaturated zone consists of layered basalt flows that are interbedded with thin layers of coarse-to-fine grained sediments. Several zones were found that show distinctive signatures consistent with fractures in the basalt. These zones may correspond to suspected preferential flow paths. The DBOR data were compared to core, and other borehole log information to help provide better understanding of hydraulic flow and transport in preferential flow paths in the unsaturated zone basalts at the INEEL.

  10. Petrogenesis of pillow basalts from Baolai in southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, Chih-Chun; Yang, Huai-Jen

    2016-04-01

    .9-21.0 versus 26.0-33.5), and Dy/Yb (~2.7 versus 2.97-3.62) with higher Lu/Hf (~0.056 versus ~0.045). Based on model calculations, the eastern Guangdong basalts represent mixtures containing large proportions (> 90%) of melt generated by < 2% melting from a source with residual garnet and small proportions (< 10%) of low degree melts (< 1%) from spinel lherzolite. The Baolai basalts are explained as involving higher proportions (10-20%) of melt from spinel lherzolite by higher degrees (2-3%) of partial melting. The unusually high Nb/La ratio of > 1.6 in the Baolai basalts is best explained as reflecting a component in the recycled dehydrated residues, indicating derivation from asthenospheric mantle source that involves subduction components. It is inferred that the subduction components are associated with the subduction of paleo-Pacific Ocean. If this is the case, a relatively high mantle circulation rate (i.e., 1 cm/yr; Wang et al., 2013) is required. Smith and Lewis (2007), International Geology Review 49, 1-13. Wang et al. (2013), Earth and Planetary Science Letters 377-378, 248-259.

  11. Numerical model of water flow in a fractured basalt vadose zone: Box Canyon Site, Idaho

    NASA Astrophysics Data System (ADS)

    Doughty, Christine

    2000-12-01

    A numerical model of a fractured basalt vadose zone has been developed on the basis of the conceptual model described by Faybishenko et al. [[his issue]. The model has been used to simulate a ponded infiltration test in order to investigate infiltration through partially saturated fractured basalt. A key question addressed is how the fracture pattern geometry and fracture connectivity within a single basalt flow of the Snake River Plain basalt affect water infiltration. The two-dimensional numerical model extends from the ground surface to a perched water body 20 m below and uses an unconventional quasi-deterministic approach with explicit but highly simplified representation of major fractures and other important hydrogeologic features. The model adequately reproduces the majority of the field observation and provides insights into the infiltration process that cannot be obtained by data collection alone, demonstrating its value as a component of field studies.

  12. Magnesium Isotopic Compositions of Continental Basalts From Various Tectonic Settings

    NASA Astrophysics Data System (ADS)

    Yang, W.; Li, S.; Tian, H.; Ke, S.

    2016-12-01

    Recycled sedimentary carbonate through subduction is the main light Mg isotopic reservoir in Earth's deep interior, thus Mg isotopic variation of mantle-derived melts provides a fresh perspective on investigating deep carbon cycling. Here we investigate Mg isotopic compositions of continental basalts from various tectonic settings: (1) The Cenozoic basalts from eastern China, coinciding with the stagnant Pacific slab in the mantle transition zone revealed by seismic tomography; (2) The Cenozoic basalts from Tengchong area, southwestern China, which comprises a crucial part of the collision zone between the Indian and Eurasian plates; (3) The Permian basalts from Emeishan large igneous province, related to a mantle plume. The Cenozoic basalts from both eastern China and Tengchong area exhibit light Mg isotopic compositions (δ26Mg = -0.60 to -0.30‰ and -0.51 to -0.33‰), suggesting recycled sedimentary carbonates in their mantle sources. This is supported by their low Fe/Mn, high CaO/Al2O3, low Hf/Hf* and low Ti/Ti* ratios, which are typical features of carbonated peridotite-derived melt. The Tengchong basalts also show high 87Sr/86Sr, high radiogenic Pb and upper crustal-like trace element pattern, indicating contribution of recycled continental crustal materials. By contrast, all Emeishan basalts display a mantle-like Mg isotopic composition, with δ26Mg ranging from -0.35 to -0.19‰. Since the Emeishan basalts derived from a mantle plume, their mantle-like Mg isotopic composition may indicate limited sedimentary carbonated recycled into the lower mantle. This is consistent with a recent experimental study which concluded that direct recycling of carbon into the lower mantle may have been highly restricted throughout most of the Earth's history.

  13. Fracture Strength of AlLiB14

    NASA Astrophysics Data System (ADS)

    Wan, L. F.; Beckman, S. P.

    2012-10-01

    The orthorhombic boride crystal family XYB14, where X and Y are metal atoms, plays a critical role in a unique class of superhard compounds, yet there have been no studies aimed at understanding the origin of the mechanical strength of this compound. We present here the results from a comprehensive investigation into the fracture strength of the archetypal AlLiB14 crystal. First principles, ab initio, methods are used to determine the ideal brittle cleavage strength for several high-symmetry orientations. The elastic tensor and the orientation-dependent Young’s modulus are calculated. From these results the lower bound fracture strength of AlLiB14 is predicted to be between 29 and 31 GPa, which is near the measured hardness reported in the literature. These results indicate that the intrinsic strength of AlLiB14 is limited by the interatomic B-B bonds that span between the B layers.

  14. The regolith portion of the lunar meteorite Sayh al Uhaymir 169

    NASA Astrophysics Data System (ADS)

    Al-Kathiri, A.; Gnos, E.; Hofmann, B. A.

    Sayh al Uhaymir (SaU) 169 is a composite lunar meteorite from Oman that consists of polymict regolith breccia (8.44 ppm Th), adhering to impact-melt breccia (IMB; 32.7 ppm Th). In this contribution we consider the regolith breccia portion of SaU 169, and demonstrate that it is composed of two generations representing two formation stages, labeled II and III. The regolith breccia also contains the following clasts: Ti-poor to Ti-rich basalts, gabbros to granulites, and incorporated regolith breccias. The average SaU 169 regolith breccia bulk composition lies within the range of Apollo 12 and 14 soil and regolith breccias, with the closest correspondence being with that of Apollo 14, but Sc contents indicate a higher portion of mare basalts. This is supported by relations between Sm-Al2O3, FeO-Cr2O3-TiO2, Sm/Eu and Th-K2O. The composition can best be modeled as a mixture of high-K KREEP, mare basalt and norite/troctolite, consistent with the rareness of anorthositic rocks. The largest KREEP breccia clast in the regolith is identical in its chemical composition and total REE content to the incompatible trace-element (ITE)- rich high-K KREEP rocks of the Apollo 14 landing site, pointing to a similar source. In contrast to Apollo 14 soil, SaU 169 IMB and SaU 169 KREEP breccia clast, the SaU 169 regolith is not depleted in K/Th, indicating a low contribution of high-Th IMB such as the SaU 169 main lithology in the regolith. The data presented here indicate the SaU 169 regolith breccia is from the lunar front side, and has a strong Procellarum KREEP Terrane signature.

  15. CarbFix I: Rapid CO2 mineralization in basalt for permanent carbon storage

    NASA Astrophysics Data System (ADS)

    Matter, J. M.; Stute, M.; Snæbjörnsdóttir, S.; Gíslason, S. R.; Oelkers, E. H.; Sigfússon, B.; Gunnarsson, I.; Aradottir, E. S.; Gunnlaugsson, E.; Broecker, W. S.

    2015-12-01

    Carbon dioxide mineralization via CO2-fluid-rock reactions provides the most permanent solution for geologic CO2 storage. Basalts, onshore or offshore, have the potential to store million metric tons of CO2 as (Ca, Mg, Fe) carbonates [1, 2]. However, as of today it was unclear how fast CO2 is converted to carbonate minerals in-situ in a basalt storage reservoir. The CarbFix I project in Iceland was designed to verify in-situ CO2 mineralization in basaltic rocks. Two injection tests were performed at the CarbFix I pilot injection site near the Hellisheidi geothermal power plant in 2012. 175 tons of pure CO2 and 73 tons of a CO2+H2S mixture were injection from January to March 2012 and in June 2013, respectively. The gases were injected fully dissolved in groundwater into a permeable basalt formation between 400 and 800 m depth using a novel CO2 injection system. Using conservative (SF6, SF5CF3) and reactive (14C) tracers, we quantitatively monitor and detect dissolved and chemically transformed CO2. Tracer breakthrough curves obtained from the first monitoring well indicate that the injected solution arrived in a fast short pulse and a late broad peak. Ratios of 14C/SF6, 14C/SF5CF3 or DIC/SF6 and DIC/SF5CF3 are significantly lower in the monitoring well compared to the injection well, indicating that the injected dissolved CO2 reacted. Mass balance calculations using the tracer data reveal that >95% of the injected CO2 has been mineralized over a period of two years. Evidence of carbonate precipitation has been found in core samples that were collected from the storage reservoir using wireline core drilling as well as in and on the submersible pump in the monitoring well. Results from the core analysis will be presented with emphasis on the CO2 mineralization. [1] McGrail et al. (2006) JGR 111, B12201; [2] Goldberg et al. (2008) PNAS 105(29), 9920-9925.

  16. Aqueous Alteration of Basalts: Earth, Moon, and Mars

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.

    2007-01-01

    The geologic processes responsible for aqueous alteration of basaltic materials on Mars are modeled beginning with our knowledge of analog processes on Earth, i.e., characterization of elemental and mineralogical compositions of terrestrial environments where the alteration and weathering pathways related to aqueous activity are better understood. A key ingredient to successful modeling of aqueous processes on Mars is identification of phases that have formed by those processes. The purpose of this paper is to describe what is known about the elemental and mineralogical composition of aqueous alteration products of basaltic materials on Mars and their implications for specific aqueous environments based upon our knowledge of terrestrial systems. Although aqueous alteration has not occurred on the Moon, it is crucial to understand the behaviors of basaltic materials exposed to aqueous environments in support of human exploration to the Moon over the next two decades. Several methods or indices have been used to evaluate the extent of basalt alteration/weathering based upon measurements made at Mars by the Mars Exploration Rover (MER) Moessbauer and Alpha Particle X-Ray Spectrometers. The Mineralogical Alteration Index (MAI) is based upon the percentage of total Fe (Fe(sub T)) present as Fe(3+) in alteration products (Morris et al., 2006). A second method is the evaluation of compositional trends to determine the extent to which elements have been removed from the host rock and the likely formation of secondary phases (Nesbitt and Young, 1992; Ming et al., 2007). Most of the basalts that have been altered by aqueous processes at the two MER landing sites in Gusev crater and on Meridiani Planum have not undergone extensive leaching in an open hydrolytic system with the exception of an outcrop in the Columbia Hills. The extent of aqueous alteration however ranges from relatively unaltered to pervasively altered materials. Several experimental studies have focused upon

  17. Phase equilibria and geochemical constraints on the petrogenesis of high-Ti picrite from the Paleogene East Greenland flood basalt province

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Shen; Hou, Tong; Veksler, Ilya V.; Lesher, Charles E.; Namur, Olivier

    2018-02-01

    Phase equilibrium experiments have been performed on an extremely high-Ti (5.4 wt.% TiO2) picrite from the base of the Paleogene ( 55 Ma) East Greenland Flood Basalt Province. This sample has a high CaO/Al2O3 ratio (1.14), a steep rare-earth elements (REE) profile, is enriched in incompatible trace elements, and is in chemical equilibrium with highly primitive olivine. This all suggests that the picrite is a near-primary melt that did not suffer major chemical evolution during ascent from the mantle source and through the crust. Near-liquidus phase relations were determined over the pressure range of 1 atm, 1 to 1.5 GPa and at temperatures from 1094 to 1400°C. They provide an important constraint on the petrogenesis of these lavas. The high-Ti picritic melt is multi-saturated with olivine (Ol) + orthopyroxene (Opx) at 1 GPa but has only Ol or Opx on the liquidus at lower and higher pressures, respectively. This indicates the primitive melt was last equilibrated with its mantle source at relatively shallow pressure ( 1 GPa). Melting probably started at 2-3 GPa and the picritic melt was produced by 15-30% melting of the mantle source. Such a degree of partial melting requires a mantle with a high potential temperature (1480-1530˚C). The relatively low CaO content and high FeO/MnO ratios of the most primitive East Greenland picrites, the high Ni content of olivine phenocrysts and the presence of low-Ca pyroxene (i.e., pigeonite) at high pressure in our experiments all suggest that the mantle source contained a major component of garnet pyroxenite. Residual garnet in the source could adequately explain the low Al2O3 content (7.92 wt.%) and steep REE patterns of the picrite sample. However, simple melting of a lherzolitic source, even with a major pyroxenite component, cannot explain the formation of magmas with the very high Ti contents observed in some East Greenland basalts. We therefore propose that magmas highly-enriched in Ti were produced by melting of a

  18. A Modified CIPW Norm Calculation for Lunar Mare Basalts

    NASA Technical Reports Server (NTRS)

    Milliken, R. E.; Basu, A.

    2000-01-01

    CIPW norms of lunar mare basalts are anomalously low in pyroxene. A modified norm calculation allowing higher Ca, Ti, Al, Cr, and Mn in di' and hy' obtains closer matches between normative and modal mineralogy.

  19. Life and Death of a Flood Basalt: Evolution of a Magma Plumbing System in the Ethiopian Low-Ti Flood Basalt Province

    NASA Astrophysics Data System (ADS)

    Krans, S. R.; Rooney, T. O.; Kappelman, J. W.; Yirgu, G.; Ayalew, D.

    2017-12-01

    Continental flood basalt provinces (CFBPs), which are thought to preserve the magmatic record of an impinging mantle plume head, offer spatial and temporal insight into melt generation processes in Large Igneous Provinces (LIPs). Despite the utility of CFBPs in probing the composition of mantle plumes, these basalts typically erupt fractionated compositions, suggestive of significant residence time in the continental lithosphere. The location and duration of this residence within the continental lithosphere provides additional insights into the flux of plume-related magmas. The NW Ethiopian plateau offers a well preserved stratigraphic section from flood basalt initiation to termination, and is thus an important target for study of CFBPs. We examine petrographic and whole rock geochemical variation within a stratigraphic framework and place these observations within the context of the magmatic evolution of the Ethiopian CFBP. We observe multiple pulses of magma recharge punctuated by brief shut-down events and an overall shallowing of the magmatic plumbing system over time. Initial flows are fed by magmas that have experienced deeper fractionation (clinopyroxene dominated and lower CaO/Al2O3 for a given MgO value), likely near the crust-mantle boundary. Subsequent flows are fed by magmas that have experienced shallower fractionation (plagioclase dominated and higher CaO/Al2O3 for a given MgO value) in addition to deeper fractionated magmas. Broad changes in flow thickness and modal mineralogy are consistent with fluctuating changes in magmatic flux through a complex plumbing system and indicate pulsed magma flux and an overall shallowing of the magmatic plumbing system over time. Pulses of less differentiated magmas (MgO > 8 wt%) and high-An composition of plagioclase megacrysts (labradorite to bytownite) suggest a constant replenishing of new primitive magma recharging the shallow plumbing system during the main phase of flood volcanism, though the magnitude of

  20. Mafic mantle sources indicated by the olivine-spinifex basalt-ferropicrite lavas in the accreted Permian oceanic LIP fragments and Miocene low-Ni basalt and adakite lavas in central Japan

    NASA Astrophysics Data System (ADS)

    Ishiwatari, A.; Ichiyama, Y.; Yamazaki, R.; Katsuragi, T.; Tsuchihashi, H.

    2008-12-01

    Melting of mafic (eclogitic) rocks in the peridotite mantle diapir may be important to generate a large quantity of magma in a short period of time as required for the LIP basaltic magmatism (e.g. Takahashi et al. 1998; EPSL, 162, 63-). Ferropicritic rocks also occur in some LIPs, and Ichiyama et al. (2006; Lithos, 89, 47-) propose a non-peridotitic, Ti- and Fe-rich eclogitic source (recycled oceanic ferrogabbro?) entrained in the peridotitic LIP mantle plume for the origin of ferropicritic rocks, that occur with olivine-spinifex basalt (Ichiyama et al., 2007; Island Arc, 16, 493-) in a Permian LIP fragment that was captured in the Jurassic Tamba accretionary complex in central Japan. Although Ti-poor ferrokomatiitic magma might form through high- degree melting of a primitive chondritic mantle (25wt% MgO and 25wt% Fe+FeO), Ti- and HFSE-rich ferropicritic and meimechitic magmas can not form in this way. On the other hand, Miocene volcanic rocks distributed along the Japan Sea coast of central Japan also represent a product of large-scale arc magmatism that happened coeval to the spreading of the Japan Sea floor. The chemical and isotopic signatures of the magmas are consistent with the secular change of tectonic setting from continental arc (22- 20 Ma) to island arc (15-11 Ma) (Shuto et al. 2006; Lithos, 86, 1-). Some adakites have already been found from these Miocene volcanic rocks by Shuto"fs group, and mafic rock melting in either subducting slab or lower arc crust has been proposed. We have recently found a wide distribution of low-Ni basalt from Fukui City. The low-Ni basalt contains olivine phenocrysts which are one order of magnitude poorer in Ni (less than 0.02 wt% NiO at Fo87) than those in normal basalt (more than 0.2 wt% NiO at Fo87). The rock is also poor in bulk-rock Ni, rich in K and Ti, and may have formed from an olivine-free pyroxenitic source. Close association of adakite and low-Ni basalt with normal tholeiitic basalt, calc-alkaline andesite

  1. Experimental Melting Study of Basalt-Peridotite Hybrid Source: Constrains on Chemistry of Recycled Component

    NASA Astrophysics Data System (ADS)

    Gao, S.; Takahashi, E.; Matsukage, K. N.; Suzuki, T.; Kimura, J. I.

    2015-12-01

    It is believed that magma genesis of OIB is largely influenced by recycled oceanic crust component involved in the mantle plume (e.g., Hauri et al., 1996; Takahashi & Nakajima., 2002; Sobolev et al., 2007). Mallik & Dasgupta (2012) reported that the wall-rock reaction in MORB-eclogite and peridotite layered experiments produced a spectrum of tholeiitic to alkalic melts. However, the proper eclogite source composition is still under dispute. In order to figure out the geochemistry of recycled component as well as their melting process, we conducted a series of high-P, high-T experiments. Melting experiments (1~10hrs) were performed under 2.9GPa with Boyd-England type piston-cylinder (1460~1540°C for dry experiments, 1400~1500°C for hydrous experiments) and 5GPa with Kawai-type multi-anvil (1550~1650°C for dry experiments, 1350~1550°C for hydrous experiments), at the Magma Factory, Tokyo Tech. Spinel lherzolite KLB-1 (Takahashi 1986) was employed as peridotite component. Two basalts were used as recycled component: Fe-enriched Columbia River basalt (CRB72-180, Takahashi et al., 1998) and N-type MORB (NAM-7, Yasuda et al., 1994). In dry experiments below peridotite dry solidus, melt compositions ranged from basaltic andesite to tholeiite. Opx reaction band generated between basalt and peridotite layer hindered chemical reaction. On the other hand, alkali basalt was formed in hydrous run products because H2O promoted melting process in both layers. Compared with melts formed by N-MORB-peridotite runs, those layered experiments with CRB are enriched in FeO, TiO2, K2O and light REE at given MgO. In other words, melts produced by CRB-peridotite layered experiments are close to alkali basalts in OIB and tholeiite in Hawaii, while those by layered experiments with N-MORB are poor in above elements. Thus we propose that Fe-rich Archean or Proterozoic tholeiite (BVSP 1980) would be a possible candidate for recycled component in OIB source.

  2. Structure of Multi-component Basaltic Glasses under Static and Dynamic Compression: Implications for Mantle Melting and Impact Processes on Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Lee, S.; Mosenfelder, J. L.; Tschauner, O. D.; Asimow, P. D.; Park, S.; Kim, H.

    2012-12-01

    The structures of basaltic melts under both static and dynamic compression are essential to understand the changes in the corresponding melt properties and to provide atomistic insights into impact-induced events in Earth's crust and planetary surfaces. Despite the importance, structural changes in basaltic glasses due both to dynamic and static compression have not been well understood. The advances in multi-nuclear NMR and multi-edge inelastic x-ray scattering allow us to obtain details of the pressure-induced changes in the degree of melt polymerization and cation coordination number in multi-component melts under static and dynamic compression (e.g. Lee, Proc. Nat. Aca. Sci. 2011, 108, 6847; Sol. St. NMR. 2010, 38, 45; Lee et al. Geophys. Res. Letts. 39 5306; Proc. Nat. Aca. Sci. 2008, 105, 7925). Here, we explore the structures of shock compressed silicate glass with a diopside-anorthite eutectic composition (Di64An36), a common Fe-free model basaltic composition, using oxygen K-edge X-ray Raman scattering and high- resolution Al-27 solid-state NMR spectroscopy and report details of shock-induced changes in the atomic configurations. A topologically driven densification of the Di64An36 glass is indicated by the increase in oxygen K-edge energy for the glass upon shock compression with peak pressure up to 20 GPa. The first experimental evidence of the increase in the fraction of highly coordinated Al in shock compressed glass is found in the Al-27 NMR spectra. This result provides atomistic insights into shock compression in basaltic glasses and allows us to microscopically constrain the magnitude of impact events or relevant processes involving natural basalts on Earth and planetary surfaces. We also report the first high pressure multi-nuclear NMR spectrum for basaltic glass up to 5 GPa. While [4]Al species is dominant at 1atm, the significant fraction of [5,6]Al in the glass is apparent, leading to changes in oxygen connectivity in the multi-component. The

  3. New high pressure experiments on sulfide saturation of high-FeO∗ basalts with variable TiO2 contents - Implications for the sulfur inventory of the lunar interior

    NASA Astrophysics Data System (ADS)

    Ding, Shuo; Hough, Taylor; Dasgupta, Rajdeep

    2018-02-01

    In order to constrain sulfur concentration in intermediate to high-Ti mare basalts at sulfide saturation (SCSS), we experimentally equilibrated FeS melt and basaltic melt using a piston cylinder at 1.0-2.5 GPa and 1400-1600 °C, with two silicate compositions similar to high-Ti (Apollo 11: A11, ∼11.1 wt.% TiO2, 19.1 wt.% FeO∗, and 39.6 wt.% SiO2) and intermediate-Ti (Luna 16, ∼5 wt.% TiO2, 18.7 wt.% FeO∗, and 43.8 wt.% SiO2) mare basalts. Our experimental results show that SCSS increases with increasing temperature, and decreases with increasing pressure, which are similar to the results from previous experimental studies. SCSS in the A11 melt is systematically higher than that in the Luna 16 melt, which is likely due to higher FeO∗, and lower SiO2 and Al2O3 concentration in the former. Compared to the previously constructed SCSS models, including those designed for high-FeO∗ basalts, the SCSS values determined in this study are generally lower than the predicted values, with overprediction increasing with increasing melt TiO2 content. We attribute this to the lower SiO2 and Al2O3 concentration of the lunar magmas, which is beyond the calibration range of previous SCSS models, and also more abundant FeTiO3 complexes in our experimental melts that have higher TiO2 contents than previous models' calibration range. The formation of FeTiO3 complexes lowers the activity of FeO∗, a FeO∗silicatemelt , and therefore causes SCSS to decrease. To accommodate the unique lunar compositions, we have fitted a new SCSS model for basaltic melts of >5 wt.% FeO∗ and variable TiO2 contents. Using previous chalcophile element partitioning experiments that contained more complex Fe-Ni-S sulfide melts, we also derived an empirical correction that allows SCSS calculation for basalts where the equilibrium sulfides contain variable Ni contents of 10-50 wt.%. At the pressures and temperatures of multiple saturation points, SCSS of lunar magmas with compositions from

  4. Melt rock components in KREEPy breccia 15205: Petrography and mineral chemistry of KREEP basalts and quartz-normative mare basalts

    NASA Astrophysics Data System (ADS)

    Shervais, John W.; Vetter, Scott K.

    1993-05-01

    Many current models for the origin of lunar highland rocks feature as an essential component the assimilation of KREEPy material by primitive magmas parental to the Mg-rich suite and alkali suite plutonic rocks. Similar models have also been proposed for the origin of various mare basalt suites. However, any model which considers assimilation of KREEP an important petrologic process must sooner-or-later deal with the question: what is KREEP? Because pristine KREEP basalts are rare, and most known samples are small (e.g., 15382/15386), the geochemical variability of KREEP basalts is poorly known. Other KREEP compositions which are commonly used in these models include the hypothetical 'high-K KREEP' component of Warren and Wasson, which is derived from Apollo 14 soil data, and the 'superKREEP' quartz-monzodiorite 15405. Lunar breccia 15205 is a polymict regolith breccia that consists of approximately 20% KREEP basalt clasts and 20% quartz-normative basalt clasts in a KREEP-rich matrix. Bulk rock mixing calculations show that this sample comprises about 84% KREEP. The clasts range up to 1 cm in size, but most are considerably smaller. The primary aim is to characterize pristine KREEP basalts petrographically, to establish the range in chemical compositions of KREEP basalts, and to test models that were proposed for their origin. In addition, we may be able to extend the compositional range recognized in the quartz-normative basalt suite and cast some light on its origin as well. Preliminary whole rock geochemical data on the KREEP basalts are presented in a companion paper by M.M. Lindstrom and co-workers. Concentration is on petrography and mineral chemistry of these clasts, and the implications these data have for the origin of the different melt rock suites.

  5. Melt rock components in KREEPy breccia 15205: Petrography and mineral chemistry of KREEP basalts and quartz-normative mare basalts

    NASA Technical Reports Server (NTRS)

    Shervais, John W.; Vetter, Scott K.

    1993-01-01

    Many current models for the origin of lunar highland rocks feature as an essential component the assimilation of KREEPy material by primitive magmas parental to the Mg-rich suite and alkali suite plutonic rocks. Similar models have also been proposed for the origin of various mare basalt suites. However, any model which considers assimilation of KREEP an important petrologic process must sooner-or-later deal with the question: what is KREEP? Because pristine KREEP basalts are rare, and most known samples are small (e.g., 15382/15386), the geochemical variability of KREEP basalts is poorly known. Other KREEP compositions which are commonly used in these models include the hypothetical 'high-K KREEP' component of Warren and Wasson, which is derived from Apollo 14 soil data, and the 'superKREEP' quartz-monzodiorite 15405. Lunar breccia 15205 is a polymict regolith breccia that consists of approximately 20% KREEP basalt clasts and 20% quartz-normative basalt clasts in a KREEP-rich matrix. Bulk rock mixing calculations show that this sample comprises about 84% KREEP. The clasts range up to 1 cm in size, but most are considerably smaller. The primary aim is to characterize pristine KREEP basalts petrographically, to establish the range in chemical compositions of KREEP basalts, and to test models that were proposed for their origin. In addition, we may be able to extend the compositional range recognized in the quartz-normative basalt suite and cast some light on its origin as well. Preliminary whole rock geochemical data on the KREEP basalts are presented in a companion paper by M.M. Lindstrom and co-workers. Concentration is on petrography and mineral chemistry of these clasts, and the implications these data have for the origin of the different melt rock suites.

  6. Germanium abundances in lunar basalts: Evidence of mantle metasomatism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickinson, T.; Taylor, G.J.; Keil, T.K.

    1988-01-01

    To fill in gaps in the present Ge data base, mare basalts were analyzed for Ge and other elements by RNAA and INAA. Mare basalts from Apollo 11, 12, 15, 17 landing sites are rather uniform in Ge abundance, but Apollo 14 aluminous mare basalts and KREEP are enriched in Ge by factors of up to 300 compared to typical mare basalts. These Ge enrichments are not associated with other siderophile element enrichments and, thus, are not due to differences in the amount of metal segregated during core formation. Based on crystal-chemical and inter-element variations, it does not appear thatmore » the observed Ge enrichments are due to silicate liquid immiscibility. Elemental ratios in Apollo 14 aluminous mare basalts, green and orange glass, average basalts and KREEP suggest that incorporation of late accreting material into the source regions or interaction of the magmas with primitive undifferentiated material is not a likely cause for the observed Ge enrichments. We speculate that the most plausible explanation for these Ge enrichments is complexing and concentration of Ge by F, Cl or S in volatile phases. In this manner, the KREEP basalt source regions may have been metasomatized and Apollo 14 aluminous mare basalt magmas may have become enriched in Ge by interacting with these metasomatized areas. The presence of volatile- and Ge-rich regions in the Moon suggests that the Moon was never totally molten. 71 refs., 1 fig., 6 tabs.« less

  7. Geochemistry of komatiites and basalts from the Rio das Velhas and Pitangui greenstone belts, São Francisco Craton, Brazil: Implications for the origin, evolution, and tectonic setting

    NASA Astrophysics Data System (ADS)

    Verma, Sanjeet K.; Oliveira, Elson P.; Silva, Paola M.; Moreno, Juan A.; Amaral, Wagner S.

    2017-07-01

    The Neoarchean Rio das Velhas and Pitangui greenstone belts are situated in the southern São Francisco Craton, Minas Gerais, Brazil. These greenstone belts were formed between ca. 2.79-2.73 Ga, and consist mostly of mafic to ultramafic volcanics and clastic sediments, with minor chemical sediments and felsic volcanics that were metamorphosed under greenschist facies. Komatiites are found only in the Rio das Velhas greenstone belt, which is composed of high-MgO volcanic rocks that have been identified as komatiites and high-Mg basalts, based on their distinctive geochemical characteristics. The Rio das Velhas komatiites are composed of tremolite + actinolite + serpentine + albite with a relict spinifex-texture. The Rio das Velhas komatiites have a high magnesium content ((MgO)adj ≥ 28 wt.%), an Al-undepleted Munro-type [(Al2O3/TiO2)adj and (CaO/Al2O3)adj] ratio ranging from 27 to 47 and 0.48 to 0.89, relatively low abundances of incompatible elements, a depletion of light rare earth elements (LREE), a pattern of non-fractionated heavy rare- earth elements (HREE), and a low (Gd/Yb)PM ratio (≤ 1.0). Negative Ce anomalies suggest that alteration occurred during greenschist facies metamorphism for the komatiites and high-Mg basalts. The low [(Gd/Yb)PM < 1.0] and [(CaO/Al2O3)adj < 0.9)], high [(Al2O3/TiO2)adj > 18] and high HREE, Y, and Zr content suggest that the Rio das Velhas komatiites were derived from the shallow upper mantle without garnet involvement in the residue. The chemical compositions [(Al2O3/TiO2)adj, (FeO)adj, (MgO)adj, (CaO/Al2O3)adj, Na, Th, Ta, Ni, Cr, Zr, Y, Hf, and REE] indicate that the formation of the komatiites, high-Mg basalts and basalts occurred at different depths and temperatures in a heterogeneous mantle. The komatiites and high-Mg basalts melted at liquidus temperatures of 1450-1550 °C. The Pitangui basalts are enriched in the highly incompatible LILE (large-ion lithophile elements) relative to the moderately incompatible HFS (high

  8. Transition Element Abundances in MORB Basalts

    NASA Astrophysics Data System (ADS)

    Yang, S.; Humayun, M.; Salters, V. J.; Fields, D.; Jefferson, G.; Perfit, M. R.

    2012-12-01

    The mineralogy of the mantle sources of basalts is an important, but hard to constrain parameter, especially with the basalts as chemical probes of major element mantle composition. Geophysical models imply that the deep mantle may have significant variations in Fe and Si relative to the ambient mantle sampled by MORB. Some petrological models of sub-ridge melting involve both pyroxenite and peridotite, implying that basalts preferentially sample a pyroxenite endmember. The First-Row Transition Elements (FRTE), Ga and Ge are compatible to moderately incompatible during partial melting, and are sensitive to mineralogical variability in the mantle and thus can provide constraints on mantle source mineralogy for MORB. We have analyzed major elements, FRTE, Ga and Ge on 231 basaltic glasses from the Middle Atlantic Ridge (MAR between -23°S to 36.44°N), 30 Mid-Cayman Rise basaltic glasses, 12 glasses from the Siqueiros Fracture Zone (EPR), 9 glasses from the Blanco Trough, Juan de Fuca ridge, and Galapagos Spreading Centers (EPR), and 4 Indian Ocean MORB. Large spots (150 μm) were precisely (±1%) analyzed by a New Wave UP193FX excimer (193 nm) laser ablation system coupled to a high-resolution ICP-MS at the National High Magnetic Field Laboratory using a high ablation rate (50 Hz) to yield blank contributions <1% for all elements, particularly Ge. The data demonstrate that the Ge/Si (6.96 x 10E-6 ± 3%, 1σ) and Fe/Mn (55 ± 2%) ratios for MORB are insensitive to fractional crystallization within the MgO range 6%-10%. MORB have Zn/Fe (9.9 x 10E-4 ± 7%), Ga/Sc (0.37-0.50), Ga/Al (2.2 x 10E-4 ± 11%) ratios, with the variations mostly due to the effects of fractional crystallization. Recent experimental determination of FRTE, Ga and Ge partition coefficients provide a framework within which to interpret these data [1]. Using these new partition coefficients, we have modeled the sensitivity of each element to mineralogical variations in the mantle source. Olivine

  9. High Precision 40Ar/39Ar Geochronology of Servilleta Basalts of the Rio Grande Gorge, New Mexico

    NASA Astrophysics Data System (ADS)

    Cosca, M. A.; Thompson, R. A.; Turner, K. J.

    2014-12-01

    New geologic mapping and high-precision 40Ar/39Ar geochronology within the Taos Plateau in northern New Mexico indicate a period of vigorous volcanic activity between ~5.5 and ~1 Ma. Over 50 visible volcanic centers formed during this time together with an unresolved number of vents, fissures, and volcanic centers buried by intercalated volcanic rock and sedimentary basin fill. Defining the volcanic stratigraphy is essential for models of regional groundwater flow and for understanding the geologic evolution of the Pliocene to Recent Rio Grande rift. A spectacular stratigraphic section of volcanic rock related to Rio Grande rifting is visible from the High Bridge, just a few miles outside of Taos, NM, where a 240 m canyon is incised through the basal, middle, and upper Servilleta basalt flow packages (Dungan et al., 1984). Fresh basalt from a vertical transect of the canyon near the High Bridge were analyzed by 40Ar/39Ar methods on ~3 mm3 rock fragments using an ARGUS VI mass spectrometer and the resulting 40Ar/39Ar ages define a precise emplacement chronology of the entire stratigraphic section. The basal flow package records ages of 4.78 ± 0.03 Ma (relative to FCT sanidine = 28.204 Ma; all errors 2 sigma) at river level, 4.77 ± 0.03 Ma at mid flow, and 4.50 ± 0.04 Ma at the top of the flow. The middle flow package records ages of 4.11 ± 0.03 Ma at the base of the flow, 4.08 ± 0.04 Ma mid flow, and 4.02 ± 0.06 Ma at the top of the flow. The upper basalt package records ages of 3.69 ± 0.06 Ma at the base of the flow and 3.59 ± 0.08 Ma at the top of the flow. These data support rapid effusion of voluminous lava flows on time scales of 100-200 ka. Two reddish paleosols separating the Servilleta packages each developed during a 400 ka period of volcanic quiescence. First order calculations using exposed lava thicknesses in the gorge and areal exposures suggest each flow package represents emplacement of ~200 km3 of basalt. Because no exposed vent of

  10. Mars: Difference Between Lowland and Highland Basalts Confirms A Tendency Observed In Terrestrial and Lunar Basaltic Compositions

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars

  11. Barium isotopic compositions of oceanic basalts from São Miguel, Azores Archipelago

    NASA Astrophysics Data System (ADS)

    Yu, H.; Nan, X.; Huang, F.

    2016-12-01

    Oceanic island basalts (OIB) provide important information to decipher the processes of mantle convection and crustal material recycling1. OIBs from São Miguel, Azores Archipelago have extreme radiogenic isotope compositions2-3, representing an enriched component in their mantle source. However, the origins of the enriched mantle are still in debate. Previous studies proposed that the enriched component could be subducted terrigenous sediments2,4, delaminated subcontinental lithosphere5-6, recycled oceanic crust with evolved compositions (such as a subducted seamount)7, or enriched (E-MORB type) under-plated basalts which infiltrated the oceanic mantle lithosphere8. In this study, we use Ba isotopes to constrain the origin of enriched component beneath São Miguel because Ba isotopes can be significantly fractionated at the Earth's surface with low temperature environment than in the mantle with high temperature9-10. We analyzed Ba isotopes of 15 basalts from São Miguel. Although these samples have large variations of 87Sr/86Sr (0.703440-0.705996), 206Pb/204Pb (19.319-20.095) and 187Os/188Os (0.127-0.161), they have limited variation of 137Ba/134Ba (-0.003 to +0.048‰). The average 137Ba/134Ba of São Miguel basalts is 0.019±0.033‰ (n=15, 2SD), which is in the range of mantle (0.026±0.090‰, n=32, 2SD)9, indicating there is no surface material in the mantle source of São Miguel. The enriched source of São Miguel could be evolved material from the mantle. 1. Hofmann, 1997, Nature; 2. Hawkesworth et al., 1979, Nature; 3. White et al., 1979, CMP; 4. Turner et al., 1997, CG; 5. Widom et al., 1997, CG; 6. Moreira et al., 1999, EPSL; 7. Beier et al., 2007, EPSL; 8. Elliott et al., 2007, GCA; 9. Huang et al., 2015, Goldschmidt abs 1331; 10. Nan et al., 2016, Goldschmidt abs 2246.

  12. The Mineralogy of the Youngest Lunar Basalts

    NASA Astrophysics Data System (ADS)

    Staid, M. I.; Pieters, C. M.

    1999-01-01

    The last stage of lunar volcanism produced spectrally distinct basalts on the western nearside of the Moon, which remain unsampled by landing missions. The spectral properties of these late-stage basalts are examined using high-spatial-resolution Clementine images to constrain their mineralogic composition. The young high-Ti basalts in the western Procellarum and Imbrium Basins display a significantly stronger ferrous absorption than earlier mare basalts, suggesting that they may be the most Fe-rich deposits on the Moon. The distinct long-wavelength shape of this ferrous absorption is found to be similar for surface soils and materials excavated from depth. The pervasive character of this absorption feature supports the interpretation of abundant olivine within these late-stage lunar deposits. Important distinctions exist between the early-stage eastern maria and the late-stage western basalts, even though both appear to be Ti-rich. For example, the western maria are more radiogenic than eastern deposits. Telescopic spectra of the high-Ti western maria also exhibit a unique combination of a strong 1 micron feature and a relatively weak or attenuated 2-micron absorption. Pieters et al. concluded that the unusual strength and shape of the 1-micron absorption in western basalts results from an additional absorption from abundant olivine and/or Fe-bearing glass. Either mineralogy could produce the strong long wavelength 1-micron band, but a glassy Fe-rich surface could only form by rapid cooling along the exterior surfaces of flows. Clementine UV-VIS data of late-stage basalts are examined for regions in Oceanus Procellarum and Mare Imbrium. The spectral properties of western regions are compared to the sampled Apollo 11 basalts in Mare Tranquillitatis, which contain similar albedos and UV-VIS spectral properties. For reference, the western basalts are also compared to the low-Ti and Fe-rich basalts in Mare Serenitatis (mISP). Serenitatis basalts have the strongest

  13. Mantle sources for Central Atlantic Magmatic Province basalts from Hf isotopes

    NASA Astrophysics Data System (ADS)

    Elkins, L. J.; Marzoli, A.; Bizimis, M.; Meyzen, C. M.; Callegaro, S.; Sorsen, N.; Lassiter, J. C.; Ernesto, M.

    2017-12-01

    The Central Atlantic Magmatic Province (CAMP) was one of the most voluminous LIP events in Earth history and likely triggered the end-Triassic mass extinction. The tectonic and mantle processes that produced such significant magmatic emplacement are thus of great interest. To further explore the origins of CAMP, we present new 176Hf/177Hf isotope data for a broad geographic sampling of CAMP dikes, sills, and basalt flows. We find that basaltic intrusions from the Carolinas in Eastern North America trend along a shallower slope than the terrestrial array on a diagram of 176Hf/177Hf vs. 143Nd/144Nd. This trend may reflect the presence of variable quantities of sediment-derived material in the mantle source region. This is consistent with previous suggestions that the asthenosphere beneath CAMP has been partially metasomatised by fluids derived from subducted sediments, as well as with isotopic trends observed in other LIP, such as Karoo [Jourdan et al., 2007, Jour. Petrology, doi:10.1093/petrology/egm010]. Distinct from the Carolina trend, we further observe that high-TiO2 basalts from Amazonia exhibit unusually radiogenic 176Hf/177Hf for a given 208Pb/206Pb ratio. The high-TiO­2 basalts, which trend towards EM1-type compositions, may be asthenospheric melts that have experienced the addition of melts from local subcontinental lithospheric mantle (SCLM). Similarly high-TiO2 CAMP rocks from Sierra Leone may likewise have incorporated enriched lithospheric melts of lamproite-like composition in the source region [Callegaro et al., JPet, accepted; GSA Abstract #302853, 2017]. Low-TiO2 basalts from the same region in Brazil and of similar age to the high-TiO2 basalts lack the observed radiogenic 176Hf/177Hf ratios. This suggests that the melt source region beneath Brazil was heterogeneous, containing variable material with relatively radiogenic 176Hf/177Hf ratios, perhaps due to the greater age of subcontinental lithosphere and the presence of garnet. It remains unclear

  14. Experimental research on continuous basalt fiber and basalt-fibers-reinforced polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Xueyi; Zou, Guangping; Shen, Zhiqiang

    2008-11-01

    The interest for continuous basalt fibers and reinforced polymers has recently grown because of its low price and rich natural resource. Basalt fiber was one type of high performance inorganic fibers which were made from natural basalt by the method of melt extraction. This paper discusses basic mechanical properties of basalt fiber. The other work in this paper was to conduct tensile testing of continuous basalt fiber-reinforced polymer rod. Tensile strength and stress-strain curve were obtained in this testing. The strength of rod was fairly equal to rod of E-glass fibers and weaker than rod of carbon fibers. Surface of crack of rod was studied. An investigation of fracture mechanism between matrix and fiber was analyzed by SEM (Scanning electron microscopy) method. A poor adhesion between the matrix and fibers was also shown for composites analyzing SEM photos. The promising tensile properties of the presented basalt fibers composites have shown their great potential as alternative classical composites.

  15. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, which allows a shape to be formed prior to the cure, and is then pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Basalt fibers are used for the reinforcement in the composite system. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material.

  16. Lu-Hf constraints on the evolution of lunar basalts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimaki, H.; Tatsumoto, M.

    1984-02-15

    Very low Ti basalts andd green glass samples from the moon show high Lu/Hf ratios and low Hf concentrations. Low-Ti lunar basalts show high and variable Lu/Hf ratios and higher Hf concentrations, whereas high-Ti lunar basalts show low Lu/Hf ratios and high Hf concentrations. KREEP basalts have constant Lu/Hf ratios and high but variable Hf concentrations. Using the Lu-Hf behavior as a constraint, we propose a model for the mare basalts evolution. This constraint requires extensive crystallization of the primary lunar magma ocean prior to formation of the lunar mare basalt sources and the KREEP basalts. Mare basalts are producedmore » by the melting of the cumulate rocks, and KREEP basalts represent the residual liquid of the magma ocean.« less

  17. Paleomagnetic record of mare basalt 10017: A lunar core dynamo at 3.6 Ga?

    NASA Astrophysics Data System (ADS)

    Suavet, C.; Weiss, B. P.; Fuller, M.; Gattacceca, J.; Grove, T. L.; Shuster, D. L.

    2011-12-01

    Following the Apollo missions, twenty years of paleomagnetic studies of returned samples have failed to demonstrate unambiguously the existence of an ancient lunar core dynamo. As a result of new technologies, more robust analytical methods, and a better understanding of rock magnetism, it is now possible to revisit lunar paleomagnetism. A set of criteria that must be met in order to demonstrate that a sample has recorded a core dynamo field has been defined: the samples must not show petrologic evidence of shock, the magnetization must be a stable thermoremanent magnetization (TRM), mutually oriented subsamples should agree in direction and intensity, and the thermal history should be well constrained, with a cooling timescale longer than the lifetime of impact generated fields (>1h). A critical review of the literature has allowed us to identify Apollo samples that are most likely to provide good records of ancient lunar magnetic fields. The first samples to be studied within this framework were troctolite 76535 (Garrick-Bethell et al., 2009) and mare basalt 10020 (Shea et al., 2010), which have recorded a core dynamo field at 4.2 and 3.7 Ga, respectively. Mare basalt 10017 is a fine grained, vesicular, high-K ilmenite basalt with a crystallization age of 3.6 Ga. It was studied by different groups (Fuller and Meshkov, 1979; Hoffman et al., 1979; Runcorn et al., 1970; Stephenson et al., 1977), all of whom noted the stability of its magnetization. We have measured 7 subsamples of chip 10017,378. Their magnetizations agree in direction, with a low coercivity overprint removed by 10 mT AF demagnetization, and a stable high coercivity component consistent with a TRM. Paleointensity estimations give a conservative minimum of 12 μT for the paleofield. This sample is ~100 Myr younger than the end of the late heavy bombardment, which rules out basin-forming impacts as a possible candidate to explain its magnetization. It extends the lifetime of the putative ancient lunar

  18. Geochemical insights into the lithology of mantle sources for Cenozoic alkali basalts in West Qinling, China

    NASA Astrophysics Data System (ADS)

    Dai, Li-Qun; Zheng, Fei; Zhao, Zi-Fu; Zheng, Yong-Fei

    2018-03-01

    Although alkali basalts are common in oceanic islands and continental rifts, the lithology of their mantle sources is still controversial. While the peridotite is usually viewed as a common source lithology, there are increasing studies suggesting significant contributions from ultramafic metasomatites such as carbonated peridotite, pyroxenite and hornblendite to the origin of alkali basalts. The present study indicates that carbonated peridotite plus hornblendite would have served as the mantle sources of Cenozoic alkali basalts from the West Qinling orogen in China. The target basalts show low SiO2 contents of 36.9 to 40.8 wt% and highly variable Na2O + K2O contents from 0.86 to 4.77 wt%, but high CaO contents of 12.5 to 16.3 wt% and CaO/Al2O3 ratios of 1.42 to 2.19. They are highly enriched in the majority of incompatible trace elements, but depleted in Rb, K, Pb, Zr, Hf, and Ti. Furthermore, they exhibit high (La/Yb)N, Zr/Hf, Ce/Pb and Nb/Ta ratios, but low Ti/Eu and Hf/Sm ratios. Generally, with increasing (La/Yb)N and CaO/Al2O3 ratios, their Ti/Eu and Hf/Sm ratios decrease whereas their Zr/Hf, Ce/Pb and Nb/Ta ratios increase. These major and trace element features are similar to those of carbonatites and hornblendite-derived melts to some extent, but significantly different from those of mid-ocean ridge basalts (MORB). This suggests that the alkali basalts would be originated from metasomatic mantle sources. A comparison of the major-trace elements in the alkali basalts with those of some representative mantle-derived melts indicates that the source lithology of alkali basalts is a kind of ultramafic metasomatites that are composed of carbonated peridotite and hornblendite. Such metasomatites would be generated by reaction of the depleted MORB mantle peridotite with hydrous, carbonate-bearing felsic melts derived from partial melting of the subducted Paleotethyan oceanic crust. Therefore, the melt-peridotite reaction at the slab-mantle interface in the

  19. Petrologic models of 15388, a unique Apollo 15 mare basalt

    NASA Technical Reports Server (NTRS)

    Hughes, S. S.; Dasch, E. J.; Nyquist, L. E.

    1993-01-01

    Mare basalt 15388, a feldspathic microgabbro from the Apennine Front, is chemically and petrographically distinct from Apollo 15 picritic, olivine-normative (ON), and quartz-normative basalts. The evolved chemistry, coarse texture, lack of olivine, and occurrence of cristobalite in 15388 argue for derivation by a late-stage magmatic process that is significantly removed from parental magma. It either crystallized from a magma evolved from the more mafic Apollo 15 basalts, or it crystallized from a currently unrepresented magma. Rb-Sr and Sm-Nd isotopic systematics yield isochron ages of 3.391 plus or minus 0.036 and 3.42 plus or minus 0.07 Ga, respectively, and epsilon(sub Nd) = 8.6 plus or minus 2.4, which is relatively high for Apollo 15 mare basalts. In contrast to chemical patterns of average Apollo 15 ON basalts and Apollo 15 picritic basalt, 15388 has a strongly positive LREE slope, high Ti, shallower HREE slope and a slightly positive Eu anomaly. These features argue against 15388 evolution by simple olivine fractionation of a parental ON or picritic basalt magma, although olivine is a dominant liquidus phase in both potential parents.

  20. Distribution and stratigraphy of basaltic units in Maria Tranquillitatis and Fecunditatis: A Clementine perspective

    NASA Technical Reports Server (NTRS)

    Rajmon, D.; Spudis, P.

    2004-01-01

    Maria Tranquillitatis and Fecunditatis have been mapped based on Clementine image mosaics and derived iron and titanium maps. Impact craters served as stratigraphic probes enabling better delineation of compositionally different basaltic units, determining the distribution of subsurface basalts, and providing estimates of total basalt thickness and the thickness of the surface units. Collected data indicate that volcanism in these maria started with the eruption of low-Ti basalts and evolved toward medium- and high-Ti basalts. Some of the high-Ti basalts in Mare Tranquillitatis began erupting early and were contemporaneous with the low- and medium-Ti basalts; these units form the oldest units exposed on the mare surface. Mare Tranquillitatis is mostly covered with high- Ti basalts. In Mare Fecunditatis, the volume of erupting basalts clearly decreased as the Ti content increased, and the high-Ti basalts occur as a few patches on the mare surface. The basalt in both maria is on the order of several hundred meters thick and locally may be as thick as 1600 m. The new basalt thickness estimates generally fall within the range set by earlier studies, although locally differ. The medium- to high-Ti basalts exposed at the surfaces of both maria are meters to tens of meters thick.

  1. Radiocarbon as a Reactive Tracer for Tracking Permanent CO 2 Storage in Basaltic Rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matter, Juerg; Stute, Martin; Schlosser, Peter

    In view of concerns about the long-term integrity and containment of CO 2 storage in geologic reservoirs, many efforts have been made to improve the monitoring, verification and accounting methods for geologically stored CO 2. Our project aimed to demonstrate that carbon-14 ( 14C) could be used as a reactive tracer to monitor geochemical reactions and evaluate the extent of mineral trapping of CO 2 in basaltic rocks. The capacity of a storage reservoir for mineral trapping of CO 2 is largely a function of host rock composition. Mineral carbonation involves combining CO 2 with divalent cations including Ca 2+,more » Mg 2+ and Fe 2+. The most abundant geological sources for these cations are basaltic rocks. Based on initial storage capacity estimates, we know that basalts have the necessary capacity to store million to billion tons of CO 2 via in situ mineral carbonation. However, little is known about CO2-fluid-rock reactions occurring in a basaltic storage reservoir during and post-CO 2 injection. None of the common monitoring and verification techniques have been able to provide a surveying tool for mineral trapping. The most direct method for quantitative monitoring and accounting involves the tagging of the injected CO 2 with 14C because 14C is not present in deep geologic reservoirs prior to injection. Accordingly, we conducted two CO 2 injection tests at the CarbFix pilot injection site in Iceland to study the feasibility of 14C as a reactive tracer for monitoring CO 2-fluid-rock reactions and CO 2 mineralization. Our newly developed monitoring techniques, using 14C as a reactive tracer, have been successfully demonstrated. For the first time, permanent and safe disposal of CO 2 as environmentally benign carbonate minerals in basaltic rocks could be shown. Over 95% of the injected CO 2 at the CarbFix pilot injection site was mineralized to carbonate minerals in less than two years after injection. Our monitoring results confirm that CO 2 mineralization in

  2. Trace elements in ocean ridge basalts

    NASA Technical Reports Server (NTRS)

    Kay, R. W.; Hubbard, N. J.

    1978-01-01

    A study is made of the trace elements found in ocean ridge basalts. General assumptions regarding melting behavior, trace element fractionation, and alteration effects are presented. Data on the trace elements are grouped according to refractory lithophile elements, refractory siderophile elements, and volatile metals. Variations in ocean ridge basalt chemistry are noted both for regional and temporal characteristics. Ocean ridge basalts are compared to other terrestrial basalts, such as those having La/Yb ratios greater than those of chondrites, and those having La/Yb ratios less than those of chondrites. It is found that (1) as compared to solar or chondrite ratios, ocean ridge basalts have low ratios of large, highly-charged elements to smaller less highly-charged elements, (2) ocean ridge basalts exhibit low ratios of volatile to nonvolatile elements, and (3) the transition metals Cr through Zn in ocean ridge basalts are not fractionated more than a factor of 2 or 3 from the chondritic abundance ratios.

  3. Rhenium - osmium heterogeneity of enriched mantle basalts explained by composition and behaviour of mantle-derived sulfides

    NASA Astrophysics Data System (ADS)

    Harvey, J.; Dale, C. W.; Gannoun, A.; Burton, K. W.

    2010-12-01

    187Os/188Os signature. Only when sulfides armored within silicates are exposed to the melt through continued partial melting will enclosed sulfides add their high [Os] and unradiogenic 187Os/188Os to the aggregate melt. Platinum-group element data for whole rocks are also consistent with this scenario. The sequence of (i) addition of all the metasomatic sulfide, followed by (ii) the incorporation of small amounts of armored sulfide can thus account for the range of both [Os] and 187Os/188Os of EM-basalts worldwide without the need for contributions from additional silicate mantle reservoirs. References: [1] Zindler & Hart, (1986) Annu. Rev. Earth Planet. Sci. 14, 493-571. [2] Class et al. (2009) Earth Planet. Sci. Lett. 284, 219-227. [3] Stracke, et al. (2005) Geochem., Geophys., Geosys. 6, doi:10.1029/2004GC000824. [4] Burton et al., Earth Planet. Sci. Lett. (1999) 172, 311-322. [5] Alard et al., (2002) Earth Planet. Sci. Lett. 203, 651-663

  4. Basaltic Soil of Gale Crater: Crystalline Component Compared to Martian Basalts and Meteorites

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Schmidt, M.; Downs, R. T.; Stolper, E. M.; Blake, D. F.; Vaniman, D. T.; Achilles, C. N.; hide

    2013-01-01

    A significant portion of the soil of the Rocknest dune is crystalline and is consistent with derivation from unweathered basalt. Minerals and their compositions are identified by X-ray diffraction (XRD) data from the CheMin instrument on MSL Curiosity. Basalt minerals in the soil include plagioclase, olivine, low- and high-calcium pyroxenes, magnetite, ilmenite, and quartz. The only minerals unlikely to have formed in an unaltered basalt are hematite and anhydrite. The mineral proportions and compositions of the Rocknest soil are nearly identical to those of the Adirondack-class basalts of Gusev Crater, Mars, inferred from their bulk composition as analyzed by the MER Spirit rover.

  5. High renewable content sandwich structures based on flax-basalt hybrids and biobased epoxy polymers

    NASA Astrophysics Data System (ADS)

    Colomina, S.; Boronat, T.; Fenollar, O.; Sánchez-Nacher, L.; Balart, R.

    2014-05-01

    In the last years, a growing interest in the development of high environmental efficiency materials has been detected and this situation is more accentuated in the field of polymers and polymer composites. In this work, green composite sandwich structures with high renewable content have been developed with core cork materials. The base resin for composites was a biobased epoxy resin derived from epoxidized vegetable oils. Hybrid basalt-flax fabrics have been used as reinforcements for composites and the influence of the stacking sequence has been evaluated in order to optimize the appropriate laminate structure for the sandwich bases. Core cork materials with different thickness have been used to evaluate performance of sandwich structures thus leading to high renewable content composite sandwich structures. Results show that position of basalt fabrics plays a key role in flexural fracture of sandwich structures due to differences in stiffness between flax and basalt fibers.

  6. Basalt depths in lunar basins using impact craters as stratigraphic probes: Evaluation of a method using orbital geochemical data

    NASA Technical Reports Server (NTRS)

    Andre, C. G.

    1986-01-01

    A rare look at the chemical composition of subsurface stratigraphy in lunar basins filled with mare basalt is possible at fresh impact craters. Mg/Al maps from orbital X-ray flourescence measurements of mare areas indicate chemical anomalies associated with materials ejected by large post-mare impacts. A method of constraining the wide-ranging estimates of mare basalt depths using the orbital MG/Al data is evaluated and the results are compared to those of investigators using different indirect methods. Chemical anomalies at impact craters within the maria indicate five locations where higher Mg/Al basalt compositions may have been excavated from beneath the surface layer. At eight other locations, low Mg/Al anomalies suggest that basin-floor material was ejected. In these two cases, the stratigraphic layers are interpreted to occur at depths less than the calculated maximum depth of excavation. In five other cases, there is no apparent chemical change between the crater and the surrounding mare surface. This suggests homogeneous basalt compositions that extend down to the depths sampled, i.e., no anorthositic material that might represent the basin floor was exposed.

  7. REE and Isotopic Compositions of Lunar Basalts Demonstrate Partial Melting of Hybridized Mantle Sources after Cumulate Overturn is Required

    NASA Astrophysics Data System (ADS)

    Dygert, N. J.; Liang, Y.

    2017-12-01

    Lunar basalts maintain an important record of the composition of the lunar interior. Much of our understanding of the Moon's early evolution comes from studying their petrogenesis. Recent experimental work has advanced our knowledge of major and trace element fractionation during lunar magma ocean (LMO) crystallization [e.g., 1-3], which produced heterogeneous basalt sources in the Moon's mantle. With the new experimental constraints, we can evaluate isotopic and trace element signatures in lunar basalts in unprecedented detail, refining inferences about the Moon's dynamic history. Two petrogenetic models are invoked to explain the compositions of the basalts. The assimilation model argues they formed as primitive melts of early LMO cumulates that assimilated late LMO cumulates as they migrated upward. The cumulate overturn model argues that dense LMO cumulates sank into the lunar interior, producing hybridized sources that melted to form the basalts. Here we compare predicted Ce/Yb and Hf and Nd isotopes of partial melts of LMO cumulates with measured compositions of lunar basalts to evaluate whether they could have formed by end-member petrogenetic models. LMO crystallization models suggest all LMO cumulates have chondrite normalized Ce/Yb <1. Residual liquid from the magma ocean has Ce/Yb 1.5. Many primitive lunar basalts have Ce/Yb>1.5; these could not have formed by assimilation of any LMO cumulate or residual liquid (or KREEP basalt, which has isotopically negative ɛNd and ɛHf). In contrast, basalt REE patterns and isotopes can easily be modeled assuming partial melting of hybridized mantle sources, indicating overturn may be required. A chemical requirement for overturn independently confirms that late LMO cumulates are sufficiently low in viscosity to sink into the lunar interior, as suggested by recent rock deformation experiments [4]. Overturned, low viscosity late LMO cumulates would be relatively stable around the core [5]. High Ce/Yb basalts require

  8. Origin of major element chemical trends in DSDP Leg 37 basalts, Mid-Atlantic Ridge

    USGS Publications Warehouse

    Byerly, G.R.; Wright, T.L.

    1978-01-01

    In this paper we summarize the major element chemical variation for basalts from the Deep Sea Drilling Project Leg 37 and relate it to stratigraphic position in each of five drilling sites. Least-squares techniques are successfully used to quantify the nature and extent of alteration in these basalts, and to correct the major element analysis back to a magmatic, or alteration-free, composition on the assumption that alteration takes place in two ways: (1) secondary minerals are introduced into veins and vesicles, and (2) CO2 and H2O react with components in the rock to form a simple alteration assemblage. A chemical stratigraphy is defined for these basalts by grouping lavas whose chemistries are related by low-pressure phenocryst-liquid differentiation as identified by least-squares calculation. Major chemical-stratigraphic units are as much as 200 m thick; correlations of these units can be made between the holes at site 332 (about 100 m apart), but not between the other sites. Compositions of parental magmas are calculated by extrapolating low-pressure variations to a constant value of 9% MgO. The differences in these extrapolated compositions reflect high-pressure processes, and suggest that clinopyroxene may be an important phase in either intermediate-level fractionation of basaltic liquids, or as a residual phase during the partial melting which produces these basaltic liquids. Several of the basaltic liquids calculated as parental to the Leg 37 basalts have CaO contents greater than 14% and indicate that the oceanic mantle is richer in CaO and Al2O3 than values used in pyrolite models for the upper mantle. A model for magma generation and eruption beneath the Mid-Atlantic Ridge embodies the following characteristics: 1. (1) Separate magma batches are generated in the mantle. 2. (2) Each of these may be erupted directly or stored at shallow depth where significant fractionation takes place. Common fractionation processes are inferred to be gravitative

  9. Ancient crustal components in the Fra Mauro breccias

    NASA Technical Reports Server (NTRS)

    Shervais, J. W.; Taylor, L. A.; Laul, J. C.

    1983-01-01

    Texturally pristine clasts preserve primary petrographic relationships and mineral compositions, yielding insights into igneous processes of the early lunar crust that cannot be gained from highly shocked and brecciated 'chemically pristine' samples. The use of texture as a prime criterion allows for expansion of the data base derived solely from chemical criteria, and provides complementary data. Texturally pristine clasts from the Apollo 14 site studied here include anorthosite, troctolites, gabbronorites, and basalts. Alkali anorthosites are plagioclase orthocumulates and may form by flotation in Mg-suite plutons. Ferroan anorthosite was cataclastically deformed and metamorphosed to granulite facies. Troctolites include both 01 + Plg and 01 + En + Plg cumulates. Major and trace element analyses of two troctolites reveal 'eastern' geochemical affinities that contrast other 'western' troctolites. Gabbronorites are Pig + Plg + or - Sp cumulates whose parent magmas may range from high-Al to intermediate-Ti mare basalt. At least three varieties of mare basalt are found at Apollo 14: high-Al, low-Ti; low-Al, intermediate-Ti; and low-Al, Ti VHK basalt. VHK (Very High Potassium) basalt is a new variety indigenous to Apollo 14.

  10. The comparison of microstructures and mechanical properties between 14Cr-Al and 14Cr-Ti ferritic ODS alloys

    DOE PAGES

    Zhang, Guangming; Zhou, Zhangjian; Mo, Kun; ...

    2016-03-03

    In this study, two kinds of 14Cr ODS alloys (14Cr-Al and 14Cr-Ti) were investigated to reveal the different effects between Al and Ti on the microstructures and mechanical properties of 14Cr ferritic ODS alloys. The microstructure information such as grains, minor phases of these two alloys has been investigated by high-energy X-ray diffraction and transmission electron microscopy (TEM). The in situ synchrotron X-ray diffraction tensile test was applied to investigate the mechanical properties of these two alloys. The lattice strains of different phases through the entire tensile deformation process in these two alloys were analyzed to calculate their elastic stresses.more » From the comparison of elastic stress, the strengthening capability of Y 2Ti 2O 7 is better than TiN in 14Cr-Ti, and the strengthening capability of YAH is much better than YAM and AlN in 14Cr-Al ODS. The dislocation densities of 14Cr-Ti and 14Cr-Al ODS alloys during tensile deformation were also examined by modified Williamson-Hall analyses of peak broadening, respectively. In conclusion, the different increasing speed of dislocation density with plastic deformation reveals the better strengthening effect of Y-Ti-O particles in 14Cr-Ti ODS than that of Y-Al-O particles in 14Cr-Al ODS alloy.« less

  11. Using Apollo 17 high-Ti mare basalts as windows to the lunar mantle

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Taylor, Lawrence A.

    1992-01-01

    The Apollo 17 high-Ti mare basalts are derived from source regions containing plagioclase that was not retained in the residue. Ilmenite appears to remain as a residual phase, but plagioclase is exhausted. The open-system behavior of the type B2 basalts results in slightly higher Yb/Hf and La/Sm ratios. The nature of the added component is not clear, but may be a KREEP derivative or residue. The recognition of plagioclase in the source(s) of these basalts suggests that the location of the source region(s) would be more likely to be less than 150 km (i.e., closer to the plagioclase-rich crust), which would allow incorporation of plagioclase into the source through incomplete separation of crustal feldspar.

  12. Origin of Magnetic High at Basalt-Ultramafic Hosted Hydrothermal Vent Field in the Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Fujii, M.; Okino, K.; Sato, T.; Sato, H.; Nakamura, K.

    2014-12-01

    Hydrothermal alteration processes can change crustal magnetization by destruction and creation of magnetic minerals. In the Yokoniwa hydrothermal vent field (YHVF), located at the NTO-massif in the Central Indian Ridge, a high magnetization zone (with ~12 A/m in ~200 m-scale) was discovered by previous deepsea AUV survey. Basalts and ultramafic rocks were found around the YHVF, however the origin of magnetic high and its relationship with hydrothermal activity are remains to be investigated. Therefore, we conducted additional magnetic field measurement, rock sampling, and geological observation using submersible Shinkai 6500 during the YK09-13 and YK13-03 cruises. Vector geomagnetic field were obtained along the dive tracks at an altitude of ~ 10 m. The crustal absolute magnetization is estimated using the 2D and 3D forward modeling technique. The values of magnetization show ~10 A/m just around the YHVF. This value is consistent with that of equivalent magnetization deduced from AUV data. Rock magnetic characters were measured for 8 basalts, 4 dolerites, 5 sulfides, and 30 serpentinized peridotites (SPs). The measurements of NRM, magnetic susceptibility, magnetic hysteresis, low (6-300K) and high (50-700°C) temperature magnetization curves were performed. The estimated magnetization values are 0.1-6 A/m in basalts, 0.2-0.6 A/m in dolerites, and <0.1 A/m in sulfides. The SPs show strong magnetization of 0.4-11 A/m. The magnetic grain sizes ranges over single domain to pseudo-single domain. The temperature-magnetization curves clearly show the Verway transition and Currie temperature of 580 °C, therefore magnetic carrier of SPs is supposed as pure magnetite, which is created during serpentinization process. Serpentinization degree (Sd) was also estimated by grain density measurement based on empirical formula from Oufi et al., 2002. Amount of magnetite was also estimated from saturation magnetization. The results show that the values of Sd vary in a range from 17

  13. Major element chemistry of Apollo 14 mare basalt clasts and highland plutonic clasts from lunar breccia 14321: Comparison with neutron activation results

    NASA Technical Reports Server (NTRS)

    Shervais, John W.; Vetter, Scott K.

    1993-01-01

    Studies of lithic components in lunar breccias have documented a wide variety of rock types and magma suites which are not found among large, discrete lunar samples. Rock types found exclusively or dominantly as clasts in breccias include KREEP basalts, VHK mare basalts, high-alumina mare basalts, olivine vitrophyres, alkali anorthosites, and magnesian anorthosites and troctolites. These miniature samples are crucial in petrogenetic studies of ancient mare basalts and the highlands crust of the western nearside, both of which have been battered by basin-forming impacts and no longer exist as distinct rock units.

  14. Lithospheric control on basaltic magma compositions within a long-lived monogenetic magmatic province: the Cainozoic basalts of eastern Victoria, south-eastern Australia

    NASA Astrophysics Data System (ADS)

    Price, R. C.; Nicholls, I. A.; Maas, R.

    2012-12-01

    Basaltic volcanism, ranging in age from Late Jurassic to Holocene and extending across southern Victoria in south-eastern Australia was initiated ~ 95 Ma ago during the earliest stages of rifting associated with opening of the Tasman Sea and Southern Ocean. Volcanic activity has continued sporadically since that time with the only major hiatus being between 18 and 7 Ma (Price et al, 2003). Basaltic rocks with ages in the range 18-90 Ma occur in small lava fields scattered across eastern and south-eastern Victoria and have also been recovered from bore holes in the west of the state. These have in the past been referred to as the "Older Volcanics" to differentiate them from more volumetrically extensive and younger (< 5 Ma) lava fields to the west. Older Volcanics vary in composition from SiO2-undersaturated basanites, basalts and hawaiites through transitional basalts to hypersthene normative tholeiites. Strontium, Nd and Pb isotopic compositions lie between DM and EM 2 in Sr-Nd-Pb isotopic space. They are isotopically similar to Samoan OIB but different from intra-plate rocks of the New Zealand-Antarctic diffuse alkaline magmatic province (DAMP). Trace element compositions are generally characterised by enrichment of Cs, Ba, Rb, Th, U, Nb, K and light REE over heavy REE, Ti, Zr and Y but there is subtle diversity within and between particular lava fields. (La/Yb)n and K/Nb ratios show significant variation and some basalts are relatively enriched in Sr, P and Pb. Potassium and Rb show distinctive relative depletions in some samples and this could be indicating low degree melting with residual phlogopite. When Sr isotope data for Older Volcanics are projected onto an east-west profile they outline distinctive discontinuities that can be related to surface and subsurface structural features within the basement. This has previously been identified in the "Newer Volcanics" (< 5 Ma) province of western Victoria (Price et al., 1997, 2003). Both Proterozoic and

  15. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed, to be cured, and be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000degC. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200degC, -SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Testing for this included thermal and mechanical testing per ASTM standard tests.

  16. Results of test drilling in the Basalt aquifer near Fallon, Nevada

    USGS Publications Warehouse

    Maurer, Douglas K.

    2002-01-01

    Drilling of two test holes into the Fallon basalt aquifer commenced August 14, 2001. The basalt aquifer is located beneath the Carson Desert, near Fallon, Nevada, and is the sole source of drinking water for the City of Fallon, the Naval Air Station (NAS) Fallon, and the Fallon Paiute-Shoshone Tribe. Basalt comprising the aquifer is exposed at Rattlesnake Hill, an eroded volcanic cone, about 1 mile northeast of Fallon, and the remainder is buried beneath sediments deposited by the Carson River and ancient Lake Lahontan to depths of 600 feet near its edges (fig. 1). The basalt-aquifer system is a mushroom-shaped body of highly permeable volcanic rock. Viewed from above, the lateral extent of the basalt body is oval-shaped, about 4-miles wide and 10-miles long (fig. 1). Drilling was part of a cooperative study between the U.S. Geological Survey (USGS), the Bureau of Reclamation, and NAS Fallon. The study was started because of concern about the continued viability of the basalt-aquifer system as a source of municipal water supply. Increased pumping from about 1,700 acre-feet per year (acre-ft/yr) in the 1970?s to over 3,000 acre-ft/yr in the late 1990?s has caused water levels in the basalt to decline as much as 12 feet (fig. 2). During this same time period, water pumped from the aquifer at NAS Fallon and the City of Fallon wells showed that concentrations of dissolved chloride increased, although chloride concentrations were well within the U.S. Environmental Protection Agency?s (EPA) drinking-water standards; at this rate of increase, it would take decades to exceed the present standard (Maurer and Welch, 2001, p. 46). Concentrations of arsenic in the aquifer are about 0.1 milligrams per liter (mg/L), exceeding the drinking-water standard of 0.01 mg/L, but show no apparent change over time (Maurer and Welch, 2001, p. 10 and 48; U. S. Environmental Protection Agency, 2001). Increasing concentrations of chloride may be caused by increased pumping, that induces

  17. Paleointensity of the 1.3 Ga Gardar Basalts, Southern Greenland

    NASA Astrophysics Data System (ADS)

    Carnes, L. K.; Kodama, K. P.

    2017-12-01

    Biggin et al. (2015) suggest that inner core nucleation (ICN) may have occurred 1.3 Ga based on Thomas's (1993) high paleointensity result for the Gardar Basalts in the Eriksfjord Formation of southern Greenland (VDMs up to 150 ZAm2). However, this result has been found to contradict the timing of ICN from recent thermal evolution models and modern paleointensity studies from nearly coeval rocks. We sampled the Gardar Basalts to conduct a modern paleointensity study to check the results of the Thomas (1993) study. We report results from a Thellier-Thellier experiment on 106 Gardar basalt samples collected from 39 flows using the IZZI protocol with pTRM and tail checks. Hysteresis measurements and FORC diagrams indicate that pseudo-single domain magnetite (Curie temperature of 580° C based on χ vs T) is the dominant magnetic mineral in the basalts. Low-temperature demagnetization (LTD) did not improve the paleointensity results so standard measurements of heating in a nitrogen controlled atmosphere are reported here. Thomas (1993) only interpreted his paleointensity results up to 450˚C and found a steep slope in the Arai plots indicating a high paleointensity. Heating at temperatures up to the Curie point showed a second component of magnetization and two slope behavior on the Arai plots with the high temperature results showing lower paleointensities. Between temperatures of 520-580 °C, good results were found for 35 samples yielding an average paleointensity of 5.02±4.32 μT. Thermal demagnetization yielded a mean direction for these flows of D=276.5˚, I=18.9˚, K=11.0, N=33. Based on the paleolatitude from the NRM measurements, an average virtual dipole moment (VDM) of 13.2 ± 11.3 ZAm2 was obtained for 19 of the Gardar flows based on 35 sample measurements. The best results came from the lower flow sequence far from the Illímaussaq intrusion. These VDMs are significantly lower than the previously published Gardar Basalt paleointensity results, suggesting

  18. Iron isotopic systematics of oceanic basalts

    NASA Astrophysics Data System (ADS)

    Teng, Fang-Zhen; Dauphas, Nicolas; Huang, Shichun; Marty, Bernard

    2013-04-01

    The iron isotopic compositions of 93 well-characterized basalts from geochemically and geologically diverse mid-ocean ridge segments, oceanic islands and back arc basins were measured. Forty-three MORBs have homogeneous Fe isotopic composition, with δ56Fe ranging from +0.07‰ to +0.14‰ and an average of +0.105 ± 0.006‰ (2SD/√n, n = 43, MSWD = 1.9). Three back arc basin basalts have similar δ56Fe to MORBs. By contrast, OIBs are slightly heterogeneous with δ56Fe ranging from +0.05‰ to +0.14‰ in samples from Koolau and Loihi, Hawaii, and from +0.09‰ to +0.18‰ in samples from the Society Islands and Cook-Austral chain, French Polynesia. Overall, oceanic basalts are isotopically heavier than mantle peridotite and pyroxenite xenoliths, reflecting Fe isotope fractionation during partial melting of the mantle. Iron isotopic variations in OIBs mainly reflect Fe isotope fractionation during fractional crystallization of olivine and pyroxene, enhanced by source heterogeneity in Koolau samples.

  19. Genesis of Ultra-High Pressure Garnet Pyroxenite in Orogenic Peridotites and its bearing on the Isotopic Chemical Heterogeneity in the Mantle Source of Oceanic Basalts

    NASA Astrophysics Data System (ADS)

    Varas Reus, María Isabel; Garrido, Carlos J.; Marchesi, Claudio; Bosch, Delphine; Hidas, Károly

    2017-04-01

    The genesis of ultra-high pressure (UHP) garnet pyroxenites in orogenic peridotite massifs and its implications on the formation of chemical heterogeneities in the mantle and on basalt petrogenesis are still not fully understood. Some UHP (diamond-bearing) garnet pyroxenites have isotopic, and major and trace element compositions similar to the recycled oceanic crustal component observed in oceanic basalts [1-6]. These pyroxenites hence provide an exceptional opportunity to investigate in situ the nature and scale of the Earth's mantle chemical heterogeneities. Here, we present an integrated geochemical study of UHP garnet pyroxenites from the Ronda (Betic Belt, S. Spain) and Beni Bousera (Rif Belt, N. Morocco) peridotite massifs. This investigation encompasses, in the same sample, bulk rock major and trace elements, as well as Sr-Nd-Pb-Hf isotopic analyses. According to their Al2O3 content, we classify UHP garnet pyroxenites into three groups that have distinct trace elements and Sr-Nd-Pb-Hf isotopic signatures. Group A pyroxenites (Al2O3: 15 - 17.5 wt. %) are characterized by low initial 87Sr/86Sr, relatively high 143Nd/144Nd, 206Pb/204Pb and 176Hf/177Hf ratios, and highly variable 207Pb/204Pb and 208Pb/204Pb ratios. Group B pyroxenites (Al2O3 < 14 wt. %) have isotopic signatures characterized by relatively high initial 87Sr/86Sr and low 143Nd/144Nd, 206Pb/204Pb and 176Hf/177Hf ratios. Group C pyroxenites (Al2O3 ˜ 15 wt. %) display relatively low initial 87Sr/86Sr and 206Pb/204Pb ratios, high 143Nd/144Nd and 176Hf/177Hf ratios, and 207Pb/204Pb and 208Pb/204Pb ratios similar to Group B pyroxenites. The major and trace element, and isotopic compositions of the studied Ronda and Beni Bousera UHP garnet pyroxenites lend support to the "Marble Cake Mantle" model [7] for the genesis of these pyroxenites. This model envisions the mantle source of oceanic basalts as a mélange of subducted, ancient oceanic crust —-represented by garnet pyroxenites in orogenic

  20. Are the Columbia River Basalts, Columbia Plateau, Idaho, Oregon, and Washington, USA, a viable geothermal target? A preliminary analysis

    USGS Publications Warehouse

    Burns, Erick R.; Williams, Colin F.; Tolan, Terry; Kaven, Joern Ole

    2016-01-01

    The successful development of a geothermal electric power generation facility relies on (1) the identification of sufficiently high temperatures at an economically viable depth and (2) the existence of or potential to create and maintain a permeable zone (permeability >10-14 m2) of sufficient size to allow efficient long-term extraction of heat from the reservoir host rock. If both occur at depth under the Columbia Plateau, development of geothermal resources there has the potential to expand both the magnitude and spatial extent of geothermal energy production. However, a number of scientific and technical issues must be resolved in order to evaluate the likelihood that the Columbia River Basalts, or deeper geologic units under the Columbia Plateau, are viable geothermal targets.Recent research has demonstrated that heat flow beneath the Columbia Plateau Regional Aquifer System may be higher than previously measured in relatively shallow (<600 m depth) wells, indicating that sufficient temperatures for electricity generation occur at depths 5 km. The remaining consideration is evaluating the likelihood that naturally high permeability exists, or that it is possible to replicate the high average permeability (approximately 10-14 to 10-12 m2) characteristic of natural hydrothermal reservoirs. From a hydraulic perspective, Columbia River Basalts are typically divided into dense, impermeable flow interiors and interflow zones comprising the top of one flow, the bottom of the overlying flow, and any sedimentary interbed. Interflow zones are highly variable in texture but, at depths <600 m, some of them form highly permeable regional aquifers with connectivity over many tens of kilometers. Below depths of ~600 m, permeability reduction occurs in many interflow zones, caused by the formation of low-temperature hydrothermal alteration minerals (corresponding to temperatures above ~35 °C). However, some high permeability (>10-14 m2) interflows are documented at depths up

  1. Geochemical constraints on the spatial distribution of recycled oceanic crust in the mantle source of late Cenozoic basalts, Vietnam

    NASA Astrophysics Data System (ADS)

    Hoang, Thi Hong Anh; Choi, Sung Hi; Yu, Yongjae; Pham, Trung Hieu; Nguyen, Kim Hoang; Ryu, Jong-Sik

    2018-01-01

    This study presents a comprehensive analysis of the major and trace element, mineral, and Sr, Nd, Pb and Mg isotopic compositions of late Cenozoic intraplate basaltic rocks from central and southern Vietnam. The Sr, Nd, and Pb isotopic compositions of these basalts define a tight linear array between Indian mid-ocean-ridge basalt (MORB)-like mantle and enriched mantle type 2 (EM2) components. These basaltic rocks contain low concentrations of CaO (6.4-9.7 wt%) and have high Fe/Mn ratios (> 60) and FeO/CaO-3MgO/SiO2 values (> 0.54), similar to partial melts derived from pyroxenite/eclogite sources. This similarity is also supported by the composition of olivine within these samples, which contains low concentration of Ca and high concentrations of Ni, and shows high Fe/Mn ratios. The basaltic rocks have elevated Dy/Yb ratios that fall within the range of melts derived from garnet lherzolite material, although their Yb contents are much higher than those of modeled melts derived from only garnet lherzolite material and instead plot near the modeled composition of eclogite-derived melts. The Vietnamese basaltic rocks have lighter δ26Mg values (- 0.38 ± 0.06‰) than is expected for the normal mantle (- 0.25 ± 0.07‰), and these values decrease with decreasing Hf/Hf* and Ti/Ti* ratios, indicating that these basalts were derived from a source containing carbonate material. On primitive mantle-normalized multi-element variation diagrams, the central Vietnamese basalts are characterized by positive Sr, Eu, and Ba anomalies. These basalts also plot within the pelagic sediment field in Pbsbnd Pb isotopic space. This suggests that the mantle source of the basalts contained both garnet peridotite and recycled oceanic crust. A systematic analysis of variations in geochemical composition in basalts from southern to central Vietnam indicates that the recycled oceanic crust (possibly the paleo-Pacific slab) source material contains varying proportions of gabbro, basalt, and

  2. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200C, beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  3. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Lui, Donovan; Wang, Xin; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000 deg C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200 deg C, Beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  4. Fractionation products of basaltic komatiite magmas at lower crustal pressures: implications for genesis of silicic magmas in the Archean

    NASA Astrophysics Data System (ADS)

    Mandler, B. E.; Grove, T. L.

    2015-12-01

    Hypotheses for the origin of crustal silicic magmas include both partial melting of basalts and fractional crystallization of mantle-derived melts[1]. Both are recognized as important processes in modern environments. When it comes to Archean rocks, however, partial melting hypotheses dominate the literature. Tonalite-trondhjemite-granodiorite (TTG)-type silicic magmas, ubiquitous in the Archean, are widely thought to be produced by partial melting of subducted, delaminated or otherwise deeply buried hydrated basalts[2]. The potential for a fractional crystallization origin for TTG-type magmas remains largely unexplored. To rectify this asymmetry in approaches to modern vs. ancient rocks, we have performed experiments at high pressures and temperatures to closely simulate fractional crystallization of a basaltic komatiite magma in the lowermost crust. These represent the first experimental determinations of the fractionation products of komatiite-type magmas at elevated pressures. The aim is to test the possibility of a genetic link between basaltic komatiites and TTGs, which are both magmas found predominantly in Archean terranes and less so in modern environments. We will present the 12-kbar fractionation paths of both Al-depleted and Al-undepleted basaltic komatiite magmas, and discuss their implications for the relative importance of magmatic fractionation vs. partial melting in producing more evolved, silicic magmas in the Archean. [1] Annen et al., J. Petrol., 47, 505-539, 2006. [2] Moyen J-F. & Martin H., Lithos, 148, 312-336, 2012.

  5. Crystal Stratigraphy of Two Basalts from Apollo 16: Unique Crystallization of Picritic Basalt 606063,10-16 and Very-Low-Titanium Basalt 65703,9-13

    NASA Technical Reports Server (NTRS)

    Donohue, P. H.; Neal, C. R.; Stevens, R. E.; Zeigler, R. A.

    2014-01-01

    A geochemical survey of Apollo 16 regolith fragments found five basaltic samples from among hundreds of 2-4 mm regolith fragments of the Apollo 16 site. These included a high-Ti vitrophyric basalt (60603,10-16) and one very-low-titanium (VLT) crystalline basalt (65703,9-13). Apollo 16 was the only highlands sample return mission distant from the maria (approx. 200 km). Identification of basaltic samples at the site not from the ancient regolith breccia indicates input of material via lateral transport by post-basin impacts. The presence of basaltic rocklets and glass at the site is not unprecedented and is required to satisfy mass-balance constraints of regolith compositions. However, preliminary characterization of olivine and plagioclase crystal size distributions indicated the sample textures were distinct from other known mare basalts, and instead had affinities to impact melt textures. Impact melt textures can appear qualitatively similar to pristine basalts, and quantitative analysis is required to distinguish between the two in thin section. The crystal stratigraphy method is a powerful tool in studying of igneous systems, utilizing geochemical analyses across minerals and textural analyses of phases. In particular, trace element signatures can aid in determining the ultimate origin of these samples and variations document subtle changes occurring during their petrogenesis.

  6. Paraná-Etendeka basalts in Misiones, Argentina; characterization and petrogenetic inferences

    NASA Astrophysics Data System (ADS)

    Rämö, O. T.; Heikkilä, P. A.

    2013-12-01

    The Early Cretaceous (ca. 130 Ma) Paraná-Etendeka flood basalts constitute one of the major Phanerozoic LIP sequences with an original volume probably in excess of 2.3 Mkm3.The bulk of this volcanic system is preserved in South America (Brazil, Uruguay, Paraguay, Argentina), where it manifests the onset of South Atlantic opening at present 25 degrees Southern Latitude. The sequence is overwhelmingly basaltic (ca. 90%), but also includes contemporaneous silicic volcanic rocks. Known as the Serra Geral Suite (e.g., Bellieni et al., 1984), it fills the Paraná Basin with a northward deepening strata of lavas with a maximum thickness of ca. 1500 m. We have collected and examined basalt samples from the west-central part (western flank) of the Paraná Basin in Misiones State, northeastern Argentina (54-55 degrees Western Longitude), where the estimated thickness of the basalt succession decreases from ca. 700 m in the east to ca. 300 m in the west. The examined samples are massive, aphyric (or microphyric with plagioclase and altered olivine microphenocrysts), and geochemically relatively evolved (Mg number 50-35) basalts and basaltic andesites. Their MgO values are between 6 and 3.7 wt.% and Ni content is relatively low (65-20 ppm). Incompatible trace element values increase with increasing fractionation (decreasing Mg number), e.g., Zr from 135 to 290 ppm, Ce from 45 to 105 ppm, Nd from 20 to 50 ppm, Sm from 5 to 11 ppm, Ba from 280 to 600 ppm, and Y from 25 to 50 ppm. In terms of Ti, the samples fall into two groups (1.9-2.3 and ca. 3.8 wt.% TiO2). These values conform, respectively, to the high-Ti, high-Ti/Y Paranapanema and Pitanga magma types of Peate et al. (1992) that govern the northern half of the Paraná basalt succession. Initial Nd and Sr isotope compositions of the two groups are remarkably uniform. Our analyzed ten samples have an average initial (at 134.6 Ma) epsilon-Nd value of -4.2 × 0.3 (1 SD) and an average initial 87Sr/86Sr of 0.70570 × 0

  7. Correlation between compressive strength and ultrasonic pulse velocity of high strength concrete incorporating chopped basalt fibre

    NASA Astrophysics Data System (ADS)

    Shafiq, Nasir; Fadhilnuruddin, Muhd; Elshekh, Ali Elheber Ahmed; Fathi, Ahmed

    2015-07-01

    Ultrasonic pulse velocity (UPV), is considered as the most important test for non-destructive techniques that are used to evaluate the mechanical characteristics of high strength concrete (HSC). The relationship between the compressive strength of HSC containing chopped basalt fibre stands (CBSF) and UPV was investigated. The concrete specimens were prepared using a different ratio of CBSF as internal strengthening materials. The compressive strength measurements were conducted at the sample ages of 3, 7, 28, 56 and 90 days; whilst, the ultrasonic pulse velocity was measured at 28 days. The result of HSC's compressive strength with the chopped basalt fibre did not show any improvement; instead, it was decreased. The UPV of the chopped basalt fibre reinforced concrete has been found to be less than that of the control mix for each addition ratio of the basalt fibre. A relationship plot is gained between the cube compressive strength for HSC and UPV with various amounts of chopped basalt fibres.

  8. Residual glasses and melt inclusions in basalts from DSDP Legs 45 and 46 - Evidence for magma mixing. [Deep Sea Drilling Project

    NASA Technical Reports Server (NTRS)

    Dungan, M. A.; Rhodes, J. M.

    1978-01-01

    Microprobe analyses of natural glasses in basalts recovered by Legs 45 and 46 of the Deep Sea Drilling Project are reported and interpreted in the context of other geochemical, petrographic and experimental data on the same rocks (Rhodes et al., 1978). Residual glass compositions in the moderately evolved aphyritic and abundantly phyric basalts within each site indicate that none of the units is related to any other or to a common parent by simple fractional crystallization. The compositional trends, extensive disequilibrium textures in the plagioclase phenocrysts and the presence in evolved lavas of refractory plagioclase and olivine phenocrysts bearing primitive melt inclusions provide evidence that magma mixing had a major role in the genesis of the Leg 45 and 46 basalts. The magma parental to these basalts was most likely characterized by high Mg/(Mg + Fe/+2/), CaO/Al2O3, CaO/Na2O and low lithophile concentrations. A mixing model involving incremental enrichment of magmaphile elements by repeated episodes of mixing of relatively primitive and moderately evolved magmas, followed by a small amount of fractionation is consistent with the characteristics of the basalts studied.

  9. Mare basalt magma source region and mare basalt magma genesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binder, A.B.

    1982-11-15

    Given the available data, we find that the wide range of mare basaltic material characteristics can be explained by a model in which: (1) The mare basalt magma source region lies between the crust-mantle boundary and a maximum depth of 200 km and consists of a relatively uniform peridotite containing 73--80% olivine, 11--14% pyroxene, 4--8% plagioclase, 0.2--9% ilmenite and 1--1.5% chromite. (2) The source region consists of two or more density-graded rhythmic bands, whose compositions grade from that of the very low TiO/sub 2/ magma source regions (0.2% ilmenite) to that of the very high TiO/sub 2/ magma source regionsmore » (9% ilmenite). These density-graded bands are proposed to have formed as co-crystallizing olivine, pyroxene, plagioclase, ilmenite, and chromite settled out of a convecting magma (which was also parental to the crust) in which these crystals were suspended. Since the settling rates of the different minerals were governed by Stoke's law, the heavier minerals settled out more rapidly and therefore earlier than the lighter minerals. Thus the crystal assemblages deposited nearest the descending side of each convection cell were enriched in heavy ilmenite and chromite with respect to lighter olivine and pyroxene and very much lighter plagioclase. The reverse being the case for those units deposited near the ascending sides of the convection cells.« less

  10. Geochemistry of Central Snake River Plain Basalts From Camas Prairie to Glenns Ferry, Southern Idaho

    NASA Astrophysics Data System (ADS)

    Vetter, S. K.; Johnston, S. A.; Shervais, J.; Hanan, B.

    2006-12-01

    The Snake River Plain (SRP) of southern Idaho represents the track of a hot-spot (mantle plume) which links voluminous flood basalts of the Miocene Columbia River province to Quaternary volcanic centers at Island Park and Yellowstone. However, much of the volcanism associated with this province either lies off the main volcanic trend or differs in age from the postulated plume passage. The Camas Prairie and the Mount Bennett Hills lie north of the Snake River-Yellowstone plume track, near the intersection of the eastern and western Snake River Plain trends. Young basalt flows cap highlands overlooking the Snake River near King Hill, but farther north in the Mount Bennett Hills and Camas Prairie these young lava flows are juxtaposed against older basalts along a series of WNW trending normal faults. These older basalt flows rest directly on rhyolite of the Mount Bennett Hills, making them the oldest basalts known in outcrop in this area. The older basalts in the Mount Bennett Hills include at least six major flows with a total thickness of 110 m. Although they have been strongly dissected by erosion, they still cover an outcrop area of 300 km2 . Eighty samples were collected as part of our petrologic survey of basaltic volcanism in the central Snake River Plain. These samples were studied petrographically and analyzed for their major elements, trace elements, and REE. The basalts consist of plagioclase and olivine microphenocrysts set in a groundmass of olivine, plagioclase, clinopyroxene, oxides and interstitial glass. The majority of samples have Mg# ranging from 50- 59. However there are samples that are more evolved as indicated by Mg# ranging from less than 50 to 29. The high Mg# samples have the following chemical ranges: TiO2 0.87 - 2.6 wt.%; FeO 9.95 - 13.7 wt.%; Nb 8 to 23 ppm; Zr 111 to 243 ppm; Ni 81 to 151 ppm; La 10.9 to 26.9 ppm. The more evolved samples have TiO2 1.4 3.93 wt.%; FeO 9.7 16.8 wt%; Nb 11 to 40 ppm; Zr 110 to 500 ppm; Ni 4 to 85 ppm; La

  11. Making rhyolite in a basalt crucible

    NASA Astrophysics Data System (ADS)

    Eichelberger, John

    2016-04-01

    Iceland has long attracted the attention of those concerned with the origin of rhyolitic magmas and indeed of granitic continental crust, because it presents no alternative for such magmas other than deriving them from a basaltic source. Hydrothermally altered basalt has been identified as the progenitor. The fact that rhyolite erupts as pure liquid requires a process of melt-crustal separation that is highly efficient despite the high viscosity of rhyolite melt. Volcanoes in Iceland are foci of basaltic magma injection along the divergent plate boundary. Repeated injection produces remelting, digestion, and sometimes expulsion or lateral withdrawal of material resulting in a caldera, a "crucible" holding down-dropped and interlayered lava flows, tephras, and injected sills. Once melting of this charge begins, a great deal of heat is absorbed in the phase change. Just 1% change in crystallinity per degree gives a melt-present body an effective heat capacity >5 times the subsolidus case. Temperature is thus buffered at the solidus and melt composition at rhyolite. Basalt inputs are episodic ("fires") so likely the resulting generation of rhyolite by melting is too. If frequent enough to offset cooling between events, rhyolite melt extractions will accumulate as a rhyolite magma reservoir rather than as discrete crystallized sills. Evidently, such magma bodies can survive multiple firings without themselves erupting, as the 1875 eruption of Askja Caldera of 0.3 km3 of rhyolite equilibrated at 2-km depth without previous leakage over a ten-millennium period and the surprise discovery of rhyolite magma at 2-km depth in Krafla suggest. Water is required for melting; otherwise melting cannot begin at a temperature lower than that of the heat source. Because the solubility of water in melt is pressure-dependent and almost zero at surface pressure, there must be a minimum depth at which basalt-induced melting can occur and a rhyolite reservoir sustained. In practice, the

  12. Weathering and hydrothermal alteration of basalts in Iceland: mineralogy from VNIR, TIR, XRD, and implications for Mars

    NASA Astrophysics Data System (ADS)

    Ehlmann, B. L.; Mustard, J. F.; Bish, D. L.

    2009-12-01

    Recent orbital investigations have revealed that aqueous alteration on early Mars took place in diverse alteration environments indicated by distinctive assemblages of minerals (Murchie et al., 2009, JGR). There is growing evidence for past diagenetic or low-temperature/pressure hydrothermal activity on Mars at neutral to alkaline pH, indicated by the presence of Fe/Mg smectites, chlorite, prehnite, serpentine, opaline silica, and zeolites such as analcime in Noachian terrains (Ehlmann et al., 2009, JGR). In recent investigations of terrestrial Mars analog sites, neutral to alkaline pH alteration of basalt, both pedogenic and hydrothermal, has been understudied in favor of sulfur-rich, acidic systems including those at the Hawaiian volcanoes and Rio Tinto, Spain. We began study of the alteration of basalt lava flows in Iceland as a geochemical analog for Noachian Mars. Because the basaltic bedrock is recently formed (<16Ma) with few localities of more highly evolved composition and has poorly formed soils and spare vegetation, the ground and surface waters are broadly similar to those which might have existed on Noachian Mars. Iceland has a variety of geothermal spring systems--low T, low S; low T, high S; and high T, high S--each of which creates distinctive mineralogic assemblages. Here we examine rocks of the Hvalfjordur peninsula, collected from basalt flows that were in some places altered at the surface by pedogenesis and in other locations were hydrothermally altered by non-sulfurous groundwater circulation (low T, low S) following the emplacement of a later hot basalt flow. Rock samples were surveyed in the field using a portable VNIR spectrometer. Altered and unaltered rocks that were typical for the locality were collected as were altered rocks whose spectra were most similar to those measured by CRISM from Mars orbit. Ten rocks were ultimately selected for detailed laboratory analyses: zeolitized basaltic rocks bearing minerals including analcime and

  13. Experimental Melting Study of Basalt-Peridotite Hybrid Source: Melting model of Hawaiian plume

    NASA Astrophysics Data System (ADS)

    Takahashi, E.; Gao, S.

    2015-12-01

    Eclogite component entrained in ascending plume is considered to be essentially important in producing flood basalts (e.g., Columbia River basalt, Takahashi et al., 1998 EPSL), alkalic OIBs (e.g., Kogiso et al.,2003), ferro-picrites (Tuff et al.,2005) and Hawaiian shield lavas (e.g., Hauri, 1996; Takahashi & Nakajima, 2002, Sobolev et al.,2005). Size of the entrained eclogite, which controls the reaction rates with ambient peridotite, however, is very difficult to constrain using geophysical observation. Among Hawaiian shield volcanoes, Koolau is the most enriched end-member in eclogite component (Frey et al, 1994). Reconstruction of Koolau volcano based on submarine study on Nuuanu landslide (AGU Monograph vol.128, 2002, Takahashi Garcia Lipman eds.) revealed that silica-rich tholeiite appeared only at the last stage (Makapuu stage) of Koolau volcano. Chemical compositions of lavas as well as isotopes change abruptly and coherently across a horizon (Shinozaki et al. and Tanaka et al. ibid.). Based on these observation, Takahashi & Nakajima (2002 ibid) proposed that the Makapuu stage lava in Koolau volcano was supplied from a single large eclogite block. In order to study melting process in Hawaiian plume, high-pressure melting experiments were carried out under dry and hydrous conditions with layered eclogite/peridotite starting materials. Detail of our experiments will be given by Gao et al (2015 AGU). Combined previous field observation with new set of experiments, we propose that variation in SiO2 among Hawaiian tholeiites represent varying degree of wall-rock interaction between eclogite and ambient peridotite. Makapuu stage lavas in Koolau volcano represents eclogite partial melts formed at ~3 GPa with various amount of xenocrystic olivines derived from Pacific plate. In other words, we propose that "primary magma" in the melting column of Hawaiian plume ranges from basaltic andesite to ferro-picrite depending on the lithology of the source. Solidus of

  14. MARIUS HILLS REGION, MOON: Stratigraphy of low shields and mare basalts

    NASA Astrophysics Data System (ADS)

    Gebhart, Jennifer; Hiesinger, Harry; van der Bogert, Carolyn; Hendrik Pasckert, Jan; Weinauer, Julia; Lawrence, Samuel; Stopar, Julie; Robinson, Mark

    2016-04-01

    The Marius Hills region consists of more than 250 individual basaltic low shields (usually referred to as "domes") and cones, located on a broad topographic rise. The bases of numerous low shields have slope angles of ~2-3° whereas the upper portions have slopes of ~6-7° [1], interpreted to reflect changes in composition over time [1]. However, the absence of spectral differences between the two dome morphologies and the surrounding mare basalts suggests that the observed morphologies are more plausibly explained by changes in effusion rates, temperature (viscosity), and/or crystallization over time [e.g., 2]. Previous studies indicate that volcanism in this region occurred in the Upper Imbrian (3.2-3.8 Ga) [3], although several other authors reported ages ranging from the Imbrian (~3.3 Ga) to the Eratosthenian (~2.5 Ga) [e.g., 1,2,4]. [2,5] reported that all low shields are embayed by younger mare units, indicating that they formed during an older stage of volcanic activity. Mare basalts surrounding the Marius Hills exhibit absolute model ages of 1.2-3.7 Ga [6]. We used 36 LRO NAC images to perform crater size-frequency distribution (CSFD) measurements. The images were calibrated and map-projected with ISIS 3 and imported into ArcGIS. Within ArcGIS, we used CraterTools [7] to perform our CSFD measurements. The crater size-frequency distributions were then plotted with CraterStats [8], using the production and chronology functions of [9]. We conducted CSFD measurements for 50 Marius Hills low shields. Our count area sizes ranged from 1.06 x 101 to 8.75 x 101 km2; those for adjacent basalts varied between 6.17 x 100 and 8.01 x 101 km2. We determined absolute model ages (AMAs) of 1.03 to 3.65 Ga for the low shields and did not find a spatial correlation of ages versus their locations. CSFD measurements for 27 adjacent basalts show AMAs of 1.20-3.69 Ga. Of those basalts, 24 exhibit AMAs of 3-3.5 Ga; there is no correlation of AMAs and the geographic position of the

  15. Complex Formation History of Highly Evolved Basaltic Shergottite, Zagami

    NASA Technical Reports Server (NTRS)

    Niihara, T.; Misawa, K.; Mikouchi, T.; Nyquist, L. E.; Park, J.; Hirata, D.

    2012-01-01

    Zagami, a basaltic shergottite, contains several kinds of lithologies such as Normal Zagami consisting of Fine-grained (FG) and Coarse-grained (CG), Dark Mottled lithology (DML), and Olivine-rich late-stage melt pocket (DN). Treiman and Sutton concluded that Zagami (Normal Zagami) is a fractional crystallization product from a single magma. It has been suggested that there were two igneous stages (deep magma chamber and shallow magma chamber or surface lava flow) on the basis of chemical zoning features of pyroxenes which have homogeneous Mg-rich cores and FeO, CaO zoning at the rims. Nyquist et al. reported that FG has a different initial Sr isotopic ratio than CG and DML, and suggested the possibility of magma mixing on Mars. Here we report new results of petrology and mineralogy for DML and the Olivine-rich lithology (we do not use DN here), the most evolved lithology in this rock, to understand the relationship among lithologies and reveal Zagami s formation history

  16. Selective environmental stress from sulphur emitted by continental flood basalt eruptions

    NASA Astrophysics Data System (ADS)

    Schmidt, Anja; Skeffington, Richard; Thordarson, Thorvaldur; Self, Stephen; Forster, Piers; Rap, Alexandru; Ridgwell, Andy; Fowler, David; Wilson, Marjorie; Mann, Graham; Wignall, Paul; Carslaw, Ken

    2016-04-01

    Several biotic crises during the past 300 million years have been linked to episodes of continental flood basalt volcanism, and in particular to the release of massive quantities of magmatic sulphur gas species. Flood basalt provinces were typically formed by numerous individual eruptions, each lasting years to decades. However, the environmental impact of these eruptions may have been limited by the occurrence of quiescent periods that lasted hundreds to thousands of years. Here we use a global aerosol model to quantify the sulphur-induced environmental effects of individual, decade-long flood basalt eruptions representative of the Columbia River Basalt Group, 16.5-14.5 million years ago, and the Deccan Traps, 65 million years ago. For a decade-long eruption of Deccan scale, we calculate a decadal-mean reduction in global surface temperature of 4.5 K, which would recover within 50 years after an eruption ceased unless climate feedbacks were very different in deep-time climates. Acid mists and fogs could have caused immediate damage to vegetation in some regions, but acid-sensitive land and marine ecosystems were well-buffered against volcanic sulphur deposition effects even during century-long eruptions. We conclude that magmatic sulphur from flood basalt eruptions would have caused a biotic crisis only if eruption frequencies and lava discharge rates had been high and sustained for several centuries at a time.

  17. Selective environmental stress from sulphur emitted by continental flood basalt eruptions

    NASA Astrophysics Data System (ADS)

    Schmidt, Anja; Skeffington, Richard A.; Thordarson, Thorvaldur; Self, Stephen; Forster, Piers M.; Rap, Alexandru; Ridgwell, Andy; Fowler, David; Wilson, Marjorie; Mann, Graham W.; Wignall, Paul B.; Carslaw, Kenneth S.

    2016-01-01

    Several biotic crises during the past 300 million years have been linked to episodes of continental flood basalt volcanism, and in particular to the release of massive quantities of magmatic sulphur gas species. Flood basalt provinces were typically formed by numerous individual eruptions, each lasting years to decades. However, the environmental impact of these eruptions may have been limited by the occurrence of quiescent periods that lasted hundreds to thousands of years. Here we use a global aerosol model to quantify the sulphur-induced environmental effects of individual, decade-long flood basalt eruptions representative of the Columbia River Basalt Group, 16.5-14.5 million years ago, and the Deccan Traps, 65 million years ago. For a decade-long eruption of Deccan scale, we calculate a decadal-mean reduction in global surface temperature of 4.5 K, which would recover within 50 years after an eruption ceased unless climate feedbacks were very different in deep-time climates. Acid mists and fogs could have caused immediate damage to vegetation in some regions, but acid-sensitive land and marine ecosystems were well-buffered against volcanic sulphur deposition effects even during century-long eruptions. We conclude that magmatic sulphur from flood basalt eruptions would have caused a biotic crisis only if eruption frequencies and lava discharge rates had been high and sustained for several centuries at a time.

  18. Assessing the atmospheric and climatic effects of basaltic fissure eruptions. A case study Nornahraun, North Iceland, 2014-2015.

    NASA Astrophysics Data System (ADS)

    Gallagher, Catherine; Burton, Kevin; Thordarson, Thorvaldur; Vye-Brown, Charlotte; Brown, Richard

    2015-04-01

    A volcanic eruption's ability to release sulphur gases into the atmosphere is one of the critical factors in assessing their climatic and environmental effects, because it is directly linked to the potential H2SO4 aerosol burden produced [1]. Basaltic fissure eruptions loft large amounts of sulphur into the atmosphere because of the efficient degassing of volatiles and halogens from the magma at the vent [2-4] coupled with the high sulphur yield of basaltic magma. The common nature of this style of eruption and its products, regardless of magnitude, means that our understanding of the exact processes which influence atmospheric chemistry and environmental impact is very important. The Nornahraun fissure eruption in North Iceland that began on the 31st August 2014, has quickly become one of the best documented eruptions of its kind, through systematic monitoring and sampling by the Institute of Earth Sciences eruption team and The Icelandic Meteorological Office. As a result it is an excellent modern analogue for historic or ancient basaltic fissure eruptions, for which the amount of degassing can only be estimated through petrological and geochemical methods. It also serves as a timely testing platform for novel geochemical proxies. This study uses the exceptional sensitivity of the 187Os-187Re radiogenic system to the presence of crustal material [5], and highly siderophile stable isotopes Cu, Zn and S to indicate the chemistry and degassing of the melt carrying S to the surface. The geochemical isotopic proxies will be tested using established petrological methods and gas emission data. This study concentrates on determining the following key parameters: (1) The source of volatiles in the magma indicated though the pressure dependence of S solubility. (2) The mechanism of aerosol and gas release into the atmosphere is dictated both by the chemistry of the melt that controls the S species (H2S, SO2 or FeS2) present [6], and by the mechanism of transfer. (3) The

  19. Nanoparticulate mineral matter from basalt dust wastes.

    PubMed

    Dalmora, Adilson C; Ramos, Claudete G; Querol, Xavier; Kautzmann, Rubens M; Oliveira, Marcos L S; Taffarel, Silvio R; Moreno, Teresa; Silva, Luis F O

    2016-02-01

    Ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been the subject of some concern recently around the world for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the mining district of Nova Prata in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3 and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition we have identified a number of trace metals such as Cd, Cu, Cr, Zn that are preferentially concentrated into the finer, inhalable, dust fraction and could so present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in typical BDW samples highlights the need to develop cleaning procedures to minimise exposure to these natural fertilizing basalt dust wastes and is thus of direct relevance to both the industrial sector of basalt mining and to agriculture in the region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Lunar basalt meteorite EET 87521: Petrology of the clast population

    NASA Technical Reports Server (NTRS)

    Semenova, A. S.; Nazarov, M. A.; Kononkova, N. N.

    1993-01-01

    The Elephant Moraine meteorite EET 87521 was classified as a lunar mare basalt breccia which is composed mainly of VLT basalt clasts. Here we report on our petrological study of lithic clasts and monomineralic fragments in the thin sections EET 87521,54 and EET 87521,47,1, which were prepared from the meteorite. The results of the study show that EET 87521 consists mainly of Al-rich ferrobasalt clasts and olivine pyroxenite clasts. The bulk composition of the meteorite can be well modelled by the mixing of these lithic components which appear to be differentiates of the Luna 25 basalt melt. KREEP and Mg-rich gabbro components are minor constituents of EET 87521.

  1. Hydrothermal Rock-Fluid Interactions in 15-year-old Submarine Basaltic Tuff at Surtsey Volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Jackson, M. D.; Couper, S.; Li, Y.; Stan, C. V.; Tamura, N.; Stefansson, A.; Moore, J. G.; Wenk, H. R.

    2016-12-01

    Basaltic tephra at Surtsey volcano, produced by 1963-1967 eruptions in the offshore SE Icelandic rift zone, record the complex interplay of factors that determine rates of palagonitization and crystallization of authigenic minerals in seafloor basalts worldwide. We investigate how formation of nanocrystalline clay mineral in fresh sideromelane glass influenced crystallization of mineral cements in submarine tuff from a 181 m core drilled in 1979. Synchrotron-based microdiffraction and microfluorescence maps (2x5 µm X-ray beam spot size) at beamline 12.3.2, Advanced Light Source, SEM-EDS compositional analyses, and fluid geochemical models compare processes in lapilli-sized glass fragments, vitric cementing matrix, and fine ash accretions. In lapilli at 137.9 m (100°C), nanocrystalline clay mineral in gel-palagonite has asymetric 14.9-12.6 Å (001) reflections, with Fe and Ti enrichment relative to Si, Al and Ca, compared with adjacent sideromelane. Neighboring fibro-palagonite has symmetric (001) and greater Fe and Ti enrichment. Al-tobermorite, a rare calcium-silicate-hydrate, crystallized in nearby vesicles. The 11.30-11.49 Å (002) interlayer and Ca/(Si+Al) ratio of 0.9-1.0 record release of Si, Al, and Ca in a chemical system relatively isolated from submarine hydrothermal fluid flow. In vitric matrix relatively open to fluid flow, however, phillipsite zeolite cement predominates. Al-tobermorite formed at 88.45 m (130°C) and 102.6 m (140°C), but is associated with fibro-palagonite and analcite, reflecting more rapid palagonitization, and changing cation solubility and pH at higher temperature. Tubular palagonite microstructures show nanocrystalline clay mineral with (001) preferred orientations that wrap around relict microchannels, produced perhaps through biogenic activity. Nanocrystalline clay mineral d-spacings suggest similarities with nontronite, but zeolite in palagonite diffraction patterns and 6-9 wt% MgO suggest a polycrystalline composite with

  2. Experimental constraints on the destabilization of basalt + calcite + anhydrite at high pressure-high temperature and implications for meteoroid impact modeling

    NASA Astrophysics Data System (ADS)

    Martin, A. M.; Righter, K.; Treiman, A. H.

    2012-05-01

    Calcite CaCO3 and anhydrite CaSO4 are two sedimentary components or alteration products of basalts on the Earth, Venus, and Mars. The fate of anhydrite-, calcite-bearing crust during a meteoroid impact must be addressed in order to evaluate: (1) the potential S- and C-gas release to the atmosphere, (2) the formation of S- and C-rich melts, and (3) the crystallization of S- and C-rich minerals which may be recognized by spectral analyses of planetary surfaces. We performed piston-cylinder experiments at 1 GPa, between 1200 and 1750 °C, on a mixture of 70 wt.% tholeiitic basalt + 15 wt.% anhydrite + 15 wt.% calcite. Up to ~ 1440 °C, an ultracalcic (CaO > 19.8 wt.%; CaO/Al2O3 > 1 wt.%) picrobasaltic (SiO2 ~ 39-43 wt.%; Na2O + K2O < 2 wt.%) melt containing up to 5.7 wt.% SO3 and up to 5.1 wt.% CO2 + H2O (calculated by difference) is present in equilibrium with fassaitic clinopyroxene, anhydrite, scapolite, chromian spinel and a gas composed mainly of CO and, occasionally, aliphatic thiols like CH3(CH2)3SH. Hydrogen was incorporated either by contact between the starting material and air or by diffusion through the capsule during the experiments. Above ~ 1440 °C, a CaO-rich (~ 35 wt.%) sulfate-carbonate (SC) melt which contains 41-47 wt.% SO3, 7-12 wt.% CO2 + H2O and a few percent of Na2O, forms in equilibrium with the picrobasaltic melt. This study shows that a meteoroid impact onto an anhydrite- and calcite-bearing basaltic crust is likely to release CO gas to the atmosphere, while S is trapped in solid or liquid phases. Under hydrous conditions, however, the S/C in the gas may increase. The importance of the temperature parameter on the impact phase relations is also demonstrated. In particular, SC melt may form by meteoroid impact, and flow rapidly on a planetary surface. Physical modeling must therefore be combined with high P-high T phase diagrams of complex assemblages similar to planetary lithologies in order to evaluate the effects of a meteoroid impact.

  3. Rhyolite, dacite, andesite, basaltic andesite, and basalt volcanism on the Alarcon Rise spreading-center, Gulf of California

    NASA Astrophysics Data System (ADS)

    Dreyer, B. M.; Portner, R. A.; Clague, D. A.; Castillo, P. R.; Paduan, J. B.; Martin, J. F.

    2012-12-01

    The Alarcon Rise is a ~50 km long intermediate-rate (~50mm/a) spreading segment at the southern end of the Gulf of California. The Rise is bounded by the Tamayo and Pescadero transforms to the south and north. In Spring 2012, an MBARI-led expedition mapped a ~1.5- 3km wide swath of the ridge axis at 1-m resolution and completed 9 ROV dives (Clague et al., this session). Sampling during the ROV dives was supplemented by use of a wax-tip corer to recover volcanic glass: 194 glassy lava samples were recovered from the Rise. The vast majority of lava flows along the axis are basalt and rare basaltic andesite. More than half the basalts are plagioclase-phyric to ultraphyric (Martin et al., this session), and the rest are aphyric. Rare samples also include olivine or olivine and clinopyroxene phenocrysts. Analyses of half of the recovered glass basalt rinds range in MgO from 4.3 to 8.5 wt.% and those with MgO > 6 wt % have K2O/TiO2 = 0.07-0.11. The basalts are broadly characterized as normal mid-ocean ridge basalts (N-MORB). E-MORB is also present near the center of the ridge segment, but has been found only as pyroclasts in sediment cores. A much greater range in lava composition is associated with an unusual volcanic dome-like edifice that lies ~9 km south of the Pescadero transform. Two dives in the vicinity of the dome collected lava and volcaniclastic samples consisting of moderately to sparsely phyric light brown to colorless volcanic glass. Feldspar is the dominant phase, but magnetite, fayalitic olivine, light tan and light green clinopyroxene, orthopyroxene, zircon, and rare pyrite blebs also occur. Melt-inclusions are common in many phenocrysts, especially of plagioclase. Hydrous mineral phases are not observed. These samples have rhyolitic glass compositions (75.8- 77.4 SiO2 wt %), but their whole-rock compositions will be somewhat less silicic. Pillow flows to the immediate west have dacitic glass compositions (67.4- 68.8 wt % SiO2). Basaltic andesitic

  4. Crustal Magnetization and Magnetic Petrology in Basalts - What Can We Learn from Scientific Drillings?

    NASA Astrophysics Data System (ADS)

    Kontny, A. M.

    2014-12-01

    Rock magnetic and magneto-mineralogical data from scientific drillings contribute to our understanding of the growth history and tectonic evolution of volcanic structures and allows for an improved interpretation of magnetic anomaly data. Such data are not only important for the magnetic structure of volcanic buildings and spreading ridges on Earth but may also provide basic data for the interpretation of extraterrestrial magnetic anomalies like on Mars. Crustal magnetization of basalts is well studied since decades and in general, the amplitude of magnetic anomalies is mainly related to the induced and remanent magnetization. Direct measurements of the magnetic field and measurements of magnetic properties of oceanic and continental crust have indicated that the crustal magnetization is very complex and depends on different factors like e.g. magma composition, cooling rate, age and hydrothermal alteration. Generally a high oxygen fugacity (above the NNO buffer) and a low Ti/(Ti+Fe) ratio of the basaltic melt are suggested as a precondition for high concentration of magnetic minerals and therefore high primary TRM. High temperature subsolidus reactions and hydrothermal alteration as e.g. observed in the strongly magnetic basalts from the Stardalur drill core, Iceland, seems to increase NRM intensity and magnetic susceptibility due to creation of small, secondary magnetite (Vahle et al. 2007). Probably the increase occurred after the extinction of the hydrothermal system because active high-temperature (>150 °C) geothermal areas like the Krafla caldera, NE-Iceland, often show distinct magnetic lows in aeromagnetic anomaly maps suggesting a destruction of magnetic minerals by hydrothermal activity (Oliva-Urcia et al. 2011). The destruction explains the significant magnetization loss, which is seen in many local magnetic anomaly lows within the oceanic crust and volcanic islands like Iceland or Hawaii. Borehole and core magnetic susceptibility measurements in

  5. Major element chemistry of glasses in Apollo 14 soil 14156.

    NASA Technical Reports Server (NTRS)

    Reid, A. M.; Ridley, W. I.; Harmon, R. S.; Jakes, P.

    1973-01-01

    Glasses in a soil sample (14156) from the middle layer of the trench at the Fra Mauro landing site show a wide range of compositions clustered around certain preferred compositions. Ninety per cent of the glasses are of two major types - Fra Mauro basalt (63%) with high K and 17 wt % Al2O3 and Highland basalt or anorthositic gabbro (27%) with low K and 25 to 26 wt % Al2O3. The glass population is almost identical with that of the comprehensive soil 14259.

  6. Elemental Abundance Distributions in Basalt Clays and Meteorites: Is It a Biosignature?

    NASA Technical Reports Server (NTRS)

    Fisk, M. R.; Storrie-Lombardi, M. C.; Joseph, J.

    2005-01-01

    Volcanic glass altered by microorganisms exhibits distinctive textures differing significantly from abiotic alteration [1-4]. We have previously presented morphological evidence of bioweathering in sub-oceanic basalt glass [5] and olivine [6], and noted similar alterations in Nakhla [7]. We have also introduced an autonomous Bayesian probabilistic classification methodology to identify biotic and abiotic alteration in sub-oceanic basalts using elemental abundance data [8]. We now present data from multiple sub-oceanic sites addressing the more general question of utilizing elemental abundance distribution in clays as a valid biosignature for the exploration of putative clay alteration products in meteorites.

  7. Ilmenite exsolution schemes in Apollo-17 high-Ti basalts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaniman, D.; Heiken, G.; Muhich, T.

    1990-01-01

    Combined electron microprobe and scanning electron microscope (SEM) x-ray image analyses are used to obtain semiquantitative data on the relations between ilmenite grains and their exsolved chromite and rutile. Comparisons of these data for ilmenites in four Apollo-17 high-Ti basalts with a database of electron microprobe analyses from the literature indicates that Cr expulsion from ilmenite can be as important as Fe{sup 2+} reduction in causing subsolidus exsolution of chromite and rutile from ilmenite. 12 refs., 4 figs., 5 tabs.

  8. A strontium and neodymium isotopic study of Apollo 17 high-Ti mare basalts: Resolution of ages, evolution of magmas, and origins of source heterogeneities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paces, J.B.; Neal, C.R.; Taylor, L.A.

    1991-07-01

    A combined Sr and Nd isotopic study of 15 Apollo 17 high-Ti mare basalts was undertaken to investigate geochronological and compositional differences between previously identified magma types (A, B1, B2, and C). Whole-rock and mineral separates for one of the least-evolved Type B1 basalts, 70139, yield Sm-Nd and Rb-Sr isochron ages of 3.71 {plus minus} 0.12 Ga and 3.65 {plus minus} 0.07 Ga and a Rb-Sr isochron age of 3.67 {plus minus} 0.10 Ga. Although these two ages are non-resolvable by themselves, compilation of all available geochronological data allows resolution of Type A and B1/B2 ages at high levels ofmore » confidence (> 99%). The most reliably dated samples, classified according to their geochemical type, yield weighted average ages of 3.75 {plus minus} 0.02 Ga for Type A (N = 4) and 3.69 {plus minus} 0.02 Ga for Type B1/B2 (N = 3) basalts. Insufficient geochronological data are available to place the rare, Type C basalts within this stratigraphy. The authors propose that age differences correlate with geochemical magma type, and that early magmatism was dominated by eruption of Type A basalts while later activity was dominated by effusion of Type B1 and B2 basalts.« less

  9. Two new basaltic objects in the Outer Main Belt

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Roig, F.; Gil-Hutton, R.; Moskovitz, N. A.

    2007-08-01

    in the visible range of (7472) Kumakiri and (10537) 1991 RY16 have been obtained by us on November 14th, 2006, using the Calar Alto Faint Object Spectrograph (CAFOS) at the 2.2m telescope in Calar Alto Observatory, Spain. The reflectance spectra of the two bodies seem to correspond to that of a V-type asteroid. However, the presence of a shallow absorption band around 0.6 microns, which has never been observed before in other V-type spectra, precludes these objects from being classified by any existing taxonomic system [4]. It is worth noting that the observed band is real and its presence in the spectrum of (10537) has been confirmed independently by other observers [13]. Therefore, we do not know whether we have discovered two basaltic asteroids with a very particular and previously unseen mineralogical composition or two objects of non basaltic nature that have to be included in a totally new taxonomic class. To unambiguously determine whether our targets have basaltic surfaces, we will observe in the near-infrared range. References: [1] Binzel, R., Rivkin, A., Stuart, S., et al. 2004, Icarus, 170, 259 [2] Binzel, R.P., Masi, G., Foglia, S., 2006, American Astronomical Society, DPS meeting #38, #71.06. [3] Burbine, T. H.; Buchanan, P. C.; Binzel, R. P.; Bus, S. J.; Hiroi, T.; Hinrichs, J. L.; Meibom, A.; McCoy, T. J., 2001. Meteoritics & Planetary Science 36, 761-781. [4] Bus, S. J., 1999, PhD Thesis, Massachusetts Institute of Technology. [5] Cruikshank, D. P.; Tholen, D. J.; Bell, J. F.; Hartmann,W. K.; Brown, R. H., 1991. Icarus 89, 1-13. [6] Duffard, R.; de Leon, J.; Licandro, J.; Lazzaro, D.; Serra-Ricart, M., 2006. Astronomy and Astrophysics, 456, 775-781. [7] Ivezic et al. 2001. Astronomical Journal 122, 2749-2784. [8] Florczak, M., Lazzaro, D., and Duffard, R. 2002. Icarus 159, 178. [9] Juric et al. 2002. Astronomical Journal 124, 1776-1787. [10] Lazzaro, D., Michtchenko, T.A., Carvano, J.M., Binzel, R.P., Bus, S.J., Burbine, T.H., Mothe-Diniz, T

  10. Cumulate xenoliths from St. Vincent, Lesser Antilles Island Arc: a window into upper crustal differentiation of mantle-derived basalts

    NASA Astrophysics Data System (ADS)

    Tollan, P. M. E.; Bindeman, I.; Blundy, J. D.

    2012-02-01

    In order to shed light on upper crustal differentiation of mantle-derived basaltic magmas in a subduction zone setting, we have determined the mineral chemistry and oxygen and hydrogen isotope composition of individual cumulus minerals in plutonic blocks from St. Vincent, Lesser Antilles. Plutonic rock types display great variation in mineralogy, from olivine-gabbros to troctolites and hornblendites, with a corresponding variety of cumulate textures. Mineral compositions differ from those in erupted basaltic lavas from St. Vincent and in published high-pressure (4-10 kb) experimental run products of a St. Vincent high-Mg basalt in having higher An plagioclase coexisting with lower Fo olivine. The oxygen isotope compositions (δ18O) of cumulus olivine (4.89-5.18‰), plagioclase (5.84-6.28‰), clinopyroxene (5.17-5.47‰) and hornblende (5.48-5.61‰) and hydrogen isotope composition of hornblende (δD = -35.5 to -49.9‰) are all consistent with closed system magmatic differentiation of a mantle-derived basaltic melt. We employed a number of modelling exercises to constrain the origin of the chemical and isotopic compositions reported. δ18OOlivine is up to 0.2‰ higher than modelled values for closed system fractional crystallisation of a primary melt. We attribute this to isotopic disequilibria between cumulus minerals crystallising at different temperatures, with equilibration retarded by slow oxygen diffusion in olivine during prolonged crustal storage. We used melt inclusion and plagioclase compositions to determine parental magmatic water contents (water saturated, 4.6 ± 0.5 wt% H2O) and crystallisation pressures (173 ± 50 MPa). Applying these values to previously reported basaltic and basaltic andesite lava compositions, we can reproduce the cumulus plagioclase and olivine compositions and their associated trend. We conclude that differentiation of primitive hydrous basalts on St. Vincent involves crystallisation of olivine and Cr-rich spinel at depth

  11. The Use of Basalt, Basalt Fibers and Modified Graphite for Nuclear Waste Repository - 12150

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulik, V.I.; Biland, A.B.

    2012-07-01

    New materials enhancing the isolation of radioactive waste and spent nuclear fuel are continuously being developed.. Our research suggests that basalt-based materials, including basalt roving chopped basalt fiber strands, basalt composite rebar and materials based on modified graphite, could be used for enhancing radioactive waste isolation during the storage and disposal phases and maintaining it during a significant portion of the post-closure phase. The basalt vitrification process of nuclear waste is a viable alternative to glass vitrification. Basalt roving, chopped basalt fiber strands and basalt composite rebars can significantly increase the strength and safety characteristics of nuclear waste and spentmore » nuclear fuel storages. Materials based on MG are optimal waterproofing materials for nuclear waste containers. (authors)« less

  12. Ibitira: A basaltic achondrite from a distinct parent asteroid

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    2004-01-01

    I have done detailed petrologic study of Ibitira, nominally classified as a basaltic eucrite. The Fe/Mn ratio of Ibitira pyroxenes with <10 mole % wollastonite component is 36.4 0.4, and is well-resolved from those of five basaltic eucrites studied for comparison; 31.2-32.2. Data for the latter completely overlap. Ibitira pyroxenes have lower Fe/Mg than the basaltic eucrite pyroxenes. Thus, the higher Fe/Mn ratio does not reflect a simple difference in oxidation state. Ibitira also has an oxygen isotopic composition, alkali element contents and a Ti/Hf ratio that distinguish it from basaltic eucrites. These differences support derivation from a distinct parent asteroid. Ibitira is the first recognized representative of the fifth known asteroidal basaltic crust.

  13. Sulfur partitioning applied to LIP magmatism - A new approach for quantifying sulfur concentration in basaltic melts

    NASA Astrophysics Data System (ADS)

    Marzoli, A.; Callegaro, S.; Baker, D. R.; De Min, A.; Cavazzini, G.; Martin, W.; Renne, P. R.; Svensen, H.

    2017-12-01

    Magmatism from Large Igneous Provinces (LIPs) has often been demonstrated synchronous with mass extinctions. Prominent examples in the Phanerozoic are the end-Permian, end-Triassic and end-Cretaceous extinctions, associated with, respectively, the Siberian Traps, the CAMP and the Deccan Traps. Despite the growing body of evidence for causal and temporal links between these events, it is not yet entirely clear how a LIP can severly affect the global environment. Degassing of volatile species such as S, C and halogen compounds directly from LIP magmas, and from contact metamorphism of volatile-rich sediments heated by the intrusions appears as the most realistic mechanism. Modeling the atmospheric response to LIP gas loads requires quantitative constraints on the degassed volatiles and emission rates, but these are challenging to obtain for magmatic systems from the geologic past. We therefore propose a new method to calculate the sulfur load of basaltic melts, by measuring sulfur content in natural minerals (clinopyroxene and plagioclase) and combining it with an experimentally determined partition coefficients (KD). We measured partitioning of sulfur between crystals and melt by ion microprobe (Nordsim, Stockholm) on experimentally produced crystals and glasses. Piston cylinder experiments were performed with conditions typical of basaltic, andesitic and dacitic melts (800 or 1000 MPa; 1000°-1350°C), to constrain KD variations as a function of melt composition, oxidation state and water content. We obtained a clinopyroxene/melt sulfur KD of 0.001 for basaltic melts, which can be applied to natural continental flood basalts. Preliminary results from thoroughly-dated lava piles from the Deccan Traps and from the Siberian Traps sills confirm that most of the basalts were at or close to sulfide saturation (ca. 2000 ppm for low fO2 melts). These results can be compared with the scenario modeled by Schmidt et al. (2016) for Deccan Traps magmatism, for which sulfur from

  14. A Glass Spherule of Questionable Impact Origin from the Apollo 15 Landing Site: Unique Target Mare Basalt

    NASA Technical Reports Server (NTRS)

    Ryder, Graham; Delano, John W.; Warren, Paul H.; Kallemeyn, Gregory W.; Dalrymple, G. Brent

    1996-01-01

    A 6 mm-diameter dark spherule, 15434,28, from the regolith on the Apennine Front at the Apollo 15 landing site has a homogeneous glass interior with a 200 microns-thick rind of devitrified or crystallized melt. The rind contains abundant small fragments of Apollo 15 olivine-normative mare basalt and rare volcanic Apollo 15 green glass. The glass interior of the spherule has the chemical composition, including a high FeO content and high CaO/Al2O3, of a mare basalt. Whereas the major element and Sc, Ni, and Co abundances are similar to those of low-Ti mare basalts, the incompatible elements and Sr abundances are similar to those of high-Ti mare basaits. The relative abundance patterns of the incompatible trace elements are distinct from any other lunar mare basalts or KREEP; among these distinctions are a much steeper slope of the heavy rare earth elements. The 15434,28 glass has abundances of the volatile element Zn consistent with both impact glasses and crystalline mare basalts, but much lower than in glasses of mare volcanic origin. The glass contains siderophile elements such as Ir in abundances only slightly higher than accepted lunar indigenous levels, and some, such as Au, are just below such upper limits. The age of the glass, determined by the Ar-40/Ar-39 laser incremental heating technique, is 1647 +/- 11 Ma (2 sigma); it is expressed as an age spectrum of seventeen steps over 96% of the Ar-38 released, unusual for an impact glass. Trapped argon is negligible. The undamaged nature of the sphere demonstrates that it must have spent most of its life buried in regolith; Ar-38 cosmic ray exposure data suggest that it was buried at less than 2m but more than a few centimeters if a single depth is appropriate. That the spherule solidified to a glass is surprising; for such a mare composition, cooling at about 50 C/s is required to avoid crystallization, and barely attainable in such a large spherule. The low volatile abundances, slightly high siderophile

  15. Melting Conditions of Basaltic Volcanism from Collision to Escape in the Central Anatolian Volcanic Province

    NASA Astrophysics Data System (ADS)

    Maloney, P. M.; Reid, M. R.; Cosca, M. A.; Gencalioglu Kuscu, G.

    2013-12-01

    Both Miocene and Quaternary mafic volcanics have erupted in the vicinity of the present-day Central Anatolian fault zone since the cessation of Afro-Arabian subduction and continent-continent collision, and the initiation of tectonic escape. We report results for samples from the Central Anatolian Volcanic Province (near Hasan volcano) and the Sarkisla region of the Sivas basin (250 km NE of Hasandag) analyzed with the goal of understanding the melting conditions responsible for the post-collisional magmatism in these regions. New 40Ar/39Ar dates for basalts erupted near Hasan range in age from 2.58 +/- 0.08 Ma to 62 +/- 4 ka. A majority of the dates cluster at ~400 ka, ages similar to those documented by Notsu et al, 1995. These subalkaline basalts have Zn/Fe and FC3MS [(FeO*/CaO)-3x(MgO/SiO2)] concentrations (10.0-11.4 and 0.05-0.39, respectively) expected for basalts produced by melting of peridotite (Le Roux et al, 2011, Yang and Zhou, 2013). Using olivine-opx-melt thermobarometry (Lee et al, 2009), the samples are determined to have been extracted from the mantle at 1.2-1.8 GPa and 1314-1391 °C. Clinopyroxene thermobarometry (Putirka, 2003) shows that they then crystallized at 0.7 GPa and ~1200°C. Enrichments in LILE:HFSE, most likely imparted to the magmas from mantle lithosphere which has been enriched by previous subduction zone metasomatism, is present in all of the samples. Accordingly, basalts sampled near Hasan are derived from a shallow lithospheric mantle peridotite source that has been affected by Afro-Arabian subduction prior to collision. New 40Ar/39Ar dates for basanites and basalts from the Sarkisla region show that they erupted between 17.6 +/- 0.4 Ma and 14.09 +/- 0.09 Ma. They have elsewhere been reported to be Plio-Pleistocene in age (Parlak et al., 2001). Zn/Fe and FC3MS for these basalts (Zn/Fe: 10.4-12.6, FC3MS: 0.29-0.91) range to values above the maximum value produced by peridotite melts (~10.8 and 0.65, respectively). Therefore

  16. Strontium stable isotope behaviour accompanying basalt weathering

    NASA Astrophysics Data System (ADS)

    Burton, K. W.; Parkinson, I. J.; Gíslason, S. G. R.

    2016-12-01

    The strontium (Sr) stable isotope composition of rivers is strongly controlled by the balance of carbonate to silicate weathering (Krabbenhöft et al. 2010; Pearce et al. 2015). However, rivers draining silicate catchments possess distinctly heavier Sr stable isotope values than their bedrock compositions, pointing to significant fractionation during weathering. Some have argued for preferential release of heavy Sr from primary phases during chemical weathering, others for the formation of secondary weathering minerals that incorporate light isotopes. This study presents high-precision double-spike Sr stable isotope data for soils, rivers, ground waters and estuarine waters from Iceland, reflecting both natural weathering and societal impacts on those environments. The bedrock in Iceland is dominantly basaltic, d88/86Sr ≈ +0.27, extending to lighter values for rhyolites. Geothermal waters range from basaltic Sr stable compositions to those akin to seawater. Soil pore waters reflect a balance of input from primary mineral weathering, precipitation and litter recycling and removal into secondary phases and vegetation. Rivers and ground waters possess a wide range of d88/86Sr compositions from +0.101 to +0.858. Elemental and isotope data indicate that this fractionation primarily results from the formation or dissolution of secondary zeolite (d88/86Sr ≈ +0.10), but also carbonate (d88/86Sr ≈ +0.22) and sometimes anhydrite (d88/86Sr ≈ -0.73), driving the residual waters to heavier or lighter values, respectively. Estuarine waters largely reflect mixing with seawater, but are also be affected by adsorption onto particulates, again driving water to heavy values. Overall, these data indicate that the stability and nature of secondary weathering phases, exerts a strong control on the Sr stable isotope composition of silicate rivers. [1] Krabbenhöft et al. (2010) Geochim. Cosmochim. Acta 74, 4097-4109. [2] Pearce et al. (2015) Geochim. Cosmochim. Acta 157, 125-146.

  17. Pyroxenes as recorders of lunar basalt petrogenesis - Chemical trends due to crystal-liquid interaction.

    NASA Technical Reports Server (NTRS)

    Bence, A. E.; Papike, J. J.

    1972-01-01

    Review of the crystallization histories suggested by the chemical, crystallographic, morphological, and paragenetic relationships observed in pyroxenes from basalts collected on the Apollo 11, 12, 14, 15, and Luna 16 missions. Although the final stages of lunar basalt crystallization appear to be rapid near-surface events, the initial stages are shown to vary considerably among the different basalt types.

  18. Valence State Partitioning of Cr and V Between Pyroxene - Melt: Estimates of Oxygen Fugacity for Martian Basalt QUE 94201

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Papike, J. J.; Shearer, C. K.; McKay, G.; Le, L.; Burger, P.

    2007-01-01

    Several studies, using different oxybarometers, have suggested that the variation of fO2 in martian basalts spans about 3 log units from approx. IW-1 to IW+2. The relatively oxidized basalts (e.g., pyroxene-phyric Shergotty) are enriched in incompatible elements, while the relatively reduced basalts (e.g., olivine-phyric Y980459) are depleted in incompatible elements. A popular interpretation of the above observations is that the martian mantle contains two reservoirs; 1) oxidized and enriched, and 2) reduced and depleted. The basalts are thus thought to represent mixing between these two reservoirs. Recently, Shearer et al. determined the fO2 of primitive olivine-phyric basalt Y980459 to be IW+0.9 using the partitioning of V between olivine and melt. In applying this technique to other basalts, Shearer et al. concluded that the martian mantle shergottite source was depleted and varied only slightly in fO2 (IW to IW+1). Thus the more oxidized, enriched basalts had assimilated a crustal component on their path to the martian surface. In this study we attempt to address the above debate on martian mantle fO2 using the partitioning of Cr and V into pyroxene in pyroxene-phyric basalt QUE 94201.

  19. A Geochemical and Mineralogical Model for Formation of Layered Sulfate Deposits at Meridiani Planum by Hydrothermal Acid-sulfate Alteration of Pyroclastic Basalt

    NASA Astrophysics Data System (ADS)

    McCollom, T. M.; Hynek, B. M.

    2012-12-01

    of acid-sulfate alteration of martian pyroclastic basalt predict that the early stages of alteration will produce amorphous silica, anhydrite (or gypsum at lower temperature), Fe-bearing natroalunite, and kieserite as predominant secondary phases, along with relict glass and silicates protected within the glass. Hematite may form with continued heating through partial decomposition of Fe-bearing natroalunite [9], and some of the glass phase may partially devitrify to form minor phyllosilicates such as nontronite and nanophase Fe oxides. The resulting rock would have a chemical and mineralogical composition closely resembling that observed at Meridiani Planum. We conclude that hydrothermal acid-sulfate alteration of pyroclastic basalt provides the most parsimonious explanation for the composition of the sulfate deposits. References: [1] Glotch et al., JGR (2006). [2] Klingelhöfer et al. Science (2004). [3] McLennan et al., EPSL (2005). [4] McCollom & Hynek, Nature (2005). [5] Squyres et al. Science (2006). [6] Knauth et al. Nature (2005). [7] Niles & Michalski, Nat. Geosci. (2009). [8] Berger et al. Am. Mineral. (2009). [9] McCollom et al. JGR-Planets (submitted ms.)

  20. Carbonate Mineralization of Volcanic Province Basalts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, Herbert T.; McGrail, B. Peter; Owen, Antionette T.

    2010-03-31

    the precipitates suggest changes in fluid chemistry unique to the dissolution behavior of each basalt sample reacted with CO2-saturated water. The Karoo basalt from South Africa appeared the least reactive, with very limited mineralization occurring during the testing with CO2-saturated water. The relative reactivity of different basalt samples were unexpectedly different in the experiments conducted using aqueous dissolved CO2-H2S mixtures versus those reacted with aqueous dissolved CO2 mixtures. For example, the Karoo basalt was highly reactive in the presence of aqueous dissolved CO2-H2S, as evident by small nodules of carbonate coating the basalt grains after 181 days of testing. However the most reactive basalt in CO2-H2O, Newark Basin, formed limited amounts of carbonate precipitates in the presence of aqueous dissolved CO2-H2S mixture. Basalt reactivity in CO2-H2O mixtures appears to be controlled by the composition of the glassy mesostasis, which is the most reactive component in the basalt rock. With the addition of H2S to the CO2-H2O system, basalt reactivity appears to be controlled by precipitation of coatings of insoluble Fe sulfides.« less

  1. Back arc basalts from Patagonia: sediment input in a distal subduction domain

    NASA Astrophysics Data System (ADS)

    Hesse, A.; Mandeville, C.; Varekamp, J. C.

    2007-12-01

    Cinder cones and lava flows from the Loncopue graben in N Patagonia (37 S) were sampled over a 180 km N-S transect. These mainly basaltic and trachybasaltic lava flows carry olivine with Cr-Al-rich spinel inclusions, while some more evolved flows carry clinopyroxene and plagioclase. Most of these rocks have between 5-8 percent MgO, and show highly variable K and LIL trace element concentrations. The rocks have up to 180 ppm Ni and 250 ppm Cr. Relative trace element abundance diagrams show negative Ta-Nb anomalies in most rocks, although their depths vary strongly. The REE patterns show LREE enrichment and most rocks have no Eu anomalies, indicating the absence of significant plagioclase fractionation. The basalts have constant U/Th values (~0.25) that are similar to those found in the nearby Copahue-Caviahue arc volcanics. Microprobe analyses of the main phases show olivine with Mg # of 80-87 and up to 2600 ppm Ni. Simulations with the Melts-pMelts programs and application of mineral-melt geothermometers suggest that most olivine phenocrysts crystallized at ~8-10 kbar pressure at temperatures of 1170-1220 oC and with 1-3 percent H2O in the melt. The Sr isotope compositions of 9 samples show a range from 0.7033 - 0.7043, which are negatively correlated with Nd isotope ratios (0.51273- 0.51292). Surprisingly, the most MgO-rich basalt has the most radiogenic Sr isotope ratio. The Pb isotope ratios, well outside the DMM range, correlate very poorly with either Sr isotope ratios or in Pb-Pb isotope graphs. The lack of correlation between degree of evolution and Sr isotope ratios as well as the primitive nature of the rocks and crystals suggest that crustal assimilation was not a major process impacting the composition of these small magma volumes. Incompatible trace element patterns of several samples resemble those of detrital sediment samples from the Pacific, which together with the isotopic data suggest that these magmas may carry a subducted sediment component

  2. Planetary basalts - Chemistry and petrology

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Bence, A. E.

    1979-01-01

    Recent literature (1975-1978) on planetary basalts is reviewed. Terrestrial basalts are considered in relation to Nd and Sm isotopic studies, magma mixing, chemical and mineralogical heterogeneities in basalt source regions, and partial melting controls on basalt chemistry. Attention is also given to features of mare basalts, eucrites, and comparisons of basalts for the earth, the moon, and the parent body of basaltic achondrites.

  3. Viscous flow behavior of tholeiitic and alkaline Fe-rich martian basalts

    NASA Astrophysics Data System (ADS)

    Chevrel, Magdalena Oryaëlle; Baratoux, David; Hess, Kai-Uwe; Dingwell, Donald B.

    2014-01-01

    The chemical compositions of martian basalts are enriched in iron with respect to terrestrial basalts. Their rheology is poorly known and liquids of this chemical composition have not been experimentally investigated. Here, we determine the viscosity of five synthetic silicate liquids having compositions representative of the diversity of martian volcanic rocks including primary martian mantle melts and alkali basalts. The concentric cylinder method has been employed between 1500 °C and the respective liquidus temperatures of these liquids. The viscosity near the glass transition has been derived from calorimetric measurements of the glass transition. Although some glass heterogeneity limits the accuracy of the data near the glass transition, it was nevertheless possible to determine the parameters of the non-Arrhenian temperature-dependence of viscosity over a wide temperature range (1500 °C to the glass transition temperature). At superliquidus conditions, the martian basalt viscosities are as low as those of the Fe-Ti-rich lunar basalts, similar to the lowest viscosities recorded for terrestrial ferrobasalts, and 0.5 to 1 order of magnitude lower than terrestrial tholeiitic basalts. Comparison with empirical models reveals that Giordano et al. (2008) offers the best approximation, whereas the model proposed by Hui and Zhang (2007) is inappropriate for the compositions considered. The slightly lower viscosities exhibited by the melts produced by low degree of mantle partial melting versus melts produced at high degree of mantle partial melting (likely corresponding to the early history of Mars), is not deemed sufficient to lead to viscosity variations large enough to produce an overall shift of martian lava flow morphologies over time. Rather, the details of the crystallization sequence (and in particular the ability of some of these magmas to form spinifex texture) is proposed to be a dominant effect on the viscosity during martian lava flow emplacement and

  4. Feldspar basalts in lunar soil and the nature of the lunar continents

    NASA Technical Reports Server (NTRS)

    Reid, A. M.; Ridley, W. I.; Harmon, R. S.; Warner, J.; Brett, R.; Jakes, P.; Brown, R. W.

    1974-01-01

    It is found that 25% on the Apollo-14 glasses have the same composition as the glasses in two samples taken from the Luna-16 column. The compositions are equivalent to feldspar basalt and anorthosite gabbro, and are similar to the feldspar basalts identified from Surveyor-7 analysis for lunar continents.

  5. Calcium Sulfate in Atacama Desert Basalt: A Possible Analog for Bright Material in Adirondack Basalt, Gusev Crater

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Golden, D. C.; Amundson, R.; Chong-Diaz, G.; Ming, D. W.

    2007-01-01

    The Atacama Desert in northern Chile is one of the driest deserts on Earth (< 2mm/y). The hyper-arid conditions allow extraordinary accumulations of sulfates, chlorides, and nitrates in Atacama soils. Examining salt accumulations in the Atacama may assist understanding salt accumulations on Mars. Recent work examining sulfate soils on basalt parent material observed white material in the interior vesicles of surface basalt. This is strikingly similar to the bright-white material present in veins and vesicles of the Adirondack basalt rocks at Gusev Crater which are presumed to consist of S, Cl, and/or Br. The abundance of soil gypsum/anhydrite in the area of the Atacama basalt suggested that the white material consisted of calcium sulfate (Ca-SO4) which was later confirmed by SEM/EDS analysis. This work examines the Ca-SO4 of Atacama basalt in an effort to provide insight into the possible nature of the bright material in the Adirondack basalt of Gusev Crater. The objectives of this work are to (i) discuss variations in Ca-SO4 crystal morphology in the vesicles and (ii) examine the Ca-SO4 interaction(s) with the basalt interior.

  6. Age and Duration of the Paraná-Etendeka Flood Basalts and Related Plumbing System

    NASA Astrophysics Data System (ADS)

    Renne, P. R.

    2015-12-01

    The Paraná-Etendeka Igneous Province (PEIP) comprises a large volume sequence of continental flood basalts presently distributed assymetrically between South America (mainly southern Brazil but also parts of Uruguay, Paraguay and Argentina) and southwestern Africa (Namibia, Angola), following opening of the South Atlantic ocean. The PEIP is dominated by tholeiitic basalts to basaltic andesites, with subordinate silicic rocks spanning the dacite-trachyte-rhyolite fields, which occur as lava flows, sills and dike swarms as well as intrusive complexes closely related to the eruptive rocks. The PEIP has long been subject of 40Ar/39Ar geochronologic and paleomagnetic studies which led to conclude its rapid formation near the Hauterivian stage (~133 Ma) with onward progression to Barremian from the intrusive equivalents exposed northwards. Two decades after publication of the first 40Ar/39Ar ages for the Paraná flood basalts (Renne et al., 1992) we report here an updated study of the age and duration of this magmatic event. We calibrated a set of sixty published and new results to the calibration of Renne et al. (2011), which indicates an inception age of the volcanism now estimated at 135 ± 1 Ma, before the initiation of sea floor spreading. Lava extrusion progressed over ~2 Ma from south to north. A protracted duration of ~10 Ma inferred by Stewart et al. (1996) for PEIP volcanism is clearly incorrect, as also concluded by Thiede and Vasconcelos (2010). Low-Ti mafic magmas prevailed during the earlier stages followed over time by enhanced dominance of their silicic equivalents. Eruption of the high-Ti (mafic and silicic) magmas initiated simultaneously ~0.5 m.y. later, continuing up to ~133 Ma with injection of the Ponta Grossa dyke swarm. Despite several paleomagnetic polarity intervals recorded by the lava piles in the southern (> 27°S) and central (latitudes of ~24-27°S) domains of the Brazilian PEIP, the paleomagnetic data show small dispersion in agreement

  7. Aubrite basalt vitrophyres: High sulfur silicate melts and a snapshot of aubrite formation. [Abstract only

    NASA Technical Reports Server (NTRS)

    Fogel, R. A.

    1994-01-01

    Two aubrite basalt vitrophyre clasts have been found within AMNH thin sections from the Parsa EH3 chondrite and the Khor Temiki aubrite. Polished sections of the Parsa Aubrite Inclusion (PAI) and the Khor Temiki Inclusion (KTI) were studied by optical, electron probe microanalysis (EPMA), and scanning electron microscopy (SEM) techniques with broad-beam and low absorbed EPMA currents used to minimize glass volatile loss. Some data have previously been reported for PAI and KTI may possibly correlate to a previously reported inclusion in Khor Tiimiki. In polished sections, PAI and KTI are approximately equal 4 mm in diameter and contain a large volume of glass. The clasts have similar textural characteristics and are akin to lunar vitrophyre textures. The glasses have high alkali rhyodacitic compositions Al-though PAI is peraluminous, KTI is significantly peralkaline. Additionally, the glasses have elevated sulfur concentrations that are extremely high by geochemical standards. SEM examination for beam overlap of microscopic CaS, FeS, and (Mg, Mn, Fe) S inclusions showed no such contamination. Furthermore, homogeneity of glass S content and low FeO contents help rule out contamination. Materials research data show that under reducing conditions alumino-silicate melts can dissolve up to several weight percent sulfur in the absence of Fe. The high S and alkali contents, the lack of associated high shock features, and the rationalized phase equilibria suggest that PAI and KTI are igneous melting products of an E-chondrite-like source material. Although large-scale impact melting cannot totally be ruled out, the above observations eliminate the possibility of in-situ shock melting.

  8. Evaluation of thermobarometry for spinel lherzolite fragments in alkali basalts

    NASA Astrophysics Data System (ADS)

    Ozawa, Kazuhito; Youbi, Nasrrddine; Boumehdi, Moulay Ahmed; McKenzie, Dan; Nagahara, Hiroko

    2017-04-01

    Geothermobarometry of solid fragments in kimberlite and alkali basalts, generally called "xenoliths", provides information on thermal and chemical structure of lithospheric and asthenospheric mantle, based on which various chemical, thermal, and rheological models of lithosphere have been constructed (e.g., Griffin et al., 2003; McKenzie et al., 2005; Ave Lallemant et al., 1980). Geothermobarometry for spinel-bearing peridotite fragments, which are frequently sampled from Phanerozoic provinces in various tectonic environments (Nixon and Davies, 1987), has essential difficulties, and it is usually believed that appropriated barometers do not exist for them (O'Reilly et al., 1997; Medaris et al., 1999). Ozawa et al. (2016; EGU) proposed a method of geothermobarometry for spinel lherzolite fragments. They applied the method to mantle fragments in alkali basalts from Bou Ibalhatene maars in the Middle Atlas in Morocco (Raffone et al. 2009; El Azzouzi et al., 2010; Witting et al., 2010; El Messbahi et al., 2015). Ozawa et al. (2016) obtained 0.5GPa pressure difference (1.5-2.0GPa) for 100°C variation in temperatures (950-1050°C). However, it is imperative to verify the results on the basis of completely independent data. There are three types of independent information: (1) time scale of solid fragment extraction, which may be provided by kinetics of reactions induced by heating and/or decompression during their entrapment in the host magma and transportation to the Earth's surface (Smith, 1999), (2) depth of the host basalt formation, which may be provided by the petrological and geochemical studies of the host basalts, and (3) lithosphere-asthenosphere boundary depths, which may be estimated by geophysical observations. Among which, (3) is shown to be consistent with the result in Ozawa et al. (2016). We here present that the estimated thermal structure just before the fragment extraction is fully supported by the information of (1) and (2). Spera (1984) reviewed

  9. A Thorium-rich Mare Basalt Rock Fragment from the Apollo 12 Regolith: A Sample from a Young Procellarum Flow?

    NASA Technical Reports Server (NTRS)

    Jolliff, B. L.; Zeigler, R. A.; Korotev, R. L.; Barra, F.; Swindle, T. D.

    2005-01-01

    In this abstract, we report on the composition, mineralogy and petrography of a basaltic rock fragment, 12032,366-18, found in the Apollo 12 regolith. Age data, collected as part of an investigation by Barra et al., will be presented in detail in. Here, only the age dating result is summarized. This rock fragment garnered our attention because it is significantly enriched in incompatible elements, e.g., 7 ppm thorium, compared to other known lunar basalts. Its mineral- and trace-element chemistry set it apart from other Apollo 12 basalts and indeed from all Apollo and Luna basalts. What makes it potentially very significant is the possibility that it is a sample of a relatively young, thorium-rich basalt flow similar to those inferred to occur in the Procellarum region, especially northwestern Procellarum, on the basis of Lunar Prospector orbital data. Exploiting the lunar regolith for the diversity of rock types that have been delivered to a landing site by impact processes and correlating them to their likely site of origin using remote sensing will be an important part of future missions to the Moon. One such mission is Moonrise, which would collect regolith samples from the South Pole-Aitken Basin, concentrating thousands of rock fragments of 3-20 mm size from the regolith, and returning the samples to Earth.

  10. Geochemical models of melting and magma storage conditions for basalt lava from Santorini Volcano, Greece

    NASA Astrophysics Data System (ADS)

    Baziotis, Ioannis; Kimura, Jun-Ichi; Pantazidis, Avgoustinos; Klemme, Stephan; Berndt, Jasper; Asimow, Paul

    2017-04-01

    Santorini volcano sits ˜150 km above the Wadati-Benioff zone of the Aegean arc, where the African plate subducts northward beneath the Eurasian continent (Papazachos et al. 2000). Santorini volcano has a long history: activity started ca. 650 ka (mainly rhyolites and rhyodacites), with active pulses following ca. 550 ka (basalt to rhyodacite) and ca. 360 ka (large explosive eruptions of andesite to rhyodacite and minor basalt), culminating in the caldera-forming Bronze-age Minoan event (Druitt et al. 1999). As in many arc volcanoes, scenarios of fractional crystallization with or without mixing between felsic and mafic magmas have been proposed to explain the compositions, textures, and eruptive styles of Santorini products (e.g., Huijsmans & Barton 1989; Montazavi & Sparks 2004; Andújar et al. 2015). Here we focus on a basalt lava from the southern part of Santorini volcano (Balos cove, 36˚ 21.7'N, 25˚ 23.8'E), one of the few basaltic localities in the Aegean arc. The goals are to infer constraints on the magma chamber conditions which lead to mafic eruption at Santorini Volcano and to evaluate the slab and mantle wedge conditions via geochemical and petrological mass balance modelling. We collected and characterised 20 samples for texture (SEM), mineral chemistry (FE-EPMA) and whole-rock chemistry (XRF). The basalts contain phenocrystic olivine (Ol) and clinopyroxene (Cpx) (<600 μm diameter) in a fine groundmass (<100 μm diameter) of Ol, Cpx, plagioclase (Pl) and magnetite (Mt) with minor glass and rare xenocrystic quartz. Santorini basalts exhibit a pilotaxitic to trachytic texture defined by randomly to flow-oriented tabular Pl, respectively. The predominant minerals are calcic Pl (core An78-85 and rim An60-76; 45-50 vol.%), Cpx (En36-48Wo41-44Fs11-21; 10-15 vol.%) and Ol (Fo74-88; 10-12 vol.%). Idiomorphic to subidiomorphic Mt (<10μm diameter) with variable TiO2 contents (1.9-16.5 wt%) is a minor constituent (˜1-2 vol.%) in the less mafic samples

  11. The Thickness and Volume of Young Basalts Within Mare Imbrium

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Li, Chunlai; Ren, Xin; Liu, Jianjun; Wu, Yunzhao; Lu, Yu; Cai, Wei; Zhang, Xunyu

    2018-02-01

    Basaltic volcanism is one of the most important geologic processes of the Moon. Research on the thickness and volume of late-stage basalts of Mare Imbrium helps better understand the source of lunar volcanism and eruption styles. Based on whether apparent flow fronts exist or not, the late-stage basalts within Mare Imbrium were divided into two groups, namely, Upper Eratosthenian basalts (UEm) and Lower Eratosthenian basalts (LEm). Employing the topographic profile analysis method for UEm and the crater excavation technique for LEm, we studied the thickness and distribution of Eratosthenian basalts in Mare Imbrium. For the UEm units, their thicknesses were estimated to be 16-34 (±2) m with several layers of individual lava ( 8-13 m) inside. The estimated thickness of LEm units was 14-45(±1) m, with a trend of reducing thickness from north to south. The measured thickness of late-stage basalts around the Chang'E-3 landing site ( 37 ± 1 m) was quite close to the results acquired by the lunar penetrating radar carried on board the Yutu Rover ( 35 m). The total volume of the late-stage basalts in Mare Imbrium was calculated to be 8,671 (±320) km3, which is 4 times lower than that of Schaber's estimation ( 4 × 104 km3). Our results indicate that the actual volume is much lower than previous estimates of the final stage of the late basaltic eruption of Mare Imbrium. Together, the area flux and transport distance of the lava flows gradually decreased with time. These results suggest that late-stage volcanic evolution of the Moon might be revised.

  12. Surface chemistry associated with the cooling and subaerial weathering of recent basalt flows

    USGS Publications Warehouse

    White, A.F.; Hochella, M.F.

    1992-01-01

    The surface chemistry of fresh and weathered historical basalt flows was characterized using surface-sensitive X-ray photoelectron spectroscopy (XPS). Surfaces of unweathered 1987-1990 flows from the Kilauea Volcano, Hawaii, exhibited variable enrichment in Al, Mg, Ca, and F due to the formation of refractory fluoride compounds and pronounced depletion in Si and Fe from the volatilization of SiF4 and FeF3 during cooling. These reactions, as predicted from shifts in thermodynamic equilibrium with temperature, are induced by diffusion of HF from the flow interiors to the cooling surface. The lack of Si loss and solid fluoride formation for recent basalts from the Krafla Volcano, Iceland, suggest HF degassing at higher temperatures. Subsequent short-term subaerial weathering reactions are strongly influenced by the initial surface composition of the flow and therefore its cooling history. Successive samples collected from the 1987 Kilauea flow demonstrated that the fluoridated flow surfaces leached to a predominantly SiO2 composition by natural weathering within one year. These chemically depleted surfaces were also observed on Hawaiian basalt flows dating back to 1801 AD. Solubility and kinetic models, based on thermodynamic and kinetic data for crystalline AlF3, MgF2, and CaF2, support observed elemental depletion rates due to chemical weathering. Additional loss of alkalis from the Hawaiian basalt occurs from incongruent dissolution of the basalt glass substrate during weathering. ?? 1992.

  13. Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St Vincent, Lesser Antilles arc

    NASA Astrophysics Data System (ADS)

    Pichavant, M.; MacDonald, R.

    2007-11-01

    Near-liquidus crystallization experiments have been carried out on two basalts (12.5 and 7.8 wt% MgO) from Soufriere, St Vincent (Lesser Antilles arc) to document the early stages of differentiation in calc-alkaline magmas. The water-undersaturated experiments were performed mostly at 4 kbar, with 1.6 to 7.7 wt% H2O in the melt, and under oxidizing conditions (ΔNNO = -0.8 to +2.4). A few 10 kbar experiments were also performed. Early differentiation of primitive, hydrous, high-magnesia basalts (HMB) is controlled by ol + cpx + sp fractionation. Residual melts of typical high-alumina basalt (HAB) composition are obtained after 30-40% crystallization. The role of H2O in depressing plagioclase crystallization leads to a direct relation between the Al2O3 content of the residual melt and its H2O concentration, calibrated as a geohygrometer. The most primitive phenocryst assemblage in the Soufriere suite (Fo89.6 olivine, Mg-, Al- and Ti-rich clinopyroxene, Cr-Al spinel) crystallized from near-primary (Mg# = 73.5), hydrous (˜5 wt% H2O) and very oxidized (ΔNNO = +1.5-2.0) HMB liquids at middle crustal pressures and temperatures from ˜1,160 to ˜1,060°C. Hornblende played no role in the early petrogenetic evolution. Derivative HAB melts may contain up to 7-8 wt% dissolved H2O. Primitive basaltic liquids at Soufriere, St Vincent, have a wide range of H2O concentrations (2-5 wt%).

  14. Temperatures and Melt Water Contents at the Onset of Phenocryst Growth in Quaternary Nepheline-Normative Basalts Erupted along the Tepic-Zacoalco Rift in Western Mexico

    NASA Astrophysics Data System (ADS)

    Mesa, J.; Lange, R. A.; Pu, X.

    2017-12-01

    Nepheline-normative, high-Mg basalts erupted from the western Mexican arc, along the Tepic-Zacoalco rift (TZR), have a trace-element signature consistent with an asthenosphere source, whereas calc-alkaline basalts erupted from the central Mexican arc in the Michoacan-Guanajuato volcanic field (MGVF) have a trace-element signature consistent with a mantle source strongly affected by subduction fluids. In this study, olivine-melt thermometry and plagioclase-liquid hygrometry are used to constrain the temperature and melt water content of the alkaline TZR basalts. The presence of diffusion-limited growth textures in olivine and plagioclase phenocrysts provide preliminary evidence of rapid growth during ascent. For each basalt sample, a histogram of all analyzed olivines in each sample allows the most Fo-rich composition to be identified, which matches the calculated composition at the liquidus via MELTS (Ghiorso & Sack, 1995; Asimow & Ghiorso, 1998) at fO2 values of QFM +2. Therefore a newly developed olivine-melt thermometer, based on DNiol/liq (Pu et al., 2017) was used to calculate temperature at the onset of olivine crystallization during ascent. Temperatures range from 1076-1247°C, whereas those calculated using an olivine-melt thermometer based on DMgol/liq range from 1141-1236 °C. Olivine-melt thermometers based on DMgol/liq are sensitive to melt H2O content, therefore ΔT = TMg - TNi (≤ 82 degrees) may be used as a qualitative indicator of melt H2O (≤ 2.6 wt% H2O; Pu et al., 2017). When temperatures from the Ni-thermometer are applied to the most calcic plagioclase in each sample (Waters & Lange, 2015), calculated melt H2O contents range from 1.3-1.9 (± 0.4) wt%. These values are significantly lower than those obtained from high-Mg calc-alkaline basalts from the MGVF using similar methods (1.9-5.0 wt%; Pu et al., 2017), consistent with a reduced involvement of slab-derived fluids in the origin of the alkaline TZR basalts from western Mexico.

  15. Metal transports and enrichments in iron depositions hosted in basaltic rocks. II: Metal rich fluids and Fe origin

    NASA Astrophysics Data System (ADS)

    Zhang, Ronghua; Zhang, Xuetong; Hu, Shumin

    2015-12-01

    This study focuses on revealing the mechanism of metal transport, enrichment and Fe origin of iron deposition during water basalt interactions occurred in basaltic rocks. Observations of the iron deposits (anhydrite-magnetite-pyroxene type deposits) hosted in K-rich basaltic rocks in the Mesozoic volcanic area of the Middle-Lower Yangtze River valley, China, indicate that the mechanism of metal transport and enrichment for those deposits are significant objective to scientists, and the Fe origin problem is not well resolved. Here the metal transport, enrichment and iron origin have been investigated in high temperature experiments of water basaltic interactions. These deposits were accompanying a wide zone with metal alteration. The effects of hydrothermal alteration on major rock-forming element concentrations in basaltic rock were investigated by systematically comparing the chemical compositions of altered rocks with those of fresh rocks. In the deposits, these metals are distributed throughout altered rocks that exhibit vertical zoning from the deeper to the shallow. Then, combined with the investigations of the metal-alterations, we performed kinetic experiments of water-basaltic rock interactions using flow-through reactors in open systems at temperatures from 20 °C to 550 °C, 23-34 MPa. Release rates for the rock-forming elements from the rocks have been measured. Experiments provide the release rates for various elements at a large temperature range, and indicate that the dissolution rates (release rates) for various elements vary with temperature. Si, Al, and K have high release rates at temperatures from 300 °C to 500 °C; the maximum release rates (RMX) for Si are reached at temperatures from 300 °C to 400 °C. The RMXs for Ca, Mg, and Fe are at low temperatures from 20 °C to 300 °C. Results demonstrate that Fe is not released from 400 °C to 550 °C, and indicate that when deep circling fluids passed through basaltic rocks, Fe was not mobile, and

  16. Miocene Basaltic Lava Flows and Dikes of the Intervening Area Between Picture Gorge and Steens Basalt of the CRBG, Eastern Oregon

    NASA Astrophysics Data System (ADS)

    Cahoon, E. B.; Streck, M. J.

    2016-12-01

    Mid-Miocene basaltic lavas and dikes are exposed in the area between the southern extent of the Picture Gorge Basalt (PGB) and the northern extent of Steens Basalt in a wide corridor of the Malheur National Forest, eastern Oregon. An approximate mid-Miocene age of sampled basaltic units is indicated by stratigraphic relationships to the 16 Ma Dinner Creek Tuff. Lavas provide an opportunity to extend and/or revise distribution areas of either CRBG unit and explore the petrologic transition between them. The PGB and the Steens Basalt largely represent geochemically distinct tholeiitic units of the CRBG; although each unit displays internal complexity. Lavas of PGB are relatively primitive (MgO 5-9 wt.%) while Steens Basalt ranges in MgO from >9 to 3 wt.% but both units are commonly coarsely porphyritic. Conversely, Steens Basalt compositions are on average more enriched in highly incompatible elements (e.g. Rb, Th) and relatively enriched in the lesser incompatible elements (e.g. Y, Yb) compared to the Picture Gorge basalts. These compositional signatures produce inclined and flat patterns on mantle-normalized incompatible trace element plots but with similar troughs and spikes, respectively. New compositional data from our study area indicate basaltic lavas can be assigned as PGB lava flows and dikes, and also to a compositional group chemically distinct between Steens Basalt and PGB. Distribution of lava flows with PGB composition extend this CRBG unit significantly south/southeast closing the exposure gap between PGB and Steens Basalt. We await data that match Steens Basalt compositions but basaltic lavas with petrographic features akin to Steens Basalt have been identified in the study area. Lavas of the transitional unit share characteristics with Upper Steens and Picture Gorge basalt types, but identify a new seemingly unique composition. This composition is slightly more depleted in the lesser incompatible elements (i.e. steeper pattern) on mantle normalized

  17. Cl, P2O5, U and Br associated with mineral separates from a low and a high Ti mare basalt

    NASA Technical Reports Server (NTRS)

    Jovanovic, S.; Reed, G. W., Jr.

    1980-01-01

    Low Ti basalt 12040 and high Ti basalt 75055 have approximately the same Cl/P2O5 ratio; the Cl is that remaining after a hot water leach. Pyroxene, plagioclase and ilmenite minerals separated from the basalts also tend to have this same Cl/P2O5 ratio. This is evidence that these major minerals do not control the ratio since Cl and P would not be expected to partition to the same extent into each mineral. Olivine appears to be a special case. It is proposed that the grains measured contained inclusions with leachable and P2O5-related Cl. Dilute acid leaches of whole rock and separated minerals have the same or nearly the same Cl/P2O5 ratios as the residual samples. Apatite and whitlockite were probably the phases leached. They must be constituents of the mesostasis and are present as microminerals or coatings on major mineral grains. The acid leach results imply little or no partition of Cl and P2O5 into major minerals.

  18. Superhard self-lubricating AlMgB14 films for microelectromechanical devices

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Bastawros, A. F.; Lo, C. C. H.; Constant, A. P.; Russell, A. M.; Cook, B. A.

    2003-10-01

    Performance and reliability of microelectromechanical system (MEMS) components can be enhanced dramatically through the incorporation of protective thin-film coatings. Current-generation MEMS devices prepared by the lithographie-galvanoformung-abformung (LIGA) technique employ transition metals such as Ni, Cu, Fe, or alloys thereof, and hence lack stability in oxidizing, corrosive, and/or high-temperature environments. Fabrication of a superhard self-lubricating coating based on a ternary boride compound AlMgB14 described in this letter has great potential in protective coating technology for LIGA microdevices. Nanoindentation tests show that the hardness of AlMgB14 films prepared by pulsed laser deposition ranges from 45 GPa to 51 GPa, when deposited at room temperature and 573 K, respectively. Extremely low friction coefficients of 0.04-0.05, which are thought to result from a self-lubricating effect, have also been confirmed by nanoscratch tests on the AlMgB14 films. Transmission electron microscopy studies show that the as-deposited films are amorphous, regardless of substrate temperature; however, analysis of Fourier transform infrared spectra suggests that the higher substrate temperature facilitates the formation of the B12 icosahedral framework, therefore leading to the higher hardness.

  19. Analysis of the ultrafine fraction of the Apollo 14 regolith

    NASA Technical Reports Server (NTRS)

    Finkelman, R. B.

    1973-01-01

    Analyses were obtained on more than 2400 randomly selected particles from the sub-37 micron (ultrafine) fraction of ten Apollo 14 regolith samples. The analyses were conducted with an energy dispersive electron microprobe system. The semiquantitative data were used to group the particles into ten categories. The pyroxene/plagioclase and olivine/plagioclase ratios are inconsistent with those ratios in the Apollo 14 breccias and rocks. The data suggest that fragmented basalts similar to Apollo 12 olivine basalts may have made significant contributions to the ultrafine fraction of the Fra Mauro regolith. Among a number of unusual particles encountered are brown, birefringent lath-shaped grains with 60 wt % SiO2 and 34 wt % FeO(FeSi2O5) and a glass with 20 to 25 wt % CaO, 0 to 8 wt % MgO, 40 to 45 wt % Al2O3 and approximately 30 wt % SiO2.

  20. Scarification of basalt milkvetch (Astragalus filipes) seed for improved emergence

    Treesearch

    Clinton C. Shock; Erik Feibert; Lamont D. Saunders

    2008-01-01

    Basalt milkvetch (Astragalus nlipes) is a forb (non woody perennial) native to western North America. Basalt milkvetch is a legume forb species of interest for revegetating rangelands of the intermountain northwest; it can contribute high quality feed, valuable seed for wildlife, and nitrogen fixation to help maintain range productivity. Basalt milkvetch has a hard...

  1. Can we identify source lithology of basalt?

    PubMed

    Yang, Zong-Feng; Zhou, Jun-Hong

    2013-01-01

    The nature of source rocks of basaltic magmas plays a fundamental role in understanding the composition, structure and evolution of the solid earth. However, identification of source lithology of basalts remains uncertainty. Using a parameterization of multi-decadal melting experiments on a variety of peridotite and pyroxenite, we show here that a parameter called FC3MS value (FeO/CaO-3*MgO/SiO2, all in wt%) can identify most pyroxenite-derived basalts. The continental oceanic island basalt-like volcanic rocks (MgO>7.5%) (C-OIB) in eastern China and Mongolia are too high in the FC3MS value to be derived from peridotite source. The majority of the C-OIB in phase diagrams are equilibrium with garnet and clinopyroxene, indicating that garnet pyroxenite is the dominant source lithology. Our results demonstrate that many reputed evolved low magnesian C-OIBs in fact represent primary pyroxenite melts, suggesting that many previous geological and petrological interpretations of basalts based on the single peridotite model need to be reconsidered.

  2. Can we identify source lithology of basalt?

    PubMed Central

    Yang, Zong-Feng; Zhou, Jun-Hong

    2013-01-01

    The nature of source rocks of basaltic magmas plays a fundamental role in understanding the composition, structure and evolution of the solid earth. However, identification of source lithology of basalts remains uncertainty. Using a parameterization of multi-decadal melting experiments on a variety of peridotite and pyroxenite, we show here that a parameter called FC3MS value (FeO/CaO-3*MgO/SiO2, all in wt%) can identify most pyroxenite-derived basalts. The continental oceanic island basalt-like volcanic rocks (MgO>7.5%) (C-OIB) in eastern China and Mongolia are too high in the FC3MS value to be derived from peridotite source. The majority of the C-OIB in phase diagrams are equilibrium with garnet and clinopyroxene, indicating that garnet pyroxenite is the dominant source lithology. Our results demonstrate that many reputed evolved low magnesian C-OIBs in fact represent primary pyroxenite melts, suggesting that many previous geological and petrological interpretations of basalts based on the single peridotite model need to be reconsidered. PMID:23676779

  3. Joint inversion of 3-D seismic, gravimetric and magnetotelluric data for sub-basalt imaging in the Faroe-Shetland Basin

    NASA Astrophysics Data System (ADS)

    Heincke, B.; Moorkamp, M.; Jegen, M.; Hobbs, R. W.

    2012-12-01

    Imaging of sub-basalt sediments with reflection seismic techniques is limited due to absorption, scattering and transmission effects and the presence of peg-leg multiples. Although many of the difficulties facing conventional seismic profiles can be overcome by recording long offset data resolution of sub-basalt sediments in seismic sections is typically still largely restricted. Therefore multi-parametric approaches in general and joint inversion strategies in particular (e.g. Colombo et al., 2008, Jordan et al., 2012) are considered as alternative to gain additional information from sub-basalt structures. Here, we combine in a 3-D joint inversion first-arrival time tomography, FTG gravity and MT data to identify the base basalt and resolve potential sediments underneath. For sub-basalt exploration the three methods complement each other such that the null space is reduced and significantly better resolved models can be obtained than would be possible by the individual methods: The seismic data gives a robust model for the supra-basalt sediments whilst the gravity field is dominated by the high density basalt and basement features. The MT on the other hand is sensitive to the conductivity in both the supra- and sub-basalt sediments. We will present preliminary individual and joint inversion result for a FTG, seismic and MT data set located in the Faroe-Shetland basin. Because the investigated area is rather large (~75 x 40 km) and the individual data sets are relatively huge, we use a joint inversion framework (see Moorkamp et al., 2011) which is designed to handle large amount of data/model parameters. This program has moreover the options to link the individual parameter models either petrophysically using fixed parameter relationships or structurally using the cross-gradient approach. The seismic data set consists of a pattern of 8 intersecting wide-angle seismic profiles with maximum offsets of up to ~24 km. The 3-D gravity data set (size :~ 30 x 30 km) is

  4. A combined basalt and peridotite perspective on 14 million years of melt generation at the Atlantis Bank segment of the Southwest Indian Ridge: Evidence for temporal changes in mantle dynamics?

    USGS Publications Warehouse

    Coogan, L.A.; Thompson, G.M.; MacLeod, C.J.; Dick, H.J.B.; Edwards, S.J.; Hosford, Scheirer A.; Barry, T.L.

    2004-01-01

    Little is known about temporal variations in melt generation and extraction at midocean ridges largely due to the paucity of sampling along flow lines. Here we present new whole-rock major and trace element data, and mineral and glass major element data, for 71 basaltic samples (lavas and dykes) and 23 peridotites from the same ridge segment (the Atlantis Bank segment of the Southwest Indian Ridge). These samples span an age range of almost 14 My and, in combination with the large amount of published data from this area, allow temporal variations in melting processes to be investigated. Basalts show systematic changes in incompatible trace element ratios with the older samples (from ???8-14 Ma) having more depleted incompatible trace element ratios than the younger ones. There is, however, no corresponding change in peridotite compositions. Peridotites come from the top of the melting column, where the extent of melting is highest, suggesting that the maximum degree of melting did not change over this interval of time. New and published Nd isotopic ratios of basalts, dykes and gabbros from this segment suggest that the average source composition has been approximately constant over this time interval. These data are most readily explained by a model in which the average source composition and temperature have not changed over the last 14 My, but the dynamics of mantle flow (active-to-passive) or melt extraction (less-to-more efficient extraction from the 'wings' of the melting column) has changed significantly. This hypothesised change in mantle dynamics occurs at roughly the same time as a change from a period of detachment faulting to 'normal' crustal accretion. We speculate that active mantle flow may impart sufficient shear stress on the base of the lithosphere to rotate the regional stress field and promote the formation of low angle normal faults. ?? 2004 Elsevier B.V. All rights reserved.

  5. Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: Review of the experimental constraints

    NASA Astrophysics Data System (ADS)

    Lambart, Sarah; Laporte, Didier; Schiano, Pierre

    2013-02-01

    , high CaO/Al2O3 ratios can also reveal the presence of pyroxenite in the source-regions. Experimental and thermodynamical observations also suggest that the interactions between pyroxenite-derived melts and host peridotites play a crucial role in the genesis of oceanic basalts by generating a wide range of pyroxenites in the upper mantle: partial melting of such secondary pyroxenites is able to reproduce the features of primitive basalts, especially their high MgO contents, and to impart, at least in some cases, the major-element signature of the original pyroxenite melt to the oceanic basalts. Finally, we highlight that the fact the very silica depleted compositions (SiO2 < 42 wt.%) and high TiO2 contents of some ocean island basalts seem to require the contribution of fluids (CO2 or H2O) through melting of either carbonated lithologies (peridotite or pyroxenite) or amphibole-rich veins.

  6. Reduction of mare basalts by sulfur loss

    USGS Publications Warehouse

    Brett, R.

    1976-01-01

    Metallic Fe content and S abundance are inversely correlated in mare basalts. Either S volatilization from the melt results in reduction of Fe2+ to Fe0 or else high S content decreases Fe0 activity in the melt, thus explaining the correlation. All considerations favor the model that metallic iron in mare basalts is due to sulfur loss. The Apollo 11 and 17 mare basalt melts were probably saturated with S at the time of eruption; the Apollo 12 and 15 basalts were probably not saturated. Non-mare rocks show a positive correlation of S abundance with metallic Fe content; it is proposed that this is due to the addition of meteoritic material having a fairly constant Fe0/S ratio. If true, metallic Fe content or S abundance in non-mare rocks provides a measure of degree of meteoritic contamination. ?? 1976.

  7. Origin of low δ26Mg basalts with EM-I component: Evidence for interaction between enriched lithosphere and carbonated asthenosphere

    NASA Astrophysics Data System (ADS)

    Tian, H.; Yang, W.; Li, S. G.; Ke, S.; Chu, Z. Y.

    2016-12-01

    Many studies have focused on the interactions between recycled materials and depleted mantle to explain the origins of EM and HIMU components (e.g., Cohen and O'Nions, 1982; White and Hofmann, 1982). However, little is known about the interactions between recycled materials and enriched mantle and the associated consequences, e.g., late recycled crustal material overprints mantle previously enriched by earlier recycling events of the crust. Recently, light Mg isotopic composition of the basalts from North China Craton (NCC) and South China Block (SCB) has been attributed to recycled carbonate metasomatism from subducted Pacific slab (Yang et al., 2012; Huang et al., 2015). If this explanation is correct, the Cenozoic basalts from Northeast (NE) China should also contain light Mg isotopic compositions. The basalts from NE China have EMI Sr-Nd-Pb isotopic features that are distinct from the NCC and SCB basalts, indicating the contribution of an enriched mantle source (Choi et al., 2006; Chu et al., 2013). Therefore, Mg isotopic compositions of the Cenozoic basalts from NE China will help to determine the interaction between recycled sedimentary carbonates and an enriched mantle. Consistent with the hypothesis, our results show that the Cenozoic basalts from Wudalianchi and Erkeshan, NE China, have homogeneous and light Mg isotopic compositions (δ26Mg =-0.57 to -0.46‰). Based on the similarity to the basalts from NCC and SCB, their light Mg isotopic feature should also be derived from carbonate metasomatism (i.e. carbonated asthenosphere). In addition to that, a question arise that why the interaction between carbonated asthenosphere and the EM-I SLCM significantly modify the trace element and Sr-Nd-Pb isotopic composition of the mantle-derived melt, but have little effect on the Mg isotopes? The possible mechanism is the interaction between low SiO2 melt and peridotite, which converts pyroxene to olivine, as reported in previous studies (e.g., Kelemen et al., 1992

  8. Platinum-Group Elements in Basalts Derived From the Icelandic Mantle Plume -Past and Present.

    NASA Astrophysics Data System (ADS)

    Momme, P.; Oskarsson, N.; Gronvold, K.; Tegner, C.; Brooks, K.; Keays, R.

    2001-12-01

    Paleogene basalts ( ~55Ma) derived from the ancestral Iceland mantle plume and extruded during continental rifting are exposed along the Blosseville Kyst in central East Greenland. These basalts comprise three intercalated series, viz: a low-Ti, high-Ti and a very high-Ti series. The two Ti-rich series are interpreted to represent continental flood basalts formed by low degrees of partial melting (degree of melting F=3-9%) while the low-Ti series are believed to have formed by higher degrees of partial melting (F:15-25%). All three of the East Greenland basalt series are enriched in the PGE, relative to normal MORB. During differentiation of the low-Ti series, Pd increase from 11 to 24 ppb whereas Pt and Ir decrease from 12 and 0.6 ppb to 3 and <0.05 ppb respectively. The primitive basalts (molar Mg#60) of the dominant high-Ti series contain ~6-10 ppb Pd, ~7-10 ppb Pt and ~0.2 ppb Ir whereas the most evolved basalts (Mg#43) contain 25 ppb Pd, 5 ppb Pt and <0.05 ppb Ir. The PGE-rich nature of these basalts is surprising because low degree partial melts are generally S-saturated and hence strongly depleted in the PGE (cf, Keays, 1995). However, our data indicates that all of the East Greenland magmas were S-undersaturated and as they underwent differentiation, Pd behaved incompatibly while Ir and Pt behaved compatibly. Primitive Holocene Icelandic olivine tholeiites contain 120 ppm Cu, 6 ppb Pd, 4 ppb Pt and 0.2 ppb Ir while their picritic counterparts contain 74 ppm Cu, 17 ppb Pd, 7 ppb Pt and 0.3 ppb Ir. Both the olivine tholeiites and the picrites are believed to have formed by high degrees of partial melting (15-25%) which would have exhausted all of the sulphides in the mantle source region and produced S-undersaturated magmas. In Icelandic samples with 10-14wt% MgO, Cu and the PGEs vary systematically between the primitive picrite and olivine tholeiite compositions given above i.e there is an inverse correlation between Cu and the PGEs. This is best explained

  9. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks.

    NASA Technical Reports Server (NTRS)

    Tera, F.; Wasserburg, G. J.

    1972-01-01

    The isotopic composition of Pb and the elemental concentration of U, Th and Pb were measured on 'total' rock samples 14053, 14073 and 14310 and on mineral separates of 14310 and 14053. These are the first Pb-U isochrons obtained for lunar basalts and indicate a reasonable solution to the previous discrepancy between the different methods of 'absolute' age determination. The resulting U-Pb isochron ages are compatible with the Rb-Sr and K-Ar ages on the same rocks. However, it is not possible to establish a precise time of 'crystallization' from the Pb-U data because of the small angle of intersection between the linear arrays and the concordia curve. These data show that total rock model ages do not in general yield crystallization ages. The data on 14310 and 14053 show that these rocks were formed containing a highly radiogenic initial lead which accounts for the excessively high total rock model ages by the U-Th-Pb method. The data prove that at the time of extrusion of some basalts, unsupported lead with extremely high Pb-207/Pb-206 ratios was added to the lunar surface.

  10. Chlorine in Lunar Basalts

    NASA Technical Reports Server (NTRS)

    Barnes, J. J.; Anand, M.; Franchi, I. A.

    2017-01-01

    In the context of the lunar magma ocean (LMO) model, it is anticipated that chlorine (and other volatiles) should have been concentrated in the late-stage LMO residual melts (i.e., the dregs enriched in incompatible elements such as K, REEs, and P, collectively called KREEP, and in its primitive form - urKREEP, [1]), given its incompatibility in mafic minerals like olivine and pyroxene, which were the dominant phases that crystallized early in the cumulate pile of the LMO (e.g., [2]). When compared to chondritic meteorites and terrestrial rocks (e.g., [3-4]), lunar samples often display heavy chlorine isotope compositions [5-9]. Boyce et al. [8] found a correlation between delta Cl-37 (sub Ap) and bulk-rock incompatible trace elements (ITEs) in lunar basalts, and used this to propose that early degassing of Cl (likely as metal chlorides) from the LMO led to progressive enrichment in remaining LMO melt in Cl-37over Cl-35- the early degassing model. Barnes et al. [9] suggested that relatively late degassing of chlorine from urKREEP (to yield delta Cl-37 (sub urKREEP greater than +25 per mille) followed by variable mixing between KREEPy melts and mantle cumulates (characterized by delta Cl-370 per mille) could explain the majority of Cl isotope data from igneous lunar samples. In order to better understand the processes involved in giving rise to the heavy chlorine isotope compositions of lunar samples, we have performed an in situ study of chlorine isotopes and abundances of volatiles in lunar apatite from a diverse suite of lunar basalts spanning a range of geochemical types.

  11. The Origin of Basalt and Cause of Melting Beneath East Antarctica as Revealed by the Southernmost Volcanoes on Earth

    NASA Astrophysics Data System (ADS)

    Reindel, J. L.; Panter, K. S.; Smellie, J. L.; McIntosh, W. C.

    2017-12-01

    Mt. Early and Sheridan Bluff are two basaltic monogenetic volcanoes located at 87° South latitude at the head of the Scott Glacier. These Early Miocene volcanoes lie 800 km from any other volcano and 200 km inland from the shoulder of the West Antarctic Rift System (WARS), which is the foci of most Cenozoic alkaline volcanism in Antarctica. Preliminary 40Ar/39Ar dates suggest that Mt. Early is older than previously determined and closer in age to Sheridan Bluff ( 19 Ma). Petrography, mineral chemistry and whole rock major and trace element concentrations are used to characterize the basalts and to determine whether they are genetically related to mafic volcanism in the WARS. The basalts are porphyritic with phenocrysts of olivine (Fo 58-84%), plagioclase (An 48-67%) ± clinopyroxene (Wo 43-48%). Whole rock MgO range from 10 to 4 wt.% and have restricted SiO2 (48 to 50 wt.%) contents. The basalts vary from alkaline (up to 6 wt.% Ne-normative) to subalkaline (up to 6 wt.% Hy-normative). The alkaline basalts that occur at both Mt. Early and Sheridan Bluff are more strongly enriched in incompatible elements (La 33-49 ppm, Ba 270-484 ppm, Sr 712-1009 ppm), have LaN/YbN ratios >10 and show prominent Pb negative anomalies with only slight K negative anomalies on primitive mantle normalized, multi-element diagrams. Subalkaline basalts (only at Sheridan Bluff) have lower concentrations of incompatible elements (La 14-16 ppm, Ba 110-144 ppm, and Sr 358-380 ppm), LaN/YbN ratios <5, and lack Pb and K negative anomalies but show minor P negative anomalies. The generation of both alkaline and subalkaline basalts is likely controlled by changes in the degree of partial melting of a compositionally similar mantle source. However, it is difficult to explain what caused the change since it would have to occur suddenly to account for the coexistence of both compositional types at Sheridan Bluff. Extension related to the WARS may be the cause, however, an alternative mechanism that

  12. Mare basalt petrogenesis - A review of experimental studies. [lunar rock analyses

    NASA Technical Reports Server (NTRS)

    Kesson, S. E.; Lindsley, D. H.

    1976-01-01

    Experimental results relevant to the fundamental question of the origin of mare basalts are examined with particular reference to guidelines for an appropriate evaluation of experiments. The petrogenesis of mare basalts remains a controversial subject as no petrogenetic scenario has yet been able to satisfy all the geochemical and geophysical constraints. Several generalizations hold true if one accepts that high-pressure equilibria provide some useful but limited information on mare source regions in the lunar interior. Petrogenesis of lowand high-Ti suites is identified. If assimilative processes are involved in the petrogenesis of the high-Ti suite, the high-pressure experiments on the resultant hybrid liquids have little bearing on their origins.

  13. Seismic wave propagation through an extrusive basalt sequence

    NASA Astrophysics Data System (ADS)

    Sanford, Oliver; Hobbs, Richard; Brown, Richard; Schofield, Nick

    2016-04-01

    Layers of basalt flows within sedimentary successions (e.g. in the Faeroe-Shetland Basin) cause complex scattering and attenuation of seismic waves during seismic exploration surveys. Extrusive basaltic sequences are highly heterogeneous and contain strong impedance contrasts between higher velocity crystalline flow cores (˜6 km s-1) and the lower velocity fragmented and weathered flow crusts (3-4 km s-1). Typically, the refracted wave from the basaltic layer is used to build a velocity model by tomography. This velocity model is then used to aid processing of the reflection data where direct determination of velocity is ambiguous, or as a starting point for full waveform inversion, for example. The model may also be used as part of assessing drilling risk of potential wells, as it is believed to constrain the total thickness of the sequence. In heterogeneous media, where the scatter size is of the order of the seismic wavelength or larger, scattering preferentially traps the seismic energy in the low velocity regions. This causes a build-up of energy that is guided along the low velocity layers. This has implications for the interpretation of the observed first arrival of the seismic wave, which may be a biased towards the low velocity regions. This will then lead to an underestimate of the velocity structure and hence the thickness of the basalt, with implications for the drilling of wells hoping to penetrate through the base of the basalts in search of hydrocarbons. Using 2-D acoustic finite difference modelling of the guided wave through a simple layered basalt sequence, we consider the relative importance of different parameters of the basalt on the seismic energy propagating through the layers. These include the proportion of high to low velocity material, the number of layers, their thickness and the roughness of the interfaces between the layers. We observe a non-linear relationship between the ratio of high to low velocity layers and the apparent velocity

  14. Chemical magnetization when determining Thellier paleointensity experiments in oceanic basalts

    NASA Astrophysics Data System (ADS)

    Tselebrovskiy, Alexey; Maksimochkin, Valery

    2017-04-01

    The natural remanent magnetization (NRM) of oceanic basalts selected in the rift zones of the Mid-Atlantic Ridge (MAR) and the Red Sea has been explored. Laboratory simulation shows that the thermoremanent magnetization and chemical remanent magnetization (CRM) in oceanic basalts may be separated by using Tellier-Coe experiment. It was found that the rate of CRM destruction is about four times lower than the rate of the partial thermoremanent magnetization formation in Thellier cycles. The blocking temperatures spectrum of chemical component shifted toward higher temperatures in comparison with the spectrum of primary thermoremanent magnetization. It was revealed that the contribution of the chemical components in the NRM increases with the age of oceanic basalts determined with the analysis of the anomalous geomagnetic field (AGF) and spreading theory. CRM is less than 10% at the basalts aged 0.2 million years, less than 50% at basalts aged 0.35 million years, from 60 to 80% at basalts aged 1 million years [1]. Geomagnetic field paleointensity (Hpl) has been determined through the remanent magnetization of basalt samples of different ages related to Brunhes, Matuyama and Gauss periods of the geomagnetic field polarity. The value of the Hpl determined by basalts of the southern segment of MAR is ranged from 17.5 to 42.5 A/m, by the Reykjanes Ridge basalts — from 20.3 to 44 A/m, by the Bouvet Ridge basalts — from 21.7 to 34.1 A/m. VADM values calculated from these data are in good agreement with the international paleointensity database [2] and PISO-1500 model [3]. Literature 1. Maksimochkin V., Tselebrovskiy A., (2015) The influence of the chemical magnetization of oceanic basalts on determining the geomagnetic field paleointensity by the thellier method, moscow university physics bulletin, 70(6):566-576, 2. Perrin, M., E. Schnepp, and V. Shcherbakov (1998), Update of the paleointensity database, Eos Trans. AGU, 79, 198. 3. Channell JET, Xuan C, Hodell DA (2009

  15. Palagonitic Mars: A Basalt Centric View of Surface Composition and Aqueous Alteration

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Graff, T. G.; Ming, D. W.; Bell, J. F., III; Le, L.; Mertzman, S. A.; Christensen, P. R.

    2004-01-01

    Palagonitic tephra from certain areas on Mauna Kea Volcano (Hawaii) are well-established spectral and magnetic analogues of high-albedo regions on Mars. By definition, palagonite is "a yellow or orange isotropic mineraloid formed by hydration and devitrification of basaltic glass." The yellow to orange pigment is nanometer-sized ferric oxide particles (np-Ox) dispersed throughout the hydrated basaltic glass matrix. The hydration state of the np-Ox particles and the matrix is not known, but the best Martian spectral analogues contain allophane-like materials and not crystalline phyllosilicates. Martian low-albedo regions are also characterized by a palagonite-like ferric absorption edge, but, unlike the highalbedo regions, they also show evidence for absorption by ferrous iron. Thermal emission spectra (TES) obtained by the Mars Global Surveyor Thermal Emission Spectrometer suggest that basaltic (surface Type 1) and andesitic (surface Type 2) volcanic compositions preferentially occur in southern (Syrtis Major) and northern (Acidalia) hemispheres, respectively. The absence of a ferric-bearing component in the modeling of TES spectra is in apparent conflict with VNIR spectra of Martian dark regions, as discussed above. However, the andesitic spectra have also been interpreted as oxidized basalt using phyllosilicates instead of high-SiO2 glass as endmembers in the spectral deconvolution of surface Type 2 TES spectra. We show here that laboratory VNIR and TES spectra of rinds on basaltic rocks are spectral endmembers that provide a consistent explanation for both VNIR and TES data of Martian dark regions.

  16. Ultramafic inclusions and host alkali olivine basalts of the southern coastal plain of the Red Sea, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Ghent, Edward D.; Coleman, Robert Griffin; Hadley, Donald G.

    1979-01-01

    A variety of mafic and ultramafic inclusions occur within the pyroclastic components of the Al Birk basalt, erupted on the southern Red Sea coastal plain of Saudi Arabia from Pleistocene time to the present. Depleted harzburgites are the only inclusions contained within the basalts that were erupted through Miocene oceanic crust (15 km thick) in the vicinity of Jizan, whereas to the north in the vicinity of Al Birk, alkali basalts that were erupted through a thicker Precambrian crust (48 km thick) contain mixtures of harzburgites, cumulate gabbro, and websterite inclusions accompanied by large (> 2 cm) megacrysts of glassy alumina-rich clinopyroxene, plagioclase, and spinel. Microprobe analyses of individual minerals from the harzburgites, websterites, and cumulate gabbros reveal variations in composition that can be related to a complex mantle history during the evolution of the alkali basalts. Clinopyroxene and plagioclase megacrysts may represent early phases that crystallized from the alkali olivine basalt magma at depths less than 35 km. Layered websterites and gabbros with cumulate plagioclase and clinopyroxene may represent continuing crystallization of the alkali olivine basalt magma in the lower crust when basaltic magma was not rapidly ascending. It is significant that the megacrysts and cumulate inclusions apparently form only where the magmas have traversed the Precambrian crust, whereas the harzburgite-bearing basalts that penetrated a much thinner Miocene oceanic crust reveal no evidence of mantle fractionation. These alkali olivine basalts and their contained inclusions are related in time to present-day rifting in the Red Sea axial trough. The onshore, deep-seated, undersaturated magmas are separated from the shallow Red Sea rift subalkaline basalts by only 170 km. The contemporaneity of alkaline olivine and subalkaline basalts requires that they must relate directly to the separation of the Arabian plate from the African plate.

  17. Petrological and Geochemical characterization of central Chihuahua basalts: a possible local sign of rifting activity

    NASA Astrophysics Data System (ADS)

    Espejel-Garcia, V. V.; Garcia-Rascon, M.; Villalobos-Aragon, A.; Morton-Bermea, O.

    2012-12-01

    The central part of the mexican state, Chihuahua, is the oriental border of the Sierra Madre Occidental (silicic large igneous province), which consist of series of ignimbrites divided into two volcanic groups of andesites and rhyolites. In the central region of Chihuahua, the volcanic rocks are now part of the Basin and Range, allowing the presence of mafic rocks in the lower areas. The study area is located approximately 200 km to the NW of Chihuahua city near to La Guajolota town, in the Namiquipa County. There are at least 5 outcrops of basalts to the west of the road, named Puerto de Lopez, Malpaises, El Tascate, Quebrada Honda, and Carrizalio, respectively. These outcrops have only been previously described by the Mexican Geologic Survey (SGM) as thin basaltic flows, with vesicles filled with quartz, and phenocrystals of labradorite, andesine, oligoclase and olivine. Petrologically, the basalts present different textures, from small phenocrysts of plagioclase in a very fine matrix to large, zoned and sometimes broken phenocrysts of plagioclase in a coarser matrix. All samples have olivine in an advanced state of alteration, iddingsite. The geochemical analyses report that these basaltic flows contain characteristics of rift basalts. The rocks have a normative olivine values from 5.78 to 27.26 and nepheline values from 0 to 2.34. In the TAS diagram the samples straddle the join between basalt and trachy-basalt, reflecting a high K2O content. The Mg# average is 0.297, a value that suggests that the basalts do not come from a primitive magma. The basalts have high values of Ba (945-1334 ppm), Cu (54-147 ppm), and Zn (123-615 ppm). The contents of Rb (23-57 ppm), Sr (659-810 ppm), Y (26-33 ppm), Zr (148-217 ppm) and Cr (79-98 ppm) are characteristics of rift basalts. Using discrimination diagrams, the basalts plot in the field of within plate, supporting the rifting origin. Outcrops of other basalts, at about 80 to 100 km to the east of the study area, Lomas El

  18. The solubility of sulfur in high-TiO2 mare basalts

    NASA Technical Reports Server (NTRS)

    Danckwerth, P. A.; Hess, P. C.; Rutherford, M. J.

    1979-01-01

    The present paper deals with an experimental investigation of the solubility of sulfur of the high-TiO2 mare basalt 74275 at 1 atm, 1250 C. The data indicate that at saturation, 74275 is capable of dissolving 3400 ppm sulfur at 10 to 15 degrees below its liquidus. The analyzed samples of 74275 show sulfur contents of 1650 ppm S, which indicates that 74275 was 50% undersaturated at the time of eruption.

  19. Some effects of gas adsorption on the high temperature volatile release behavior of a terrestrial basalt, tektite and lunar soil

    NASA Technical Reports Server (NTRS)

    Graham, D. G.; Muenow, D. W.; Gibson, E. K., Jr.

    1979-01-01

    Mass pyrograms obtained from high-temperature, mass psectrometric pyrolysis of a glassy theoleiitic submarine basalt and a tektite, ground in air to less than 64 microns, have shown N2 and SO release patterns very similar to those from the pyrolysis of mature lunar soil fines. The N2 and CO release behavior from the terrestrial samples reproduces the biomodal, high-temperature (approximately 700 and 1050 C) features from the lunar samples. Unground portions of the basalt and tektite show no release of N2 and CO during pyrolysis. Grinding also alters the release behavior and absolute amounts of H2O and CO2. It is suggested that adsorption of atmospheric gases in addition to solar wind implantation of ions may account for the wide range of values in previously reported concentrations of carbon and nitrogen from lunar fines.

  20. Relationships among basaltic lunar meteorites

    NASA Technical Reports Server (NTRS)

    Lindstrom, Marilyn M.

    1991-01-01

    During the past two years four meteorites of dominantly mare basalt composition were identified in the Japanese and US Antarctic collections. Basalts represent a much higher proportion of the lunar meteorites than is expected from photogeologic mapping of mare and highland regions. Also, the basaltic lunar meteorites are all described as VLT mare basalt, which is a relatively uncommon type among returned lunar samples. The significance of the basaltic meteorites to the understanding of the lunar crust depends on the evaluation of possible relationships among the individual meteorites. None of the specimens are paired meteorites. They differ from each other in petrography and composition. It is important to determine whether they might be paired ejecta which were ejected from the same mare region by the same impact. The question of paired ejecta must be addressed using a combination of exposure histories and petrographic/compositional characteristics. It is possible that the basaltic lunar meteorites are paired ejecta from the same region of the Moon. However, the relationships among them are more complicated than the basaltic breccias being simply brecciated mare gabbros.

  1. A glass spherule of questionable impact origin from the Apollo 15 landing site: Unique target mare basalt

    USGS Publications Warehouse

    Ryder, G.; Delano, J.W.; Warren, P.H.; Kallemeyn, G.W.; Dalrymple, G.B.

    1996-01-01

    A 6 mm-diameter dark spherule, 15434,28, from the regolith on the Apennine Front at the Apollo 15 landing site has a homogeneous glass interior with a 200 ??m-thick rind of devitrified or crystallized melt. The rind contains abundant small fragments of Apollo 15 olivine-normative mare basalt and rare volcanic Apollo 15 green glass. The glass interior of the spherule has the chemical composition, including a high FeO content and high CaO/Al2O3, of a mare basalt. Whereas the major element and Sc, Ni, and Co abundances are similar to those of low-Ti mare basalts, the incompatible elements and Sr abundances are similar to those of high-Ti mare basalts. The relative abundance patterns of the incompatible trace elements are distinct from any other lunar mare basalts or KREEP; among these distinctions are a much steeper slope of the heavy rare earth elements. The 15434,28 glass has abundances of the volatile element Zn consistent with both impact glasses and crystalline mare basalts, but much lower than in glasses of mare volcanic origin. The glass contains siderophile elements such as Ir in abundances only slightly higher than accepted lunar indigenous levels, and some, such as Au, are just below such upper limits. The age of the glass, determined by the 40Ar/39Ar laser incremental heating technique, is 1647 ?? 11 Ma (2 ??); it is expressed as an age spectrum of seventeen steps over 96% of the 39Ar released, unusual for an impact glass. Trapped argon is negligible. The undamaged nature of the sphere demonstrates that it must have spent most of its life buried in regolith; 38Ar cosmic ray exposure data suggest that it was buried at less than 2m but more than a few centimeters if a single depth is appropriate. That the spherule solidified to a glass is surprising; for such a mare composition, cooling at about 50??C s-1 is required to avoid crystallization, and barely attainable in such a large spherule. The low volatile abundances, slightly high siderophile abundances, and

  2. Mineralogy of young lunar mare basalts: Assessment of temporal and spatial heterogeneity using M3 data from Chandrayaan-1

    NASA Astrophysics Data System (ADS)

    Varatharajan, Indhu; Srivastava, Neeraj; Murty, Sripada V. S.

    2014-07-01

    A comparative assessment of the mineralogy of young basalts (∼1.2 Ga to ∼2.8 Ga) from the western nearside, Moscoviense basin, and the Orientale basin of the Moon has been made using Level 2 Moon Mineralogy Mapper (M3) data from the Chandrayaan-1 mission. Spectral data characteristics of the individual units have been generated from fresh small craters to minimize the complications due to space weathering. Representative spectra for individual units and the derived spectral parameters (band centers and integrated band depth ratio) have been used to study composition of these young basalts. A modified approach of Gaffey et al. (Gaffey, M.J., Cloutis, E.A., Kelley, M.S., Reed, K.L. [2002]. Mineralogy of asteroids. In: Asteroids III. The University of Arizona Press, Tucson, pp. 183-204) (for olivine-pyroxene mixtures) and the methodology of Adams (Adams, J.B. [1974]. J. Geophys. Res. 79, 4829-4836. http://dx.doi.org/10.1029/JB079i032p04829) (for interpreting pyroxene type) have been used to improve our understanding of the spectral behavior of these basalts. Most of the young basalts of Oceanus Procellarum are characterized by abundant olivines and they show complex volcanic history. Vast exposures of olivine concentrated units having higher abundance of olivine content than high-Ca pyroxenes are emplaced in the northern Oceanus Procellarum region. Mostly, they show distinct stratigraphic gradation with the immediately underlying units of relatively lower olivine content. The Moscoviense unit shows signatures of Fe-rich glasses along with clinopyroxenes. The basalts of Orientale basin are typically devoid of olivine and are rich in high-Ca pyroxene. Thus, mineralogy of these mare basalts which erupted during the late stage volcanism vary across the Moon’s surface; however, broader observations reveal apparently higher FeO content in the younger basalts of western nearside and Orientale region.

  3. Petrological constraints on the high-Mg basalts from Capo Marargiu (Sardinia, Italy): Evidence of cryptic amphibole fractionation in polybaric environments

    NASA Astrophysics Data System (ADS)

    Tecchiato, Vanni; Gaeta, Mario; Mollo, Silvio; Scarlato, Piergiorgio; Bachmann, Olivier; Perinelli, Cristina

    2018-01-01

    This study deals with the textural and compositional characteristics of the calc-alkaline stratigraphic sequence from Capo Marargiu Volcanic District (CMVD; Sardinia island, Italy). The area is dominated by basaltic to intermediate hypabyssal (dikes and sills) and volcanic rocks (lava flows and pyroclastic deposits) emplaced during the Oligo-Miocene orogenic magmatism of Sardinia. Interestingly, a basaltic andesitic dome hosts dark-grey, crystal-rich enclaves containing up 50% of millimetre- to centimetre-sized clinopyroxene and amphibole crystals. This mineral assemblage is in equilibrium with a high-Mg basalt recognised as the parental magma of the entire stratigraphic succession at CMVD. Analogously, centimetre-sized clots of medium- and coarse-grained amphibole + plagioclase crystals are entrapped in andesitic dikes that ultimately intrude the stratigraphic sequence. Amphibole-plagioclase cosaturation occurs at equilibrium with a differentiated basaltic andesite. Major and trace element modelling indicates that the evolutionary path of magma is controlled by a two-step process driven by early olivine + clinopyroxene and late amphibole + plagioclase fractionation. In this context, enclaves represent parts of a cumulate horizon segregated at the early stage of differentiation of the precursory high-Mg basalt. This is denoted by i) resorption effects and sharp transitions between Mg-rich and Mg-poor clinopyroxenes, indicative of pervasive dissolution phenomena followed by crystal re-equilibration and overgrowth, and ii) reaction minerals found in amphibole coronas formed at the interface with more differentiated melts infiltrating within the cumulate horizon, and carrying the crystal-rich material with them upon eruption. Coherently, the mineral chemistry and phase relations of enclaves indicate crystallisation in a high-temperature, high-pressure environment under water-rich conditions. On the other hand, the upward migration and subsequent fractionation of the

  4. Stability of carbonated basaltic melt at the base of the Earth's upper mantle

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Litasov, K.; Ohtani, E.; Suzuki, A.

    2006-12-01

    Seismological observations of low velocity zones (LVZ) at the top of the 410-km discontinuity reveal possible existence of dense melt at this boundary (e.g. Reveanugh and Sipkin, 1994). Density measurements of anhydrous basaltic melts indicate that it is denser than surrounding mantle near 410-km depth (Ohtani and Maeda, 2001). However, melting temperature of peridotite is much higher than about 1400°C, estimated at 410-km depth. It has been shown recently that hydrous basaltic melt containing up to 2 wt.% H2O is denser than peridotite atop 410-km and therefore can be accumulated at the base of the upper mantle (Sakamaki et al., 2006). CO2 is another major volatile component in the mantle and it could be also important for explanation of LVZ near 410 km. In the present study, we have measured the density of carbonated basaltic melt at high pressures and high temperatures and discussed its possible stability at the base of the upper mantle. The density of the melt was determined using sink/float technique. The starting material was synthetic MORB glass. 5 and 10 wt.% CO2 was added to the glass as CaCO3 and Na2CO3, adjusting to proportions of related oxides. Experiments were carried out at 16-22 GPa and 2200-2300°C using a multianvil apparatus at Tohoku University, Japan. We observed neutral buoyancy of diamond density marker in MORB + 5 wt.% CO2 at 18 GPa and 2300°C, whereas, diamond was completely dissolved in the carbonated MORB melt containing 10 wt.% CO2 in 0.5-1 minute experiments. Based on the buoyancy test, the density of the carbonated basaltic melt, containing 5 wt.% CO2, is 3.56 g/cm3 at 18 GPa and 2300°C using an equation of state of diamond. To calculate the bulk modulus we assume that the pressure derivative of the isothermal bulk modulus is the same as that of the dry MORB melt, dKT/dP=5.0 and zero-pressure partial molar volume of CO2 is 32 cm3/mol (based on low-pressure experiments on carbonated basaltic melts and carbonatites, e.g. Dobson et al

  5. Innovative insertion material of LiAl 1/4Ni 3/4O 2 ( R- m) for lithium-ion (shuttlecock) batteries

    NASA Astrophysics Data System (ADS)

    Ohzuku, Tsutomu; Yanagawa, Takayuki; Kouguchi, Masaru; Ueda, Atsushi

    We report an innovative insertion material of LiAl 1/4Ni 3/4O 2 ( R- m) which is a solid solution of LiNiO 2 ( R— m) and α-LiAlO 2 ( R— m). LiAl 1/4Ni 3/4O 2 (interlayer distance: ~4.75 Å) shows an overcharge-resistant character due to the formation of an insulator of 3/4Li 1/4-Al 1/4Ni 3/4O 2 having ~ 4.8 Å of interlayer distance. Cycle tests of an Li/LiAl 1/4Ni 3/4O 2 cell between 2.5 and 4.5 V show no noticeable loss in rechargeable capacity (~ 150 mAh g -1). The thermal behavior of Li 1 - xAl 1/4Ni 3/4O 2 (0 ≤ x <3/4) is also examined by differential scanning calorimetry and shows that the exothermic reaction of Li 1 - xAl 1/4Ni 3/4O 2 with electrolyte is remarkably suppressed even for the fully charged state when compared with that of Li 1 - xNiO 2. From these results we discuss on the possibility of designing reliable high-energy, high-volume, lithium-ion batteries.

  6. Basalt fiber reinforced polymer composites: Processing and properties

    NASA Astrophysics Data System (ADS)

    Liu, Qiang

    A high efficiency rig was designed and built for in-plane permeability measurement of fabric materials. A new data derivation procedure to acquire the flow fluid pattern in the experiment was developed. The measurement results of the in-plane permeability for basalt twill 31 fabric material showed that a high correlation exists between the two principal permeability values for this fabric at 35% fiber volume fraction. This may be the most important scientific contribution made in this thesis. The results from radial measurements corresponded quite well with those from Unidirectional (UD) measurements, which is a well-established technique. No significant differences in mechanical properties were found between basalt fabric reinforced polymer composites and glass composites reinforced by a fabric of similar weave pattern. Aging results indicate that the interfacial region in basalt composites may be more vulnerable to environmental damage than that in glass composites. However, the basalt/epoxy interface may have been more durable than the glass/epoxy interface in tension-tension fatigue because the basalt composites have significantly longer fatigue life. In this thesis, chapter I reviews the literature on fiber reinforced polymer composites, with concentration on permeability measurement, mechanical properties and durability. Chapter II discusses the design of the new rig for in-plane permeability measurement, the new derivation procedure for monitoring of the fluid flow pattern, and the permeability measurement results. Chapter III compares the mechanical properties and durability between basalt fiber and glass fiber reinforced polymer composites. Lastly, chapter IV gives some suggestions and recommendations for future work.

  7. An Apollo 15 Mare Basalt Fragment and Lunar Mare Provinces

    NASA Technical Reports Server (NTRS)

    Ryder, Graham; Burling, Trina Cox

    1996-01-01

    Lunar sample 15474,4 is a tiny fragment of olivine-augite vitrophyre that is a mare basalt. Although petroraphically distinct from all other Apollo 15 samples, it has been ignored since its first brief description. Our new petrographic and mineral chemical data show that the olivines and pyroxenes are distinct from those in other basalts. The basalt cooled and solidified extremely rapidly; some of the olivine might be cumulate or crystallized prior to extrusion. Bulk-chemical data show that the sample is probably similar to an evolved Apollo 15 olivine-normative basalt in major elements but is distinct in its rare earth element pattern. Its chemical composition and petrography both show that 15474,4 cannot be derived from other Apollo 15 mare basalts by shallow-level crystal fractionation. It represents a distinct extrusion of magma. Nonetheless, the chemical features that 15474,4 has in common with other Apollo 15 mare basalts, including the high FeO/Sc, the general similarity of the rare earth element pattern, and the common (and chondritic) TiO2/Sm ratio, emphasize the concept of a geochemical province at the Apollo 15 site that is distinct from basalts and provinces elsewhere. In making a consistent picture for the derivation of all of the Apollo 15 basalts, both the commonalities and the differences among the basalts must be explained. The Apollo 15 commonalities and differences suggest that the sources must have consisted of major silicate phases with the same composition but with varied amounts of a magma trapped from a contemporary magma ocean. They probably had a high olivine/pyroxene ratio and underwent small and reasonably consistent degrees of partial melting to produce the basalts. These inferences may be inconsistent with models that suggest greatly different depths of melting among basalts, primitive sources for the green glasses, or extensive olivine fractionation during ascent. An integrated approach to lunar mare provinces, of which the Apollo 15

  8. Os isotope systematics in ocean island basalts

    NASA Astrophysics Data System (ADS)

    Reisberg, Laurie; Zindler, Alan; Marcantonio, Franco; White, William; Wyman, Derek; Weaver, Barry

    1993-12-01

    New Re-Os isotopic results for Os-poor basalts from St. Helena, the Comores, Samoa, Pitcairn and Kerguelen dramatically expand the known range of initial Os-186/Os-187 ratios in Ocean Island Basalts (OIBs) to values as high as 1.7. In contrast to the Os isotopic uniformity of Os-rich basalts from the HIMU islands of Tubuai and Mangaia found by Hauri and Hart, our values for St. Helena span most of the known range of Os isotopic variability in oceanic basalts (initial O-187/Os-186 ranges from 1.2 to 1.7). Generation of such radiogenic Os in the mantle requires melting of source materials that contain large proportions of recycled oceanic crust. The very low Os concentrations of most of the basalts analyzed here, however, leave them susceptible to modification via interaction with materials containing radiogenic Os in the near-surface environment. Thus the high Os-186/Os-187 ratios may result from assimilation of radiogenic Os-rich marine sediments, such as Mn oxides, within the volcanic piles traversed by these magmas en route to the surface. Furthermore, the Os isotopic signatures of Os-rich, olivine-laden OIBs may reflect the accumulation of lithospheric olivine, rather than simply their mantle source characteristics. The extent to which these processes alter the view of the mantle obtained via study of Re-Os systematics in oceanic basalts is uncertain. These effects must be quantified before Re-Os systematics in OIBs can be used with confidence to investigate the nature of mantle heterogeneity and its causes.

  9. Are flood basalt eruptions monogenetic or polygenetic?

    NASA Astrophysics Data System (ADS)

    Sheth, Hetu C.; Cañón-Tapia, Edgardo

    2015-11-01

    A fundamental classification of volcanoes divides them into "monogenetic" and "polygenetic." We discuss whether flood basalt fields, the largest volcanic provinces, are monogenetic or polygenetic. A polygenetic volcano, whether a shield volcano or a stratovolcano, erupts from the same dominant conduit for millions of years (excepting volumetrically small flank eruptions). A flood basalt province, built from different eruptive fissures dispersed over wide areas, can be considered a polygenetic volcano without any dominant vent. However, in the same characteristic, a flood basalt province resembles a monogenetic volcanic field, with only the difference that individual eruptions in the latter are much smaller. This leads to the question how a flood basalt province can be two very different phenomena at the same time. Individual flood basalt eruptions have previously been considered monogenetic, contrasted by only their high magma output (and lava fluidity) with typical "small-volume monogenetic" volcanoes. Field data from Hawaiian shield volcanoes, Iceland, and the Deccan Traps show that whereas many feeder dykes were single magma injections, and the eruptions can be considered "large monogenetic" eruptions, multiple dykes are equally abundant. They indicate that the same dyke fissure repeatedly transported separate magma batches, feeding an eruption which was thus polygenetic by even the restricted definition (the same magma conduit). This recognition helps in understanding the volcanological, stratigraphic, and geochemical complexity of flood basalts. The need for clear concepts and terminology is, however, strong. We give reasons for replacing "monogenetic volcanic fields" with "diffuse volcanic fields" and for dropping the term "polygenetic" and describing such volcanoes simply and specifically as "shield volcanoes," "stratovolcanoes," and "flood basalt fields."

  10. Basalt-Limestone and Andesite-Limestone Interaction in the Arc Crust - Implications for Volcanic Degassing of CO2

    NASA Astrophysics Data System (ADS)

    Carter, L. B.; Dasgupta, R.

    2014-12-01

    Volcanically emitted CO2 is generally mantle-derived, but high degassing rates at some arcs (e.g. Merapi [1] and Colli Albani Volcanic District [2]) are thought to be affected by magma-carbonate interaction in the upper plate. However, the effects of depth, temperature, and composition on this process are poorly known. We experimentally simulated magma (50%)-limestone (50%) wallrock interactions at 0.5-1.0 GPa, 1100-1200 °C using pure calcite and a hydrous (~3-5 wt.% H2O) melt (basalt, andesite, or dacite). At 1.0 GPa, 1200 °C starting melts are superliquidus, whereas in the presence of calcite, Ca-rich cpx ± Ca-scapolite are produced. With increasing T, basalt-calcite interaction causes the melt, on a volatile-free basis, to become silica-poor and Ca-rich with alumina decreasing as cpx becomes more CaTs-rich. The same trend is seen with all starting melt compositions as P decreases at a constant T (1200 °C), producing melts similar to ultracalcic (CaO/Al2O3>>1) melt inclusions found in arc settings. Shifting from basalt to andesite has little effect on SiO2 and CaO of the reacted melt (e.g. 37 wt.% SiO2, 42 wt.% CaO at 0.5 GPa, 1200 °C), whereas Al2O3 of andesite-derived reacted melt is lower, likely a result of lower alumina in the starting andesite. Wall-rock calcite consumption is observed to increase with increasing T, decreasing P, and increasing melt XSiO2. At 0.5 GPa between 1100 and 1200 °C, our basalt experiments yield carbonate assimilation from 22 to 48 wt.%. This decreases to 20 wt.% at 1.0 GPa, 1200 °C, whereas an andesitic composition assimilates 59 to 52 wt.% from 0.5 to 1.0 GPa at 1200 °C. The higher assimilation in andesite-added runs at high-T is because of lower silicate liquidus as evidenced by lower modal proportion or absence of cpx ± scapolite. Using a magma flux rate estimated for Mt. Vesuvius [3], we obtain a CO2 outflux for a single such volcano experiencing arc magma-calcite reaction [4] of at least 2-4% of the present

  11. Lu-Hf CONSTRAINTS ON THE EVOLUTION OF LUNAR BASALTS.

    USGS Publications Warehouse

    Fujimaki, Hirokazu; Tatsumoto, Mistunobu

    1984-01-01

    The authors show that a cumulate-remelting model best explains the recently acquired data on the Lu-Hf systematics of lunar mare basalts. The authors model is first constructed using the Lu and Hf concentration data and it is then further strengthened by the Hf isotopic evidence. The authors also show that the similarity of MgO/FeO ratios and the Cr//2O//3 contents between high-Ti and low-Ti basalts, which have been given significance by A. E. Ringwood and D. H. Green are not important constraints for lunar basalt petrogenesis. The authors principal aim is to revive the remelting model for further consideration with the powerful constraints of Lu-Hf systematics of lunar basalts.

  12. Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth

    NASA Astrophysics Data System (ADS)

    Cox, Grant M.; Halverson, Galen P.; Stevenson, Ross K.; Vokaty, Michelle; Poirier, André; Kunzmann, Marcus; Li, Zheng-Xiang; Denyszyn, Steven W.; Strauss, Justin V.; Macdonald, Francis A.

    2016-07-01

    Atmospheric CO2 levels and global climate are regulated on geological timescales by the silicate weathering feedback. However, this thermostat has failed multiple times in Earth's history, most spectacularly during the Cryogenian (c. 720-635 Ma) Snowball Earth episodes. The unique middle Neoproterozoic paleogeography of a rifting, low-latitude, supercontinent likely favored a globally cool climate due to the influence of the silicate weathering feedback and planetary albedo. Under these primed conditions, the emplacement and weathering of extensive continental flood basalt provinces may have provided the final trigger for runaway global glaciation. Weathering of continental flood basalts may have also contributed to the characteristically high carbon isotope ratios (δ13 C) of Neoproterozoic seawater due to their elevated P contents. In order to test these hypotheses, we have compiled new and previously published Neoproterozoic Nd isotope data from mudstones in northern Rodinia (North America, Australia, Svalbard, and South China) and Sr isotope data from carbonate rocks. The Nd isotope data are used to model the mafic detrital input into sedimentary basins in northern Rodinia. The results reveal a dominant contribution from continental flood basalt weathering during the ca. 130 m.y. preceding the onset of Cryogenian glaciation, followed by a precipitous decline afterwards. These data are mirrored by the Sr isotope record, which reflects the importance of chemical weathering of continental flood basalts on solute fluxes to the early-middle Neoproterozoic ocean, including a pulse of unradiogenic Sr input into the oceans just prior to the onset of Cyrogenian glaciation. Hence, our new data support the hypotheses that elevated rates of flood basalt weathering contributed to both the high average δ13 C of seawater in the Neoproterozoic and to the initiation of the first (Sturtian) Snowball Earth.

  13. Petrogenesis of the western highlands of the moon - Evidence from a diverse group of whitlockite-rich rocks from the Fra Mauro formation

    NASA Technical Reports Server (NTRS)

    Snyder, Gregory A.; Taylor, Lawrence A.; Liu, Yun-Gang; Schmitt, Roman A.

    1992-01-01

    A group of KREEPy basalts has been discovered in Apollo 14 soils. These samples exhibit similarities to both HA and VHK basalts, albeit with much higher REE abundances, and contain up to 2 vol pct whitlockite and can be explained by assimilation of a K-, REE- and P-rich fluids by an original HA or VHK basalt. This KREEP component could have been produced late in the evolution of the lunar magma ocean and is similar in composition to QMD at Apollo 14. Two rocks have trace element compositions that are representative of actual KREEP. One of the samples appears to be petrographically pristine and could represent an actual KREEP basalt rock. Five subophitic high-Al basalts represent sampling of either a slowly cooled impact melt sheet or, more likely, the same basalt flow. Two 'quasi-pristine' highland rocks confirm the postulate of a connection between KREEP and the alkali suite. A newly discovered alkali anorthosite is a plagioclase cumulate with about 15 percent trapped KREEPy liquid.

  14. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes.

    PubMed

    Dalmora, Adilson C; Ramos, Claudete G; Oliveira, Marcos L S; Teixeira, Elba C; Kautzmann, Rubens M; Taffarel, Silvio R; de Brum, Irineu A S; Silva, Luis F O

    2016-01-01

    Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3, and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in

  15. Crystallization of oxidized, moderately hydrous arc basalt at mid-to-lower crustal pressures

    NASA Astrophysics Data System (ADS)

    Blatter, D. L.; Sisson, T. W.; Hankins, W. B.

    2012-12-01

    Decades of experimental work show that dry, reduced, subalkaline basalts differentiate to produce tholeiitic (high Fe/Mg) daughter liquids, however the influences of H2O and oxidation on differentiation paths are not well established. Accordingly, we performed crystallization experiments on a relatively magnesian basalt (8.7 wt% MgO) typical of mafic lavas erupted in the Cascades magmatic arc near Mount Rainier, Washington. Starting material was synthesized with 3 wt% H2O and run in 2.54 cm piston-cylinder vessels at 900, 700, and 400 MPa and 1200 to 925 degrees C. Samples were contained in Au75Pd25 capsules pre-saturated with Fe by reaction with magnetite at controlled fO2. Oxygen fugacity was controlled during high-pressure syntheses by the double capsule method using Re-ReO2 plus H2O-CO2 vapor in the outer capsule, mixed to match the expected fH2O of the vapor-undersaturated sample. Crystallization was similar at all pressures with a high temperature interval consisting of augite + olivine + orthopyroxene + Cr-spinel (in decreasing abundance). With decreasing temperature, plagioclase crystallizes, FeTi-oxides replace spinel, olivine dissolves, and finally amphibole appears. Liquids at 900 MPa track along Miyashiro's (1974) tholeiitic vs. calc-alkaline boundary, whereas those at 700 and 400 MPa become calc-alkaline by ~57 wt% SiO2 and greater. Although these evolved liquids are similar in most respects to common calc-alkaline andesites, they differ in having low-CaO due to early and abundant crystallization of augite prior to plagioclase, with the result that they become peraluminous (ASI: Al/(Na+K+Ca)>1) by ~55 wt% SiO2, similar to liquids reported in other studies of the high-pressure crystallization of hydrous basalts (Müntener and Ulmer, 2006 and references therein). A compilation of >7000 analyses of volcanic and intrusive rocks from the Cascades and the Sierra Nevada batholith shows that ASI in arc magmas increases continuously and linearly with SiO2 from

  16. High-grade iron ore at Windarling, Yilgarn Craton: a product of syn-orogenic deformation, hypogene hydrothermal alteration and supergene modification in an Archean BIF-basalt lithostratigraphy

    NASA Astrophysics Data System (ADS)

    Angerer, Thomas; Hagemann, Steffen G.; Danyushevsky, Leonid

    2013-08-01

    Banded iron formation (BIF)-hosted iron ore deposits in the Windarling Range are located in the lower greenstone succession of the Marda-Diemals greenstone belt, Southern Cross domain, Yilgarn Craton and constitute a total hematite-martite-goethite ore resource of minimum 52 Mt at 60 wt.% Fe (0.07 P). Banded iron formation is interlayered with high-Mg basalts at Windarling and precipitated during episodes of volcanic quiescence. Trace element content and the rare earth element (REE) ratios Y/Ho (42 to 45), Sm/Yb (1.5), together with positive La and Gd anomalies in `least-altered' hematite-magnetite-metachert-BIF indicate the precipitation from Archean seawater that was fertilised by hydrothermal vent fluids with a basaltic HREE-Y signature. Hypogene iron ore in sub-greenschist facies metamorphosed BIF formed during three distinct stages: ore stage 1 was a syn- to post-metamorphic, syn-D1, Fe-Ca-Mg-Ni-Co-P-REE metasomatism that produced local Ni-REE-rich Fe-dolomite-magnetite alteration in BIF. Hydrothermal alteration was induced by hot fluid flow controlled by brittle-ductile reactivation of BIF-basalt margins and crosscutting D1 faults. The Ni-Co-rich content of dolomite and a shift in REE ratios in carbonate-altered BIF towards Archean mafic rock signature (Y/Ho to 31 to 40, Sm/Yb to 1 to 2 and Gd/Gd* to 1.2 to 1.4) suggest that high-Mg basalts in the Windarling Range were the primary source of introduced metals. During ore stage 2, a syn-deformational and likely acidic and oxidised fluid flow along BIF-basalt margins and within D1 faults leached carbonate and precipitated lepidoblastic and anhedral/granoblastic hematite. High-grade magnetite-hematite ore is formed during this stage. Ore stage 3 hydrothermal specular hematite (spcH)-Fe-dolomite-quartz alteration was controlled by a late-orogenic, brittle, compressional/transpressional stage (D4; the regional-scale shear-zone-related D3 is not preserved in Windarling). This minor event remobilised iron oxides

  17. Thermoluminescence dating of Hawaiian basalt

    USGS Publications Warehouse

    May, Rodd James

    1979-01-01

    basalts is labradorite. The natural radiogenic dose rates for the alkalic basalts calculated on the basis of assumed secular equilibrium range from 0.228 to 0.462 rad per year and average 0.335 rad per year exclusive of the cosmic-ray energy dose and with the alpha-particle component equal to one-tenth of the total alpha decay energy. The TL measurements were made using material of a 37 to 44-micrometer size range; the crushing required during sample preparation was found to have a negligible effect on natural TL. Both natural and artificial TL were filtered to the bandwidth 3,500 A to 5,000 A to restrict the light detected to that from the plagioclase emission peak centered at about 4,500 A and associated with structural defects. Within this bandwidth, the natural TL from both the alkalic and tholeiitic basalt plagioclase consists of a single peak with a maximum amplitude at about 350?C; the artificial TL glow curves produced by an exposure of the drained samples to a standard dose of X-radiation consist of four broad, variably overlapping peaks with maxima at about 110?C, 150?C, 225?C, and 300?C. The maximum amplitude of the 350?C natural and 300?C artificial TL peaks, both produced by the same general activation energy distribution of trapping centers, were used for TL dating. The high-temperature artificial TL peak occurs at a lower temperature than the corresponding natural TL peak owing to the presence of a large number of electrons retained in traps near the lower end of the trap-depth energy range in samples whose TL is measured a short time after intense artificial irradiation. These traps remain essentially empty in the natural environment owing to spontaneous decay and do not produce measurable low-temperature natural TL peaks. With prolonged storage after irradiation, the 300?C artificial TL peak migrates to higher temperatures and decreases in amplitude.

  18. Are high 3He/4He ratios in oceanic basalts an indicator of deep-mantle plume components?

    USGS Publications Warehouse

    Meibom, A.; Anderson, D.L.; Sleep, Norman H.; Frei, R.; Chamberlain, C.P.; Hren, M.T.; Wooden, J.L.

    2003-01-01

    The existence of a primordial, undegassed lower mantle reservoir characterized by high concentration of 3He and high 3He/4He ratios is a cornerstone assumption in modern geochemistry. It has become standard practice to interpret high 3He/4He ratios in oceanic basalts as a signature of deep-rooted plumes. The unfiltered He isotope data set for oceanic spreading centers displays a wide, nearly Gaussian, distribution qualitatively similar to the Os isotope (187Os/188 Os) distribution of mantle-derived Os-rich alloys. We propose that both distributions are produced by shallow mantle processes involving mixing between different proportions of recycled, variably aged radiogenic and unradiogenic domains under varying degrees of partial melting. In the case of the Re-Os isotopic system, radiogenic mid-ocean ridge basalt (MORB)-rich and unradiogenic (depleted mantle residue) endmembers are constantly produced during partial melting events. In the case of the (U+Th)-He isotope system, effective capture of He-rich bubbles during growth of phenocryst olivine in crystallizing magma chambers provides one mechanism for 'freezing in' unradiogenic (i.e. high 3He/4He) He isotope ratios, while the higher than chondritic (U+Th)/He elemental ratio in the evolving and partially degassed MORB melt provides the radiogenic (i.e. low 3He/4He) endmember. If this scenario is correct, the use of He isotopic signatures as a fingerprint of plume components in oceanic basalts is not justified. Published by Elsevier Science B.V.

  19. Flood basalts and mass extinctions

    NASA Technical Reports Server (NTRS)

    Morgan, W. Jason

    1988-01-01

    There appears to be a correlation between the times of flood basalts and mass-extinction events. There is a correlation of flood basalts and hotspot tracks--flood basalts appear to mark the beginning of a new hotspot. Perhaps there is an initial instability in the mantle that bursts forth as a flood basalt but then becomes a steady trickle that persists for many tens of millions of years. Suppose that flood basalts and not impacts cause the environmental changes that lead to mass-extinctions. This is a very testable hypothesis: it predicts that the ages of the flows should agree exactly with the times of extinctions. The Deccan and K-T ages agree with this hypothesis; An iridium anomaly at extinction boundaries apparently can be explained by a scaled-up eruption of the Hawaiian type; the occurrence of shocked-quartz is more of a problem. However if the flood basalts are all well dated and their ages indeed agree with extinction times, then surely some mechanism to appropriately produce shocked-quartz will be found.

  20. The implications of basalt in the formation and evolution of mountains on Venus

    NASA Astrophysics Data System (ADS)

    Jull, Matthew G.; Arkani-Hamed, Jafar

    1995-06-01

    The highland region of Ishtar Terra on Venus has mountains that reach up to 11 km in height and are thought to be basaltic in composition. Assuming that dynamic uplift of crust to this height is unlikely, we examine the topography produced by an isostatically supported thickening basaltic crust. It is found that regardless of whether the crust thickens by crustal shortening or by volcanic construction, the high-density basalt-eclogite phase transition is the limiting factor for producing significant elevation of the mountains. The maximum height attained by basaltic mountains depends on the nature of the basalt-eclogite phase transition. Without a phase transition, a basaltic crust must thicken to greater than 100 km to reach heights over 10 km. An instantaneous phase transition of basalt to eclogite allows a maximum topographic height of less than about 2 km. However, with a time lag of 100 Ma owing to slow rates of solid-state diffusion, our calculations show that the mountains can reach elevations greater than 10 km only if they are less than 25 Ma old. Higher temperatures within the Venusian crust may decrease the extent of the stability fields of high-density basalt phases and allow high topography if the thickening crust melts. This can occur if the radioactive element concentrations measured on the surface of Venus are uniformly distributed throughout the crust, the crust thickens to greater than 65 km, and the thickened crust is older than about 400 Ma. The conflicting results of a young age predicted for high basaltic mountains and an almost uniform surface age of 500 Ma from crater populations, coupled with similarities in bulk physical properties of Venus and Earth, suggest that the basaltic surface composition found at several landing sites on the planet may not be representative of the entire crust. We suggest that Ishtar Terra formed from the collision of continent-like highly silicic cratons over a region of mantle downwelling. Lakshmi Planum

  1. A basalt trigger for the 1991 eruptions of Pinatubo volcano?

    USGS Publications Warehouse

    Pallister, J.S.; Hoblitt, R.P.; Reyes, A.G.

    1992-01-01

    THE eruptive products of calc-alkaline volcanos often show evidence for the mixing of basaltic and acid magmas before eruption (see, for example, refs 1, 2). These observations have led to the suggestion3 that the injection of basaltic magma into the base of a magma chamber (or the catastrophic overturn of a stably stratified chamber containing basaltic magma at its base) might trigger an eruption. Here we report evidence for the mixing of basaltic and dacitic magmas shortly before the paroxysmal eruptions of Pinatubo volcano on 15 June 1991. Andesitic scoriae erupted on 12 June contain minerals and glass with disequilibrium compositions, and are considerably more mafic than the dacitic pumices erupted on 15 June. Differences in crystal abundance and glass composition among the pumices may arise from pre-heating of the dacite magma by the underlying basaltic liquid before mixing. Degassing of this basaltic magma may also have contributed to the climatologically important sulphur dioxide emissions that accompanied the Pinatubo eruptions.

  2. Additive Construction using Basalt Regolith Fines

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Lippitt, Thomas C.; Mantovani, James G.; Nugent, Matthew W.; Townsend, Ivan I.

    2014-01-01

    Planetary surfaces are often covered in regolith (crushed rock), whose geologic origin is largely basalt. The lunar surface is made of small-particulate regolith and areas of boulders located in the vicinity of craters. Regolith composition also varies with location, reflecting the local bedrock geology and the nature and efficiency of the micrometeorite-impact processes. In the lowland mare areas (suitable for habitation), the regolith is composed of small granules (20 - 100 microns average size) of mare basalt and volcanic glass. Impacting micrometeorites may cause local melting, and the formation of larger glassy particles, and this regolith may contain 10-80% glass. Studies of lunar regolith are traditionally conducted with lunar regolith simulant (reconstructed soil with compositions patterned after the lunar samples returned by Apollo). The NASA Kennedy Space Center (KSC) Granular Mechanics & Regolith Operations (GMRO) lab has identified a low fidelity but economical geo-technical simulant designated as Black Point-1 (BP-1). It was found at the site of the Arizona Desert Research and Technology Studies (RATS) analog field test site at the Black Point lava flow in adjacent basalt quarry spoil mounds. This paper summarizes activities at KSC regarding the utilization of BP-1 basalt regolith and comparative work with lunar basalt simulant JSC-1A as a building material for robotic additive construction of large structures. In an effort to reduce the import or in-situ fabrication of binder additives, we focused this work on in-situ processing of regolith for construction in a single-step process after its excavation. High-temperature melting of regolith involves techniques used in glassmaking and casting (with melts of lower density and higher viscosity than those of metals), producing basaltic glass with high durability and low abrasive wear. Most Lunar simulants melt at temperatures above 1100 C, although melt processing of terrestrial regolith at 1500 C is not

  3. Tululite, Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36: a new Ca zincate-aluminate from combustion metamorphic marbles, central Jordan

    NASA Astrophysics Data System (ADS)

    Khoury, Hani N.; Sokol, Ella V.; Kokh, Svetlana N.; Seryotkin, Yurii V.; Nigmatulina, Elena N.; Goryainov, Sergei V.; Belogub, Elena V.; Clark, Ian D.

    2016-02-01

    Tululite (Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36 (the hypothetical end-member formula Ca14{Fe3+O6}[SiO4][Zn5Al9]O26) (IMA2014-065) is a new natural Ca zincate-aluminate, identified in medium-temperature (800-850 °C) combustion metamorphic (CM) spurrite-fluorellestadite marbles from central Jordan. The type locality (Tulul Al Hammam area) is situated in the northern part of the Siwaqa complex, the largest area of the "Mottled Zone" Formation in the Dead Sea region. The marbles originated from bitumen-rich chalky marine sediments of the Maastrichtian-Paleogene Muwaqqar Chalk Marl Formation, which have low clay content (and, consequently, low Al) and high Zn, Cd, and U enrichments. The bulk CM rocks derived from the low-Al protolith have unusually high (Zn + Cd)/Al ratios ( 0.2) and, as a result, a mineralogy with negligibly small percentages of Ca aluminates having low Ca:Al molar ratios (minerals of mayenite supergroup, Ca:Al = 6:7) common to most of calcareous CM rocks in the Mottled Zone. Instead, the mineral assemblage of the Zn-rich marbles contains tululite, with high Ca:Al = 2.55 molar ratios and Zn substituting for a large portion of Al (Zn:Al = 1.1). Tululite occurs in thin clusters as irregular grains with indented outlines (20-100 μm in size), having typical open-work textures associated with rock-forming calcite, fluorellestadite, spurrite, and accessory Zn-rich periclase, lime-monteponite solid solutions, calcium uranates, and zincite. Marbles also bear brownmillerite, dorrite, fluormayenite, high-fluorine Ca aluminate, and lakargiite. Secondary phases are brucite, gel-like calcium silicate hydrates and calcium silicate aluminate hydrates, including Zn- and U-bearing and Cd-rich compounds, Si-bearing hydrated compounds after calcium uranates, and basic Cd chlorides. The empirical formula of the holotype tululite (a mean of 32 analyses) is (Ca13.29Cd0.75)Σ14.04(Al5.46Zn5.20Fe3+ 2.23Si0.95Mn3+ 1.01Mg0.78P0.41)Σ16.04O36. Tululite is cubic, space

  4. Geochemical Consequences of Lithospheric Delamination in the Eastern Mediterranean: Evidence From Young Turkish Basalts

    NASA Astrophysics Data System (ADS)

    Furman, T.; Kurkcuoglu, B.; Plummer, C.

    2007-12-01

    of lithospheric removal, young basalts have Sr-Nd values close to that of the inferred asthenospheric source, whereas older lavas display more enriched signatures. Limited Pb isotopic data fall within the range of Atlantic and Pacific Ocean sediments, suggesting the mantle signature is masked or strongly influenced by sediments. We focus on the Sivas volcanics, northernmost of the Central provinces, where the most highly magnesian lavas of Anatolia are found. Incompatible trace element considerations suggest that the Sivas suite provides key insights into the nature of the common source region. These lavas have MORB- and OIB-like values of most incompatible trace elements e.g., La/Nb, Ba/Nb, Ba/Rb, Rb/Sr and Th/La, and lack positive Pb anomalies characteristic of crustal interaction. Their geochemical and isotopic compositions - and comparisons between Sivas and areas of orogenic collapse to the east and west - provide new information on the interaction between lithospheric and asthenospheric materials across Turkey. References: Aldanmaz et al. 2000 JVGR 102, 67-95; Aldanmaz et al. 2006 Lithos 86, 50-76; Alici et al. 1998 JVGR 85, 423-446; Alici et al. 2002 JVGR 115, 487-510; Angus et al. 2006 GJI 166, 1335-1346; Lei & Zhao 2007 EPSL 257, 14-28; Lyberis et al. 1992 Tectonophysics 204, 1-15; Pearce et al. 1990 JVGR 44, 189-229; Yilmaz 1990 JVGR 44, 69-87; Zor et al. 2003 GRL 30, doi: 10.1029/2003GL018192

  5. Mineral chemistry of Pangidi basalt flows from Andhra Pradesh

    NASA Astrophysics Data System (ADS)

    Nageswara Rao, P. V.; Swaroop, P. C.; Karimulla, Syed

    2012-04-01

    This paper elucidates the compositional studies on clinopyroxene, plagioclase, titaniferous magnetite and ilmenite of basalts of Pangidi area to understand the geothermometry and oxybarometry conditions. Petrographic evidence and anorthite content (up to 85%) of plagioclase and temperature estimates of clinopyroxene indicate that the clinopyroxene is crystallized later than or together with plagioclase. The higher An content indicates that the parent magma is tholeiitic composition. The equilibration temperatures of clinopyroxene (1110-1190°C) and titaniferous magnetite and ilmenite coexisting mineral phases (1063-1103°C) are almost similar in lower basalt flow and it is higher for clinopyroxene (900-1110°C) when compared to titaniferous magnetite and ilmenite coexisting mineral phases (748-898°C) in middle and upper basalt flows. From this it can be inferred that the clinopyroxene is crystallized earlier than Fe-Ti oxide phases reequilibration, which indicates that the clinopyroxene temperature is the approximate eruption temperature of the present lava flows. The wide range of temperatures (900-1190°C) attained by clinopyroxene may point out that the equilibration of clinopyroxene crystals initiated from depth till closer to the surface before the melt erupted. Pangidi basalts follow the QFM buffer curve which indicates the more evolved tholeiitic composition. This suggests the parent tholeiitic magma suffered limited fractionation at high temperature under increasing oxygen fugacity in lower basalt flow and more fractionation at medium to lower temperatures under decreasing oxygen fugacity conditions during cooling of middle and upper basalt flows. The variation of oxygen fugacity indicates the oxidizing conditions for lower basalt flow (9.48-10.3) and extremely reducing conditions for middle (12.1-15.5) and upper basalt (12.4-15.54) flows prevailed at the time of cooling. Temperature vs. (FeO+Fe2O3)/(FeO+Fe2O3 +MgO) data plots for present basalts suggested

  6. [Compatibility between high-strength dental ceramic (type A) and vintage AL veneering porcelain].

    PubMed

    Cui, Jun; Chao, Yong-lie; Meng, Yu-kun

    2006-05-01

    To investigate the interface bond strength and compatibility between High-Strength Dental Ceramic (type A) and Vintage AL veneering porcelain. Twenty bar-shape specimens (ten Vintage AL and ten Vitadur alpha) were fabricated, and shear test was conducted to determine the bond strength. A bilayered composite (1 mm core ceramic and 0.8 mm Vintage AL) was prepared and then fractured for scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis. Ten all-ceramic anterior crowns were fabricated and the temperatures of thermal shock resistance were tested. The mean values of the bond strength measured were (55.52 +/- 14.64) MPa and (59.37 +/- 13.93) MPa for Vintage AL and Vitadur alpha respectively (P>0.05). SEM showed tight connection between the High-Strength Dental Ceramic (type A) and the veneering porcelain. Element diffusion was also confirmed by energy dispersive spectroscopy (EDS) analysis. The temperature of thermal shock resistance of this system was (179 +/- 15) degrees C. Vintage AL veneering porcelain has good thermal and chemical compatibility with High-Strength Dental Ceramic (type A).

  7. Geochemistry of Woranso-Mille Pliocene basalts from west-central Afar, Ethiopia: Implications for mantle source characteristics and rift evolution

    NASA Astrophysics Data System (ADS)

    Alene, Mulugeta; Hart, William K.; Saylor, Beverly Z.; Deino, Alan; Mertzman, Stanley; Haile-Selassie, Yohannes; Gibert, Luis B.

    2017-06-01

    The Woranso-Mille (WORMIL) area in the west-central Afar, Ethiopia, contains several Pliocene basalt flows, tuffs, and fossiliferous volcaniclastic beds. We present whole-rock major- and trace-element data including REE, and Sr-Nd-Pb isotope ratios from these basalts to characterize the geochemistry, constrain petrogenetic processes, and infer mantle sources. Six basalt groups are distinguished stratigraphically and geochemically within the interval from 3.8 to 3 Ma. The elemental and isotopic data show intra- and inter-group variations derived primarily from source heterogeneity and polybaric crystallization ± crustal inputs. The combined Sr-Nd-Pb isotope data indicate the involvement of three main reservoirs: the Afar plume, depleted mantle, and enriched continental lithosphere (mantle ± crust). Trace element patterns and ratios further indicate the basalts were generated from spinel-dominated shallow melting, consistent with significantly thinned Pliocene lithosphere in western Afar. The on-land continuation of the Aden rift into western Afar during the Pliocene is reexamined in the context of the new geochemistry and age constraints of the WORMIL basalts. The new data reinforce previous interpretations that progressive rifting and transformation of the continental lithosphere to oceanic lithosphere allows for increasing asthenospheric inputs through time as the continental lithosphere is thinned. Accepted trace element values for BHVO-2 are those recently recommended by Jochum et al. (2016) rounded to provide the same significant figures as the data. Ternary model after Schilling et al. (1992); Endmembers from Rooney et al. (2012).

  8. Differentiation and magmatic activity in Vesta evidenced by 26Al-26Mg dating in eucrites and diogenites

    NASA Astrophysics Data System (ADS)

    Hublet, G.; Debaille, V.; Wimpenny, J.; Yin, Q.-Z.

    2017-12-01

    The 26Al-26Mg short-lived chronometer has been widely used for dating ancient objects in studying the early Solar System. Here, we use this chronometer to investigate and refine the geological history of the asteroid 4-Vesta. Ten meteorites widely believed to come from Vesta (4 basaltic eucrites, 3 cumulate eucrites and 3 diogenites) and the unique achondrite Asuka 881394 were selected for this study. All samples were analyzed for their δ26Mg∗ and 27Al/24Mg ratios, in order to construct both whole rock and model whole rock isochrons. Mineral separation was performed on 8 of the HED's in order to obtain internal isochrons. While whole rock Al-Mg analyses of HED's plot on a regression that could be interpreted as a vestan planetary isochron, internal mineral isochrons indicate a more complex history. Crystallization ages obtained from internal 26Al-26Mg systematic in basaltic eucrites show that Vesta's upper crust was formed during a short period of magmatic activity at 2.66-0.58+1.39 million years (Ma) after Calcium-Aluminum inclusions (after CAI). We also suggest that impact metamorphism and subsequent age resetting could have taken place at the surface of Vesta while 26Al was still extant. Cumulate eucrites crystallized progressively from 5.48-0.60+1.56 to >7.25 Ma after CAI. Model ages obtained for both basaltic and cumulate eucrites are similar and suggest that the timing of differentiation of a common eucrite source from a chondritic body can be modeled at 2.88-0.12+0.14 Ma after CAI, i.e. contemporaneously from the onset of the basaltic eucritic crust. Based on their cumulate texture, we suggest cumulate eucrites were likely formed deeper in the crust of Vesta. Diogenites have a more complicated history and their 26Al-26Mg systematics show that they likely formed after the complete decay of 26Al and thus are younger than eucrites. This refined chronology for eucrites and diogenites is consistent with a short magma ocean stage on 4-Vesta from which the

  9. Evidence for a basalt-free surface on Mercury and implications for internal heat.

    PubMed

    Jeanloz, R; Mitchell, D L; Sprague, A L; de Pater, I

    1995-06-09

    Microwave and mid-infrared observations reveal that Mercury's surface contains less FeO + TiO2 and at least as much feldspar as the lunar highlands. The results are compatible with the high albedo (brightness) of Mercury's surface at visible wavelengths in suggesting a rock and soil composition that is devoid of basalt, the primary differentiate of terrestrial mantles. The occurrence of a basalt-free, highly differentiated crust is in accord with recent models of the planet's thermal evolution and suggests that Mercury has retained a hot interior as a result of a combination of inefficient mantle convection and minimal volcanic heat loss.

  10. Basaltic cannibalism at Thrihnukagigur volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Hudak, M. R.; Feineman, M. D.; La Femina, P. C.; Geirsson, H.

    2014-12-01

    Magmatic assimilation of felsic continental crust is a well-documented, relatively common phenomenon. The extent to which basaltic crust is assimilated by magmas, on the other hand, is not well known. Basaltic cannibalism, or the wholesale incorporation of basaltic crustal material into a basaltic magma, is thought to be uncommon because basalt requires more energy than higher silica rocks to melt. Basaltic materials that are unconsolidated, poorly crystalline, or palagonitized may be more easily ingested than fully crystallized massive basalt, thus allowing basaltic cannibalism to occur. Thrihnukagigur volcano, SW Iceland, offers a unique exposure of a buried cinder cone within its evacuated conduit, 100 m below the main vent. The unconsolidated tephra is cross-cut by a NNE-trending dike, which runs across the ceiling of this cave to a vent that produced lava and tephra during the ~4 Ka fissure eruption. Preliminary petrographic and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) analyses indicate that there are two populations of plagioclase present in the system - Population One is stubby (aspect ratio < 1.7) with disequilibrium textures and low Ba/Sr ratios while Population Two is elongate (aspect ratio > 2.1), subhedral to euhedral, and has much higher Ba/Sr ratios. Population One crystals are observed in the cinder cone, dike, and surface lavas, whereas Population Two crystals are observed only in the dike and surface lavas. This suggests that a magma crystallizing a single elongate population of plagioclase intruded the cinder cone and rapidly assimilated the tephra, incorporating the stubbier population of phenocrysts. This conceptual model for basaltic cannibalism is supported by field observations of large-scale erosion upward into the tephra, which is coated by magma flow-back indicating that magma was involved in the thermal etching. While the unique exposure at Thrihnukagigur makes it an exceptional place to investigate basaltic

  11. Basaltic glass as a habitat for microbial life: Implications for astrobiology and planetary exploration

    NASA Astrophysics Data System (ADS)

    Izawa, M. R. M.; Banerjee, N. R.; Flemming, R. L.; Bridge, N. J.; Schultz, C.

    2010-03-01

    Recent studies have demonstrated that terrestrial subaqueous basalts and hyaloclastites are suitable microbial habitats. During subaqueous basaltic volcanism, glass is produced by the quenching of basaltic magma upon contact with water. On Earth, microbes rapidly begin colonizing the glassy surfaces along fractures and cracks that have been exposed to water. Microbial colonization of basaltic glass leads to the alteration and modification of the rocks and produces characteristic granular and/or tubular bioalteration textures. Infilling of the alteration textures by minerals such as phyllosilicates, zeolites and titanite may enable their preservation through geologic time. Basaltic rocks are a major component of the Martian crust and are widespread on other solar system bodies. A variety of lines of evidence strongly suggests the long-term existence of abundant liquid water on ancient Mars. Recent orbiter, lander and rover missions have found evidence for the presence of transient liquid water on Mars, perhaps persisting to the present day. Many other solar system bodies, notably Europa, Enceladus and other icy satellites, may contain (or have once hosted) subaqueous basaltic glasses. The record of terrestrial glass bioalteration has been interpreted to extend as far back as ˜3.5 billion years ago and is widespread in oceanic crust and its metamorphic equivalents. The terrestrial record of glass bioalteration strongly suggests that glassy or formerly glassy basaltic rocks on extraterrestrial bodies that have interacted with liquid water are high-value targets for astrobiological exploration.

  12. Stratigraphy of Oceanus Procellarum basalts - Sources and styles of emplacement

    NASA Technical Reports Server (NTRS)

    Whitford-Stark, J. L.; Head, J. W., III

    1980-01-01

    The basaltic fill of Oceanus Procellarum has been formally subdivided into four lithostratigraphic formations: The Repsold Formation, the Telemann Formation, the Hermann Formation, and the Sharp Formation. The Repsold Formation is composed of high-Ti basalts and pyroclastic deposits with an estimated age of 3.75 + or - 0.05 b.y. and an estimated volume of about 2.1 x 10 to the 5th cu km. This is overlain by the Telemann Formation composed of very low-Ti basalts and pyroclastic deposits with an estimated age of 3.6 + or - 0.2 b.y. and a volume of 4.2 x 10 to the 5th cu km. The Hermann Formation, composed of intermediate basalts with an estimated age of 3.3 + or - 0.3 b.y., represents the next youngest unit with an estimated volume of 2.2 x 10 to the 5th cu km. The youngest materials in Procellarum are the medium-to-high-Ti basalts comprising the Sharp Formation with an estimated age of 2.7 + or - 0.7 b.y. and a volume of 1.8 x 10 to the 4th cu km.

  13. Petrology of basalts from Loihi Seamount, Hawaii

    NASA Astrophysics Data System (ADS)

    Hawkins, James; Melchior, John

    1983-12-01

    Loihi Seamount is the southeasternmost active volcano of the Emperor-Hawaii linear volcanic chain. It comprises a spectrum of basalt compositional varieties including basanite, alkali basalt, transitional basalt and tholeiite. Samples from four dredge collections made on Scripps Institution of Oceanography Benthic Expedition in October 1982 are tholeiite. The samples include highly vesicular, olivine-rich basalt and dense glass-rich pillow fragments containing olivine and augite phenocrysts. Both quartz-normative and olivine-normative tholeiites are present. Minor and trace element data indicate relatively high abundances of low partition coefficient elements (e.g., Ti, K, P. Rb, Ba, Zr) and suggest that the samples were derived by relatively small to moderate extent of partial melting, of an undepleted mantle source. Olivine composition, MgO, Cr and Ni abundances, and Mg/(Mg+Fe), are typical of moderately fractionated to relatively unfractionated "primary" magmas. The variations in chemistry between samples cannot be adequately explained by low-pressure fractional crystallization but can be satisfied by minor variations in extent of melting if a homogeneous source is postulated. Alternatively, a heterogeneous source with variable abundances of certain trace elements, or mixing of liquids, may have been involved. Data for 3He/ 4He, presented in a separate paper, implies a mantle plume origin for the helium composition of the Loihi samples. There is little variation in the helium isotope ratio for samples having different compositions and textures. The helium data are not distinctive enough to unequivocally separate the magma sources for the tholeiitic rocks from the other rock types such as Loihi alkalic basalts and the whole source region for Loihi may have a nearly uniform helium compositions even though other element abundances may be variable. Complex petrologic processes including variable melting, fractional crystallization and magma mixing may have blurred

  14. Alkalic Basalt in Ridge Axis of 53˚E Amagmatic Segment Center, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Wang, J.; Liu, Y.; Ji, F.; Dick, H. J.

    2014-12-01

    Mid-ocean ridge basalt (MORB) is key tracer of composition and process in the mantle. It is interesting to notice that some alkalic basalts occur in amagmatic spreading center of ultraslow spreading ridges, for examples, 9-16˚E of the Southwest Indian ridge (Standish et al., 2008) and Lena Trough of Arctic Ocean (Snow et al., 2011). The latter is interpreted as the result of the pre-existence of continental transform fault or the especially cold thermal structure of ancient continental lithosphere. 53˚E segment, east of the Gallieni transform fault, was discovered as an amagmatic segment (Zhou and Dick, 2013). On both sides of the ridge axis, peridotites with a little gabbro are exposed in an area more than 3200 km2. Basalts exist in the southern portion of 53˚E segment, indicating the transformation from magmatic to amagmatic spreading about 9.4 million years ago. In April of 2014, Leg 4 of the RV Dayang Yihao cruise 30, basaltic glasses was dredged at one location (3500 m water depth) in the ridge axis of 53˚E segment center. It is shown by electric probe analysis that the samples have extremely high sodium content (4.0-4.49 wt% Na­2O ), relative higher potassium content (0.27-0.32 wt% K2O) and silica (50.67-51.87 wt% SiO2), and lower MgO content (5.9-6.4 wt% MgO). Mg-number is 0.55-0.59. It is distinctly different from the N-MORB (2.42-2.68 wt% Na2O, 0.03-0.06 wt% K2O, 48.6-49.6 wt% Si2O, 8.8-9.0 wt% MgO, Mg-numbers 0.63) distributed in the 560-km-long supersegment, west of the Gallieni transform fault, where the active Dragon Flag hydrothermal field was discovered at 49.6˚E in 2007. The reasons for the alkalic basalt in the ridge axis of 53˚E amagmatic segment center, either by low melting degree of garnet stability field, by melting from an ancient subcontinental lithospheric mantle, or by sodium-metasomatism or even other mantle processes or their combination in the deep mantle, are under further studies.

  15. Halogens in normal- and enriched-basalts from Central Indian Ridge (18-20°S): Testing the E-MORB subduction origin hypothesis

    NASA Astrophysics Data System (ADS)

    Ruzie, L.; Burgess, R.; Hilton, D. R.; Ballentine, C. J.

    2012-12-01

    -MORB from Macquarie Island [Kendrick et al., 2012]. The concentrations are not related to superficial processes. The on-axis samples display a relatively restricted range (6.9-8.6wt%) of MgO contents, suggesting no control of the crystallisation processes. The basalts were erupted between 3900-2000 m bsl, so no appreciable degassing of halogens would be expected. The strong correlation, which exists between the halogens and other incompatible elements (e.g., Rb, La), also rules out seawater assimilation. Therefore, concentrations and elemental ratios can be directly linked to melting and source features. Estimates of halogens abundances in the depleted-mantle source are 4 ppm Cl, 14 ppb Br and 0.3 ppb I. These low abundances, which are in agreement with values derived for sub-continental mantle from coated diamonds [Burgess et al., 2002], suggest that, like noble gases, the upper mantle is degassed of its halogens. Critically, the halogen elemental ratios show no significant variations along the axial ridge and off-axis ridge or between N-MORB and E-MORB: Br/Cl=0.00147±0.00014, I/Cl=0.000021±0.000005; I/Br=0.0142±0.0036. These ratios are similar to E-MORB from Macquarie Island [Kendrick et al., 2012]. This observation is thus not consistent with subduction as a source of halogen enrichment in E-MORB.

  16. Chemistry of Apollo 11 low-K mare basalts

    NASA Technical Reports Server (NTRS)

    Rhodes, J. M.; Blanchard, D. P.

    1980-01-01

    A reexamination of the bulk major and trace element geochemistry of Apollo 11 low-K mare basalts is presented. New analyses are given for seven previously unanalyzed samples (10003, 10020, 10044, 10047, 10050, 10058, and 10062) and for two low-K basalts (10029 and 10092) and one high-K basalt (10071) for which comprehensive compositional data were previously lacking. The data show that three distinct magma types have been sampled, as proposed by Beaty and Albee (1978), and that these magma types are unrelated by near-surface crystal fractionation. Each magma type is characterized by distinctive magmaphile element ratios, which enable previously unclassified samples (10050 and 10062) to be assigned to an appropriate magma type.

  17. Sunset Crater, AZ: Evolution of a highly explosive basaltic eruption as indicated by granulometry and clast componentry

    NASA Astrophysics Data System (ADS)

    Allison, C. M.; Clarke, A. B.; Pioli, L.; Alfano, F.

    2011-12-01

    Basaltic scoria cone volcanoes are the most abundant volcanic edifice on Earth and occur in all tectonic settings. Basaltic magmas have lower viscosities, higher temperatures, and lower volatile contents than silicic magmas, and therefore generally have a lower potential for explosive activity. However, basaltic eruptions display great variability in eruptive style, from mild lava flows to more energetic explosions with large plumes. The San Francisco Volcanic Field (SFVF) in northern Arizona, active from 6 Ma-present, consists of over 600 volcanoes, mostly alkali basalt scoria cones, and five silicic centers [Wood and Kienle (1990), Cambridge University Press]. The eruption of Sunset Crater in the SFVF during the Holocene was an anomalously large basaltic explosive eruption, consisting of eight tephra-bearing phases and three lava flows [Amos (1986), MS thesis, ASU]. Typical scoria cone-forming eruptions have volumes <0.1km3 DRE, while the Sunset Crater deposit is at least 0.6km3 DRE [Amos (1986)]. The phases vary in size and style; the beginning stages of explosive activity (phases 1-2) were considerably smaller than phases 3-5, classified as subplinian. Due to its young age, the eruptive material is fresh and the deposit is well-preserved. We sampled the first five tephra units at 25 locations, ranging from 6 km to 20 km from the vent, concentrating our efforts in the downwind direction (E and SE of the vent) along the primary dispersal axes of several phases. Notable variations among the first five phases were found from evaluation of juvenile clast componentry, with each phase containing some proportion of red, grey, and glassy to iridescent clasts. The red and grey clasts are sub-rounded to rounded with high sphericity, while the other clasts are highly angular and slightly elongate, with blue-black to gold glassy and iridescent surfaces. The glassy and iridescent clasts likely represent fresh, juvenile ejecta, which were quenched rapidly, whereas the red and

  18. Basalt: Biologic Analog Science Associated with Lava Terrains

    NASA Astrophysics Data System (ADS)

    Lim, D. S. S.; Abercromby, A.; Kobs-Nawotniak, S. E.; Kobayashi, L.; Hughes, S. S.; Chappell, S.; Bramall, N. E.; Deans, M. C.; Heldmann, J. L.; Downs, M.; Cockell, C. S.; Stevens, A. H.; Caldwell, B.; Hoffman, J.; Vadhavk, N.; Marquez, J.; Miller, M.; Squyres, S. W.; Lees, D. S.; Fong, T.; Cohen, T.; Smith, T.; Lee, G.; Frank, J.; Colaprete, A.

    2015-12-01

    This presentation will provide an overview of the BASALT (Biologic Analog Science Associated with Lava Terrains) program. BASALT research addresses Science, Science Operations, and Technology. Specifically, BASALT is focused on the investigation of terrestrial volcanic terrains and their habitability as analog environments for early and present-day Mars. Our scientific fieldwork is conducted under simulated Mars mission constraints to evaluate strategically selected concepts of operations (ConOps) and capabilities with respect to their anticipated value for the joint human and robotic exploration of Mars. a) Science: The BASALT science program is focused on understanding habitability conditions of early and present-day Mars in two relevant Mars-analog locations (the Southwest Rift Zone (SWRZ) and the East Rift Zone (ERZ) flows on the Big Island of Hawai'i and the eastern Snake River Plain (ESRP) in Idaho) to characterize and compare the physical and geochemical conditions of life in these environments and to learn how to seek, identify, and characterize life and life-related chemistry in basaltic environments representing these two epochs of martian history. b) Science Operations: The BASALT team will conduct real (non-simulated) biological and geological science at two high-fidelity Mars analogs, all within simulated Mars mission conditions (including communication latencies and bandwidth constraints) that are based on current architectural assumptions for Mars exploration missions. We will identify which human-robotic ConOps and supporting capabilities enable science return and discovery. c) Technology: BASALT will incorporate and evaluate technologies in to our field operations that are directly relevant to conducting the scientific investigations regarding life and life-related chemistry in Mars-analogous terrestrial environments. BASALT technologies include the use of mobile science platforms, extravehicular informatics, display technologies, communication

  19. Back-arc with frontal-arc component origin of Triassic Karmutsen basalt, British Columbia, Canada

    USGS Publications Warehouse

    Barker, F.; Sutherland, Brown A.; Budahn, J.R.; Plafker, G.

    1989-01-01

    The largely basaltic, ???4.5-6.2-km-thick, Middle to Upper Triassic Karmutsen Formation is a prominent part of the Wrangellian sequence. Twelve analyses of major and minor elements of representative samples of pillowed and massive basalt flows and sills from Queen Charlotte and Vancouver Islands are ferrotholeiites that show a range of 10.2-3.8% MgO (as normalized, H2O- and CO2-free) and related increases in TiO2 (1.0-2.5%), Zr (43-147 ppm) and Nb (5-16 ppm). Other elemental abundances are not related simply to MgO: distinct groupings are evident in Al2O3, Na2O and Cr, but considerable scatter is present in FeO* (FeO + 0.9Fe2O3) and CaO. Some of the variation is attributed to alteration during low-rank metamorphism or by seawater - including variation of Ba, Rb, Sr and Cu, but high-field-strength elements (Sc, Ti, Y, Zr and Nb) as well as Cr, Ni, Cu and rare-earth elements (REE's) were relatively immobile. REE's show chondrite-normalized patterns ranging from light-REE depleted to moderately light-REE enriched. On eleven discriminant plots these analyses fall largely into or across fields of within-plate basalt (WIP), normal or enriched mid-ocean-ridge tholeiite (MORB) and island-arc tholeiite (IAT). Karmutsen basalts are chemically identical to the stratigraphically equivalent Nikolai Greenstone of southern Alaska and Yukon Territory. These data and the fact that the Karmutsen rests on Sicker Group island-arc rocks of Paleozoic age suggest to us that: 1. (1) the basal arc, after minor carbonate-shale deposition, underwent near-axial back-arc rifting (as, e.g., the Mariana arc rifted at different times); 2. (2) the Karmutsen basalts were erupted along this rift or basin as "arc-rift" tholeiitite; and 3. (3) after subsequent deposition of carbonates and other rocks, and Jurassic magmatism, a large fragment of this basalt-sediment-covered island arc was accreted to North America as Wrangellia. The major- and minor-elemental abundances of Karmutsen basalt is modeled

  20. Complex layering of the Orange Mountain Basalt: New Jersey, USA

    NASA Astrophysics Data System (ADS)

    Puffer, John H.; Block, Karin A.; Steiner, Jeffrey C.; Laskowich, Chris

    2018-06-01

    The Orange Mountain Basalt of New Jersey is a Mesozoic formation consisting of three units: a single lower inflated sheet lobe about 70 m thick (OMB1), a middle pillow basalt about 10 to 20 m thick (OMB2), and an upper compound pahoehoe flow about 20 to 40 m thick (OMB3). The Orange Mountain Basalt is part of the Central Atlantic Magmatic Province. Quarry and road-cut exposures of OMB1 near Paterson, New Jersey, display some unusual layering that is the focus of this study. OMB1 exposures displays the typical upper crust, core, and basal crust layers of sheet lobes but throughout the Patterson area also display distinct light gray layers of microvesicular basalt mineralized with albite directly over the basal crust and under the upper crust. The lower microvesicular layer is associated with mega-vesicular diapirs. We propose that the upper and lower microvesicular layers were composed of viscous crust that was suddenly quenched before it could devolatilize immediately before the solidification of the core. During initial cooling, the bottom of the basal layer was mineralized with high concentrations of calcite and albite during a high-temperature hydrothermal event. Subsequent albitization, as well as zeolite, prehnite, and calcite precipitation events, occurred during burial and circulation of basin brine heated by recurring Palisades magmatism below the Orange Mountain Basalt. Some of the events experienced by the Orange Mountain Basalt are unusual and place constraints on the fluid dynamics of thick flood basalt flows in general. The late penetration of vesicular diapirs through the entire thickness of the flow interior constrains its viscosity and solidification history.

  1. Compositional diversity of Late Cenozoic basalts in a transect across the southern Washington Cascades: Implications for subduction zone magmatism

    NASA Astrophysics Data System (ADS)

    Leeman, William P.; Smith, Diane R.; Hildreth, Wes; Palacz, Zen; Rogers, Nick

    1990-11-01

    Major volcanoes of the Southern Washington Cascades (SWC) include the large Quaternary stratovolcanoes of Mount St. Helens (MSH) and Mount Adams (MA) and the Indian Heaven (IH) and Simcoe Mountain (SIM) volcanic fields. There are significant differences among these volcanic centers in terms of their composition and evolutionary history. The stratovolcanoes consist largely of andesitic to dacitic lavas and pyroclastics with minor basalt flows. IH consists dominantly of basaltic with minor andesite lavas, all erupted from monogenetic rift and cinder cone vents. SIM has a poorly exposed andesite to rhyolite core but mainly consists of basaltic lavas erupted from numerous widely dispersed vents; it has the morphology of a shield volcano. Distribution of mafic lavas across the SWC is related to north-northwest trending faults and fissure zones that indicate a significant component of east-west extension within the area. There is overlap in eruptive history for the areas studied, but it appears that peak activity was progressively older (MSH (<40 Ka), IH (mostly <0.5 Ma), MA (<0.5 Ma), SIM (1-4 Ma)) and more alkalic toward the east. A variety of compositionally distinct mafic magma types has been identified in the SWC, including low large ion lithophile element (LILE) tholeiitic basalts, moderate LILE calcalkalic basalts, basalts transitional between these two, LILE-enriched mildly alkalic basalts, and basaltic andesites. Compositional diversity among basaltic lavas, both within individual centers as well as across the arc, is an important characteristic of the SWC traverse. The fact that the basaltic magmas either show no correlation between isotopic and trace element components or show trends quite distinct from those of the associated evolved lavas, suggests that their compositional variability is attributable to subcrustal processes. Both the primitive nature of the erupted basalts and the fact that they are relatively common in the SWC sector also imply that such

  2. Formation Conditions of Basalts at Gale Crater, Mars from ChemCam Analyses

    NASA Astrophysics Data System (ADS)

    Filiberto, J.; Bridges, J.; Dasgupta, R.; Edwards, P.; Schwenzer, S. P.; Wiens, R. C.

    2015-12-01

    Surface igneous rocks shed light onto the chemistry, tectonic, and thermal state of planetary interiors. For the purpose of comparative planetology, therefore, it is critical to fully utilize the compositional diversity of igneous rocks for different terrestrial planets. For Mars, igneous float rocks and conglomerate clasts at Gale Crater, as analyzed by ChemCam [1] using a new calibration [2], have a larger range in chemistry than have been analyzed at any other landing site or within the Martian meteorite collection [3, 4]. These rocks may reflect different conditions of melting within the Martian interior than any previously analyzed basalts. Here we present new formation conditions for basaltic and trachybasalt/dioritic rocks at Gale Crater from ChemCam analyses following previous procedures [5, 6]. We then compare these estimates of basalt formation with previous estimates for rocks from the Noachian (Gusev Crater, Meridiani Planum, and a clast in the NWA 7034 meteorite [5, 6]), Hesperian (surface volcanics [7]), and Amazonian (surface volcanics and shergottites [7-8]), to calculate an average mantle potential temperature for different Martian epochs and investigate how the interior of Mars has changed through time. Finally, we will compare Martian mantle potential temperatures with petrologic estimate of cooling for the Earth. Our calculated estimate for the mantle potential temperature (TP) of rocks at Gale Crater is 1450 ± 45 °C which is within error of previous estimates for Noachian aged rocks [5, 6]. The TP estimates for the Hesperian and Amazonian, based on orbital analyses of the crust [7], are lower in temperature than the estimates for the Noachian. Our results are consistent with simple convective cooling of the Martian interior. [1] Wiens R. et al. (2012) Space Sci Rev 170. 167-227. [2] Anderson R. et al. (2015) LPSC. Abstract #7031. [3] Schmidt M.E. et al. (2014) JGRP 2013JE004481. [4] Sautter V. et al. (2014) JGRP 2013JE004472. [5] Filiberto J

  3. Future Volcanism at Yucca Mountain - Statistical Insights from the Non-Detection of Basalt Intrusions in the Potential Repository

    NASA Astrophysics Data System (ADS)

    Coleman, N.; Abramson, L.

    2004-05-01

    Yucca Mt. (YM) is a potential repository site for high-level radioactive waste and spent fuel. One issue is the potential for future igneous activity to intersect the repository. If the event probability is <1E-8/yr, it need not be considered in licensing. Plio-Quaternary volcanos and older basalts occur near YM. Connor et al (JGR, 2000) estimate a probability of 1E-8/yr to 1E-7/yr for a basaltic dike to intersect the potential repository. Based on aeromagnetic data, Hill and Stamatakos (CNWRA, 2002) propose that additional volcanos may lie buried in nearby basins. They suggest if these volcanos are part of temporal-clustered volcanic activity, the probability of an intrusion may be as high as 1E-6/yr. We examine whether recurrence probabilities >2E-7/yr are realistic given that no dikes have been found in or above the 1.3E7 yr-old potential repository block. For 2E-7/yr (or 1E-6/yr), the expected number of penetrating dikes is 2.6 (respectively, 13), and the probability of at least one penetration is 0.93 (0.999). These results are not consistent with the exploration evidence. YM is one of the most intensively studied places on Earth. Over 20 yrs of studies have included surface and subsurface mapping, geophysical surveys, construction of 10+ km of tunnels in the mountain, drilling of many boreholes, and construction of many pits (DOE, Site Recommendation, 2002). It seems unlikely that multiple dikes could exist within the proposed repository footprint and escape detection. A dike complex dated 11.7 Ma (Smith et al, UNLV, 1997) or 10 Ma (Carr and Parrish, 1985) does exist NW of YM and west of the main Solitario Canyon Fault. These basalts intruded the Tiva Canyon Tuff (12.7 Ma) in an epoch of caldera-forming pyroclastic eruptions that ended millions of yrs ago. We would conclude that basaltic volcanism related to Miocene silicic volcanism may also have ended. Given the nondetection of dikes in the potential repository, we can use a Poisson model to estimate an

  4. Controls on melting at spreading ridges from correlated abyssal peridotite - mid-ocean ridge basalt compositions

    NASA Astrophysics Data System (ADS)

    Regelous, Marcel; Weinzierl, Christoph G.; Haase, Karsten M.

    2016-09-01

    Variations in the volume and major element composition of basalt erupted along the global mid-ocean ridge system have been attributed to differences in mantle potential temperature, mantle composition, or plate spreading rate and lithosphere thickness. Abyssal peridotites, the residues of mantle melting beneath mid-ocean ridges, provide additional information on the melting process, which could be used to test these hypotheses. We compiled a global database of abyssal peridotite compositions averaged over the same ridge segments defined by Gale et al. (2013). In addition, we calculated the distance of each ridge segment to the nearest hotspots. We show that Cr# in spinel in abyssal peridotites is negatively correlated with Na90 in basalts from the same ridge segments on a global scale. Ridge segments that erupt basalts apparently produced by larger degrees of mantle melting are thus underlain by peridotites from which large amounts of melt have been extracted. We find that near-ridge hotspots have a more widespread influence on mid-ocean ridge basalt (MORB) composition and ridge depth than previously thought. However, when these hotspot-influenced ridge segments are excluded, the remaining segments show clear relationships between MORB composition, peridotite composition, and ridge depth with spreading rate. Very slow-spreading ridges (<20 mm/yr) are deeper, erupt basalts with higher Na90, Al90, K90/Ti90, and lower Fe90, Ca90/Al90, and expose peridotites with lower Cr# than intermediate and fast-spreading ridges. We show that away from hotspots, the spreading-rate dependence of the maximum degree of mantle melting inferred from Cr# in peridotites (FM) and the bulk degree of melting inferred from Na90 in basalts (FB) from the same ridge segments is unlikely to be due to variations in mantle composition. Nor can the effects of dynamic mantle upwelling or incomplete melt extraction at low spreading rates satisfactorily explain the observed compositions of abyssal

  5. Decoding the Margins: What Can the Fractal Geometry of Basaltic Flow Margins Tell Us?

    NASA Astrophysics Data System (ADS)

    Schaefer, E. I.; Hamilton, C.; Neish, C.; Beard, S. P.; Bramson, A. M.; Sori, M.; Rader, E. L.

    2016-12-01

    Studying lava flows on other planetary bodies is essential to characterizing eruption styles and constraining the bodies' thermal evolution. Although planetary basaltic flows are common, many key features are not resolvable in orbital imagery. We are thus developing a technique to characterize basaltic flow type, sub-meter roughness, and sediment mantling from these data. We will present the results from upcoming fieldwork at Craters of the Moon National Monument and Preserve with FINESSE (August) and at Hawai'i Volcanoes National Park (September). We build on earlier work that showed that basaltic flow margins are approximately fractal [Bruno et al., 1992; Gaonac'h et al., 1992] and that their fractal dimensions (D) have distinct `a`ā and pāhoehoe ranges under simple conditions [Bruno et al., 1994]. Using a differential GPS rover, we have recently shown that the margin of Iceland's 2014 Holuhraun flow exhibits near-perfect (R2=0.9998) fractality for ≥24 km across dm to km scales [Schaefer et al., 2016]. This finding suggests that a fractal-based technique has significant potential to characterize flows at sub-resolution scales. We are simultaneously seeking to understand how margin fractality can be modified. A preliminary result for an `a'ā flow in Hawaii's Ka'ū Desert suggests that although aeolian mantling obscures the original flow margin, the apparent margin (i.e., sediment-lava interface) remains fractal [Schaefer et al., 2015]. Further, the apparent margin's D is likely significantly modified from that of the original margin. Other factors that we are exploring include erosion, transitional flow types, and topographic confinement. We will also rigorously test the intriguing possibility that margin D correlates with the sub-meter Hurst exponent H of the flow surface, a common metric of roughness scaling [e.g., Shepard et al., 2001]. This hypothesis is based on geometric arguments [Turcotte, 1997] and is qualitatively consistent with all results so far.

  6. Pliocene-Quaternary basalts from the Harrat Tufail, western Saudi Arabia: Recycling of ancient oceanic slabs and generation of alkaline intra-plate magma

    NASA Astrophysics Data System (ADS)

    Bakhsh, Rami A.

    2015-12-01

    Harrat Tufail represents a Caenozoic basalt suite at the western margin of the Arabian plate. This rift-related suite includes voluminous Quaternary non-vesicular basalt (with fragments of earlier Pliocene vesicular flow) that forms a cap sheet over Miocene rhyolite and minor vesicular basalt. The contact between rhyolite and the basaltic cap is erosional with remarkable denudations indicating long time gap between the felsic and mafic eruptions. The geochemical data prove alkaline, sodic and low-Ti nature of the olivine basalt cap sheet. The combined whole-rock and mineral spot analyses by the electron microprobe (EMPA) suggest magma generation from low degree of partial melting (∼5%) from spinel- and garnet-lherzolite mantle source. Derivation from a mantle source is supported by low Na content in clinopyroxene (ferroan diopside) whereas high Mg content in ilmenite is an evidence of fractional crystallization trajectory. Accordingly, the Pliocene basaltic cap of Harrat Tufail is a product of mantle melt that originates by recycling in the asthenosphere during subduction of ancient oceanic slab(s). The whole-rock chemistry suggests an ancient ocean island basaltic slab (OIB) whereas the EMPA of Al-rich spinel inclusions in olivine phenocrysts are in favour of a mid-ocean ridge basaltic source (MORB). Calculations of oxygen fugacity based on the composition of co-existing Fe-Ti oxide suggest fluctuation from highly to moderately oxidizing conditions with propagation of crystallization (log10 fO2 from -22.09 to -12.50). Clinopyroxene composition and pressure calculation indicates low-pressure (0.4-2 kbar). Cores of olivine phenocrysts formed at highest temperature (1086-1151 °C) whereas the rims and olivine micro-phenocrysts formed at 712-9-796 °C which is contemporaneous to formation of clinopyroxene at 611-782 °C. Fe-Ti oxides crystallized over a long range (652-992 °C) where it started to form at outer peripheries of olivine phenocrysts and as interstitial

  7. The geochemical characteristics of basaltic and acidic volcanics around the Myojin depression in the Izu arc, Japan

    NASA Astrophysics Data System (ADS)

    Haraguchi, S.; Tamaki, K.; Kato, Y.; Machida, S.

    2012-12-01

    Around the Myojin Depression, westside of the Myojin-sho caldera in the Izu arc, seamounts are circular distributed and hydrothermal activity with sulfide deposition are found from the Baiyonneise Caldera, one of seamounts at the northern side. Some knoll chains distribute in the eastside of the Myojin Depression, and connect between these knolls. This circulator distribution of seamounts and connected knoll chains considered to the dykes are similar to the geographical features of the Kuroko Depositions in the Hokuroku Region, Northwest Japan (Tanahashi et al., 2008). Hydrothermal activities are also found from the other rifts (Urabe and Kusakabe 1990). Based on these observations, the cruise KT09-12 by R/V Tansei-Maru, Ocean Research Institute (ORI), University of Tokyo, investigated in the Myojin Rift. During the cruise, basaltic to dacitic volcanic rocks and some acidic plutonic rocks were recovered by dredge system. Herein, we present petrographical and chemical analyses of these rock samples with sample dredged by the cruise MW9507 by R/V MOANA WAVE, and consider the association with hydrothermal activities and depositions. Dredges during the cruise KT09-12 were obtained at the Daini-Beiyonneise Knoll at the northern side, Daisan-Beiyonneise Knoll at the southern side, and the Dragonborn Hill, small knoll chains, at the southeastern side of the depression. Many volcanic rocks are basalt, and recovered mainly from the Dragonborn Hill. Andesite and dacite was recovered from the Daini- and the Daini-Bayonneise Knoll. Tonalites were recovered from the Daisan-Bayonneise Knoll. Basalts from the Dragonborn Hill show less than 50% of SiO2 and more than 6 wt% and 0.88 wt% of MgO and TiO2 content. Basalts from the rift zone show depleted in the volcanic front (VF) side and enriched in the reararc (RA) side. The Dragonborn Hill is distributed near the VF, and basalts show depleted geochemical characteristics. However, these characteristics are different from the basalts

  8. East Mariana Basin tholeiites: Cretaceous intraplate basalts or rift basalts related to the Ontong Java plume?

    USGS Publications Warehouse

    Castillo, P.R.; Pringle, M.S.; Carlson, R.W.

    1994-01-01

    Studies of seafloor magnetic anomaly patterns suggest the presence of Jurassic oceanic crust in a large area in the western Pacific that includes the East Mariana, Nauru and Pigafetta Basins. Sampling of the igneous crust in this area by the Deep Sea Drilling Program (DSDP) and the Ocean Drilling Program (ODP) allows direct evaluation of the age and petrogenesis of this crust. ODP Leg 129 drilled a 51 m sequence of basalt pillows and massive flows in the central East Mariana Basin. 40Ar 39Ar ages determined in this study for two Leg 129 basalts average 114.6 ?? 3.2 Ma. This age is in agreement with the Albian-late Aptian paleontologic age of the overlying sediments, but is distinctively younger than the Jurassic age predicted by magnetic anomaly patterns in the basin. Compositionally, the East Mariana Basin basalts are uniformly low-K tholeiites that are depleted in highly incompatible elements compared to moderately incompatible ones, which is typical of mid-ocean ridge basalts (MORB) erupted near hotspots. The Sr, Nd and Pb isotopic compositions of the tholeiites ( 87Sr 86Srinit = 0.70360-0.70374; 143Nd 144Ndinit = 0.512769-0.512790; 206Pb 204Pbmeas = 18.355-18.386) also overlap with some Indian Ocean Ridge MORB, although they are distinct from the isotopic compositions of Jurassic basalts drilled in the Pigafetta Basin, the oldest Pacific MORB. The isotopic compositions of the East Mariana Basin tholeiites are also similar to those of intraplate basalts, and in particular, to the isotopic signature of basalts from the nearby Ontong Java and Manihiki Plateaus. The East Mariana Basin tholeiites also share many petrologic and isotopic characteristics with the oceanic basement drilled in the Nauru Basin at DSDP Site 462. In addition, the new 110.8 ?? 1.0 Ma 40Ar 39Ar age for two flows from the bottom of Site 462 in the Nauru Basin is indistinguishable from the age of the East Mariana Basin flows. Thus, while magnetic anomaly patterns predict that the igneous

  9. Testing the Origins of Basalt Fragments fro Apollo 16

    NASA Technical Reports Server (NTRS)

    Donohue, P. H.; Stevens, R. E.; Neal, C. R.; Zeigler, R. A.

    2013-01-01

    Several 2-4 mm regolith fragments of basalt from the Apollo 16 site were recently described by [1]. These included a high-Ti vitrophyric basalts (60603,10-16) and one very-low-titanium (VLT) crystalline basalt (65703,9-13). As Apollo 16 was the only highlands sample return mission distant from the maria, identification of basaltic samples at the site indicates input from remote sites via impact processes [1]. However, distinguishing between impact melt and pristine basalt can be notoriously difficult and requires significant sample material [2-6]. The crystal stratigraphy method utilizes essentially non-destructive methods to make these distinctions [7,8]. Crystal stratigraphy combines quantitative petrography in the form of crystal size distributions (CSDs) coupled with mineral geochemistry to reveal the petrogenetic history of samples. The classic CSD plot of crystal size versus population density can reveal insights on growth/cooling rates, residence times, and magma history which in turn can be used to evaluate basaltic vs impact melt origin [7-9]. Electron microprobe (EMP) and laser ablation (LA)-ICP-MS analyses of mineral phases complement textural investigations. Trace element variations document subtle changes occurring during the formation of the samples, and are key in the interpretation and preservation of this rare lunar sample collection.

  10. Low Temperature Reaction Experiments Between Basalt, Seawater and CO2, and Implications for Carbon Dioxide Sequestration in Deep-Sea Basalts

    NASA Astrophysics Data System (ADS)

    Marieni, C.; Teagle, D. A. H.; Matter, J. M.

    2015-12-01

    Reactions between divalent cation-rich silicate minerals and CO2-bearing fluids to form (Ca, Mg, Fe) carbonate minerals could facilitate the safe and permanent storage of anthropogenic carbon dioxide. Deep-sea basalt formations provide large storage reservoir capacities and huge potential sources of Ca2+, Mg2+ and Fe2+. However, better knowledge of silicate mineral reaction rates with carbonate-bearing fluids is required to understand the overall carbon storage potential of these reservoirs. This study investigates key reactions associated with progressive seawater-rock interaction using far-from equilibrium dissolution experiments. The experiments were carried out at 40 ˚C and at constant CO2 partial pressure of 1 atm. Mid-ocean ridge basalts from the Juan de Fuca and Mid-Atlantic Ridges and a gabbro from the Troodos ophiolite were reacted with 500 mL of CO2-charged seawater using thick-walled fluorinated polypropylene bottles combined with rubber stoppers. The starting material was crushed, sieved and thoroughly cleaned to remove fine particles (< 63 μm) to ensure a particle grain size between 63 and 125 μm for all the samples. The seawater chemistry and the pH were monitored throughout the experiments by daily analysis of 1 mL of fluid. The pH increased rapidly from 4.8 to 5.0 before stabilizing at 5.1 after 10 days of reaction time. The analysis of anions (S, Cl) highlighted a substantial evaporation (up to 15 %) during the experiments, requiring a correction factor for the measured dissolved ion concentrations. Evaporation corrected silicon (Si) and calcium (Ca) concentrations in the seawater increased by 5900 % and 14 %, resulting in total dissolved Si and Ca from basalt of 0.3 % and 2.4 %, respectively. The results are comparable with literature data for fresh water experiments conducted on basaltic glass at higher temperature or pressure, illustrating the considerable potential of the mineral sequestration of CO2 in submarine basalts.

  11. Phase relations of a simulated lunar basalt as a function of oxygen fugacity, and their bearing on the petrogenesis of the Apollo 11 basalts

    USGS Publications Warehouse

    Tuthill, R.L.; Sato, M.

    1970-01-01

    A glass of Apollo 11 basalt composition crystallizing at 1 atm at low f{hook}02 showed the following crystallization sequence; ferropseudobrookite at 1210??C, olivine at 1200??C, ilmenite and plagioclase at 1140??C, clinopyroxene at 1113??C. Ferropseudobrookite and olivine have a reaction relation to the melt. This sequence agrees with that assumed on textural grounds for some Apollo 11 basalts. It also indicates that the Apollo 11 basalts cannot have been modified by low-pressure fractionation. ?? 1970.

  12. K-Rich Basaltic Sources beneath Ultraslow Spreading Central Lena Trough in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ling, X.; Snow, J. E.; Li, Y.

    2016-12-01

    Magma sources fundamentally influence accretion processes at ultraslow spreading ridges. Potassium enriched Mid-Ocean Ridge Basalt (K-MORB) was dredged from the central Lena Trough (CLT) in the Arctic Ocean (Nauret et al., 2011). Its geochemical signatures indicate a heterogeneous mantle source with probable garnet present under low pressure. To explore the basaltic mantle sources beneath the study area, multiple models are carried out predicting melting sources and melting P-T conditions in this study. P-T conditions are estimated by the experimental derived thermobarometer from Hoang and Flower (1998). Batch melting model and major element model (AlphaMELTs) are used to calculate the heterogeneous mantle sources. The modeling suggests phlogopite is the dominant H2O-K bearing mineral in the magma source. 5% partial melting of phlogopite and amphibole mixing with depleted mantle (DM) melt is consistent with the incompatible element pattern of CLT basalt. P-T estimation shows 1198-1212oC/4-7kbar as the possible melting condition for CLT basalt. Whereas the chemical composition of north Lena Trough (NLT) basalt is similar to N-MORB, and the P-T estimation corresponds to 1300oC normal mantle adiabat. The CLT basalt bulk composition is of mixture of 40% of the K-MORB endmember and an N-MORB-like endmember similar to NLT basalt. Therefore the binary mixing of the two endmembers exists in the CLT region. This kind of mixing infers to the tectonic evolution of the region, which is simultaneous to the Arctic Ocean opening.

  13. Bioleaching of ilmenite and basalt in the presence of iron-oxidizing and iron-scavenging bacteria

    NASA Astrophysics Data System (ADS)

    Navarrete, Jesica U.; Cappelle, Ian J.; Schnittker, Kimberlin; Borrok, David M.

    2013-04-01

    Bioleaching has been suggested as an alternative to traditional mining techniques in extraterrestrial environments because it does not require extensive infrastructure and bulky hardware. In situ bioleaching of silicate minerals, such as those found on the moon or Mars, has been proposed as a feasible alternative to traditional extraction techniques that require either extreme heat and/or substantial chemical treatment. In this study, we investigated the biotic and abiotic leaching of basaltic rocks (analogues to those found on the moon and Mars) and the mineral ilmenite (FeTiO3) in aqueous environments under acidic (pH ˜ 2.5) and circumneutral pH conditions. The biological leaching experiments were conducted using Acidithiobacillus ferrooxidans, an iron (Fe)-oxidizing bacteria, and Pseudomonas mendocina, an Fe-scavenging bacteria. We found that both strains were able to grow using the Fe(II) derived from the tested basaltic rocks and ilmenite. Although silica leaching rates were the same or slightly less in the bacterial systems with A. ferrooxidans than in the abiotic control systems, the extent of Fe, Al and Ti released (and re-precipitated in new solid phases) was actually greater in the biotic systems. This is likely because the Fe(II) leached from the basalt was immediately oxidized by A. ferrooxidans, and precipitated into Fe(III) phases which causes a change in the equilibrium of the system, i.e. Le Chatelier's principle. Iron(II) in the abiotic experiment was allowed to build up in solution which led to a decrease in its overall release rate. For example, the percentage of Fe, Al and Ti leached (dissolved + reactive mineral precipitates) from the Mars simulant in the A. ferrooxidans experimental system was 34, 41 and 13% of the total Fe, Al and Ti in the basalt, respectively, while the abiotic experimental system released totals of only 11, 25 and 2%. There was, however, no measurable difference in the amounts of Fe and Ti released from ilmenite in the

  14. Thermal infrared spectroscopy and modeling of experimentally shocked basalts

    USGS Publications Warehouse

    Johnson, J. R.; Staid, M.I.; Kraft, M.D.

    2007-01-01

    New measurements of thermal infrared emission spectra (250-1400 cm-1; ???7-40 ??m) of experimentally shocked basalt and basaltic andesite (17-56 GPa) exhibit changes in spectral features with increasing pressure consistent with changes in the structure of plagioclase feldspars. Major spectral absorptions in unshocked rocks between 350-700 cm-1 (due to Si-O-Si octahedral bending vibrations) and between 1000-1250 cm-1 (due to Si-O antisymmetric stretch motions of the silica tetrahedra) transform at pressures >20-25 GPa to two broad spectral features centered near 950-1050 and 400-450 cm-1. Linear deconvolution models using spectral libraries composed of common mineral and glass spectra replicate the spectra of shocked basalt relatively well up to shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation in plagioclase. Inclusion of shocked feldspar spectra in the libraries improves fits for more highly shocked basalt. However, deconvolution models of the basaltic andesite select shocked feldspar end-members even for unshocked samples, likely caused by the higher primary glass content in the basaltic andesite sample.

  15. How thick are lunar mare basalts

    NASA Technical Reports Server (NTRS)

    Hoerz, F.

    1978-01-01

    It is argued that De Hon's estimates of the thickness of lunar mare basalts, made by analyzing 'ghost' craters on mare surfaces, were inflated as the result of the crater morphometric data of Pike (1977) to reconstruct rim heights of degraded craters. Crater rim heights of 82 randomly selected highland craters of various states of degradation were determined, and median rim height was compared to that of corresponding fresh impact structures. Results indicate that the thickness estimates of De Hon may be reduced by a factor of 2, and that the total volume of mare basalt produced throughout lunar history could be as little as 1-2 million cubic kilometers. A survey of geochemical and petrographic evidence indicates that lateral transport of regolith components over distances of much greater than 10 km is relatively inefficient; it is suggested that vertical mixing of a highland substrate underlying the basaltic fill may have had a primordial role in generating the observed mare width distributions and high concentrations of exotic components in intrabasin regoliths.

  16. Source, evolution and emplacement of Permian Tarim Basalts: Evidence from U-Pb dating, Sr-Nd-Pb-Hf isotope systematics and whole rock geochemistry of basalts from the Keping area, Xinjiang Uygur Autonomous region, northwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Dayu; Zhou, Taofa; Yuan, Feng; Jowitt, Simon M.; Fan, Yu; Liu, Shuai

    2012-04-01

    Permian basalts distribute at least 250,000 km2, and underlie the southwest Tarim Basin in Xinjiang Uygur Autonomous region, northwest China. This vast accumulation of basalt is the main part of the Tarim Large Igneous Province (LIP). The basaltic units in the Lower Permian Kupukuziman and Kaipaizileike Formations in the Keping area, Tarim Basin; were the best exposure of the Permian basalt sequence in the basin. LA-ICP-MS U-Pb dating of zircon from the basal basaltic unit in the section gives an age of 291.9 ± 2.2 Ma (MSWD = 0.30, n = 17); this age, combined with previously published geochronological data, indicates that the basalts in the Tarim Basin were emplaced between 292 Ma and 272 Ma, with about 90% of the basalts being emplaced between 292 and 287 Ma. Basalts from the Keping area have high FeOT (10.8-18.6 wt.%), low Mg#s (0.26-0.60), and exhibit primitive mantle normalized patterns with positive Pb, P and Ti but negative Zr, Y and Ta anomalies. The basalts from both formations have similar 206Pb/204Pb (18.192-18.934), 207Pb/204Pb (15.555-15.598) and 208Pb/204Pb (38.643-38.793) ratios. The basalts also have high ɛSr(t) (45.7-62.1), low ɛNd(t) (-3.6 to -2.2) and low zircon ɛHf(t) (-4.84 to -0.65) values. These characteristics are typical of alkali basalts and suggest that the basalts within the Tarim Basin were derived from an OIB-type mantle source and interacted with enriched mantle (EMI-type) before emplacement. Rare earth element systematics indicate that the parental melts for the basalts were high-degree partial melts derived from garnet lherzolite mantle at the base of the lithosphere. Prior to emplacement, the Tarim Permian Basalts (TPB) underwent fractional crystallization and assimilated crustal material; the basalts were finally emplaced during crustal extension in an intra-plate setting. The wide distribution, deep source and high degree partial melting of the TPB was consistent with a mantle plume origin. The TPB and other coeval igneous

  17. Rb-Sr and Sm-Nd chronology and genealogy of mare basalts from the Sea of Tranquility

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.; Depaolo, D. J.; Wasserburg, G. J.

    1977-01-01

    Rb-Sr and Sm-Nd ages of two Apollo 11 mare basalts, high-K basalt 10072 and low-K basalt 10062, are reported. Rb-Sr, Sm-Nd, and Ar-40-Ar-39 ages are in good agreement and indicate an extensive time interval for filling of the Sea of Tranquility, presumably by thin lava flows, in agreement with similar observations for the Ocean of Storms. Initial Sr and Nd isotopic compositions on Apollo 11 basalts reveal at least two parent sources producing basalts. The Sm-Nd isotopic data demonstrate that low-K and high-Ti basalts from Apollo 11 and 17 derived from distinct reservoirs, while low-Ti Apollo 15 mare basalt sources have Sm/Nd similar to the sources of Apollo 11 basalts. Groupings of mare basalt based on Ti content and on isotopic data do not coincide.

  18. Northwest Africa 5298: A Basaltic Shergottite

    NASA Technical Reports Server (NTRS)

    Hui, Hejiu; Peslier, Anne; Lapen, Thomas J.; Brandon, Alan; Shafer, John

    2009-01-01

    NWA 5298 is a single 445 g meteorite found near Bir Gandouz, Morocco in March 2008 [1]. This rock has a brown exterior weathered surface instead of a fusion crust and the interior is composed of green mineral grains with interstitial dark patches containing small vesicles and shock melts [1]. This meteorite is classified as a basaltic shergottite [2]. A petrologic study of this Martian meteorite is being carried out with electron microprobe analysis and soon trace element analyses by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Oxygen fugacity is calculated from Fe-Ti oxides pairs in the sample. The data from this study constrains the petrogenesis of basaltic shergottites.

  19. Basaltic volcanism - The importance of planet size

    NASA Technical Reports Server (NTRS)

    Walker, D.; Stolper, E. M.; Hays, J. F.

    1979-01-01

    The volumetrically abundant basalts on the earth, its moon, and the eucrite parent planet all have chemical compositions that are controlled to a large extent by dry, low-pressure, crystal-liquid equilibria. Since this generalization is valid for these three planetary bodies, we infer that it may also apply to the other unsampled terrestrial planets. Other characteristics of basaltic volcanism show variations which appear to be related to planet size: the eruption temperatures, degrees of fractionation, and chemical variety of basalts and the endurance of basaltic volcanism all increase with planet size. Although the processes responsible for chemical differences between basalt suites are known, no simple systematization of the chemical differences between basalts from planet to planet has emerged.

  20. Stability of Basalt plus Anhydrite plus Calcite at HP-HT: Implications for Venus, the Earth and Mars

    NASA Technical Reports Server (NTRS)

    Martin, A. M.; Righter, K.; Treiman, A. H.

    2010-01-01

    "Canali" observed at Venus surface by Magellan are evidence for very long melt flows, but their composition and origin remain uncertain. The hypothesis of water-rich flow is not reasonable regarding the temperature at Venus surface. The length of these channels could not be explained by a silicate melt composition but more likely, by a carbonate-sulfate melt which has a much lower viscosity (Kargel et al 1994). One hypothesis is that calcite CaCO3 and anhydrite CaSO4 which are alteration products of basalts melted during meteorite impacts. A famous example recorded on the Earth (Chicxulub) produced melt and gas rich in carbon and sulfur. Calcite and sulfate evaporites are also present on Mars surface, associated with basalts. An impact on these materials might release C- and S-rich melt or fluid. Another type of planetary phenomenon (affecting only the Earth) might provoke a high pressure destabilization of basalt+anhydrite+calcite. Very high contents of C and S are measured in some Earth s magmas, either dissolved or in the form of crystals (Luhr 2008). As shown by the high H content and high fO2 of primary igneous anhydrite-bearing lavas, the high S content in their source may be explained by subduction of an anhydrite-bearing oceanic crust, either directly (by melting followed by eruption) or indirectly (by release of S-rich melt or fluid that metasomatize the mantle) . Calcite is a major product of oceanic sedimentation and alteration of the crust. Therefore, sulfate- and calcite-rich material may be subducted to high pressures and high temperatures (HP-HT) and release S- and C-rich melts or fluids which could influence the composition of subduction zone lavas or gases. Both phenomena - meteorite impact and subduction - imply HP-HT conditions - although the P-T-time paths are different. Some HP experimental/theoretical studies have been performed on basalt/eclogite, calcite and anhydrite separately or on a combination of two. In this study we performed piston

  1. Hf-Nd Isotopes in West Philippine Basin Basalts: Results from International Ocean Discovery Program (IODP) Site U1438 and Implications for the Early History of the Izu-Bonin-Mariana (IBM) Subduction System

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G. M.; Hocking, B.; Bizimis, M.; Hickey-Vargas, R.; Ishizuka, O.; Bogus, K.; Arculus, R. J.

    2015-12-01

    Drilling at IODP Site U1438, located immediately west of Kyushu-Palau Ridge (KPR), the site of IBM subduction initiation, penetrated 1460 m of volcaniclastic sedimentary rock and 150 m of underlying basement. Biostratigraphic controls indicate a probable age for the oldest sedimentary rocks at around 55 Ma (51-64 Ma - Arculus et al., Nat Geosci in-press). This is close to the 48-52 Ma time period of IBM subduction initiation, based on studies in the forearc. There, the first products of volcanism are tholeiitic basalts termed FAB (forearc basalt), which are more depleted than average MORB and show subtle indicators of subduction geochemical enrichment (Reagan et al., 2010 - Geochem Geophy Geosy). Shipboard data indicate that Site U1438 basement basalts share many characteristics with FABs, including primitive major elements (high MgO/FeO*) and strongly depleted incompatible element patterns (Ti, Zr, Ti/V and Zr/Y below those of average MORB). Initial results thus indicate that FAB geochemistry may have been produced not only in the forearc, but also in backarc locations (west of the KPR) at the time of subduction initiation. Hf-Nd isotopes for Site 1438 basement basalts show a significant range of compositions from ɛNd of 7.0 to 9.5 and ɛHf of 14.5 to 19.8 (present-day values). The data define a well-correlated and steep array in Hf-Nd isotope space. Relatively radiogenic Hf compared to Nd indicates an Indian Ocean-type MORB source, but the dominant signature, with ɛHf >16.5, is more radiogenic than most Indian MORB. The pattern through time is from more-to-less radiogenic and more variable Hf-Nd isotopes within the basement section. This pattern culminates in basaltic andesite sills, which intrude the lower parts of the sedimentary section. The sills have the least radiogenic compositions measured so far (ɛNd ~6.6, ɛHf ~13.8), and are similar to those of boninites of the IBM forearc and modern IBM arc and reararc rocks. The pattern within the basement

  2. Sulfur in Hydrous, Oxidized Basaltic Magmas: Phase Equilibria and Melt Solubilities

    NASA Astrophysics Data System (ADS)

    Pichavant, M.; Scaillet, B.; di Carlo, I.; Rotolo, S.; Metrich, N.

    2006-05-01

    Basaltic magmas from subduction zone settings are typically S-rich and may be the ultimate source of sulfur in vapor phases emitted during eruptions of more silicic systems. To understand processes of sulfur recycling in subduction zones, the behaviour of S in hydrous, oxidized, mafic arc magmas must be known. Although experimental data on S-bearing basaltic melts are available for dry conditions, and under both reduced and oxidized fO2, no study has yet examined the effect of S in hydrous mafic melts. In this work, 3 starting compositions were investigated, a basaltic andesite, a K basalt and a picritic basalt. For each composition, experimental data for S-added (1 wt % elemental sulfur) and S-free charges were obtained under similar P-T- H2O-fO2. All experiments were performed at 4 kbar and at either 950 ° C (basaltic andesite), 1100 ° C (K basalt) or 1150 ° C (picritic basalt). These were carried out in an internally heated vessel pressurized with Ar-H2 mixtures and fitted with a drop-quench device, and lasted for between 15 and 99 h. Either Au (950 ° C) or AuPd alloys (1100 and 1150 ° C) were used as containers. These latter perform satisfactorily under strongly oxidizing conditions, i.e., for fO2 above NNO+1 at 1100 and 1150 ° C. Below NNO+1, Pd- Au-S-Fe phases appear in the charges, suggesting extensive interaction between S and the capsule material. Experimental redox conditions, determined from Ni-Pd-O sensors, ranged between NNO+1.3 to +4.1 (basaltic andesite), +0.6 to +2.0 (K basalt), and +0.3 to +3.6 (picritic basalt). H2O concentrations in melt ranged from 8.2 wt % (basaltic andesite), decreasing to 2.2-3.9 wt % (K basalt) and 2.5-5.0 wt % (picritic basalt). All 3 compositions studied crystallize anhydrite and Fe-Ni-S-O sulphide as saturating S-bearing phases, anhydrite at high fO2 and sulphide at lower fO2, although melt composition also influences their stability. Anhydrite is present at a fO2 as low as NNO+1.5 in the K basalt. In the picritic

  3. Suitability of Spatial Interpolation Techniques in Varying Aquifer Systems of a Basaltic Terrain for Monitoring Groundwater Availability

    NASA Astrophysics Data System (ADS)

    Katpatal, Y. B.; Paranjpe, S. V.; Kadu, M. S.

    2017-12-01

    Geological formations act as aquifer systems and variability in the hydrological properties of aquifers have control over groundwater occurrence and dynamics. To understand the groundwater availability in any terrain, spatial interpolation techniques are widely used. It has been observed that, with varying hydrogeological conditions, even in a geologically homogenous set up, there are large variations in observed groundwater levels. Hence, the accuracy of groundwater estimation depends on the use of appropriate interpretation techniques. The study area of the present study is Venna Basin of Maharashtra State, India which is a basaltic terrain with four different types of basaltic layers laid down horizontally; weathered vesicular basalt, weathered and fractured basalt, highly weathered unclassified basalt and hard massive basalt. The groundwater levels vary with topography as different types of basalts are present at varying depths. The local stratigraphic profiles were generated at different types of basaltic terrains. The present study aims to interpolate the groundwater levels within the basin and to check the co-relation between the estimated and the observed values. The groundwater levels for 125 observation wells situated in these different basaltic terrains for 20 years (1995 - 2015) have been used in the study. The interpolation was carried out in Geographical Information System (GIS) using ordinary kriging and Inverse Distance Weight (IDW) method. A comparative analysis of the interpolated values of groundwater levels is carried out for validating the recorded groundwater level dataset. The results were co-related to various types of basaltic terrains present in basin forming the aquifer systems. Mean Error (ME) and Mean Square Errors (MSE) have been computed and compared. It was observed that within the interpolated values, a good correlation does not exist between the two interpolation methods used. The study concludes that in crystalline basaltic

  4. Sm-Nd and Rb-Sr Isotopic Studies of Meteorite Kalahari 009: An Old VLT Mare Basalt

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.; Bischoff, A.

    2008-01-01

    Lunar meteorite Kalahari 009 is a fragmental basaltic breccia contain ing various very-low-Ti (VLT) mare basalt clasts embedded in a fine-g rained matrix of similar composition. This meteorite and lunar meteorite Kalahari 008, an anorthositic breccia, were suggested to be paired mainly due to the presence of similar fayalitic olivines in fragment s found in both meteorites. Thus, Kalahari 009 probably represents a VLT basalt that came from a locality near a mare-highland boundary r egion of the Moon, as compared to the typical VLT mare basalt samples collected at Mare Crisium during the Luna-24 mission. The concordant Sm-Nd and Ar-Ar ages of such a VLT basalt (24170) suggest that the extrusion of VLT basalts at Mare Crisium occurred 3.30 +/- 0.05 Ga ag o. Previous age results for Kalahari 009 range from approximately 4.2 Ga by its Lu-Hf isochron age to 1.70?0.04 Ga of its Ar-Ar plateau ag e. However, recent in-situ U-Pb dating of phosphates in Kalahari 009 defined an old crystallization age of 4.35+/- 0.15 Ga. The authors su ggested that Kalahari 009 represents a cryptomaria basalt. In this r eport, we present Sm-Nd and Rb-Sr isotopic results for Kalahari 009, discuss the relationship of its age and isotopic characteristics to t hose of other L-24 VLT mare basalts and other probable cryptomaria ba salts represented by Apollo 14 aluminous mare basalts, and discuss it s petrogenesis.

  5. Does the presence of bacteria effect basaltic glass dissolution rates? 1: Dead Pseudomonas reactants

    NASA Astrophysics Data System (ADS)

    Stockmann, Gabrielle J.; Shirokova, Liudmila S.; Pokrovsky, Oleg S.; Oelkers, Eric H.; Benezeth, Pascale

    2010-05-01

    Basaltic glass and crystalline basalt formations in Iceland have been suggested for industrial CO2 storage due to their porous and permeable properties and high reactivity. Acid CO2-saturated waters in contact with basaltic glass will lead to rapid dissolution of the glass and release of divalent cations, (Ca2+, Mg2+, Fe2+) that can react to form stable carbonates and thereby trap the CO2. However, the basalt formations in Iceland not only contains glass and mineral assemblages, but also host microbiological communities that either by their presence or by active involvement in chemical reactions could affect the amount of basaltic glass being dissolved and CO2 being trapped. Samples of natural bacteria communities from the CO2 storage grounds in Iceland were collected, separated, and purified using agar plate technique and cultured under laboratory conditions in nutrient broth-rich media. Heterotrophic aerobic Gram-negative strain of Pseudomonas reactants was selected for a series of flow-through experiments aimed at evaluation of basaltic glass dissolution rate in the presense of increasing amounts of dead bacteria and their lysis products. The experiments were carried out using mixed-flow reactors at pH 4, 6, 8 and 10 at 25 °C. Each of the four reactors contained 1 gram of basaltic glass of the size fraction 45-125 μm. This glass was dissolved in ~ 0.01 M buffer solutions (acetate, MES, bicarbonate and carbonate+bicarbonate mixture) of the desired pH. All experiments ran 2 months, keeping the flowrate and temperature stable and only changing the concentration of dead bacteria in the inlet solutions (from 0 to 430 mg/L). Experiments were performed in sterile conditions, and bacterial growth was prevented by adding NaN3 to the inlet solutions. Routine culturing of bacteria on the agar plates confirmed the sterility of experiments. Samples of outlet solutions were analyzed for major cations and trace elements by ICP-MS. Results demonstrate a slight decrease in the

  6. Mineralogy of the last lunar basalts: Results from Clementine

    USGS Publications Warehouse

    Staid, M.I.; Pieters, C.M.

    2001-01-01

    The last major phase of lunar volcanism produced extensive high-titanium mare deposits on the western nearside which remain unsampled by landing missions. The visible and near-infrared reflectance properties of these basalts are examined using Clementine multispectral images to better constrain their mineralogy. A much stronger 1 ??m ferrous absorption was observed for the western high-titanium basalts than within earlier maria, suggesting that these last major mare eruptions also may have been the most iron-rich. These western basalts also have a distinctly long-wavelength, 1 ??m ferrous absorption which was found to be similar for both surface soils and materials excavated from depth, supporting the interpretation of abundant olivine within these deposits. Spectral variation along flows within the Imbrium basin also suggests variations in ilmenite content along previously mapped lava flows as well as increasing olivine content within subsequent eruptions. Copyright 2001 by the American Geophysical Union.

  7. High-pressure phase relation of KREEP basalts: A clue for finding the lost Hadean crust?

    NASA Astrophysics Data System (ADS)

    Gréaux, Steeve; Nishi, Masayuki; Tateno, Shigehiko; Kuwayama, Yasuhiro; Hirao, Naohisa; Kawai, Kenji; Maruyama, Shigenori; Irifune, Tetsuo

    2018-01-01

    The phase relations, mineral chemistry and density of KREEP basalt were investigated at pressures of 12-125 GPa and temperatures up to 2810 K by a combination of large volume multi-anvil press experiments and in situ synchrotron X-ray diffraction measurements in a laser-heated diamond anvil cell. Our results showed that grossular-rich majorite garnet, liebermannite and Al-bearing stishovite are dominant in the upper-to-middle part of the upper mantle while in the lowermost transition zone a dense Ti-rich CaSiO3 perovskite exsoluted from the garnet, which becomes more pyropic with increasing pressure. At lower mantle conditions, these minerals transform into an assemblage of bridgmanite, Ca-perovskite, Al-stishovite, the new aluminium-rich (NAL) phase and the calcium-ferrite type (CF) phase. At pressures higher than 50 GPa, NAL phase completely dissolved into the CF phase, which becomes the main deposit of alkali metals in the lower mantle. The density of KREEP estimated from phase compositions obtained by energy dispersive X-ray spectroscopy (EDS) in scanning (SEM) and transmission (TEM) electron microscopes, was found substantially denser than pyrolite suggesting that the Earth primordial crust likely subducted deep into the Earth's mantle after or slightly before the final solidification of magma ocean at 4.53 Ga. Radiogenic elements U, Th and 40K which were abundant in the final residue of magma ocean were brought down along the subduction of the primordial crust and generate heat by decay after the settlement of the primordial crust on top of the CMB, suggesting the non-homogeneous distribution of radiogenic elements in the Hadean mantle with implications for the thermal history of the Earth.

  8. A mantle plume beneath California? The mid-Miocene Lovejoy Flood Basalt, northern California

    USGS Publications Warehouse

    Garrison, N.J.; Busby, C.J.; Gans, P.B.; Putirka, K.; Wagner, D.L.

    2008-01-01

    The Lovejoy basalt represents the largest eruptive unit identified in California, and its age, volume, and chemistry indicate a genetic affinity with the Columbia River Basalt Group and its associated mantle-plume activity. Recent field mapping, geochemical analyses, and radiometric dating suggest that the Lovejoy basalt erupted during the mid-Miocene from a fissure at Thompson Peak, south of Susanville, California. The Lovejoy flowed through a paleovalley across the northern end of the Sierra Nevada to the Sacramento Valley, a distance of 240 km. Approximately 150 km3 of basalt were erupted over a span of only a few centuries. Our age dates for the Lovejoy basalt cluster are near 15.4 Ma and suggest that it is coeval with the 16.1-15.0 Ma Imnaha and Grande Ronde flows of the Columbia River Basalt Group. Our new mapping and age dating support the interpretation that the Lovejoy basalt erupted in a forearc position relative to the ancestral Cascades arc, in contrast with the Columbia River Basalt Group, which erupted in a backarc position. The arc front shifted trenchward into the Sierran block after 15.4 Ma. However, the Lovejoy basalt appears to be unrelated to volcanism of the predominantly calc-alkaline Cascade arc; instead, the Lovejoy is broadly tholeiitic, with trace-element characteristics similar to the Columbia River Basalt Group. Association of the Lovejoy basalt with mid-Miocene flood basalt volcanism has considerable implications for North American plume dynamics and strengthens the thermal "point source" explanation, as provided by the mantle-plume hypothesis. Alternatives to the plume hypothesis usually call upon lithosphere-scale cracks to control magmatic migrations in the Yellowstone-Columbia River basalt region. However, it is difficult to imagine a lithosphere-scale flaw that crosses Precambrian basement and accreted terranes to reach the Sierra microplate, where the Lovejoy is located. Therefore, we propose that the Lovejoy represents a rapid

  9. Heat resistance study of basalt fiber material via mechanical tests

    NASA Astrophysics Data System (ADS)

    Gao, Y. Q.; Jia, C.; Meng, L.; Li, X. H.

    2017-12-01

    This paper focuses on the study of the relationship between the fracture strength of basalt rovings and temperature. Strong stretching performance of the rovings has been tested after the treatment at fixed temperatures but different heating time and then the fracture strength of the rovings exposed to the heating at different temperatures and cooled in different modes investigated. Finally, the fracture strength of the basalt material after the heat treatment was studied. The results showed that the room-temperature strength tends to decrease with an increase of the heat treatment time at 250 °C, but it has the local maximum after 2h heating. And the basalt rovings strength increased after the heat treatment up to 200 °C. It was 16.7 percent higher than the original strength. The strength depends not only on the temperature and duration of the heating, but also on the cooling mode. The value of the strength measured after cold water cooling was less by 6.3% compared with an ambient air cooling mode. The room-temperature breaking strength of the rovings heated at 200 °C and 100 °C for 2 hours each increased by about 14.6% with respect to unpretreated basalt rovings.

  10. A dynamic melting model for the origin of Apollo 15 olivine-normative and quartz-normative mare basalts

    NASA Technical Reports Server (NTRS)

    Vetter, Scott K.; Shervais, John W.

    1993-01-01

    Early studies of mare basalts from the Apollo 15 site established that two distinct groups are represented: the olivine-normative basalts (ONB) and the quartz-normative basalts (QNB). The ONB and QNB suites are distinguished petrographically by their phenocryst assemblages (the ONB's are olivine-phyric, the QNB's are generally pyroxene-phyric) and chemically by their major element compositions: the QNB's are higher in SiO2 and MgO/FeO, and lower in FeO and TiO2 than ONB's with similar MgO contents. Experimental data show that the QNB suite is derived from a more magnesian, olivine-normative parent magma, a conclusion which is supported by the recent discovery of high-SiO2 olivine-normative basalt clasts in breccia 15498. The high-SiO2 ONB's fall on olivine control lines with primitive QNB's, and least-squares mixing calculations are consistent with the high-SiO2 ONB's being parental to the more evolved QNB suite. These high-SiO2 ONB's are included as part of the 'QNB suite'. Our major element modeling results also are consistent with the conclusions of earlier studies which showed that the ONB and QNB suites cannot be related to one another by low pressure crystal fractionation. The combination of high Mg#, high SiO2, and low TiO2 in the QNB suite precludes a relationship to the ONB suite by simple removal of liquidus minerals (olivine and pigeonite). Despite these significant differences in petrography and major element composition, both groups have nearly identical trace element concentrations and chondrite-normalized abundance patterns. The major question to be addressed by any petrogenetic model for Apollo 15 mare basalts is how to form mare basalt suites with distinctly different major element characteristics but nearly identical trace element compositions. The similarity in trace element concentrations imply compositionally similar source regions and similar percent melting, but these conclusions are not easily reconciled with the observed differences in

  11. A chemical model for generating the sources of mare basalts - Combined equilibrium and fractional crystallization of the lunar magmasphere

    NASA Technical Reports Server (NTRS)

    Snyder, Gregory A.; Taylor, Lawrence A.; Neal, Clive R.

    1992-01-01

    A chemical model for simulating the sources of the lunar mare basalts was developed by considering a modified mafic cumulate source formed during the combined equilibrium and fractional crystallization of a lunar magma ocean (LMO). The parameters which influence the initial LMO and its subsequent crystallization are examined, and both trace and major elements are modeled. It is shown that major elements tightly constrain the composition of mare basalt sources and the pathways to their creation. The ability of this LMO model to generate viable mare basalt source regions was tested through a case study involving the high-Ti basalts.

  12. What Factors Control Platinum-Group Element (PGE) Abundances in Basalts From the Ontong Java Plateau?

    NASA Astrophysics Data System (ADS)

    Chazey, W. J.; Neal, C. R.

    2002-12-01

    Eleven samples encompassing four sites drilled by Ocean Drilling Program Leg 192 to the Ontong Java Plateau (OJP) were analyzed for major, trace and platinum-group (PGEs: Ir, Ru, Rh, Pt, and Pd) elements. Based on major and trace element chemistry, these are divided into two groups: a primitive group, which was newly discovered on Leg 192, and Kwaimbaita-type basalts, which are ubiquitous on the OJP (cf. Tejada et al., 2002, J. Pet. 43:449). The primitive group is relatively enriched in MgO, Ni, and Cr and relatively depleted in incompatible elements compared to the Kwaimbaita-type basalts. Petrography indicates that the fractionating phases during emplacement of both types of basalts were olivine and Cr-spinel +/- plagioclase +/- cpx. Normalized PGE profiles are fractionated, but exhibit a flattening between Ru and Ir and occasionally an enrichment in Ir. It has been shown that chromite can preferentially incorporate Os and Ru (Kd ?150) over Ir (Kd ?100), which may account for the Ir and Ru systematics. We do not consider sulfide to be a factor in fractionating the PGEs because it is either absent or present as a trace phase in these basalts and the OJP basalts are sulfur undersaturated (Michael and Cornell, 1996, EOS 77:714). Additionally, the primitive samples from the OJP also have Cu/Pd ratios (4500-8000) that are roughly similar to primitive mantle (7300), and have a generally flat transition from Pd to Y on a primitive mantle-normalized plot. It is unlikely that these samples reached sulfur saturation. The Kwaimbaita-type basalts have slightly elevated Cu/Pd ratios (9000-14000). While there are subtle differences between the PGE profiles of basalts from the Leg 192 drill cores compared to OJP basalts from subaerial outcrops in the Solomon Islands (e.g., the former have general lower Pt/Rh and higher Rh/Ru ratios), it is apparent that silicate and oxide phases are controlling the PGE profiles and abundances. For example, the six samples analyzed from Site

  13. The Effect of CO2 on Partial Reactive Crystallization of MORB-Eclogite-derived Basaltic Andesite in Peridotite and Generation of Silica-Undersaturated Basalts

    NASA Astrophysics Data System (ADS)

    Mallik, A.; Dasgupta, R.

    2012-12-01

    Recycled oceanic crust (MORB-eclogite) is considered to be the dominant heterogeneity in Earth's mantle. Because MORB-eclogite is more fusible than peridotite, siliceous partial melt derived from it must react with peridotite while the latter is still in the subsolidus state. Thus, studying such reactive process is important in understanding melting dynamics of the Earth's mantle. Reaction of MORB-eclogite-derived andesitic partial melt with peridotite can produce alkalic melts by partial reactive crystallization but these melts are not as silica-undersaturated as many natural basanites, nephelinites or melititites [1]. In this study, we constrain how dissolved CO2 in a siliceous MORB-eclogite-derived partial melt affects the reaction phase equilibria involving peridotite and can produce nephelinitic melts. Here we compare experiments on CO2-free [1] and 2.6 wt.% CO2 bearing andesitic melt+lherzolite mixtures conducted at 1375 °C and 3 GPa with added melt fraction of 8-50 wt.%. In both CO2-free and CO2-bearing experiments, melt and olivine are consumed and opx and garnet are produced, with the extent of modal change for a given melt-rock ratio being greater for the CO2-bearing experiments. While the residue evolves to a garnet websterite by adding 40% of CO2-bearing melt, the residue becomes olivine-free by adding 50% of the CO2-free melt. Opx mode increases from 12 to ~55 wt.% for 0 to 40% melt addition in CO2-bearing system and 12 to ~43 wt.% for 0 to 50% melt addition in CO2-free system. Garnet mode, for a similar range of melt-rock ratio, increases from ~10 to ~15 wt.% for CO2 bearing system and to ~11 wt.% for CO2-free system. Reacted melts from 25-33% of CO2-bearing melt-added runs contain ~39 wt.% SiO2 , ~11-13 wt.% TiO2, ~9 wt.% Al2O3, ~11 wt.% FeO*, 16 wt.% MgO, 10-11 wt.% CaO, and 3 wt.% Na2O whereas experiments with a similar melt-rock ratio in a CO2-free system yield melts with 44-45 wt.% SiO2, 6-7 wt.% TiO2, 13-14 wt.% Al2O3, 10-11 wt.% FeO*, 12-13 wt

  14. Apollo 17 KREEPy basalts - Evidence for nonuniformity of KREEP

    NASA Technical Reports Server (NTRS)

    Salpas, Peter A.; Taylor, Lawrence A.; Lindstrom, Marilyn M.

    1987-01-01

    Breccia 72275 contains pristine KREEPy basalt clasts that are not found among other samples collected at Apollo 17. These basalts occur as discrete clasts and as clasts enclosed within basaltic microbreccias. Mineral and whole-rock chemical analyses reveal that the microbreccias are compositionally indistinguishable from the basalt clasts. Samples of the 72275 matrix also have the same compositions as the basalts and the basaltic microbreccias. 72275 was assembled in situ from a single flow or series of closely related flows of Apollo 17 KREEPy basalt before it was transported to the Apollo 17 site. As a rock type, Apollo 17 KREEPy basalts are distinct from Apollo 15 KREEP basalts. The Apollo 17 samples have lower REE concentrations, steeper negative slopes of the HREE, and are less magnesian than the Apollo 15 samples. The two basalt types cannot be related by fractional crystallization, partial melting, or assimilation. This is evidence for the compositional nonuniformity of KREEP as a function of geography.

  15. A chilled margin of komatiite and Mg-rich basaltic andesite in the western Bushveld Complex, South Africa

    NASA Astrophysics Data System (ADS)

    Maier, W. D.; Barnes, S.-J.; Karykowski, B. T.

    2016-06-01

    A chill sequence at the base of the Lower Zone of the western Bushveld Complex at Union Section, South Africa, contains aphanitic Mg-rich basaltic andesite and spinifex-textured komatiite. The basaltic andesite has an average composition of 15.2 % MgO, 52.8 % SiO2, 1205 ppm Cr, and 361 ppm Ni, whereas the komatiite has 18.7 % MgO, 1515 ppm Cr, and 410 ppm Ni. Both rock types have very low concentrations of immobile incompatible elements (0.14-0.72 ppm Nb, 7-31 ppm Zr, 0.34-0.69 ppm Th, 0.23-0.27 wt% TiO2), but high PGE contents (19-23 ppb Pt, 15-16 ppb Pd) and Pt/Pd ratios (Pt/Pd 1.4). Strontium and S isotopes show enriched signatures relative to most other Lower Zone rocks. The rocks could represent a ~20 % partial melt of subcontinental lithospheric mantle. This would match the PGE content of the rocks. However, this model is inconsistent with the high SiO2, Fe, and Na2O contents and, in particular, the low K2O, Zr, Hf, Nb, Ta, Th, LREE, Rb, and Ba contents of the rocks. Alternatively, the chills could represent a komatiitic magma derived from the asthenosphere that underwent assimilation of the quartzitic floor accompanied by crystallization of olivine and chromite. This model is consistent with the lithophile elements and the elevated Sr and S isotopic signatures of the rocks. However, in order to account for the high Pt and Pd contents of the magma, the mantle must have been twice as rich in PGE as the current estimate for PUM, possibly due to a component of incompletely equilibrated late veneer.

  16. Plume dynamics beneath the African plate inferred from the geochemistry of the Tertiary basalts of southern Ethiopia

    NASA Astrophysics Data System (ADS)

    George, R. M.; Rogers, N. W.

    2002-09-01

    Southern Ethiopian flood basalts erupted in two episodes: the pre-rift Amaro and Gamo transitional tholeiites (45-35 million years) followed by the syn-extensional Getra-Kele alkali basalts (19-11 million years). These two volcanic episodes are distinct in both trace element and isotope ratios (Zr/Nb ratios in Amaro/Gamo lavas fall between 7 and 14, and 3-4.7 in the Getra-Kele lavas whereas 206Pb/204Pb ratios fall between 18-19 and 18.9-20, respectively). The distinctive chemistries of the two eruptive phases record the tapping of two distinct source regions: a mantle plume source for the Amaro/Gamo phase and an enriched continental mantle lithosphere source for the Getra-Kele phase. Isotope and trace element variations within the Amaro/Gamo lavas reflect polybaric fractional crystallisation initiated at high pressures accompanied by limited crustal contamination. We show that clinopyroxene removal at high (0.5 GPa) crustal pressures provides an explanation for the common occurrence of transitional tholeiites in Ethiopia relative to other, typically tholeiitic flood basalt provinces. The mantle plume signature inferred from the most primitive Amaro basalts is isotopically distinct from that contributing to melt generation in central Ethiopian and Afar. This, combined with Early Tertiary plate reconstructions and similarities with Kenyan basalts farther south, lends credence to derivation of these melts from the Kenyan plume rather than the Afar mantle plume. The break in magmatism between 35 and 19 Ma is consistent with the northward movement away from the Kenya plume predicted from plate tectonic reconstructions. In this model the Getra-Kele magmatism is a response to heating of carbonatitically metasomatised lithosphere by the Afar mantle plume beneath southern Ethiopia at this time.

  17. In Situ Density Measurement of Basaltic Melts at High Pressure by X-ray Absorption Method

    NASA Astrophysics Data System (ADS)

    Ando, R.; Ohtani, E.; Suzuki, A.; Urakawa, S.; Katayama, Y.

    2004-12-01

    Density of silicate melt at high pressure is one of the most important properties to understand magma migration in the planetary interior. However, because of experimental difficulties, the density of magma at high pressure is poorly known. Katayama et al. (1996) recently developed a new in situ density measurement method for metallic melts, based on the density dependency of X-ray absorption in the sample. In this study, we tried to measure the density of basaltic melt by this absorption method. When X-ray is transmitted to the sample, the intensity of the transmitted X-ray beam (I) is expressed as follows; I=I0exp(-μ ρ t), where I0 is the intensity of incident X-ray beam, μ is the mass absorption coefficient, ρ is the density of the sample, and t is the thickness of the sample. If t and μ are known, we can determine the density of the sample by measuring I and I0. This is the principle of the absorption method for density measurement. In this study, in order to determine t, we used a single crystalline diamond cylinder as a sample capsule, diamond is less compressive and less deformable so that even at high pressure t (thickness of the sample at the point x) is expressed as follows; t = 2*(R02-x2)1/2, R0 is the inner radius of cylinder at the ambient condition, and x is distance from a center of the capsule. And diamond also shows less absorption so that this make it possible to measure the density of silicate melt with smaller absorption coefficient than metallic melts. In order to know the μ of the sample, we measured both densities (ρ ) and absorptions (I/I0) for some glasses and crystals with same composition of the sample at the ambient condition, and calculated as fallows; μ =ln(I/I0)/ρ . Experiments were made at the beamline (BL22XU) of SPring-8. For generation of high pressure and high temperature, we used DIA-type cubic anvil apparatus (SMAP180) there. We used tungsten carbide anvils with the edge-length of 6 mm. The energy of monochromatic X

  18. Valence State Partitioning of Cr and V Between Olivine-Melt and Pyroxene-Melt in Experimental Basalts of a Eucritic Composition

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Jones, J. H.; Le, L.

    2017-01-01

    The partitioning of multivalent elements in basaltic systems can elucidate the oxygen fugacity (fO2) conditions under which basalts formed on planetary bodies (Earth, Moon, Mars, asteroids). Chromium and V are minor and trace elements in basaltic melts, partition into several minerals that crystallize from basaltic melts, exist in multiple valence states at differing fO2 conditions, and can therefore be used as oxybarometers for basaltic melts. Chromium is mostly 3+ in terrestrial basaltic melts at relatively high fO2 values (= IW+3.5), and mostly 2+ in melts at low fO2 values (= IW-1), such as those on the Moon and some asteroids. At intermediate fO2s, (i.e., IW-1 to IW+3.5), basaltic melts contain both Cr3+ and Cr2+. Vanadium in basaltic melts is mostly 4+ at high fO2, mostly 3+ at low fO2, and a mix of V3+ and V4+ at intermediate fO2 con-ditions. Understanding the partitioning of Cr and V into silicate phases with changing fO2 is therefore critical to the employment of Cr and V oxybarometers. In this abstract we examine the equilibrium partitioning of Cr and V between olivine/melt and pyroxene/melt in experimental charges of a eucritic composition produced at differing fO2 conditions. This study will add to the experimental data on DCr and DV (i.e., olivine/melt, pyroxene/melt) at differing fO2, and in turn these D values will be used to assess the fO2 of eucrite basalts and perhaps other compositionally similar planetary basalts.

  19. Carbon sequestration via reaction with basaltic rocks: geochemical modeling and experimental results

    USGS Publications Warehouse

    Rosenbauer, Robert J.; Thomas, Burt; Bischoff, James L.; Palandri, James

    2012-01-01

    Basaltic rocks are potential repositories for sequestering carbon dioxide (CO2) because of their capacity for trapping CO2 in carbonate minerals. We carried out a series of thermodynamic equilibrium models and high pressure experiments, reacting basalt with CO2-charged fluids over a range of conditions from 50 to 200 °C at 300 bar. Results indicate basalt has a high reactivity to CO2 acidified brine. Carbon dioxide is taken up from solution at all temperatures from 50 to 200 °C, 300 bar, but the maximum extent and rate of reaction occurs at 100 °C, 300 bar. Reaction path simulations utilizing the geochemical modeling program CHILLER predicted an equilibrium carbonate alteration assemblage of calcite, magnesite, and siderite, but the only secondary carbonate identified in the experiments was a ferroan magnesite. The amount of uptake at 100 °C, 300 bar ranged from 8% by weight for a typical tholeite to 26% for a picrite. The actual amount of CO2 uptake and extent of rock alteration coincides directly with the magnesium content of the rock suggesting that overall reaction extent is controlled by bulk basalt Mg content. In terms of sequestering CO2, an average basaltic MgO content of 8% is equivalent to 2.6 × 108 metric ton CO2/km3 basalt.

  20. Constraining the effects of permeability uncertainty for geologic CO2 sequestration in a basalt reservoir

    NASA Astrophysics Data System (ADS)

    Jayne, R., Jr.; Pollyea, R.

    2016-12-01

    Carbon capture and sequestration (CCS) in geologic reservoirs is one strategy for reducing anthropogenic CO2 emissions from large-scale point-source emitters. Recent developments at the CarbFix CCS pilot in Iceland have shown that basalt reservoirs are highly effective for permanent mineral trapping on the basis of CO2-water-rock interactions, which result in the formation of carbonates minerals. In order to advance our understanding of basalt sequestration in large igneous provinces, this research uses numerical simulation to evaluate the feasibility of industrial-scale CO2 injections in the Columbia River Basalt Group (CRBG). Although bulk reservoir properties are well constrained on the basis of field and laboratory testing from the Wallula Basalt Sequestration Pilot Project, there remains significant uncertainty in the spatial distribution of permeability at the scale of individual basalt flows. Geostatistical analysis of hydrologic data from 540 wells illustrates that CRBG reservoirs are reasonably modeled as layered heterogeneous systems on the basis of basalt flow morphology; however, the regional dataset is insufficient to constrain permeability variability at the scale of an individual basalt flow. As a result, permeability distribution for this modeling study is established by centering the lognormal permeability distribution in the regional dataset over the bulk permeability measured at Wallula site, which results in a spatially random permeability distribution within the target reservoir. In order to quantify the effects of this permeability uncertainty, CO2 injections are simulated within 50 equally probable synthetic reservoir domains. Each model domain comprises three-dimensional geometry with 530,000 grid blocks, and fracture-matrix interaction is simulated as interacting continua for the two low permeability layers (flow interiors) bounding the injection zone. Results from this research illustrate that permeability uncertainty at the scale of

  1. CO 2 Mineral Sequestration in Naturally Porous Basalt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Wei; Wells, Rachel K.; Horner, Jake A.

    2018-02-27

    Continental flood basalts are extensive geologic features currently being evaluated as reservoirs that are suitable for long-term storage of carbon emissions. Favorable attributes of these formations for containment of injected carbon dioxide (CO2) include high mineral trapping capacity, unique structural features, and enormous volumes. We experimentally investigated mineral carbonation in whole core samples retrieved from the Grand Ronde basalt, the same formation into which ~1000 t of CO2 was recently injected in an eastern Washington pilot-scale demonstration. The rate and extent of carbonate mineral formation at 100 °C and 100 bar were tracked via time-resolved sampling of bench-scale experiments. Basaltmore » cores were recovered from the reactor after 6, 20, and 40 weeks, and three-dimensional X-ray tomographic imaging of these cores detected carbonate mineral formation in the fracture network within 20 weeks. Under these conditions, a carbon mineral trapping rate of 1.24 ± 0.52 kg of CO2/m3 of basalt per year was estimated, which is orders of magnitude faster than rates for deep sandstone reservoirs. On the basis of these calculations and under certain assumptions, available pore space within the Grand Ronde basalt formation would completely carbonate in ~40 years, resulting in solid mineral trapping of ~47 kg of CO2/m3 of basalt.« less

  2. Geophysical Measurements of Basalt Intraflow Structures.

    DTIC Science & Technology

    1997-12-01

    COVERED Final 4. TITLE AND SUBTITLE Geophysical Measurements of Basalt Intraflow Structures 6. AUTHOR(S) William K. Hudson 7. PERFORMING...horm 29B (Hi ^ 29 ev. 5-88) by ANISE Sad Z39-18 Prescribed 298-102 GEOPHYSICAL MEASUREMENTS OF BASALT INTRAFLOW STRUCTURES by William K. Hudson A...region. The physical properties of basalt can change dramatically within a single flow and may be associated with changes in intraflow structure. The

  3. Basalt fiber manufacturing technology and the possibility of its use in dentistry

    NASA Astrophysics Data System (ADS)

    Karavaeva, E.; Rogozhnikov, A.; Nikitin, V.; Cherepennikov, Yu; Lysakov, A.

    2015-11-01

    The article touches upon the technology of basalt fiber manufacturing and prospects of its use in dental practice. Two kinds of construction using basalt fiber have been proposed. The first one is a splinting construction for mobile teeth and the second one is the reinforced base for removable plate-denture. The work presents the results of the investigation of physical and mechanical properties of the constructions based on basalt fiber. It also describes the aspects of biomechanical modeling of such constructions in the ANSYS software package. The results of the investigation have proved that applying constructions using basalt fiber is highly promising for prosthetic dentistry practice.

  4. Origin of sapphirine- and garnet-bearing clinopyroxenite xenoliths entrained in the Jiande basalts, SE China

    NASA Astrophysics Data System (ADS)

    Xiao, Yan; Zhang, Hong-Fu; Liang, Zi; Su, Ben-Xun; Zhu, Bin; Sakyi, Patrick Asamoah

    2018-04-01

    We present petrological and geochemical data of sapphirine- and garnet-bearing clinopyroxenite xenoliths entrained in the Jiande Cenozoic basalts, SE China, to investigate their igneous and metamorphic history, and reconstruct of the thermal-tectonic evolution of the lithospheric mantle. These xenoliths have an unusual mineral association consisting of clinopyroxene + garnet/kelyphite + spinel (±sapphirine). Clinopyroxene has high Mg# (89-93) and displays convex-upward REE pattern. Garnet, partially to completely kelyphitized, is rich in pyrope end-member. It usually includes relics of spinel, suggesting that garnet was formed at the expense of spinel. The spinel has high MgO (20.8-22.9 wt%) and Al2O3 (64.8-67.9 wt%) contents. Sapphirine, forming a rim on spinel, has homogeneous SiO2 (14.5-14.9 wt%), Al2O3 (60.9-61.7 wt%) and MgO (19.7-20.1 wt%) contents, interpreted to be of metamorphic origin. The subsolidus reaction for the formation of sapphirine is as follows: spinel + garnet = sapphirine + clinopyroxene + orthopyroxene. Thus, the earliest mineral assemblage recorded in these xenoliths was spinel + clinopyroxene. The clinopyroxene in the Jiande clinopyroxenite xenoliths has Li abundances (1.04-1.63 ppm) similar to high-P mafic cumulate but much lower than those in crustal eclogite. In addition, the clinopyroxene and garnet do not show positive Eu anomalies. Therefore, the protolith of these three clinopyroxenite xenoliths was most likely a pyroxenite, originating as clinopyroxene + spinel cumulates from mafic melts percolating through the mantle. Many reaction textures such as formation of garnet and sapphirine were developed during decompression possibly coupled with cooling and melt percolation. During this process, the earlier composition of clinopyroxene and spinel also changed. The latest P-T conditions recorded in these xenoliths were at pressure of 8-10 kbar and temperatures of 1069-1094 °C. These observations imply that these rocks have been

  5. Interpretation of trace element and isotope features of basalts: relevance of field relations, petrology, major element data, phase equilibria, and magma chamber modeling in basalt petrogenesis

    NASA Astrophysics Data System (ADS)

    O'Hara, M. J.; Herzberg, C.

    2002-06-01

    The concentrations and ratios of the major elements determine the physical properties and the phase equilibria behavior of peridotites and basalts in response to the changing energy contents of the systems. The behavior of the trace elements and isotopic features are influenced in their turn by the phase equilibria, by the physical character of the partial melting and partial crystallization processes, and by the way in which a magma interacts with its wall rocks. Concentrating on the trace element and isotope contents of basalts to the exclusion of the field relations, petrology, major element data, and phase equilibria is as improvident as slaughtering the buffalo for the sake of its tongue. The crust is a cool boundary layer and a density filter, which impedes the upward transfer of hot, dense "primary" picritic and komatiitic liquids. Planetary crusts are sites of large-scale contamination and extensive partial crystallization of primitive melts striving to escape to the surface. Escape of truly unmodified primitive melts to the surface is a rare event, requiring the resolution of daunting problems in chemical and mechanical engineering. Primary status for volumetrically abundant basalts such as mid-ocean ridge basalt, ocean island basalt, and continental flood basalts is denied by their low-pressure cotectic character, first remarked upon on petrological grounds in 1928 and on experimental grounds in 1962. These basalt liquids are products of crystal-liquid separation at low pressure. Primary status for these common basalts is further denied by the phase equilibria of such compositions at elevated pressures, when the required residual mantle mineralogy (magnesian olivine and orthopyroxene) is not stable at the liquidus. It is also denied by the picritic or komatiitic nature of partial melts of candidate upper-mantle compositions at high pressures - a conclusion supported by calculation of the melt composition, which would need to be extracted in order to

  6. The Ninole Basalt - Implications for the structural evolution of Mauna Loa volcano, Hawaii

    USGS Publications Warehouse

    Lipman, P.W.; Rhodes, J.M.; Dalrymple, G.B.

    1990-01-01

    Lava flows of the Ninole Basalt, the oldest rocks exposed on the south side of the island of Hawaii, provide age and compositional constraints on the evolution of Mauna Loa volcano and the southeastward age progression of Hawaiian volcanism. Although the tholeiitic Ninole Basalt differs from historic lavas of Mauna Loa volcano in most major-element contents (e.g., variably lower K, Na, Si; higher Al, Fe, Ti, Ca), REE and other relatively immobile minor elements are similar to historic and prehistoric Mauna Loa lavas, and the present major-element differences are mainly due to incipient weathering in the tropical environment. New K-Ar whole-rock ages, from relatively fresh roadcut samples, suggest that the age of the Ninole Basalt is approximately 0.1-0.2 Ma, although resolution is poor because of low contents of K and radiogenic Ar. Originally considered the remnants of a separate volcano, the Ninole Hills are here interpreted as faulted remnants of the old south flank of Mauna Loa. Deep canyons in the Ninole Hills, eroded after massive landslide failure of flanks of the southwest rift zone, have been preserved from burial by younger lava due to westward migration of the rift zone. Landslide-induced depressurization of the southwest rift zone may also have induced phreatomagmatic eruptions that could have deposited widespread Basaltic ash that overlies the Ninole Basalt. Subaerial presence of the Ninole Basalt documents that the southern part of Hawaii Island had grown to much of its present size above sea level by 0.1-0.2 Ma, and places significant limits on subsequent enlargement of the south flank of Mauna Loa. ?? 1990 Springer-Verlag.

  7. The Influence of Conduit Processes During Basaltic Plinian Eruptions.

    NASA Astrophysics Data System (ADS)

    Houghton, B. F.; Sable, J. E.; Wilson, C. J.; Coltelli, M.; Del Carlo, P.

    2001-12-01

    Basaltic volcanism is most typically thought to produce effusion of lava, with the most explosive manifestations ranging from mild Strombolian activity to more energetic fire fountain eruptions. However, some basaltic eruptions are now recognized as extremely violent, i.e. generating widespread phreatomagmatic, subplinian and Plinian fall deposits. These eruptions are particularly dangerous because the ascent rate of basaltic magma prior to eruption can be very rapid (giving warning times as little as a few hours) and because their precursors may be ignored or misunderstood. The main question addressed in this talk is: what conditions in the conduit cause basaltic magma to adopt an eruption style more typical of chemically evolved, highly viscous magmas? Possible mechanisms (acting singly, or in concert) are: (1) interaction between magma and water, (ii) very rapid ascent producing a delayed onset of degassing then exceptionally rapid "runaway" vesiculation at shallow levels in the conduit, (iii) microlite crystallization and degassing of the magma during ascent leading to increased viscosity. We focus here on two examples of basaltic Plinian volcanism: the 1886 eruption of Tarawera, New Zealand, which is the youngest known basaltic Plinian eruption and the only one for which there are detailed written eyewitness accounts, and the well documented 122 BC eruption of Mount Etna, Italy. Field and laboratory evidence suggests that the Plinian phase of the 1886 eruption was a consequence of two processes. Firstly rheologic changes during magma ascent accompanied early (pre-fragmentation) interaction between the basaltic melt and water-bearing rhyolitic units forming the conduit walls and, secondly, late-stage magma:water interaction. In contrast, during the 122 BC eruption tectonic processes, such as slope failure or permanent displacement of a mobile flank of the volcano, appear to have triggered exceptionally rapid ascent, delayed onset of degassing and exceptionally

  8. Basalt or Not? Near-infrared Spectra, Surface Mineralogical Estimates, and Meteorite Analogs for 33 Vp-type Asteroids

    NASA Astrophysics Data System (ADS)

    Hardersen, Paul S.; Reddy, Vishnu; Cloutis, Edward; Nowinski, Matt; Dievendorf, Margaret; Genet, Russell M.; Becker, Savan; Roberts, Rachel

    2018-07-01

    Investigations of the main asteroid belt and efforts to constrain that population’s physical characteristics involve the daunting task of studying hundreds of thousands of small bodies. Taxonomic systems are routinely employed to study the large-scale nature of the asteroid belt because they utilize common observational parameters, but asteroid taxonomies only define broadly observable properties and are not compositionally diagnostic. This work builds upon the results of work by Hardersen et al., which has the goal of constraining the abundance and distribution of basaltic asteroids throughout the main asteroid belt. We report on the near-infrared (NIR: 0.7 to 2.5 μm) reflectance spectra, surface mineralogical characterizations, analysis of spectral band parameters, and meteorite analogs for 33 Vp asteroids. NIR reflectance spectroscopy is an effective remote sensing technique to detect most pyroxene group minerals, which are spectrally distinct with two very broad spectral absorptions at ∼0.9 and ∼1.9 μm. Combined with the results from Hardersen et al., we identify basaltic asteroids for ∼95% (39/41) of our inner-belt Vp sample, but only ∼25% (2/8) of the outer-belt Vp sample. Inner-belt basaltic asteroids are most likely associated with (4) Vesta and represent impact fragments ejected from previous collisions. Outer-belt Vp asteroids exhibit disparate spectral, mineralogical, and meteorite analog characteristics and likely originate from diverse parent bodies. The discovery of two additional likely basaltic asteroids provides additional evidence for an outer-belt basaltic asteroid population.

  9. Global warming of the mantle at the origin of flood basalts over supercontinents

    NASA Astrophysics Data System (ADS)

    Coltice, N.; Phillips, B. R.; Bertrand, H.; Ricard, Y.; Rey, P.

    2007-05-01

    Continents episodically cluster together into a supercontinent, eventually breaking up with intense magmatic activity supposedly caused by mantle plumes (Morgan, 1983; Richards et al., 1989; Condie, 2004). The breakup of Pangea, the last supercontinent, was accompanied by the emplacement of the largest known continental flood basalt, the Central Atlantic Magmatic Province, which caused massive extinctions at the Triassic-Jurassic boundary (Marzoli et al., 1999). However, there is little support for a plume origin for this catastrophic event (McHone, 2000). On the basis of convection modeling in an internally heated mantle, this paper shows that continental aggregation promotes large-scale melting without requiring the involvement of plumes. When only internal heat sources in the mantle are considered, the formation of a supercontinent causes the enlargement of flow wavelength and a subcontinental increase in temperature as large as 100 °C. This temperature increase may lead to large-scale melting without the involvement of plumes. Our results suggest the existence of two distinct types of continental flood basalts, caused by plume or by mantle global warming.

  10. The Effect of Adhesion Interaction on the Mechanical Properties of Thermoplastic Basalt Plastics

    NASA Astrophysics Data System (ADS)

    Bashtannik, P. I.; Kabak, A. I.; Yakovchuk, Yu. Yu.

    2003-01-01

    The effect of temperature, adhesion time, and surface treatment of a reinforcing filler on the mechanical properties of thermoplastic basalt plastics based on a high-density polyethylene and a copolymer of 1,3,5-trioxane with 1,3-dioxolan is investigated. An extreme dependence for the adhesive strength in a thermoplastic-basalt fiber system is established and its effect on the mechanical properties of basalt plastics and the influence of the adhesion contact time on the adhesive strength in the system are clarified. The surface modification of basalt fibers in acidic and alkaline media intensifies the adhesion of thermoplastics to them owing to a more developed surface of the reinforcing fibers after etching. It is found that the treatment in the acidic medium is more efficient and considerably improves the mechanical properties of basalt plastics.

  11. Uranium isotope composition of a laterite profile during extreme weathering of basalt in Guangdong, South China

    NASA Astrophysics Data System (ADS)

    Huang, J.; Zhou, Z.; Gong, Y.; Lundstrom, C.; Huang, F.

    2015-12-01

    Rock weathering and soil formation in the critical zone are important for material cycle from the solid Earth to superficial system. Laterite is a major type of soil in South China forming at hot-humid climate, which has strong effect on the global uranium cycle. Uranium is closely related to the environmental redox condition because U is stable at U(Ⅳ) in anoxic condition and U(Ⅵ) as soluble uranyl ion (UO22+) under oxic circumstance. In order to understand the behavior of U isotopes during crust weathering, here we report uranium isotopic compositions of soil and base rock samples from a laterite profile originated from extreme weathering of basalt in Guangdong, South China. The uranium isotopic data were measured on a Nu Plasma MC-ICP-MS at the University of Illinois at Urbana-Champaign using the double spike method. The δ238U of BCR-1 is -0.29±0.03‰ (relative to the international standard CRM-112A), corresponding to a 238U/235U ratio of 137.911±0.004. Our result of BCR-1 agrees with previous analyses (e.g., -0.28‰ in Weyer et al. 2008) [1]. U contents of the laterite profile decrease from 1.9 ppm to 0.9 ppm with depth, and peak at 160 - 170 cm (2.3 ppm), much higher than the U content of base rocks (~0.5 ppm). In contrary, U/Th of laterites is lower than that of base rock (0.27) except the peak at the depth of 160-170 cm (0.38), indicating significant U loss during weathering. Notably, U isotope compositions of soils show a small variation from -0.38 to -0.28‰, consistent with the base rock within analytical error (0.05‰ to 0.08‰, 2sd). Such small variation can be explained by a "rind effect" (Wang et al., 2015) [2], by which U(Ⅳ) can be completely oxidized to U(VI) layer by layer during basalt weathering by dissolved oxygen. Therefore, our study indicates that U loss during basalt weathering at the hot-humid climate does not change U isotope composition of superficial water system. [1] Weyer S. et al. (2008) Natural fractionation of 238U/235

  12. Abundance and isotope systematics of carbon in subglacial basalts, geothermal gases and fluids from Iceland's rift zones

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Hilton, D. R.; Fueri, E.; Halldorsson, S. A.; Fischer, T. P.; Gronvold, K.

    2010-12-01

    P. H. BARRY1*, D. R. HILTON1, E. FÜRI1, S.A. HALLDÓRSON1, T.P. FISCHER2, K. GRONVOLD3 1 Scripps Institution of Oceanography, UCSD, La Jolla, California 92093, USA (*Correspondence: pbarry@ucsd.edu). 2University of New Mexico, Albuquerque, NM 87131, USA. 3University of Iceland, Askja, Sturlugata 7, IS-101, Reykjavik, Iceland Carbon dioxide (CO2) is the dominant non-aqueous volatile species found in oceanic basalts and geothermal fluids and serves as the carrier gas for trace volatiles such as He and other noble gases. The aim of this study is to identify the superimposed effects of degassing and crustal contamination on the CO2 systematics of the Icelandic hotspot in order to reveal and characterize the carbon abundance and isotopic features of the underlying mantle source. Our approach involves coupling CO2 with He, utilizing the sensitivity of 3He/4He ratios to reveal mantle and crustal inputs. We report new C-isotope (δ13C) and abundance characteristics for a suite of 47 subglacial basalts and 50 geothermal gases and fluids from Iceland. CO2 contents in hyaloclastite glasses are extremely low (10-100 ppm) and likely residual following extensive degassing whereas geothermal fluids are dominated by CO2 (>90 %). C-isotopes range from -27.2 to -3.6 ‰ (vs. PDB) for basalts and from -18.8 to 2.86 ‰ (vs. PDB) for geothermal samples (mean = -4.2 ± 3.6 ‰). CO2/3He ratios range from 108 to 1012 for basalts and from 105 to 1012 for geothermal samples: In both cases, our results extend He-CO2 relationships over a much broader range than reported previously [1]. Taken together, these data suggest that several processes including mixing, degassing, and/or syn- or post-eruptive crustal contamination may act to modify CO2 source characteristics. Equilibrium degassing models are compatible with ~75 % of the basalt data, and preliminary results indicate that initial Icelandic source characteristics are ~500 ppm CO2 and δ13C ~ -5 ‰ (vs. PDB). These values are high

  13. 182W in Modern Ocean Island Basalts

    NASA Astrophysics Data System (ADS)

    Mundl, A.; Touboul, M.; Walker, R. J.; Jackson, M. G.; Kurz, M. D.; Day, J. M.; Horan, M. F.; Helz, R. L.

    2016-12-01

    The short lived Hf-W isotopic system (182Hf → 182W, t½ = 8.9 Ma) can be used as an important tracer for very early geochemical processes in the Earth's mantle, as well as for possible detection of core-mantle interactions. To date, most high precision 182W/184W data have been obtained for ancient rocks, with most of these characterized by having positive 182W anomalies. Here we report data for modern ocean island basalts (OIB). Although most OIB examined to date show no 182W anomalies, some basalts from Hawaii and Samoa are characterized by well-resolved negative anomalies with µ182W values ranging to -16 (µ182W is the ppm deviation in 182W/184W of a sample relative to a terrestrial reference standard). Further, for both OIB systems the W isotopic data are negatively correlated with 3He/4He, whereby the samples with the lowest µ182W values are characterized by the highest 3He/4He. Thus, both OIB systems sample one or more primordial reservoirs. A primordial mantle domain characterized by negative 182W anomalies could have been created as a result of silicate crystal-liquid fractionation, such as by a magma ocean process, within the first 50 Ma of Solar System history. Tungsten is similarly incompatible to U and Th (from which 4He is generated), so it is difficult to envision a single-stage, early Earth process that would lead to the low Hf/W and high He/(U+Th) implied by the observed correlation. A second option is that the mantle sources of the 182W-depleted, 3He/4He-enriched basalts contain a core component. This is difficult to reconcile with the normal abundances of highly siderophile elements in the rocks. Positive 182W anomalies have been reported for high-3He/4He samples from the 60 Ma Baffin Bay picrites, so isotopically anomalous W is accessed by modern OIB and flood basalt systems from at least two high 3He/4He domains.

  14. Petrological processes in mantle plume heads: Evidence from study of mantle xenoliths in the late Cenozoic alkali Fe-Ti basalts in Western Syria

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii

    2015-04-01

    clinopyroxenite, hornbledite, etc. as well as megacrysts of Al-Ti-augite, kaersutite, ilmenite, sanidine, etc. Numerous vesicles often occurred in megacrysts, especially in kaersurtite. Sp peridotites of the matrix are sharply different on their geochemical features from the ``black series'' rocks (in this case, megacrysts of kaersutite) which are the most close to composition of xenoliths-bearing alkali basalts. From this follows that geochemistry of plume-related basalts was determined by mantle fluids which occurred in magma-generation zone. Very likely, that these fluids, enriched in Fe, Ti, LREE, alkalis, and incompatible elements, initially were parts of intergranular material of original mantle plume material and were released due to its decompression. Because their high mobility, the fluids percolated upwards and accumulated in the upper part of the mantle plume head, where promoted its melting by lowering of solidus of the matter. Excess of the fluids gathered beneath the cooled upper rim and penetrated in its rocks which led to appearance of centers of secondary melting (melt-pockets). Very likely, that these secondary melts formed rocks of the ``black series'' (Ismail et al., 2008;Ryabchkov et al., 2011; Ma et al., 2014). According to geobarometric estimations, Sp peridotite xenoliths from Syria derived from depths 24-42 km (0.8-1.4 GPa) under temperatures 896-980oC; formation of melt-pockets, enriched in volatiles, occurred at the depths 21-27 km (0.7-0.9 GPa) under 826-981oC (Sharkov et al., 1996; Ismail et al., 2008; Ma et al., 2014). From this follows that plumeheads reached depths approximately 21-30 km which is in agree with practically absence of lower-crustal xenoliths in the populations. One of the problems of plume-related magmatism is coexisting of alkali and tholeiitic basalts, which origin often considered with different PT conditions. However, these basalt not rarely interlayered, especially at low and middle levels of LIPs or in single volcanoes (Hawaii

  15. Back-arc basalts from the Loncopue graben (Province of Neuquen, Argentina)

    NASA Astrophysics Data System (ADS)

    Varekamp, J. C.; Hesse, A.; Mandeville, C. W.

    2010-11-01

    Young basaltic back-arc volcanoes occur east of the main Andes chain at about 37.5°-39°S in the Loncopue graben, Province of Neuquen, Argentina. These olivine-rich basalts and trachybasalts have up to 8% MgO, with high Ni and Cr contents, but highly variable incompatible element concentrations. Mafic lava flows and cinder cones at the southern end of the graben lack phenocrystic plagioclase. The northern samples have relative Ta-Nb depletions and K, Pb and LREE enrichment. These samples strongly resemble rocks of the nearby arc volcanoes Copahue and Caviahue, including their Fe-Ti enrichment relative to the main Andes arc rocks. The Sr, Nd and Pb isotope ratios show that the source regions of these back-arc basalts are enriched in subducted components that were depleted in the aqueous mobile elements such as Cs, Sr and Ba as a result of prior extractions from the subducted complex below the main arc. Some mafic flows show slightly low 206Pb/ 204Pb and 143Nd/ 144Nd values as well as incompatible trace element ratios similar to southern Patagonia plateau back-arc basalts, suggesting contributions from an EM1 mantle source. Geothermometry and barometry suggest that the basalts crystallized and fractionated small amounts of olivine and spinel at ˜ 35 km depth at temperatures of 1170-1220 °C, at about QFM + 0.5 to QFM + 1 with 1-2% H 2O, and then rose rapidly to the surface. The Loncopue graben back-arc basalts are transitional in composition between the South Patagonia back-arc plateau basalts and the Caviahue and Copahue arc volcanoes to the northwest. The EM1 source endmember is possibly the subcontinental lithospheric mantle. Strong variations in incompatible element enrichment and isotopic compositions between closely spaced cinder cones and lava flows suggest a heterogeneous mantle source for the Loncopue graben volcanics.

  16. Apollo 14 - Nature and origin of rock types in soil from the Fra Mauro formation.

    NASA Technical Reports Server (NTRS)

    Aitken, F. K.; Anderson, D. H.; Bass, M. N.; Brown, R. W.; Butler, P., Jr.; Heiken, G.; Jakes, P.; Reid, A. M.; Ridley, W. I.; Takeda, H.

    1971-01-01

    Compositions of glasses in the Apollo 14 soil correspond to four types of Fra Mauro basalts, to mare basalts and soils, and, in minor amounts, to gabbroic anorthosite and potash granite. The Fra Mauro basalts can be related by simple low pressure crystal-liquid fractionation that implies a parent composition like that of Apollo 14 sample 14310.

  17. Geochemical systematics of komatiite tholeiite and adakitic-arc basalt associations: The role of a mantle plume and convergent margin in formation of the Sandur Superterrane, Dharwar craton, India

    NASA Astrophysics Data System (ADS)

    Manikyamba, C.; Kerrich, R.; Khanna, T. C.; Keshav Krishna, A.; Satyanarayanan, M.

    2008-11-01

    The ˜ 2.7 Ga Sandur Superterrane is located within the central belt of the ˜ 2.6 Ga Closepet granite that divides the Dharwar craton into eastern and western sectors. The composite SST includes multiple terranes defined by distinct lithological associations, and metamorphic-deformational histories, demarked by accretionary structures. The Sultanpura volcanic terrane includes well preserved spinifex textured komatiites and komatiitic-basalts, with pillowed tholeiitic basalts. Komatiites and komatiitic-basalts have Mg# of 0.82-0.84 and 0.55-0.64 respectively, and plot near the olivine control line, whereas basalts have Mg# 0.53-0.69. All three volcanic types can be divided into two populations based on Nb/Th ratios: for rocks with Nb/Th < 8, there is covariation with Th, and (La/Sm) N interpreted to be the result of crustal assimilation fractional crystallization (AFC), whereas those rocks with Nb/Th > 8 plot along the Mid Oceanic Ridge Basalt-Oceanic Island Basalt array in Th/Yb vs. Nb/Yb coordinates. Collectively, the data are interpreted as signatures of a zoned mantle plume, having multiple sources that erupted through, or at the margin of, continental lithosphere. Felsic flows associated with arc basalts of the eastern felsic volcanic terrane, tectonically juxtaposed to the Sultanpura volcanic terrane, have adakitic compositional characteristics: elevated Al 2O 3 but low Yb (0.30-0.50 ppm) contents, coupled with high (La/Yb) N (43-71) and Zr/Sm (37-41) ratios, but low Nb/Ta (5-12). These features, in conjunction with mostly positive Eu anomalies, rule out detectable crustal contamination, such that adakitic flows and associated basalts and volcanogenic sedimentary rocks having normalized anomalies at Nb-Ta-P-Ti, represent an arc association. Consequently, the distinctive magmatic associations of the Sultanpura and eastern felsic volcanic terranes are consistent with the Sandur Superterrane being tectonic fragments of distinct continental and oceanic provenance

  18. Geochemistry and stratigraphic correlation of basalt lavas beneath the Idaho Chemical Processing Plant, Idaho National Engineering Laboratory

    USGS Publications Warehouse

    Reed, M.F.; Bartholomay, R.C.; Hughes, S.S.

    1997-01-01

    Thirty-nine samples of basaltic core were collected from wells 121 and 123, located approximately 1.8 km apart north and south of the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Samples were collected from depths ranging from 15 to 221 m below land surface for the purpose of establishing stratigraphic correlations between these two wells. Elemental analyses indicate that the basalts consist of three principal chemical types. Two of these types are each represented by a single basalt flow in each well. The third chemical type is represented by many basalt flows and includes a broad range of chemical compositions that is distinguished from the other two types. Basalt flows within the third type were identified by hierarchical K-cluster analysis of 14 representative elements: Fe, Ca, K, Na, Sc, Co, La, Ce, Sm, Eu, Yb, Hf, Ta, and Th. Cluster analyses indicate correlations of basalt flows between wells 121 and 123 at depths of approximately 38-40 m, 125-128 m, 131-137 m, 149-158 m, and 183-198 m. Probable correlations also are indicated for at least seven other depth intervals. Basalt flows in several depth intervals do not correlate on the basis of chemical compositions, thus reflecting possible flow margins in the sequence between the wells. Multi-element chemical data provide a useful method for determining stratigraphic correlations of basalt in the upper 1-2 km of the eastern Snake River Plain.

  19. Investigation of Basalt Woven Fabrics for Military Applications

    DTIC Science & Technology

    2011-11-01

    investigates the use of basalt fibers in a composite along with SC-15 epoxy resin for ballistic protection. Basalt fibers are not known as a ballistic...material but rather as a structural one. Even though basalt fibers are not expected to outperform some of the higher ballistic performing materials...such as the aramid and polyethylene fibers ; however, due to the lower manufacturing costs, basalt fibers are an interesting alternative. The objective

  20. Quantifying weathering advance rates in basaltic andesite rinds with uranium-series isotopes: a case study from Guadeloupe

    NASA Astrophysics Data System (ADS)

    Ma, L.; Chabaux, F. J.; Pelt, E.; Granet, M.; Sak, P. B.; Gaillardet, J.; Brantley, S. L.

    2010-12-01

    Weathering of basaltic rocks plays an important role in many Earth surface processes. It is thus of great interest to quantify their weathering rates. Because of their well-documented behaviors during water-rock interaction, U-series isotopes have been shown to have utility as a potential chronometer to constrain the formation rates of weathering rinds developed on fresh basaltic rocks. In this study, U-series isotopes and trace element concentrations were analyzed in a basaltic andesite weathering rind collected from the Bras David watershed, Guadeloupe. From the clast, core and rind samples were obtained by drilling along a 63.8 mm linear profile across a low curvature segment of the core-rind boundary. Trace element concentrations reveal: significant loss of REE, Y, Rb, Sr, and Ba in the weathering rind; conservative behaviors of Ti and Th; and external addition of U into the rind during clast weathering. Measured (234U/238U) activity ratios of the rind samples are much higher than the core samples and show excess 234U. Measured (238U/232Th) and (230Th/232Th) activity ratios of the core and rind samples increase gradually from the core into the weathering rind. The observed depletion profiles for the trace elements in the clast suggest that the earliest chemical reaction that creates significant porosity is dissolution of plagioclase, consistent with the previous study [Sak et al., 2010, CG, in press]. The porosity growth within the rind allows for an influx of soil solution that carries dissolved U with (234U/238U) activity ratios >1 into the clast. The deposition of U in the rind is most likely associated with precipication of secondary minerals during clast weathering. Such a continuous U addition is responsible for the observed gradual increase of (238U/232Th) activity ratios in the rind. Subsequent production of 230Th in the rind over time from the decay of excess 234U accounts for the observed continuous increase of (230Th/232Th) activity ratios. The U

  1. Products of a Subglacial Flood Basalt Eruption

    NASA Astrophysics Data System (ADS)

    Gorny, C. F.; White, J. D. L.; Gudmundsson, M. T.

    2015-12-01

    The Snæbýlisheiði unit, SE Iceland, is a ca. 26 km³ elongate, flat-topped ridge of volcaniclastic debris coupled with and intruded by coherent basalt stretching over 34 km from the eruption site perpendicular to the rift fissure source. It formed from a single subglacial flood basalt eruption during a recent glaciation, and its elongation reflects glacial control on dispersal via the hydraulic potential gradient at the glacier's base, which drove towards the glacier terminus the meltwater+debris formed during the eruption by quenching and fragmentation. High magma discharge and outgassing drove segregation of magma into down-flow propagating intrusions. Edifice growth was mediated by the extent of ice melting, extent and efficiency of meltwater+debris drainage, and hydraulic gradients locally favoring meltwater accumulation. Eruption style reflected magma flux, edifice stability, and accessibility of water to the vent area via flooding or infiltration. Deposits reflect these competing factors in their chaotic internal organization and stratigraphy, limited lithofacies continuity, and diverse particle populations from multiple source vents. Linear growth of the ridge down-gradient from the eruption site was driven primarily by propagation and continuous fragmentation of shoaling intrusions that formed an interconnected intrusive complex with extensive peperites. Advance was along gently meandering and locally bifurcating sub-ice conduits within hyaloclastite with sheet-lobe levees and lobate fingered intrusions. Irregular dikes, apophyses, horns, and tendrils extended from the main body and generated voluminous lapilli tuff and contorticlasts while providing additional heat to the system. Prolonged transport and deposition of debris produced complexly bedded volcaniclastic deposits derived from and intruded by the basalt sheet. The bedding and depositional features of volcaniclastic debris and relationship to their adjacent intrusions suggest transport and

  2. Chemical differences between small subsamples of Apollo 15 olivine-normative basalts

    NASA Technical Reports Server (NTRS)

    Shervais, J. W.; Vetter, S. K.; Lindstrom, M. M.

    1990-01-01

    Results are presented on the chemical and petrological characterization of nine samples of an Apollo 15 mare basalt suite. The results show that all nine samples are low-silica olivine normative basalts (ONBs) similar to those described earlier for low-silica ONBs from Apollo 15 site. The samples were found to vary in texture and grain size, from fine-grained intergranular or subophitic basalts to coarse-grained granular 'microgabbros'. Several displayed macroscopic heterogeneity. Variation diagrams show that the overall trend of the data is consistent with the fractionation of olivine (plus minor Cr-spinel) from a high-MgO parent magma.

  3. Lunar sample studies. [breccias basalts, and anorthosites

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Lunar samples discussed and the nature of their analyses are: (1) an Apollo 15 breccia which is thoroughly analyzed as to the nature of the mature regolith from which it derived and the time and nature of the lithification process, (2) two Apollo 11 and one Apollo 12 basalts analyzed in terms of chemistry, Cross-Iddings-Pirsson-Washington norms, mineralogy, and petrography, (3) eight Apollo 17 mare basalts, also analyzed in terms of chemistry, Cross-Iddings-Pirsson-Washington norms, mineralogy, and petrography. The first seven are shown to be chemically similar although of two main textural groups; the eighth is seen to be distinct in both chemistry and mineralogy, (4) a troctolitic clast from a Fra Mauro breccia, analyzed and contrasted with other high-temperature lunar mineral assemblages. Two basaltic clasts from the same breccia are shown to have affinities with rock 14053, and (5) the uranium-thorium-lead systematics of three Apollo 16 samples are determined; serious terrestrial-lead contamination of the first two samples is attributed to bandsaw cutting in the lunar curatorial facility.

  4. High-pressure phase relations and thermodynamic properties of CaAl 4Si 2O 11 CAS phase

    NASA Astrophysics Data System (ADS)

    Akaogi, M.; Haraguchi, M.; Yaguchi, M.; Kojitani, H.

    2009-03-01

    Phase relations in CaAl4Si2O11 were examined at 12-23 GPa and 1000-1800 °C by multianvil experiments. A three-phase mixture of grossular, kyanite and corundum is stable below about 13 GPa at 1000-1800 °C. At higher pressure and at temperature below about 1200 °C, a mixture of grossular, stishovite and corundum is stable, indicating the decomposition of kyanite. Above about 1200 °C, CaAl4Si2O11 CAS phase is stable at pressure higher than about 13 GPa. The triple point is placed at 14.7 GPa and 1280 °C. The equilibrium boundary of formation of CAS phase from the mixture of grossular, kyanite and corundum has a small negative slope, and that from the mixture of grossular, stishovite and corundum has a strongly negative slope, while the decomposition boundary of kyanite has a small positive slope. Enthalpies of the transitions were measured by high-temperature drop-solution calorimetry. The enthalpy of formation of CaAl4Si2O11 CAS phase from the mixture of grossular, kyanite and corundum was 139.5 ± 15.6 kJ/mol, and that from the mixture of grossular, stishovite and corundum was 94.2 ± 15.4 kJ/mol. The transition boundaries calculated using the measured enthalpy data were consistent with those determined by the high-pressure experiments. The boundaries in this study are placed about 3 GPa higher in pressure and about 200 °C lower in temperature than those by Zhai and Ito [Zhai, S., Ito, E., 2008. Phase relations of CaAl4Si2O11 at high-pressure and high-temperature with implications for subducted continental crust into the deep mantle. Phys. Earth Planet. Inter. 167, 161-167]. Combining the thermodynamic data measured in this study with those in the literature, dissociation boundary of CAS phase into a mixture of Ca-perovskite, corundum and stishovite and that of grossular into Ca-perovskite plus corundum were calculated to further constrain the stability field of CAS phase. The result suggests that the stability of CAS phase would be limited at the bottom of

  5. The Rhyolite Flare-up of the Columbia River Basalt Province and its Bearing on Plume vs. Non-plume Models

    NASA Astrophysics Data System (ADS)

    Streck, M. J.; Ferns, M. L.

    2012-12-01

    The decades-long controversy as to whether the Columbia River Basalt province results from arrival of a deep mantle plume is far from over, as new non-plume models are proposed. Age-progressive rhyolites of the Snake River Plain are a centerpiece to a migrating plume model that ties mid-Miocene flood basalt magmatism to the present location of the Yellowstone hotspot. However voluminous mid-Miocene rhyolites coeval with the flood basalts of the Columbia River Basalt province have received little attention. These long-known but relatively underappreciated rhyolite occurrences in eastern Oregon and neighboring areas erupted across the province over a narrow time window making the Columbia River province a strongly bimodal (basalt-rhyolite) Large Igneous Province. The entire rhyolite distribution area has roughly a circular area of about a diameter of 300 km and stretches from rhyolite centers near the towns of Baker City and John Day, Oregon in the north to rhyolite centers of the High Rock Desert, Nevada in the SW and the Jarbidge Rhyolite, Idaho in the SE. Oldest rhyolites are ~16.5 Ma in age and occur both along the southern E-W tangent (including McDermitt) and, in lesser volumes, in the central to northern sector. The considerable data that have been generated over the last few years on rhyolites of the southern sector is now being supplemented by new data that we have begun collecting on rhyolites further north. Province-wide rhyolite volcanism was strongest between ~16.4 and 15.4 Ma coincident with eruptions of the most voluminous member of the CRBG - the Grande Ronde Basalt. This widespread rhyolite volcanism indicates that CRBG crustal inputs were focused during this narrow time window over a large area. Magmas in the upper Grande Ronde Basalt that compositionally correlate with glassy mafic inclusions in the rhyolitic Dinner Creek Tuff effectively place one CRBG crustal storage site below a major silicic center. Youngest rhyolites range from ~14.5 to 12

  6. Recycled oceanic crust in the source of 90-40 Ma basalts in North and Northeast China: Evidence, provenance and significance

    NASA Astrophysics Data System (ADS)

    Xu, Yi-Gang

    2014-10-01

    end of this stagnant slab does not go beyond the NNE-trending NSGL (Huang and Zhao, 2006; Xu, 2007). Given the subduction of Pacific plate underneath eastern Asian continent, the slab-derived materials are expected to be involved in the sources of the Mesozoic-Cenozoic magmas in this region. Recent studies have shown the ubiquitous presence of subduction-related components in late Cenozoic basalts in eastern China (Zhang et al., 2009; Xu et al., 2012b; Sakuyama et al., 2013). However, it remains unclear whether similar recycled oceanic components are present in earlier basalts (i.e., those emplaced during 90-40 Ma, Fig. 1), for which high quality geochemical data are not available until very recently (Zhang et al., 2008; Kuang et al., 2012; Xu et al., 2012a). In addition, the provenance of recycled oceanic components, if any, is highly relevant to the proposal of the Pacific subduction as one of the possible triggers of the destruction of the NCC. The timing of the first appearance of oceanic components in magmas will provide constraints on the role of the Pacific subduction on the evolution of the NCC.The objective of this study is to review and compile major, trace elements and Sr-Nd-Pb isotopic compositions of mafic magmas emplaced since 90 Ma in North and Northeastern China, and to use these data to elaborate their petrogenesis. We will demonstrate the ubiquitous involvement of subduction-related components in the magma sources. Furthermore, temporal variation in geochemical features suggests that different parts of the recycled oceanic crust are preferentially sampled at different time. In collaborating with melting solidus temperature and the melting column concept, this is interpreted as differential melting of upwelling heterogeneous mantle as a result of lithospheric thinning. The peculiar isotopic compositions of these oceanic crust components suggests a link with the subducted Pacific slab, which currently stagnates at the mantle transition zone beneath the

  7. Textural evidence of microbial activity in seafloor and subseafloor basalt: A comparison

    NASA Astrophysics Data System (ADS)

    Thorseth, I. H.; Pedersen, R. B.; Christie, D. M.

    2003-04-01

    SEM observations of alteration rims in basaltic glasses dredged from 0 -- 2.5 Ma seafloor and drilled from 18 -- 28 Ma ocean crust in the Australian-Antarctic Discordance (AAD) document the presence of endolithic microbes in altered basalt glass. In very young AAD lavas ˜10 μm thick alteration rims are developed along intersecting fractures and cracks. The altered glass contains numerous spherical, rod-shaped and star-shaped, partially fossilised microbial cells, similar to those from the Arctic Ridges (Thorseth et al., 2001). In 2.5 Ma basalt glasses, altered rims are up to 250 μm thick and zeolite (phillipsite) is present within the fractures. Spherical cells are observed both in porous zones in the outer part of alteration rims and on zeolite surfaces within central fractures, indicating that microbial activity persist in the region for at least 2.5 Ma. Mn-rich cell-encrustations suggest that Mn is used in an energy yielding metabolic process. Combined with recent results from the Arctic ridges the results from this study demonstrate that endolithic microbial growth is a general feature of mid-ocean spreading ridges. In glasses from ODP cores, ˜1mm thick alteration rims are developed along wide fractures lined with Mn(Fe)-oxyhydroxides and clay and filled by zeolite and calcite. Most common however are <10--200 μm thick rims developed along zeolite filled, more narrow fractures and cracks. Zeolite filled fractures with only minor to no alteration, indicate several episodes of fracturing followed by relatively fast sealing. There is no age progression in alteration thickness along fractures or other characteristics, suggesting that alteration is essentially completed between 2.5 and 18 Ma. A comparison of alteration in the 2.5 Ma glass with that in the ODP samples indicates that a significant part of the altered glass in the drilled samples developed at the surface stage. However, diffuse and highly irregular alteration fronts that are only observed in the

  8. Magma source evolution beneath the Caribbean oceanic plateau: New insights from elemental and Sr-Nd-Pb-Hf isotopic studies of ODP Leg 165, Site 1001 basalts

    NASA Astrophysics Data System (ADS)

    Kerr, A. C.; Pearson, G.; Nowell, G.

    2008-12-01

    Ocean Drilling Project Leg 165 sampled 38m of the basaltic basement of the Caribbean plate at Site 1001 on the Hess Escarpment. The recovered section consists of 12 basaltic flow units which yield a weighted mean Ar-Ar age of 80.9±0.9 Ma (Sinton et al., 2000). The basalts (6.4-8.5 wt.% MgO) are remarkably homogeneous in composition and are more depleted in incompatible trace elements than N-MORB. Markedly, depleted initial radiogenic isotope ratios reveal a long-term history of depletion. Although the Site 1001 basalts are superficially similar to N-MORB, radiogenic isotopes in conjunction with incompatible trace element ratios show that the basalts have more similarity to the depleted basalts and komatiites of Gorgona Island. This chemical composition strongly implies that the Site 1001 basalts are derived from a depleted mantle plume component and not from depleted ambient upper mantle. Therefore the Site 1001 basalts are, both compositionally and tectonically, a constituent part of the Caribbean oceanic plateau. Mantle melt modelling suggests that the Site 1001 lavas have a composition which is consistent with second-stage melting of compositionally heterogeneous mantle plume source material which had already been melted, most likely to form the 90Ma basalts of the plateau. The prolonged residence (>10m.y.) of residual mantle plume source material below the region, confirms computational model predictions and places significant constraints on tectonic models of Caribbean evolution in the late Cretaceous, and the consequent environmental impact of oceanic plateau volcanism. Reference Sinton, C.W., et al., 2000. Geochronology and petrology of the igneous basement at the lower Nicaraguan Rise, Site 1001. Proceedings of the Ocean Drilling Program, Scientific Results. Leg 165. pp. 233-236.

  9. Submarine basalt from the Revillagigedo Islands region, Mexico

    USGS Publications Warehouse

    Moore, J.G.

    1970-01-01

    Ocean-floor dredging and submarine photography in the Revillagigedo region off the west coast of Mexico reveal that the dominant exposed rock of the submarine part of the large island-forming volcanoes (Roca Partida and San Benedicto) is a uniform alkali pillow basalt; more siliceous rocks are exposed on the upper, subaerial parts of the volcanoes. Basalts dredged from smaller seamounts along the Clarion fracture zone south of the Revillagigedo Islands are tholeiitic pillow basalts. Pillows of alkali basalts are more vesicular than Hawaiian tholeiitic pillows collected from the same depths. This difference probably reflects a higher original volatile content of the alkali basalts. Manganese-iron oxide nodules common in several dredge hauls generally contain nucleii of rhyolitic pumice or basalt pillow fragments. The pumice floated to its present site from subaerial eruptions, became waterlogged and sank, and was then coated with manganese-iron oxides. The thickness of palagonite rinds on the glassy pillow fragments is proportional to the thickness of manganese-iron oxide layers, and both are a measure of the age of the nodule. Both oldest basalts (10-100 m.y.) and youngest (less than 1 m.y.) are along the Clarion fracture zone, whereas basalts from Roca Partida and San Benedicto volcanoes are of intermediate age. ?? 1970.

  10. Genesis of highland basalt breccias - A view from 66095

    NASA Technical Reports Server (NTRS)

    Garrison, J. R., Jr.; Taylor, L. A.

    1980-01-01

    Electron microprobe and defocused beam analyses of the lunar highland breccia sample 66095 show it consists of a fine-grained subophitic matrix containing a variety of mineral and lithic clasts, such as intergranular and cataclastic ANT, shocked and unshocked plagioclase, and basalts. Consideration of the chemistries of both matrix and clasts provides a basis for a qualitative three-component mixing model consisting of an ANT plutonic complex, a Fra Mauro basalt, and minor meteoric material.

  11. Deep Crustal Structure beneath Large Igneous Provinces and the Petrologic Evolution of Flood Basalts

    NASA Astrophysics Data System (ADS)

    Richards, Mark; Ridley, Victoria

    2010-05-01

    We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ~6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ~5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp~7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hotspots such as Hawaii, the Marqueses, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ~6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ~15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as "underplating," are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby better

  12. The evolution of high-alumina basalts of the Klyuchevskoy volcano, Kamchatka, Russia, based on microprobe analyses of mineral inclusions

    NASA Astrophysics Data System (ADS)

    Ozerov, Alexei Y.

    2000-01-01

    The origin of calc-alkaline high-alumina basalts (HAB) of the Klyuchevskoy volcano, Kamchatka, was examined using electron microprobe analyses of phenocrysts and mineral phases included in the phenocrysts. Continuous trends on major-element variation diagrams suggest the HAB were derived from high-magnesia basalt (HMB) by fractional crystallization. Phenocrysts in the HAB are strongly zoned: olivine (Mg# 91-64), clinopyroxene (Wo 45-38En 40-51Fs 5-20) and chrome—spinel/magnetite inclusions in them (Cr 2O 3 45-0 wt.%, TiO 2 0.5-11%). Microprobe analyses of minerals included in the phenocrysts provide additional constraints on the mineral crystallization trends in the HAB. Fe/Mg partitioning data, when applied to the phenocrysts cores, show they crystallized from a HMB. The similarity of phenocryst core compositions in HAB with those in HMB strongly suggests a genetic relationship between the two magma types.

  13. Crystallization of oxidized, moderately hydrous arc basalt at mid- to lower-crustal pressures: implications for andesite genesis

    NASA Astrophysics Data System (ADS)

    Blatter, Dawnika L.; Sisson, Thomas W.; Hankins, W. Ben

    2013-09-01

    This study focuses on the production of convergent margin calc-alkaline andesites by crystallization-differentiation of basaltic magmas in the lower to middle crust. Previous experimental studies show that dry, reduced, subalkaline basalts differentiate to tholeiitic (high Fe/Mg) daughter liquids, but the influences of H2O and oxidation on differentiation are less well established. Accordingly, we performed crystallization experiments at controlled oxidized fO2 (Re-ReO2 ≈ ΔNi-NiO + 2) on a relatively magnesian basalt (8.7 wt% MgO) typical of mafic magmas erupted in the Cascades near Mount Rainier, Washington. The basalt was synthesized with 2 wt% H2O and run at 900, 700, and 400 MPa and 1,200 to 950 °C. A broadly clinopyroxenitic crystallization interval dominates near the liquidus at 900 and 700 MPa, consisting of augite + olivine + orthopyroxene + Cr-spinel (in decreasing abundance). With decreasing temperature, plagioclase crystallizes, Fe-Ti-oxide replaces spinel, olivine dissolves, and finally amphibole appears, producing gabbroic and then amphibole gabbroic crystallization stages. Enhanced plagioclase stability at lower pressure narrows the clinopyroxenitic interval and brings the gabbroic interval toward the liquidus. Liquids at 900 MPa track along Miyashiro's (Am J Sci 274(4):321-355, 1974) tholeiitic versus calc-alkaline boundary, whereas those at 700 and 400 MPa become calc-alkaline at silica contents ≥56 wt%. This difference is chiefly due to higher temperature appearance of magnetite (versus spinel) at lower pressures. Although the evolved liquids are similar in many respects to common calc-alkaline andesites, the 900 and 700 MPa liquids differ in having low CaO concentrations due to early and abundant crystallization of augite, with the result that those liquids become peraluminous (ASI: molar Al/(Na + K + 2Ca) > 1) at ≥61 wt% SiO2, similar to liquids reported in other studies of the high-pressure crystallization of hydrous basalts (M

  14. Crystallization of oxidized, moderately hydrous arc basalt at mid- to lower-crustal pressures: Implications for andesite genesis

    USGS Publications Warehouse

    Blatter, Dawnika L.; Sisson, Thomas W.; Hankins, W. Ben

    2013-01-01

    This study focuses on the production of convergent margin calc-alkaline andesites by crystallization–differentiation of basaltic magmas in the lower to middle crust. Previous experimental studies show that dry, reduced, subalkaline basalts differentiate to tholeiitic (high Fe/Mg) daughter liquids, but the influences of H2O and oxidation on differentiation are less well established. Accordingly, we performed crystallization experiments at controlled oxidized fO2 (Re–ReO2 ≈ ΔNi–NiO + 2) on a relatively magnesian basalt (8.7 wt% MgO) typical of mafic magmas erupted in the Cascades near Mount Rainier, Washington. The basalt was synthesized with 2 wt% H2O and run at 900, 700, and 400 MPa and 1,200 to 950 °C. A broadly clinopyroxenitic crystallization interval dominates near the liquidus at 900 and 700 MPa, consisting of augite + olivine + orthopyroxene + Cr-spinel (in decreasing abundance). With decreasing temperature, plagioclase crystallizes, Fe–Ti-oxide replaces spinel, olivine dissolves, and finally amphibole appears, producing gabbroic and then amphibole gabbroic crystallization stages. Enhanced plagioclase stability at lower pressure narrows the clinopyroxenitic interval and brings the gabbroic interval toward the liquidus. Liquids at 900 MPa track along Miyashiro’s (Am J Sci 274(4):321–355, 1974) tholeiitic versus calc-alkaline boundary, whereas those at 700 and 400 MPa become calc-alkaline at silica contents ≥56 wt%. This difference is chiefly due to higher temperature appearance of magnetite (versus spinel) at lower pressures. Although the evolved liquids are similar in many respects to common calc-alkaline andesites, the 900 and 700 MPa liquids differ in having low CaO concentrations due to early and abundant crystallization of augite, with the result that those liquids become peraluminous (ASI: molar Al/(Na + K + 2Ca) > 1) at ≥61 wt% SiO2, similar to liquids reported in other studies of the high-pressure crystallization of hydrous basalts

  15. The Ninole Basalt — Implications for the structural evolution of Mauna Loa volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Lipman, Peter W.; Rhodes, J. M.; Dalrymple, G. Brent

    1990-12-01

    Lava flows of the Ninole Basalt, the oldest rocks exposed on the south side of the island of Hawaii, provide age and compositional constraints on the evolution of Mauna Loa volcano and the southeastward age progression of Hawaiian volcanism. Although the tholeiitic Ninole Basalt differs from historic lavas of Mauna Loa volcano in most major-element contents (e.g., variably lower K, Na, Si; higher Al, Fe, Ti, Ca), REE and other relatively immobile minor elements are similar to historic and prehistoric Mauna Loa lavas, and the present major-element differences are mainly due to incipient weathering in the tropical environment. New K-Ar whole-rock ages, from relatively fresh roadcut samples, suggest that the age of the Ninole Basalt is approximately 0.1 0.2 Ma, although resolution is poor because of low contents of K and radiogenic Ar. Originally considered the remnants of a separate volcano, the Ninole Hills are here interpreted as faulted remnants of the old south flank of Mauna Loa. Deep canyons in the Ninole Hills, eroded after massive landslide failure of flanks of the southwest rift zone, have been preserved from burial by younger lava due to westward migration of the rift zone. Landslide-induced depressurization of the southwest rift zone may also have induced phreatomagmatic eruptions that could have deposited widespread Basaltic ash that overlies the Ninole Basalt. Subaerial presence of the Ninole Basalt documents that the southern part of Hawaii Island had grown to much of its present size above sea level by 0.1 0.2 Ma, and places significant limits on subsequent enlargement of the south flank of Mauna Loa.

  16. Petrology of the Basalt of Summit Creek: A [Slab] Window into Pacific Northwest Tectonics during the Eocene

    NASA Astrophysics Data System (ADS)

    Kant, L. B.; Tepper, J. H.; Nelson, B. K.

    2012-12-01

    Variation in composition of basalts within the Cascade arc reflects the regional effects of subducting slab windows. The earliest preserved Tertiary manifestation of this process is the 55-44 Ma Basalt of Summit Creek (BSC), located southeast of Mount Rainier. At the base of this steeply dipping 2000 m section of subaerial lavas are basalts / diabases with arc traits (e.g., HFSE depletions, 1.0-1.2 wt. % K2O) and isotopic compositions (207Pb/204Pb > 15.58; ɛNd = +5.8 to +6.7) that overlap those of modern Cascade arc rocks. Conformably overlying these arc rocks (and separated by ~35m of shale, sandstone and conglomerate) are tholeiitic basalts with OIB affinities (<0.4 wt. % K2O, Y/Nb = 1.1-2.3, concave spidergram profiles) and isotopic signatures of a more depleted mantle source (207Pb/204Pb < 15.56; ɛNd = +7.1 to +7.8). In major element, trace element, and isotopic composition the upper BSC lavas are broadly similar to the voluminous Crescent Formation basalts on the Olympic Peninsula, which are coeval with the BSC but located ~100 km farther west. Compositional diversity within the upper BSC section (Mg# 66-30) appears to reflect both fractional crystallization and source heterogeneity. Modeling with MELTS (Ghiroso and Sack, 1995) indicates that differentiation dominated by removal of clinopyroxene and plagioclase took place at mid crustal depths (P = 5 kbar) and that the parent magma had <0.2 wt. % water. However, this process cannot account for all incompatible element data, which indicate the existence of two distinct magma series that differ most notably in Sr, Zr, and K2O contents. Arc basalts of the lower BSC may represent the southernmost extension of the Cretaceous-Tertiary North Cascades arc (Miller et al., 2009); however, basalts higher in the section have OIB traits and reflect a different tectonic setting. We propose that the transition from arc to OIB magmatism in the BSC records the arrival beneath the arc of a slab window produced by subduction

  17. Voluminous Icelandic Basaltic Eruptions Appear To Cause Abrupt Global Warming

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2011-12-01

    major sub-glacial eruptions that occurred during DO 0, A, and 1 (11.6, 13.1, and 14.6 ka) and similar but less well dated activity at least over the past million years. Massive melting of a thick ice sheet by volcanoes would decrease overburden pressure on the magma chambers, potentially increasing volcanism. Continued basaltic eruptions over decades enhanced by such a feedback c8ould explain why the intervals between DO events (1300 to 8800 years) are more random than cyclic and the evidence for sudden influxes of fresh water into the North Atlantic documented during DO events. Concentrations of sulfate in Greenland were as high from 1928 to 1985 as during the largest DO event. Trace element analysis shows this sulfate came from smoke stacks in northern Russia, Europe, and central North America. Observed levels of SO2, NO_{x}, tropospheric O$_{3} and black carbon are more than sufficient to have been the primary cause of 20th century global warming. Efforts to reduce acid rain by reducing emissions of these pollutants "accidentally" slowed global warming by 1998. Mean global surface temperatures have remained high but have not increased since then.

  18. An experimental study of basaltic glass-H2O-CO2 interaction at 22 and 50 ° C: Implications for subsurface storage of CO2

    NASA Astrophysics Data System (ADS)

    Galeczka, Iwona; Wolff-Boenisch, Domenik; Oelkers, Eric H.; Gislason, Sigurdur R.

    2014-05-01

    A novel high pressure column flow reactor (HPCFR) was used to investigate the evolution of fluid chemistry along a 2.3 meter flow path during 37-104 days of pure water- and CO2-charged water- (0.3 M CO2(aq)) basaltic glass interaction experiments at 22 and 50 ° C. The scale of the HPCFR, the ability to sample a reactive fluid at discrete spatial intervals under pressure and the possibility to measure the dissolved inorganic carbon and pH in situ all render the HPCFR unique in comparison with other reactors constructed for studies of CO2-charged water-rock interaction. During the pure water-basaltic glass interaction experiment, the pH of the injected water evolved rapidly from 6.7 to 9-9.5 and most of the dissolved iron was consumed by secondary mineral formation, similar to natural basaltic groundwater systems. In contrast to natural systems, however, the dissolved aluminium concentration remained relatively high along the entire flow path. The reactive fluid was undersaturated with respect to basaltic glass and carbonate minerals, but supersaturated with respect to zeolites, clays, and Fe hydroxides. Basaltic glass dissolution in the CO2-charged water was closer to stoichiometry than in pure water. The mobility of metals increased significantly in the reactive fluid and the concentration of some metals, including Mn, Fe, Cr, Al, and As exceeded the WHO (World Health Organisation) allowable drinking water limits. Iron was mobile and the aqueous Fe2+/Fe3+ ratio increased along the flow path. Basaltic glass dissolution in the CO2-charged water did not overcome the pH buffer capacity of the fluid. The pH rose only from an initial pH of 3.4 to 4.5 along the first 18.5 cm of the column, then remained constant during the remaining 2.1 meters of the flow path. Increasing the temperature of the CO2-charged fluid from 22 to 50 ° C increased the relative amount of dissolved divalent iron along the flow path. After a significant initial increase along the first metre of

  19. Magma Supply at the Arctic Gakkel Ridge: Constraints from Peridotites and Basalts

    NASA Astrophysics Data System (ADS)

    Sun, C.; Dick, H. J.; Hellebrand, E.; Snow, J. E.

    2015-12-01

    Crustal thickness in global ridge systems is widely believed to be nearly uniform (~7 km) at slow- and fast-spreading mid-ocean ridges, but appears significantly thinner (< ~4 km) at ultraslow-spreading ridges. At the slowest-spreading Arctic Gakkel Ridge, the crust becomes extremely thin (1.4 - 2.9 km; [1]). The thin crust at the Gakkel and other ultraslow-spreading ridges, has been attributed to lithosphere thickening, ancient mantle depletion, lower mantle temperature, ridge obliquity, and melt retention/focusing. To better understand the magma supply at ultraslow-spreading ridges, we examined melting dynamics by linking peridotites and basalts dredged along the Gakkel Ridge. We analyzed rare earth elements in clinopyroxene from 84 residual peridotites, and estimated melting parameters for individual samples through nonlinear least squares analyses. The degrees of melting show a large variation but mainly center at around 7% assuming a somewhat arbitrary but widely used depleted MORB mantle starting composition. Thermobarometry on published primitive basaltic glasses from [2] indicates that the mantle potential temperature at the Gakkel Ridge is ~50°C cooler than that at the East Pacific Rise. The ridge-scale low-degree melting and lower mantle potential temperature place the final depth of melting at ~30 km and a melt thickness of 1.0 or 2.9 km for a triangular or trapezoidal melting regime, respectively. The final melting depth is consistent with excess conductive cooling and lithosphere thickening suggested by geodynamic models, while the estimated melt thickness is comparable to the seismic crust (1.4 - 2.9 km; [1]). The general agreement among geochemical analyses, seismic measurements, and geodynamic models supports that lower mantle potential temperature and thick lithosphere determine the ridge-scale low-degree melting and thin crust at the Gakkel Ridge, while melt retention/focusing and excess ancient mantle depletion are perhaps locally important at

  20. The Role of Garnet Pyroxenite in High-Fe Mantle Melt Generation: High Pressure Melting Experiments

    NASA Astrophysics Data System (ADS)

    Tuff, J.; Takahashi, E.; Gibson, S.

    2004-12-01

    Evidence for the existence of heterogeneous or 'marble cake' convecting mantle1 is provided recently by rare, high MgO ( ˜ 15 wt.%) primitive magmas with anomalously high abundances of FeO* ( ˜ 13.5 to 16 wt. %2,3; where FeO* = total Fe as FeO). These high-Fe mantle melts show a limited occurrence in the initial stage of magmatism in large igneous provinces (e.g. Deccan, Ethiopia and Paraná-Etendeka) and some have incompatible trace-element and radiogenic-isotopic ratios (Sr, Nd and Pb) that resemble those of ocean-island basalts. This suggests that they are predominantly derived from the convecting mantle2. The ferropicrites are mildly- to sub-alkaline and have low contents of Al2O3 (< 10 wt.%) and heavy rare-earth elements (e.g. Lu < 0.18ppm) that are consistent with the increased stability of garnet, due to the high FeO* content in the ferropicrite mantle source. It has been proposed that the source of the high FeO* may be garnet-pyroxenite streaks derived from subducted mafic oceanic crust2. We have undertaken melting experiments between 1 atmosphere and 7 GPa in order to determine the anhydrous phase relations of an uncontaminated ferropicrite lava from the base of the Early-Cretaceous Paraná-Etendeka continental flood-basalt province. The sample has high contents of MgO ( ˜ 14.9 wt.%), FeO* (14.9 wt.%) and NiO (0.07 wt.%). Olivine phenocrysts have maximum Fo contents of 85 and are in equilibrium with the host rock, assuming a Kd of 0.32 and we believe that the sample is representative of a primary Fe-rich mantle plume derived melt. In total, 75 experimental runs were carried out. Melting phase relations as well as compositions and modal proportions of all coexisting phases were successfully determined in 60 run products. Phase relations indicate that the ferropicrite melt was generated either at ˜ 2.2 GPa from an olivine-pyroxene residue or ˜ 5 GPa from a garnet-pyroxene residue. A low bulk-rock Al2O3 content (9 wt.%) and high [Gd/Yb]n ratio (3.1) are

  1. High temperature deformation of NiAl and CoAl

    NASA Technical Reports Server (NTRS)

    Nix, W. D.

    1982-01-01

    The high temperature mechanical properties of the aluminides are reviewed with respect to their potential as high temperature structural materials. It is shown that NiAl and CoAl are substantially stronger than the pure metals Ni and Co at high temperatures and approach the strength of some superalloys, particularly when those superalloys are tested in "weak" directions. The factors that limit and control the high temperature strengths of NiAl and CoAl are examined to provide a basis for the development of intermetallic alloys of this type.

  2. The Atlantis Bank gabbro-suite was not a "normal" magma-chamber that produced basalts

    NASA Astrophysics Data System (ADS)

    Kvassnes, A. J.; Dick, H. J. B.; Grove, T. L.

    2003-04-01

    The differentiation of the basalts sampled at Atlantis II Fracture Zone, South-West Indian Ridge, is not the result of simple fractionation of gabbroic mineral-assemblages like those recovered from the adjacent Atlantis Bank and ODP Hole 735B. Large mineral data sets for the gabbros (Dick, et al 2002) are now available for analysis and comparison to spatially associated basalts. We have used Melts and pMelts (Ghiorso and Sack, 1995) to estimate the fractional crystallization trend gabbros from a primitive mantle melt or of the AII F.Z. MORB. Thermodynamic models (Grove et al (1992), Putirka (1999)) were also used to model the glasses hypothetical mafic and felsic mineral equilibrium-compositions. Our results show that while the basalts suggest 30-50% crystallization, the gabbros indicate 35-90% crystallization of a primary melt. It is therefore unlikely that the gabbros sampled from Atlantis Bank are the fossil magma-chambers that expelled melts that formed the spatially associated basalts. The models also show that the most primitive gabbros have elevated clinopyroxene Mg#s (Mg/(Mg+Fe)) relative to the coexisting plagioclase An%. This was unexpected, as the clinopyroxene frequently occurs as oikocrysts surrounding the plagioclase and encloses rounded olivine chadacrysts, indicating that the clinopyroxene precipitated late. Elthon (1992) noted the same problem for Cayman Trough gabbros; suggesting that this was the result of intermediate pressure fractionation. In our models, pressure does have some effect up to 5kbar, but is not enough to explain the discrepancy. We propose a model where melts are modified in a porous network or mush. Plagioclase-olivine networks form by accumulation of buoyant glomerocrysts and then work as filters as new melts pass through. Dissolution of the minerals would make the new melt appear to be more primitive with regards to increased Mg#s, as the dissolution happens fast without complete internal re-equilibration with the gabbro

  3. Abrasion resistant low friction and ultra-hard magnetron sputtered AlMgB14 coatings

    NASA Astrophysics Data System (ADS)

    Grishin, A. M.

    2016-04-01

    Hard aluminum magnesium boride films were fabricated by RF magnetron sputtering from a single stoichiometric AlMgB14 ceramic target. X-ray amorphous AlMgB14 films are very smooth. Their roughness does not exceed the roughness of Si wafer and Corning glass used as the substrates. Dispersion of refractive index and extinction coefficient were determined within 300 to 2500 nm range for the film deposited onto Corning glass. Stoichiometric in-depth compositionally homogeneous 2 μm thick films on the Si(100) wafer possess the peak values of nanohardness 88 GPa and Young’s modulus 517 GPa at the penetration depth of 26 nm and, respectively, 35 GPa and 275 GPa at 200 nm depth. Friction coefficient was found to be 0.06. The coating scratch adhesion strength of 14 N was obtained as the first chipping of the coating whereas its spallation failure happened at 21 N. These critical loads and the work of adhesion, estimated as high as 18.4 J m-2, surpass characteristics of diamond like carbon films deposited onto tungsten carbide-cobalt (WC-Co) substrates.

  4. Impact of iron chelators on short-term dissolution of basaltic glass

    NASA Astrophysics Data System (ADS)

    Perez, Anne; Rossano, Stéphanie; Trcera, Nicolas; Verney-Carron, Aurélie; Huguenot, David; van Hullebusch, Eric D.; Catillon, Gilles; Razafitianamaharavo, Angelina; Guyot, François

    2015-08-01

    Although microorganisms seem to play an important role in the alteration processes of basaltic glasses in solution, the elementary mechanisms involved remain unclear in particular with regard to the role of organic ligands excreted by the cells. Two glasses, one with Fe and one without Fe were synthesized to model basaltic glass compositions. Fe in the glass was mostly Fe(III) for enhancing interaction with siderophores, yet with small but significant amounts of Fe(II) (between 10% and 30% of iron). The prepared samples were submitted to abiotic alteration experiments in buffered (pH 6.4) diluted solutions of metal-specific ligands, namely oxalic acid (OA, 10 mM), desferrioxamine (DFA, 1 mM) or 2,2‧-bipyridyl (BPI, 1 mM). Element release from the glass into the solution after short term alteration (maximum 1 week) was measured by ICP-OES, and normalized mass losses and relative release ratios (with respect to Si) were evaluated for each element in each experimental condition. The presence of organic ligands had a significant effect on the dissolution of both glasses. Trivalent metals chelators (OA, DFA) impacted on the release of Fe3+ and Al3+, and thus on the global dissolution of both glasses, enhancing all release rates and dissolution stoichiometry (release rates were increased up to 7 times for Al or Fe). As expected, the mostly divalent metal chelator BPI interacted preferentially with Ca2+, Mg2+ and Fe2+. This study thus allows to highlight the central roles of iron and aluminium in interaction with some organic ligands in the alteration processes of basaltic glasses. It thus provides a step toward understanding the biological contribution of this fundamental geological process.

  5. BASALT A: Basaltic Terrains in Idaho and Hawaii as Planetary Analogs for Mars Geology and Astrobiology

    NASA Technical Reports Server (NTRS)

    Hughes, Scott S.; Haberle, Christopher W.; Nawotniak, Shannon E. Kobs; Sehlke, Alexander; Garry, W. Brent; Elphic, Richard C.; Payler, Sam J.; Stevens, Adam H.; Cockell, Charles S.; Brady, Allyson L.; hide

    2018-01-01

    Assessments of field research target regions are described within two notably basaltic geologic provinces as Earth analogs to Mars. Regions within the eastern Snake River Plain of Idaho and the Big Island of Hawaii, USA, provinces that represent analogs of present-day and early Mars, respectively, were evaluated on the basis of geologic settings, rock lithology and geochemistry, rock alteration, and climate. Each of these factors provide rationale for the selection of specific targets for field research in five analog target regions: (1) Big Craters and (2) Highway lava flows at Craters of the Moon National Monument and Preserve, Idaho; and (3) Mauna Ulu low shield, (4) Kilauea Iki lava lake and (5) Kilauea caldera in the Kilauea Volcano summit region and the East Rift Zone of Hawaii. Our evaluation of compositional and textural differences, as well as the effects of syn- and post-eruptive rock alteration, shows that the basaltic terrains in Idaho and Hawaii provide a way to characterize the geology and major geologic substrates that host biological activity of relevance to Mars exploration. This work provides the foundation to better understand the scientific questions related to the habitability of basaltic terrains, the rationale behind selecting analog field targets, and their applicability as analogs to Mars.

  6. Occurrence of high-Al N-MORB along the Easternmost Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Meyzen, C. M.; Humler, E.; Ludden, J. N.

    2017-12-01

    One of the deepest and slowest part of the mid-ocean-ridge system lies within the easternmost part of the Southwest Indian Ridge between 61°E and 69° E. In this region, a distinctive sea-floor terrain characterized by high-relief segments separated by long, deep tectonized sections shows a predominance of tectonic over magmatic extensional processes, suggesting an unstable and weak, but locally focalized magma supply. Other features of this section include the absence of long-lived transforms, thick lithosphere, high upper mantle seismic wave velocities and thin oceanic crust (4-5 km). When compared to other ridge segments, most MORB erupted along this section distinguish themselves by their higher Na2O, Sr and Al2O3 compositions, very low CaO/Al2O3 ratios relative to TiO2 and depleted heavy rare-earth element (REE) distributions. Another peculiar feature is their subparallel LREE enriched patterns. The high-Al-MgO magma type erupted periodically around the ridge system is also found in this region at 61.93°E. These lavas are characterized by high Al2O3 (> 17 wt. %), MgO (> 8.8 wt. %) and FeO contents, low SiO2 (< 49 wt. %) and Na2O and very low TiO2 (< 1 wt. %), and a LREE depleted pattern compared to the main population. At slightly lower MgO, sporadically, two other dredges located at 63.36-63.66°E share some of these distinct compositional characteristics. As a whole, these lavas are the most depleted in highly incompatible elements, but are also characterized by an offset toward lower MREE/HREE ratios relative to the main population. These peculiar basalts are not parental to the more common lower MgO compositions and cannot be related to them by fractional crystallization alone. Instead, their major element features, and the occasional presence of positive Eu and Sr anomalies might indicate assimilation of plagioclase cumulates, while their offset in MREE/HREE might require a multistage melting evolution with an earlier event in the garnet stability field.

  7. Carbon isotope and abundance systematics of Icelandic geothermal gases, fluids and subglacial basalts with implications for mantle plume-related CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Hilton, D. R.; Füri, E.; Halldórsson, S. A.; Grönvold, K.

    2014-06-01

    We report new carbon dioxide (CO2) abundance and isotope data for 71 geothermal gases and fluids from both high-temperature (HT > 150 °C at 1 km depth) and low-temperature (LT < 150 °C at 1 km depth) geothermal systems located within neovolcanic zones and older segments of the Icelandic crust, respectively. These data are supplemented by CO2 data obtained by stepped heating of 47 subglacial basaltic glasses collected from the neovolcanic zones. The sample suite has been characterized previously for He-Ne (geothermal) and He-Ne-Ar (basalt) systematics (Füri et al., 2010), allowing elemental ratios to be calculated for individual samples. Geothermal fluids are characterized by a wide range in carbon isotope ratios (δ13C), from -18.8‰ to +4.6‰ (vs. VPDB), and CO2/3He values that span eight orders of magnitude, from 1 × 104 to 2 × 1012. Extreme geothermal values suggest that original source compositions have been extensively modified by hydrothermal processes such as degassing and/or calcite precipitation. Basaltic glasses are also characterized by a wide range in δ13C values, from -27.2‰ to -3.6‰, whereas CO2/3He values span a narrower range, from 1 × 108 to 1 × 1012. The combination of both low δ13C values and low CO2 contents in basalts indicates that magmas are extensively and variably degassed. Using an equilibrium degassing model, we estimate that pre-eruptive basaltic melts beneath Iceland contain ∼531 ± 64 ppm CO2 with δ13C values of -2.5 ± 1.1‰, in good agreement with estimates from olivine-hosted melt inclusions (Metrich et al., 1991) and depleted MORB mantle (DMM) CO2 source estimates (Marty, 2012). In addition, pre-eruptive CO2 compositions are estimated for individual segments of the Icelandic axial rift zones, and show a marked decrease from north to south (Northern Rift Zone = 550 ± 66 ppm; Eastern Rift Zone = 371 ± 45 ppm; Western Rift Zone = 206 ± 24 ppm). Notably, these results are model dependent, and selection of a lower

  8. Mantle upwelling and trench-parallel mantle flow in the northern Cascade arc indicated by basalt geochemistry

    NASA Astrophysics Data System (ADS)

    Mullen, E.; Weis, D.

    2013-12-01

    Cascadia offers a unique perspective on arc magma genesis as an end-member ';hot' subduction zone in which relatively little water may be available to promote mantle melting. The youngest and hottest subducting crust (~5 Myr at the trench) occurs in the Garibaldi Volcanic Belt, at the northern edge of the subducting Juan de Fuca plate [1]. Geochemical data from GVB primitive basalts provide insights on mantle melting where a slab edge coincides with high slab temperatures. In subduction zones worldwide, including the Cascades, basalts are typically calc-alkaline and produced from a depleted mantle wedge modified by slab input. However, basalts from volcanic centers overlying the northern slab edge (Salal Glacier and Bridge River Cones) are alkalic [2] and lack a trace element subduction signature [3]. The mantle source of the alkalic basalts is significantly more enriched in incompatible elements than the slab-modified depleted mantle wedge that produces calc-alkaline basalts in the southern GVB (Mt. Baker and Glacier Peak) [3]. The alkalic basalts are also generated at temperatures and pressures of up to 175°C and 1.5 GPa higher than those of the calc-alkaline basalts [3], consistent with decompression melting of fertile, hot mantle ascending through a gap in the Nootka fault, the boundary between the subducting Juan de Fuca plate and the nearly stagnant Explorer microplate. Mantle upwelling may be related to toroidal mantle flow around the slab edge, which has been identified in southern Cascadia [4]. In the GVB, the upwelling fertile mantle is not confined to the immediate area around the slab edge but has spread southward along the arc axis, its extent gradually diminishing as the slab-modified depleted mantle wedge becomes dominant. Between Salal Glacier/Bridge River and Glacier Peak ~350 km to the south, there are increases in isotopic ratios (ɛHf = 8.3 to13.0, ɛNd = 7.3 to 8.5, and 208Pb*/206*Pb* = 0.914 to 0.928) and trace element indicators of slab

  9. Ultra-hard amorphous AlMgB14 films RF sputtered onto curved substrates

    NASA Astrophysics Data System (ADS)

    Grishin, A. M.; Putrolaynen, V. V.; Yuzvyuk, M. H.

    2017-03-01

    Recently, hard AlMgB14 (BAM) coatings were deposited for the first time by RF magnetron sputtering using a single stoichiometric ceramic target. High target sputtering power and sufficiently short target-to-substrate distance were found to be critical processing conditions. They enabled fabrication of stoichiometric in-depth compositionally homogeneous films with the peak values of nanohardness 88 GPa and Young’s modulus 517 GPa at the penetration depth of 26 nm and, respectively, 35 GPa and 275 GPa at 200 nm depth in 2 µm thick film (Grishin et al 2014 JETP Lett. 100 680). The narrow range of sufficiently short target-to-substrate distance makes impossible to coat non flat specimens. To achieve ultimate BAM films’ characteristics onto curved surfaces we developed two-step sputtering process. The first thin layer is deposited as a template at low RF power that facilitates a layered Frank van der Merwe mode growth of smooth film occurs. The next layer is grown at high RF target sputtering power. The affinity of subsequent flow of sputtered atoms to already evenly condensed template fosters the development of smooth film surface. As an example, we made BAM coating onto hemispherical 5 mm in diameter ball made from a hard tool steel and used as a head of a special gauge. Very smooth (6.6 nm RMS surface roughness) and hard AlMgB14 films fabricated onto commercial ball-shaped items enhance hardness of tool steel specimens by a factor of four.

  10. Modeling Cooling Rates of Martian Flood Basalt Columns

    NASA Astrophysics Data System (ADS)

    Weiss, D. K.; Jackson, B.; Milazzo, M. P.; Barnes, J. W.

    2011-12-01

    Columnar jointing in large basalt flows have been extensively studied and can provide important clues about the emplacement conditions and cooling history of a basalt flow. The recent discovery of basalt columns on Mars in crater walls near Marte Vallis provides an opportunity to infer conditions on early Mars when the Martian basalt flows were laid down. Comparison of the Martian columns to Earth analogs allows us to gain further insight into the early Martian climate, and among the best terrestrial analogs are the basalt columns in the Columbia River Basalt Group (CRBG) in eastern Washington. The CRBG is one of the youngest (< 17 Myrs old) and most extensively studied basalt provinces in the world, extending over 163,700 square km with total thickness exceeding 1 km in some places. The morphologies and textures of CRBG basalt columns suggest that in many places flows ~100 m thick cooled at uniform rates, even deep in the flow interior. Such cooling seems to require the presence of water in the column joints since the flow interiors should have cooled much more slowly than the flow margins if conductive cooling dominated. Secondary features, such pillow basalts, likewise suggest the basalt flows were in direct contact with standing water in many places. At the resolution provided by the orbiting HiRISE camera (0.9 m), the Martian basalt columns resemble the CRBG columns in many respects, and so, subject to important caveats, inferences linking the morphologies of the CRBG columns to their thermal histories can be extended in some respects to the Martian columns. In this presentation, we will describe our analysis of the HiRISE images of the Martian columns and what can be reasonably inferred about their thermal histories and the conditions under which they were emplaced. We will also report on a field expedition to the CRBG in eastern Washington State. During that expedition, we surveyed basalt column outcrops on the ground and from the air using Unmanned Aerial

  11. Discovery of a basaltic asteroid in the outer main belt

    PubMed

    Lazzaro; Michtchenko; Carvano; Binzel; Bus; Burbine; Mothe-Diniz; Florczak; Angeli; Harris

    2000-06-16

    Visible and near-infrared spectroscopic observations of the asteroid 1459 Magnya indicate that it has a basaltic surface. Magnya is at 3. 15 astronomical units (AU) from the sun and has no known dynamical link to any family, to any nearby large asteroid, or to asteroid 4 Vesta at 2.36 AU, which is the only other known large basaltic asteroid. We show that the region of the belt around Magnya is densely filled by mean-motion resonances, generating slow orbital diffusion processes and providing a potential mechanism for removing other basaltic fragments that may have been created on the same parent body as Magnya. Magnya may represent a rare surviving fragment from a larger, differentiated planetesimal that was disrupted long ago.

  12. Origin of Permian OIB-like basalts in NW Thailand and implication on the Paleotethyan Ocean

    NASA Astrophysics Data System (ADS)

    Wang, Yuejun; He, Huiying; Zhang, Yuzhi; Srithai, Boontarika; Feng, Qinglai; Cawood, Peter A.; Fan, Weiming

    2017-03-01

    The basaltic rocks in NW Thailand belong to part of giant Southeast Asian igneous zone that delineates the extension of the Paleotethyan Ocean from SW China into NW Thailand. The Chiang Mai basaltic samples from the Chiang Dao, Fang, Lamphun and Ban Sahakorn sections are divisible into two groups of high-iron basalt. Group 1 has SiO2 of 38.30-49.18 wt.%, FeOt of 13.09-25.37 wt.%, MgO of 8.38-1.60 wt.%, TiO2 of 3.92-6.30 wt.%, which is rarely observed in nature. Group 2 shows SiO2 = 44.71-49.21 wt.%, FeOt = 10.88-14.34 wt.%, MgO = 5.24-16.11 wt.%, TiO2 = 2.22-3.07 wt.% and mg# = 44-70. Olivine and pyroxene are responsible for the fractionation of the Group 2 magma whereas low oxygen fugacity during the late-stage differentiation of the Group 1 magma prolonged fractionation of ilmenite and magnetite. The onset of ilmenite and magnetite fractionations controls the distinct differentiation commencing at MgO = 7 wt.%. Both groups show similar REE and primitive mantle-normalized patterns with insignificant Eu, Nb-Ta and Zr-Hf anomalies. They have similar Nd isotopic compositions with εNd (t) values ranging from + 2.8 to + 3.7 and similar Nb/La, Nb/U, Th/La, Zr/Nb, Th/Ta, La/Yb, Nb/Th, Nb/Y and Zr/Y, resembling those of OIB-like rocks. The representative basaltic sample yields the argon plateau age of 282.3 ± 1.4 Ma, suggestive of Early Permian origin. Our data argue for Group 1 and Group 2 are coeval in the intra-oceanic seamount setting within the Paleotethyan Ocean, which at least continued till 283 Ma. These data, along with other observations, suggest that the Inthanon zone defines the main Paleotethyan suture zone, which northerly links with the Changning-Menglian suture zone in SW China.

  13. Mechanical behavior and localized failure modes in a porous basalt from the Azores

    NASA Astrophysics Data System (ADS)

    Loaiza, S.; Fortin, J.; Schubnel, A.; Guéguen, Y.; Moreira, M.; Vinciguerra, S.

    2012-04-01

    , strain hardening, with stress drops are observed. Such a behavior is characteristic of the formation of compaction localization, due to grain crushing and pore collapse. In addition, this inelastic compaction is accompanied by a decrease of permeability, indicating that these compaction bands or zones act as barrier for fluid flow, in agreement with observations done in sandstone (Fortin et al., 2005). Further studies, including microstructural observations carried out by mapping the compaction bands or zones throughout a mosaic of SEM images at high resolution and acoustic emission recording will be carried in order to confirm the formation of compaction localization, and the micromechanisms (pore collapse and grain crushing) taking place in this second mode of deformation.

  14. A Brillouin scattering study of hydrous basaltic glasses: the effect of H2O on their elastic behavior and implications for the densities of basaltic melts

    NASA Astrophysics Data System (ADS)

    Wu, Lei; Yang, De-Bin; Liu, Jun-Xiu; Hu, Bo; Xie, Hong-Sen; Li, Fang-Fei; Yu, Yang; Xu, Wen-Liang; Gao, Chun-Xiao

    2017-06-01

    Hydrous basalt glasses with water contents of 0-6.82% were synthesized using a multi-anvil press at 1.0-2.0 GPa and 1200-1400 °C. The starting materials were natural Mesozoic basalts from the eastern North China Craton (NCC). Their sound velocities and elastic properties were measured by Brillouin scattering spectroscopy. The longitudinal ( V P) and shear ( V S) wave velocities decreased with increasing water content. Increasing the synthesis pressure resulted in the glass becoming denser, and finally led to an increase in V P. As the degree of depolymerization increased, the V P, V S, and shear and bulk moduli of the hydrous basalt glasses decreased, whereas the adiabatic compressibility increased. The partial molar volumes of water (ν) under ambient conditions were independent of composition, having values of 11.6 ± 0.8, 10.9 ± 0.6 and 11.5 ± 0.5 cm3/mol for the FX (Feixian), FW (Fuxin), and SHT (Sihetun) basalt glasses, respectively. However, the {{V}_{{{{H}}_{{2}}}{O}}} values measured at elevated temperatures and pressures are increasing with increasing temperature or decreasing pressure. The contrasting densities of these hydrous basalt melts with those previously reported for mid-ocean ridge basalt and preliminary reference Earth model data indicate that hydrous basalt melts may not maintain gravitational stability at the base of the upper mantle.

  15. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges

    NASA Astrophysics Data System (ADS)

    Langmuir, Charles H.; Klein, Emily M.; Plank, Terry

    Mid-ocean ridge basalts (MORB) are a consequence of pressure-release melting beneath ocean ridges, and contain much information concerning melt formation, melt migration and heterogeneity within the upper mantle. MORB major element chemical systematics can be divided into global and local aspects, once they have been corrected for low pressure fractionation and interlaboratory biases. Regional average compositions for ridges unaffected by hot spots ("normal" ridges) can be used to define the global correlations among normalized Na2O, FeO, TiO2 and SiO2 contents, CaO/Al2O3 ratios, axial depth and crustal thickness. Back-arc basins show similar correlations, but are offset to lower FeO and TiO2 contents. Some hot spots, such as the Azores and Galapagos, disrupt the systematics of nearby ridges and have the opposite relationships between FeO, Na2O and depth over distances of 1000 km. Local variations in basalt chemistry from slow- and fast-spreading ridges are distinct from one another. On slow-spreading ridges, correlations among the elements cross the global vector of variability at a high angle. On the fast-spreading East Pacific Rise (EPR), correlations among the elements are distinct from both global and slow-spreading compositional vectors, and involve two components of variation. Spreading rate does not control the global correlations, but influences the standard deviations of axial depth, crustal thickness, and MgO contents of basalts. Global correlations are not found in very incompatible trace elements, even for samples far from hot spots. Moderately compatible trace elements for normal ridges, however, correlate with the major elements. Trace element systematics are significantly different for the EPR and the mid-Atlantic Ridge (MAR). Normal portions of the MAR are very depleted in REE, with little variability; hot spots cause large long wavelength variations in REE abundances. Normal EPR basalts are significantly more enriched than MAR basalts from normal

  16. Giant Plagioclase "Mosaicrysts" and Other Textures in the Steens Basalt, Columbia River Flood Basalt Province

    NASA Astrophysics Data System (ADS)

    Grunder, A.; Moore, N. E.; Bohrson, W. A.

    2015-12-01

    The Steens Basalts (~16.7 Ma), the oldest and most mafic stage of Columbia River flood basalt volcanism, are known for lavas with conspicuous giant plagioclase laths (2 - 5 cm in diameter). Such flows are intercalated with ones that are nearly aphyric or that bear plagioclase (plag) phenocrysts of 0.5-2 cm. Addition textures are distinctive radial, snowflake plag clusters and sandwich glomerocrysts of plag, with olivine trapped between laths. These clusters and glomerocrysts are typically 1, but as large as 3 cm in diameter. Plag composition of all textural types is limited (An76-60). Plag dominates the phenocryst mode; rare flows, mainly low in the section, have olivine > plag and phenocrystic clinopyroxene occurs rarely, and mainly high in the section. Unlike the flows, dikes have few phenocrysts; giant laths are rare and the snowflake texture has not been observed. Giant plag laths are euhedral and make up a few percent to more than 50% of the rock. Many plag megacrysts are made of several plag crystals that form a mosaic, where the constituent crystals are crystallographically distinct and are overgrown with feldspar to make the crystal euhedral. We describe these composite megacrysts as "mosaicrysts". We are exploring magmatic conditions that would trigger oversaturation to spawn rapid growth yielding clusters and overgrowths that form mosaicrysts. Giant plagioclase basalts (so-called GPB) are also described for the Deccan and Emeishan flood basalt provinces attesting to similar magmatic processes. Plag laths typically define strong flow foliation at the flow base, have a swirled distribution in the flow core, and are sparse in the top. Some particularly crystal-rich flows (or sills) have an abrupt transition to a crystal-poor upper few decimeters of the several-m- thick flow. We interpret the crystal-poor top to be the expelled melt from crystal accumulation in the flow, which locally reinjects and is entrained in lower crystal mush.

  17. Element mobilization and redistribution under extreme tropical weathering of basalts from the Hainan Island, South China

    NASA Astrophysics Data System (ADS)

    Jiang, Ke; Qi, Hua-Wen; Hu, Rui-Zhong

    2018-06-01

    Chemical weathering of rocks has substantial influence on the global geochemical cycle. In this paper, the geochemical profile of a well-developed basalt weathering profile (>15 m thick, including soil, saprolite, semi-weathered rock and fresh basalt) on the Island of Hainan (South China) was presented. The soil and saprolite samples from this profile are characterized by high Al2O3 and Fe2O3 concentrations (up to 32.3% and 28.5%, respectively). The mineral assemblage is dominated by kaolinite, Fe-oxides/-hydroxides and gibbsite (or boehmite), indicating extensive desilicate and ferrallitic weathering. The acidic and organic-rich environment in the soil horizon may have promoted elemental remobilization and leaching. The strongest SiO2 depletion and Al2O3 enrichment at about 2.4 m deep indicate that the main kaolinite hydrolysis and gibbsite formation occurred near the soil-saprolite interface. The mild Sr reconcentration at about 3.9 m and 7.1 m deep may be attributed to secondary carbonate precipitation. Mn-oxides/-hydroxides precipitated at 6.1 m deep, accompanied by the strongest enrichment of Ba and Co. Uranium is mildly enriched in the middle part (about 7.1 m and 9.1 m deep) of the weathering profile, and the enrichment may have been caused by the decomposition of uranyl carbonates or the accumulation of zircon. Immobile element (i.e., Zr, Hf, Nb, Ta, Th and Ti) distributions at different depths are mainly controlled by secondary Fe-oxides/-hydroxides, and follow the stability sequence of Nb ≈ Ta ≈ Th > Zr ≈ Hf > Ti. The limited thickness (∼15 cm) of the semi-weathered basalt horizon at the rock-regolith interface (15.28 m deep) suggests that plagioclase and pyroxene are readily altered to kaolinite, smectite and Fe-oxides under tropical climate. The marked enrichment of transitional metals (such as Cu, Zn, Ni, and Sc) along the rock-regolith interface may have associated mainly with increasing pH values, as well as the dissolution of primary apatite

  18. Petrochemistry of a xenolith-bearing Neogene alkali olivine basalt from northeastern Iran

    NASA Astrophysics Data System (ADS)

    Saadat, Saeed; Stern, Charles R.

    2012-05-01

    A small isolated Neogene, possibly Quaternary, monogenetic alkali olivine basalt cone in northeastern Iran contains both mantle peridotite and crustal gabbroic xenoliths, as well as plagioclase megacrysts. The basaltic magma rose to the surface along pathways associated with local extension at the junction between the N-S right-lateral and E-W left-lateral strike slip faults that form the northeastern boundary of the Lut microcontinental block. This basalt is enriched in LREE relative to HREE, and has trace-element ratios similar to that of oceanic island basalts (OIB). Its 87Sr/86Sr (0.705013 to 0.705252), 143Nd/144Nd (0.512735 to 0.512738), and Pb isotopic compositions all fall in the field of OIB derived from enriched (EM-2) mantle. It formed by mixing of small melt fractions from both garnet-bearing asthenospheric and spinel-facies lithospheric mantle. Plagioclase (An26-32) megacrysts, up to 4 cm in length, have euhedral crystal faces and show no evidence of reaction with the host basalt. Their trace-element concentrations suggest that these megacrysts are co-genetic with the basalt host, although their 87Sr/86Sr (0.704796) and 143Nd/144Nd (0.512687) ratios are different than this basalt. Round to angular, medium-grained granoblastic meta-igneous gabbroic xenoliths, ranging from ~ 1 to 6 cm in dimension, are derived from the lower continental crust. Spinel-peridotite xenoliths equilibrated in the subcontinental lithosphere at depths of 30 to 60 km and temperatures of 965 °C to 1065 °C. These xenoliths do not preserve evidence of extensive metasomatic enrichment as has been inferred for the mantle below the Damavand volcano further to the west in north-central Iran, and clinopyroxenes separated from two different mantle xenoliths have 87Sr/86Sr (0.704309 and 0.704593) and 143Nd/144Nd (0.512798) ratios which are less radiogenic than either their host alkali basalt or Damavand basalts, implying significant regional variations in the composition and extent of

  19. Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia

    USGS Publications Warehouse

    Sisson, T.W.; Bronto, S.

    1998-01-01

    The melting of peridotite in the mantle wedge above subduction zones is generally believed to involve hydrous fluids derived from the subducting slab. But if mantle peridotite is upwelling within the wedge, melting due to pressure release could also contribute to magma production. Here we present measurements of the volatile content of primitive magmas from Galunggung volcano in the Indonesian are which indicate that these magmas were derived from the pressure-release melting of hot mantle peridotite. The samples that we have analysed consist of mafic glass inclusions in high-magnesium basalts. The inclusions contain uniformly low H2O concentrations (0.21-0.38 wt%), yet relatively high levels of CO2 (up to 750 p.p.m.) indicating that the low H2O concentrations are primary and not due to degassing of the magma. Results from previous anhydrous melting experiments on a chemically similar Aleutian basalts indicate that the Galunggung high-magnesium basalts were last in equilibrium with peridotite at ~1,320 ??C and 1.2 GPa. These high temperatures at shallow sub-crustal levels (about 300-600 ??C hotter than predicted by geodynamic models), combined with the production of nearly H2O- free basaltic melts, provide strong evidence that pressure-release melting due to upwelling in the sub-are mantle has taken place. Regional low- potassium and low-H2O (ref. 5) basalts found in the Cascade are indicate that such upwelling-induced melting can be widespread.

  20. Synthesis and luminescence properties of blue-emitting phosphor Ca12 Al14 O32 F2 :Eu2+ for white light-emitting diode.

    PubMed

    Chen, Wanping; Zhang, Xinzhu; Wang, Liping

    2017-09-01

    A blue-emitting phosphor Ca 12 Al 14 O 32 F 2 :Eu 2+ was synthesized using a high-temperature solid-state reaction under a reductive atmosphere. The X-ray diffraction measurements indicate that a pure phase Ca 12 Al 14 O 32 F 2 :Eu 2+ can be obtained for low doping concentration of Eu 2+ . The phosphor has a strong absorption in the range 270-420 nm with a maximum at ~340 nm and blue emission in the range 400-500 nm with chromatic coordination of (0.152, 0.045). The optimal doping concentration is ~0.24. In addition, the luminescence properties of the as-synthesized phosphor were evaluated by comparison with those of Ca 12 Al 14 O 32 Cl 2 :Eu 2+ and the commercially available phosphor BaMgAl 10 O 17 :Eu 2+ . The emission intensity of Ca 12 Al 14 O 32 F 2 :Eu 2+ was ~72% that of BaMgAl 10 O 17 :Eu 2+ under excitation at λ = 375 nm. The results indicate that Ca 12 Al 14 O 32 F 2 :Eu 2+ has potential application as a near-UV-convertible blue phosphor for white light-emitting diodes. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Lunar mare volcanism: Mixing of distinct, mantle source regions with KREEP-like component

    NASA Technical Reports Server (NTRS)

    Shervais, John W.; Vetter, Scott K.

    1993-01-01

    Mare basalts comprise less than 1% of the lunar crust, but they constitute our primary source of information on the moon's upper mantle. Compositional variations between mare basalt suites reflect variations in the mineralogical and geochemical composition of the lunar mantle which formed during early lunar differentiation (4.5-4.4 AE). Three broad suites of mare basalt are recognized: very low-Ti (VLT) basalts with TiO2 less than 1 wt%, low-Ti basalts with TiO2 = 2-4 wt%, and high-Ti basalts with TiO2 = 10-14 wt%. Important subgroups include the Apollo 12 ilmenite basalts (TiO2 = 5-6 wt%), aluminous low-Ti mare basalts (TiO2 = 2-4 wt%, Al2O3 = 10-14 wt%), and the newly discovered Very High potassium (VHK) aluminous low-Ti basalts, with K2O = 0.4-1.5 wt%. The mare basalt source region has geochemical characteristics complementary to the highlands crust and is generally thought to consist of mafic cumulates from the magma ocean which formed the felsic crust by feldspar flotation. The progressive enrichment of mare basalts in Fe/Mg, alkalis, and incompatible trace elements in the sequence VLT basalt yields low-Ti basalt yields high-Ti basalt is explained by the remelting of mafic cumulates formed at progressively shallower depths in the evolving magma ocean. This model is also consistent with the observed decrease in compatible element concentrations and the progressive increase in negative Eu anomalies.

  2. Short-circuiting magma differentiation from basalt straight to rhyolite?

    NASA Astrophysics Data System (ADS)

    Ruprecht, P.; Winslow, H.

    2017-12-01

    Silicic magmas are the product of varying degrees of crystal fractionation and crustal assimilation/melting. Both processes lead to differentiation that is step-wise rather than continuous for example during melt separation from a crystal mush (Dufek and Bachmann, 2010). However, differentiation is rarely efficient enough to evolve directly from a basaltic to a rhyolitic magma. At Volcán Puyehue-Cordón Caulle, Chile, the magma series is dominated by crystal fractionation where mixing trends between primitive and felsic end members in the bulk rock compositions are almost absent (e.g. P, FeO, TiO2 vs. SiO2). How effective fraction is in this magmatic system is not well-known. The 2011-12 eruption at Cordón Caulle provides new constraints that rhyolitic melts may be derived directly from a basaltic mush. Minor, but ubiquitous mafic, crystal-rich enclaves co-erupted with the predominantly rhyolitic near-aphyric magma. These enclaves are among the most primitive compositions erupted at Puyehue-Cordón Caulle and geochemically resemble closely basaltic magmas that are >10 ka old (Singer et al. 2008) and that have been identified as a parental tholeiitic mantle-derived magma (Schmidt and Jagoutz, 2017) for the Southern Andean Volcanic Zone. The vesiculated nature, the presence of a microlite-rich groundmass, and a lack of a Eu anomaly in these encalves suggest that they represent recharge magma/mush rather than sub-solidus cumulates and therefore have potentially a direct petrogenetic link to the erupted rhyolites. Our results indicate that under some conditions crystal fractionation can be very effective and the presence of rhyolitic magmas does not require an extensive polybaric plumbing system. Instead, primitive mantle-derived magmas source directly evolved magmas. In the case, of the magma system beneath Puyehue-Cordón Caulle, which had three historic rhyolitic eruptions (1921-22, 1960, 2011-12) these results raise the question whether rhyolite magma extraction

  3. Role for syn-eruptive plagioclase disequilibrium crystallisation in basaltic magma ascent dynamics

    NASA Astrophysics Data System (ADS)

    La Spina, Giuseppe; Burton, Mike; de'Michieli Vitturi, Mattia; Arzilli, Fabio

    2017-04-01

    Magma ascent dynamics in volcanic conduits play a key role in determining the eruptive style of a volcano. The lack of direct observations inside the conduit means that numerical conduit models, constrained with observational data, provide invaluable tools for quantitative insights into complex magma ascent dynamics. The highly nonlinear, interdependent processes involved in magma ascent dynamics require several simplifications when modelling their ascent. For example, timescales of magma ascent in conduit models are typically assumed to be much longer than crystallisation and gas exsolution for basaltic eruptions. However, it is now recognized that basaltic magmas may rise fast enough for disequilibrium processes to play a key role on the ascent dynamics. The quantification of the characteristic times for crystallisation and exsolution processes are fundamental to our understanding of such disequilibria and ascent dynamics. Using observations from Mount Etna's 2001 eruption and a magma ascent model we are able to constrain timescales for crystallisation and exsolution processes. Our results show that plagioclase reaches equilibrium in 1-2 h, whereas ascent times were 1 h. Furthermore, we have related the amount of plagioclase in erupted products with the ascent dynamics of basaltic eruptions. We find that relatively high plagioclase content requires crystallisation in a shallow reservoir, whilst a low plagioclase content reflects a disequilibrium crystallisation occurring during a fast ascent from depth to the surface. Using these new constraints on disequilibrium plagioclase crystallisation we also reproduce observed crystal abundances for different basaltic eruptions: Etna 2002/2003, Stromboli 2007 (effusive eruption) and 1930 (paroxysm) and different Pu'u' O'o eruptions at Kilauea (episodes 49-53). Therefore, our results show that disequilibrium processes play a key role on the ascent dynamics of basaltic magmas and cannot be neglected when describing basaltic

  4. Microstructure Evolution and Mechanical Properties of Mg-14%Li-1%Al Alloy During the High-Pressure Torsion

    NASA Astrophysics Data System (ADS)

    Tian, Chenguang; Lu, Huimin; Zhao, Liyuan

    The super-light LA141 (Mg-14%Li-1%Al) alloy was produced and processed by high-pressure torsion (HPT) under the imposed pressure of 3 GPa and different shear strains γ through 3, 6, 9 and 12 turns at room temperature (RT). The microstructure evolution of the alloy during the HPT treatment was investigated by transmission electron microscope (TEM) and optical microscope (OM). It turned out that the grains were substantially refined, and the optical microscope revealed that the grains of HPT processed samples at the edge of the disc were finer by comparison with the ones near the center of the disc. Later, Vickers indentation analysis was used to evaluate the micro-hardness of deformed samples, and tension test was employed to obtain the strength and elongation at room temperature. The results indicated that the micro-hardness and tensile strength had increased to a certain extent, and the elongation had been significantly improved.

  5. Deep crustal structure beneath large igneous provinces and the petrologic evolution of flood basalts

    NASA Astrophysics Data System (ADS)

    Ridley, Victoria A.; Richards, Mark A.

    2010-09-01

    We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ˜ 6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ˜5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp ˜ 7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hot spots such as Hawaii, the Marquesas, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ˜6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ˜15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as "underplating," are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby

  6. Deep Crustal Structure beneath Large Igneous Provinces and the Petrologic Evolution of Flood Basalts

    NASA Astrophysics Data System (ADS)

    Richards, M. A.; Ridley, V. A.

    2010-12-01

    We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ~6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ~5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp~7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hotspots such as Hawaii, the Marquesas, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ~6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ~15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as “underplating,” are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby better

  7. Laboratory Simulated Acid-Sulfate Weathering of Basaltic Materials: Implications for Formation of Sulfates at Meridiani Planum and Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Mertzman, A.

    2006-01-01

    Acid-sulfate weathering of basaltic materials is a candidate formation process for the sulfate-rich outcrops and rocks at the MER rover Opportunity and Spirit landing sites. To determine the style of acid-sulfate weathering on Mars, we weathered basaltic materials (olivine-rich glassy basaltic sand and plagioclase feldspar-rich basaltic tephra) in the laboratory under different oxidative, acid-sulfate conditions and characterized the alteration products. We investigated alteration by (1) sulfuric-acid vapor (acid fog), (2) three-step hydrothermal leaching treatment approximating an open system and (3) single-step hydrothermal batch treatment approximating a "closed system." In acid fog experiments, Al, Fe, and Ca sulfates and amorphous silica formed from plagioclase-rich tephra, and Mg and Ca sulfates and amorphous silica formed from the olivine-rich sands. In three-step leaching experiments, only amorphous Si formed from the plagioclase-rich basaltic tephra, and jarosite, Mg and Ca sulfates and amorphous silica formed from olivine-rich basaltic sand. Amorphous silica formed under single-step experiments for both starting materials. Based upon our experiments, jarosite formation in Meridiani outcrop is potential evidence for an open system acid-sulfate weathering regime. Waters rich in sulfuric acid percolated through basaltic sediment, dissolving basaltic phases (e.g., olivine) and forming jarosite, other sulfates, and iron oxides. Aqueous alteration of outcrops and rocks on the West Spur of the Columbia Hills may have occurred when vapors rich in SO2 from volcanic sources reacted with basaltic materials. Soluble ions from the host rock (e.g., olivine) reacted with S to form Ca-, Mg-, and other sulfates along with iron oxides and oxyhydroxides.

  8. Origin and Role of Recycled Crust in Flood Basalt Magmatism: Case Study of the Central East Greenland Rifted Margin

    NASA Astrophysics Data System (ADS)

    Brown, E.; Lesher, C. E.

    2015-12-01

    Continental flood basalts (CFB) are extreme manifestations of mantle melting derived from chemically/isotopically heterogeneous mantle. Much of this heterogeneity comes from lithospheric material recycled into the convecting mantle by a range of mechanisms (e.g. subduction, delamination). The abundance and petrogenetic origins of these lithologies thus provide important constraints on the geodynamical origins of CFB magmatism, and the timescales of lithospheric recycling in the mantle. Basalt geochemistry has long been used to constrain the compositions and mean ages of recycled lithologies in the mantle. Typically, this work assumes the isotopic compositions of the basalts are the same as their mantle source(s). However, because basalts are mixtures of melts derived from different sources (having different fusibilities) generated over ranges of P and T, their isotopic compositions only indirectly represent the isotopic compositions of their mantle sources[1]. Thus, relating basalts compositions to mantle source compositions requires information about the melting process itself. To investigate the nature of lithologic source heterogeneity while accounting for the effects of melting during CFB magmatism, we utilize the REEBOX PRO forward melting model[2], which simulates adiabatic decompression melting in lithologically heterogeneous mantle. We apply the model to constrain the origins and abundance of mantle heterogeneity associated with Paleogene flood basalts erupted during the rift-to-drift transition of Pangea breakup along the Central East Greenland rifted margin of the North Atlantic igneous province. We show that these basalts were derived by melting of a hot, lithologically heterogeneous source containing depleted, subduction-modified lithospheric mantle, and <10% recycled oceanic crust. The Paleozoic mean age we calculate for this recycled crust is consistent with an origin in the region's prior subduction history, and with estimates for the mean age of

  9. New chemical determinations of zinc in basalts, and rocks of similar composition

    USGS Publications Warehouse

    Rader, L.F.; Swadley, W.C.; Huffman, C.; Lipp, H.H.

    1963-01-01

    New determinations of zinc in 124 basalts by the chemical method described (Huff-Man et al. 1963) are reported. Average zinc values, in per cent, for basalts from diverse regions are as follows: Idaho, 28 samples, 0.013; Hawaii, 33 samples, 0.010; Connecticut, 27 samples, 0.0090; Oregon, 17 samples, 0.0081; California, 8 samples, 0.0071; and New Mexico, 11 samples, 0.0086; average, all samples, 0.0099 per cent zinc. A plot of differentiation indicator ratios calculated from the conventional rock analyses, CaO/(Na2O + K2O) as the ordinate and SiO2/MgO as the abscissa, was used to select, from different localities, samples essentially the same in chemical composition that were to be used for comparisons of zinc and other minor elements. Zinc correlates with MnO and with total iron as FeO. An inverse relationship found for zinc and manganese is related to the total iron content of the basalts. Thus for a given iron concentration as zinc increases, manganese decreases and vice versa. Ratios of zinc, the common denominator, to 11 other minor elements determined spectro-graphically show correlations with cobalt, gallium, scandium, yttrium, and zirconium. ?? 1963.

  10. Geologic structure of the eastern mare basins. [lunar basalts

    NASA Technical Reports Server (NTRS)

    Dehon, R. A.; Waskom, J. D.

    1976-01-01

    The thickness of mare basalts in the eastern maria are estimated and isopachs of the basalts are constructed. Sub-basalt basin floor topography is determined, and correlations of topographic variations of the surface with variations in basalt thickness or basin floor topography are investigated.

  11. Trace element composition of Luna 24 Crisium VLT basalt

    NASA Technical Reports Server (NTRS)

    Haskin, L. A.

    1978-01-01

    The origins of the individual particles analyzed from the Luna 24 core and the information they provide on the trace-element composition of Mare Crisium basalt are considered. Previous analyses of several Luna 24 soil fragments are reviewed. It is concluded that: (1) the average trace-element concentrations for 12 VLT basalt fragments are the best available estimates for bulk samples of Crisium VLT basalt; (2) there is weak evidence that the average Crisium basalt might have a small positive Eu anomaly relative to chondritic matter; (3) the soils contain components from sources other than the Crisium VLT basalt; and (4) there is no convincing information in concentrations of rare-earth elements, Co, Sc, FeO, or Na2O among the analyzed fragments to indicate more than one parent basalt.

  12. Sardinian basalt. An ancient georesource still en vougue

    NASA Astrophysics Data System (ADS)

    Careddu, Nicola; Grillo, Silvana Maria

    2017-04-01

    Commercially quarried Sardinian basalt was the result of extensive volcanic activity during the Pliocene and Pleistocene ages, following the opening of the Campidano plain and Tyrrhenian sea rift. Extensive areas of Sardinia have been modelled by large volumes of basalt and andesite rock. An example is provided by the 'Giare' tablelands and other large plateaus located in central Sardinia. Other basalt-rich areas exist in the Island. Sardinia is featured by a vast array of basalt monuments, dating back to the II-I millennium BC, bearing witness to the great workability, durability and resistance to weathering of the rock. The complex of circular defensive towers, known as "Su Nuraxi di Barumini" was included in the World Heritage List by Unesco in 1997. Basalt is currently produced locally to be used for architectural and ornamental purposes. It is obtained by quarrying stone deposits or mining huge boulders which are moved and sawn by means of mechanical machinery. Stone-working is carried out in plants located in various sites of the Island. The paper begins with an historical introduction and then focusses on the current state of the art of Sardinian basalt quarrying, processing and using. An analysis of the basalt market has been carried out.

  13. Geochemistry, 40Ar/39Ar geochronology, and geodynamic implications of Early Cretaceous basalts from the western Qinling orogenic belt, China

    NASA Astrophysics Data System (ADS)

    Zhang, Feifei; Wang, Yuejun; Cawood, Peter A.; Dong, Yunpeng

    2018-01-01

    The Qinling-Dabie orogenic belt was formed by the collision of the North and South China Cratons during the Early Mesozoic and subsequently developed into an intracontinental tectonic process during late Mesozoic. Field investigations identified the presence of late Mesozoic basalts in the Duofutun and Hongqiang areas in the western Qinling orogenic belt. The petrogenesis of these basalts provides an important constraint on the late Mesozoic geodynamics of the orogen. The representative basaltic samples yield the 40Ar/39Ar plateau age of about 112 Ma. These samples belong to the alkaline series and have SiO2 ranging from 44.98 wt.% to 48.19 wt.%, Na2O + K2O from 3.44 wt% to 5.44 wt%, and MgO from 7.25 wt.% to 12.19 wt.%. They demonstrate the right-sloping chondrite-normalized REE patterns with negligible Eu anomalies (1.00-1.10) and PM-normalized patterns enriched in light rare earth element, large ion lithophile element and high field strength element, similar to those of OIB rocks. These samples additionally show an OIB-like Sr-Nd isotopic signature with εNd(t) values ranging from +6.13 to +10.15 and initial 87Sr/86Sr ratios from 0.7028 to 0.7039, respectively. These samples are geochemically subdivided into two groups. Group 1 is characterized by low Al2O3 and high TiO2 and P2O5 contents, as well as high La/Yb ratios (>20), being the product of the high-pressure garnet fractionation from the OIB-derived magma. Group 2 shows higher Al2O3 but lower P2O5 contents and La/Yb ratios (<20) than Group 1, originating from asthenospheric mantle with input of delaminated lithospheric component. In combination with available data, it is proposed for the petrogenetic model of the Early Cretaceous thickened lithospheric delamination in response to the asthenospheric upwelling along the western Qinling orogenic belt.

  14. The Origin of Noble Gas Isotopic Heterogeneity in Icelandic Basalts

    NASA Technical Reports Server (NTRS)

    Dixon, E. T.; Honda, M.; McDougall, I.

    2001-01-01

    Two models for generation of heterogeneous He, Ne and Ar isotopic ratios in Icelandic basalts are evaluated using a mixing model and the observed noble gas elemental ratios in Icelandic basalts,Ocean island Basalt (OIBs) and Mid-Ocean Ridge Basalt (MORBs). Additional information is contained in the original extended abstract.

  15. Scaling law deduced from impact-cratering experiments on basalt targets

    NASA Astrophysics Data System (ADS)

    Takagi, Y.; Hasegawa, S.; Suzuki, A.

    2014-07-01

    Since impact-cratering phenomena on planetary bodies were the key process which modified the surface topography and formed regolith layers, many experiments on non-cohesive materials (sand, glass beads) were performed. On the other hand, experiments on natural rocks were limited. Especially, experiments on basalt targets are rare, although basalt is the most common rocky material on planetary surfaces. The reason may be the difficulties of obtaining basalt samples suitable for cratering experiments. Recently, we obtained homogenous and crackless large basalt blocks. We performed systematic cratering experiments using the basalt targets. Experimental Procedure: Impact experiments were performed using a double stage light-gas (hydrogen) gun on the JAXA Sagamihara campus. Spherical projectiles of nylon, aluminum, stainless steel, and tungsten carbide were launched at velocities between 2400 and 6100 m/sec. The projectiles were 1.0 to 7.1 mm in diameter and 0.004 to 0.22 g in mass. The incidence angle was fixed at 90 degrees. The targets were rectangular blocks of Ukrainian basalt. The impact plane was a square with 20-cm sides. The thickness was 9 cm. Samples were cut out from a columnar block so that the impact plane might become perpendicular to the axis of the columnar joint. The mass was about 10.5 kg. The density was 2920 ± 10 kg/m^3 . Twenty eight shots were performed. Three-dimensional shapes of craters were measured by an X-Y stage with a laser displacement sensor (Keyence LK-H150). The interval between the measurement points was 200 micrometer. The volume, depth, and aperture area of the crater were calculated from the 3-D data using analytical software. Since the shapes of the formed craters are markedly asymmetrical, the diameter of the circle whose area is equal to the aperture area was taken as the crater diameter. Results: The diameter, depth, and the volume of the formed craters are normalized by the π parameters. Experimental conditions are also

  16. The adsorption of Run (n = 1-4) on γ-Al2O3 Surface: A DFT study

    NASA Astrophysics Data System (ADS)

    Liu, Zhe; Guo, Yafei; Chen, Yu; Shen, Rong

    2018-05-01

    The density functional theory (DFT) was adopted to study the adsorption and growth of Run (n = 1-4) clusters on γ-Al2O3 surface, which is of great significances for the design of many important catalysts, especially for carbon dioxide methanation. It is found that both the Rusbnd Ru bond length and adsorption energy Eads of Ru clusters with the surface increase with the Run clusters increasing. The growth ability of the supported Run cluster is weaker than the gas phase Run clusters through comparing their respective growth process, which ascribes to the stabilization of γ-Al2O3 support. An interesting discovery is that the basin structure was supposed to be the most favorable adsorption geometry for Run clusters. Additionally, the distances between Ru atoms in the adsorbed clusters are longer than that in their isolated counterparts. Bader charge analysis was conducted for the most stable configurations of Run (n = 1-4) clusters on γ-Al2O3 surface as well. And the results suggest that Run (n = 1-4) clusters serve as the electron donators. The result of projected density of states (PDOS) shows that strong adsorption of Ru atom on the γ-Al2O3 surface correlates with strong interaction between d orbital of Ru atom and p orbital of Al or O atom of the Al2O3 support.

  17. Whole rock major element chemistry of KREEP basalt clasts in lunar breccia 15205: Implications for the petrogenesis of volcanic KREEP basalts

    NASA Technical Reports Server (NTRS)

    Vetter, Scott K.; Shervais, John W.

    1993-01-01

    KREEP basalts are a major component of soils and regolith at the Apollo 15 site. Their origin is controversial: both endogenous (volcanic) and exogenous (impact melt) processes have been proposed, but it is now generally agreed that KREEP basalts are volcanic rocks derived from the nearby Apennine Bench formation. Because most pristine KREEP basalts are found only as small clasts in polymict lunar breccias, reliable chemical data are scarce. The primary aim of this study is to characterize the range in chemical composition of pristine KREEP basalt, and to use these data to decipher the petrogenesis of these unique volcanic rocks.

  18. Quantifying glassy and crystalline basalt partitioning in the oceanic crust

    NASA Astrophysics Data System (ADS)

    Moore, Rachael; Ménez, Bénédicte

    2016-04-01

    The upper layers of the oceanic crust are predominately basaltic rock, some of which hosts microbial life. Current studies of microbial life within the ocean crust mainly focus on the sedimentary rock fraction, or those organisms found within glassy basalts while the potential habitability of crystalline basalts are poorly explored. Recently, there has been recognition that microbial life develops within fractures and grain boundaries of crystalline basalts, therefore estimations of total biomass within the oceanic crust may be largely under evaluated. A deeper understanding of the bulk composition and fractionation of rocks within the oceanic crust is required before more accurate estimations of biomass can be made. To augment our understanding of glassy and crystalline basalts within the oceanic crust we created two end-member models describing basalt fractionation: a pillow basalt with massive, or sheet, flows crust and a pillow basalt with sheeted dike crust. Using known measurements of massive flow thickness, dike thickness, chilled margin thickness, pillow lava size, and pillow lava glass thickness, we have calculated the percentage of glassy versus crystalline basalts within the oceanic crust for each model. These models aid our understanding of textural fractionation within the oceanic crust, and can be applied with bioenergetics models to better constrain deep biomass estimates.

  19. Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data

    USGS Publications Warehouse

    Christensen, P.R.; Bandfield, J.L.; Smith, M.D.; Hamilton, V.E.; Clark, R.N.

    2000-01-01

    The Mars Global Surveyor Thermal Emission Spectrometer (TES) instrument collected 4.8 ?? 106 spectra of Mars during the initial aerobraking and science-phasing periods of the mission (September 14, 1997, through April 29, 1998). Two previously developed atmosphere-removal models were applied to data from Cimmeria Terra (25?? S, 213?? W). The surface spectra derived for these two models agree well, indicating that the surface and atmosphere emission can be separated and that the exact atmosphere-removal model used has little effect on the derived surface composition. The Cimmeria spectra do not match terrestrial high-silica igneous rocks (granite and rhyolite), ultramafic igneous rocks, limestone, or quartz- and clay-rich sandstone and siltstone. A particulate (sand-sized) sample of terrestrial flood basalt does provide an excellent match in both spectral shape and band depth to the Cimmeria spectrum over the entire TES spectral range. No unusual particle size effects are required to account for the observed spectral shape and depth. The implied grain size is consistent with the thermal inertia and albedo of this region, which indicate a sand-sized surface with little dust. The identification of basalt is consistent with previous indications of pyroxene and basalt-like compositions from visible/ near-infrared and thermal-infrared spectral measurements. A linear spectral deconvolution model was applied to both surface-only Cimmeria spectra using a library of 60 minerals to determine the composition and abundance of the component minerals. Plagioclase feldspar (45%; 53%) and clinopyroxene (26%; 19%) were positively identified above an estimated detection threshold of 10-15% for these minerals. The TES observations provide the first identification of feldspars on Mars. The best fit to the Mars data includes only clinopyroxene compositions; no orthopyroxene compositions are required to match the Cimmeria spectra. Olivine (12%; 12%) and sheet silicate (15%; 11%) were

  20. Electrochemically-Induced Redox Reactions in Basalt at High Pressure and Temperature: An Iron and Vanadium K-edge XANES Study

    NASA Astrophysics Data System (ADS)

    Kavner, A.; Walker, D.; Newville, M.; Sutton, S. R.

    2005-12-01

    An applied electric field across a silicate sample at high pressures and temperatures in a piston cylinder apparatus can generate a wide range of oxidation states of polyvalent cations within a single experiment. If two or more polyvalent cations are included, this technique can be used to cross-calibrate oxybarometers within a single experiment. The redox state of Fe and V within a partially melted basaltic silicate was manipulated in situ in a piston-cylinder experiment with a DC power supply providing a source and sink of electrons to the sample. A 1V electrical potential differential was applied across vanadium-doped and Fe-bearing synthetic basalt samples for 24 hrs. at 20 kbar and 1400°C in a specially-designed piston cylinder sample assembly. Three experiments were performed: a control sample with no applied voltage, one with bottom cathode and top anode, and a third with top cathode and bottom anode. Synchrotron-based x-ray absorption near edge structure (XANES) spectroscopy was used to provide spot analysis of iron and vanadium oxidation states with 5μm x 5μm spatial resolution throughout the recovered samples. Systematic spatial changes of increasing oxidation states of V and Fe were observed approaching the anode. The differences in oxidation states were mapped to a corresponding local effective oxygen fugacity by comparison and extension of a calibration of vanadium oxidation states as a function of controlled oxygen fugacity from a previous study (Sutton et al., 2005, GCA, vol. 69, pp. 2333-2348). The vanadium mapping indicates that a 1V potential drop across the sample induces effective oxygen fugacity perturbations in excess of ten orders of magnitude. The presence of both Fe and V within the same sample provides a wide range of oxygen fugacity cross-calibration in these recovered samples. A relationship between oxygen fugacity and electrochemical driving force is derived. The experimental results are in good agreement with the derived

  1. Dynamics of basaltic glass dissolution - Capturing microscopic effects in continuum scale models

    NASA Astrophysics Data System (ADS)

    Aradóttir, E. S. P.; Sigfússon, B.; Sonnenthal, E. L.; Björnsson, G.; Jónsson, H.

    2013-11-01

    The method of 'multiple interacting continua' (MINC) was applied to include microscopic rate-limiting processes in continuum scale reactive transport models of basaltic glass dissolution. The MINC method involves dividing the system up to ambient fluid and grains, using a specific surface area to describe the interface between the two. The various grains and regions within grains can then be described by dividing them into continua separated by dividing surfaces. Millions of grains can thus be considered within the method without the need to explicity discretizing them. Four continua were used for describing a dissolving basaltic glass grain; the first one describes the ambient fluid around the grain, while the second, third and fourth continuum refer to a diffusive leached layer, the dissolving part of the grain and the inert part of the grain, respectively. The model was validated using the TOUGHREACT simulator and data from column flow through experiments of basaltic glass dissolution at low, neutral and high pH values. Successful reactive transport simulations of the experiments and overall adequate agreement between measured and simulated values provides validation that the MINC approach can be applied for incorporating microscopic effects in continuum scale basaltic glass dissolution models. Equivalent models can be used when simulating dissolution and alteration of other minerals. The study provides an example of how numerical modeling and experimental work can be combined to enhance understanding of mechanisms associated with basaltic glass dissolution. Column outlet concentrations indicated basaltic glass to dissolve stoichiometrically at pH 3. Predictive simulations with the developed MINC model indicated significant precipitation of secondary minerals within the column at neutral and high pH, explaining observed non-stoichiometric outlet concentrations at these pH levels. Clay, zeolite and hydroxide precipitation was predicted to be most abundant within

  2. Tools and techniques for developing tephra stratigraphies in lake cores: A case study from the basaltic Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Hopkins, Jenni L.; Millet, Marc-Alban; Timm, Christian; Wilson, Colin J. N.; Leonard, Graham S.; Palin, J. Michael; Neil, Helen

    2015-09-01

    Probabilistic hazard forecasting for a volcanic region relies on understanding and reconstructing the eruptive record (derived potentially from proximal as well as distal volcanoes). Tephrostratigraphy is commonly used as a reconstructive tool by cross-correlating tephra deposits to create a stratigraphic framework that can be used to assess magnitude-frequency relationships for eruptive histories. When applied to widespread rhyolitic deposits, tephra identifications and correlations have been successful; however, the identification and correlation of basaltic tephras are more problematic. Here, using tephras in drill cores from six maars in the Auckland Volcanic Field (AVF), New Zealand, we show how X-ray density scanning coupled with magnetic susceptibility analysis can be used to accurately and reliably identify basaltic glass shard-bearing horizons in lacustrine sediments and which, when combined with the major and trace element signatures of the tephras, can be used to distinguish primary from reworked layers. After reliably identifying primary vs. reworked basaltic horizons within the cores, we detail an improved method for cross-core correlation based on stratigraphy and geochemical fingerprinting. We present major and trace element data for individual glass shards from 57 separate basaltic horizons identified within the cores. Our results suggest that in cases where major element compositions (SiO2, CaO, Al2O3, FeO, MgO) do not provide unambiguous correlations, trace elements (e.g. La, Gd, Yb, Zr, Nb, Nd) and trace element ratios (e.g. [La/Yb]N, [Gd/Yb]N, [Zr/Yb]N) are successful in improving the compositional distinction between the AVF basaltic tephra horizons, thereby allowing an improved eruptive history of the AVF to be reconstructed.

  3. Carbon storage potential of Columbia River flood basalt

    NASA Astrophysics Data System (ADS)

    Wells, R. K.; Xiong, W.; Giammar, D.; Skemer, P. A.

    2017-12-01

    Basalt reservoirs are an important option for sequestering carbon through dissolution of host rock and precipitation of stable carbonate minerals. This study seeks to understand the nature of dissolution and surface roughening processes and their influence on the timing and spatial distribution of carbonation, in static experiments at 150 °C and 100 bar CO2. Intact samples and cores with milled pathways from Ca-rich and Fe-rich Columbia River flood basalt formations were reacted for up to 40 weeks. Experimental specimens were analyzed using SEM-EDS, microprobe, and μCT scanning, Raman spectroscopy, and 2D profilometer to characterize changes in composition and surface roughness. ICP-MS was used to examine bulk fluid chemistry. Initial dissolution of olivine grains results in higher Mg2+ and Fe2+ concentrations within the bulk solution in the first week of reaction. However, once available olivine grains are gone, Ca-rich pyroxene becomes the primary contributor of Ca2+, Mg2+, and Fe2+ within the bulk solution. The complete dissolution of olivine grains resulted in pits up to 200 μm deep. Dissolution of other minerals resulted in the formation of microscale textures, primarily along grain boundaries and fractures. The surface roughness increased by factors of up to 42, while surface area increased 20%. Based on these results, pyroxene is the sustaining contributor of divalent metal cations during dissolution of basalt, and the limited connectivity of olivine and pyroxene grains limits the exposure of new reactive surface areas. Within 6 weeks, aragonite precipitated in Ca-rich basalt samples, while Fe-rich samples precipitated of siderite. The highest concentration of carbonates occurs 1/3 into milled pathways, which simulate dead-end fractures, in low porosity basalts, and near the fracture tip in high porosity basalts. Even at elevated temperatures, the fractures are not blocked nor filled within 40 weeks of reaction. When vesicles are present, carbonates can

  4. Investigation of magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle

    USGS Publications Warehouse

    Teng, F.-Z.; Wadhwa, M.; Helz, R.T.

    2007-01-01

    To investigate whether magnesium isotopes are fractionated during basalt differentiation, we have performed high-precision Mg isotopic analyses by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) on a set of well-characterized samples from Kilauea Iki lava lake, Hawaii, USA. Samples from the Kilauea Iki lava lake, produced by closed-system crystal-melt fractionation, range from olivine-rich cumulates to highly differentiated basalts with MgO content ranging from 2.37 to 26.87??wt.%. Our results demonstrate that although these basalts have diverse chemical compositions, mineralogies, crystallization temperatures and degrees of differentiation, their Mg isotopic compositions display no measurable variation within the limits of our external precision (average ??26Mg = - 0.36 ?? 0.10 and ??25Mg = - 0.20 ?? 0.07; uncertainties are 2SD). This indicates that Mg isotopic fractionation during crystal-melt fractionation at temperatures of ??? 1055????C is undetectable at the level of precision of the current investigation. Calculations based on our data suggest that at near-magmatic temperatures the maximum fractionation in the 26Mg/24Mg ratio between olivine and melt is 0.07???. Two additional oceanic basalts, two continental basalts (BCR-1 and BCR-2), and two primitive carbonaceous chondrites (Allende and Murchison) analyzed in this study have Mg isotopic compositions similar to the Kilauea Iki lava lake samples. In contrast to a recent report [U. Wiechert, A.N. Halliday, Non-chondritic magnesium and the origins of the inner terrestrial planets, Earth and Planetary Science Letters 256 (2007) 360-371], the results presented here suggest that the Bulk Silicate Earth has a chondritic Mg isotopic composition. ?? 2007.

  5. Partitioning of light lithophile elements during basalt eruptions on Earth and application to Martian shergottites

    NASA Astrophysics Data System (ADS)

    Edmonds, Marie

    2015-02-01

    An enigmatic record of light lithophile element (LLE) zoning in pyroxenes in basaltic shergottite meteorites, whereby LLE concentrations decrease dramatically from the cores to the rims, has been interpreted as being due to partitioning of LLE into a hydrous vapor during magma ascent to the surface on Mars. These trends are used as evidence that Martian basaltic melts are water-rich (McSween et al., 2001). Lithium and boron are light lithophile elements (LLE) that partition into volcanic minerals and into vapor from silicate melts, making them potential tracers of degassing processes during magma ascent to the surface of Earth and of other planets. While LLE degassing behavior is relatively well understood for silica-rich melts, where water and LLE concentrations are relatively high, very little data exists for LLE abundance, heterogeneity and degassing in basaltic melts. The lack of data hampers interpretation of the trends in the shergottite meteorites. Through a geochemical study of LLE, volatile and trace elements in olivine-hosted melt inclusions from Kilauea Volcano, Hawaii, it can be demonstrated that lithium behaves similarly to the light to middle rare Earth elements during melting, magma mixing and fractionation. Considerable heterogeneity in lithium and boron is inherited from mantle-derived primary melts, which is dominant over the fractionation and degassing signal. Lithium and boron are only very weakly volatile in basaltic melt erupted from Kilauea Volcano, with vapor-melt partition coefficients <0.1. Degassing of LLE is further inhibited at high temperatures. Pyroxene and associated melt inclusion LLE concentrations from a range of volcanoes are used to quantify lithium pyroxene-melt partition coefficients, which correlate negatively with melt H2O content, ranging from 0.13 at low water contents to <0.08 at H2O contents >4 wt%. The observed terrestrial LLE partitioning behavior is extrapolated to Martian primitive melts through modeling. The zoning

  6. Petrogenesis of Mare Basalts, Mg-Rich Suites and SNC Parent Magmas

    NASA Technical Reports Server (NTRS)

    Hess, Paul C.

    2004-01-01

    The successful models for the internal evolution of the Moon must consider the volume, distribution, timing, composition and, ultimately, the petrogenesis of mare basaltic volcanism. Indeed, given the paucity of geophysical data, the internal state of the Moon in the past can be gleaned only be unraveling the petrogenesis of the various igneous products on the Moon and, particularly, the mare basalts. most useful in constraining the depth and composition of their source region [Delano, 1980] despite having undergone a certain degree of shallow level olivine crystallization.The bulk of the lunar volcanic glass suite can be modeled as the partial melting products of an olivine + orthopyroxene source region deep within the lunar mantle. Ti02 contents vary from 0.2 wt % -1 7.0wt [Shearer and Papike, 1993]. Values that extreme would seem to require a Ti- bearing phase such as ilmenite in the source of the high-Ti (but not in the VLT source) because a source region of primitive LMO olivine and orthopyroxene, even when melted in small degrees cannot account for the observed range of Ti02 compositions. The picritic glasses are undersaturated with respect to ilmenite at all pressures investigated therefore ilmenite must have been consumed during melting, leaving an ilmenite free residue and an undersaturated melt [Delano, 1980, Longhi, 1992, Elkins et al, 2000 among others]. Multi- saturation pressures for the glasses potentially represent the last depths at which the liquids equilibrated with a harzburgite residue before ascending to the surface. These occur at great depths within the lunar mantle. Because the liquids have suffered some amount of crystal fractionation, this is at best a minimum depth. If the melts are mixtures, then it is only an average depth of melting. Multisaturation, nevertheless, is still a strong constraint on source mineralogy, revealing that the generation of the lunar basalts was dominated by melting of olivine and orthopyroxene.

  7. Seeking a paleontological signature for mass extinctions caused by flood basalt eruptions

    NASA Astrophysics Data System (ADS)

    Payne, J.; Bush, A. M.; Chang, E. T.; Heim, N. A.; Knope, M. L.; Pruss, S. B.

    2016-12-01

    Flood basalt eruptions coincide with numerous extinction events in the fossil record. Increasingly precise absolute age determinations for both the timing of eruption and of species extinctions have strengthened the case for flood basalt eruptions as the single most important trigger for major mass extinction events in the fossil record. However, the extent to which flood basalt eruptions cause a pattern of biotic loss distinctive from extinctions triggered by other geological or biological processes remains an open question. In the absence of diagnostic mapping between geological triggers and biological losses, establishing the identities of causal agents for mass extinctions will continue to depend primarily on evidence for temporal coincidence. Here we use a synoptic database of marine animal genera spanning the Phanerozoic, including times of first and last occurrence, body size, motility, life position, feeding mode, and respiratory physiology to assess whether extinction events temporally associated with flood basalt eruptions exhibit a diagnostic pattern of extinction selectivity. We further ask whether any events not associated with known large igneous provinces nevertheless display extinction patterns suggestive of such a cause. Finally, we ask whether extinction events associated with other primary causes, such as glaciation or bolide impact, are distinguishable from events apparently triggered by flood basalt eruptions on the basis of extinction selectivity patterns

  8. Volatile contents of magmas from the Deccan and Columbia River provinces: implications for atmospheric gas release from flood basalt eruptions

    NASA Astrophysics Data System (ADS)

    Self, S.; Blake, S.; Sharma, K.; Widdowson, M.

    2008-12-01

    Sulphur (S) and chlorine (Cl) contents of magmas from the Mesozoic Deccan basalt province have been measured directly on rare, preserved glass inclusions within crystals and on glassy selvages in these ancient lava flows (Self et al., 2008). Lava flows of the Deccan Traps, India, were emplaced around 66-65 Ma ago. S and Cl concentrations range from high values of ~ 1400 ppm S and 500 ppm Cl in inclusions down to a few hundred ppm in lava selvages. The data indicate that the basaltic magmas of certain (and by implication, many) Deccan eruptions would have emitted up to 0.15 wt % SO2 and up to 0.03 wt % HCl, using an approach that accounts for the variable degree of melt evolution. Such values imply atmospheric releases of ~ 4 Tg of SO2 (and 0.8 Tg HCl) per cubic kilometer (km) of basaltic lava erupted, with most of this being released above the vents. Although eruptive volumes of individual Deccan flood basalt lava fields are not known, the SO2 masses released are indicated to be around 4000 Tg for a 1000 cubic km eruption. Similar, to slightly higher, values for S and Cl have been recently obtained by the same method on two other lava flow fields besides the already-studied Roza lava (Thordarson and Self, 1996) from the 15 Ma Columbia River flood basalt province (CRB) in the Pacific NW of the USA. Volumes of individual eruptive units are known for the CRB (those studied are from 1300-2600 cubic km) and it can be shown that the studied eruptions released SO2 masses in the range 8,000 to 12000 Tg, depending upon flow-field volume. In some cases, the vent areas for these eruptions can be explored. Understanding the eruptive style indicated by proximal deposits will help in future modeling of the atmospheric behavior of the eruption columns, and in heights attained. These results provide a solid basis for interpretation and modeling of the environmental impact of gas releases from past flood basalt activity, which has long been assumed to have been severe. The

  9. Genetic interpretation of lead-isotopic data from the Columbia River basalt group, Oregon, Washington, and Idaho.

    USGS Publications Warehouse

    Church, S.E.

    1985-01-01

    Lead-isotopic data for the high-alumina olivine plateau basalts and most of the Colombia River basalt group plot within the Cascade Range mixing array. The data for several of the formations form small, tight clusters and the Nd and Sr isotopic data show discrete variation between these basalt groups. The observed isotopic and trace-element data from most of the Columbia River basalt group can be accounted for by a model which calls for partial melting of the convecting oceanic-type mantle and contamination by fluids derived from continental sediments which were subducted along the trench. These sediments were transported in the low-velocity zone at least 400 km behind the active arc into a back-arc environment represented by the Columbia Plateau province. With time, the zone of melting moved up, resulting in the formation of the Saddle Mt basalt by partial melting of a 2600 m.y.-old sub-continental lithosphere characterized by high Th/U, Th/Pb, Rb/Sr and Nd/Sm ratios and LREE enrichment. Partial melting of old sub-continental lithosphere beneath the continental crust may be an important process in the formation of continental tholeiite flood basalt sequences world-wide. -L.di H.

  10. The Chinese North Tianshan Orogen was a rear-arc (or back-arc) environment in the Late Carboniferous: constraint from the volcanic rocks in the Bogda Mountains

    NASA Astrophysics Data System (ADS)

    Xie, W.

    2017-12-01

    The Tianshan Orogen is a key area for understanding the Paleozoic tectonics and long-lasting evolution of the Central Asian Orogenic Belt (CAOB). However, considerable debate persists as to its tectonic setting during the late Paleozoic, with active subduction system and intraplate large igneous provinces as two dominant schools (Ma et al., 1997; Gu et al., 2000; Xiao et al., 2004; Han et al., 2010; Shu et al., 2011; Chen et al., 2011; Xia et al., 2012). With aims of providing constraints on this issue, petrology, mineralogy, geochronological and geochemistry for the Late Carboniferous volcanics from the Bogda Mountains have been carried out. We find two suits of high-Al basalt (HAB, 315-319 Ma) and a suit of submarine pillow basalt ( 311 Ma) in this region. Both of the two basalts belong to the tholeiitic magma (the tholeiitic index THI > 1) and contain low pre-eruptive magmatic H2O (< 2%). High Al content of the Bogda HABs is due to high crystallization pressure rather than water content. It is different from the pillow lavas that are formed in a shallower and more stable magma chamber (Xie et al., 2016a, b). The felsic volcanism coexisted with the Bogda HABs is I-type intermediate ignimbrites and rhyolite lavas. The rhyolites are formed by partial melting of a hydrated and juvenile arc crust and the ignimbrites are affected by magma mingling and feldspar fractionation (Xie et al., 2016c). The two basalts both have the MORB-like Sr-Nd-Hf-Pb isotopes and arc-like trace element compositions. We discuss that they may have been generated from a dry and depleted mantle source metasomatized by <1% sediment-derived melts. Compared with basalts from the Permian large igneous provinces (e.g., the Siberia, Emeishan and Tarim), they are different from the mantle plume-related basalts in many aspects. Meanwhile, we also compare the Bogda basalts with the Izu-Bonin fore-arc and rear-arc/back-arc basalts. Our samples show great resemblance to the Izu-Bonin rear-arc basalt

  11. Mechanical behavior and localized failure modes in a porous basalt from the Azores

    NASA Astrophysics Data System (ADS)

    Loaiza, S.; Fortin, J.; Schubnel, A.; Gueguen, Y.; Vinciguerra, S.; Moreira, M.

    2012-10-01

    Basaltic rocks are the main component of the oceanic upper crust, thus of potential interest for water and geothermal resources, storage of CO2 and volcanic edifice stability. In this work, we investigated experimentally the mechanical behavior and the failure modes of a porous basalt, with an initial connected porosity of 18%. Results were acquired under triaxial compression experiments at confining pressure in the range of 25-200 MPa on water saturated samples. In addition, a purely hydrostatic test was also performed to reach the pore collapse critical pressure P*. During hydrostatic loading, our results show that the permeability is highly pressure dependent, which suggests that the permeability is mainly controlled by pre-existing cracks. When the sample is deformed at pressure higher than the pore collapse pressure P*, some very small dilatancy develops due to microcracking, and an increase in permeability is observed. Under triaxial loading, two modes of deformation can be highlighted. At low confining pressure (Pc < 50 MPa), the samples are brittle and shear localization occurs. For confining pressure > 50 MPa, the stress-strain curves are characterized by strain hardening and volumetric compaction. Stress drops are also observed, suggesting that compaction may be localized. The presence of compaction bands is confirmed by our microstructure analysis. In addition, the mechanical data allows us to plot the full yield surface for this porous basalt, which follows an elliptic cap as previously observed in high porosity sandstones and limestones.

  12. Basement Basalts from IODP Site 1438, Amami-Sankaku Basin: Implications for Sources and Melting Processes during Subduction Initiation in the Izu-Bonin-Mariana System

    NASA Astrophysics Data System (ADS)

    McCarthy, A. J.; Hickey-Vargas, R.; Yogodzinski, G. M.; Ishizuka, O.; Hocking, B.; Bizimis, M.; Savov, I. P.; Kusano, Y.; Arculus, R. J.

    2016-12-01

    IODP Expedition 351 Site 1438 is located in the Amami-Sankaku basin, just west of the Kyushu-Palau Ridge (KPR), a remnant of the early Izu-Bonin-Mariana (IBM) volcanic arc. 150 meters of basement basalt were drilled beneath 1460 m of volcaniclastic sediments and sedimentary rock. The age range inferred for these basalts is 51-52 Ma, close to the 48-52 Ma age of basalts associated with subduction initiation in the IBM forearc (forearc basalts or FABs). Site 1438 basement basalts form several distinct subunits, all relatively mafic (MgO = 6-14 %; Mg# = 51-83). Non-fluid-mobile incompatible trace element patterns are profoundly depleted. Sm/Nd (0.34-0.43) and Lu/Hf (0.18-0.37) reach values higher than most normal MORBs while La/Yb (0.31-0.98) and Ti/V (15.8-27.0) are lower. These features are shared with basalts drilled just west of the KPR at ODP Site 1201 and DSDP Site 447, and many FABs. Abundances of fluid-mobile incompatible elements vary together and are correlated with subunits defined by flow margins and rock physical properties, suggesting control by post-eruptive seawater alteration rather than varying inputs of subduction fluids. Hf-Nd isotopes for Site 1438 basement basalts range from (present-day) ɛNd of 7.0 to 9.5 and ɛHf of 14.5 to 19.8 in a well-correlated array. Their more radiogenic Hf-isotope character could indicate an Indian-type MORB source, however, basalts with ɛHf >16.5, are more radiogenic than many Indian MORB. Pb isotope data will help distinguish differing mantle source domains and origins for fluid-mobile elements. Overall, the combined geochemical data indicate that the mantle source of basement basalts in drill sites west of the KPR (1438, 1201, 447) are closely similar to those for FAB, and that as a group, these rocks are more depleted than more than 90% of global MORB. Our interpretation is that both IBM forearc basalts and basalts from drill sites immediately west of the KPR formed by melting of the same uniquely depleted mantle

  13. Evidence for a chondritic impactor, evaporation-condensation effects and melting of the Precambrian basement beneath the 'target' Deccan basalts at Lonar crater, India

    NASA Astrophysics Data System (ADS)

    Das Gupta, Rahul; Banerjee, Anupam; Goderis, Steven; Claeys, Philippe; Vanhaecke, Frank; Chakrabarti, Ramananda

    2017-10-01

    The ∼1.88 km diameter Lonar impact crater formed ∼570 ka ago and is an almost circular depression hosted entirely in the Poladpur suite of the ∼65 Ma old basalts of the Deccan Traps. To understand the effects of impact cratering on basaltic targets, commonly found on the surfaces of inner Solar System planetary bodies, major and trace element concentrations as well as Nd and Sr isotopic compositions were determined on a suite of selected samples composed of: basalts, a red bole sample, which is a product of basalt alteration, impact breccia, and impact glasses, either in the form of spherules (<1 mm in diameter) or non-spherical impact glasses (>1 mm and <1 cm). These data include the first highly siderophile element (HSE) concentrations for the Lonar spherules. The chemical index of alteration (CIA) values for the basalts and impact breccia (36.4-42.7) are low while the red bole sample shows a high CIA value (55.6 in the acid-leached sample), consistent with its origin by aqueous alteration of the basalts. The Lonar spherules are classified into two main groups based on their CIA values. Most spherules show low CIA values (Group 1: 34.7-40.5) overlapping with the basalts and impact breccia, while seven spherules show significantly higher CIA values (Group 2: >43.0). The Group 1 spherules are further subdivided into Groups 1a and 1b, with Group 1a spherules showing higher Ni and mostly higher Cr compared to the Group 1b spherules. Iridium and Cr concentrations of the spherules are consistent with the admixture of 1-8 wt% of a chondritic impactor to the basaltic target rocks. The impactor contribution is most prominent in the Group 1a and Group 2 spherules, which show higher Ni/Co, Ni/Cr and Cr/Co ratios compared to the target basalts. In contrast, the Group 1b spherules show major and trace element compositions that overlap with those of the impact breccia and are characterized by high EFTh (Enrichment Factor for Th defined as the Nb-normalized concentration

  14. Continental Basalts and Mantle Xenoliths

    NASA Astrophysics Data System (ADS)

    Zartman, Robert E.

    In this decade of the International Lithosphere Program, much scientific attention is being directed toward the deep continental crust and subadjacent mantle. The petrologic, geochemical, and isotopic signatures of basaltic magmas, which transect much of the lithosphere as they ascend from their site of melting, and of contained cognate and accidental xenoliths, which are found along the path of ascent, give us, perhaps, the best clues to composition and structure in the third dimension. Continental Basalts and Mantle Xenoliths provides an opportunity to sample the British school of thought on subjects such as differences between oceanic and continental basalts, effects of mantle metasomatism, and relationships between events in the subcontinental mantle and those in the overlying crust. This volume is recommended by the publisher as being of interest to senior undergraduates and postgraduate researchers; I would extend that readership to all scientists who seek access to a potpourri of recent findings and current ideas in a rapidly evolving field of research.

  15. Strain modulation-enhanced Mg acceptor activation efficiency of Al0.14Ga0.86N/GaN superlattices with AlN interlayer

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Li, Rui; Li, Ding; Liu, Ningyang; Liu, Lei; Chen, Weihua; Wang, Cunda; Yang, Zhijian; Hu, Xiaodong

    2010-02-01

    AlN layer was grown as interlayer between undoped GaN and Mg doped Al0.14Ga0.86N/GaN superlattices (SLs) epilayer to modulate the strain distribution between Al0.14Ga0.86N barrier and GaN well layers in SLs sample. Strain relaxation was observed in the SLs sample with AlN interlayer by x-ray diffraction reciprocal space mapping method. The measured hole concentration of SLs sample with AlN interlayer at room temperature was over 1.6×1018 cm-3 but that was only 6.6×1016 cm-3 obtained in SLs sample without AlN interlayer. Variable temperature Hall-effect measurement showed that the acceptor activation energy decreased from 150 to 70 meV after inserting the AlN layer, which indicated that the strain modulation of SLs induced by AlN interlayer was beneficial to the Mg acceptor activation and hole concentration enhancement.

  16. Effect of sulfate on the liquidus and sulfur concentration at anhydrite saturation (SCAS) of hydrous basalt at subduction zones

    NASA Astrophysics Data System (ADS)

    Chowdhury, P.; Dasgupta, R.

    2017-12-01

    comparable to the melt inclusion S contents from various arcs [8]. The SO42- undersaturated basalts may assimilate crustal sulfate and lead to high observed SO2 flux. [1] Canil & Fellows, 2017, EPSL [2] Kelley and Cottrell, 2009, Science [3] Wallace, 2005, JVGR [4] Luhr, 1990, J.Pet [5] Costa et al., 2004, J.Pet [6] de Hoog et al., 2001a, GCA [7] Kelley et al., 2006, JGR [8] Ruscitto et al., 2012, G3

  17. Basalt-Trachybasalt Fractionation in Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Bridges, J. C.; Edwards, P. H.; Filiberto, J.; Schwenzer, S. P.; Gasda, P.; Wiens, R.

    2016-08-01

    A set of igneous float rocks in Gale Crater have been analysed by ChemCam. They are basalt-trachybasalts, 47 to 53 ± 5 wt% SiO2 and formed by ol-dominated crystal fractionation from an Adirondack type basalt, in magmatism with tholeiitic affinities.

  18. Stress Corrosion Cracking of Basalt/Epoxy Composites under Bending Loading

    NASA Astrophysics Data System (ADS)

    Shokrieh, Mahmood M.; Memar, Mahdi

    2010-04-01

    The purpose of this research is to study the stress corrosion behavior of basalt/epoxy composites under bending loading and submerged in 5% sulfuric acid corrosive medium. There are limited numbers of research in durability of fiber reinforced polymer composites. Moreover, studies on basalt fibers and its composites are very limited. In this research, mechanical property degradation of basalt/epoxy composites under bending loading and submerged in acidic corrosive medium is investigated. Three states of stress, equal to 30%, 50% and 70% of the ultimate strength of composites, are applied on samples. High stress states are applied to the samples to accelerate the testing procedure. Mechanical properties degradation consists of bending strength, bending modulus of elasticity and fracture energy of samples are examined. Also, a normalized strength degradation model for stress corrosion condition is presented. Finally, microscopic images of broken cross sections of samples are examined.

  19. The site occupation and valence of Mn ions in the crystal lattice of Sr{sub 4}Al{sub 14}O{sub 25} and its deep red emission for high color-rendering white light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Lei, E-mail: shanggan2009@qq.com; Xue, Shaochan; Chen, Xiuling

    2014-12-15

    Highlights: • Different valences of Mn ions in Sr{sub 4}Al{sub 14}O{sub 25} were identified using XANES and EPR. • Red luminescence was attributed to Mn{sup 4+} occupying the center of AlO{sub 6} octahedron. • The Mn{sup 3+} incorporated in the center of AlO{sub 4} tetrahedron was non-luminescent. • The bond-valence theory was used to analyze the effective valences of cations. • A white LED device with CRI up to Ra 93.23 was packaged by using the red phosphor. - Abstract: The synthesis and component of red phosphor, Sr{sub 4}Al{sub 14}O{sub 25}: Mn, were optimized for application in white light-emitting diodes.more » The microstructure and morphology were investigated by the X-ray diffraction and scanning electron microscopy. Different valences of Mn ions in Sr{sub 4}Al{sub 14}O{sub 25} were discriminated using the electron paramagnetic resonance and X-ray absorption near-edge structure spectroscopy techniques. The bond-valence theory was used to analyze the effective valences of Sr{sup 2+} and Al{sup 3+} in Sr{sub 4}Al{sub 14}O{sub 25}. As a result, the strong covalence of Al{sup 3+} in the AlO{sub 4} tetrahedron other than in the AlO{sub 6} octahedron is disclosed. The deep red emission is attributed to Mn{sup 4+} occupying the center of AlO{sub 6} octahedron. The mechanism of energy transfer is mainly through dipole–dipole interaction, revealed by the analyses of critical distance and concentration quench. A high color rendering white LED prototype with color-rendering index up to Ra 93.23 packaged by using the red phosphor demonstrates its applicability.« less

  20. Study on basalt fiber parameters affecting fiber-reinforced mortar

    NASA Astrophysics Data System (ADS)

    Orlov, A. A.; Chernykh, T. N.; Sashina, A. V.; Bogusevich, D. V.

    2015-01-01

    This article considers the effect of different dosages and diameters of basalt fibers on tensile strength increase during bending of fiberboard-reinforced mortar samples. The optimal dosages of fiber, providing maximum strength in bending are revealed. The durability of basalt fiber in an environment of cement, by means of microscopic analysis of samples of fibers and fiberboard-reinforced mortar long-term tests is examined. The article also compares the behavior of basalt fiber in the cement stone environment to a glass one and reveals that the basalt fiber is not subject to destruction.

  1. Basalt fiber insulating material with a mineral binding agent for industrial use

    NASA Astrophysics Data System (ADS)

    Drozdyuk, T.; Aizenshtadt, A.; Tutygin, A.; Frolova, M.

    2016-04-01

    The paper considers a possibility of using mining industry waste as a binding agent for heat insulating material on the basis of basalt fiber. The main objective of the research is to produce a heat-insulating material to be applied in machine building in high-temperature environments. After synthetic binder having been replaced by a mineral one, an environmentally sound thermal insulating material having desirable heat-protecting ability and not failing when exposed to high temperatures was obtained.

  2. Volcanic diapirs in the Orange Mountain flood basalt: New Jersey, USA

    NASA Astrophysics Data System (ADS)

    Puffer, John H.; Laskowich, Chris

    2012-09-01

    Diapir-shaped structures, 4-30 m high, consisting of vesicular basalt have intruded into the interior of a 50-70 m-thick subaerial Orange Mountain Basalt flow exposed at several rock quarries in northern New Jersey. The basalt flowed onto a travertine encrusted mudflat saturated with alkali salts. We propose that pressurized alkali vapors trapped under the lava created a vesicular and viscous flow bottom layer about 10 m thick. Vesicle coalescence within this layer increased its buoyancy where it locally accumulated into diapirs and displaced overlying lava. Large bubbles within the diapirs expanded upon intrusion into hot flow interiors where they explosively escaped leaving lenses of breccia. Some early diapirs reached the base of the upper lava crust. These diapirs document vapor driven convection of large blobs of contaminated lava into the lava core of the Orange Mountain flow.

  3. Impact melts in the MAC88105 lunar meteorite - Inferences for the lunar magma ocean hypothesis and the diversity of basaltic impact melts

    NASA Technical Reports Server (NTRS)

    Taylor, G. J.

    1991-01-01

    The MAC88105 lunar meteorite, as represented by thin section 78, contains three major types of impact melt breccias. The most abundant type is clast-laden, fine-grained, and rich in Al2O3 (28 wt pct); these clasts constitute most of the meteorite. Their abundance and aluminous nature indicate that the MAC88105 source area was very aluminous. This is consistent with formation of the primordial lunar crust from a global magma ocean. The second type of impact melt is represented by only one clast in 78. It has a basaltic bulk composition similar to many other lunar impact melts, but is significantly richer in P2O5 than most and has a much lower MgO/(MgO + FeO). The third impact-melt type resembles a prominent melt group at Apollo 16, but has lower MgO/(MgO + FeO). These data show that basaltic impact melts are compositionally diverse. Dating samples of the Al-rich impact melts and the new types of basaltic impact melts from this meteorite can test the idea that the Moon suffered a terminal cataclysm 3.9 Ga ago.

  4. Angrites: A Volatile-rich Variety of Asteroidal Basalt (Except for Alkalis and Gallium!)

    NASA Astrophysics Data System (ADS)

    Warren, P. H.; Kallemeyn, G. W.

    1995-09-01

    Angrites are commonly viewed as extremely volatile-depleted, and a related notion is that they formed by differentiation of a very CAI-rich material [e.g., 1]. Partial melting experiments reportedly reproduce the bulk compositions (although not fassaite-rich mineralogy) of angrites with Allende as starting material [2], but highly CAI-rich parent materials are difficult to reconcile with isotopic and REE data [3,4]. Mittlefehldt and Lindstrom [5] inferred from the low Na/Al ratios of angrites that outgassing, and thus primordial magmatism, was more intense on their parent body than on the eucrite parent asteroid. Of seven elements that (a) have been adequately determined in angrites, and (b) are far more volatile (solar-nebula 50% condensation T [6] = 690-430 K) than the alkalis (1000-910 K), four are enriched, and none is significantly depleted, in average angrite compared to average eucrite or low-Ti mare basalt (Figure). Gallium, which is of intermediate volatility (830 K), is depleted to roughly the same extent as Na and K. Results for A881371 [3] are incomplete (Zn, 6 micrograms/g, is near INAA detection limit), but even based only on AdoR and the two LEW angrites, this pattern seems firmly established. Apparent gas cavities in A881371 [7] also suggest that volatiles are far from uniformly depleted. The only elements known to be depleted, as volatiles, by clearly significant factors in angrites versus eucrites or lunar basalts, are alkalis plus gallium. Besides being moderately volatile, a noteworthy characteristic shared among Ga and alkalis (and not shared with elements such as Br, Se, and Zn) is that these elements probably tend to partition into crustal feldspar during gross differentiation of small (low-pressure) bodies. If gallium + alkalis were depleted by a single process starting from "normal" chondritic material, that process would seem to require selective exposure of a feldspar-enriched region (i.e., crust) to extremely high temperature. Igneous

  5. Is Ishtar Terra a thickened basaltic crust?

    NASA Technical Reports Server (NTRS)

    Arkani-Hamed, Jafar

    1992-01-01

    The mountain belts of Ishtar Terra and the surrounding tesserae are interpreted as compressional regions. The gravity and surface topography of western Ishtar Terra suggest a thick crust of 60-110 km that results from crustal thickening through tectonic processes. Underthrusting was proposed for the regions along Danu Montes and Itzpapalotl Tessera. Crustal thickening was suggested for the entire Ishtar Terra. In this study, three lithospheric models with total thicknesses of 40.75 and 120 km and initial crustal thicknesses of 3.9 and 18 km are examined. These models could be produced by partial melting and chemical differentiation in the upper mantle of a colder, an Earth-like, and a hotter Venus having temperatures of respectively 1300 C, 1400 C, and 1500 C at the base of their thermal boundary layers associated with mantle convection. The effects of basalt-granulite-eclogite transformation (BGET) on the surface topography of a thickening basaltic crust is investigated adopting the experimental phase diagram and density variations through the phase transformation.

  6. Electrical conductivity of basaltic and carbonatite melt-bearing peridotites at high pressures: Implications for melt distribution and melt fraction in the upper mantle

    NASA Astrophysics Data System (ADS)

    Yoshino, Takashi; Laumonier, Mickael; McIsaac, Elizabeth; Katsura, Tomoo

    2010-07-01

    Electrical impedance measurements were performed on two types of partial molten samples with basaltic and carbonatitic melts in a Kawai-type multi-anvil apparatus in order to investigate melt fraction-conductivity relationships and melt distribution of the partial molten mantle peridotite under high pressure. The silicate samples were composed of San Carlos olivine with various amounts of mid-ocean ridge basalt (MORB), and the carbonate samples were a mixture of San Carlos olivine with various amounts of carbonatite. High-pressure experiments on the silicate and carbonate systems were performed up to 1600 K at 1.5 GPa and up to at least 1650 K at 3 GPa, respectively. The sample conductivity increased with increasing melt fraction. Carbonatite-bearing samples show approximately one order of magnitude higher conductivity than basalt-bearing ones at the similar melt fraction. A linear relationship between log conductivity ( σbulk) and log melt fraction ( ϕ) can be expressed well by the Archie's law (Archie, 1942) ( σbulk/ σmelt = Cϕn) with parameters C = 0.68 and 0.97, n = 0.87 and 1.13 for silicate and carbonate systems, respectively. Comparison of the electrical conductivity data with theoretical predictions for melt distribution indicates that the model assuming that the grain boundary is completely wetted by melt is the most preferable melt geometry. The gradual change of conductivity with melt fraction suggests no permeability jump due to melt percolation at a certain melt fraction. The melt fraction of the partial molten region in the upper mantle can be estimated to be 1-3% and ˜ 0.3% for basaltic melt and carbonatite melt, respectively.

  7. Submarine basaltic fountain eruptions in a back-arc basin during the opening of the Japan Sea

    NASA Astrophysics Data System (ADS)

    Hosoi, Jun; Amano, Kazuo

    2017-11-01

    Basaltic rock generated during the middle Miocene opening of the Japan Sea, is widely distributed on the back-arc side of the Japanese archipelago. Few studies have investigated on submarine volcanism related to opening of the Japan Sea. The present study aimed to reconstruct details of the subaqueous volcanism that formed the back-arc basin basalts (BABB) during this event, and to discuss the relationship between volcanism and the tectonics of back-arc opening, using facies analyses based on field investigation. The study area of the southern Dewa Hills contains well-exposed basalt related to the opening of the Japan Sea. Five types of basaltic rock facies are recognized: (1) coherent basalt, (2) massive platy basalt, (3) jigsaw-fit monomictic basaltic breccia, (4) massive or stratified coarse monomictic basaltic breccia with fluidal clasts, and (5) massive or stratified fine monomictic basaltic breccia. The basaltic rocks are mainly hyaloclastite. Based on facies distributions, we infer that volcanism occurred along fissures developed mainly at the center of the study area. Given that the rocks contain many fluidal clasts, submarine lava fountaining is inferred to have been the dominant eruption style. The basaltic rocks are interpreted as the products of back-arc volcanism that occurred by tensional stress related to opening of the Japan Sea, which drove strong tectonic subsidence and active lava fountain volcanism.

  8. Geochemistry of Apollo 15 basalt 15555 and soil 15531.

    NASA Technical Reports Server (NTRS)

    Schnetzler, C. C.; Philpotts, J. A.; Nava, D. F.; Schuhmann, S.; Thomas, H. H.

    1972-01-01

    Data are presented on major and trace element concentrations determined by atomic absorption spectrophotometry, colorimetry, and isotope dilution in Apollo 15 mare basalt 15555 from the Hadley Rille area, as well as on trace element concentrations determined in plagioclase and pyroxene separates from basalt 15555 and in soil 15531 from the same area. Most of the chemical differences between basalt 15555 and soil 15531 could be accounted for if the soil were a mixture of 88% basalt, 6% KREEP (a component, identified in other Apollo soils, rich in potassium, rare-earth elements, and phosphorus), and 6% plagioclase.

  9. Argon-40: Excess in submarine pillow basalts from Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Brent, Dalrymple G.; Moore, J.G.

    1968-01-01

    Submarine pillow basalts from Kilauea Volcano contain excess radiogenic argon-40 and give anomalously high potassium-argon ages. Glassy rims of pillows show a systematic increase in radiogenic argon-40 with depth, and a pillow from a depth of 2590 meters shows a decrease in radiogenic argon-40 inward from the pillow rim. The data indicate that the amount of excess radiogenic argon-40 is a direct function of both hydrostatic pressure and rate of cooling, and that many submarine basalts are not suitable for potassium-argon dating.

  10. Argon-40: excess in submarine pillow basalts from kilauea volcano, hawaii.

    PubMed

    Dalrymple, G B; Moore, J G

    1968-09-13

    Submarine pillow basalts from Kilauea Volcano contain excess radiogenic argon-40 and give anomalously high potassium-argon ages. Glassy rims of pillows show a systematic increase in radiogenic argon-40 with depth, and a pillow from a depth of 2590 meters shows a decrease in radiogenic argon40 inward from the pillow rim. The data indicate that the amount of excess radiogenic argon-40 is a direct function of both hydrostatic pressure and rate of cooling, and that many submarine basalts are not suitable for potassium-argon dating.

  11. A novel red phosphor Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 3+} for near UV white light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhigang; Zhao, Zhengyan; Shi, Yurong

    2013-10-15

    Graphical abstract: - Highlights: • Novel red phosphor Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 3+} was prepared by solid-state reaction. • Excitation spectra suggested an obvious absorption in near-ultraviolet region. • Under 392 nm excitation, the phosphors exhibited a red emission at 614 nm. • Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 3+} could be potentially applied in near UV white LEDs. - Abstract: A novel red phosphor Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 3+} was synthesized using a solid-state reaction method, and its luminescence characteristics and charge compensators effect (Li{sup +}, Na{sup +}, K{sup +}) were investigated. The excitation spectra showed a obviousmore » absorption in near-ultraviolet region. Under 392 nm excitation, the phosphors exhibited an intense red emission at 614 nm. The Commission Internationale de l’Eclairage (CIE) chromaticity coordinates and quantum efficiency (QE) were (0.65, 0.35) and 62.3%, respectively. The good color saturation, high quantum efficiency and small thermal-quenching properties indicate that Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 3+} could be potentially applied in near UV white light-emitting diodes.« less

  12. Crust recycling induced compositional-temporal-spatial variations of Cenozoic basalts in the Trans-North China Orogen

    NASA Astrophysics Data System (ADS)

    Xu, Rong; Liu, Yongsheng; Wang, Xiaohong; Zong, Keqing; Hu, Zhaochu; Chen, Haihong; Zhou, Lian

    2017-03-01

    It has been advocated that the stagnant Pacific slab within the mantle transition zone played a critical role in the genesis of the Cenozoic basalts in the eastern part of the North China Craton (NCC); however, it is not clear whether this recycled oceanic crust contributed to the chemical makeup of the Cenozoic basalts in the Trans-North China Orogen (TNCO, the central zone of the NCC). Here, we show that Cenozoic basalts from the TNCO are featured by low CaO contents, high TiO2 and FeOT contents and high Fe/Mn and Zn/Fe ratios, indicating a mantle source of pyroxenite. Temporally, these basalts evolved from alkali basalts of Late Eocene-Oligocene age to coexisting alkali and tholeiitic basalts of Late Miocene-Quaternary age. Spatially, their isotopic and chemical compositions vary symmetrically from the center to both the north and the south sides along the TNCO, i.e., SiO2 contents and 87Sr/86Sr ratios increase, FeOT contents and 143Nd/144Nd, Sm/Yb and Ce/Pb ratios decrease. The estimated average melting pressure of the TNCO tholeiitic basalts ( 3 GPa) agrees well with the present lithosphere thickness beneath the north region of the TNCO ( 90-120 km). The temporal and spatial chemical variations of Cenozoic basalts in the TNCO suggest that the recycled oceanic crust in the mantle of the TNCO is mainly related to the southward subduction of the Paleo-Asian oceanic plate and the northward subduction of the Tethyan ocean plate. The westward subduction of Pacific slab may not have contributed much than previously thought.

  13. Quickly erupted volcanic sections of the Steens Basalt, Columbia River Basalt Group: Secular variation, tectonic rotation, and the Steens Mountain reversal

    USGS Publications Warehouse

    Jarboe, Nicholas A.; Coe, Robert S.; Renne, Paul R.; Glen, Jonathan M. G.; Mankinen, Edward A.

    2008-01-01

    The Steens Basalt, now considered part of the Columbia River Basalt Group (CRBG), contains the earliest eruptions of this magmatic episode. Lava flows of the Steens Basalt cover about 50,000 km2 of the Oregon Plateau in sections up to 1000 m thick. The large number of continuously exposed, quickly erupted lava flows (some sections contain over 200 flows) allows for small loops in the magnetic field direction paths to be detected. For volcanic rocks, this detail and fidelity are rarely found outside of the Holocene and yield estimates of eruption durations at our four sections of ∼2.5 ka for 260 m at Pueblo Mountains, 0.5 to 1.5 ka for 190 m at Summit Springs, 1–3 ka for 170 m at North Mickey, and ∼3 ka for 160 m at Guano Rim. That only one reversal of the geomagnetic field occurred during the eruption of the Steens Basalt (the Steens reversal at approximately 16.6 Ma) is supported by comparing 40Ar/39Ar ages and magnetic polarities to the geomagnetic polarity timescale. At Summit Springs two 40Ar/39Ar ages from normal polarity flows (16.72 ± ± 0.29 Ma (16.61) and 16.92 ± ± 0.52 Ma (16.82); ± ± equals 2σ error) place their eruptions after the Steens reversal, while at Pueblo Mountains an 40Ar/39Ar age of 16.72 ± ± 0.21 Ma (16.61) from a reverse polarity flow places its eruption before the Steens reversal. Paleomagnetic field directions yielded 50 nontransitional directional-group poles which, combined with 26 from Steens Mountain, provide a paleomagnetic pole for the Oregon Plateau of 85.7°N, 318.4°E, K = 15.1, A95 = 4.3. Comparison of this new pole with a reference pole derived from CRBG flows from eastern Washington and a synthetic reference pole for North America derived from global data implies relative clockwise rotation of the Oregon Plateau of 7.4 ± 5.0° or 14.5 ± 5.4°, respectively, probably due to northward decreasing extension of the basin and range.

  14. Quickly erupted volcanic sections of the Steens Basalt, Columbia River Basalt Group: Secular variation, tectonic rotation, and the Steens Mountain reversal

    NASA Astrophysics Data System (ADS)

    Jarboe, Nicholas A.; Coe, Robert S.; Renne, Paul R.; Glen, Jonathan M. G.; Mankinen, Edward A.

    2008-11-01

    The Steens Basalt, now considered part of the Columbia River Basalt Group (CRBG), contains the earliest eruptions of this magmatic episode. Lava flows of the Steens Basalt cover about 50,000 km2 of the Oregon Plateau in sections up to 1000 m thick. The large number of continuously exposed, quickly erupted lava flows (some sections contain over 200 flows) allows for small loops in the magnetic field direction paths to be detected. For volcanic rocks, this detail and fidelity are rarely found outside of the Holocene and yield estimates of eruption durations at our four sections of ˜2.5 ka for 260 m at Pueblo Mountains, 0.5 to 1.5 ka for 190 m at Summit Springs, 1-3 ka for 170 m at North Mickey, and ˜3 ka for 160 m at Guano Rim. That only one reversal of the geomagnetic field occurred during the eruption of the Steens Basalt (the Steens reversal at approximately 16.6 Ma) is supported by comparing 40Ar/39Ar ages and magnetic polarities to the geomagnetic polarity timescale. At Summit Springs two 40Ar/39Ar ages from normal polarity flows (16.72 ± ± 0.29 Ma (16.61) and 16.92 ± ± 0.52 Ma (16.82); ± ± equals 2σ error) place their eruptions after the Steens reversal, while at Pueblo Mountains an 40Ar/39Ar age of 16.72 ± ± 0.21 Ma (16.61) from a reverse polarity flow places its eruption before the Steens reversal. Paleomagnetic field directions yielded 50 nontransitional directional-group poles which, combined with 26 from Steens Mountain, provide a paleomagnetic pole for the Oregon Plateau of 85.7°N, 318.4°E, K = 15.1, A95 = 4.3. Comparison of this new pole with a reference pole derived from CRBG flows from eastern Washington and a synthetic reference pole for North America derived from global data implies relative clockwise rotation of the Oregon Plateau of 7.4 ± 5.0° or 14.5 ± 5.4°, respectively, probably due to northward decreasing extension of the basin and range.

  15. PGE in fresh basalt, hydrothermal alteration products, and volcanic incrustations of Kilauea volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Crocket, James H.

    2000-05-01

    The concentrations of Os, Ir, Pd, and Au in fresh unaltered Kilauean tholeiite were determined by radiochemical neutron activation analysis. For a suite of 18 samples, averages were: Os = 0.38 ± 0.23, Ir = 0.38 ± 0.14, Pd = 2.40 ± 1.04, and Au = 1.78 ± 0.57 (in ppb with a 1σ SD). Correlations of these metals with Co, Cr, Cu, Ni, and MgO in fresh basalts, and petrographic observations, indicate that Os and Ir are carried mainly in chromite, much of which occurs as inclusions in olivine phenocrysts. Palladium correlations suggest its occurrence partly in olivine and partly in the matrix whereas Au seems to be predominantly a matrix constituent. Altered basalts were analyzed for Ir, Pd, and Au in a suite of 19 samples from five different locations. Minor changes only in either concentrations or element ratios were found for Ir and Pd when fresh and altered rock data were compared. However, Au was consistently enriched in altered relative to fresh rocks. These results imply that Pd and Ir, in contrast to Au, will likely retain their eruptive signatures upon burial in a subaerial eruptive setting. High-temperature sulfate-dominated condensates generate incrustations enriched in Ir, Os, Au, and Pd by approximately 50, 20, 10, and 3×, respectively, relative to fresh rocks. In contrast, low-temperature native sulfur deposits are the most depleted material found in the study with Ir, Pd, and Au lower by factors of 10, 4, and 5 compared with fresh rock averages. The strong enrichments of Os and Ir in the high-temperature suite are attributed mainly to enhanced volatility in highly oxygenated magmatic hydrothermal fluids contaminated by meteoric water near the structural top of volcanic conduits. The relatively smaller Pd enrichment, which is dependent on the chloride content of fluids, implies that PGE partitioning into volcanic fume may fractionate these metals (e.g., Pd versus Ir) relative to host basalt in the eruptive process.

  16. Lu-Hf AND Sm-Nd EVOLUTION IN LUNAR MARE BASALTS.

    USGS Publications Warehouse

    Unruh, D.M.; Stille, P.; Patchett, P.J.; Tatsumoto, M.

    1984-01-01

    Lu-Hf and Sm-Nd data for mare basalts combined with Rb-Sr and total REE data taken from the literature suggest that the mare basalts were derived by small ( less than equivalent to 10%) degrees of partial melting of cumulate sources, but that the magma ocean from which these sources formed was light REE and hf-enriched. Calculated source compositions range from lherzolite to olivine websterite. Nonmodal melting of small amounts of ilmenite ( less than equivalent to 3%) in the sources seems to be required by the Lu/Hf data. A comparison of the Hf and Nd isotopic characteristics between the mare basalts and terrestrial oceanic basalts reveals that the epsilon Hf/ epsilon Nd ratios in low-Ti mare basalts are much higher than in terrestrial ocean basalts.

  17. Serra Pelada: the first Amazonian Meteorite fall is a Eucrite (basalt) from Asteroid 4-Vesta.

    PubMed

    Zucolotto, Maria Elizabeth; Tosi, Amanda A; Villaça, Caio V N; Moutinho, André L R; Andrade, Diana P P; Faulstich, Fabiano; Gomes, Angelo M S; Rios, Debora C; Rocha, Marcilio C

    2018-01-01

    Serra Pelada is the newest Brazilian eucrite and the first recovered fall from Amazonia (State of Pará, Brazil, June 29th 2017). In this paper, we report on its petrography, chemistry, mineralogy and its magnetic properties. Study of four thin sections reveals that the meteorite is brecciated, containing basaltic and gabbroic clasts, as well of recrystallized impact melt, embedded into a fine-medium grained matrix. Chemical analyses suggest that Serra Pelada is a monomict basaltic eucritic breccia, and that the meteorite is a normal member of the HED suite. Our results provide additional geological and compositional information on the lithological diversity of its parent body. The mineralogy of Serra Pelada consists basically of low-Ca pyroxene and high-Ca plagioclase with accessory minerals such as quartz, sulphide (troilite), chromite - ulvöspinel and ilmenite. These data are consistent with the meteorite being an eucrite, a basaltic achondrite and a member of the howardite-eucrite-diogenite (HED) clan of meteorites which most likely are from the crust asteroid 4 Vesta.

  18. Structural studies in columnar basalts from crystallographic and magnetic fabrics

    NASA Astrophysics Data System (ADS)

    Tiphaine, Boiron; Jérôme, Bascou; Pierre, Camps; Eric, Ferre; Claire, Maurice; Bernard, Guy; Marie-Christine, Gerbe

    2010-05-01

    The purpose of this study is to better characterize the columnar and the associated microstructure development in basalt flows. The thermal contraction (O'Reilly, 1879) is the main hypothesis to explain the columnar formation. However, neither the structures which appear in basalt flow constituted of three levels (Tomkeieff, 1940) nor circular and radial structures within the prisms (for which weathering nor fracturing can account for) can be explained by the thermal contraction theory alone. An early structuring process during solidification (Guy and Le Coze, 1990) could play for a part that must be discussed (Guy, 2010). We studied two recent basalt flows (75 000 years) from the French Massif Central, in which the three flow levels are clearly observed. In the first basalt flow (La Palisse, Ardèche), the emission centre and the flow direction are known. In the second one (Saint Arcons d'Allier, Haute Loire), the prismatic columns are particularly well developed. In order to characterize the flow structure at different scales, from the flow to the grain scale, anisotropy of magnetic susceptibility (AMS) measurements were performed. The AMS data were coupled with crystallographic preferred orientation measurements of magnetite, plagioclase and clinopyroxene using Electron Backscattered Diffraction (EBSD) and image analyses from perpendicular thin sections. Magnetic mineralogy studies of the La Palisse basalts, in particular the thermomagnetic curves, indicate that the main carrier of AMS is high-Ti titanomagnetite (Tc≈130°C). AMS measurements of about a hundred samples show a higher degree of AMS (P parameter) in the middle level in comparison to the base. Inversely, the bulk magnetic susceptibility (Km) is higher at the flow base. Distinctive parameters for the different levels of the basaltic flows could be then provided by AMS measurements.. Moreover, the comparison between AMS and EBSD data indicate that the magnetic susceptibility carried by the magnetic

  19. Noble gases in submarine pillow basalt glasses from Loihi and Kilauea, Hawaii: A solar component in the Earth

    USGS Publications Warehouse

    Honda, M.; McDougall, I.; Patterson, D.B.; Doulgeris, A.; Clague, D.A.

    1993-01-01

    Noble gas elemental and isotopic abundances have been analysed in twenty-two samples of basaltic glass dredged from the submarine flanks of two currently active Hawaiian volcanoes, Loihi Seamount and Kilauea. Neon isotopic ratios are enriched in 20Ne and 21Ne by as much as 16% with respect to atmospheric ratios. All the Hawaiian basalt glass samples show relatively high 3He 4He ratios. The high 20Ne 22Ne values in some of the Hawaiian samples, together with correlations between neon and helium systematics, suggest the presence of a solar component in the source regions of the Hawaiian mantle plume. The solar hypothesis for the Earth's primordial noble gas composition can account for helium and neon isotopic ratios observed in basaltic glasses from both plume and spreading systems, in fluids in continental hydrothermal systems, in CO2 well gases, and in ancient diamonds. These results provide new insights into the origin and evolution of the Earth's atmosphere. ?? 1993.

  20. Design and research of thermal protective material from short basalt fibres

    NASA Astrophysics Data System (ADS)

    Komkov, MA; Tarasov, VA; Boyarskaya, RA; Filimonov, AS

    2016-10-01

    Design and manufacture issues regarding highly porous thermal protection coatings of products by means of liquid filtration of short basalt fibres and mineral binder are considered. The technological process of manufacture of thermally loaded products from the short basalt fibres of thermal protective material (TPM) in the form of tiles and rings, was developed based on a liquid filtration method. The structural and mechanical properties of the highly porous TPM technological modes were determined. The thermal testing of the pipe model samples was carried out on a thermal bench, which showed the temperature on the coating reaching less than 60°C during a hot air run through the pipe at 400°C.

  1. A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair.

    PubMed

    Chen, Xi; Li, Yan; Gu, Ning

    2010-08-01

    A basalt fiber (BF) was, for the first time, introduced into a poly(l-lactic acid) (PLLA) matrix as innovative reinforcement to fabricate composite materials for hard tissue repair. Firstly, BF/PLLA composites and pure PLLA were produced by the methods of solution blending and freeze drying. The results showed that basalt fibers can be uniformly dispersed in the PLLA matrix and significantly improve the mechanical properties and hydrophilicity of the PLLA matrix. The presence of basalt fibers may retard the polymer degradation rate and neutralize the acid degradation from PLLA. Osteoblasts were cultured in vitro to evaluate the cytocompatibility of the composite. An MTT assay revealed that osteoblasts proliferated well for 7 days and there was little difference found in their viability on both PLLA and BF/PLLA films, which was consistent with the alkaline phosphatase (ALP) activity results. A fluorescent staining observation showed that osteoblasts grew well on the composites. SEM images displayed that osteoblasts tended to grow along the fiber axis. The formation of mineralized nodules was observed on the films by Alizarin red S staining. These results suggest that the presence of basalt fibers does not noticeably affect osteoblastic behavior and the designed composites are osteoblast compatible. It is concluded that basalt fibers, as reinforcing fibers, may have promising applications in hard tissue repair.

  2. Experimental Study into the Partitioning Behavior of Fluorine, Chlorine, Hydroxyl, and Sulfur (S2-) Between Apatite and a Synthetic Kreep Basalt Melt

    NASA Technical Reports Server (NTRS)

    Turner, Amber; Vander Kaaden, Kathleen; McCubbin, Francis; Danielson, Lisa R.

    2017-01-01

    The mineral apatite (Ca5 (PO4)3(F, Cl, OH)) is known for its ability to constrain the petrogenesis of the rock in which it is hosted and for its ubiquity throughout the Solar System, as it is found in lunar, martian, and terrestrial rocks alike (McCubbin et. al, 2015). The abundance of volatile elements, and for this particular study, the elevated abundance of sulfur (S2-) in high-Al basalt samples bearing apatite, could provide more insight for inquiries posed about the behavior of volatiles in lunar and martian magmatic systems (Boyce et. al, 2010). Oxygen fugacity will be an important parameter for these experiments, as the Moon, Mars, and Earth have different redox states (Herd, 2008). The objective of this experimental endeavor is to determine apatite-melt partition coefficients for the volatile elements (F-, Cl-, OH-, S2-) that make up the X-site (i.e., the typically monovalent anion site) in the mineral apatite in a lunar melt composition under lunar oxygen fugacity conditions approx.1-2 log units below the iron-wüstite buffer). All experiments will be conducted at NASA, Johnson Space Center in the High Pressure Experimental Petrology Laboratory. In order to conduct apatite-melt partition experiments with oxygen fugacity as an additional parameter, we will create a synthetic mix of the lunar KREEP basalt 15386, a sample retrieved during Apollo 15 that is believed to represent an indigenous volcanic melt derived from the lunar interior (Rhodes, J.M et. al, 2006). Other geochemically significant elements including C, Co, Ni, Mo, and rare earth elements will be included in the mix at trace abundances in order to assess their partitioning behavior without effecting the overall behavior of the system. The synthetic mix will then be loaded into a piston cylinder, an apparatus used to simulate high-pressure/high-temperature conditions of planetary interiors, and exposed to 0.5 GPa of pressure, the pressure observed in the upper mantle of the Moon, and heated to

  3. Radiolytic Hydrogen Production in the Subseafloor Basaltic Aquifer.

    PubMed

    Dzaugis, Mary E; Spivack, Arthur J; Dunlea, Ann G; Murray, Richard W; D'Hondt, Steven

    2016-01-01

    Hydrogen (H2) is produced in geological settings by dissociation of water due to radiation from radioactive decay of naturally occurring uranium ((238)U, (235)U), thorium ((232)Th) and potassium ((40)K). To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we use radionuclide concentrations of 43 basalt samples from IODP Expedition 329 to calculate radiolytic H2 production rates in basement fractures. The samples are from three sites with very different basement ages and a wide range of alteration types. U, Th, and K concentrations vary by up to an order of magnitude from sample to sample at each site. Comparison of our samples to each other and to the results of previous studies of unaltered East Pacific Rise basalt suggests that significant variations in radionuclide concentrations are due to differences in initial (unaltered basalt) concentrations (which can vary between eruptive events) and post-emplacement alteration. However, there is no clear relationship between alteration type and calculated radiolytic yields. Local maxima in U, Th, and K produce hotspots of H2 production, causing calculated radiolytic rates to differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production, where microfractures are hotspots for radiolytic H2 production. For example, H2 production rates normalized to water volume are 190 times higher in 1 μm wide fractures than in fractures that are 10 cm wide. To assess the importance of water radiolysis for microbial communities in subseafloor basaltic aquifers, we compare electron transfer rates from radiolysis to rates from iron oxidation in subseafloor basalt. Radiolysis appears likely to be a more important electron donor source than iron oxidation in old (>10 Ma) basement basalt. Radiolytic H2 production in the volume of water adjacent to a square cm of the most radioactive SPG basalt may support as

  4. Thermal models for basaltic volcanism on Io

    USGS Publications Warehouse

    Keszthelyil, L.; McEwen, A.

    1997-01-01

    We present a new model for the thermal emissions from active basaltic eruptions on Io. While our methodology shares many similarities with previous work, it is significantly different in that (1) it uses a field tested cooling model and (2) the model is more applicable to pahoehoe flows and lava lakes than fountain-fed, channelized, 'a'a flows. This model demonstrates the large effect lava porosity has on the surface cooling rate (with denser flows cooling more slowly) and provides a preliminary tool for examining some of the hot spots on Io. The model infrared signature of a basaltic eruption is largely controlled by a single parameter, ??, the average survival time for a lava surface. During an active eruption surfaces are quickly covered or otherwise destroyed and typical values of ?? for a basaltic eruption are expected to be on the order of 10 seconds to 10 minutes. Our model suggests that the Galileo SSI eclipse data are consistent with moderately active to quiescent basaltic lava lakes but are not diagnostic of such activity. Copyright 1997 by the American Geophysical Union.

  5. Flood basalts and extinction events

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1993-01-01

    The largest known effusive eruptions during the Cenozoic and Mesozoic Eras, the voluminous flood basalts, have long been suspected as being associated with major extinctions of biotic species. Despite the possible errors attached to the dates in both time series of events, the significance level of the suspected correlation is found here to be 1 percent to 4 percent. Statistically, extinctions lag eruptions by a mean time interval that is indistinguishable from zero, being much less than the average residual derived from the correlation analysis. Oceanic flood basalts, however, must have had a different biological impact, which is still uncertain owing to the small number of known examples and differing physical factors. Although not all continental flood basalts can have produced major extinction events, the noncorrelating eruptions may have led to smaller marine extinction events that terminated at least some of the less catastrophically ending geologic stages. Consequently, the 26 Myr quasi-periodicity seen in major marine extinctions may be only a sampling effect, rather than a manifestation of underlying periodicity.

  6. Lithologies contributing to the clast population in Apollo 17 LKFM basaltic impact melts

    NASA Technical Reports Server (NTRS)

    Norman, Marc D.; Taylor, G. Jeffrey; Spudis, Paul; Ryder, Graham

    1992-01-01

    LKFM basaltic impact melts are abundant among Apollo lunar samples, especially those from Apollo 15, 16, and 17. They are generally basaltic in composition, but are found exclusively as impact melts. They seem to be related to basins and so could represent the composition of the lower lunar crust. They contain lithic clasts that cannot be mixed in any proportion to produce the composition of the melt matrix; components rich in transition elements (Ti, Cr, Sc) and REE are not considered. To search for the mysterious cryptic component, we previously investigated the mineral clast population in two Apollo 14 LKFM basaltic impact melts, 15445 and 15455. The cryptic component was not present in the mineral clast assemblage of these breccias either, but some olivine and pyroxene grains appeared to be from lithologies not represented among identified igneous rocks from the lunar highlands. In addition, none of the mineral clasts could be unambiguously assigned to a ferroan anorthosite source. We have now extended this study to Apollo 17, starting with two LKFM impact melt breccias (76295 and 76315) from the Apollo 17 station 6 boulder. The results from the study are presented.

  7. A Strongly Calc-alkaline Suite in the Midst of the Tholeiitic Columbia River Basalt Province: Implications for Generating the Calc-alkaline Trend Without Subduction Processes

    NASA Astrophysics Data System (ADS)

    Steiner, A. R.; Streck, M. J.

    2012-12-01

    The mid-Miocene lavas of the Strawberry Volcanics (SV), distributed over 3,400 km2 in NE Oregon, comprise a diverse volcanic suite, which span the range of compositions from basalt to rhyolite. The volcanic suite is mainly composed of calc-alkaline (CA) basaltic andesite and andesite, yet tholeiitic (TH) lavas of basalt to andesite occur as well. The SV lies in the heart of nearly coeval flood basalts of the Columbia River province of the Pacific Northwest. The unique combination of strongly CA rocks of the SV in a non-subduction setting provide an excellent opportunity to study controls on inducing CA evolution in the midst of a TH province and independent of processes taking places at an active subduction zone. New 40Ar/39Ar ages indicate CA basaltic andesites to andesites of the SV erupted at least from 14.78±0.13 Ma to 12.44±0.12 Ma demonstrating that CA magmatism of the SV was ongoing during the eruptions of the tholeiitic Wanapum Basalt member of the Columbia River Basalt Group (CRBG). This range will likely be extended to even older ages in the future because existent age dates did not include samples from near the base of the SV. Thickness of intermediate lavas flows of the SV range from 15 m to as thin as 2 m and lavas are characterized by mostly phenocryst poor lithologies. When phenocrysts are abundant they are very small suggesting growth late during eruption. Single lava flow sections can include on the order of 30 conformable flows, testifying to a vigorous eruption history. The thickest andesitic sections are located in the glacially carved mountains of the Strawberry Mountain Wilderness (i.e. Strawberry Mountain, High Lake, and Slide Lake) where several vent complexes are exposed, which are delineated by dikes and plugs with finely interlocking plutonic textures, cross-cutting SV lava flows. Dikes generally strike NW-SE. Subtle variations in major and trace element compositions exist between TH and CA lavas of the SV. The CA lavas of the SV are

  8. Characterization and Distribution of Lunar Mare Basalt Types Using Remote Sensing Techniques. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Pieters, C.

    1977-01-01

    The types of basal to be found on the moon were identified using reflectance spectra from a variety of lunar mare surfaces and craters as well as geochemical interpretations of laboratory measurements of reflectance from lunar, terrestrial, and meteoritic samples. Findings indicate that major basaltic units are not represented in lunar sample collections. The existence of late stage high titanium basalts is confirmed. All maria contain lateral variations of compositionally heterogenous basalts; some are vertically inhomogenous with distinctly different subsurface composition. Some basalt types are spectrally gradational, suggesting minor variations in composition. Mineral components of unsampled units can be defined if spectra are obtained with sufficient spectral coverage (.3 to 2.5 micron m) and spatial resolution (approximating .5 km).

  9. Alteration of Basaltic Glass to Mg/Fe-Smectite under Acidic Conditions: A Potential Smectite Formation Mechanism on Mars

    NASA Technical Reports Server (NTRS)

    Peretyazhko, Tanya; Sutter, Brad; Ming, Douglas W.

    2014-01-01

    Phyllosilicates of the smectite group including Mg- and Fe-saponite and Fe(III)-rich nontronite have been identified on Mars. Smectites are believed to be formed under neutral to alkaline conditions that prevailed on early Mars. This hypothesis is supported by the observation of smectite and carbonate deposits in Noachian terrain on Mars. However, smectite may have formed under mildly acidic conditions. Abundant smectite formations have been detected as layered deposits hundreds of meters thick in intracrater depositional fans and plains sediments, while no large deposits of carbonates are found. Development of mildly acidic conditions at early Mars might allow formation of smectite but inhibit widespread carbonate precipitation. Little is known regarding the mechanisms of smectite formation from basaltic glass under acidic conditions. The objective of this study was to test a hypothesis that Mars-analogue basaltic glass alters to smectite minerals under acidic conditions (pH 4). The effects of Mg and Fe concentrations and temperature on smectite formation from basaltic glass were evaluated. Phyllosilicate synthesis was performed in batch reactors (Parr acid digestion vessel) under reducing hydrothermal conditions at 200 C and 100 C. Synthetic basaltic glass with a composition similar to that of the Gusev crater rock Adirondack (Ground surface APXS measurement) was used in these experiments. Basaltic glass was prepared by melting and quenching procedures. X-ray diffraction (XRD) analysis indicated that the synthesized glass was composed of olivine, magnetite and X-ray amorphous phase. Samples were prepared by mixing 250 mg Adirondack with 0.1 M acetic acid (final pH 4). In order to study influence of Mg concentration on smectite formation, experiments were performed with addition of 0, 1 and 10 mM MgCl2. After 1, 7 and 14 day incubations the solution composition was analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the altered glass and formed

  10. Magma feeding system of Kutcharo and Mashu calderas, Hokkaido, Japan: Evidence of a common basaltic magma evolving into two distinct rock series

    NASA Astrophysics Data System (ADS)

    Miyagi, I.; Itoh, J.; Nguyen, H.

    2009-12-01

    Kutcharo and its adjacent Mashu volcanoes are located in NE Hokkaido, about 150 km west of the Kurile trench. The latest major activity of Kutcharo was 35 thousand years ago (termed KP I) produced about 50 km3 D.R.E, Mashu meanwhile became active after KP I. To understand the magma feeding system of adjoining but distinct Kutcharo (medium-K) and Mashu (low-K) volcanoes, we examined major and trace element, and Sr, Nd, and Pb isotopic compositions of whole rocks. We also studied phenocryst chemical zoning and chemical compositions of melt inclusions in phenocryst. The chemical results of melt inclusions show no distinction between medium- and low-K as being recognized in bulk rock chemistry of the volcanoes. Instead, the results form a smooth trend between low-K rock series and high-K rhyolitic melt end-member (as high as 5 wt. % K2O). There is no significant difference Sr, Nd and Pb isotopes between basalt and rhyolite suggesting genetic relationship. Moreover, the trace element distribution patterns show enrichment increasing gradually from the basalt to rhyolite via andesite indicating fractional crystallization evolution. Chemical zoning in plagioclase phenocryst in KP I (An 80-40) suggest that basaltic magma injected repeatedly into a voluminous felsic magma chamber of Kutcharo volcano. Chemical compositions of olivine phenocryst show that Kutcharo (Fo 86) was hotter as compared to Mashu (Fo 75). Application of MELTS program (Ghiorso and Sack, 1995) on composition of the basaltic melt end-member suggests that crystallization or subsequent re-melting of the basalt may produce medium- to high-K rhyolite melt, and mixing of the rhyolite with basalt may form the observed medium-K Kutcharo and low-K Mashu rock series. It is estimated that total volume of the basaltic magma supplied intermittently beneath the volcanoes was several folds to 10 times larger than the erupted rhyolite magma. And that the basalt injection may be more intensive beneath Kutcharo, leading to

  11. Hyper-localized carbon mineralization in diffusion-limited basalt fractures

    NASA Astrophysics Data System (ADS)

    Menefee, A. H.; Giammar, D.; Ellis, B. R.

    2017-12-01

    Basalt formations could enable secure carbon sequestration through mineral trapping. CO2 injection acidifies formation brines and drives dissolution of the host rock, which releases divalent metal cations that combine with dissolved carbonate ions to form stable carbonate minerals. Here, a series of high-pressure flow-through experiments was conducted to evaluate how transport limitations and geochemical gradients drive microscale carbonation reactions in fractured basalts. To isolate advection- and diffusion-controlled zones, surfaces of saw-cut basalt cores were milled to create one primary flow channel adjoined by four dead-end fracture pathways. In the first experiment, a representative basalt brine (6.3 mM NaHCO3) equilibrated with CO2 (100ºC, 10 MPa) was injected at 1 mL/h under 20 MPa confining stress. The second experiment was conducted under the same physical conditions but [NaHCO3] was elevated to 640 mM, and in the third, temperature was also raised to 150ºC. Effluent chemistry was monitored via ICP-MS to infer dissolution trends and calibrate reactive transport models. Reacted cores were characterized using x-ray computed tomography (xCT), optical microscopy, scanning electron microscopy, and Raman spectroscopy. Carbonation occurred in all experiments but increased in experiments with higher alkalinity and higher temperature. At low [NaHCO3], secondary precipitate coatings formed distinct reaction fronts that varied with distance into dead-end fractures. Reactive transport modeling demonstrated that these reactions fronts were due to sharp gradients in pH and dissolved inorganic carbon. Carbonation was restricted to transport-limited vugs and pores between the confined core surfaces and was highly localized on reactive primary mineral grains (e.g. pyroxene) that contributed major divalent cations. Increasing [NaHCO3] by two orders of magnitude significantly enhanced carbonation and promoted Mg and Fe uptake into carbonates. While xCT scans revealed

  12. Basaltic material in the main belt: a tale of two (or more) parent bodies?

    NASA Astrophysics Data System (ADS)

    Ieva, S.; Dotto, E.; Lazzaro, D.; Fulvio, D.; Perna, D.; Epifani, E. Mazzotta; Medeiros, H.; Fulchignoni, M.

    2018-06-01

    The majority of basaltic objects in the main belt are dynamically connected to Vesta, the largest differentiated asteroid known. Others, due to their current orbital parameters, cannot be easily dynamically linked to Vesta. This is particularly true for all the basaltic asteroids located beyond 2.5 au, where lies the 3:1 mean motion resonance with Jupiter. In order to investigate the presence of other V-type asteroids in the middle and outer main belt (MOVs) we started an observational campaign to spectroscopically characterize in the visible range MOV candidates. We observed 18 basaltic candidates from TNG and ESO - NTT between 2015 and 2016. We derived spectral parameters using the same approach adopted in our recent statistical analysis and we compared our data with orbital parameters to look for possible clusters of MOVs in the main belt, symptomatic for a new basaltic family. Our analysis seemed to point out that MOVs show different spectral parameters respect to other basaltic bodies in the main belt, which could account for a diverse mineralogy than Vesta; moreover, some of them belong to the Eos family, suggesting the possibility of another basaltic progenitor. This could have strong repercussions on the temperature gradient present in the early Solar System, and on our current understanding of differentiation processes.

  13. Lu-Hf and Sm-Nd evolution in lunar mare basalts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unruh, D.M.; Stille, P.; Patchett, P.J.

    1984-02-15

    Lu-Hf and Sm-Nd data for mare basalts combined with Rb-Sr and total REE data taken from the literature suggest that the mare basalts were derived by small (< or =10%) degrees of partial melting of cumulate sources, but that the magma ocean from which these sources formed was light REE and Hf-enriched. Calculated source compositions range fromm lherzolite to olivine websterite. Nonmodal melting of small amounts of ilmenite (< or =3%) in the sources seems to be required by the Lu/Hf data. A comparison of the Hf and Nd isotopic characteristics between the mare basalts and terrestrial oceanic basalts revealsmore » that the epsilonHf/epsilonNd ratios of low-Ti mare basalts are much higher than in terrestrial oceanic basalts. The results are qualitatively consistent with the hypothesis that terrestrial basalt sources are partial melt residues whereas mare basalt sources are cumulates. Alternatively, the results may imply that the terrestrial mantle has evolved in two (or more) stages of evolution, and that the net effect was depletion of the mantle during the first approx.1-3 b.y. followed by enrichment during the last 1-2 b.y.; or simply that there is a difference in Lu-Hf crystal-liquid partitioning (relative to Sm-Nd) between the lunar and terrestrial mantles.« less

  14. Oxygen Isotopes in Intra-Back Arc Basalts from the Andean Southern Volcanic Zone

    NASA Astrophysics Data System (ADS)

    Parks, B. H.; Wang, Z.; Saal, A. E.; Frey, F. A.; Blusztajn, J.

    2013-12-01

    The chemical compositions of volcanic rocks from the Andean Southern Volcanic Zone (SVZ) reflect complex and dynamic interactions among the subducting oceanic lithosphere, the mantle wedge, and the overlying continental crust. Oxygen isotope ratios of olivine phenocrysts can be a useful means to identifying their relative contributions to the arc magmatism. In this study, we report high-precision oxygen-isotope ratios of olivine phenocrysts in a set of intra-back arc basalts from the SVZ. The samples were collected from monogenetic cinder cones east of the volcanic front (35-39 degrees S), and have been geochemically well-characterized with major and trace element contents, and Sr-Nd-Pb isotope compositions. Compared to lavas from the volcanic front, these intra-back arc lavas have similar radiogenic isotope, and a more alkalic and primitive (higher MgO content) chemical composition. We determined the oxygen-isotope ratios using the CO2-laser-fluorination method set up at the Department of Geology and Geophysics, Yale University following the techniques reported in Wang et al (2011). The samples were analyzed with standards of Gore Mountain Garnet (5.77×0.12‰ 1σ; Valley et al., 1995) and Kilbourne Hole Olivine (5.23×0.07‰ 1σ; Sharp, 1990) in order to account for minor changes in the vacuum line during analyses. The obtained δ18OSMOW values of olivine phenocrysts from the intra-back arc basalts vary from 4.98×0.01 to 5.34×0.01‰. This range, surprisingly, is similar to the δ18O values of olivines from mantle peridotites (5.2×0.2‰). Preliminary results indicate significant correlations of 87Sr/86Sr, 143Nd/144Nd and trace element ratios of the basaltic matrix with the δ18O values of olivine phenocrysts, indicating at least three components involved in the formation of the arc volcanism. By comparing the δ18O with the variations of major and trace element contents (e.g., MgO, TiO2 and Ni), and trace element ratios (e.g. Ba/Nb), we evaluate the effects

  15. Detection of reduced carbon in basalt using Raman spectroscopy: a signpost to habitat on Mars

    NASA Astrophysics Data System (ADS)

    Harris, L. V.; Hutchinson, I. B.; Parnell, J.; Ingley, R.; Edwards, H. G. M.

    2013-09-01

    In the search for evidence of the environmental history of the Martian surface, and the possibility of life at some stage in the planet's history, a key component is reduced carbon. Carbon is available to the surface environment through meteoritic infall [1] and erosion of abundant volcanic rocks which contain magmatic carbon [2][3], in addition to the possibility of some biogenic carbonaceous matter. However, reduced carbon has not yet been detected by a range of missions to Mars. Carbonate minerals, containing carbon in inorganic oxidized form, have been recorded [4], which together with carbon dioxide in the Martian atmosphere and magmatic carbon in Martian meteorites provide evidence for a carbon cycle on Mars [5][6]. The mobility of carbon on Mars is also evident in fracture-bound carbon in the Nakhla meteorite, derived from Martian basalt [7] [8]. Basalts are widespread on Mars, so are readily accessible for sampling and analysis. Basalt-hosted carbon could have a relationship to life in both a consequential or causative manner. Basalt could incorporate carbon from organic matter disseminated in sediments through which the basaltic magma passed. It is even possible that basalt could concentrate carbon scavenged from sediments into carbon-rich structures. Alternatively, basalt could act as a feedstock of carbon to provide biomass for colonizing microbes. In this way, the discovery of carbon in (Martian) basalt could be regarded as a signpost to habitat, i.e. the identification of carbon is a key aspect of the strategy for targeting where evidence of life should be sought. The ExoMars mission, currently intended to fly in 2018, includes a Raman spectroscopy instrument, whose targets for detection include reduced carbon. We report here the study of an analogue for the carbon-bearing Nakhla meteorite, representing nearsurface Martian crust, using Raman spectroscopy and other techniques to demonstrate the potential to detect the reduced carbon therein. The

  16. Expanding the Planetary Analog Test Sites in Hawaii - Planetary Basalt Manipulation

    NASA Astrophysics Data System (ADS)

    Kelso, R.

    2013-12-01

    The Pacific International Space Center for Exploration Systems (PISCES) is one of the very few planetary surface research test sites in the country that is totally funded by the state legislature. In recent expansions, PISCES is broadening its work in planetary test sites to include much more R&D work in the planetary surface systems, and the manipulation of basalt materials. This is to include laser 3D printing of basalt, 'lunar-concrete' construction in state projects for Hawaii, renewable energy, and adding lava tubes/skylights to their mix of high-quality planetary analog test sites. PISCES Executive Director, Rob Kelso, will be providing program updates on the interest of the Hawaii State Legislature in planetary surface systems, new applied research initiatives in planetary basalts and interests in planetary construction.

  17. Flame-resistant pure and hybrid woven fabrics from basalt

    NASA Astrophysics Data System (ADS)

    Jamshaid, H.; Mishra, R.; Militky, J.

    2017-10-01

    This work has been formulated to investigate the burning behavior of different type of fabrics. The main concentration is to see how long the fabric resists after it catches the fire and the propagation of fire can be reduced by using flame resistant fiber i.e basalt. Basalt fiber is an environmental friendly material with low input, high output, low energy consumption and less emission. The goal of present investigations is to show the dependence of fabric flammability on its structure parameters i.e weave type, blend type etc. Fabric weaves have strong effect on flammability properties. Plain weave has the lowest burning rate as the density of the plain weave fabric is more and the structure is tight which gives less chances of flame passing through the fabric. Thermal stability is evaluated with TGA of all hybrid and nonhybrid fabrics and compared. The thermal stability of the basalt fiber is excellent. When comparing thermal analysis curves for hybrid samples it demonstrates that thermal stability of the samples containing basalt is much higher than the non- hybrid samples. Percentage weight loss is less in hybrid samples as compared to non-hybrid samples. The effectiveness of hybridization on samples may be indicated by substantial lowering of the decomposition mass. Correlation was made between flammability with the infrared radiations (IR)

  18. Controls on Highly Siderophile Element Concentrations in Martian Basalt: Sulfide Saturation and Under-Saturation

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2009-01-01

    Highly siderophile elements (HSE; Re, Au and the platinum group elements) in shergottites exhibit a wide range from very high, similar to the terrestrial mantle, to very low, similar to sulfide saturated mid ocean ridge basalt (e.g., [1]). This large range has been difficult to explain without good constraints on sulfide saturation or under-saturation [2]. A new model for prediction of sulfide saturation places new constraints on this problem [3]. Shergottite data: For primitive shergottites, pressure and temperature estimates are between 1.2-1.5 GPa, and 1350-1470 C [4]. The range of oxygen fugacities is from FMQ-2 to IW, where the amount of Fe2O3 is low and thus does not have a significant effect on the S saturation values. Finally, the bulk compositions of shergottites have been reported in many recent studies (e.g., [5]). All of this information will be used to test whether shergottites are sulfide saturated [3]. Modeling values and results: The database for HSE partition coefficients has been growing with many new data for silicates and oxides [6-8] to complement a large sulfide database [9- 11]. Combining these data with simple batch melting models allows HSE contents of mantle melts to be estimated for sulfide-bearing vs. sulfide-free mantle. Combining such models with fractional crystallization modeling (e.g., [12]) allows HSE contents of more evolved liquids to be modeled. Most primitive shergottites have high HSE contents (and low S contents) that can be explained by sulfide under-saturated melting of the mantle. An exception is Dhofar 019 which has high S contents and very low HSE contents suggesting sulfide saturation. Most evolved basaltic shergottites have lower S contents than saturation, and intermediate HSE contents that can be explained by olivine, pyroxene, and chromite fractionation. An exception is EET A79001 lithology B, which has very low HSE contents and S contents higher than sulfide saturation values . evidence for sulfide saturation

  19. Experimental investigation of the reaction between corundum xenocrysts and alkaline basaltic host magma: Constraints on magma residence times of basalt-hosted sapphires

    NASA Astrophysics Data System (ADS)

    Baldwin, L. C.; Ballhaus, C.

    2018-03-01

    Megacrystic sapphires (Fe-Ti-rich corundum) of up to 5 cm in size are well known from alkaline mafic rocks from intra-continental rift-related magmatic fields. There is no doubt that these sapphires represent xenocrysts that were trapped from their original lithology by ascending basaltic magmas carrying them to the Earth's surface. Most studies about basalt-hosted sapphires address the question about the origin of the sapphires, but there is hardly any information available about the time the sapphires resided inside the carrier melt. Sapphires are in reaction relationship with basalt and produce spinel coronas at the sapphire-basalt interface, spatially separating the mutually incompatible phases from one another. Assuming isothermal and isobaric conditions of spinel rim formation, the rim-thickness should be a function of the reaction time with the basaltic melt. In this paper, we report time-series experiments aimed at investigating the kinetics of spinel rim formation due to igneous corrosion of corundum. Therefore, we reacted corundum fragments with alkaline basalt powder at 1250 °C and 1GPa, using a Piston Cylinder Apparatus. The width of the spinel rim was used to estimate a residence time. Extrapolating the experimentally derived reaction rates to the thickness of natural spinel rims as described from the Siebengebirge Volcanic Field, Germany, and from Changle, China, we estimated residence times in the order of a few weeks to months.

  20. Occurrence and mineral chemistry of high pressure phases, Portrillo basalt, southcentral New Mexico. M.S. Thesis. Final Technical Report, 1 Jun. 1978 - 31 May 1980

    NASA Technical Reports Server (NTRS)

    Hoffer, J. M.; Ortiz, T. S.

    1980-01-01

    Inclusions of clinopyroxenite, kaersutiteclinopyroxenite, kaersutite-rich inclusions, wehrlite and olivine-clinopyroxenite together with megacrysts of feldspar, kaersutite and spinel are found loose on the flanks of cinder cones, as inclusions within lava flows and within the cores of volcanic bombs in the Quaternary alkali-olivine basalt of the West Potrillo Mountains, southcentral New Mexico. Based on petrological and geochemical evidence the megacysts are interpreted to be phenocrysts which formed at great depth rather that xenocrysts of larger crystal aggregates. These large crystals are believed to have formed as stable phases at high temperature and pressure and have partially reacted with the basalt to produce subhedral to anhedral crystal boundaries. It can be demonstrated that the mafic and ultramafic crystal aggregates were derived from an alkali-basalt source rock generated in the mantle. The inclusions are believed to represent a cumulus body or bodies injected within the lower crust or upper mantle.

  1. Re-Os isotope evidence from Mesozoic and Cenozoic basalts for secular evolution of the mantle beneath the North China Craton

    NASA Astrophysics Data System (ADS)

    Huang, Feng; Xu, Ji-Feng; Liu, Yong-Sheng; Li, Jie; Chen, Jian-Lin; Li, Xi-Yao

    2017-05-01

    The mechanism and process of lithospheric thinning beneath the North China Craton (NCC) are still debated. A key criterion in distinguishing among the proposed mechanisms is whether associated continental basalts were derived from the thinning lithospheric mantle or upwelling asthenosphere. Herein, we investigate the possible mechanisms of lithospheric thinning based on a systematic Re-Os isotopic study of Mesozoic to Cenozoic basalts from the NCC. Our whole-rock Re-Os isotopic results indicate that the Mesozoic basalts generally have high Re and Os concentrations that vary widely from 97.2 to 839.4 ppt and 74.4 to 519.6 ppt, respectively. They have high initial 187Os/188Os ratios ranging from 0.1513 to 0.3805, with corresponding variable γOs(t) values (+20 to +202). In contrast, the Re-Os concentrations and radiogenic Os isotope compositions of the Cenozoic basalts are typically lower than those of the Mesozoic basalts. The lowest initial 187Os/188Os ratios of the Cenozoic basalts are 0.1465 and 0.1479, with corresponding γOs(t) values of +15 and +16, which are within the range of ocean island basalts. These new Re-Os isotopic results, combined with the findings of previous studies, indicate that the Mesozoic basalts were a hybrid product of the melting of pyroxenite and peridotite in ancient lithospheric mantle beneath the NCC. The Cenozoic basalts were derived mainly from upwelling asthenosphere mixed with small amounts of lithospheric materials. The marked differences in geochemistry between the Mesozoic and Cenozoic basalts suggest a greatly reduced involvement of lithospheric mantle as the magma source from the Mesozoic to the Cenozoic. The subsequent lithospheric thinning of the NCC and replacement by upwelling asthenospheric mantle resulted in a change to asthenosphere-derived Cenozoic basalts.

  2. The Fe-Rich Clay Microsystems in Basalt-Komatiite Lavas: Importance of Fe-Smectites for Pre-Biotic Molecule Catalysis During the Hadean Eon

    NASA Astrophysics Data System (ADS)

    Meunier, Alain; Petit, Sabine; Cockell, Charles S.; El Albani, Abderrazzak; Beaufort, Daniel

    2010-06-01

    During the Hadean to early Archean period (4.5-3.5 Ga), the surface of the Earth’s crust was predominantly composed of basalt and komatiite lavas. The conditions imposed by the chemical composition of these rocks favoured the crystallization of Fe-Mg clays rather than that of Al-rich ones (montmorillonite). Fe-Mg clays were formed inside chemical microsystems through sea weathering or hydrothermal alteration, and for the most part, through post-magmatic processes. Indeed, at the end of the cooling stage, Fe-Mg clays precipitated directly from the residual liquid which concentrated in the voids remaining in the crystal framework of the mafic-ultramafic lavas. Nontronite-celadonite and chlorite-saponite covered all the solid surfaces (crystals, glass) and are associated with tiny pyroxene and apatite crystals forming the so-called “mesostasis”. The mesostasis was scattered in the lava body as micro-settings tens of micrometres wide. Thus, every square metre of basalt or komatiite rocks was punctuated by myriads of clay-rich patches, each of them potentially behaving as a single chemical reactor which could concentrate the organics diluted in the ocean water. Considering the high catalytic potentiality of clays, and particularly those of the Fe-rich ones (electron exchangers), it is probable that large parts of the surface of the young Earth participated in the synthesis of prebiotic molecules during the Hadean to early Archean period through innumerable clay-rich micro-settings in the massive parts and the altered surfaces of komatiite and basaltic lavas. This leads us to suggest that Fe,Mg-clays should be preferred to Al-rich ones (montmorillonite) to conduct experiments for the synthesis and the polymerisation of prebiotic molecules.

  3. Petrogenesis of Neoarchean metavolcanic rocks in Changyukou, Northwestern Hebei: Implications for the transition stage from a compressional to an extensional regime for the North China Craton

    NASA Astrophysics Data System (ADS)

    Liou, Peng; Shan, Houxiang; Liu, Fu; Guo, Jinghui

    2017-03-01

    The 2.5 Ga metavolcanic rocks in Changyukou, Northwestern Hebei, can be classified into three groups based on major and trace elements: high-Mg basalts, tholeiitic basalts, and the calc-alkaline series (basaltic andesites-andesites and dacites-rhyolites). Both high-Mg basalts and tholeiitic basalts have negative anomalies of Nb, Zr, Ti and Heavy Rare Earth Elements (HREE) as well as enrichments of Sr, K, Pb, Ba and Light Rare Earth Elements (LREE) and show typical subduction zone affinities. The petrogenesis of high-Mg basalts can be ascribed to high-degree partial melting of an enriched mantle source in the spinel stability field that was previously enriched in Large Ion Lithophile Elements (LILE) and LREE by slab-derived hydrous fluids/melts/supercritical fluids, as well as the subsequent magma mixing processes of different sources at different source depths, with little or no influence of polybaric fractional crystallization. The flat HREE of tholeiitic basalts indicates they may also originate from the spinel stability field, but from obviously shallower depths than the source of high-Mg basalts. They may form at a later stage of the subduction process when rapid slab rollback leads to extension and seafloor spreading in the upper plate. We obtain the compositions of the Archean lower crust of the North China Craton based on the Archean Wutai-Jining section by compiling the average tonalite-trondhjemite-granodiorite (TTG) components, average mafic granulite components, and average sedimentary rock components. The modeling results show that the generation of high-Al basalts, basaltic andesites and andesites can be attributed to assimilation by high-Mg basalts (primary basalts) of relatively high-Al2O3 thickened lower crust and the subsequent crystallization of prevailing mafic mineral phases, while Al2O3-rich plagioclase crystallization is suppressed under high-pressure and nearly water-saturated conditions. Dacites and rhyolites may be the result of further

  4. Architecture and emplacement of flood basalt flow fields: case studies from the Columbia River Basalt Group, NW USA

    NASA Astrophysics Data System (ADS)

    Vye-Brown, C.; Self, S.; Barry, T. L.

    2013-03-01

    The physical features and morphologies of collections of lava bodies emplaced during single eruptions (known as flow fields) can be used to understand flood basalt emplacement mechanisms. Characteristics and internal features of lava lobes and whole flow field morphologies result from the forward propagation, radial spread, and cooling of individual lobes and are used as a tool to understand the architecture of extensive flood basalt lavas. The features of three flood basalt flow fields from the Columbia River Basalt Group are presented, including the Palouse Falls flow field, a small (8,890 km2, ˜190 km3) unit by common flood basalt proportions, and visualized in three dimensions. The architecture of the Palouse Falls flow field is compared to the complex Ginkgo and more extensive Sand Hollow flow fields to investigate the degree to which simple emplacement models represent the style, as well as the spatial and temporal developments, of flow fields. Evidence from each flow field supports emplacement by inflation as the predominant mechanism producing thick lobes. Inflation enables existing lobes to transmit lava to form new lobes, thus extending the advance and spread of lava flow fields. Minimum emplacement timescales calculated for each flow field are 19.3 years for Palouse Falls, 8.3 years for Ginkgo, and 16.9 years for Sand Hollow. Simple flow fields can be traced from vent to distal areas and an emplacement sequence visualized, but those with multiple-layered lobes present a degree of complexity that make lava pathways and emplacement sequences more difficult to identify.

  5. Changes in Pacific Absolute Plate Motion and Formation of Oceanic Flood Basalt Plateaus

    NASA Astrophysics Data System (ADS)

    Kroenke, L. W.; Wessel, P.

    2006-12-01

    The origin of the large oceanic flood basalt plateaus that are prominent features of the central western Pacific Basin remains unclear. Major changes in Pacific Absolute Plate Motion (APM) have been identified as occurring at 145, 125, 96, and 47 Ma. Formation of the Shatsky Rise (~145 Ma), the Ontong Java Plateau (122+ Ma), the Southern Hess Rise (95±5 Ma), and the Louisiade Plateau (~48 Ma) appear to coincide with these changes. A smaller, but still prominent change in Pacific APM also occurred at 110 Ma when the Northern Hess Rise formed. Although these concurrent events may simply be chance occurrences, initiation of plate tectonic reorganizations upon arrival of mantle plume heads also was proposed by Ratcliff et al. (1998), who suggested that the mantle plume head delivery of hot material to produce flood basalts also had the potential to trigger reorganizations of plate motions. It should be noted, however, that Pacific Rim subduction zone development also coincides with these APM changes, and that the actual cause and effect of each change in APM has yet to be clearly established. Here we present a modified Pacific APM model that uses several older seamount chains (Musicians, Ratak-Gilbert-Ellice, the Wake trails, and the Liliuokalani trails) to constrain the oldest Pacific plate motion using the hybrid technique of Wessel et al (2006).

  6. Similar microbial communities found on two distant seafloor basalts

    NASA Astrophysics Data System (ADS)

    Singer, E.; Chong, L. S.; Heidelberg, J. F.; Edwards, K. J.

    2016-12-01

    The oceanic crust forms two thirds of the Earth's surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present a comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lō'ihi Seamount, Hawai'i, and the East Pacific Rise (EPR) (9°N). Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from Lō'ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy.

  7. Pliocene and Pleistocene alkalic flood basalts on the seafloor north of the Hawaiian islands

    USGS Publications Warehouse

    Clague, D.A.; Holcomb, R.T.; Sinton, J.M.; Detrick, R. S.; Torresan, M.E.

    1990-01-01

    The North Arch volcanic field is located north of Oahu on the Hawaiian Arch, a 200-m high flexural arch formed by loading of the Hawaiian Islands. These flood basalt flows cover an area of about 25,000 km2; the nearly flat-lying sheet-like flows extend about 100 km both north and south from the axis of the flexural arch. Samples from 26 locations in the volcanic field range in composition from nephelinite to alkalic basalt. Ages estimated from stratigraphy, thickness of sediment on top of the flows, and thickness of palagonite alteration rinds on the recovered lavas, range from about 0.75-0.9 Ma for the youngest lavas to somewhat older than 2.7 Ma for the oldest lavas. Most of the flow field consists of extensive sheetflows of dense basanite and alkalic basalt. Small hills consisting of pillow basalt and hyaloclastite of mainly nephelinite and alkalic basalt occur within the flow field but were not the source vents for the extensive flows. Many of the vent lavas are highly vesicular, apparently because of degassing of CO2. The lavas are geochemically similar to the rejuvenated-stage lavas of the Koloa and Honolulu Volcanics and were generated by partial melting of sources similar to those of the Koloa Volcanics. Prior to eruption, these magmas may have accumulated at or near the base of the lithosphere in a structural trap created by upbowing of the lithosphere. ?? 1990.

  8. A negative excursion at 14-16 Ma in seawater osmium isotope record: Implications for paleoceanographic studies using Fe-Mn crusts

    NASA Astrophysics Data System (ADS)

    Goto, K. T.; Tejada, M. L. G.; Suzuki, K.

    2017-12-01

    Osmium isotope stratigraphy is a recently proposed method to determine the depositional age of Fe-Mn crusts [1, 2]. Seawater Os isotope (187Os/188Os) is roughly determined by the balance of riverine Os inputs with radiogenic value (187Os/188Os = 1.4), and mantle-derived and extra-terrestrial Os inputs with non-radiogenic value (187Os/188Os = 0.12) [3]. Secular variation of global seawater Os isotope (seawater Os isotope curve) has been reconstructed by the analysis of pelagic sediments and exhibits large variations ranging from 0.2 to 1.0 with several negative excursions [3]. Hence, the depositional age of Fe-Mn crusts can be approximately estimated by fitting their Os isotope depth profiles to the seawater Os isotope curve (Osmium isotope stratigraphy). However, this method allows multiple interpretations which are partly due to the lack of high-resolution seawater Os isotope curve [1, 2]. For example, the available seawater Os isotope curve does not exhibit negative anomaly during the Miocene, which contrasts with Os isotope records of Fe-Mn crusts [4]. In the present study, we obtained a high-resolution Os isotope record of Miocene seawater using hemipelagic sediments from IODP Expedition 351 SiteU1438. We found a small negative Os isotope anomaly as low as 0.7 from sediments deposited at 14-16 Ma. The magnitude of this anomaly is similar to those reported from Fe-Mn crusts. Although the extrapolation of Be-10 ages for Fe-Mn crust indicate a younger age for the anomaly ( 11 Ma) [4], we could not find any discernable isotope anomaly at 11 Ma. Our finding is consistent with the timing of major eruption of the Columbia River flood basalts (CFRB) which could provide non-radiogenic Os to seawater at 14-16 Ma [5]. Hence, we suggest that the observed isotope anomaly reflect eruption and subsequent weathering of the CFRB. As the similar Os isotope anomaly is commonly found from Fe-Mn crusts, the Os isotope anomaly at 14-16 Ma could be used as a key event to constrain

  9. Pyroclastic Deposits in Floor-Fractured Craters: A Unique Style or Lunar Basaltic Volcanism?

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; DonaldsonHanna, Kerri L.; Pieters, Carle M.; Moriarty, Daniel P.; Greenhagen, Benjamin T.; Bennett, Kristen A.; Kramer, Georgiana Y.; Paige, David A.

    2013-01-01

    The lunar maria were formed by effusive fissure flows of low-viscosity basalt. Regional pyroclastic deposits were formed by deep-sourced fire-fountain eruptions dominated by basaltic glass. Basaltic material is also erupted from small vents within floor-fractured impact craters. These craters are characterized by shallow, flat floors cut by radial, concentric and/or polygonal fractures. Schultz [1] identified and classified over 200 examples. Low albedo pyroclastic deposits originate from depressions along the fractures in many of these craters.

  10. New absolute paleointensity determinations for the Permian-Triassic boundary from the Kuznetsk Trap Basalts.

    NASA Astrophysics Data System (ADS)

    Kulakov, E.; Metelkin, D. V.; Kazansky, A.

    2015-12-01

    We report the results of a pilot absolute paleointensity study of the ~250 Ma basalts of Kuznetsk traps (Kuznetsk Basin, Altai-Sayan folded area). Studied samples are characterized by a reversed polarity of natural remanent magnetization that corresponds to the lower part of Siberian Trap basalts sequence. Geochemical similarity of Kuznets basalts with those from Norilsk region supports this interpretation. Primary origin of thermal remanence in our sample is confirmed by a positive backed contact test. Rock magnetic analyses indicate that the ChRM is carried by single-domain titanomagnetite. The Coe-version of the Thellier-Therllier double-heating method was utilized for the paleointensity determinations. In contrast to the previous studies of the Permian-Triassic Siberian trap basalts, our data indicate that by the P-T boundary the paleofield intensity was relatively high and comparable with geomagnetic field strength for the last 10 millions of years. New results question the duration of the "Mesozoic dipole-low".

  11. Green glass vitrophyre 78526 - An impact of very low-Ti mare basalt composition

    NASA Technical Reports Server (NTRS)

    Warner, R. D.; Taylor, G. J.; Kiel, K.; Planner, H. H.; Nehru, C. E.; Ma, M.-S.; Schmitt, R. A.

    1978-01-01

    Rake sample 78526 is an 8.77 g rock consisting primarily of vitrophyric pale green glass with subordinate mineral and lithic relics. Petrographic and compositional evidence leads to the following conclusions: (1) the bulk composition represents that of a mixture formed by impact melting of at least two different textural and compositional varieties of VLT mare basalt that are now present in the rock as lithic relics and a poorly defined low-Ti mare basalt component observed in thin section only in the form of isolated mineral relics; (2) the admixed VLT mare basalts had REE abundances lower than those found in other mare basalts (but probably higher than emerald green glass) and REE patterns showing significant enrichment of the heavy relative to light REE's, suggesting that they were derived by comparatively high degrees of partial melting of a clinopyroxene-rich source region; and (3) the impact melt supercooled to produce the vitrophyre, with rather sharply contrasting textural domains present in the vitrophyre resulting from differences in nucleation kinetics and degrees of supercooling in various portions of the sample.

  12. [Comparative carcinogenic properties of basalt fiber and chrysotile-asbestos].

    PubMed

    Nikitina, O V; Kogan, F M; Vanchugova, N N; Frash, V N

    1989-01-01

    In order to eliminate asbestos adverse effect on workers' health it was necessary to use mineral rayon, primarily basalt fibre, instead of asbestos. During a chronic experiment on animals the oncogenicity of 2 kinds of basalt fibre was studied compared to chrysotile asbestos. The dust dose of 25 mg was twice administered by intraperitonial route. All types of dust induced the onset of intraperitonial mesotheliomas but neoplasm rates were significantly lower in the groups exposed to basalt fibre. There was no credible data on the differences between the groups exposed to various types of basalt fibre. Since the latter produced some oncogenic effect, it was necessary to develop a complex of antidust measures, fully corresponding to the measures adopted for carcinogenic dusts.

  13. Noble gases in submarine pillow basalt glasses from Loihi and Kilauea, Hawaii: A solar component in the Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, M.; McDougall, I.; Patterson, D.B.

    1993-02-01

    Noble gas elemental and isotopic abundances have been analysed in twenty-two samples of basaltic glass dredged from the submarine flanks of two currently active Hawaiian volcanoes, Loihi Seamount and Kilauea. Neon isotopic ratios are enriched in [sup 20]Ne and [sup 21]Ne by as much as 16% with respect to atmospheric ratios. All the Hawaiian basalt glass samples show relatively high [sup 3]He/[sup 4]He ratios. The high [sup 20]Ne/[sup 22]Ne values in some of the Hawaiian samples, together with correlations between neon and helium systematics, suggest the presence of a solar component in the source regions of the Hawaiian mantle plume.more » The solar hypothesis for the Earth's primordial noble gas composition can account for helium and neon isotopic ratios observed in basaltic glasses from both plume and spreading systems, in fluids in continental hydrothermal systems, in CO[sub 2] well gases, and in ancient diamonds. These results provide new insights into the origin and evolution of the Earth's atmosphere.« less

  14. Ultrasonic P- and S-Wave Attenuation and Petrophysical Properties of Deccan Flood Basalts, India, as Revealed by Borehole Studies

    NASA Astrophysics Data System (ADS)

    Vedanti, Nimisha; Malkoti, Ajay; Pandey, O. P.; Shrivastava, J. P.

    2018-03-01

    Petrophysical properties and ultrasonic P- and S-wave attenuation measurements on 35 Deccan basalt core specimens, recovered from Killari borehole site in western India, provide unique reference data-sets for a lesser studied Deccan Volcanic Province. These samples represent 338-m-thick basaltic column, consisting four lava flows each of Ambenali and Poladpur Formations, belonging to Wai Subgroup of the Deccan volcanic sequence. These basalt samples are found to be iron-rich (average FeOT: 13.4 wt%), but relatively poor in silica content (average SiO2: 47.8 wt%). The saturated massive basalt cores are characterized by a mean density of 2.91 g/cm3 (range 2.80-3.01 g/cm3) and mean P- and S-wave velocities of 5.89 km/s (range 5.01-6.50 km/s) and 3.43 km/s (range 2.84-3.69 km/s), respectively. In comparison, saturated vesicular basalt cores show a wide range in density (2.40-2.79 g/cm3) as well as P-wave (3.28-4.78 km/s) and S-wave (1.70-2.95 km/s) velocities. Based on the present study, the Deccan volcanic sequence can be assigned a weighted mean density of 2.74 g/cm3 and a low V p and V s of 5.00 and 3.00 km/s, respectively. Such low velocities in Deccan basalts can be attributed mainly to the presence of fine-grained glassy material, high iron contents, and hydrothermally altered secondary mineral products, besides higher porosity in vesicular samples. The measured Q values in saturated massive basalt cores vary enormously (Q p: 33-1960 and Q s: 35-506), while saturated vesicular basalt samples exhibit somewhat lesser variation in Q p (6-46) as well as Q s (5-49). In general, high-porosity rocks exhibit high attenuation, but we observed the high value of attenuation in some of the massive basalt core samples also. In such cases, energy loss is mainly due to the presence of fine-grained glassy material as well as secondary alteration products like chlorophaeite, that could contribute to intrinsic attenuation. Dominance of weekly bound secondary minerals might also be

  15. Petrology and geochemistry of feldspathic impact-melt breccia Abar al' Uj 012, the first lunar meteorite from Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Mészáros, Marianna; Hofmann, Beda A.; Lanari, Pierre; Korotev, Randy L.; Gnos, Edwin; Greber, Nicolas D.; Leya, Ingo; Greenwood, Richard C.; Jull, A. J. Timothy; Al-Wagdani, Khalid; Mahjoub, Ayman; Al-Solami, Abdulaziz A.; Habibullah, Siddiq N.

    2016-10-01

    Abar al' Uj (AaU) 012 is a clast-rich, vesicular impact-melt (IM) breccia, composed of lithic and mineral clasts set in a very fine-grained and well-crystallized matrix. It is a typical feldspathic lunar meteorite, most likely originating from the lunar farside. Bulk composition (31.0 wt% Al2O3, 3.85 wt% FeO) is close to the mean of feldspathic lunar meteorites and Apollo FAN-suite rocks. The low concentration of incompatible trace elements (0.39 ppm Th, 0.13 ppm U) reflects the absence of a significant KREEP component. Plagioclase is highly anorthitic with a mean of An96.9Ab3.0Or0.1. Bulk rock Mg# is 63 and molar FeO/MnO is 76. The terrestrial age of the meteorite is 33.4 ± 5.2 kyr. AaU 012 contains a 1.4 × 1.5 mm2 exotic clast different from the lithic clast population which is dominated by clasts of anorthosite breccias. Bulk composition and presence of relatively large vesicles indicate that the clast was most probably formed by an impact into a precursor having nonmare igneous origin most likely related to the rare alkali-suite rocks. The IM clast is mainly composed of clinopyroxenes, contains a significant amount of cristobalite (9.0 vol%), and has a microcrystalline mesostasis. Although the clast shows similarities in texture and modal mineral abundances with some Apollo pigeonite basalts, it has lower FeO and higher SiO2 than any mare basalt. It also has higher FeO and lower Al2O3 than rocks from the FAN- or Mg-suite. Its lower Mg# (59) compared to Mg-suite rocks also excludes a relationship with these types of lunar material.

  16. Compositions of HIMU, EM1, and EM2 from Global Trends between Radiogenic Isotopes and Major Elements in Ocean Island Basalts

    NASA Astrophysics Data System (ADS)

    Jackson, M. G.; Dasgupta, R.

    2008-12-01

    Sr and Pb isotopes exhibit global trends with the concentrations of major elements (SiO2, TiO2, FeO, Al2O3 and K2O) and major elements ratios (CaO/Al2O3 and K2O/TiO2) in the shield-stage lavas from 18 oceanic hotspots (including Hawaii, Iceland, Galapagos, Cook-Australs, St. Helena, Cape Verde, Cameroon, Canary, Madeira, Comoros, Azores, Samoa, Society, Marquesas, Mascarene, Kerguelen, Pitcairn, and Selvagen). Based on the relationships between major elements and isotopes in ocean island basalts (OIBs), we find that the lavas derived from the mantle end members, HIMU (or high 'ì' = 238U/204Pb), EM1 (enriched mantle 1), EM2 (enriched mantle 2), and DMM (depleted MORB [mid-ocean ridge basalt] mantle) exhibit distinct major element characteristics: When compared to oceanic hotspots globally, the hotspots with a HIMU (radiogenic Pb-isotopes and low 87Sr/86Sr) component, such as St. Helena and Cook-Australs, exhibit high CaO/Al2O3, FeOT, and TiO2 and low SiO2 and Al2O3. EM1 (enriched mantle 1; intermediate 87Sr/86Sr and low 206Pb/204Pb; sampled by hotspots like Pitcairn and Kerguelen) and EM2 (enriched mantle 2; high 87Sr/86Sr and intermediate 206Pb/204Pb; sampled by hotspots like Samoa and Societies) exhibit higher K2O concentrations and K2O/TiO2 weight ratios than HIMU lavas. EM1 lavas exhibit the lowest CaO/Al2O3 in the OIB dataset, and this sets EM1 apart from EM2. A plot of CaO/Al2O3 vs K2O/TiO2 perfectly resolves the four mantle end member lavas. Melting processes (pressure, temperature and degree of melting) fail to provide an explanation for the full spectrum of major element concentrations in OIBs. Such processes also fail to explain the correlations between major elements and radiogenic isotopes. Instead, a long, time integrated history of various parent- daughter elements appears to be coupled to major element and/or volatile heterogeneity in the mantle source. End member lava compositions are compared with experimental partial melt compositions to place

  17. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts

    NASA Astrophysics Data System (ADS)

    Jackson, Matthew G.; Dasgupta, Rajdeep

    2008-11-01

    Sr and Pb isotopes exhibit global trends with the concentrations of major elements (SiO 2, TiO 2, FeO, Al 2O 3 and K 2O) and major elements ratios (CaO/Al 2O 3 and K 2O/TiO 2) in the shield-stage lavas from 18 oceanic hotspots (including Hawaii, Iceland, Galapagos, Cook-Australs, St. Helena, Cape Verde, Cameroon, Canary, Madeira, Comoros, Azores, Samoa, Society, Marquesas, Mascarene, Kerguelen, Pitcairn, and Selvagen). Based on the relationships between major elements and isotopes in ocean island basalts (OIBs), we find that the lavas derived from the mantle end members, HIMU (or high 'μ' = 238U/ 204Pb), EM1 (enriched mantle 1), EM2 (enriched mantle 2), and DMM (depleted MORB [mid-ocean ridge basalt] mantle) exhibit distinct major element characteristics: When compared to oceanic hotspots globally, the hotspots with a HIMU (radiogenic Pb-isotopes and low 87Sr/ 86Sr) component, such as St. Helena and Cook-Australs, exhibit high CaO/Al 2O 3, FeO T, and TiO 2 and low SiO 2 and Al 2O 3. EM1 (enriched mantle 1; intermediate 87Sr/ 86Sr and low 206Pb/ 204Pb; sampled by hotspots like Pitcairn and Kerguelen) and EM2 (enriched mantle 2; high 87Sr/ 86Sr and intermediate 206Pb/ 204Pb; sampled by hotspots like Samoa and Societies) exhibit higher K 2O concentrations and K 2O/TiO 2 weight ratios than HIMU lavas. EM1 lavas exhibit the lowest CaO/Al 2O 3 in the OIB dataset, and this sets EM1 apart from EM2. A plot of CaO/Al 2O 3 vs K 2O/TiO 2 perfectly resolves the four mantle end member lavas. Melting processes (pressure, temperature and degree of melting) fail to provide an explanation for the full spectrum of major element concentrations in OIBs. Such processes also fail to explain the correlations between major elements and radiogenic isotopes. Instead, a long, time integrated history of various parent-daughter elements appears to be coupled to major element and/or volatile heterogeneity in the mantle source. End member lava compositions are compared with experimental partial

  18. Self-Propagating Combustion Synthesis, Luminescent Properties and Photocatalytic Activities of Pure Ca12Al14O33: Tb3+(Sm3+)

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Yan, Yongsheng; Ma, Changchang

    2018-03-01

    The dual-functional Ca12Al14O33: Tb3+ and Ca12Al14O33: Sm3+ materials were prepared by the Self-Propagating Combustion Synthesis (SPCS) technology. The structure, morphology and light absorption property were investigated by XRD、FT-IR、UV-Vis DRS and SEM etc.. The doping of Tb3+ and Sm3+ ions had not changed cubic structure of Ca12Al14O33 but leaded to the slight lattice dilatation and the red-shifts of absorption peaks/edges. The excitation and emission spectra indicated that Ca12Al14O33: Tb3+ and Ca12Al14O33: Sm3+ are superior green and red luminescent materials, respectively, and displayed the distinctly refined structure characteristics which had importantly reference value for the energy level investigation of Tb3+ and Sm3+ ions. Meanwhile, Ca12Al14O33: Tb3+ and Ca12Al14O33: Sm3+ also exhibited the improved photocatalytic degradation for removing dye MB compared with bare Ca12Al14O33.

  19. Impact behavior of basalt/epoxy composite: Comparison between flat and twill fabric

    NASA Astrophysics Data System (ADS)

    Papa, I.; Ricciardi, M. R.; Antonucci, V.; Langella, A.; Lopresto, V.

    2018-05-01

    Two types of basalt fibre reinforced epoxy laminates were realized by overlapping flat and twill woven basalt fabrics by resin infusion. Rectangular specimens, cut from the panels were impacted at penetration and at increasing energy values, to investigate the damage onset and propagation. A non-destructive technique, Ultrasound testing (UT), was adopted to investigate the internal damage. Despite the difficulties to obtain information by UT method due to the high amount of signal absorbed, the technique, properly calibrated, proved to be very useful in providing information about the presence, the shape and the extent of the delaminations. The results were compared at the aim to investigate the effect of the fiber architecture (textile). The experimental results indicate a similar impact behavior between basalt flat and twill composites but in the case of the twill a minor delaminated area was detected, even if a higher absorbed energy was recorded

  20. Paleomagnetic Secular Variation Constraints on the Rapid Eruption of the Emeishan Continental Flood Basalts in Southwestern China and Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Xu, Yingchao; Yang, Zhenyu; Tong, Ya-Bo; Jing, Xianqing

    2018-04-01

    Estimating the duration of magma eruptions using isotopic dating methods is difficult because of the intrinsic errors of the technique regarding the dated materials (such as zircon). However, the long-term variation of the geomagnetic field recorded by lava flows can be used to estimate the net duration of an eruption sequence. The Emeishan basalts at Dongchuan, with a thickness of 630 m, yielded a reliable characteristic remanent magnetization of normal polarity and which passed the fold test (Tauxe & Watson, 1994, https://doi.org/10.1016/0012-821X(94)90006-X). Stratigraphic and magnetostratigraphic correlations of the Emeishan basalts in the Dongchuan section with other sections indicate that the eruption of the Emeishan basalts at Dongchuan spans the entire normal polarity zone in the early stage of the Emeishan large igneous province. A flow-by-flow analysis of geomagnetic directions of the Emeishan basalts at Dongchuan indicates that four directional groups and fifteen individual lava directions were recorded, with a net duration (excluding quiescent intervals) of no more than 3100 years. The averaged site directions from the Emeishan basalts with normal polarity conforming to a geocentric axial dipole direction indicate that this interval is longer than 104-105 years. In addition, a magnetostratigraphic study indicates that the normal polarity interval recorded by the Emeishan basalts was shorter than 2-20 × 104 years. Thus, the total duration of the normal polarity stage of the Emeishan large igneous province was roughly 105 years. There is a possible relationship between the rapid eruption and the Late Capitanian mass extinction (259.8 ± 0.4 Ma, Henderson et al., 2012).

  1. Chemistry and isotope ratios of sulfur in basalts and volcanic gases at Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Sakai, H.; Casadevall, T.J.; Moore, J.G.

    1982-01-01

    Eighteen basalts and some volcanic gases from the submarine and subaerial parts of Kilauea volcano were analyzed for the concentration and isotope ratios of sulfur. By means of a newly developed technique, sulfide and sulfate sulfur in the basalts were separately but simultaneously determined. The submarine basalt has 700 ?? 100 ppm total sulfur with ??34S??s of 0.7 ?? 0.1 ???. The sulfate/sulfide molar ratio ranges from 0.15 to 0.56 and the fractionation factor between sulfate and sulfide is +7.5 ?? 1.5???. On the other hand, the concentration and ??34S??s values of the total sulfur in the subaerial basalt are reduced to 150 ?? 50 ppm and -0.8 ?? 0.2???, respectively. The sulfate to sulfide ratio and the fractionation factor between them are also smaller, 0.01 to 0.25 and +3.0???, respectively. Chemical and isotopic evidence strongly suggests that sulfate and sulfide in the submarine basalt are in chemical and isotopic equilibria with each other at magmatic conditions. Their relative abundance and the isotope fractionation factors may be used to estimate the f{hook}o2 and temperature of these basalts at the time of their extrusion onto the sea floor. The observed change in sulfur chemistry and isotopic ratios from the submarine to subaerial basalts can be interpreted as degassing of the SO2 from basalt thereby depleting sulfate and 34S in basalt. The volcanic sulfur gases, predominantly SO2, from the 1971 and 1974 fissures in Kilauea Crater have ??34S values of 0.8 to 0.9%., slightly heavier than the total sulfur in the submarine basalts and definitely heavier than the subaerial basalts, in accord with the above model. However, the ??34S value of sulfur gases (largely SO2) from Sulfur Bank is 8.0%., implying a secondary origin of the sulfur. The ??34S values of native sulfur deposits at various sites of Kilauea and Mauna Loa volcanos, sulfate ions of four deep wells and hydrogen sulfide from a geothermal well along the east rift zone are also reported. The high

  2. New 40Ar/ 39Ar dating of the Grande Ronde lavas, Columbia River Basalts, USA: Implications for duration of flood basalt eruption episodes

    NASA Astrophysics Data System (ADS)

    Barry, T. L.; Self, S.; Kelley, S. P.; Reidel, S.; Hooper, P.; Widdowson, M.

    2010-08-01

    Grande Ronde Basalt (GRB) lavas represent the most voluminous eruptive pulse of the Columbia River-Snake River-Yellowstone hotspot volcanism. With an estimated eruptive volume of 150,000 km 3, GRB lavas form at least 66% of the total volume of the Columbia River Basalt Group. New 40Ar/ 39Ar dates for GRB lavas reveal they were emplaced within a maximum period of 0.42 ± 0.18 My. A well-documented stratigraphy indicates at least 110 GRB flow fields (or individual eruptions), and on this basis suggests an average inter-eruption hiatus of less than 4000 years. Isotopic age-dating cannot resolve time gaps between GRB eruptions, and it is difficult to otherwise form a picture of the durations of eruptions because of non-uniform weathering in the top of flow fields and a general paucity of sediments between GR lavas. Where sediment has formed on top of GRB lavas, it varies in thickness from zero to 20-30 cm of silty to fine-sandy material, with occasional diatomaceous sediment. Individual GRB eruptions varied considerably in volume but many were greater than 1000 km 3 in size. Most probably eruptive events were not equally spaced in time; some eruptions may have followed short periods of volcanic repose (perhaps 10 2 to 10 3 of years), whilst others could have been considerably longer (many 1000 s to > 10 4 years). Recent improvements in age-dating for other continental flood basalt (CFB) lava sequences have yielded estimates of total eruptive durations of less than 1 My for high-volume pulses of lava production. The GRB appears to be a similar example, where the main pulse occupied a brief period. Even allowing for moderate to long-duration pahoehoe flow field production, the amount of time the system spends in active lava-producing mode is small — less than c. 2.6% (based on eruption durations of approximately 10,000 years, compared to the duration of the entire eruptive pulse of c. 420,000 years). A review of available 40Ar/ 39Ar data for the major voluminous phases

  3. Contemporaneous alkaline and calc-alkaline series in Central Anatolia (Turkey): Spatio-temporal evolution of a post-collisional Quaternary basaltic volcanism

    NASA Astrophysics Data System (ADS)

    Dogan-Kulahci, Gullu Deniz; Temel, Abidin; Gourgaud, Alain; Varol, Elif; Guillou, Hervé; Deniel, Catherine

    2018-05-01

    This study focuses on spatio-temporal evolution of basaltic volcanism in the Central Anatolian post-collisional Quaternary magmatic province which developed along a NE-SW orientation in Turkey. This magmatic province consists of the stratovolcanoes Erciyes (ES) and Hasandag (HS), and the basaltic volcanic fields of Obruk-Zengen (OZ) and Karapınar (KA). The investigated samples range between basic to intermediate in composition (48-56 wt% SiO2), and exhibit calc-alkaline affinity at ES whereas HS, OZ and KA are alkaline in composition. Based on new Ksbnd Ar ages and major element data, the oldest basaltic rock of ES is 1700 ± 40 ka old and exhibits alkaline character, whereas the youngest basaltic trachyandesite is 12 ± 5 ka old and calc-alkaline in composition. Most ES basaltic rocks are younger than 350 ka. All samples dated from HS are alkaline basalts, ranging from 543 ± 12 ka to 2 ± 7 ka old. With the exception of one basalt, all HS basalts are 100 ka or younger in age. Ksbnd Ar ages range from 797 ± 20 ka to 66 ± 7 ka from OZ. All the basalt samples are alkaline in character and are older than the HS alkaline basalts, with the exception of the youngest samples. The oldest and youngest basaltic samples from KA are 280 ± 7 ka and 163 ± 10 ka, respectively, and are calc-alkaline in character. Based on thermobarometric estimates samples from OZ exhibit the highest cpx-liqidus temperature and pressure. For all centers the calculated crystallization depths are between 11 and 28 km and increase from NE to SW. Multistage crystallization in magma chamber(s) located at different depths can explain this range in pressure. Harker variation diagrams coupled with least-squares mass balance calculations support fractional crystallization for ES and, to lesser extend for HS, OZ and KA. All basaltic volcanic rocks of this study are enriched in large-ion lithophile elements (LILE) and light rare earth elements (LREE). The lack of negative anomalies for high field

  4. Effect of Al content on structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yurchenko, N.Yu.

    2016-11-15

    In present study, structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys after arc melting and annealing at 1200 °C for 24 h are investigated. The CrNbTiVZr alloy is composed of body centered cubic (bcc) and C15 (face centered cubic) Laves phases while the Al{sub x}CrNbTiVZr (x = 0.25; 0.5; 1) alloys consist of bcc and two C14 (hexagonal close packed) Laves phases with different chemical compositions. Thermodynamic modeling predicts existence of two phases – bcc and C15 Laves phase and broadening of single bcc phase field due to Al addition. The densitymore » of the alloys decreases with the increase of Al content. The alloys are found to be extremely brittle at room temperature and 600 °C. The alloys have high strength at temperatures of 800–1000 °C. For example, yield strength at 800 °C increases from 440 MPa for the CrNbTiVZr alloy to 1250 MPa for the AlCrNbTiVZr alloy. The experimental phase composition of the Al{sub x}CrNbTiVZr alloys is compared with predicted equilibrium phases and the factors governing the transformation of C15 to C14 Laves phases due to Al addition to the CrNbTiVZr alloy analyzed. Specific properties of the alloys are compared with other high-entropy alloys and commercial Ni-based superalloys. - Highlights: •Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) alloys are arc melted and annealed at 1200 °C. •The CrNbTiVZr alloy has bcc and C15 Laves phases. •The Al-containing alloys are composed of bcc and two C14 Laves phases. •The alloys demonstrate high specific strength at temperatures of 800 °C and 1000 °C. •The strength of the alloys increases in proportion with increase of Al content.« less

  5. Numerical modeling of time-lapse monitoring of CO2 sequestration in a layered basalt reservoir

    USGS Publications Warehouse

    Khatiwada, M.; Van Wijk, K.; Clement, W.P.; Haney, M.

    2008-01-01

    As part of preparations in plans by The Big Sky Carbon Sequestration Partnership (BSCSP) to inject CO2 in layered basalt, we numerically investigate seismic methods as a noninvasive monitoring technique. Basalt seems to have geochemical advantages as a reservoir for CO2 storage (CO2 mineralizes quite rapidly while exposed to basalt), but poses a considerable challenge in term of seismic monitoring: strong scattering from the layering of the basalt complicates surface seismic imaging. We perform numerical tests using the Spectral Element Method (SEM) to identify possibilities and limitations of seismic monitoring of CO2 sequestration in a basalt reservoir. While surface seismic is unlikely to detect small physical changes in the reservoir due to the injection of CO2, the results from Vertical Seismic Profiling (VSP) simulations are encouraging. As a perturbation, we make a 5%; change in wave velocity, which produces significant changes in VSP images of pre-injection and post-injection conditions. Finally, we perform an analysis using Coda Wave Interferometry (CWI), to quantify these changes in the reservoir properties due to CO2 injection.

  6. Performance evaluation of a reverse-gradient artificial recharge system in basalt aquifers of Maharashtra, India

    NASA Astrophysics Data System (ADS)

    Bhusari, Vijay; Katpatal, Y. B.; Kundal, Pradeep

    2017-05-01

    Drinking water scarcity in rural parts of central India in basaltic terrain is common. Most of the rural population depends on groundwater sources located in the fractured and weathered zone of the basaltic aquifers. Long-term indiscriminate withdrawal has caused an alarming rate of depletion of groundwater levels in both pre- and post-monsoon periods. The aquifer is not replenished through precipitation under natural conditions. To overcome this situation, an innovative artificial recharge system, called the reverse-gradient recharge system (RGRS), was implemented in seven villages of Wardha district of Maharashtra. The study described here presents a comparative analysis of recharge systems constructed in the year 2012 downstream of dug-well locations in these seven villages. The post-project comparative analysis reveals that the area of influence (AOI) of the groundwater recharge system, within which increases in groundwater levels and yield are observed, is directly related to the specific yield, thickness of the weathered and fractured zone, porosity, and transmissivity of the aquifer, showing high correlation coefficients of 0.92, 0.88, 0.85 and 0.83, respectively. The study indicates that the RGRS is most effective in vesicular weathered and fractured basalt, recording a maximum increase in well yield of 65-82 m3/day, while a minimum increase in yield of 15-30 m3/day was observed in weathered vesicular basalt. The comparative analysis thus identifies the controlling factors which facilitate groundwater recharge through the proposed RGRS. After implementation of these projects, the groundwater availability in these villages increased significantly, solving their drinking water problems.

  7. A unique basaltic micrometeorite expands the inventory of solar system planetary crusts

    PubMed Central

    Gounelle, Matthieu; Chaussidon, Marc; Morbidelli, Alessandro; Barrat, Jean-Alix; Engrand, Cécile; Zolensky, Michael E.; McKeegan, Kevin D.

    2009-01-01

    Micrometeorites with diameter ≈100–200 μm dominate the flux of extraterrestrial matter on Earth. The vast majority of micrometeorites are chemically, mineralogically, and isotopically related to carbonaceous chondrites, which amount to only 2.5% of meteorite falls. Here, we report the discovery of the first basaltic micrometeorite (MM40). This micrometeorite is unlike any other basalt known in the solar system as revealed by isotopic data, mineral chemistry, and trace element abundances. The discovery of a new basaltic asteroidal surface expands the solar system inventory of planetary crusts and underlines the importance of micrometeorites for sampling the asteroids' surfaces in a way complementary to meteorites, mainly because they do not suffer dynamical biases as meteorites do. The parent asteroid of MM40 has undergone extensive metamorphism, which ended no earlier than 7.9 Myr after solar system formation. Numerical simulations of dust transport dynamics suggest that MM40 might originate from one of the recently discovered basaltic asteroids that are not members of the Vesta family. The ability to retrieve such a wealth of information from this tiny (a few micrograms) sample is auspicious some years before the launch of a Mars sample return mission. PMID:19366660

  8. South Pole-Aitken Sample Return Mission: Collecting Mare Basalts from the Far Side of the Moon

    NASA Technical Reports Server (NTRS)

    Gillis, J. J.; Jolliff, B. L.; Lucey, P. G.

    2003-01-01

    We consider the probability that a sample mission to a site within the South Pole-Aitken Basin (SPA) would return basaltic material. A sample mission to the SPA would be the first opportunity to sample basalts from the far side of the Moon. The near side basalts are more abundant in terms of volume and area than their far-side counterparts (16:1), and the basalt deposits within SPA represent approx. 28% of the total basalt surface area on the far side. Sampling far-side basalts is of particular importance because as partial melts of the mantle, they could have derived from a mantle that is mineralogically and chemically different than determined for the nearside, as would be expected if the magma ocean solidified earlier on the far side. For example, evidence to support the existence of high-Th basalts like those that appear to be common on the nearside in the Procellarum KREEP Terrane has been found. Although SPA is the deepest basin on the Moon, it is not extensively filled with mare basalt, as might be expected if similar amounts of partial melting occurred in the mantle below SPA as for basins on the near side. These observations may mean that mantle beneath the far-side crust is lower in Th and other heat producing elements than the nearside. One proposed location for a sample-return landing site is 60 S, 160 W. This site was suggested to maximize the science return with respect to sampling crustal material and SPA impact melt, however, basaltic samples would undoubtedly occur there. On the basis of Apollo samples, we should expect that basaltic materials would be found in the vicinity of any landing site within SPA, even if located away from mare deposits. For example, the Apollo 16 mission landed in an ancient highlands region 250-300 km away from the nearest mare-highlands boundary yet it still contains a small component of basaltic samples (20 lithic fragments ranging is size from <1 to .01 cm). A soil sample from the floor of SPA will likely contain an

  9. Anomalous density and elastic properties of basalt at high pressure: Reevaluating of the effect of melt fraction on seismic velocity in the Earth's crust and upper mantle

    NASA Astrophysics Data System (ADS)

    Clark, Alisha N.; Lesher, Charles E.; Jacobsen, Steven D.; Wang, Yanbin

    2016-06-01

    Independent measurements of the volumetric and elastic properties of Columbia River basalt glass were made up to 5.5 GPa by high-pressure X-ray microtomography and GHz-ultrasonic interferometry, respectively. The Columbia River basalt displays P and S wave velocity minima at 4.5 and 5 GPa, respectively, violating Birch's law. These data constrain the pressure dependence of the density and elastic moduli at high pressure, which cannot be modeled through usual equations of state nor determined by stepwise integrating the bulk sound velocity as is common practice. We propose a systematic variation in compression behavior of silicate glasses that is dependent on the degree of polymerization and arises from the flexibility of the aluminosilicate network. This behavior likely persists into the liquid state for basaltic melts resulting in weak pressure dependence for P wave velocities perhaps to depths of the transition zone. Modeling the effect of partial melt on P wave velocity reductions suggests that melt fraction determined by seismic velocity variations may be significantly overestimated in the crust and upper mantle.

  10. Mineralization of Basalts in the CO 2-H 2O-H 2S System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, Herbert T.; McGrail, B. Peter; Owen, Antionette T.

    2013-05-10

    Basalt samples representing five different formations were immersed in water equilibrated with supercritical carbon dioxide containing 1% hydrogen sulfide (H2S) at reservoir conditions (100 bar, 90°C) for up to 3.5 years. Surface coatings in the form of pyrite and metal cation substituted carbonates were identified as reaction products associated with all five basalts. In some cases, high pressure tests contained excess H2S, which produced the most corroded basalts and largest amount of secondary products. In comparison, tests containing limited amounts of H2S appeared least reacted with significantly less concentrations of reaction products. In all cases, pyrite appeared to precede carbonation,more » and in some instances, was observed in the absence of carbonation such as in cracks, fractures, and within the porous glassy mesostasis. Armoring reactions from pyrite surface coatings observed in earlier shorter duration tests were found to be temporary with carbonate mineralization observed with all the basalts tested in these long duration experiments. Geochemical simulations conducted with the geochemical code EQ3/6 accurately predicted early pyrite precipitation followed by formation of carbonates. Reactivity with H2S was correlated with measured Fe(II)/Fe(III) ratios in the basalts with more facile pyrite formation occurring with basalts containing more Fe(III) phases. These experimental and modeling results confirm potential for long term sequestration of acid gas mixtures in continental flood basalt formations.« less

  11. The Effect of Nb Addition on the Microstructure and the High-Temperature Strength of Fe3Al Aluminide

    NASA Astrophysics Data System (ADS)

    Kratochvíl, Petr; Švec, Martin; Král, Robert; Veselý, Jozef; Lukáč, Pavel; Vlasák, Tomáš

    2018-02-01

    The microstructural and high-temperature mechanical properties of Fe-26Al-xNb (x = 3 and 5 at. pct) are compared. The alloys were investigated "as cast" and after hot rolling at 1473 K (1200 °C). Scanning electron microscopes equipped with EDS and EBSD were used for the microstructure and phase identification. The addition of 3 at. pct of Nb into the Fe3Al matrix leads to the formation of C14 λ—Laves phase (Fe,Al)2Nb (LP) particles spread in the Fe3Al matrix, while an eutectic with thin lamellae of LP C14 λ—Laves phase (Fe,Al)2Nb and matrix is also formed in the iron aluminide with 5 at. pct of Nb. The presence of incoherent precipitates is connected with the enhancement of the high-temperature strength and creep resistance.

  12. Plume-stagnant slab-lithosphere interactions: Origin of the late Cenozoic intra-plate basalts on the East Eurasia margin

    NASA Astrophysics Data System (ADS)

    Kimura, Jun-Ichi; Sakuyama, Tetsuya; Miyazaki, Takashi; Vaglarov, Bogdan S.; Fukao, Yoshio; Stern, Robert J.

    2018-02-01

    Intra-plate basalts of 35-0 Ma in East Eurasia formed in a broad backarc region above the stagnant Pacific Plate slab in the mantle transition zone. These basalts show regional-scale variations in Nd-Hf isotopes. The basalts with the most radiogenic Nd-Hf center on the Shandong Peninsula with intermediate Nd-Hf at Hainan and Datong. The least radiogenic basalts occur in the perimeters underlain by the thick continental lithosphere. Shandong basalts possess isotopic signatures of the young igneous oceanic crust of the subducted Pacific Plate. Hainan and Datong basalts have isotopic signatures of recycled subduction materials with billions of years of storage in the mantle. The perimeter basalts have isotopic signatures similar to pyroxenite xenoliths from the subcontinental lithospheric mantle beneath East Eurasia. Hainan basalts exhibit the highest mantle potential temperature (Tp), while the Shandong basalts have the lowest Tp. We infer that a deep high-Tp plume interacted with the subducted Pacific Plate slab in the mantle transition zone to form a local low-Tp plume by entraining colder igneous oceanic lithosphere. We infer that the subducted Izanagi Plate slab, once a part of the Pacific Plate mosaic, broke off from the Pacific Plate slab at 35 Ma to sink into the lower mantle. The sinking Izanagi slab triggered the plume that interacted with the stagnant Pacific slab and caused subcontinental lithospheric melting. This coincided with formation of the western Pacific backarc marginal basins due to Pacific Plate slab rollback and stagnation.

  13. Olivine and melt inclusion chemical constraints on the source of intracontinental basalts from the eastern North China Craton: Discrimination of contributions from the subducted Pacific slab

    NASA Astrophysics Data System (ADS)

    Li, Hong-Yan; Xu, Yi-Gang; Ryan, Jeffrey G.; Huang, Xiao-Long; Ren, Zhong-Yuan; Guo, Hua; Ning, Zhen-Guo

    2016-04-01

    Contributions from fluid and melt inputs from the subducting Pacific slab to the chemical makeup of intraplate basalts erupted on the eastern Eurasian continent have long been suggested but have not thus far been geochemically constrained. To attempt to address this question, we have investigated Cenozoic basaltic rocks from the western Shandong and Bohai Bay Basin, eastern North China Craton (NCC), which preserve coherent relationships among the chemistries of their melt inclusions, their hosting olivines and their bulk rock compositions. Three groups of samples are distinguished: (1) high-Si and (2) moderate-Si basalts (tholeiites, alkali basalts and basanites) which were erupted at ∼23-20 Ma, and (3) low-Si basalts (nephelinites) which were erupted at <9 Ma. The high-Si basalts have lower alkalies, CaO and FeOT contents, lower trace element concentrations, lower La/Yb, Sm/Yb and Ce/Pb but higher Ba/Th ratios, and lower εNd and εHf values than the low-Si basalts. The olivines in the high-Si basalts have higher Ni and lower Mn and Ca at a given Fo value than those crystallizing from peridotite melts, and their corresponding melt inclusions have lower CaO contents than peridotite melts, suggesting a garnet pyroxenitic source. The magmatic olivines from low-Si basalts have lower Ni but higher Mn at a given Fo value than that of the high-Si basalts, suggesting more olivine in its source. The olivine-hosted melt inclusions of the low-Si basalts have major elemental signatures different from melts of normal peridotitic or garnet pyroxenitic mantle sources, pointing to their derivation from a carbonated mantle source consisting of peridotite and garnet pyroxenite. We propose a model involving the differential melting of a subduction-modified mantle source to account for the generation of these three suites of basalts. Asthenospheric mantle beneath the eastern NCC, which entrains garnet pyroxenite with an EM1 isotopic signature, was metasomatized by carbonatitic

  14. Alteration of submarine basaltic glass from the Ontong Java Plateau: A STXM and TEM study

    NASA Astrophysics Data System (ADS)

    Benzerara, K.; Menguy, N.; Banerjee, N. R.; Tyliszczak, Tolek; Brown, G. E.; Guyot, F.

    2007-08-01

    Frequent observations of tubular to vermicular microchannels in altered basalt glass have led to increasing appreciation of a possible significant role of microbes in the low-temperature alteration of seafloor basalt. We have examined such microchannel alteration features at the nanoscale in basalt glass shards from the Ontong Java Plateau using a combination of focused ion beam milling, transmission electron microscopy and scanning transmission X-ray microscopy. Three types of materials were found in ultrathin cross-sections cut through the microchannels by FIB milling: fresh basalt glass, amorphous Si-rich rims surrounding the microchannels, and palagonite within the microchannels. X-ray absorption spectroscopy at the C K-edge and Fe L 2,3-edges showed the presence of organic carbon in association with carbonates within the microchannels and partial oxidation of iron in palagonite compared with basalt glass. Although these observations alone cannot discriminate between a biotic or abiotic origin for the microchannels, they provide new information on their mineralogical and chemical composition and thus better constrain the physical and chemical conditions prevailing during the alteration process.

  15. High-resolution mapping of elemental abundances of the lunar regolith

    NASA Astrophysics Data System (ADS)

    Wöhler, Christian; Berezhnoy, Alexey; Evans, Richard

    comparably large deviations from the three-endmember plane in Al-Fe-Mg space of 1 wt percent and more. These anomalous basalts have low ages of 1.7-2.8 Ga [7]. They are characterised by secondary absorption features near 1100 nm and high 2000/1500 spectral ratios, indicating a high olivine content. Anomalous material in lunar craters is generally interpreted as being excavated during crater formation from the lower lunar crust or upper mantle (cf. e.g. [8]). For the highland crater Tycho, our method reveals mafic units in the northern crater wall and in the central peaks and Mg-rich rock in the southwestern crater wall and distributed throughout the crater floor. This material is interpreted in [9] as anorthositic gabbro with a low Fe content and a mafic mineral assemblage dominated by high-Ca pyroxene. Our petrographic map of Copernicus shows the central peaks as small regions composed of the mare basalt endmember (interpreted as gabbroic material) with admixed troctolite (western peak) and mainly troctolite (eastern peak), respectively [8]. For the central peaks of the crater Bullialdus, our technique clearly reveals the Mg-rich rock component, which is interpreted as norite in [10]. We present very high resolution petrographic maps derived from newly released Selene multi-spectral data of the central peaks of Copernicus and Bullialdus. For the pyroclastic deposits (LPDs) on the floor of Alphonsus, our technique indicates high Mg/Al ratios between 1.4 (eastern LPDs) and 2.5 (western LPD) [11]. The secondary absorption near 1100 nm and the high 2000/1500 ratio suggest the presence of a major olivine component. As a general result, we show that our regression-based elemental abundance estimation method allows the detection of the main lunar terrain classes and rock types on small spatial scales based on multispectral imagery in the visible and near-infrared domain. [1] Lucey et al. (2000), JGR 105(E8), 20297-20306. [2] Wühler et al. (2009), EPSC 2009, 263. [3] Evans et al

  16. Mars Crust: Made of Basalt

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2009-05-01

    By combining data from several sources, Harry Y. (Hap) McSween (University of Tennessee), G. Jeffrey Taylor (University of Hawaii) and Michael B. Wyatt (Brown University) show that the surface of Mars is composed mostly of basalt not unlike those that make up the Earth's oceanic crust. McSween and his colleagues used data from Martian meteorites, analyses of soils and rocks at robotic landing sites, and chemical and mineralogical information from orbiting spacecraft. The data show that Mars is composed mostly of rocks similar to terrestrial basalts called tholeiites, which make up most oceanic islands, mid-ocean ridges, and the seafloor beneath sediments. The Martian samples differ in some respects that reflect differences in the compositions of the Martian and terrestrial interiors, but in general are a lot like Earth basalts. Cosmochemistst have used the compositions of Martian meteorites to discriminate bulk properties of Mars and Earth, but McSween and coworkers' synthesis shows that the meteorites differ from most of the Martian crust (the meteorites have lower aluminum, for example), calling into question how diagnostic the meteorites are for understanding the Martian interior.

  17. Experimental determination of C, F, and H partitioning between mantle minerals and carbonated basalt, CO2/Ba and CO2/Nb systematics of partial melting, and the CO2 contents of basaltic source regions

    NASA Astrophysics Data System (ADS)

    Rosenthal, A.; Hauri, E. H.; Hirschmann, M. M.

    2015-02-01

    To determine partitioning of C between upper mantle silicate minerals and basaltic melts, we executed 26 experiments between 0.8 and 3 GPa and 1250-1500 °C which yielded 37 mineral/glass pairs suitable for C analysis by secondary ion mass spectrometry (SIMS). To enhance detection limits, experiments were conducted with 13C-enriched bulk compositions. Independent measurements of 13C and 12C in coexisting phases produced two C partition coefficients for each mineral pair and allowed assessment of the approach to equilibrium during each experiment. Concentrations of C in olivine (ol), orthopyroxene (opx), clinopyroxene (cpx) and garnet (gt) range from 0.2 to 3.5 ppm, and resulting C partition coefficients for ol/melt, opx/melt, cpx/melt and gt/melt are, respectively, 0.0007 ± 0.0004 (n = 2), 0.0003 ± 0.0002 (n = 45), 0.0005 ± 0.0004 (n = 17) and 0.0001 ± 0.00007 (n = 5). The effective partition coefficient of C during partial melting of peridotite is 0.00055 ± 0.00025, and therefore C is significantly more incompatible than Nb, slightly more compatible than Ba, and, among refractory trace elements, most similar in behavior to U or Th. Experiments also yielded partition coefficients for F and H between minerals and melts. Combining new and previous values of DFmineral/melt yields bulk DFperidotite/melt = 0.011 ± 0.002, which suggests that F behaves similarly to La during partial melting of peridotite. Values of DHpyx/melt correlate with tetrahedral Al along a trend consistent with previously published determinations. Small-degree partial melting of the mantle results in considerable CO2/Nb fractionation, which is likely the cause of high CO2/Nb evident in some Nb-rich oceanic basalts. CO2/Ba is much less easily fractionated, with incompatible-element-enriched partial melts having lower CO2/Ba than less enriched basalts. Comparison of calculated behavior of CO2, Nb, and Ba to systematics of oceanic basalts suggests that depleted (DMM-like) sources have 75 ± 25

  18. A LREE-depleted component in the Afar plume: Further evidence from Quaternary Djibouti basalts

    NASA Astrophysics Data System (ADS)

    Daoud, Mohamed A.; Maury, René C.; Barrat, Jean-Alix; Taylor, Rex N.; Le Gall, Bernard; Guillou, Hervé; Cotten, Joseph; Rolet, Joël

    2010-02-01

    Major, trace element and isotopic (Sr, Nd, Pb) data and unspiked K-Ar ages are presented for Quaternary (0.90-0.95 Ma old) basalts from the Hayyabley volcano, Djibouti. These basalts are LREE-depleted (La n/Sm n = 0.76-0.83), with 87Sr/ 86Sr ratios ranging from 0.70369 to 0.70376, and rather homogeneous 143Nd/ 144Nd ( ɛNd = + 5.9-+ 7.3) and Pb isotopic compositions ( 206Pb/ 204Pb = 18.47-18.55, 207Pb/ 204Pb = 15.52-15.57, 208Pb/ 204Pb = 38.62-38.77). They are very different from the underlying enriched Tadjoura Gulf basalts, and from the N-MORB erupted from the nascent oceanic ridges of the Red Sea and Gulf of Aden. Their compositions closely resemble those of (1) depleted Quaternary Manda Hararo basalts from the Afar depression in Ethiopia and (2) one Oligocene basalt from the Ethiopian Plateau trap series. Their trace element and Sr, Nd, Pb isotope systematics suggest the involvement of a discrete but minor LREE-depleted component, which is probably an intrinsic part of the Afar plume.

  19. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation

    PubMed Central

    Choi, Jeong-Il; Lee, Bang Yeon

    2015-01-01

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber’s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking. PMID:28793595

  20. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation.

    PubMed

    Choi, Jeong-Il; Lee, Bang Yeon

    2015-09-30

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber's suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking.

  1. Smectite Formation from Basaltic Glass Under Acidic Conditions on Mars

    NASA Technical Reports Server (NTRS)

    Peretyazhko, T. S.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.

    2015-01-01

    Massive deposits of phyllosilicates of the smectite group, including Mg/Fe-smectite, have been identified in Mars's ancient Noachian terrain. The observed smectite is hypothesized to form through aqueous alteration of basaltic crust under neutral to alkaline pH conditions. These pH conditions and the presence of a CO2-rich atmosphere suggested for ancient Mars were favorable for the formation of large carbonate deposits. However, the detection of large-scale carbonate deposits is limited on Mars. We hypothesized that smectite deposits may have formed under acidic conditions that prevented carbonate precipitation. In this work we investigated formation of saponite at a pH of approximately 4 from Mars-analogue synthetic Adirondack basaltic glass of composition similar to Adirondack class rocks located at Gusev crater. Hydrothermal (200º Centigrade) 14 day experiments were performed with and without 10 millimoles Fe(II) or Mg under anoxic condition [hereafter denoted as anoxic_Fe, anoxic_Mg and anoxic (no addition of Fe(II) or Mg)] and under oxic condition [hereafter denoted as oxic (no addition of Fe(II) or Mg)]. Characterization and formation conditions of the synthesized saponite provided insight into the possible geochemical conditions required for saponite formation on Mars.

  2. Clinopyroxene dissolution in basaltic melt

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Zhang, Youxue

    2009-10-01

    The history of magmatic systems may be inferred from reactions between mantle xenoliths and host basalt if the thermodynamics and kinetics of the reactions are quantified. To study diffusive and convective clinopyroxene dissolution in silicate melts, diffusive clinopyroxene dissolution experiments were conducted at 0.47-1.90 GPa and 1509-1790 K in a piston-cylinder apparatus. Clinopyroxene saturation is found to be roughly determined by MgO and CaO content. The effective binary diffusivities, DMgO and DCaO, and the interface melt saturation condition, C0MgO×C0CaO, are extracted from the experiments. DMgO and DCaO show Arrhenian dependence on temperature. The pressure dependence is small and not resolved within 0.47-1.90 GPa. C0MgO×C0CaO in the interface melt increases with increasing temperature, but decreases with increasing pressure. Convective clinopyroxene dissolution, where the convection is driven by the density difference between the crystal and melt, is modeled using the diffusivities and interface melt saturation condition. Previous studies showed that the convective dissolution rate depends on the thermodynamics, kinetics and fluid dynamics of the system. Comparing our results for clinopyroxene dissolution to results from a previous study on convective olivine dissolution shows that the kinetic and fluid dynamic aspects of the two minerals are quite similar. However, the thermodynamics of clinopyroxene dissolution depends more strongly on the degree of superheating and composition of the host melt than that of olivine dissolution. The models for clinopyroxene and olivine dissolution are tested against literature experiments on mineral-melt interaction. They are then applied to previously proposed reactions between Hawaii basalts and mantle minerals, mid-ocean ridge basalts and mantle minerals, and xenoliths digestion in a basalt at Kuandian, Northeast China.

  3. Recycled Crust in the Mantle: Is High-Ni Olivine the Smoking Gun or a Red Herring?

    NASA Astrophysics Data System (ADS)

    Li, C.; Ripley, E. M.

    2008-12-01

    It is widely accepted that small amounts of recycled crustal components are present in some mantle-derived mafic and ultramafic magmas. This concept is supported by many isotopic and trace element studies of basalts, picrites and komatiites in the last 30 years. Recently Sobolev et al. [1,2] used olivine compositions such as Ni content and Mn/Fe ratio to demonstrate that the amounts of the recycled crustal component (i.e. pyroxenite) in these mantle-derived melts are much larger than previously appreciated. Their calculations show that the pyroxenite-derived component varies mostly between 40 and 80% for Hawaiian shield basalts and Siberian flood basalts, and mostly between 10 and 40% for mid-ocean ridge basalts and Archean komatiities. However, a critical test using olivine-liquid Mg-Fe equilibrium that was overlooked by Sobolev et al. [1,2] reveals that mixing of the two end-members (pyroxenite-derived and peridotite-derived melts) that were used in their models cannot generate the parental melts for the above natural samples. Such a discrepancy prompts us to reexamine the conventional view of a peridotite-dominant source for the Hawaiian shield basalts. This hypothesis has been criticized recently by many people because the contents of Ni in olivine phenocrysts in the basalts are significantly higher than mantle olivines in associated peridotite xenoliths and because total pressure has little effect on olivine-liquid Ni partition coefficient (DNi). What has not been generally considered is that the depth of olivine crystallization/equilibration has a negative effect on olivine Ni content because DNi is negatively correlated with melt temperature which decreases during adiabatic ascent. To evaluate such an effect quantitatively we have used all available experimental results of Ni partitioning between olivine and liquid to construct a robust empirical equation for DNi based on melt composition and temperature. The results of our calculations indicate that the

  4. Plate tectonics and continental basaltic geochemistry throughout Earth history

    NASA Astrophysics Data System (ADS)

    Keller, Brenhin; Schoene, Blair

    2018-01-01

    Basaltic magmas constitute the primary mass flux from Earth's mantle to its crust, carrying information about the conditions of mantle melting through which they were generated. As such, changes in the average basaltic geochemistry through time reflect changes in underlying parameters such as mantle potential temperature and the geodynamic setting of mantle melting. However, sampling bias, preservation bias, and geological heterogeneity complicate the calculation of representative average compositions. Here we use weighted bootstrap resampling to minimize sampling bias over the heterogeneous rock record and obtain maximally representative average basaltic compositions through time. Over the approximately 4 Ga of the continental rock record, the average composition of preserved continental basalts has evolved along a generally continuous trajectory, with decreasing compatible element concentrations and increasing incompatible element concentrations, punctuated by a comparatively rapid transition in some variables such as La/Yb ratios and Zr, Nb, and Ti abundances approximately 2.5 Ga ago. Geochemical modeling of mantle melting systematics and trace element partitioning suggests that these observations can be explained by discontinuous changes in the mineralogy of mantle partial melting driven by a gradual decrease in mantle potential temperature, without appealing to any change in tectonic process. This interpretation is supported by the geochemical record of slab fluid input to continental basalts, which indicates no long-term change in the global proportion of arc versus non-arc basaltic magmatism at any time in the preserved rock record.

  5. Diffusion of hydrous species in model basaltic melt

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Guo, Xuan; Wang, Qinxia; Ding, Jiale; Ni, Huaiwei

    2017-10-01

    Water diffusion in Fe-free model basaltic melt with up to 2 wt% H2O was investigated at 1658-1846 K and 1 GPa in piston-cylinder apparatus using both hydration and diffusion couple techniques. Diffusion profiles measured by FTIR are consistent with a model in which both molecular H2O (H2Om) and hydroxyl (OH) contribute to water diffusion. OH diffusivity is roughly 13% of H2Om diffusivity, showing little dependence on temperature or water concentration. Water diffusion is dominated by the motion of OH until total H2O (H2Ot) concentration reaches 1 wt%. The dependence of apparent H2Ot diffusivity on H2Ot concentration appears to be overestimated by a previous study on MORB melt, but H2Ot diffusivity at 1 wt% H2Ot in basaltic melt is still greater than those in rhyolitic to andesitic melts. The appreciable contribution of OH to water diffusion in basaltic melt can be explained by enhanced mobility of OH, probably associated with the development of free hydroxyl bonded with network-modifying cations, as well as higher OH concentration. Calculation based on the Nernst-Einstein equation demonstrates that OH may serve as an effective charge carrier in hydrous basaltic melt, which could partly account for the previously observed strong influence of water on electrical conductivity of basaltic melt.

  6. 15 CFR 14.14 - High risk special award conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false High risk special award conditions. 14.14 Section 14.14 Commerce and Foreign Trade Office of the Secretary of Commerce UNIFORM...-PROFIT, AND COMMERCIAL ORGANIZATIONS Pre-Award Requirements § 14.14 High risk special award conditions...

  7. High-pressure Phase Relation In The MgAl2O4-Mg2SiO4 System

    NASA Astrophysics Data System (ADS)

    Kojitani, H.; Hisatomi, R.; Akaogi, M.

    2005-12-01

    High-pressure and high-temperature experiments indicate that high-pressure phases of oceanic basalts contain Al-rich phases. MgAl2O4 with calcium ferrite-type crystal structure is considered as a main component of such the Al-rich phases. Since the calcium ferrite-type MgAl2O4 can be synthesized at only the maximum pressure of a Kawai-type high-pressure apparatus with tungsten carbide (WC) anvils, the amount of a synthesized sample is very limited. Therefore, the crystal structure of the calcium ferrite-type MgAl2O4 has been hardly known in detail due to these difficulties in sample synthesis. In our high-pressure experiments in the MgO-Al2O3-SiO2 system, it was shown that Mg2SiO4 component could be dissolved in the MgAl2O4 calcium ferrite. In this study, we tried to synthesize a single phase MgAl2O4 calcium ferrite sample and to make the Rietveld refinement of the XRD pattern of the sample. The high-pressure phase relations in the MgAl2O4-Mg2SiO4 system were studied to know the stability field of the MgAl2O4-Mg2SiO4 calcium ferrite solid solutions. Lattice parameters-composition relation of the MgAl2O4-Mg2SiO4 calcium ferrite solid solutions was also determined. High-pressure and high-temperature experiments were performed by using a Kawai-type high-pressure apparatus at Gakushuin University. WC anvils with truncated edge length of 1.5 mm were used. Heating was made by a Re heater. Temperature was measured by a Pt/Pt-13%Rh thermocouple. Starting materials for the phase relation experiments were the mixture of MgO, Al2O3 and SiO2 with bulk compositions of MgAl2O4:Mg2SiO4 = 90:10, 78:22, 70:30 and 50:50. The starting materials were held at 21-27 GPa and 1600 °C for 3 hours and then were recovered by the quenching method. The MgAl2O4 calcium ferrite sample for the Rietveld analysis was prepared by heating MgAl2O4 spinel at 27 GPa and about 2200 °C for one hour. Powder X-ray diffraction (XRD) profiles of obtained samples were measured by using a X-ray diffractometer

  8. The Nature of Mare Basalts in the Procellarum KREEP Terrane

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Gillis, Jeffrey J.; Korotev, Randy L.; Jolliff, Bradley L.

    2000-01-01

    Unlike Apollo 12 and 15 basalts, many mare lavas of the Procellarum KREEP Terrane (PKT) have Th concentrations of 2.5-6 ppm and perhaps greater, as well as high TiO2. Lunar "picritic" volcanic glasses from the PKT have a similar range.

  9. Magmatic inclusions in rhyolites, contaminated basalts, and compositional zonation beneath the Coso volcanic field, California

    USGS Publications Warehouse

    Bacon, C.R.; Metz, J.

    1984-01-01

    Basaltic lava flows and high-silica rhyolite domes form the Pleistocene part of the Coso volcanic field in southeastern California. The distribution of vents maps the areal zonation inferred for the upper parts of the Coso magmatic system. Subalkalic basalts (<50% SiO2) were erupted well away from the rhyolite field at any given time. Compositional variation among these basalts can be ascribed to crystal fractionation. Erupted volumes of these basalts decrease with increasing differentiation. Mafic lavas containing up to 58% SiO2, erupted adjacent to the rhyolite field, formed by mixing of basaltic and silicic magma. Basaltic magma interacted with crustal rocks to form other SiO2-rich mafic lavas erupted near the Sierra Nevada fault zone. Several rhyolite domes in the Coso volcanic field contain sparse andesitic inclusions (55-61% SiO2). Pillow-like forms, intricate commingling and local diffusive mixing of andesite and rhyolite at contacts, concentric vesicle distribution, and crystal morphologies indicative of undercooling show that inclusions were incorporated in their rhyolitic hosts as blobs of magma. Inclusions were probably dispersed throughout small volumes of rhyolitic magma by convective (mechanical) mixing. Inclusion magma was formed by mixing (hybridization) at the interface between basaltic and rhyolitic magmas that coexisted in vertically zoned igneous systems. Relict phenocrysts and the bulk compositions of inclusions suggest that silicic endmembers were less differentiated than erupted high-silica rhyolite. Changes in inferred endmembers of magma mixtures with time suggest that the steepness of chemical gradients near the silicic/mafic interface in the zoned reservoir may have decreased as the system matured, although a high-silica rhyolitic cap persisted. The Coso example is an extreme case of large thermal and compositional contrast between inclusion and host magmas; lesser differences between intermediate composition magmas and inclusions lead to

  10. New Hafnium Isotope and Trace Element Constraints on the Role of a Plume in Genesis of the Eastern Snake River Plain Basalts, Idaho

    NASA Astrophysics Data System (ADS)

    Taylor, R. D.; Reid, M. R.; Blichert-Toft, J.

    2009-12-01

    Bimodal volcanism associated with the eastern Snake River Plain (ESRP)-Yellowstone Plateau province has persisted since approximately 16 Ma. A time-transgressive track of rhyolitic eruptions which young progressively to the east and parallel the motion of the North American plate are overlain by younger basalts with no age progression. Interpretations for the origin of these basalts range from a thermo-chemical mantle plume to incipient melting of the shallow upper mantle, and remain controversial. The enigmatic ESRP basalts are characterized by high 3He/4He, diagnostic of a plume source, but also by lithophile radiogenic isotope signatures that are more enriched than expected for plume-derived OIBs. These features could possibly be caused by isotopic decoupling associated with shallow melting of a hybridized upper mantle, or derivation from an atypical mantle plume, or both by way of mixing. New Hf isotope and trace element data further constrain potential sources for the ESRP basalts. Their Hf isotopic signatures (ɛHf = +0.1 to -5.8) are moderately enriched and consistently fall above or in the upper part of the field of OIBs, with similar Nd isotope signatures (ɛNd = -2.0 to -5.8), indicating a source with high time-integrated Lu/Hf compared with Sm/Nd. The isotopic compositions of the basalts lie between those of Archean SCML and a more depleted end-member source, suggestive of contributions from at least two sources. The grouping of isotopic characteristics is compact compared to other regional volcanism, implying that the hybridization process is highly reproducible within the ESRP. Minor localized differences in isotopic composition may signify local variations in the relative proportions of the end-members. Trace element patterns also support genesis of the ESRP basalts from an enriched source. Our data detect evidence of deeper contributions derived from the garnet-stability field, and a greater affinity of the trace element signatures to plume sources

  11. Sr-Nd-Pb isotopic constraints on the nature of the mantle sources involved in the genesis of the high-Ti tholeiites from northern Paraná Continental Flood Basalts (Brazil)

    NASA Astrophysics Data System (ADS)

    Rocha-Júnior, Eduardo R. V.; Marques, Leila S.; Babinski, Marly; Nardy, Antônio J. R.; Figueiredo, Ana M. G.; Machado, Fábio B.

    2013-10-01

    There has been little research on geochemistry and isotopic compositions in tholeiites of the Northern region from the Paraná Continental Flood Basalts (PCFB), one of the largest continental provinces of the world. In order to examine the mantle sources involved in the high-Ti (Pitanga and Paranapanema) basalt genesis, we studied Sr, Nd, and Pb isotopic systematics, and major, minor and incompatible trace element abundances. The REE patterns of the investigated samples (Pitanga and Paranapanema magma type) are similar (parallel to) to those of Island Arc Basalts' REE patterns. The high-Ti basalts investigated in this study have initial (133 Ma) 87Sr/86Sr ratios of 0.70538-0.70642, 143Nd/144Nd of 0.51233-0.51218, 206Pb/204Pb of 17.74-18.25, 207Pb/204Pb of 15.51-15.57, and 208Pb/204Pb of 38.18-38.45. These isotopic compositions do not display any correlation with Nb/Th, Nb/La or P2O5/K2O ratios, which also reflect that these rocks were not significantly affected by low-pressure crustal contamination. The incompatible trace element ratios and Sr-Nd-Pb isotopic compositions of the PCFB tholeiites are different to those found in Tristan da Cunha ocean island rocks, showing that this plume did not play a substantial role in the PCFB genesis. This interpretation is corroborated by previously published osmium isotopic data (initial γOs values range from +1.0 to +2.0 for high-Ti basalts), which also preclude basalt generation by melting of ancient subcontinental lithospheric mantle. The geochemical composition of the northern PCFB may be explained through the involvement of fluids and/or small volume melts related to metasomatic processes. In this context, we propose that the source of these magmas is a mixture of sublithospheric peridotite veined and/or interlayered with mafic components (e.g., pyroxenites or eclogites). The sublithospheric mantle (dominating the osmium isotopic compositions) was very probably enriched by fluids and/or magmas related to the

  12. Uranium-lead systematics of low-Ti basaltic meteorite Dhofar 287A: Affinity to Apollo 15 green glasses

    NASA Astrophysics Data System (ADS)

    Terada, Kentaro; Sasaki, Yu; Anand, Mahesh; Sano, Yuji; Taylor, Lawrence A.; Horie, Kenji

    2008-06-01

    Dhofar 287 is a lunar meteorite found in Oman in 2001, which consists of a major portion (95%) of low-Ti mare basalt (Dho 287A) and a minor attached part (˜ 5%) of regolith breccia (Dho 287B). Here, we report the U-Pb systematics of Dho 287A using data collected with a Sensitive High Resolution Ion Microprobe (SHRIMP). In-situ analyses of five merrillite and three apatite grains, which are resistant to secondary petrologic events, resulted in a total Pb/U isochron age of 3.34 ± 0.20 Ga, in 238U/206Pb-207Pb/206Pb-204Pb/206Pb 3-D space (95% confidence level). The observed Pb-Pb isochron of these eight phosphates coupled with four plagioclase grains also yielded a 207Pb/206Pb age of 3.35 ± 0.13 Ga. This formation age, when considered as the crystallization age of Dho 287A, is similar to crystallization ages of Apollo 15 low-Ti olivine-normative basalts (ONB; 3.3 ± 0.1 Ga). However, the estimated μ-value (238U/204Pb ratio) of Dho 287A is ˜ 18, which is very different from the reported μ-values of ˜ 300 for mare basalts from the Apollo collections, including the Apollo 15 ONBs. These μ-values are still significantly lower than those of Apollo KREEP basalt (500 to 1000), although a possible assimilation with KREEP has been previously proposed for Dho 287A using geochemical criteria. Our U-Pb study of Dho 287A, instead, indicates a closer affinity to Apollo 15 green glasses (207Pb/206Pb age of 3.41 Ga with μ-value of 19 to 55), which are considered to be the most primitive products of lunar volcanism. Combining our U-Pb data with the previously reported Sm-Nd systematics (negative ɛNd) of Dho 287A clearly distinguishes this meteorite from those of the Yamato 793169 and Asuka 88175 group which have extremely low μ-value of 10-22, old crystallization ages of 3.9 Ga, and high positive ɛNd, suggesting that Dho 287A may be a representative of an entirely new group of mare basalt derived from previously unsampled source region on the Moon.

  13. Aquifers and Their Tectonic Connectivity in Flood Basalts Using AEM

    NASA Astrophysics Data System (ADS)

    Chandra, S.; Auken, E.; Sonkamble, S.; Maurya, P. K.; Ahmed, S.; Clausen, O. R.; Verma, S. K.

    2016-12-01

    Aquifers, the major freshwater storage providing water for human consumption, agriculture, industry and groundwater-dependent ecosystems, are subjected to increasing stress resulting into drying up of large number of wells in major parts of world. The climate change with erratic rainfall pattern and increasing temperature enhances the rate of evapotranspiration causing reduction in groundwater recharge as well as enhancement in the groundwater withdrawal. Not only the wells, but also springs, ponds and non glacial rivers, mostly fed by base flow during non-monsoon periods, also go dry during droughts. Water crisis is very severe in the basaltic and hard rock areas in India where the weathered zone, principal aquifer, has almost dried up and the water is mostly confined within the underlying vesicular and weathered-fractured basalts, and occasionally within green bole beds. The paper presents results from Basaltic hard rock terrains in India based on integrated geophysical surveys including airborne electromagnetic (AEM) and airborne magnetic methods. Due to good resistivity contrasts, AEM results showed strong signatures of multiple basaltic flows, their alterations and associated major intertrappeans. In combination with ground geophysics, geological and borehole information, AEM was found to be very effective in mapping the multiple flows, Gondwana and basaltic interface, and inter- and infra-trappeans (Figure 1). In addition to the basaltic flows, we could map the tectonic groundwater pathways, which is a completely new knowledge. The tectonic pathways connect different aquifers (water saturated vesicular basalt) located in various flows. The results demonstrate that the AEM is very effective for groundwater prospecting in basalts and in delineating suitable recharge zones to create strategic groundwater reserves.

  14. Growing magma chambers control the distribution of small-scale flood basalts.

    PubMed

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2015-11-19

    Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar-Ar and K-Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 > 47.5 wt.%) from Xinchang-Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4-3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40-0.66; TiO2/MgO = 0.23-0.35) during about 6 Myr (9.4-3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3-3.0 Ma) through a broad range of compositions ((Na2O + K2O)/MgO = 0.60-1.28; TiO2/MgO = 0.30-0.57). The distribution and two-stage compositional evolution of the migrating flood basalts record continuous magma replenishment that buffered against magmatic evolution and induced magma chamber growth. Our results demonstrate that the magma replenishment-magma chamber growth model explains the spatio-temporal distribution of small-scale flood basalts.

  15. Mantle xenoliths hosted in alkali basalts in subduction environment: the example of the SE Alps (Italy)

    NASA Astrophysics Data System (ADS)

    Gasperini, D.; Maffei, K.; Bosch, D.; Braga, R.; Macera, P.; Morten, L.

    2003-04-01

    We present petrographic, geochemical, and isotopic (Sr, Nd, and Pb) data of a representative suite of spl-peridotite xenoliths (mg# >88) hosted in alkali basalts from numerous outcrops in the Tertiary Veneto Volcanic Province (VVP; SE Alps, Italy), compared to various world-wide mafic inclusions (French Massif, Australia, China, Philippines, Russia, Kerguelen). The VVP spl-harzburgites and -lherzolites carry textures ranging from protogranular, porphyroclastic, granuloblastic to pyrometamorfic. These samples are characterized by a continuous depletion trend from the cpx-rich lherzolites to harzburgites, with CaO, Al_2O_3, TiO_2, and Na_2O contents decreasing with mg# increasing (Morten, 1987; Beccaluva et al., 2001). Then, the VVP xenoliths spinels show a strong Cr/(Cr+Al) ratio increase at a slight Mg/(Mg+Fe2+) ratio decrease, thus reflecting a variably depleted mantle source. The VVP xenoliths display a large range of enrichment in LREE, K, Rb, Sr and P, suggesting post depletion metasomatic episodes (Morten et al., 2002). Whereas most of the VVP xenoliths' multi-element spectra, incompatible element and isotope ratios are similar to the VVP host basalts, thus with a strong HIMU signature (Macera et al. submitted), some depleted samples show geochemical features typical of crust derived material. These characteristics cannot be related to significant interaction with the local lower continental crust, as represented by several analyzed gabbroic xenoliths. Nevertheless negative Nb and Ta anomalies in analogous peridotitic samples have been previously ascribed to metasomatism inferred by plume rising material in the upper mantle (Bedini et al., 1997). Comparing the VVP peridotites with several mafic xenoliths from various geodynamical environments, we suggest that this crust affinity could be alternatively explained by the presence of a not perfectly homogenized upper crustal component in the source region, probably induced by subduction related episode(s). In this

  16. High H2O/Ce of K-rich MORB from Lena Trough and Gakkel Ridge, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Snow, J. E.; Feig, S. T.

    2014-12-01

    Lena Trough in the Arctic ocean is the oblique spreading continuation of Gakkel Ridge through the Fram Strait (eg Snow et al. 2011). Extreme trace element and isotopic compositions seen in Lena Trough basalt appear to be the enriched end member dominating the geochemistry of the Western Volcanic Zone of the Western Gakkel Ridge as traced by Pb isotopes, K2O/TiO2, Ba/Nb and other isotopic, major and trace element indicators of mixing (Nauret et al., 2011). This is in contrast to neighboring Gakkel Ridge which has been spreading for 50-60 million years. Basalts from Lena Trough also show a pure MORB noble gas signature (Nauret et al., 2010) and peridotites show no evidence of ancient components in their Os isotopes (Lassiter, et al., in press). The major and trace element compositions of the basalts, however are very distinct from MORB, being far more potassic than all but a single locality on the SW Indian Ridge. We determined H2O and trace element composiitions of a suite of 17 basalt glasses from the Central Lena Trough (CLT) and the Gakkel Western Volcanic Zone, including many of those previously analyzed by Nauret et al. (2012). The Western Gakkel glasses have high H2O/Ce for MORB (>300) suggesting a water rich source consistent with the idea that the northernmost Atlantic mantle is enriched in water (Michael et al., 1995). They are within the range of Eastern Gakkel host glasses determined by Wanless et al, 2013. The Lena Trough (CLT) glasses are very rich in water for MORB (>1% H2O) and are among the highest H2O/Ce (>400) ever measured in MORB aside from melt inclusions in olivine. Mantle melting dynamics and melt evolution cannot account for the H2O/Ce variations in MORB, as these elements have similar behavior during melting and crustal evolution. Interestingly, the H2O/K2O ratios in the basalts are only around 1. This is because the K2O levels in the CLT glasses are very high as well relative to REE. The absolutely linear relationship between H2O and K2O

  17. Bingham fluid behavior of plagioclase-bearing basaltic magma: Approach from laboratory viscosity measurements

    NASA Astrophysics Data System (ADS)

    Ishibashi, H.; Sato, H.

    2010-12-01

    Datasets of one atmosphere high temperature rotational viscometry of the Fuji 1707 basalt (Ishibashi, 2009) were analyzed based on the Bingham fluid model, and both yield stress and Bingham viscosity were determined. Reproducibility of the dataset by the Bingham fluid model was slightly better than that by the power law fluid modes adopted in our previous study although both the fluid models well represent the dataset in practical perspective. The relation between Bingham viscosity and crystallinity was compared with the Krieger-Dougherty equation, and both the maximum packing fraction of crystals and intrinsic viscosity for Bingham viscosity were determined ca. 0.45 and ca. 5.25, respectively, revealing that the maximum packing fraction decreased and intrinsic viscosity increased concomitantly with the increase in shape-anisotropy of crystals. However, the obtained value of the product of the maximum packing fraction and intrinsic viscosity (= ca. 2.36) was similar to that of uniform, isotropic-shaped particles (= 2.5), indicating that the effect of crystal shape-anisotropy on Bingham viscosity might be predicted only by change of the maximum packing fraction. Finite yield stress was detected for crystallinity larger than 0.133; it increased with crystallinity which suggests that critical crystallinity for onset of yield stress is at least lower than 0.133. The upper limit value of the critical crystallinity resembles the value calculated numerically for randomly oriented uniform particles by Saar et al. (2001) (0.10-0.15 for width/length ratio of 0.1-0.2, which is similar to the ratios in the basalt) whereas crystals in the basalt were moderately parallel arranged and their sizes vary significantly. That fact might be explained as follows; effects of parallel arrangement and size variation of crystals on the critical crystallinity are offset by the effect of variation in crystal shape-anisotropy, which suggests that shape-anisotropy distribution of crystals must

  18. The flexural stiffness and tension state of basalt filter

    NASA Astrophysics Data System (ADS)

    Khalmuradovich, Sattarov Laziz; Ahmedovich, Kurbanov Abdirahim

    2017-03-01

    In recent years, there is a growing demand in Uzbekistan for new, cheap and competitive products from local raw materials, the demand being directly connected with the expansion and development opportunities of the mining, metallurgical and processing industries. In such conditions, the need for providing a solution of the problems faced by these industries is a very urgent one and requires further comprehensive studies. One of these tasks includes assessment of the force parameters and bending stiffness of basalt fibre filters, aimed at further improving the efficiency of local basalt raw materials and aiding in the manufacture of new, long-lasting, reliable and high-quality products. In this case, we studied the interaction of basalt fibre filter with a gas or liquid medium, the deformed state of the fibres under the action force of the gas or liquid, and the filter recovery process after removal of the load, all of which occur during mechanical filtration. These tasks are of interest because during the mechanical filtration of a gas or liquid (hereinafter, mechanical filtration) from solids, all attention is paid to the quality of the filtering process. The filtering quality, as known, is determined by the degree of contamination in the liquid undergoing treatment, duration of separation of the pulp into solid and liquid phases during the decantation process of the mixture and the amount of gas/ liquid released into the atmosphere along with carbon monoxide and toxic impurities. At the same time, the state and behaviour of the filtering material remain as minor factors, the consideration of which can play a decisive role in the establishment of filter life and work capacity. Solutions to these problems are very urgent and allow one to create new technologies for the production of basalt filters based on force parameters and bending stiffness, wherein the purification occurs without the intervention of chemicals.

  19. Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.P. McGrail; E. C. Sullivan; F. A. Spane

    2009-12-01

    The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling ofmore » Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow

  20. MOCVD of HfO2 and ZrO2 high-k gate dielectrics for InAlN/AlN/GaN MOS-HEMTs

    NASA Astrophysics Data System (ADS)

    Abermann, S.; Pozzovivo, G.; Kuzmik, J.; Strasser, G.; Pogany, D.; Carlin, J.-F.; Grandjean, N.; Bertagnolli, E.

    2007-12-01

    We apply metal organic chemical vapour deposition (MOCVD) of HfO2 and of ZrO2 from β-diketonate precursors to grow high-k gate dielectrics for InAlN/AlN/GaN metal oxide semiconductor (MOS)-high electron mobility transistors (HEMTs). High-k oxides of about 12 nm-14 nm are deposited for the MOS-HEMTs incorporating Ni/Au gates, whereas as a reference, Ni-contact-based 'conventional' Schottky-barrier (SB)-HEMTs are processed. The processed dielectrics decrease the gate current leakage of the HEMTs by about four orders of magnitude if compared with the SB-gated HEMTs and show superior device characteristics in terms of IDS and breakdown.

  1. A tale of phenocrysts: trace element contents of boninites and forearc basalts from IODP Expedition 352

    NASA Astrophysics Data System (ADS)

    Chapman, T.; Clarke, G. L.; Reagan, M. K.; Sakuyama, T.; Godard, M.; Shervais, J. W.; Prytulak, J.; Shimizu, K.; Nelson, W. R.; Heaton, D. E.; Whattam, S. A.; Li, H.; Pearce, J. A.

    2016-12-01

    The Izu-Bonin Mariana (IBM) forearc represents an ideal location to study the dynamics of subduction initiation and to reveal the volcanic sequences appropriate to assess ophiolite origins. The volcanic stratigraphy recovered on Expedition 352 illustrates an abrupt shift from forearc basalt (FAB) to boninite magmatism, with limited transitional rock types, as observed from submersible and previous drill work in the Izu-Bonin and Mariana sections. The transition represents a change from decompression melting to fluxed melting of the mantle wedge. The volcanic stratigraphy has several distinct boninite chemical evolution trends (basaltic boninite, low- and high-silica boninite). Mineral assemblages and phenocryst trace element compositions vary throughout the volcanic sequence providing an opportunity to explore more completely boninite and FAB transitions and petrogenesis. FABs are characterised by early plagioclase crystallization and HREE enriched clinopyroxene with high Ti contents. Basaltic boninite and some low-silica boninite lavas have overlapping REE concentrations consistent with early plagioclase growth preceded by clinopyroxene. In contrast, textures and HREE depleted concentrations of clinopyroxene in high-silica boninite imply late plagioclase growth relative to olivine and orthopyroxene. Variations in mineral compositions and paragenesis in boninites reflect changes in magma compositions and a progressive depletion of mantle sources over time. This is illustrated via key incompatible and compatible trace element ratios and concentrations (e.g. Zr/Ti & V or Cr). The transition from FAB to low-Si boninite was subtle in terms of mineral modes, but was more evident in terms of the phase and lava compositions.

  2. Origin of CaCl2 brines by basalt-seawater interaction: Insights provided by some simple mass balance calculations

    NASA Astrophysics Data System (ADS)

    Hardie, Lawrence A.

    1983-06-01

    Modern rift zone hydrothermal brines are typically CaCl2-bearing brines, an unusual chemical signature they share with certain oil field brines, fluid inclusions in ore minerals and a few uncommon saline lakes. Many origins have been suggested for such CaCl2 brines but in the Reykjanes, Iceland, geothermal system a strong empirical case can be made for a basalt-seawater interaction origin. To examine this mechanism of CaCl2 brine evolution some simple mass balance calculations were carried out. Average Reykjanes olivine tholeiite was “reacted” with average North Atlantic seawater to make an albite-chlorite-epidotesphene rock using Al2O3 as the conservative rock component and Cl as the conservative fluid component. The excess components released by the basalt to the fluid were “precipitated” at 275° C as quartz, calcite, anhydrite, magnetite and pyrite to complete the conversion to greenstone. The resulting fluid was a CaCl2 brine of seawater chlorinity with a composition remarkably similar to the actual Reykjanes brine at 1750 m depth. Thus, the calculations strongly support the idea that the Reykjanes CaCl2 brines result from “closed system” oceanic basalt-seawater interaction (albitization — chloritization mechanism) at greenschist facies temperatures. The calculation gives a seawater: basalt mass ratio of 3∶1 to 4∶1 (vol. ratio of 9∶1 to 12∶1), in keeping with experimental results, submarine vent data and with ocean crust cooling calculations. The brine becomes anoxic because there is insufficient dissolved or combined oxygen to balance all the Fe released from the basalt during alteration. Large excesses of Ca are released to the fluid and precipitate out in the form of anhydrite which essentially sweeps the brine free of sulfate leaving an elevated Ca concentration. The calculated rock-water interaction basically involves Na + Mg + SO4 ⇌ Ca + K, simulating chemical differences observed between oceanic basalts and greenstones from many

  3. A kinetic rate model for crystalline basalt dissolution at temperature and pressure conditions relevant for geologic CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Pollyea, R.; Rimstidt, J. D.

    2016-12-01

    Geologic carbon sequestration in terrestrial basalt reservoirs is predicated on permanent CO2 trapping through CO2-water-rock dissolution reactions followed by carbonate precipitation. Bench-scale experiments have shown these reaction paths to be rapid, occurring on a timescale 100 - 102 years. Moreover, recent results from the CarbFix basalt sequestration pilot project in Iceland demonstrate >95% CO2 isolation two years after a small-scale injection. In order to assess the viability of basalt sequestration worldwide (e.g., Deccan Traps, Columbia Plateau, etc.), flexible simulation tools are required that distill the dissolution reactions into a user-friendly format that is readily transmissible to existing reactive transport numerical simulators. In the present research, we combine experimental results extant in the literature for Icelandic basalt to develop kinetic rate models describing the pH-dependent dissolution of (1) basaltic glass and (2) an aggregate mineral assemblage for crystalline basalt comprising olivine, pyroxene, and plagioclase phases. In order to utilize these kinetic rate models with numerical simulation, a thermodynamic solubility model for each phase is developed for use with the reactive transport simulation code, TOUGHREACT. We use reactive transport simulation in a simple 1-D reactor to compare dissolution of the aggregate crystalline basalt phase with the traditional formulation comprising individual mineral phases for the crystalline basalt. Simulation results are in general agreement, illustrating the efficacy of this simplified approach for modeling basalt dissolution at temperature and pressure conditions typical of geologic CO2 reservoirs. Moreover, this approach may be of value to investigators seeking dissolution models for crystalline basalt in other mafic provinces.

  4. Ambient Effects on Basalt and Rhyolite Lavas under Venusian, Subaerial, and Subaqueous Conditions

    NASA Technical Reports Server (NTRS)

    Bridges, Nathan T.

    1997-01-01

    Both subaerial and subaqueous environments have been used as analog settings for Venus volcanism. To assess the merits of this, the effects of ambient conditions on the physical properties of lava on Venus, the seafloor, and land on Earth are evaluated. Rhyolites on Venus and on the surface of Earth solidify before basalts do because of their lower eruption temperatures. Rhyolite crust is thinner than basalt crust at times less than about an hour, especially on Venus. At later times, rhyolite crust is thicker because of its lower latent heat relative to basalt. The high pressure on the seafloor and Venus inhibits the exsolution of volatiles in lavas. Vesicularity and bulk density are proportional, so that lavas of the same composition should be more dense on the seafloor and less dense on land. Because viscosity depends partly upon the fraction of unvesiculated water in a melt, basalts with the same initial volatile abundance will be least viscous on the seafloor and most viscous on land. Assuming the same preeruptive H2O contents, molten rhyolites on Venus will have viscosities approx. 10% that of rhyolites on land. Despite lower expected viscosities, under-water flows are more buoyant and should have heights like subaerial and Venusian lavas of the same composition and extrusive history. In cases where the influence of crust is insignificant, a volume of rhyolite will have a higher aspect ratio than the same volume of basalt, no matter what the environment. If flow rheology is dominated by the presence of strong crust, aspect ratios differ little among environments or between compositions. These analyses support a rhyolitic interpretation for the composition of Venusian festooned flows and a basaltic interpretation for the composition of Venusian steep-sided domes. Although ambient effects are significant, extrusion rate and eruption history must also be considered to explain analogous volcanic landforms on Earth and Venus.

  5. Effects of Heat Treatment on the Microstructures and High Temperature Mechanical Properties of Hypereutectic Al-14Si-Cu-Mg Alloy Manufactured by Liquid Phase Sintering Process

    NASA Astrophysics Data System (ADS)

    Heo, Joon-Young; Gwon, Jin-Han; Park, Jong-Kwan; Lee, Kee-Ahn

    2018-05-01

    Hypereutectic Al-Si alloy is an aluminum alloy containing at least 12.6 wt.% Si. It is necessary to evenly control the primary Si particle size and distribution in hypereutectic Al-Si alloy. In order to achieve this, there have been attempts to manufacture hypereutectic Al-Si alloy through a liquid phase sintering. This study investigated the microstructures and high temperature mechanical properties of hypereutectic Al-14Si-Cu-Mg alloy manufactured by liquid phase sintering process and changes in them after T6 heat treatment. Microstructural observation identified large amounts of small primary Si particles evenly distributed in the matrix, and small amounts of various precipitation phases were found in grain interiors and grain boundaries. After T6 heat treatment, the primary Si particle size and shape did not change significantly, but the size and distribution of CuAl2 ( θ) and AlCuMgSi ( Q) changed. Hardness tests measured 97.36 HV after sintering and 142.5 HV after heat treatment. Compression tests were performed from room temperature to 300 °C. The results represented that yield strength was greater after heat treatment (RT 300 °C: 351 93 MPa) than after sintering (RT 300 °C: 210 89 MPa). Fracture surface analysis identified cracks developing mostly along the interface between the primary Si particles and the matrix with some differences among temperature conditions. In addition, brittle fracture mode was found after T6 heat treatment.

  6. Subduction of hydrated basalt of the oceanic crust: Implications for recycling of water into the upper mantle and continental growth

    NASA Technical Reports Server (NTRS)

    Rapp, R. P.

    1994-01-01

    Subduction zones are presently the dominant sites on Earth for recycling and mass transfer between the crust and mantle; they feed hydrated basaltic oceanic crust into the upper mantle, where dehydration reactions release aqueous fluids and/or hydrous melts. The loci for fluid and/or melt generation will be determined by the intersection of dehydration reaction boundaries of primary hydrous minerals within the subducted lithosphere with slab geotherms. For metabasalt of the oceanic crust, amphibole is the dominant hydrous mineral. The dehydration melting solidus, vapor-absent melting phase relationships; and amphibole-out phase boundary for a number of natural metabasalts have been determined experimentally, and the pressure-temperature conditions of each of these appear to be dependent on bulk composition. Whether or not the dehydration of amphibole is a fluid-generating or partial melting reaction depends on a number of factors specific to a given subduction zone, such as age and thickness of the subducting oceanic lithosphere, the rate of convergence, and the maturity of the subduction zone. In general, subduction of young, hot oceanic lithosphere will result in partial melting of metabasalt of the oceanic crust within the garnet stability field; these melts are characteristically high-Al2O3 trondhjemites, tonalites and dacites. The presence of residual garnet during partial melting imparts a distinctive trace element signature (e.g., high La/Yb, high Sr/Y and Cr/Y combined with low Cr and Y contents relative to demonstrably mantle-derived arc magmas). Water in eclogitized, subducted basalt of the oceanic crust is therefore strongly partitioned into melts generated below about 3.5 GPa in 'hot' subduction zones. Although phase equilibria experiments relevant to 'cold' subduction of hydrated natural basalts are underway in a number of high-pressure laboratories, little is known with respect to the stability of more exotic hydrous minerals (e.g., ellenbergite) and

  7. Field-trip guide to Columbia River flood basalts, associated rhyolites, and diverse post-plume volcanism in eastern Oregon

    USGS Publications Warehouse

    Ferns, Mark L.; Streck, Martin J.; McClaughry, Jason D.

    2017-08-09

    The Miocene Columbia River Basalt Group (CRBG) is the youngest and best preserved continental flood basalt province on Earth, linked in space and time with a compositionally diverse succession of volcanic rocks that partially record the apparent emergence and passage of the Yellowstone plume head through eastern Oregon during the late Cenozoic. This compositionally diverse suite of volcanic rocks are considered part of the La Grande-Owyhee eruptive axis (LOEA), an approximately 300-kilometer-long (185 mile), north-northwest-trending, middle Miocene to Pliocene volcanic belt located along the eastern margin of the Columbia River flood basalt province. Volcanic rocks erupted from and preserved within the LOEA form an important regional stratigraphic link between the (1) flood basalt-dominated Columbia Plateau on the north, (2) bimodal basalt-rhyolite vent complexes of the Owyhee Plateau on the south, (3) bimodal basalt-rhyolite and time-transgressive rhyolitic volcanic fields of the Snake River Plain-Yellowstone Plateau, and (4) the High Lava Plains of central Oregon.This field-trip guide describes a 4-day geologic excursion that will explore the stratigraphic and geochemical relationships among mafic rocks of the Columbia River Basalt Group and coeval and compositionally diverse volcanic rocks associated with the early “Yellowstone track” and High Lava Plains in eastern Oregon. Beginning in Portland, the Day 1 log traverses the Columbia River gorge eastward to Baker City, focusing on prominent outcrops that reveal a distal succession of laterally extensive, large-volume tholeiitic flood lavas of the Grande Ronde, Wanapum, and Saddle Mountains Basalt formations of the CRBG. These “great flows” are typical of the well-studied flood basalt-dominated Columbia Plateau, where interbedded silicic and calc-alkaline lavas are conspicuously absent. The latter part of Day 1 will highlight exposures of middle to late Miocene silicic ash-flow tuffs, rhyolite domes, and

  8. Comparative Planetary Mineralogy: Basaltic Plagioclase from Earth, Moon, Mars and 4 Vesta

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Papike, J. J.; Shearer, C. K.

    2003-01-01

    Major, minor and trace element analysis of silicates has allowed for the study of planetary basalts in a comparative planetary mineralogy context. We continue this initiative by exploring the chemistry of plagioclase feldspar in basalts from the Earth, Moon, Mars and 4 Vesta. This paper presents new data on plagioclase from six terrestrial basalt suites including Keweenawan, Island Arc, Hawaiian, Columbia Plateau, Taos Plateau, and Ocean Floor; six lunar basalt suites including Apollo 11 Low K, Apollo 12 Ilmenite, Apollo 12 Olivine, Apollo 12 Pigeonite, Apollo 15 Olivine, and Apollo 15 Pigeonite; two basaltic martian meteorites, Shergotty and QUE 94201; and one unequilibrated eucrite, Pasamonte.

  9. Precious metal enrichment at low-redox in terrestrial native Fe-bearing basalts investigated using laser-ablation ICP-MS

    NASA Astrophysics Data System (ADS)

    Howarth, Geoffrey H.; Day, James M. D.; Pernet-Fisher, John F.; Goodrich, Cyrena A.; Pearson, D. Graham; Luo, Yan; Ryabov, Viktor V.; Taylor, Lawrence A.

    2017-04-01

    Primary native Fe is a rare crystallizing phase from terrestrial basaltic magmas, requiring highly reducing conditions (fO2 basaltic magmas can be achieved through assimilation of carbonaceous crustal material, which leads to formation of an immiscible, molten, C-rich, native Fe alloy liquid. If this liquid also contains sufficient sulfur, it can undergo further division into conjugate Fe-C-rich and a Fe-S-rich immiscible melts that can effectively scavenge the highly siderophile elements (HSE: Re, Au, and the platinum group elements [PGE], Pd, Pt, Rh, Ru, Ir, Os), as well as Ni and Cu, to economic abundances. Three localities are known globally where native Fe bearing mafic rocks occur: (1) Paleocene basalts of Disko Island, West Greenland; (2) a Miocene lava of the Bühl basalts, Germany; and (3) mafic intrusions associated with the Late Permian Siberian flood basalts. In this contribution, we report major- and minor-element compositions and HSE concentrations for the main alloy phases (FeNi metal and cohenite) and sulfide, for all three known global occurrences of native Fe bearing basalt. Total HSE abundances in metal grains, obtained by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), are lowest in the Bühl basalt, (∼0.05 ppm), intermediate in the Disko Island basalts (4-8 ppm), and highest the Siberian Khungtukun and Dzhaltul intrusions (10-30 ppm). These differences demonstrate that, while native Fe formation is the result of carbonaceous crustal assimilation, HSE enrichment is not ubiquitous during this process. The Siberian occurrences are characterized by Pt PGE (PPGE: Pt, Pd) enrichment relative to the Ir PGE (IPGE: Rh, Ru, Ir, Os), consistent with models of early stage fractionation of olivine, chromite and metallic IPGE in staging magma reservoirs, prior to the addition of C-rich crustal materials in the shallow crust. Relative to Noril'sk Ni-Cu-PGE sulfide ores

  10. Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars

    USGS Publications Warehouse

    McSween, H.Y.; Wyatt, M.B.; Gellert, Ralf; Bell, J.F.; Morris, R.V.; Herkenhoff, K. E.; Crumpler, L.S.; Milam, K.A.; Stockstill, K.R.; Tornabene, L.L.; Arvidson, R. E.; Bartlett, P.; Blaney, D.; Cabrol, N.A.; Christensen, P.R.; Clark, B. C.; Crisp, J.A.; Des Marais, D.J.; Economou, T.; Farmer, J.D.; Farrand, W.; Ghosh, A.; Golombek, M.; Gorevan, S.; Greeley, R.; Hamilton, V.E.; Johnson, J. R.; Joliff, B.L.; Klingelhofer, G.; Knudson, A.T.; McLennan, S.; Ming, D.; Moersch, J.E.; Rieder, R.; Ruff, S.W.; Schrorder, C.; de Souza, P.A.; Squyres, S. W.; Wanke, H.; Wang, A.; Yen, A.; Zipfel, J.

    2006-01-01

    Rocks on the floor of Gusev crater are basalts of uniform composition and mineralogy. Olivine, the only mineral to have been identified or inferred from data by all instruments on the Spirit rover, is especially abundant in these rocks. These picritic basalts are similar in many respects to certain Martian meteorites (olivine-phyric shergottites). The olivine megacrysts in both have intermediate compositions, with modal abundances ranging up to 20-30%. Associated minerals in both include low-calcium and high-calcium pyroxenes, plagioclase of intermediate composition, iron-titanium-chromium oxides, and phosphate. These rocks also share minor element trends, reflected in their nickel-magnesium and chromium-magnesium ratios. Gusev basalts and shergottites appear to have formed from primitive magmas produced by melting an undepleted mantle at depth and erupted without significant fractionation. However, apparent differences between Gusev rocks and shergottites in their ages, plagioclase abundances, and volatile contents preclude direct correlation. Orbital determinations of global olivine distribution and compositions by thermal emission spectroscopy suggest that olivine-rich rocks may be widespread. Because weathering under acidic conditions preferentially attacks olivine and disguises such rocks beneath alteration rinds, picritic basalts formed from primitive magmas may even be a common component of the Martian crust formed during ancient and recent times. Copyright 2006 by the American Geophysical Union.

  11. Characterization and Petrologic Interpretation of Olivine-Rich Basalts at Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    McSween, H. Y.; Wyatt, M. B.; Gellert, R.; Bell, J. F., III; Morris, R. V.; Herkenhoff, K. E.; Crumpler, L. S.; Milam, K. A.; Stockstill, K. R.; Tornabene, L. L.; hide

    2006-01-01

    Rocks on the floor of Gusev crater are basalts of uniform composition and mineralogy. Olivine, the only mineral to have been identified or inferred from data by all instruments on the Spirit rover, is especially abundant in these rocks. These picritic basalts are similar in many respects to certain Martian meteorites (olivine-phyric shergottites). The olivine megacrysts in both have intermediate compositions, with modal abundances ranging up to 20-30%. Associated minerals in both include low-calcium and high-calcium pyroxenes, plagioclase of intermediate composition, iron-titanium-chromium oxides, and phosphate. These rocks also share minor element trends, reflected in their nickel-magnesium and chromium-magnesium ratios. Gusev basalts and shergottites appear to have formed from primitive magmas produced by melting an undepleted mantle at depth and erupted without significant fractionation. However, apparent differences between Gusev rocks and shergottites in their ages, plagioclase abundances, and volatile contents preclude direct correlation. Orbital determinations of global olivine distribution and compositions by thermal emission spectroscopy suggest that olivine-rich rocks may be widespread. Because weathering under acidic conditions preferentially attacks olivine and disguises such rocks beneath alteration rinds, picritic basalts formed from primitive magmas may even be a common component of the Martian crust formed during ancient and recent times.

  12. Melting of the primitive martian mantle at 0.5-2.2 GPa and the origin of basalts and alkaline rocks on Mars

    NASA Astrophysics Data System (ADS)

    Collinet, Max; Médard, Etienne; Charlier, Bernard; Vander Auwera, Jacqueline; Grove, Timothy L.

    2015-10-01

    We have performed piston-cylinder experiments on a primitive martian mantle composition between 0.5 and 2.2 GPa and 1160 to 1550 °C. The composition of melts and residual minerals constrain the possible melting processes on Mars at 50 to 200 km depth under nominally anhydrous conditions. Silicate melts produced by low degrees of melting (<10 wt.%) were analyzed in layers of vitreous carbon spheres or in micro-cracks inside the graphite capsule. The total range of melt fractions investigated extends from 5 to 50 wt.%, and the liquids produced display variable SiO2 (43.7-59.0 wt.%), MgO (5.3-18.6 wt.%) and Na2O + K2O (1.0-6.5 wt.%) contents. We provide a new equation to estimate the solidus temperature of the martian mantle: T (°C) = 1033 + 168.1 P (GPa) - 14.22P2 (GPa), which places the solidus 50 °C below that of fertile terrestrial peridotites. Low- and high-degree melts are compared to martian alkaline rocks and basalts, respectively. We suggest that the parental melt of Adirondack-class basalts was produced by ∼25 wt.% melting of the primitive martian mantle at 1.5 GPa (∼135 km) and ∼1400 °C. Despite its brecciated nature, NWA 7034/7533 might be composed of material that initially crystallized from a primary melt produced by ∼10-30 wt.% melting at the same pressure. Other igneous rocks from Mars require mantle reservoirs with different CaO/Al2O3 and FeO/MgO ratios or the action of fractional crystallization. Alkaline rocks can be derived from mantle sources with alkali contents (∼0.5 wt.%) similar to the primitive mantle.

  13. Field Validation of Supercritical CO 2 Reactivity with Basalts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrail, B. Peter; Schaef, Herbert T.; Spane, Frank A.

    2017-01-10

    Continued global use of fossil fuels places a premium on developing technology solutions to minimize increases in atmospheric CO 2 levels. CO 2 storage in reactive basalts might be one of these solutions by permanently converting injected gaseous CO 2 into solid carbonates. Herein we report results from a field demonstration where ~1000 MT of CO 2 was injected into a natural basalt formation in Eastern Washington State. Following two years of post-injection monitoring, cores were obtained from within the injection zone and subjected to detailed physical and chemical analysis. Nodules found in vesicles throughout the cores were identified asmore » the carbonate mineral, ankerite Ca[Fe, Mg, Mn](CO 3) 2. Carbon isotope analysis showed the nodules are chemically distinct as compared with natural carbonates present in the basalt and clear correlation with the isotopic signature of the injected CO 2. These findings provide field validation of rapid mineralization rates observed from years of laboratory testing with basalts.« less

  14. Testing of candidate waste-package backfill and canister materials for basalt

    NASA Astrophysics Data System (ADS)

    Wood, M. I.; Anderson, W. J.; Aden, G. D.

    1982-09-01

    The Basalt Waste Isolation Project (BWIP) is developing a multiple-barrier waste package to contain high-level nuclear waste as part of an overall system (e.g., waste package, repository sealing system, and host rock) designed to isolate the waste in a repository located in basalt beneath the Hanford Site, Richland, Washington. The three basic components of the waste package are the waste form, the canister, and the backfill. An extensive testing program is under way to determine the chemical, physical, and mechanical properties of potential canister and backfill materials. The data derived from this testing program will be used to recommend those materials that most adequately perform the functions assigned to the canister and backfill.

  15. Growing magma chambers control the distribution of small-scale flood basalts

    PubMed Central

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2015-01-01

    Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar–Ar and K–Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 > 47.5 wt.%) from Xinchang–Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4–3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40–0.66; TiO2/MgO = 0.23–0.35) during about 6 Myr (9.4–3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3–3.0 Ma) through a broad range of compositions ((Na2O + K2O)/MgO = 0.60–1.28; TiO2/MgO = 0.30–0.57). The distribution and two-stage compositional evolution of the migrating flood basalts record continuous magma replenishment that buffered against magmatic evolution and induced magma chamber growth. Our results demonstrate that the magma replenishment–magma chamber growth model explains the spatio-temporal distribution of small-scale flood basalts. PMID:26581905

  16. The surface variation of Ti-14Al-21Nb as a function of temperature under ultrahigh vacuum conditions

    NASA Technical Reports Server (NTRS)

    Lee, W. S.; Sankaran, S. N.; Outlaw, R. A.; Clark, R. K.

    1990-01-01

    The effect of temperature, at conditions of ultrahigh vacuum, on the surface composition of the Ti-14Al-21Nb (in wt pct) alloy was investigated in samples heated to 1000 C in 100 C increments. Results of AES spectroscopy revealed that the Ti-14Al-21Nb alloy surface is extremely sensitive to temperature. At 300 C, the carbon and oxygen began to rapidly dissolve into the alloy, and at 600 C, bulk S segregated to the surface. The variation in the surface composition was extensive and different over the temperature range studied, indicating that there may be substantial changes in the hydrogen transport.

  17. Th-230 - U-238 series disequilibrium of the Olkaria basalts Gregory Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    Black, S.; Macdonald, R.; Kelly, M.

    1993-01-01

    U-Th disequilibrium analyses of the Naivasha basalts show a very small (U-238/Th-230) ratios which are lower than any previously analyzed basalts. The broadly positive internal isochron trend from one sample indicates that the basalts may have source heterogeneities, this is supported by earlier work. The Naivasha complex comprises a bimodal suite of basalts and rhyolites. The basalts are divided into two stratigraphic groups each of a transitional nature. The early basalt series (EBS) which were erupted prior to the Group 1 comendites and, the late basalt series (LBS) which erupted temporally between the Broad Acres and the Ololbutot centers. The basalts represent a very small percentage of the overall eruptive volume of material at Naivasha (less than 2 percent). The analyzed samples come from four stratigraphic units in close proximity around Ndabibi, Hell's Gate and Akira areas. The earliest units occur as vesicular flows from the Ndabibi plain. These basalts are olivine-plagioclase phyric with the associated hawaiites being sparsely plagioclase phyric. An absolute age of 0.5Ma was estimated for these basalts. The next youngest basalts flows occur as younger tuft cones in the Ndabibi area and are mainly olivine-plagioclase-clinopyroxcene phyric with one purely plagioclase phyric sample. The final phase of activity at Ndabibi resulted in much younger tuft cones consisting of air fall ashes and lapilli tufts. Many of these contain resorbed plagioclase phenocrysts with sample number 120c also being clinopyroxene phyric. The isotopic evidence for the basalt formation is summarized.

  18. A Reaction Between High Mn-High Al Steel and CaO-SiO2-Type Molten Mold Flux: Part II. Reaction Mechanism, Interface Morphology, and Al2O3 Accumulation in Molten Mold Flux

    NASA Astrophysics Data System (ADS)

    Kang, Youn-Bae; Kim, Min-Su; Lee, Su-Wan; Cho, Jung-Wook; Park, Min-Seok; Lee, Hae-Geon

    2013-04-01

    Following a series of laboratory-scale experiments, the mechanism of a chemical reaction 4[{Al}] + 3({SiO}_2) = 3[{Si}] + 2({Al}_2{O}_3) between high-alloyed TWIP (TWin-Induced Plasticity) steel containing Mn and Al and molten mold flux composed mainly of CaO-SiO2 during the continuous casting process is discussed in the present article in the context of kinetic analysis, morphological evolution at the reaction interface. By the kinetic analysis using a two-film theory, a rate-controlling step of the chemical reaction at the interface between the molten steel and the molten flux is found to be mass transport of Al in a boundary layer of the molten steel, as long as the molten steel and the molten flux phases are concerned. Mass transfer coefficient of the Al in the boundary layer (k_{{Al}}) is estimated to be 0.9 to 1.2 × 10-4 m/s at 1773 K (1500 ^{circ}C). By utilizing experimental data at various temperatures, the following equation is obtained for the k_{{Al}}; ln k_{{Al}} = -14,290/T - 1.1107. Activation energy for the mass transfer of Al in the boundary layer is 119 kJ/mol, which is close to a value of activation energy for mass transfer in metal phase. The composition evolution of Al in the molten steel was well explained by the mechanism of Al mass transfer. On the other hand, when the concentration of Al in the steel was high, a significant deviation of the composition evolution of Al in the molten steel was observed. By observing reaction interface between the molten steel and the molten flux, it is thought that the chemical reaction controlled by the mass transfer of Al seemed to be disturbed by formation of a solid product layer of MgAl2O4. A model based on a dynamic mass balance and the reaction mechanism of mass transfer of Al in the boundary layer for the low Al steel was developed to predict (pct Al2O3) accumulation rate in the molten mold flux.

  19. Anomalous density and elastic properties of basalt at high pressure: Reevaluating of the effect of melt fraction on seismic velocity in the Earth's crust and upper mantle

    DOE PAGES

    Clark, Alisha N.; Lesher, Charles E.; Jacobsen, Steven D.; ...

    2016-06-27

    Independent measurements of the volumetric and elastic properties of Columbia River basalt glass were made up to 5.5 GPa by high-pressure X-ray microtomography and GHz-ultrasonic interferometry, respectively. The Columbia River basalt displays P and S wave velocity minima at 4.5 and 5 GPa, respectively, violating Birch’s law. These data constrain the pressure dependence of the density and elastic moduli at high pressure, which cannot be modeled through usual equations of state nor determined by stepwise integrating the bulk sound velocity as is common practice. We propose a systematic variation in compression behavior of silicate glasses that is dependent on themore » degree of polymerization and arises from the flexibility of the aluminosilicate network. Likewise, this behavior likely persists into the liquid state for basaltic melts resulting in weak pressure dependence for P wave velocities perhaps to depths of the transition zone. By modeling the effect of partial melt on P wave velocity reductions it is suggested that melt fraction determined by seismic velocity variations may be significantly overestimated in the crust and upper mantle.« less

  20. A petrologic study of the Teanaway Basalt: Eocene slab window volcanism in central WA

    NASA Astrophysics Data System (ADS)

    Roepke, E.; Tepper, J. H.; Ivener, D.

    2013-12-01

    The Teanaway Basalt (TB) includes subaerial basalt to andesite flows, mafic to felsic tuffs, and rhyolite domes in the Central Cascades of Washington State. These volcanics overlie the extensive ~47 Ma Teanaway Dike Swarm (TDS) that cuts the underlying Swauk Formation. This study focuses on the tectonic setting of eruption and geochemical variations relating to geography and stratigraphy within the TB. The western-most area of the TB, Easton Ridge (ER), is compared with the eastern-most area of the TB, Liberty Ridge (LR) - 40 km to the east of ER. The bimodal TB consists predominantly of basaltic andesite and andesite (45.3-63.1 wt% SiO2) with subordinate rhyolite (75.9-79.4 wt% SiO2). The mafic rocks classify as primarily medium-K tholeiites (0.1-3.0 wt% K2O), but a few samples classify as alkaline. Enrichment in LILE and depletion in HFSE on spidergrams are indicative of an arc setting. However, compared with the modern Cascade Arc, the TB is distinctly higher in Fe2O3T (8.8-17.1 wt%) and TiO2 (1.1-2.7 wt%), and distinctly lower in Al2O3 (11.2-14.6) and K2O, with a similar range of Mg #s (0.15-0.48). Most tectonic discrimination plots characterize the TB as MORB, but some indicate an arc or within-plate setting. Preliminary Pb isotopic data (206Pb/204Pb = 19.13-19.19, 207Pb/204Pb = 15.62-15.64, and 208Pb/204Pb = 38.78-38.90) indicate the TB and TDS are more enriched than Cascade Arc rocks in 206Pb/204Pb and 208Pb/204Pb. Overall, these geochemical data are consistent with a model in which asthenospheric mantle ascending through a slab window interacts with mantle wedge that has previously acquired arc chemical traits. The existence of a slab window in this region during the mid-Eocene is compatible with plate reconstructions and evidence of extension that have been attributed to subduction of the Resurrection-Kula ridge (Haeussler et al., 2003). Harker plots show lavas at LR are generally more enriched than those at ER in Fe2O3T (11.9-17.1 wt% vs 8.8-15.7 wt%) Mn

  1. Microseismic monitoring of columnar jointed basalt fracture activity: a trial at the Baihetan Hydropower Station, China

    NASA Astrophysics Data System (ADS)

    Chen, Bing-Rui; Li, Qing-Peng; Feng, Xia-Ting; Xiao, Ya-Xun; Feng, Guang-Liang; Hu, Lian-Xing

    2014-10-01

    Severe stress release has occurred to the surrounding rocks of the typically columnar jointed basalt after excavation at the Baihetan Hydropower Station, Jinsha River, China, where cracking, collapse, and other types of failure may take place occasionally due to relaxation fracture. In order to understand the relaxation fracture characteristics of the columnar jointed basalt in the entire excavation process at the diversion tunnel of the Baihetan Hydropower Station, real-time microseismic monitoring tests were performed. First, the applicability of a geophone and accelerometer was analyzed in the columnar jointed basalt tunnel, and the results show that the accelerometer was more applicable to the cracking monitoring of the columnar jointed basalt. Next, the waveform characteristics of the microseismic signals were analyzed, and the microseismic signals were identified as follows: rock fracture signal, drilling signal, electrical signal, heavy vehicle passing signal, and blast signal. Then, the attenuation characteristics of the microseismic signals in the columnar jointed basalt tunnel were studied, as well as the types and characteristics of the columnar jointed basalt fracture. Finally, location analysis was conducted on the strong rock fracture events, in which four or more sensors were triggered, to obtain the temporal and spatial evolution characteristics and laws of the columnar jointed basalt relaxation fracture after excavation. The test results are not only of important reference value to the excavation and support of diversion tunnel at the Baihetan Hydropower Station, but also of great referential significance and value to the conduction of similar tests.

  2. 26Al- 26Mg dating of asteroidal magmatism in the young Solar System

    NASA Astrophysics Data System (ADS)

    Schiller, Martin; Baker, Joel A.; Bizzarro, Martin

    2010-08-01

    We present high-precision Mg isotope data for most classes of basaltic meteorites including eucrites, mesosiderite silicate clasts, angrites and the ungrouped Northwest Africa (NWA) 2976 measured by pseudo-high-resolution multiple-collector inductively coupled plasma mass spectrometry and utilising improved techniques for chemical purification of Mg. With the exception of the angrites Angra dos Reis, Lewis Cliff (LEW) 86010, NWA 1296 and NWA 2999 and the diogenite Bilanga, which have either been shown to have young ages by other dating techniques or have low Al/Mg ratios, all bulk samples of basaltic meteorites have 26Mg excesses ( δ26Mg=+0.0135 to +0.0392‰). The 26Mg excesses cannot be explained by analytical artefacts, cosmogenic effects or heterogeneity of initial 26Al/ 27Al, Al/Mg ratios or Mg isotopes in asteroidal parent bodies as compared to Earth or chondrites. The 26Mg excesses record asteroidal melting and formation of basaltic magmas with super-chondritic Al/Mg and confirm that radioactive decay of short-lived 26Al was the primary heat source that melted planetesimals. Model 26Al- 26Mg ages for magmatism on the eucrite/mesosiderite, angrite and NWA 2976 parent bodies are 2.6-3.2, 3.9-4.1 and 3.5 Myr, respectively, after formation of calcium-aluminium-rich inclusions (CAIs). However, the validity of these model ages depends on whether the elevated Al/Mg ratios of basaltic meteorites result from magma ocean evolution on asteroids through fractional crystallisation or directly during partial melting. Mineral isochrons for the angrites Sahara (Sah) 99555 and D'Orbigny, and NWA 2976, yield ages of 5.06-0.05+0.06Myr and 4.86-0.09+0.10Myr, respectively, after CAI formation. Both isochrons have elevated initial δ26Mg values. Given the brecciated and equilibrated texture of NWA 2976 it is probable that its isochron age and elevated initial δ26Mg(+0.0175±0.0034‰) reflects thermal resetting during an impact event and slow cooling on its parent body. However

  3. Digitally grown AlInAsSb for high gain separate absorption, grading, charge, and multiplication avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Lyu, Yuexi; Han, Xi; Sun, Yaoyao; Jiang, Zhi; Guo, Chunyan; Xiang, Wei; Dong, Yinan; Cui, Jie; Yao, Yuan; Jiang, Dongwei; Wang, Guowei; Xu, Yingqiang; Niu, Zhichuan

    2018-01-01

    We report on the growth of high quality GaSb-based AlInAsSb quaternary alloy by molecular beam epitaxy (MBE) to fabricate avalanche photodiodes (APDs). By means of high resolution X-ray diffraction (HRXRD) and scanning transmission electron microscope (STEM), phase separation phenomenon of AlInAsSb random alloy with naturally occurring vertical superlattice configuration was demonstrated. To overcome the tendency for phase segregation while maintaining a highly crystalline film, a digital alloy technique with migration-enhanced epitaxy growth method was employed, using a shutter sequence of AlSb, AlAs, AlSb, Sb, In, InAs, In, Sb. AlInAsSb digital alloy has proved to be reproducible and consistent with single phase, showing sharp satellite peaks on HRXRD rocking curve and smooth surface morphology under atomic force microscopy (AFM). Using optimized digital alloy, AlInAsSb separate absorption, grading, charge, and multiplication (SAGCM) APD was grown and fabricated. At room temperature, the device showed high performance with low dark current density of ∼14.1 mA/cm2 at 95% breakdown and maximum stable gain before breakdown as high as ∼200, showing the potential for further applications in optoelectronic devices.

  4. Oxygen fugacity of mare basalts and the lunar mantle application of a new microscale oxybarometer based on the valence state of vanadium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, C.K.; Karner, J.; Papike, J.J.

    2004-05-25

    Using the valence state of vanadium on a microscale in lunar volcanic glasses we have developed another approach to estimating the oxygen fugacity of mare basalts. The ability to estimate oxygen fugacities for mare basalts and to extend these observations to the lunar mantle is limited using bulk analysis techniques based on buffering assemblages or the valence state of iron. These limitations are due to reequilibration of mineral assemblages at subsolidus conditions, deviations of mineral compositions from thermodynamic ideality, size requirements, and the limits of the iron valence at very low fO{sub 2}. Still, these approaches have been helpful andmore » indicate that mare basalts crystallized at fO{sub 2} between the iron-wuestite buffer (IW) and the ilmenite breakdown reaction (ilmenite = rutile + iron). It has also been inferred from these estimates that the lunar mantle is also highly reduced lying at conditions below IW. Generally, these data cannot be used to determine if the mare basalts become increasingly reduced during transport from their mantle source and eruption at the lunar surface and if there are differences in fO{sub 2} among mare basalts or mantle sources. One promising approach to determining the fO2 of mare basalts is using the mean valence of vanadium (2+, 3+, 4+, 5+) determined on spots of a few micrometers in diameter using synchrotron x-ray absorption fine structure (XAFS) spectroscopy. The average valence state of V in basaltic glasses is a function of fO{sub 2}, temperature, V coordination, and melt composition. Here, we report the initial results of this approach applied to lunar pyroclastic glasses.« less

  5. Ubiquitous radiogenic Os in Miocene to recent basalts from diverse mantle domains beneath the Colorado Plateau, USA

    NASA Astrophysics Data System (ADS)

    Schlieder, T.; Reid, M. R.; Widom, E.; Blichert-Toft, J.

    2015-12-01

    The source of magmatism and mechanisms responsible for the observed geochemical signatures in Miocene to Recent Colorado Plateau (CP) basalts has been a renewed focus of investigation in light of Earthscope results. We report new Os and Nd isotopic data for magnesian basalts (Mg#=62-72) and interpret them in light of previously reported Hf isotope data to help constrain contributions from olivine-poor source lithologies and subduction-derived metasomatism in the genesis of recent CP volcanism. The basalts studied span a large range in Hf isotope compositions and represent melts last equilibrated at a variety of depths beneath the Colorado Plateau and its transition zones. We distinguished at least three mantle domains on the basis of paired Hf-Nd isotope, other isotopic, and geochemical characteristics of CP lavas. Domain 1 likely represents a depleted, variably metasomatized, lithospheric source, with relatively radiogenic ɛHf (+5.2 to +11.8) and highly variable ɛNd (-6.2 to +6.2). Domain 2 could represent either ancient or Farallon subduction-modified mantle and is displaced above the Hf-Nd mantle array (ɛHf=+1.0 to +7.3; ɛNd=-6.1 to -3.5). Domain 3 may be melts of pyroxenite/mica-rich veins or layers within lithospheric mantle and is characterized by unradiogenic Hf and Nd (ɛHf=-12.9 to +0.6; ɛNd=-10.0 to -2.9). The isotopic variability in CP-related lavas can largely be attributed to contributions from these mantle domains. Preliminary Os isotope data show no correlation with proxies for differentiation or crustal contamination. Osmium and Hf isotope compositions are negatively correlated between domains 1 and 2 (187Os/188Os=0.31 to 0.59), whereas the Os isotope ratios in two domain 3 basalts have both lower and higher values (187Os/188Os=0.25 and 0.68). Significantly, Os isotope signatures are highly radiogenic (vs. values of <0.12 for SW US peridotite xenoliths [1]), overlapping and extending the range for inferred melts of pyroxene- and mica-rich veins

  6. Spectral characterization of V-type asteroids: are all the basaltic objects coming from Vesta?

    NASA Astrophysics Data System (ADS)

    Ieva, S.; Fulvio, D.; Dotto, E.; Lazzaro, D.; Perna, D.; Strazzulla, G.; Fulchignoni, M.

    In the last twenty-five years several small basaltic V-type asteroids have been identified all around the main belt. Most of them are members of the Vesta dynamical family, but an increasingly large number appear to have no link with it. The question that arises is whether all these basaltic objects do indeed come from Vesta. In the light of the Dawn mission, who visited Vesta in 2011-2012, recent works were dedicated to the observation of several new V-type asteroids and their comparison with laboratory data (Fulvio et al., \\cite{Fulvio2015}), and to a statistical analysis of the spectroscopic and mineralogical properties of the largest sample of V-types ever collected (Ieva et al., \\cite{Ieva2015}, with the objective to highlight similarities and differences among objects belonging and not belonging to the Vesta dynamical family. Laboratory experiments support the idea that V-type NEAs spectral properties could be due to a balance of space weathering and rejuvenation processes triggered by close encounters with terrestrial planets. Statistical analysis shows that although most of the V-type asteroids in the inner main belt do have a surface composition compatible with Vesta family members, this seem not to be the case for V-types in the middle and outer main belt. For these Middle and Outer V-types (MOVs), their sizes, spectral parameters and location far away from the Vesta dynamical region point to a different origin than Vesta.

  7. Antifriction basalt-plastics based on polypropylene

    NASA Astrophysics Data System (ADS)

    Bashtannik, P. I.; Ovcharenko, V. G.

    1997-05-01

    A study is made of the dependence of the mechanical and friction-engineering properties of polypropylene reinforced with basalt fibers on the viscosity of the polymer matrix. It is established that the main factors that determine the mechanical properties of the plastics are the quality of impregnation of the fibers by the binder and the residual length of the reinforcing filler in the composite after extrusion and injection molding. The material that was developed has a low friction coefficient and low rate of wear within a relatively brood range of friction conditions. The basalt-plastics can be used in the rubbing parts of machines and mechanisms subjected to dry friction.

  8. A Structural and Paleomagnetic Analysis of the Basalts of Summit Creek, central Cascades, Washington

    NASA Astrophysics Data System (ADS)

    Fetrow, A. C.; Valentine, M. J.

    2013-12-01

    This study is a detailed analysis of the structural geology and paleomagnetism of the Basalts of Summit Creek. Located southeast of Mount Rainier, this section of layered basaltic flows formed during the Eocene Epoch (55 to 45 Ma). During the Eocene, this region underwent a time of unique volcanism that has shaped the modern landscape of the Pacific Northwest. Over the course of the available field season, five excursions were taken into the field to conduct structural mapping and paleomagnetic core drilling. Although exposure is limited by vegetation, nineteen sites were mapped and ten of those were drilled for cores. Cores were analyzed using alternating field demagnetization and thermal demagnetization. Mapping data was integrated into a preliminary structural map of the section. This study attempts to provide a greater understanding of the emplacement and deformation of the Basalts of the Summit Creek and any possible relationship with the Crescent Basalts located in the Olympic Peninsula of Washington state. Once paleomagnetic directions were corrected for core orientation and bedding tilt, none of the flows yielded orientations consistent enough to provide reliable magnetic directions for the section. This scatter is believed to be due, in part, to hydrothermal alteration that has subsequently influenced the Basalts of the Summit Creek. The scattered magnetic orientations are quite similar to those observed in the Crescent Basalts. This is does not demonstrate a definite connection between the two chemically similar Eocene volcanic sequences, but it does provide another similarity on the growing list. The lava flows along the north, middle, and south of the area and, with a few exceptions, have a northeast strike and a northwest dip. Along the middle transect of the section, nearest to Pony Creek and Carleton Ridge, bedding orientation has greater variability and suggests that there may still be unidentified structures that are influencing the area. Reflected

  9. Experimental Study into the Stability of Whitlockite in Basaltic Magmas

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Barnes, J. J.; Srinivasan, P.; Whitson, E. S.; Vander Kaaden, K. E.; Boyce, J. W.

    2017-01-01

    latter treatment resulted in the dehydrogenation of whitlockite to form merrillite. The presence of merrillite vs. whitlockite was widely thought to serve as an indication that magmas were anhydrous [e.g., 6-7]. However, McCubbin et al., [8] determined that merrillite in the martian meteorite Shergotty had no discernible whitlockite component despite its coexistence with OH-rich apatite. Consequently, McCubbin et al., (2014) speculated that the absence of a whitlockite component in Shergotty merrillite and other planetary merrillites may be a consequence of the limited thermal stability of H in whitlockite (stable only at T less than1050degC), which would prohibit merrillite-whitlockite solid-solution at high temperatures. In the present study, we have aimed to test this hypothesis experimentally by examining the stability of whitlockite in basaltic magmas at 1.2 GPa and a temperature range of -1000- 1300degC.

  10. Identification and spatial distribution of light-toned deposits enriched in Al-phyllosilicates on the plateaus around Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Le Deit, L.; Flahaut, J.; Quantin, C.; Allemand, P.

    2009-12-01

    The plateaus around Valles Marineris consist in series of mafic rocks suggested to be flood basalts (McEwen et al., 1998), lavas interbedded with sediments (Malin and Edgett, 2000), layered intrusive rocks (Williams et al., 2003), or lava flows dated from the Noachian to the late Hesperian epochs (Scott and Carr, 1978). Recent studies show the occurrence of light layered deposits of hundred meters thick cropping out on plateaus near Ius Chasma, Melas Chasma, Candor Chasma, Juventae Chasma and Ganges Chasma deposited during the Hesperian epoch by fluvio-lacustrine processes (Weitz et al., 2009), or by air-fall processes (Le Deit et al., 2009). These layered deposits are enriched in hydrated minerals including opaline silica (Milliken et al., 2008), hydroxylated ferric sulfates (Bishop et al., 2009), and possibly Al-rich phyllosilicates (Le Deit et al., 2009). We identified another type of formation corresponding to light-toned massive deposits cropping out around Valles Marineris. It appears that these light-toned deposits are associated to bright, rough, and highly cratered terrains, located beneath a dark and thin capping unit. Previous studies report the occurrence of phyllosilicates on few locations around Valles Marineris based on OMEGA data analyses (Gondet et al., 2007; Carter et al., 2009). The analysis of CRISM data show that the light-toned deposits are associated with spectra displaying absorption bands at 1.4 μm, 1.9 μm, and a narrow band at 2.2 μm. These spectral characteristics are consistent with the presence of Al-rich phyllosilicates such as montmorillonite, or illite in the light-toned deposits. They constitute dozens of outcrops located on the plateaus south and east of Coprates Chasma and Capri Chasma, and west of Ganges Chasma. All outcrops investigated so far are present over Noachian terrains mapped as the unit Npl2 by Scott and Tanaka (1986), and Witbeck et al. (1991). These light-toned deposits could result from in situ aqueous alteration

  11. Crystal structure of Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2} and luminescence properties of Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 2+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwata, Tomoyuki; Haniuda, Masahide; Fukuda, Koichiro

    2008-01-15

    The crystal structure of Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2} was determined from laboratory X-ray powder diffraction data (CuK{alpha}{sub 1}) using the Rietveld method, with the anisotropic displacement parameters being assigned for all atoms. The crystal structure is cubic (space group I4-bar 3d, Z=2) with lattice dimensions a=1.200950(5) nm and V=1.73211(1) nm{sup 3}. The reliability indices calculated from the Rietveld method were R{sub wp}=8.48% (S=1.21), R{sub p}=6.05%, R{sub B}=1.27% and R{sub F}=1.01%. The validity of the structural model was verified by the three-dimensional electron density distribution, the structural bias of which was reduced as much as possible using the maximum-entropy methods-basedmore » pattern fitting (MPF). The reliability indices calculated from the MPF were R{sub B}=0.75% and R{sub F}=0.56%. In the structural model there are one Ca site, two Al sites, two O sites and one Cl site. This compound is isomorphous with Ca{sub 12}Al{sub 10.6}Si{sub 3.4}O{sub 32}Cl{sub 5.4}. Europium-doped sample Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 2+} was prepared and the photoluminescence properties were presented. The excitation spectrum consisted of two wide bands, which were located at about 268 and 324 nm. The emission spectrum, when excited at 324 nm, resulted in indigo light with a peak at about 442 nm. - Graphical abstract: A portion of the crystal structure of Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2} showing eight-membered AlO{sub 4} rings and Ca-Cl-Ca unit.« less

  12. Insights into the petrogenesis of low- and high-Ti basalts: Stratigraphy and geochemistry of four lava sequences from the central Paraná basin

    NASA Astrophysics Data System (ADS)

    De Min, Angelo; Callegaro, Sara; Marzoli, Andrea; Nardy, Antonio J.; Chiaradia, Massimo; Marques, Leila S.; Gabbarrini, Ilaria

    2018-04-01

    Lava flow sequences were sampled in the central part of the Paraná basin aiming to verify the time-related evolution of the Paraná basaltic magmatism. It is shown that low- and high-Ti basalts were erupted synchronously. In particular, Esmeralda and Pitanga flows are interlayered, with the former prevailing in the upper part of the sequence. Evidence for synchronously active magma plumbing systems is also supported by mineralogical data, showing signs of mixing between the two groups. Geochemical data, including Sr-Nd-Pb isotopic compositions are furthermore used to define the mantle source of various low- (Esmeralda and Gramado) and high-Ti (Pitanga and Urubici) magma types. Involvement of a carbonatitic component is proposed for the genesis of the basalts (particularly for the Urubici ones) as suggested by trace element enrichments unrelated to significant isotopic variations. This carbonatitic signature of the mantle source may be conveyed by CO2-rich metasomatic fluids or melts percolating upwards within the sub-continental lithospheric mantle (SCLM) leading to rapid and selective enrichment of incompatible trace elements. Metasomatism was probably localized at the outskirts of the basin, were Urubici tholeiites and contemporaneous carbonatites were erupted. Geochemical data also suggest the occurrence of significant amounts of crustal contamination in the LTi magmas (mainly in the Gramado and in the late Esmeralda lavas) while crustal assimilation seems negligible in the HTi samples. Globally, a very complex picture arises for the genesis of the Paraná tholeiites, with near-synchronous and geographically coincident flows undergoing significantly different extents of interaction with the crust and tapping different mantle sources.

  13. A new basaltic glass microanalytical reference material for multiple techniques

    USGS Publications Warehouse

    Wilson, Steve; Koenig, Alan; Lowers, Heather

    2012-01-01

    The U.S. Geological Survey (USGS) has been producing reference materials since the 1950s. Over 50 materials have been developed to cover bulk rock, sediment, and soils for the geological community. These materials are used globally in geochemistry, environmental, and analytical laboratories that perform bulk chemistry and/or microanalysis for instrument calibration and quality assurance testing. To answer the growing demand for higher spatial resolution and sensitivity, there is a need to create a new generation of microanalytical reference materials suitable for a variety of techniques, such as scanning electron microscopy/X-ray spectrometry (SEM/EDS), electron probe microanalysis (EPMA), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS). As such, the microanalytical reference material (MRM) needs to be stable under the beam, be homogeneous at scales of better than 10–25 micrometers for the major to ultra-trace element level, and contain all of the analytes (elements or isotopes) of interest. Previous development of basaltic glasses intended for LA-ICP-MS has resulted in a synthetic basaltic matrix series of glasses (USGS GS-series) and a natural basalt series of glasses (BCR-1G, BHVO-2G, and NKT-1G). These materials have been useful for the LA-ICP-MS community but were not originally intended for use by the electron or ion beam community. A material developed from start to finish with intended use in multiple microanalytical instruments would be useful for inter-laboratory and inter-instrument platform comparisons. This article summarizes the experiments undertaken to produce a basalt glass reference material suitable for distribution as a multiple-technique round robin material. The goal of the analytical work presented here is to demonstrate that the elemental homogeneity of the new glass is acceptable for its use as a reference material. Because the round robin exercise is still underway, only

  14. Feldspar palaeo-isochrons from early Archaean TTGs: Pb-isotope evidence for a high U/Pb terrestrial Hadean crust

    NASA Astrophysics Data System (ADS)

    Kamber, B. S.; Whitehouse, M. J.; Moorbath, S.; Collerson, K. D.

    2001-12-01

    Feldspar lead-isotope data for 22 early Archaean (3.80-3.82 Ga) tonalitic gneisses from an area south of the Isua greenstone belt (IGB),West Greenland, define a steep linear trend in common Pb-isotope space with an apparent age of 4480+/-77 Ma. Feldspars from interleaved amphibolites yield a similar array corresponding to a date of 4455+/-540 Ma. These regression lines are palaeo-isochrons that formed during feldspar-whole rock Pb-isotope homogenisation a long time (1.8 Ga) after rock formation but confirm the extreme antiquity (3.81 Ga) of the gneissic protoliths [1; this study]. Unlike their whole-rock counterparts, feldspar palaeo-isochrons are immune to rotational effects caused by the vagaries of U/Pb fractionation. Hence, comparison of their intercept with mantle Pb-isotope evolution models yields meaningful information regarding the source history of the magmatic precursors. The locus of intersection between the palaeo-isochrons and terrestrial mantle Pb-isotope evolution lines shows that the gneissic precursors of these 3.81 Ga gneisses were derived from a source with a substantially higher time-integrated U/Pb ratio than the mantle. Similar requirements for a high U/Pb source have been found for IGB BIF [2], IGB carbonate [3], and particularly IGB galenas [4]. Significantly, a single high U/Pb source that separated from the MORB-source mantle at ca. 4.3 Ga with a 238U/204Pb of ca. 10.5 provides a good fit to all these observations. In contrast to many previous models based on Nd and Hf-isotope evidence we propose that this reservoir was not a mantle source but the Hadean basaltic crust which, in the absence of an operating subduction process, encased the early Earth. Differentiation of the early high U/Pb basaltic crust could have occurred in response to gravitational sinking of cold mantle material or meteorite impact, and produced zircon-bearing magmatic rocks. The subchondritic Hf-isotope ratios of ca. 3.8 Ga zircons support this model [5] provided that

  15. Numerically Simulating Carbonate Mineralization of Basalt with Injection of Carbon Dioxide into Deep Saline Formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Mark D.; McGrail, B. Peter; Schaef, Herbert T.

    2006-07-08

    The principal mechanisms for the geologic sequestration of carbon dioxide in deep saline formations include geological structural trapping, hydrological entrapment of nonwetting fluids, aqueous phase dissolution and ionization, and geochemical sorption and mineralization. In sedimentary saline formations the dominant mechanisms are structural and dissolution trapping, with moderate to weak contributions from hydrological and geochemical trapping; where, hydrological trapping occurs during the imbibition of aqueous solution into pore spaces occupied by gaseous carbon dioxide, and geochemical trapping is controlled by generally slow reaction kinetics. In addition to being globally abundant and vast, deep basaltic lava formations offer mineralization kinetics that makemore » geochemical trapping a dominate mechanism for trapping carbon dioxide in these formations. For several decades the United States Department of Energy has been investigating Columbia River basalt in the Pacific Northwest as part of its environmental programs and options for natural gas storage. Recently this nonpotable and extensively characterized basalt formation is being reconsidered as a potential reservoir for geologic sequestration of carbon dioxide. The reservoir has an estimated storage capacity of 100 giga tonnes of carbon dioxide and comprises layered basalt flows with sublayering that generally alternates between low permeability massive and high permeability breccia. Chemical analysis of the formation shows 10 wt% Fe, primarily in the +2 valence. The mineralization reaction that makes basalt formations attractive for carbon dioxide sequestration is that of calcium, magnesium, and iron silicates reacting with dissolved carbon dioxide, producing carbonate minerals and amorphous quartz. Preliminary estimates of the kinetics of the silicate-to-carbonate reactions have been determined experimentally and this research is continuing to determine effects of temperature, pressure, rock

  16. Oxygen Fugacity of Mare Basalts and the Lunar Mantle Application of a New Microscale Oxybarometer Based on the Valence State of Vanadium

    NASA Technical Reports Server (NTRS)

    Shearer, C. K.; Karner, J.; Papike, J. J.; Sutton, S. R.

    2004-01-01

    The ability to estimate oxygen fugacities for mare basalts and to extend these observations to the lunar mantle is limited using bulk analysis techniques based on buffering assemblages or the valence state of iron. These limitations are due to reequilibration of mineral assemblages at subsolidus conditions, deviations of mineral compositions from thermodynamic ideality, size requirements, and the limits of the iron valence at very low fO2. Still, these approaches have been helpful and indicate that mare basalts crystallized at fO2 between the iron-w stite buffer (IW) and the ilmenite breakdown reaction (ilmenite = rutile + iron). It has also been inferred from these estimates that the lunar mantle is also highly reduced lying at conditions below IW. Generally, these data cannot be used to determine if the mare basalts become increasingly reduced during transport from their mantle source and eruption at the lunar surface and if there are differences in fO2 among mare basalts or mantle sources. One promising approach to determining the fO2 of mare basalts is using the mean valence of vanadium (2+, 3+, 4+, 5+) determined on spots of a few micrometers in diameter using synchrotron x-ray absorption fine structure (XAFS) spectroscopy. The average valence state of V in basaltic glasses is a function of fO2, temperature, V coordination, and melt composition. Here, we report the initial results of this approach applied to lunar pyroclastic glasses.

  17. Tracking the weathering of basalts on Mars using lithium isotope fractionation models

    PubMed Central

    Losa‐Adams, Elisabeth; Gil‐Lozano, Carolina; Gago‐Duport, Luis; Uceda, Esther R.; Squyres, Steven W.; Rodríguez, J. Alexis P.; Davila, Alfonso F.; McKay, Christopher P.

    2015-01-01

    Abstract Lithium (Li), the lightest of the alkali elements, has geochemical properties that include high aqueous solubility (Li is the most fluid mobile element) and high relative abundance in basalt‐forming minerals (values ranking between 0.2 and 12 ppm). Li isotopes are particularly subject to fractionation because the two stable isotopes of lithium—7Li and 6Li—have a large relative mass difference (∼15%) that results in significant fractionation between water and solid phases. The extent of Li isotope fractionation during aqueous alteration of basalt depends on the dissolution rate of primary minerals—the source of Li—and on the precipitation kinetics, leading to formation of secondary phases. Consequently, a detailed analysis of Li isotopic ratios in both solution and secondary mineral lattices could provide clues about past Martian weathering conditions, including weathering extent, temperature, pH, supersaturation, and evaporation rate of the initial solutions in contact with basalt rocks. In this paper, we discuss ways in which Martian aqueous processes could have lead to Li isotope fractionation. We show that Li isotopic data obtained by future exploration of Mars could be relevant to highlighting different processes of Li isotopic fractionation in the past, and therefore to understanding basalt weathering and environmental conditions early in the planet's history. PMID:27642264

  18. Czochralski growth of 2 in. Ca3Ta(Ga,Al)3Si2O14 single crystals for piezoelectric applications

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akira; Shoji, Yasuhiro; Ohashi, Yuji; Yokota, Yuui; Chani, Valery I.; Kitahara, Masanori; Kudo, Tetsuo; Kamada, Kei; Kurosawa, Shunsuke; Medvedev, Andrey; Kochurikhin, Vladimir

    2016-10-01

    Growth of 2-in. diameter Al-substituted Ca3TaGa3Si2O14 crystals by Czochralski method is reported. The crystals were grown from the melt of Ca3TaGa1.5Al1.5Si2O14 composition and had langasite structure. No inclusions of secondary phases were detected in these crystals. The Ca3Ta(Ga,Al)3Si2O14 mixed crystals produced using non-substituted Ca3TaGa3Si2O14 seeds were defective. They had cracks and/or poly-crystalline structure. However, those grown on the seed of approximately Ca3TaGa1.5Al1.5Si2O14 composition were defect-free. Phase diagram of the Ca3TaGa3Si2O14-Ca3TaAl3Si2O14 pseudo-binary system and segregation phenomenon are discussed in some details. Homogeneity of the crystals was evaluated by measuring 2D-mapping of leaky surface acoustic wave (LSAW) velocities for Y-cut Ca3TaGa1.5Al1.5Si2O14 substrate. Although some inhomogeneities were observed due to slight variations in chemical composition, the crystal had acceptable homogeneity for applications in acoustic wave devices exhibiting the LSAW velocity variation within ±0.048%.

  19. Assimilation by lunar mare basalts: Melting of crustal material and dissolution of anorthite

    NASA Astrophysics Data System (ADS)

    Finnila, A. B.; Hess, P. C.; Rutherford, M. J.

    1994-07-01

    We discuss techniques for calculating the amount of crustal assimilation possible in lunar magma chambers and dikes based on thermal energy balances, kinetic rates, and simple fluid mechanical constraints. Assuming parent magmas of picritic compositions, we demonstrate the limits on the capacity of such magmas to melt and dissolve wall rock of anorthitic, troctolitic, noritic, and KREEP (quartz monzodiorite) compositions. Significant melting of the plagioclase-rich crustal lithologies requires turbulent convection in the assimilating magma and an efficient method of mixing in the relatively buoyant and viscous new melt. Even when this occurs, the major element chemistry of the picritic magmas will change by less than 1-2 wt %. Diffusion coefficients measured for Al2O3 from an iron-free basalt and an orange glass composition are 10-12 sq m/s at 1340 C and 10-11 sq m/s at 1390 C. These rates are too slow to allow dissolution of plagioclase to significantly affect magma compositions. Picritic magmas can melt significant quantities of KREEP, which suggests that their trace element chemistry may still be affected by assimilation processes; however, mixing viscous melts of KREEP composition with the fluid picritic magmas could be prohibitively difficult. We conclude that only a small part of the total major element chemical variation in the mare basalt and volcanic glass collection is due to assimilation/fractional crystallization processes near the lunar surface. Instead, most of the chemical variation in the lunar basalts and volcanic glasses must result from assimilation at deeper levels or from having distinct source regions in a heterogeneous lunar mantle.

  20. Injection and Monitoring at the Wallula Basalt Pilot Project

    DOE PAGES

    McGrail, B. Peter; Spane, Frank A.; Amonette, James E.; ...

    2014-01-01

    Continental flood basalts represent one of the largest geologic structures on earth but have received comparatively little attention for geologic storage of CO2. Flood basalt lava flows have flow tops that are porous, permeable, and have large potential capacity for storage of CO2. In appropriate geologic settings, interbedded sediment layers and dense low-permeability basalt rock flow interior sections may act as effective seals allowing time for mineralization reactions to occur. Previous laboratory experiments showed the relatively rapid chemical reaction of CO2-saturated pore water with basalts to form stable carbonate minerals. However, recent laboratory tests with water-saturated supercritical CO2 show thatmore » mineralization reactions occur in this phase as well, providing a second and potentially more important mineralization pathway than was previously understood. Field testing of these concepts is proceeding with drilling of the world’s first supercritical CO2 injection well in flood basalt being completed in May 2009 near the township of Wallula in Washington State and corresponding CO2 injection permit granted by the State of Washington in March 2011. Injection of a nominal 1000 MT of CO2 was completed in August 2013 and site monitoring is in progress. Well logging conducted immediately after injection termination confirmed the presence of CO2 predominantly within the upper flow top region, and showed no evidence of vertical CO2 migration outside the well casing. Shallow soil gas samples collected around the injection well show no evidence of leakage and fluid and gas samples collected from the injection zone show strongly elevated concentrations of Ca, Mg, Mn, and Fe and 13C/18O isotopic shifts that are consistent with basalt-water chemical reactions. If proven viable by this field test and others that are in progress or being planned, major flood basalts in the U.S., India, and perhaps Australia would provide significant additional CO2 storage