Science.gov

Sample records for a-2 low-energy detector

  1. HEAO 1 A-2 low-energy detector X-ray spectra of the Lupus Loop and SN 1006

    NASA Technical Reports Server (NTRS)

    Leahy, D. A.; Nousek, J.; Hamilton, A. J. S.

    1991-01-01

    The Lupus Loop and SN 1006 were observed by the A-2 low-energy detector proportional counters on the HEAO 1 satellite as part of the all-sky survey. As a result of a major advance in understanding of detector response and background accurate analysis of the data has become possible. Soft X-ray spectra for both supernova remnants were constructed from the PHA data taken during the scanning observations. Single-temperature and two-temperature Raymond-Smith models were fitted to the observed spectra. In addition, power-law and power-law plus one-temperature models were fitted to the spectrum of SN 1006. Only two-component models provide an adequate description for both Lupus Loop and SN 1006 spectra. The temperatures, column densities, and emission measures are significantly more accurate than previous results.

  2. HEAO 1 A-2 low-energy detector X-ray spectra of the Lupus Loop and SN 1006

    SciTech Connect

    Leahy, D.A.; Nousek, J.; Hamilton, A.J.S. Pennsylvania State University, University Park Joint Institute for Laboratory Astrophysics, Boulder, CO )

    1991-06-01

    The Lupus Loop and SN 1006 were observed by the A-2 low-energy detector proportional counters on the HEAO 1 satellite as part of the all-sky survey. As a result of a major advance in understanding of detector response and background accurate analysis of the data has become possible. Soft X-ray spectra for both supernova remnants were constructed from the PHA data taken during the scanning observations. Single-temperature and two-temperature Raymond-Smith models were fitted to the observed spectra. In addition, power-law and power-law plus one-temperature models were fitted to the spectrum of SN 1006. Only two-component models provide an adequate description for both Lupus Loop and SN 1006 spectra. The temperatures, column densities, and emission measures are significantly more accurate than previous results. 29 refs.

  3. The Simbol-X Low Energy Detector

    SciTech Connect

    Lechner, Peter

    2009-05-11

    For the Low Energy Detector of Simbol-X a new type of active pixel sensor based on the integrated amplifier DEPFET has been developed. This concept combines large area, scalable pixel size, low noise, and ultra-fast readout. Flight representative prototypes have been processed with a performance matching the Simbol-X specifications and demonstrating the technology readiness.

  4. The Simbol-X Low Energy Detector

    NASA Astrophysics Data System (ADS)

    Lechner, Peter

    2009-05-01

    For the Low Energy Detector of Simbol-X a new type of active pixel sensor based on the integrated amplifier DEPFET has been developed. This concept combines large area, scalable pixel size, low noise, and ultra-fast readout. Flight representative prototypes have been processed with a performance matching the Simbol-X specifications and demonstrating the technology readiness.

  5. Dual concentric crystal low energy photon detector

    DOEpatents

    Guilmette, R.A.

    A photon detector for biological samples includes a block of NaI(T1) having a hole containing a thin walled cylinder of CsI(T1). At least three photo multiplier tubes are evenly spaced around the parameter of the block. Biological samples are placed within the hole, and emissions which are sensed by at least two of the photo multipliers from only the NaI(T1) detector are counted.

  6. HEAO-1 analysis of Low Energy Detectors (LED)

    NASA Technical Reports Server (NTRS)

    Nousek, John A.

    1992-01-01

    The activities at Penn State University are described. During the period Oct. 1990 to Dec. 1991 work on HEAO-1 analysis of the Low Energy Detectors (LED) concentrated on using the improved detector spectral simulation model and fitting diffuse x-ray background spectral data. Spectral fitting results, x-ray point sources, and diffuse x-ray sources are described.

  7. The low energy detector of Simbol-X

    NASA Astrophysics Data System (ADS)

    Lechner, P.; Andricek, L.; Briel, U.; Hasinger, G.; Heinzinger, K.; Herrmann, S.; Huber, H.; Kendziorra, E.; Lauf, T.; Lutz, G.; Richter, R.; Santangelo, A.; Schaller, G.; Schnecke, M.; Schopper, F.; Segneri, G.; Strüder, L.; Treis, J.

    2008-07-01

    Simbol-X is a French-Italian-German hard energy X-ray mission with a projected launch in 2014. Being sensitive in the energy range from 500 eV to 80 keV it will cover the sensitivity gap beyond the energy interval of today's telescopes XMM-Newton and Chandra. Simbol-X will use an imaging telescope of nested Wolter-I mirrors. To provide a focal length of 20 m it will be the first mission of two independent mirror and detector spacecrafts in autonomous formation flight. The detector spacecraft's payload is composed of an imaging silicon low energy detector in front of a pixelated cadmium-telluride hard energy detector. Both have a sensitive area of 8 × 8 cm2 to cover a 12 arcmin field of view and a pixel size of 625 × 625 μm2 adapted to the telescope's resolution of 20 arcsec. The additional LED specifications are: high energy resolution, high quantum efficiency, fast readout and optional window mode, monolithic device with 100 % fill factor and suspension mounting, and operation at warm temperature. To match these requirements the low energy detector is composed of 'active macro pixels', combining the large, scalable area of a Silicon Drift Detector and the low-noise, on-demand readout of an integrated DEPFET amplifier. Flight representative prototypes have been processed at the MPI semiconductor laboratory, and the prototype's measured performance demonstrates the technology readiness.

  8. HgI sub 2 low energy beta particle detector

    SciTech Connect

    Shah, K.S.; Squillante, M.R.; Entine, G. )

    1990-04-01

    This paper reports on a HgI{sub 2} device structure designed and tested which allows HgI{sub 2} to be used to make low energy beta particle detectors. The devices detected tritium beta particles with about a 25% efficiency. In addition, an encapsulation scheme was identified which has the potential to protect the devices while permitting most of the beta particles to reach the active region.

  9. HgI2 low energy beta particle detector

    NASA Technical Reports Server (NTRS)

    Shah, K. S.; Squillante, M. R.; Entine, G.

    1990-01-01

    An HgI2 device structure was designed and tested which allows HgI2 to be used to make low-energy beta-particle detectors. The devices detected tritium beta particles with an efficiency of about 25 percent. A protective encapsulant has been developed which should protect the devices for up to 20 years and will attenuate only a small fraction of the beta particles. It is noted that the devices hold significant promise to provide a practical alternative to liquid scintillation counters and gas flow-through proportional counters.

  10. A directional low energy gamma-ray detector

    NASA Technical Reports Server (NTRS)

    Morfill, G.; Pieper, G. F.

    1973-01-01

    The sensitivity of a directional gamma ray detector, which relies on blocking a source to determine its direction and energy spectrum, is calculated and compared to the more conventional well shaped shielded detectors. It is shown that such an anticollimator detection system provides a basis for measuring the celestial diffuse gamma ray background, gamma ray sources and bursts with good energy, angular, and time resolution, and that additionally the system is 20 to 50 times as sensitive as conventional detectors when compared on a per unit mass basis.

  11. A directional low energy gamma-ray detector

    NASA Technical Reports Server (NTRS)

    Morfill, G.; Pieper, G. F.

    1973-01-01

    The sensitivity of a directional gamma ray detector, which relies on blocking a source to determine its direction and energy spectrum, is calculated and compared to the more conventional well-shaped shielded detectors. It is shown that such an anticollimator detection system provides a basis for measuring the celestial diffuse gamma ray background, gamma ray sources and bursts with good energy, angular, and time resolution, and that additionally the system is 20 to 50 times as sensitive as conventional detectors when compared on a per unit mass basis.

  12. High resolution, low energy avalanche photodiode X-ray detectors

    NASA Technical Reports Server (NTRS)

    Farrell, R.; Vanderpuye, K.; Entine, G.; Squillante, M. R.

    1991-01-01

    Silicon avalanche photodiodes have been fabricated, and their performance as X-ray detectors has been measured. Photon sensitivity and energy resolution were measured as a function of size and operating parameters. Noise thresholds as low as 212 eV were obtained at room temperature, and backscatter X-ray fluorescence data were obtained for aluminum and other light elements. It is concluded that the results with the X-ray detector are extremely encouraging, and the performance is challenging the best available proportional counters. While not at the performance level of either cryogenic silicon or HgI2, these device operate at room temperature and can be reproduced in large numbers and with much larger areas than typically achieved with HgI2. In addition, they are rugged and appear to be indefinitely stable.

  13. Detectors for low energy electron cooling in RHIC

    SciTech Connect

    Carlier, F. S.

    2016-02-15

    Low energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions between the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted turned by 180-degrees and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.

  14. A Fast Event Preprocessor and Sequencer for the Simbol-X Low Energy Detector

    SciTech Connect

    Schanz, T.; Tenzer, C.; Maier, D.; Kendziorra, E.; Santangelo, A.

    2009-05-11

    The Simbol-X Low Energy Detector (LED), a 128x128 pixel DEPFET (Depleted Field Effect Transistor) array, will be read out at a very high rate (8000 frames/second) and, therefore, requires a very fast on board electronics. We present an FPGA-based LED camera electronics consisting of an Event Preprocessor (EPP) for on board data preprocessing and filtering of the Simbol-X low-energy detector and a related Sequencer (SEQ) to generate the necessary signals to control the readout.

  15. A Fast Event Preprocessor and Sequencer for the Simbol-X Low Energy Detector

    NASA Astrophysics Data System (ADS)

    Schanz, T.; Tenzer, C.; Maier, D.; Kendziorra, E.; Santangelo, A.

    2009-05-01

    The Simbol-X Low Energy Detector (LED), a 128×128 pixel DEPFET (Depleted Field Effect Transistor) array, will be read out at a very high rate (8000 frames/second) and, therefore, requires a very fast on board electronics. We present an FPGA-based LED camera electronics consisting of an Event Preprocessor (EPP) for on board data preprocessing and filtering of the Simbol-X low-energy detector and a related Sequencer (SEQ) to generate the necessary signals to control the readout.

  16. The soft X-ray diffuse background observed with the HEAO 1 low-energy detectors

    NASA Technical Reports Server (NTRS)

    Garmire, G. P.; Nousek, J. A.; Apparao, K. M. V.; Burrows, D. N.; Fink, R. L.; Kraft, R. P.

    1992-01-01

    Results of a study of the diffuse soft-X-ray background as observed by the low-energy detectors of the A-2 experiment aboard the HEAO 1 satellite are reported. The observed sky intensities are presented as maps of the diffuse X-ray background sky in several energy bands covering the energy range 0.15-2.8 keV. It is found that the soft X-ray diffuse background (SXDB) between 1.5 and 2.8 keV, assuming a power law form with photon number index 1.4, has a normalization constant of 10.5 +/- 1.0 photons/sq cm s sr keV. Below 1.5 keV the spectrum of the SXDB exceeds the extrapolation of this power law. The low-energy excess for the NEP can be fitted with emission from a two-temperature equilibrium plasma model with the temperatures given by log I1 = 6.16 and log T2 = 6.33. It is found that this model is able to account for the spectrum below 1 keV, but fails to yield the observed Galactic latitude variation.

  17. Theoretical consideration of the energy resolution in planar HPGe detectors for low energy X-rays

    SciTech Connect

    Samedov, Victor V.

    2015-07-01

    In this work, theoretical consideration of the processes in planar High Purity Ge (HPGe) detectors for low energy X-rays using the random stochastic processes formalism was carried out. Using the random stochastic processes formalism, the generating function of the processes of X-rays registration in a planar HPGe detector was derived. The power serial expansions of the detector amplitude and the variance in terms of the inverse bias voltage were derived. The coefficients of these expansions allow determining the Fano factor, electron mobility lifetime product, nonuniformity of the trap density, and other characteristics of the semiconductor material. (authors)

  18. Scintillation efficiency for low energy nuclear recoils in liquid xenon dark matter detectors

    NASA Astrophysics Data System (ADS)

    Mu, Wei; Xiong, Xiaonu; Ji, Xiangdong

    2015-02-01

    We perform a theoretical study of the scintillation efficiency of the low energy region crucial for liquid xenon dark matter detectors. We develop a computer program to simulate the cascading process of the recoiling xenon nucleus in liquid xenon and calculate the nuclear quenching effect due to atomic collisions. We use the electronic stopping power extrapolated from experimental data to the low energy region, and take into account the effects of electron escape from electron-ion pair recombination using the generalized Thomas-Imel model fitted to scintillation data. Our result agrees well with the experiments from neutron scattering and vanishes rapidly as the recoil energy drops below 3 keV.

  19. The scientific results of the low energy portion of A-2

    NASA Technical Reports Server (NTRS)

    Garmire, G.

    1979-01-01

    Galactic phenomena observed using the HEAO 1 detectors are discussed. A source map of the soft X-ray sky is presented. Specific topics covered include the optical outburst of U Geminorum, low energy RS CVn stars, and the dwarf nova SS Cygni. Aspects of the SS Cygni pulsations are analyzed.

  20. Low energy x-ray response of Ge detectors with amorphous Ge entrance contacts

    SciTech Connect

    Luke, P.N.; Rossington, C.S.; Wesela, M.F.

    1993-10-01

    The low energy x-ray response of GI detectors with amorphous GI entrance contacts has been evaluated. The spectral background due to near contact incomplete charge collection was found to consist of two components: a low level component which is insensitive to applied voltage and a high level step-like component which is voltage dependent. At high operating voltages, the high level component can be completely suppressed, resulting in background levels which are much lower than those previously observed using GI detectors with Pd surface barrier or B ion implanted contacts, and which also compare favorably to those obtained with Si(Li) x-ray detectors. The response of these detectors to {sup 55}Fe and 1.77 keV x-rays is shown. A qualitative explanation of the origins of the observed background components is presented.

  1. Neutrino Physics and Dark Matter Physics with Ultra-Low-Energy Germanium Detector

    SciTech Connect

    Shin-Ted, Lin

    2008-10-10

    The status and plans of the TEXONO Collaboration on the development of ultra-low-energy germanium detectors with sub-keV sensitivities are reported. We survey the scientific goals which include the observation of neutrino-nucleus coherent scattering, the studies of neutrino magnetic moments, as well as the searches of WIMP dark matter. In particular, an energy threshold of 220{+-}10 eV at an efficiency of 50% were achieved with a four-channel prototype detectors each of an active mass of 5 g. New limits were set for WIMPs with mass between 3-6 GeV. The prospects of the realization of full-scale experiments are discussed. This detector technique makes the unexplored sub-keV energy window accessible for new neutrino and dark matter experiments.

  2. Thick Silicon Double-Sided Strip Detectors for Low-Energy Small-Animal SPECT

    PubMed Central

    Shokouhi, Sepideh; McDonald, Benjamin S.; Durko, Heather L.; Fritz, Mark A.; Furenlid, Lars R.; Peterson, Todd E.

    2010-01-01

    This work presents characterization studies of thick silicon double-sided strip detectors for a high-resolution small-animal SPECT. The dimension of these detectors is 60.4 mm × 60.4 mm × 1 mm. There are 1024 strips on each side that give the coordinates of the photon interaction, with each strip processed by a separate ASIC channel. Our measurement shows that intrinsic spatial resolution equivalent to the 59 μm strip pitch is attainable. Good trigger uniformity can be achieved by proper setting of a 4-bit DAC in each ASIC channel to remove trigger threshold variations. This is particularly important for triggering at low energies. The thick silicon DSSD (Double-sided strip detector) shows high potential for small-animal SPECT. PMID:20686626

  3. ELENA MCP detector: absolute detection efficiency for low-energy neutral atoms

    NASA Astrophysics Data System (ADS)

    Rispoli, R.; De Angelis, E.; Colasanti, L.; Vertolli, N.; Orsini, S.; Scheer, J. A.; Mura, A.; Milillo, A.; Wurz, P.; Selci, S.; Di Lellis, A. M.; Leoni, R.; D'Alessandro, M.; Mattioli, F.; Cibella, S.

    2012-09-01

    Microchannel Plates (MCP) detectors are frequently used in space instrumentation for detecting a wide range of radiation and particles. In particular, the capability to detect non-thermal low energy neutral species is crucial for the sensor ELENA (Emitted Low-Energy Neutral Atoms), part of the package SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) on board the BepiColombo mission of ESA to Mercury to be launched in 2015. ELENA is a Time of Flight (TOF) sensor, based on a novel concept using an ultra-sonic oscillating shutter (Start section), which is operated at frequencies up to 50 kHz; a MCP detector is used as a Stop detector. The scientific objective of ELENA is to detect energetic neutral atoms in the range 10 eV - 5 keV, within 76° FOV, perpendicular to the S/C orbital plane. ELENA will monitor the emission of neutral atoms from the whole surface of Mercury thanks to the spacecraft motion. The major scientific objectives are the interaction between the plasma environment and the planet’s surface, the global particle loss-rate and the remote sensing of the surface properties. In particular, surface release processes are investigated by identifying particles released from the surface, via solar wind-induced ion sputtering (< 1eV - < 100 eV) as well as Hydrogen back-scattered at hundreds eV. MCP absolute detection efficiency for very low energy neutral atoms (E < 30 eV) is a crucial point for this investigation. At the MEFISTO facility of the Physical Institute of the University of Bern (CH), measurements on three different types of MCP (with and without coating) have been performed providing the detection efficiencies in the energy range 10eV - 1keV. Outcomes from such measurements are discussed here.

  4. Spectroscopy of low energy solar neutrinos using CdTe detectors

    NASA Astrophysics Data System (ADS)

    Zuber, K.

    2003-10-01

    The usage of a large amount of CdTe(CdZnTe) semiconductor detectors for solar neutrino spectroscopy in the low energy region is investigated. Several different coincidence signals can be formed on five different isotopes to measure the 7Be neutrino line at 862 keV in real-time. The most promising one is the usage of 116Cd resulting in 227 SNU. The presence of 125Te permits even the real-time detection of pp-neutrinos. A possible antineutrino flux above 713 keV might be detected by capture on 106Cd.

  5. A systematic characterization of the low-energy photon response of plastic scintillation detectors

    NASA Astrophysics Data System (ADS)

    Boivin, Jonathan; Beddar, Sam; Bonde, Chris; Schmidt, Daniel; Culberson, Wesley; Guillemette, Maxime; Beaulieu, Luc

    2016-08-01

    To characterize the low energy behavior of scintillating materials used in plastic scintillation detectors (PSDs), 3 PSDs were developed using polystyrene-based scintillating materials emitting in different wavelengths. These detectors were exposed to National Institute of Standards and Technology (NIST)-matched low-energy beams ranging from 20 kVp to 250 kVp, and to 137Cs and 60Co beams. The dose in polystyrene was compared to the dose in air measured by NIST-calibrated ionization chambers at the same location. Analysis of every beam quality spectrum was used to extract the beam parameters and the effective mass energy-absorption coefficient. Monte Carlo simulations were also performed to calculate the energy absorbed in the scintillators’ volume. The scintillators’ expected response was then compared to the experimental measurements and an energy-dependent correction factor was identified to account for low-energy quenching in the scintillators. The empirical Birks model was then compared to these values to verify its validity for low-energy electrons. The clear optical fiber response was below 0.2% of the scintillator’s light for x-ray beams, indicating that a negligible amount of fluorescence contamination was produced. However, for higher-energy beams (137Cs and 60Co), the scintillators’ response was corrected for the Cerenkov stem effect. The scintillators’ response increased by a factor of approximately 4 from a 20 kVp to a 60Co beam. The decrease in sensitivity from ionization quenching reached a local minimum of about 11%+/- 1% between 40 keV and 60 keV x-ray beam mean energy, but dropped by 20% for very low-energy (13 keV) beams. The Birks model may be used to fit the experimental data, but it must take into account the energy dependence of the kB quenching parameter. A detailed comprehension of intrinsic scintillator response is essential for proper calibration of PSD dosimeters for radiology.

  6. ELENA MCP detector: absolute efficiency measurement for low energy neutral atoms

    NASA Astrophysics Data System (ADS)

    Rispoli, R.; De Angelis, E.; Colasanti, L.; Vertolli, N.; Orsini, S.; Scheer, J.; Mura, A.; Milillo, A.; Wurz, P.; Selci, S.; Di Lellis, A. M.; Leoni, R.; D'Alessandro, M.; Mattioli, F.; Cibella, S.

    2012-04-01

    MicroChannel plates (MCP) detectors are frequently used in space instrumentation for detecting a wide range of radiation and particles. In particular, the capability to detect non-thermal low energy neutral species is crucial for the sensor ELENA (Emitted Low-Energy Neutral Atoms), part of the package SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) on board the BepiColombo mission to Mercury to be launched in 2014. ELENA is a TOF sensor, based on a novel concept ultra-sonic oscillating shutter (Start section)which is operated at frequencies up to 50 kHz; a MCP detector is used as a Stop section. It is aimed to detect neutral atoms in the range 10 eV - 5 keV, within 70° FOV, perpendicular to the S/C orbital plane. ELENA will monitor the emission of neutral atoms from the whole surface of Mercury thanks to the spacecraft motion. The major scientific objectives are the interaction between the environment and the planet, the global particle loss-rate and the remote sensing of the surface properties. In particular, surface release processes are investigated by identifying particles release from the surface, via solar wind-induced ion sputtering (<1eV and >100 eV) as well as Hydrogen back-scattered at hundreds eV. MCP absolute detection efficiency for very low energy neutral atoms (E< 30eV) is a crucial point not yet investigated. At the MEFISTO facility of the Physical Institute of University of Bern (CH), measurements on three different type of MCPs coating have been performed providing the behaviors of MCP detection efficiency in the range 10eV-1keV. Outcomes from such measurements are here discussed.

  7. Performance of the Versatile Array of Neutron Detectors at Low Energy (VANDLE)

    SciTech Connect

    Peters, W. A.; Ilyushkin, S.; Madurga, M.; Matei, C.; Paulauskas, S. V.; Grzywacz, R. K.; Bardayan, D. W.; Brune, C. R.; Allen, J.; Allen, J. M.; Bergstrom, Z.; Blackmon, J.; Brewer, N. T.; Cizewski, J. A.; Copp, P.; Howard, M. E.; Ikeyama, R.; Kozub, R. L.; Manning, B.; Massey, T. N.; Matos, M.; Merino, E.; O'Malley, P. D.; Raiola, F.; Reingold, C. S.; Sarazin, F.; Spassova, I.; Taylor, S.; Walter, D.

    2016-08-26

    The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a new, highly efficient plastic-scintillator array constructed for decay and transfer reaction experimental setups that require neutron detection. The versatile and modular design allows for customizable experimental setups including beta-delayed neutron spectroscopy and (d,n) transfer reactions in normal and inverse kinematics. The neutron energy and prompt-photon discrimination is determined through the time of flight technique. Fully digital data acquisition electronics and integrated triggering logic enables some VANDLE modules to achieve an intrinsic efficiency over 70% for 300-keV neutrons, measured through two different methods. A custom Geant4 simulation models aspects of the detector array and the experimental setups to determine efficiency and detector response. Lastly, a low detection threshold, due to the trigger logic and digitizing data acquisition, allowed us to measure the light-yield response curve from elastically scattered carbon nuclei inside the scintillating plastic from incident neutrons with kinetic energies below 2 MeV.

  8. Performance of the Versatile Array of Neutron Detectors at Low Energy (VANDLE)

    NASA Astrophysics Data System (ADS)

    Peters, W. A.; Ilyushkin, S.; Madurga, M.; Matei, C.; Paulauskas, S. V.; Grzywacz, R. K.; Bardayan, D. W.; Brune, C. R.; Allen, J.; Allen, J. M.; Bergstrom, Z.; Blackmon, J.; Brewer, N. T.; Cizewski, J. A.; Copp, P.; Howard, M. E.; Ikeyama, R.; Kozub, R. L.; Manning, B.; Massey, T. N.; Matos, M.; Merino, E.; O'Malley, P. D.; Raiola, F.; Reingold, C. S.; Sarazin, F.; Spassova, I.; Taylor, S.; Walter, D.

    2016-11-01

    The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a new, highly efficient plastic-scintillator array constructed for decay and transfer reaction experimental setups that require neutron detection. The versatile and modular design allows for customizable experimental setups including beta-delayed neutron spectroscopy and (d,n) transfer reactions in normal and inverse kinematics. The neutron energy and prompt-photon discrimination is determined through the time of flight technique. Fully digital data acquisition electronics and integrated triggering logic enables some VANDLE modules to achieve an intrinsic efficiency over 70% for 300-keV neutrons, measured through two different methods. A custom GEANT4 simulation models aspects of the detector array and the experimental setups to determine efficiency and detector response. A low detection threshold, due to the trigger logic and digitizing data acquisition, allowed us to measure the light-yield response curve from elastically scattered carbon nuclei inside the scintillating plastic from incident neutrons with kinetic energies below 2 MeV.

  9. Performance of the Versatile Array of Neutron Detectors at Low Energy (VANDLE)

    DOE PAGES

    Peters, W. A.; Ilyushkin, S.; Madurga, M.; ...

    2016-08-26

    The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a new, highly efficient plastic-scintillator array constructed for decay and transfer reaction experimental setups that require neutron detection. The versatile and modular design allows for customizable experimental setups including beta-delayed neutron spectroscopy and (d,n) transfer reactions in normal and inverse kinematics. The neutron energy and prompt-photon discrimination is determined through the time of flight technique. Fully digital data acquisition electronics and integrated triggering logic enables some VANDLE modules to achieve an intrinsic efficiency over 70% for 300-keV neutrons, measured through two different methods. A custom Geant4 simulation models aspectsmore » of the detector array and the experimental setups to determine efficiency and detector response. Lastly, a low detection threshold, due to the trigger logic and digitizing data acquisition, allowed us to measure the light-yield response curve from elastically scattered carbon nuclei inside the scintillating plastic from incident neutrons with kinetic energies below 2 MeV.« less

  10. Limits on low-energy neutrino fluxes with the Mont Blanc liquid scintillator detector

    NASA Astrophysics Data System (ADS)

    Aglietta, M.; Antonioli, P.; Badino, G.; Bologna, G.; Castagnoli, C.; Castellina, A.; Dadykin, V. L.; Fulgione, W.; Galeotti, P.; Khalchukov, F. F.; Korolkova, E. V.; Kortchaguin, P. V.; Kortchaguin, V. B.; Kudryavtsev, V. A.; Malguin, A. S.; Periale, L.; Ryassny, V. G.; Ryazhskaya, O. G.; Saavedra, O.; Trinchero, G.; Vernetto, S.; Yakushev, V. F.; Zatsepin, G. T.

    1992-11-01

    The LSD liquid scintillation detector has been operating since 1985 as an underground neutrino observatory in the Mont Blanc Laboratory with the main objective of detecting antineutrino bursts from collapsing stars. In August 1988 the construction of an additional lead and borex paraffin shield considerably reduced the radioactive background and increased the sensitivity of the apparatus. In this way the search for steady fluxes of low-energy neutrinos of different flavours through their interactions with free protons and carbon nuclei of the scintillator was made possible. No evidence for a galactic collapse was observed during the whole period of measurement. The corresponding 90% c.l. upper limit on the galactic collapses rate is 0.45 y -1 for a burst duration of ΔT ⩽ 10 s. After analysing the last 3 years data, the following 90% c.l. upper limits on the steady neutrino and antineutrino fluxes were obtained:

  11. A fast event preprocessor for the Simbol-X Low-Energy Detector

    NASA Astrophysics Data System (ADS)

    Schanz, T.; Tenzer, C.; Kendziorra, E.; Santangelo, A.

    2008-07-01

    The Simbol-X1 Low Energy Detector (LED), a 128 × 128 pixel DEPFET array, will be read out very fast (8000 frames/second). This requires a very fast onboard data preprocessing of the raw data. We present an FPGA based Event Preprocessor (EPP) which can fulfill this requirements. The design is developed in the hardware description language VHDL and can be later ported on an ASIC technology. The EPP performs a pixel related offset correction and can apply different energy thresholds to each pixel of the frame. It also provides a line related common-mode correction to reduce noise that is unavoidably caused by the analog readout chip of the DEPFET. An integrated pattern detector can block all invalid pixel patterns. The EPP has an internal pipeline structure and can perform all operation in realtime (< 2 μs per line of 64 pixel) with a base clock frequency of 100 MHz. It is utilizing a fast median-value detection algorithm for common-mode correction and a new pattern scanning algorithm to select only valid events. Both new algorithms were developed during the last year at our institute.

  12. Spectrum measurement with the Telescope Array Low Energy Extension (TALE) fluorescence detector

    NASA Astrophysics Data System (ADS)

    Zundel, Zachary James

    The Telescope Array (TA) experiment is the largest Ultra High Energy cosmic ray observatory in the northern hemisphere and is designed to be sensitive to cosmic ray air showers above 1018eV. Despite the substantial measurements made by TA and AUGER (the largest cosmic ray observatory in the southern hemisphere), there remains uncertainty about whether the highest energy cosmic rays are galactic or extragalactic in origin. Locating features in the cosmic ray energy spectrum below 1018eV that indicate a transition from galactic to extragalactic sources would clarify the interpretation of measurements made at the highest energies. The Telescope Array Low Energy Extension (TALE) is designed to extend the energy threshold of the TA observatory down to 1016.5eV in order to make such measurements. This dissertation details the construction, calibration, and operation of the TALE flu- orescence detector. A measurement of the flux of cosmic rays in the energy range of 1016.5 -- 1018.5eV is made using the monocular data set taken between September 2013 and January 2014. The TALE fluorescence detector observes evidence for a softening of the cosmic spectrum at 1017.25+/-0.5eV. The evidence of a change in the spectrum motivates continued study of 1016.5 -- 1018.5eV cosmic rays.

  13. Measuring the Low Energy Nuclear Quenching Factor in Liquid Argon for a Coherent Neutrino Scatter Detector

    NASA Astrophysics Data System (ADS)

    Foxe, M.; Bernstein, A.; Hagmann, C.; Joshi, T.; Jovanovic, I.; Kazkaz, K.; Sangiorgio, S.

    2012-08-01

    Coherent neutrino-nucleus scattering (CNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model [D. Freedman, Phys. Rev. D 9 (5) (1974) 1389-1392]. One of the primary reasons the CNS interaction has yet to be observed is the very low energy depositions (less than 1 keV for MeV-energy neutrinos) [A. Drukier, L. Stodolsky, Phys. Rev. D 30 (11) (1984) 2295-2309]. An additional challenge in detecting CNS is nuclear quenching, which is a phenomenon encountered in many detection materials in which nuclear recoils produce less observable energy per unit energy deposited than electronic recoils. The ratio observed signal for nuclear recoils to electronic recoils or nuclear ionization quench factor, is presently unknown in argon at typical CNS energies [C. Hagmann, A. Bernstein, IEEE Trans. on Nucl. Sci. 51 (5) (2004) 2151-2155]. Here we present plans for using the Gamma or Neutron Argon Recoils Resulting in Liquid Ionization (G/NARRLI) detector to measure the nuclear ionization quench factor at ˜8 keV.

  14. Results of low energy background measurements with the Liquid Scintillation Detector (LSD) of the Mont Blanc Laboratory

    NASA Technical Reports Server (NTRS)

    Aglietta, M.; Badino, G.; Bologna, G. F.; Castagnoli, C.; Fulgione, W.; Galeotti, P.; Saavedra, O.; Trinchero, G. C.; Vernetto, S.; Dadykin, V. L.

    1985-01-01

    The 90 tons liquid scintillation detector (LSD) is fully running since October 1984, at a depth of 5,200 hg/sq cm of standard rock underground. The main goal is to search for neutrino bursts from collapsing stars. The experiment is very sensitive to detect low energy particles and has a very good signature to gamma-rays from (n,p) reaction which follows the upsilon e + p yields n + e sup + neutrino capture. The analysis of data is presented and the preliminary results on low energy measurements are discussed.

  15. A fast one-chip event-preprocessor and sequencer for the Simbol-X Low Energy Detector

    NASA Astrophysics Data System (ADS)

    Schanz, T.; Tenzer, C.; Maier, D.; Kendziorra, E.; Santangelo, A.

    2010-12-01

    We present an FPGA-based digital camera electronics consisting of an Event-Preprocessor (EPP) for on-board data preprocessing and a related Sequencer (SEQ) to generate the necessary signals to control the readout of the detector. The device has been originally designed for the Simbol-X low energy detector (LED). The EPP operates on 64×64 pixel images and has a real-time processing capability of more than 8000 frames per second. The already working releases of the EPP and the SEQ are now combined into one Digital-Camera-Controller-Chip (D3C).

  16. Delta-doped hybrid advanced detector for low energy particle detection

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J. (Inventor); Fossum, Eric R. (Inventor); Nikzad, Shouleh (Inventor); Pain, Bedabrata (Inventor); Soli, George A. (Inventor)

    2000-01-01

    A delta-doped hybrid advanced detector (HAD) is provided which combines at least four types of technologies to create a detector for energetic particles ranging in energy from hundreds of electron volts (eV) to beyond several million eV. The detector is sensitive to photons from visible light to X-rays. The detector is highly energy-sensitive from approximately 10 keV down to hundreds of eV. The detector operates with milliwatt power dissipation, and allows non-sequential readout of the array, enabling various advanced readout schemes.

  17. Delta-doped hybrid advanced detector for low energy particle detection

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J. (Inventor); Fossum, Eric R. (Inventor); Nikzad, Shouleh (Inventor); Pain, Bedabrata (Inventor); Soli, George A. (Inventor)

    2002-01-01

    A delta-doped hybrid advanced detector (HAD) is provided which combines at least four types of technologies to create a detector for energetic particles ranging in energy from hundreds of electron volts (eV) to beyond several million eV. The detector is sensitive to photons from visible light to X-rays. The detector is highly energy-sensitive from approximately 10 keV down to hundreds of eV. The detector operates with milliwatt power dissipation, and allows non-sequential readout of the array, enabling various advanced readout schemes.

  18. Two-phase emission detectors in search for rare events with low energy depositions

    NASA Astrophysics Data System (ADS)

    Bolozdynya, A. I.

    2017-01-01

    This paper reviews applications of two-phase emission detectors using xenon as working media. This kind of detectors invented at MEPhI is extremely sensitive to ionization (down to single electrons) and can be very massive (in ton scale) in order to provide high count rate for quite rare events and organize an active shielding from natural radioactivity in the wallles configuration of readout system. The emission detectors found their unique application in the most sensitive at the moment experiments searching for cold dark matter in the form of weakly interacting massive particles (WIMPs). The RED-100 detector recently constructed at NRNU MEPhI can be used for the first observation of the elastic coherent neutrino scattering off xenon nuclei when the detector is installed practically on the Earth’s surface.

  19. Low-energy neutron physics research with a gamma multiplicity detector

    NASA Astrophysics Data System (ADS)

    Block, Robert C.; Slovacek, R. E.; Werner, C. J.; Moretti, B. E.; Burke, J. A.; Drindak, N. J.; Leinweber, G.

    1997-02-01

    A sixteen-segment NaI(Tl) multiplicity gamma ray detector is used at the Rensselaer Polytechnic Institute Gaerttner LINAC Laboratory for neutron cross section measurements. This detector consists of an annulus of NaI(Tl) divided into two sets of 8 pie shaped segments, each segment optically isolate and viewed by a photomultiplier. The neutron beam passes along the axis of the detector and impinges upon a sample placed in the center. Time-of-flight data are taken as a function of the number of sections which detect a gamma and which is defined as the detected multiplicity. This detector can simultaneously acquire neutron scattering, capture and fission data by placing suitable limits on the total detected gamma ray energy deposited in the detector. Scattering and capture measurements have been performed on samples of holmium, erbium, and tungsten and experimental results are presented. The experimental multiplicity for capture is analyzed by assuming the single particle model, stochastically calculating the gamma ray cascades from neutron capture, and transporting each gamma ray into the detector using the Monte Carlo method. The detection efficiency for neutron capture is over 90 percent and is relatively insensitive to different isotopes of the same element or different spins of the compound nuclear resonances. A status report on experimental and analytical activities at the Laboratory is presented.

  20. Fabrication and characterization of a co-planar detector in diamond for low energy single ion implantation

    SciTech Connect

    Abraham, John Bishoy Sam; Pacheco, Jose L.; Aguirre, Brandon Adrian; Vizkelethy, Gyorgy; Bielejec, Edward S.

    2016-08-09

    We demonstrate low energy single ion detection using a co-planar detector fabricated on a diamond substrate and characterized by ion beam induced charge collection. Histograms are taken with low fluence ion pulses illustrating quantized ion detection down to a single ion with a signal-to-noise ratio of approximately 10. We anticipate that this detection technique can serve as a basis to optimize the yield of single color centers in diamond. In conclusion, the ability to count ions into a diamond substrate is expected to reduce the uncertainty in the yield of color center formation by removing Poisson statistics from the implantation process.

  1. Fabrication and characterization of a co-planar detector in diamond for low energy single ion implantation

    DOE PAGES

    Abraham, John Bishoy Sam; Pacheco, Jose L.; Aguirre, Brandon Adrian; ...

    2016-08-09

    We demonstrate low energy single ion detection using a co-planar detector fabricated on a diamond substrate and characterized by ion beam induced charge collection. Histograms are taken with low fluence ion pulses illustrating quantized ion detection down to a single ion with a signal-to-noise ratio of approximately 10. We anticipate that this detection technique can serve as a basis to optimize the yield of single color centers in diamond. In conclusion, the ability to count ions into a diamond substrate is expected to reduce the uncertainty in the yield of color center formation by removing Poisson statistics from the implantationmore » process.« less

  2. Fabrication and characterization of a co-planar detector in diamond for low energy single ion implantation

    NASA Astrophysics Data System (ADS)

    Abraham, J. B. S.; Aguirre, B. A.; Pacheco, J. L.; Vizkelethy, G.; Bielejec, E.

    2016-08-01

    We demonstrate low energy single ion detection using a co-planar detector fabricated on a diamond substrate and characterized by ion beam induced charge collection. Histograms are taken with low fluence ion pulses illustrating quantized ion detection down to a single ion with a signal-to-noise ratio of approximately 10. We anticipate that this detection technique can serve as a basis to optimize the yield of single color centers in diamond. The ability to count ions into a diamond substrate is expected to reduce the uncertainty in the yield of color center formation by removing Poisson statistics from the implantation process.

  3. Delta-doped CCD's as low-energy particle detectors and imagers

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Hoenk, Michael E. (Inventor); Hecht, Michael H. (Inventor)

    2002-01-01

    The back surface of a thinned charged-coupled device (CCD) is treated to eliminate the backside potential well that appears in a conventional thinned CCD during backside illumination. The backside of the CCD includes a delta layer of high-concentration dopant confined to less than one monolayer of the crystal semiconductor. The thinned, delta-doped CCD is used to detect very low-energy particles that penetrate less than 1.0 nm into the CCD, including electrons having energies less than 1000 eV and protons having energies less than 10 keV.

  4. Low-energy X-ray detection with an in-vacuum PILATUS detector

    NASA Astrophysics Data System (ADS)

    Marchal, Julien; Luethi, Benjamin; Ursachi, Catalin; Mykhaylyk, Vitaliy; Wagner, Armin

    2011-11-01

    The feasibility of using PILATUS single-X-ray-photon counting detectors for long-wavelength macromolecular crystallography was investigated by carrying out a series of experiments at Diamond Light Source. A water-cooled PILATUS 100k detector was tested in vacuum with monochromatic 3 keV X-rays on the Diamond test beamline B16. Effects of detector cooling on noise performance, energy calibration and threshold trimming were investigated. When detecting 3 keV X-rays, the electronic noise of the analogue output of pixel preamplifiers forces the threshold to be set at a higher level than the 50% energy level recommended to minimize charge-sharing effects. The influence of threshold settings at low X-ray energy was studied by characterizing the detector response to a collimated beam of 3 keV X-rays scanned across several pixels. The relationship between maximum count rate and minimum energy threshold was investigated separately for various detector gain settings.

  5. Improvements in the Low Energy Collection Efficiency of Si(Li) X-ray Detectors

    SciTech Connect

    Cox,C.; Fischer, D.; Schwartz, W.; Song, Y.

    2005-01-01

    Soft X-ray beam-line applications are of fundamental importance to material research, and commonly employ high-resolution Si(Li) detectors for energy dispersive spectroscopy. However, the measurement of X-rays below 1 keV is compromised by absorption in the material layers in front of the active crystal and a dead layer at the crystal surface. Various Schottky barrier type contacts were investigated resulting in a 40% reduction of the dead-layer thickness and a factor of two increased sensitivity at carbon K{sub {alpha}} compared to the standard Si(Li) detector. Si(Li) detectors were tested on the U7A soft X-ray beam-line at the National Synchrotron Light Source and on a scanning electron microscope (SEM).

  6. Pulse height reduction effects of single-crystal CVD diamond detector for low-energy heavy ions

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Shimaoka, T.; Kaneko, J. H.; Murakami, H.; Miyazaki, D.; Tsubota, M.; Chayahara, A.; Umezawa, H.; Shikata, S.

    2013-10-01

    The performance of a diamond detector made of single-crystal diamond grown by chemical vapour deposition was studied for heavy ions, having energy of 3 MeV. Energy peaks of these low-energy ions were clearly observed. However, the pulse height for individual incident ion decreases with increasing atomic number of the ions. For understanding this pulse height reduction effect, we calculated the amount of ionizing and non-ionizing energy loss of incident ions in the diamond detector. The results of our calculation suggest the contribution of charge loss mechanisms other than the recombination effect of electron-hole pairs produced along the ionized track. We also mentioned the incomplete charge collection near the boundary region between the metal electrode and the diamond surface.

  7. Proton calibration of low energy neutron detectors containing (6)LiF

    SciTech Connect

    Benton, E.V.; Frank, A.L.

    1995-03-01

    The purpose of the present calibrations is to measure the proton response of the detectors with accelerated beams having energies within the region of maximum intensities in the trapped proton spectrum encountered in near-Earth orbit. This response is compared with the responses of the spaceflight detectors when related to proton exposures. All of the spaceflight neutron measurements have been accompanied by TLD absorbed doses measurements in close proximity within the spacecraft. For purposes of comparison, the spaceflight TLD doses are assumed to be proton doses.

  8. Proton calibration of low energy neutron detectors containing (6)LiF

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    The purpose of the present calibrations is to measure the proton response of the detectors with accelerated beams having energies within the region of maximum intensities in the trapped proton spectrum encountered in near-Earth orbit. This response is compared with the responses of the spaceflight detectors when related to proton exposures. All of the spaceflight neutron measurements have been accompanied by TLD absorbed doses measurements in close proximity within the spacecraft. For purposes of comparison, the spaceflight TLD doses are assumed to be proton doses.

  9. A new beam loss detector for low-energy proton and heavy-ion accelerators

    NASA Astrophysics Data System (ADS)

    Liu, Zhengzheng; Crisp, Jenna; Russo, Tom; Webber, Robert; Zhang, Yan

    2014-12-01

    The Facility for Rare Isotope Beams (FRIB) to be constructed at Michigan State University shall deliver a continuous, 400 kW heavy ion beam to the isotope production target. This beam is capable of inflicting serious damage on accelerator components, e.g. superconducting RF accelerating cavities. A Beam Loss Monitoring (BLM) System is essential for detecting beam loss with sufficient sensitivity and promptness to inform the machine protection system (MPS) and operations personnel of impending dangerous losses. Radiation transport simulations reveal shortcomings in the use of ionization chambers for the detection of beam losses in low-energy, heavy-ion accelerators. Radiation cross-talk effects due to the folded geometry of the FRIB LINAC pose further complications to locating specific points of beam loss. We propose a newly developed device, named the Loss Monitor Ring (LMR1

  10. Development of CDZNTE Detectors for Low-Energy Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Gehrels, N.

    1999-01-01

    Under this grant the UC Berkeley PI, K. Hurley, joined a Goddard-led effort to develop large area, multi-pixel Cadmium-Zinc-Telluride (CdZnTe, or CZT) detectors for gamma-ray astronomy. His task was to advise the project of new developments in the area of cosmic gamma-ray bursts, in order to focus the detector development effort on the construction of an instrument which could be deployed on a spacecraft to localize and measure the energy spectra of bursts with good angular and energy resolution, respectively. UC Berkeley had no hardware role in this proposal. The result of this effort was the production, at Goddard, of five CZT prototype modules. A proposal was written for SWIFT, a MIDEX mission to study cosmic gamma-ray bursts. One experiment aboard SWIFT is the Burst Arcminute Telescope (BAT), which consists of a 5200 sq cm hard X-ray detector and a coded mask. The detector comprises 256 CZT modules, each containing 128 4 x 4 x 2 mm CZT detectors. Each detector is read out using an ASIC. The angular resolution achieved with this mask/array combination is 22 arcminutes, and a strong gamma-ray burst can be localized to an accuracy of 4 arcminutes in under 10 seconds. The energy resolution is typically 5 keV FWHM at 60 keV, and the energy range is 10 - 150 keV. The BAT views 2 steradians, and its sensitivity is such that the instrument can detect 350 gamma-ray burst/year, localizing 320 of them to better than 4 arcminute accuracy. The BAT concept therefore met the science goals for gamma-ray bursts. The UCB effort in the SWIFT proposal included the scientific objectives for gamma-ray bursts, and the assembly of a team of optical and radio observers who would use the BAT data to perform rapid multi-wavelength searches for the counterparts to bursts. This proposal was submitted to NASA and peer-reviewed. In January 1999 it was one of five such proposals selected for a Phase A study. This study was completed in June, and SWIFT was formally presented to NASA in

  11. Characterization of a scintillating GEM detector with low energy x-rays.

    PubMed

    Seravalli, E; de Boer, M R; Geurink, F; Huizenga, J; Kreuger, R; Schippers, J M; van Eijk, C W E

    2008-11-07

    A two-dimensional position-sensitive dosimetry system based on a scintillating gas detector is being developed with the aim of using it for pre-treatment verification of dose distributions in charged particle therapy. The dosimetry system consists of a chamber filled with an Ar/CF(4) scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. In such a system, light quanta are emitted by the scintillating gas mixture during the electron avalanches in the GEM holes when radiation traverses the detector. The light intensity distribution is proportional to the energy deposited in the detector's sensitive volume by the beam. In the present work, we investigated the optimization of the scintillating GEM detector light yield. The light quanta are detected by means of a CCD camera or a photomultiplier tube coupled to a monochromator. The GEM charge signal is measured simultaneously. We have found that with 60 microm diameter double conical GEM holes, a brighter light signal and a higher electric signal are obtained than with 80 microm diameter holes. With an Ar + 8% CF(4) volume concentration, the highest voltage across the GEMs and the largest light and electric signals were reached. Moreover, we have found that the emission spectrum of Ar/CF(4) is independent of (1) the voltages applied across the GEMs, (2) the x-ray beam intensity and (3) the GEM hole diameter. On the other hand, the ratio of Ar to CF(4) peaks in the spectrum changes when the concentration of the latter gas is varied.

  12. Low-energy recoils and energy scale in liquid xenon detector for direct dark matter searches

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Mei, Dongming; Cubed Collaboration

    2015-04-01

    Liquid xenon has been proven to be a great detector medium for the direct search of dark matter. However, in the energy region of below 10 keV, the light yield and charge production are not fully understood due to the convolution of excitation, recombination and quenching. We have already studied a recombination model to explain the physics processes involved in liquid xenon. Work is continued on the average energy expended per electron-ion pair as a function of energy based on the cross sections for different type of scattering processes. In this paper, the results will be discussed in comparison with available experimental data using Birk's Law to understand how scintillation quenching contributes to the non-linear light yield for electron recoils with energy below 10 keV in liquid xenon. This work is supported by DOE Grant DE-FG02-10ER46709 and the state of South Dakota.

  13. First results of a novel Silicon Drift Detector array designed for low energy X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Rachevski, Alexandre; Ahangarianabhari, Mahdi; Bellutti, Pierluigi; Bertuccio, Giuseppe; Brigo, Elena; Bufon, Jernej; Carrato, Sergio; Castoldi, Andrea; Cautero, Giuseppe; Fabiani, Sergio; Giacomini, Gabriele; Gianoncelli, Alessandra; Giuressi, Dario; Guazzoni, Chiara; Kourousias, George; Liu, Chang; Menk, Ralf Hendrik; Montemurro, Giuseppe Vito; Picciotto, Antonino; Piemonte, Claudio; Rashevskaya, Irina; Shi, Yongbiao; Stolfa, Andrea; Vacchi, Andrea; Zampa, Gianluigi; Zampa, Nicola; Zorzi, Nicola

    2016-07-01

    We developed a trapezoidal shaped matrix with 8 cells of Silicon Drift Detectors (SDD) featuring a very low leakage current (below 180 pA/cm2 at 20 °C) and a shallow uniformly implanted p+ entrance window that enables sensitivity down to few hundreds of eV. The matrix consists of a completely depleted volume of silicon wafer subdivided into 4 square cells and 4 half-size triangular cells. The energy resolution of a single square cell, readout by the ultra-low noise SIRIO charge sensitive preamplifier, is 158 eV FWHM at 5.9 keV and 0 °C. The total sensitive area of the matrix is 231 mm2 and the wafer thickness is 450 μm. The detector was developed in the frame of the INFN R&D project ReDSoX in collaboration with FBK, Trento. Its trapezoidal shape was chosen in order to optimize the detection geometry for the experimental requirements of low energy X-ray fluorescence (LEXRF) spectroscopy, aiming at achieving a large detection angle. We plan to exploit the complete detector at the TwinMic spectromicroscopy beamline at the Elettra Synchrotron (Trieste, Italy). The complete system, composed of 4 matrices, increases the solid angle coverage of the isotropic photoemission hemisphere about 4 times over the present detector configuration. We report on the layout of the SDD matrix and of the experimental set-up, as well as the spectroscopic performance measured both in the laboratory and at the experimental beamline.

  14. Application of epithermal neutron activation in multielement analysis of silicate rocks employing both coaxial Ge(Li) and low energy photon detector systems

    USGS Publications Warehouse

    Baedecker, P.A.; Rowe, J.J.; Steinnes, E.

    1977-01-01

    The instrumental activation analysis of silicate rocks using epithermal neutrons has been studied using both high resolution coaxial Ge(Li) detectors and low energy photon detectors, and applied to the determination of 23 elements in eight new U.S.G.S. standard rocks. The analytical use X-ray peaks associated with electron capture or internal conversion processes has been evaluated. Of 28 elements which can be considered to be determinable by instrumental means, the epithermal activation approach is capable of giving improved sensitivity and precision in 16 cases, over the normal INAA procedure. In eleven cases the use of the low energy photon detector is thought to show advantages over convertional coaxial Ge(Li) spectroscopy. ?? 1977 Akade??miai Kiado??.

  15. A new detector system for low energy X-ray fluorescence coupled with soft X-ray microscopy: First tests and characterization

    NASA Astrophysics Data System (ADS)

    Gianoncelli, Alessandra; Bufon, Jernej; Ahangarianabhari, Mahdi; Altissimo, Matteo; Bellutti, Pierluigi; Bertuccio, Giuseppe; Borghes, Roberto; Carrato, Sergio; Cautero, Giuseppe; Fabiani, Sergio; Giacomini, Gabriele; Giuressi, Dario; Kourousias, George; Menk, Ralf Hendrik; Picciotto, Antonino; Piemonte, Claudio; Rachevski, Alexandre; Rashevskaya, Irina; Stolfa, Andrea; Vacchi, Andrea; Zampa, Gianluigi; Zampa, Nicola; Zorzi, Nicola

    2016-04-01

    The last decades have witnessed substantial efforts in the development of several detector technologies for X-ray fluorescence (XRF) applications. In spite of the increasing trend towards performing, cost-effective and reliable XRF systems, detectors for soft X-ray spectroscopy still remain a challenge, requiring further study, engineering and customization in order to yield effective and efficient systems. In this paper we report on the development, first characterization and tests of a novel multielement detector system based on low leakage current silicon drift detectors (SDD) coupled to ultra low noise custom CMOS preamplifiers for synchrotron-based low energy XRF. This new system exhibits the potential for improving the count rate by at least an order of magnitude resulting in ten-fold shorter dwell time at an energy resolution similar to that of single element silicon drift detectors.

  16. Modeling of low-energy charged particles passage through GAMMA-400 gamma-telescope thermal insulation and two- layer plastic scintillation detectors used as anticoincidence shield

    NASA Astrophysics Data System (ADS)

    Chasovikov, E. N.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Kheymits, M. D.; Yurkin, Yu T.

    2016-02-01

    The results of low-energy charged particles passage through GAMMA-400 gamma- telescope thermal insulation and two-layer plastic scintillation detectors used as anticoincidence shield are presented. An existing GEANT4 GAMMA-400 model is used. Effects of thermal insulation on charged particle passage are investigated. These results will be used to testing the effect of low-energy charged particles flux on GAMMA-400 gamma-quanta registration capabilities. Sufficiently large energy deposition in two-layer plastic anticoincidence scintillation detectors might interfere with high-energy particle registration and identification. However, GAMMA-400 detection capabilities are not affected by this, as the energy deposition in the lower layer of S3 is less than 1.5 MeV in all simulated cases. This value is less than threshold for high energy particles identification start (2.5 MeV). It makes impossible to incorrectly identify a low-energy charged particle energy deposition as backsplash from a high-energy gamma-quantum.

  17. Application of the Broad Energy Germanium detector: A technique for elucidating β-decay schemes which involve daughter nuclei with very low energy excited states

    NASA Astrophysics Data System (ADS)

    Venhart, M.; Wood, J. L.; Boston, A. J.; Cocolios, T. E.; Harkness-Brennan, L. J.; Herzberg, R.-D.; Joss, D. T.; Judson, D. S.; Kliman, J.; Matoušek, V.; Motyčák, Š.; Page, R. D.; Patel, A.; Petrík, K.; Sedlák, M.; Veselský, M.

    2017-03-01

    A technique for elucidating β-decay schemes of isotopes with a large density of states at low excitation energy has been developed, in which a Broad Energy Germanium (BEGe) detector is used in conjunction with coaxial hyper-pure germanium detectors. The power of this technique is demonstrated using the example of 183Hg decay. Mass-separated samples of 183Hg were produced by a deposition of the low-energy radioactive-ion beam delivered by the ISOLDE facility at CERN. The excellent energy resolution of the BEGe detector allowed γ-ray energies to be determined with a precision of a few tens of eV, which was sufficient for the analysis of the Rydberg-Ritz combinations (in conjunction with γ-γ coincidences) in the level scheme. The timestamped structure of the data was used for unambiguous separation of γ rays arising from the decay of 183Hg from those due to the daughter decays.

  18. Results from a 64-pixel PIN-diode detector system for low-energy beta-electrons

    NASA Astrophysics Data System (ADS)

    Wuestling, Sascha; Fraenkle, F.; Habermehl, F.; Renschler, P.; Steidl, M.

    2010-12-01

    The KATRIN neutrino mass experiment is based on a precise energy measurement (Δ E/ E=5×10 -5) of electrons emerging from tritium beta decay ( Emax=18.6 keV). This is done by a large electrostatic retarding spectrometer (MAC-E Filter), which is followed by an electron detector. Key requirements for this detector are a large sensitive area (˜80 cm 2), a certain energy resolution (Δ E=600 eV @ 18.6 keV) but also a certain spatial resolution (˜3 mm), which leads to a multi-pixel design. As a tentative design on the way to the final detector, but also for operational service on the so-called pre-spectrometer experiment, a detector system with a reduced size (16 cm 2) and a reduced pixel number (64), making use of a monolithic segmented silicon PIN diode, was designed and built. While the design and very first measurements have been presented in Wuestling et al. [6], this publication shows the operational performance of the detector system. The robust concept of the electronics allowed adaptation to mechanically different experimental setups. The spacial resolution of the detector system proved to be essential in examining Penning trap induced background and other effects in the pre-spectrometer experiment. The detector performance test runs include energy resolution and calibration, background rates, correlation between pixels (crosstalk), spatially resolved rate analysis, and a dead-layer measurement [7]. The detector allows for background searches with a sensitivity as low as 1.3×10 -3 cps/cm 2 in the energy range of 20 keV. This allows the pre-spectrometer to be characterized with e-gun illumination with a signal to background ratio of better than 10 5 and the search for ultra low Penning discharge emissions.

  19. Correlations of low-energy pulses and muons recorded by the LSD detector near Mont Blanc from February 10 to July 1, 1987

    NASA Astrophysics Data System (ADS)

    Dadykin, V. L.; Zatsepin, G. T.; Korol'Kova, E. V.; Korchagin, P. V.; Kudriavtsev, V. A.

    1991-04-01

    Observation data obtained by the LSD underground detector near Mont Blanc over the period February 10 - July 1, 1987, are analyzed for possible time correlations between all events with an energy over 5 MeV detected during this period. Nine pairs of correlated pulses (muons and low-energy pulses with a time interval of 2 s) are identified during the period from 5:42 to 10:13 UT on February 23, 1987 (i.e., around the time of the optical burst CH 1987A). The result indicates a possible relation between the time correlation of the pulses and the burst.

  20. Characterization of a CsI(Tl)-SiPM detector to low energy protons for light dark matter search in a future Beam Dump eXperiment

    NASA Astrophysics Data System (ADS)

    Bondí, M.; Battaglieri, M.; Carpinelli, M.; Celentano, A.; De Napoli, M.; De Vita, R.; Leonora, E.; Marsicano, L.; Randazzo, N.; Sipala, V.

    2017-03-01

    The silicon Photomutiplier (SiPM) is a successful solid-state light detector. Thanks to its characteristics, especially the high quantum efficiency, comparable to that of PMTs, and the much higher gain compared to APDs, it can play an important role in many physics fields. For example a calorimeter read out by SiPMs is the proposed solution for the detection light dark matter in a future beam dump experiment. Although scintillating crystals coupled to SiPMs are widely used, they have been scarcely characterized as low energy (~ MeV) ion detectors. In the present work we report a study of the light response of a large volume CsI(Tl) crystal, read out by a small area SiPM to low energy protons of different kinetic energies, from 2.5 MeV to 24 MeV . The results of the measurements allowed us to qualify the CsI(Tl)-SiPM solution in an unmeasured energetic regime.

  1. Development of a µ-TPC detector as a standard instrument for low-energy neutron field characterisation.

    PubMed

    Maire, D; Billard, J; Bosson, G; Bourrion, O; Guillaudin, O; Lamblin, J; Lebreton, L; Mayet, F; Médard, J; Muraz, J F; Richer, J P; Riffard, Q; Santos, D

    2014-10-01

    In order to measure the energy and fluence of neutron fields, in the energy range of 8 to 1 MeV, a new primary standard is being developed at the Institute for Radioprotection and Nuclear Safety (IRSN). This project, Micro Time Projection Chamber (µ-TPC), carried out in collaboration with the Laboratoire de Physqique Subatomique et de Cosmologie (LPSC), is based on the nucleus recoil detector principle. The measurement strategy requires track reconstruction of recoiling nuclei down to a few kiloelectronvolts, which can be achieved using a micro-pattern gaseous detector. A gas mixture, mainly isobutane, is used as an n-p converter to detect neutrons within the detection volume. Then electrons, coming from the ionisation of the gas by the proton recoil, are collected by the pixelised anode (2D projection). A self-triggered electronics system is able to perform the anode readout at a 50-MHz frequency in order to give the third dimension of the track. Then, the scattering angle is deduced from this track using algorithms. The charge collection leads to the proton energy, taking into account the ionisation quenching factor. This article emphasises the neutron energy measurements of a monoenergetic neutron field produced at 127 keV. The fluence measurement is not shown in this article. The measurements are compared with Monte Carlo simulations using realistic neutron fields and simulations of the detector response. The discrepancy between experiments and simulations is 5 keV mainly due to the calibration uncertainties of 10 %.

  2. The sensitivity of LaBr3:Ce scintillation detectors to low energy neutrons: Measurement and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Tain, J. L.; Agramunt, J.; Algora, A.; Aprahamian, A.; Cano-Ott, D.; Fraile, L. M.; Guerrero, C.; Jordan, M. D.; Mach, H.; Martinez, T.; Mendoza, E.; Mosconi, M.; Nolte, R.

    2015-02-01

    The neutron sensitivity of a cylindrical ⊘1.5 in.×1.5 in. LaBr3:Ce scintillation detector was measured using quasi-monoenergetic neutron beams in the energy range from 40 keV to 2.5 MeV. In this energy range the detector is sensitive to γ-rays generated in neutron inelastic and capture processes. The experimental energy response was compared with Monte Carlo simulations performed with the Geant4 simulation toolkit using the so-called High Precision Neutron Models. These models rely on relevant information stored in evaluated nuclear data libraries. The performance of the Geant4 Neutron Data Library as well as several standard nuclear data libraries was investigated. In the latter case this was made possible by the use of a conversion tool that allowed the direct use of the data from other libraries in Geant4. Overall it was found that there was good agreement with experiment for some of the neutron data bases like ENDF/B-VII.0 or JENDL-3.3 but not with the others such as ENDF/B-VI.8 or JEFF-3.1.

  3. A 2.45 GHz electron cyclotron resonance proton ion source and a dual-lens low energy beam transporta)

    NASA Astrophysics Data System (ADS)

    Zhang, W. H.; Ma, H. Y.; Yang, Y.; Wu, Q.; Zhang, X. Z.; Wang, H.; Ma, B. H.; Feng, Y. C.; Fang, X.; Guo, J. W.; Cao, Y.; Li, X. X.; Zhu, Y. H.; Li, J. Y.; Sha, S.; Lu, W.; Lin, S. H.; Guo, X. H.; Zhao, H. Y.; Sun, L. T.; Xie, D. Z.; Peng, S. X.; Liu, Z. W.; Zhao, H. W.

    2012-02-01

    The structure and preliminary commissioning results of a new 2.45 GHz ECR proton ion source and a dual-lens low energy beam transport (LEBT) system are presented in this paper. The main magnetic field of the ion source is provided by a set of permanent magnets with two small electro-solenoid magnets at the injection and the extraction to fine tune the magnetic field for better microwave coupling. A 50 keV pulsed proton beam extracted by a three-electrode mechanism passes through the LEBT system of length of 1183 mm. This LEBT consists of a diagnosis chamber, two Glaser lenses, two steering magnets, and a final beam defining cone. A set of inner permanent magnetic rings is embedded in each of the two Glaser lenses to produce a flatter axial-field to reduce the lens aberrations.

  4. A 2.45 GHz electron cyclotron resonance proton ion source and a dual-lens low energy beam transport

    SciTech Connect

    Zhang, W. H.; Ma, H. Y.; Wu, Q.; Zhang, X. Z.; Wang, H.; Ma, B. H.; Feng, Y. C.; Fang, X.; Guo, J. W.; Li, X. X.; Zhu, Y. H.; Li, J. Y.; Guo, X. H.; Zhao, H. Y.; Sun, L. T.; Xie, D. Z.; Liu, Z. W.; Zhao, H. W.; Yang, Y.; Cao, Y.; and others

    2012-02-15

    The structure and preliminary commissioning results of a new 2.45 GHz ECR proton ion source and a dual-lens low energy beam transport (LEBT) system are presented in this paper. The main magnetic field of the ion source is provided by a set of permanent magnets with two small electro-solenoid magnets at the injection and the extraction to fine tune the magnetic field for better microwave coupling. A 50 keV pulsed proton beam extracted by a three-electrode mechanism passes through the LEBT system of length of 1183 mm. This LEBT consists of a diagnosis chamber, two Glaser lenses, two steering magnets, and a final beam defining cone. A set of inner permanent magnetic rings is embedded in each of the two Glaser lenses to produce a flatter axial-field to reduce the lens aberrations.

  5. Single-crystal CVD diamond detector for low-energy charged particles with energies ranging from 100 keV to 2 MeV

    SciTech Connect

    Yuki Sato; Hiroyuki Murakami; Takehiro Shimaoka; Masakatsu Tsubota; Junichi, H. Kaneko

    2015-07-01

    The performance of a diamond detector made of a single-crystal diamond grown by chemical vapor deposition was studied for charged particles, having energies ranging from 100 keV to 2 MeV. Energy peaks of these low-energy ions were clearly observed. However, we observed that the pulse height for individual incident ion decreases with increasing atomic number of the ions. We estimated the charge collection efficiency of the generated charge carriers by charged particle incident. The charge collection above ∼95% is achieved for helium (He{sup +}) with the energy above 1.5 MeV. On the other hand, the charge collection efficiency for heavy-ions shows wrong values compared with that of He{sup +}, ∼70% for silicon (Si{sup +}) and 35 to 40% for gold (Au{sup 3+}), at the same incident energy range, respectively. (authors)

  6. Gamma-ray detection efficiency of the microchannel plate installed as an ion detector in the low energy particle instrument onboard the GEOTAIL satellite.

    PubMed

    Tanaka, Y T; Yoshikawa, I; Yoshioka, K; Terasawa, T; Saito, Y; Mukai, T

    2007-03-01

    A microchannel plate (MCP) assembly has been used as an ion detector in the low energy particle (LEP) instrument onboard the magnetospheric satellite GEOTAIL. Recently the MCP assembly has detected gamma rays emitted from an astronomical object and has been shown to provide unique information of gamma rays if they are intense enough. However, the detection efficiency for gamma rays was not measured before launch, and therefore we could not analyze the LEP data quantitatively. In this article, we report the gamma-ray detection efficiency of the MCP assembly. The measured efficiencies are 1.29%+/-0.71% and 0.21%+/-0.14% for normal incidence 60 and 662 keV gamma rays, respectively. The incident angle dependence is also presented. Our calibration is crucial to study high energy astrophysical phenomena by using the LEP.

  7. The Low Energy Neutrino Factory

    SciTech Connect

    Bross, Alan; Geer, Steve; Ellis, Malcolm; Fernandez Martinez, Enrique; Li, Tracey; Pascoli, Silvia; Mena, Olga

    2010-03-30

    We show that a low energy neutrino factory with a baseline of 1300 km and muon energy of 4.5 GeV has an excellent physics reach. The results of our optimisation studies demonstrate that such a setup can have remarkable sensitivity to theta{sub 13} and delta for sin{sup 2}(2theta{sub 13})>10{sup -4}, and to the mass hierarchy for sin{sup 2}(2theta{sub 13})>10{sup -3}. We also illustrate the power of the unique combination of golden and platinum channels accessible to the low energy neutrino factory. We have considered both a 20 kton totally active scintillating detector and a 100 kton liquid argon detector as possible detector technologies, finding that a liquid argon detector with very good background rejection can produce sensitivity to theta{sub 13} and delta with that of the International Design Study neutrino factory.

  8. Review of Low Energy Neutrinos

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.

    2007-04-01

    Some issues regarding low energy neutrinos are reviewed. We focus on three aspects i)We show that by employing very low energy (a few keV) electron neutrinos, neutrino disappearance oscillations can be investigated by detecting recoiling electrons with low threshold spherical gaseous TPC's. In such an experiment, which is sensitive to the small mixing angle θ13, the novel feature is that the oscillation length is so small that the full oscillation takes place inside the detector. Thus one can determine accurately all the oscillation parameters and, in particular, measure or set a good limit on θ13. ii) Low threshold gaseous TPC detectors can also be used in detecting nuclear recoils by exploiting the neutral current interaction. Thus these robust and stable detectors can be employed in supernova neutrino detection. iii) The lepton violating neutrinoless double decay is investigated focusing on how the absolute neutrino mass can be extracted from the data.

  9. Dosimetric characterization of a 2D polycrystalline CVD diamond detector

    NASA Astrophysics Data System (ADS)

    Bartoli, A.; Cupparo, I.; Baldi, A.; Scaringella, M.; Pasquini, A.; Pallotta, S.; Talamonti, C.; Bruzzi, M.

    2017-03-01

    A bidimensional pixelated dosimeter composed of two polycrystalline Chemical Vapour Deposited diamond films, 2.5 × 2.5 cm2 each placed aside, has been manufactured so as to obtain a detector with a 2 mm pitch over a total active area of 5.0 × 2.5 cm2. We performed the dosimetric characterization of the detector with an Elekta Synergy linear accelerator using a 6 MV photon beam. Uniformity maps, rise and fall times, signal repeatability, dependence on dose rate, linearity with dose and sensitivity show that the device is suitable for dosimetric evaluations in Intensity Modulated Radiation Therapy and Volumetric Modulated Arc Therapy (VMAT) treatments. Then, a first quantitative evaluation of the dose distribution in a lung VMAT treatment plan has been carried out, by comparing data from our device with Treatment Planning Sistem values by means of a Γ test, with promising results.

  10. Low energy p p physics

    SciTech Connect

    Amsler, C.; Crowe, K. . Inst. fuer Physik; Lawrence Berkeley Lab., CA )

    1989-02-01

    A detailed investigation of proton-antiproton interactions at low energy has become feasible with the commissioning of the LEAR facility in 1983. We shall shortly review the status of {bar p}p annihilation at rest and the physics motivations for second generation experiments with the Crystal Barrel detector. This type of detector would be adequate for the study of both Kp and {bar p}p interactions on an extracted beam of the KAON Factory. We shall conclude with a few remarks on the physics opportunities with {bar p}'s at the KAON Factory which, in our opinion, will not be covered by the present LEAR facility. 11 refs., 10 figs., 2 tabs.

  11. Low energy ballasted flotation.

    PubMed

    Jarvis, P; Buckingham, P; Holden, B; Jefferson, B

    2009-08-01

    A novel process which involves the replacement or supplementation of bubbles in the dissolved air flotation process with low density beads is presented. The work comprised a series of bench-scale flotation trials treating three commonly encountered algal species (Microcystis, Melosira and Chlorella) that were removed in a flotation cell configured as either: conventional dissolved air flotation (DAF); ballasted flotation using low density 70 microm glass beads with a density of 100 kg m(-3); or a hybrid process of ballasted flotation combined with conventional DAF. Results indicated that the bead only system was capable of achieving better residual turbidity than standard DAF at bead concentrations of 500 mg L(-1). Addition of beads in combination with standard DAF reduced turbidity further to even lower residual turbidity levels. Algae removal was improved when glass beads were dosed, but removal was dependent on algal species. Microcystis was removed by 97% for bead only systems and this removal did not change significantly with the addition of air bubbles. Melosira was the next best removed algae with bead only dosed systems giving similar removals to that achieved by standard DAF using a 10% air recycle ratio (81 and 76% removal respectively). Chlorella was the least well removed algae by bead only systems (63% removal). However, removal was rapidly improved to 86% by the addition of air bubbles using only a 2% recycle ratio. Energy estimations suggested that at least a 50% energy reduction could be achieved using the process offering a potential route for future development of low energy separation processes for algae removal.

  12. Low energy supersymmetry phenomenology

    SciTech Connect

    Baer, H.; Chen, C.H.; Bartl, A.; Feng, J.; Fujii, K.; Gunion, J.; Kamon, T.; Lopez, J.L.; Kao, C.

    1995-04-01

    The authors summarize the current status and future prospects for low energy (weak scale) supersymmetry. In particular, they evaluate the capabilities of various e{sup +}e{sup {minus}}, p{bar p} and pp colliders to discover evidence for supersymmetric particles. Furthermore, assuming supersymmetry is discovered, they discuss capabilities of future facilities to disentangle the anticipated spectrum of super-particles, and, via precision measurements, to test mass and coupling parameters for comparison with various theoretical expectations. The authors then comment upon the complementarity of proposed hadron and e{sup +}e{sup {minus}} machines for a comprehensive study of low energy supersymmetry.

  13. Low energy supersymmetry phenomenology

    SciTech Connect

    Baer, H.; Chen, C.H.; Bartl, A.

    1995-03-01

    The authors summarize the current status and future prospects for low energy (weak scale) supersymmetry. In particular, they evaluate the capabilities of various e{sup +}e{sup {minus}}, p{anti p} and pp colliders to discover evidence for supersymmetric particles. Furthermore, assuming supersymmetry is discovered, they discuss capabilities of future facilities to disentangle the anticipated spectrum of superparticles, and, via precision measurements, to test mass and coupling parameters for comparison with various theoretical expectations. They comment upon the complementarity of proposed hadron and e{sup +}e{sup {minus}} machines for a comprehensive study of low energy supersymmetry.

  14. Solar wind iron charge states as identifiers of coronal mass ejections and the characterization of a new low energy particle detector

    NASA Astrophysics Data System (ADS)

    Lepri, Susan Therese

    2004-08-01

    We examine Fe charge state distributions in the solar wind. The ionic composition of the solar wind directly reflects corona conditions within 4 5 solar radii. Charge state information can be used to determine coronal electron temperatures of source region plasma. Examination of the Fe charge states obtained by the Solar Wind Ion Composition Spectrometer (SWICS) on the Advanced Composition Explorer (ACE), shows a high correlation of the abundance ratio of Fe≥16+/FeTot > 10% with interplanetary coronal mass ejections (ICMEs) observed at 1 A.U. We designate these as “hot ICMEs” due to their associated high charge states. We use the abundance ratio to develop a threshold average Fe charge state, threshold , applicable to charge state data from other spacecraft unable to determine charge state abundances. Applying the threshold to in-ecliptic data from ACE and data from Ulysses along its polar orbit, we identify hot ICMEs as a function of latitude. We find a factor of four fewer hot ICMEs at high latitude than in the ecliptic. After studying features on the Sun near the time of the ICME eruption, we determine that solar flares are likely the source of the observed high Fe charge states. This result has important implications in understanding the relationship between solar flares and CMEs. For years, a controversy has existed over the causal relationship between flares and CMEs. Now, through the work of this thesis, compositional data provides convincing evidence of an association of flares and CMEs. In addition, we also characterize a new delta-doped charge-coupled device (CCD). The new delta-doped CCD has a dead layer that is ˜1/10 th the thickness of previous SSDs used in ACE/SWIGS. Using this detector, we are able to detect H+ and N+ ions with energies ranging from 1 10 keV in the laboratory. This is a remarkable increase in sensitivity for solid-state particle detectors which currently can only detect particles with energies >30 keV. Application of

  15. Simulation results for PLATO: a prototype hybrid X-ray photon counting detector with a low energy threshold for fusion plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Habib, A.; Menouni, M.; Pangaud, P.; Fenzi, C.; Colledani, G.; Moureau, G.; Escarguel, A.; Morel, C.

    2017-01-01

    PLATO is a prototype hybrid X-ray photon counting detector that has been designed to meet the specifications for plasma diagnostics for the WEST tokamak platform (Tungsten (W) Environment in Steady-state Tokamak) in southern France, with potential perspectives for ITER. PLATO represents a customized solution that fulfills high sensitivity, low dispersion and high photon counting rate. The PLATO prototype matrix is composed of 16 × 18 pixels with a 70 μm pixel pitch. New techniques have been used in analog sensitive blocks to minimize noise coupling through supply rails and substrate, and to suppress threshold dispersion across the matrix. The PLATO ASIC is designed in CMOS 0.13 μm technology and was submitted for a fabrication run in June 2016. The chip is designed to be bump-bonded to a silicon sensor. This paper presents pixel architecture as well as simulation results while highlighting novel solutions.

  16. Advanced light element and low energy X-ray line analysis using Energy Dispersive Spectrometry (EDS) with Silicon Drift Detectors (SDD)

    NASA Astrophysics Data System (ADS)

    Salge, T.; Palasse, L.; Berlin, J.; Hansen, B.; Terborg, R.; Falke, M.

    2013-12-01

    Introduction: Characterization at the micro- to nano-scale is crucial for understanding many processes in earth, planetary, material and biological sciences. The composition of thin electron transparent samples can be analyzed in the nm-range using transmission electron microscopes (TEM) or, specific sample holders provided, in the field emission scanning electron microscope (FE-SEM). Nevertheless both methods often require complex sample preparation. An alternative method is to analyze bulk samples with a FE-SEM. In order to decrease the excitation volume for generated X-rays, low accelerating voltages (HV<10) are required. Consequently, only low to intermediate energy X-ray lines can be evaluated and many peak overlaps have to be deconvoluted since the high energy range is not available. Methods: A BRUKER Quantax EDS system with an XFlash Silicon Drift Detector acquired EDS spectra in spectrum images. To separate overlapping peaks, an extended atomic database [1] was used. For single channel EDS the electron beam current, solid angle, take-off angle and exposure time can be optimized to investigate the element composition. Multiple SDD setups ensure an even higher efficiency and larger collection angles for the X-ray analysis than single channel detectors. Shadowing effects are minimized in element distribution maps so that samples can be investigated quickly and sometimes in a close to natural state, with little preparation. A new type of EDS detector, the annular four channel SDD (XFlash 5060F), is placed between the pole piece and sample. It covers a very large solid angle (1.1 sr) and allows sufficient data collection at low beam currents on beam sensitive samples with substantial surface topography. Examples of applications: Results demonstrate that SDD-based EDS analysis contributes essential information on the structure at the micro- to nano scale of the investigated sample types. These include stardust analogue impact experiments [2], Chicxulub asteroid

  17. Applying a low energy HPGe detector gamma ray spectrometric technique for the evaluation of Pu/Am ratio in biological samples.

    PubMed

    Singh, I S; Mishra, Lokpati; Yadav, J R; Nadar, M Y; Rao, D D; Pradeepkumar, K S

    2015-10-01

    The estimation of Pu/(241)Am ratio in the biological samples is an important input for the assessment of internal dose received by the workers. The radiochemical separation of Pu isotopes and (241)Am in a sample followed by alpha spectrometry is a widely used technique for the determination of Pu/(241)Am ratio. However, this method is time consuming and many times quick estimation is required. In this work, Pu/(241)Am ratio in the biological sample was estimated with HPGe detector based measurements using gamma/X-rays emitted by these radionuclides. These results were compared with those obtained from alpha spectroscopy of sample after radiochemical analysis and found to be in good agreement.

  18. LOW ENERGY COUNTING CHAMBERS

    DOEpatents

    Hayes, P.M.

    1960-02-16

    A beta particle counter adapted to use an end window made of polyethylene terephthalate was designed. The extreme thinness of the film results in a correspondingly high transmission of incident low-energy beta particles by the window. As a consequence, the counting efficiency of the present counter is over 40% greater than counters using conventional mica end windows.

  19. A measurement of the time profile of scintillation induced by low energy gamma-rays in liquid xenon with the XMASS-I detector

    NASA Astrophysics Data System (ADS)

    Takiya, H.; Abe, K.; Hiraide, K.; Ichimura, K.; Kishimoto, Y.; Kobayashi, K.; Kobayashi, M.; Moriyama, S.; Nakahata, M.; Norita, T.; Ogawa, H.; Sekiya, H.; Takachio, O.; Takeda, A.; Tasaka, S.; Yamashita, M.; Yang, B. S.; Kim, N. Y.; Kim, Y. D.; Itow, Y.; Kegasa, R.; Kobayashi, K.; Masuda, K.; Fushimi, K.; Martens, K.; Suzuki, Y.; Fujita, R.; Hosokawa, K.; Miuchi, K.; Oka, N.; Onishi, Y.; Takeuchi, Y.; Kim, Y. H.; Lee, J. S.; Lee, K. B.; Lee, M. K.; Fukuda, Y.; Nishijima, K.; Nakamura, S.

    2016-10-01

    We report the measurement of the emission time profile of scintillation from gamma-ray induced events in the XMASS-I 832 kg liquid xenon scintillation detector. Decay time constant was derived from a comparison of scintillation photon timing distributions between the observed data and simulated samples in order to take into account optical processes such as absorption and scattering in liquid xenon. Calibration data of radioactive sources, 55Fe, 241Am, and 57Co were used to obtain the decay time constant. Assuming two decay components, τ1 and τ2, the decay time constant τ2 increased from 27.9 ns to 37.0 ns as the gamma-ray energy increased from 5.9 keV to 122 keV. The accuracy of the measurement was better than 1.5 ns at all energy levels. A fast decay component with τ1 ∼ 2 ns was necessary to reproduce data. Energy dependencies of τ2 and the fraction of the fast decay component were studied as a function of the kinetic energy of electrons induced by gamma-rays. The obtained data almost reproduced previously reported results and extended them to the lower energy region relevant to direct dark matter searches.

  20. Low energy antiproton beams

    NASA Astrophysics Data System (ADS)

    Klapisch, R.

    1992-04-01

    It was the invention of stochastic cooling by S. Van Meer that has allowed antiproton beams to become a powerful tool for the physicist. As a byproduct of the high energy proton-antiproton collider, a versatile low-energy facility, LEAR has been operating at CERN since 1984. The facility and its characteristics will be described as well as examples of its use for studying fundamental properties of the antiproton and for topics in atomic, nuclear and particle Physics.

  1. Low-energy Neutrino Astronomy in LENA

    NASA Astrophysics Data System (ADS)

    Wurm, M.; Bick, D.; Enqvist, T.; Hellgartner, D.; Kaiser, M.; Loo, K. K.; Lorenz, S.; Meloni, M.; Meyer, M.; Möllenberg, R.; Oberauer, L.; Soiron, M.; Smirnov, M.; Trzaska, W. H.; Wonsak, B.

    LENA (Low Energy Neutrino Astronomy) is a proposed next-generation neutrino detector based on 50 kilotons of liquid scintillator. The low detection threshold, good energy resolution and excellent background rejection inherent to the liquid-scintillator detectors make LENA a versatile observatory for low-energy neutrinos from astrophysical and terrestrial sources. In the framework of the European LAGUNA-LBNO design study, LENA is also considered as far detector for a very-long baseline neutrino beam from CERN to Pyhäsalmi (Finland). The present contribution gives an overview LENA's broad research program, highlighting the unique capabilities of liquid scintillator for the detection of low-energy neutrinos from astrophysical sources. In particular, it will focus on the precision measurement of the solar neutrino spectrum: The search for time modulations in the 7Be neutrino flux, the determination of the electron neutrino survival probability in the low-energy region of the 8B spectrum and the favorable detection conditions for neutrinos from the CNO fusion cycle.

  2. The Low-Energy Background in XENON1T

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Stein, Alec; Xenon1T Collaboration

    2017-01-01

    The XENON1T dark matter direct-detection experiment looks for hypothetical Weakly Interacting Massive Particles (WIMPs). WIMPs are expected to scatter off xenon nuclei at low energies, so understanding the low-energy background of the detector is crucial. In XENON1T, the background in the WIMP search region is due to radioactive decays stemming from the detector construction materials and impurities in the xenon itself. We show that our predicted low-energy background rate of 10-4events .kg-1 .day-1 .keV-1 matches XENON1T's design goals and is in agreement with the data taken during the commissioning of the detector.

  3. Low energy neutral atom imaging

    SciTech Connect

    McComas, D.J.; Funsten, H.O.; Gosling, J.T.; Moore, K.R.; Thomsen, M.F.

    1992-01-01

    Energetic neutral atom (ENA) and low energy neutral atom (LENA) imaging of space plasmas are emerging new technology which promises to revolutionize the way we view and understand large scale space plasma phenomena and dynamics. ENAs and LENAs are produced in the magnetosphere by charge exchange between energetic and plasma ions and cold geocoronal neutrals. While imaging techniques have been previously developed for observing ENAs, with energies above several tens of keV, most of the ions found in the terrestrial magnetosphere have lower energies. We recently suggested that LENAs could be imaged by first converting the neutrals to ions and then electrostatically analyzing them to reject the UV background. In this paper we extend this work to examine in detail the sensor elements needed to make an LENA imager. These elements are (1) a biased collimator to remove the ambient plasma ions and electrons and set the azimuthal field-of-view; (2) a charge modifier to convert a portion of the incident LENAs to ions; (3) an electrostatic analyzer to reject UV light and set the energy passband; and (4) a coincidence detector to measure converted LENAs while rejecting noise and penetrating radiation. We also examine the issue of LENA imager sensitivity and describe ways of optimizing sensitivity in the various sensor components. Finally, we demonstrate in detail how these general considerations are implemented by describing one relatively straightforward design based on a hemispherical electrostatic analyzer.

  4. The Low-Energy Telescopes on EXIST

    NASA Astrophysics Data System (ADS)

    Ramsey, Brian; Kaaret, P.; Jernigan, J. G.; Remillard, R. A.; Rothschild, R.; Hong, J.; Grindlay, J. E.

    2007-05-01

    The low-energy telescopes on EXIST are a coded aperture system that will continually image the 5-30 keV sky with 1' angular resolution and 12" source localization accuracy. The good source localization accuracy is essential to uniquely identify counterparts to obscured AGN and gamma-ray bursts. A total detector area of about one square meter with 200 micron square pixel is required. We are evaluating two silicon-based technologies capable of achieving the required performance: active pixel sensors with integrated DEPFET readout, and fully pixellated hybrid sensors with CMOS readout multiplexers optimized for X-ray detection.

  5. The Low-Energy Telescopes on EXIST

    NASA Astrophysics Data System (ADS)

    Ramsey, Brian; Kaaret, Philip E.; Jernigan, J. G.; Remillard, R. A.; Rothschild, R. E.; Hong, J.; Grindlay, J. E.

    2006-12-01

    The low-energy telescopes on EXIST are a coded aperture system that will continually image the 5-30 keV sky with 1' angular resolution and 12" source localization accuracy. The good source localization accuracy is essential to uniquely identify counterparts to obscured AGN and gamma-ray bursts. A total detector area of about one square meter with 200 micron square pixel is required. We are evaluating two silicon-based technologies capable of achieving the required performance: active pixel sensors with integrated DEPFET readout, and fully pixellated hybrid sensors with CMOS readout multiplexers optimized for X-ray detection.

  6. Low energy neutrinos in Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Sekiya, Hiroyuki

    2016-05-01

    Super-Kamiokande (SK), a 50 kton water Cherenkov detector, observes 8B solar neutrinos via neutrino-electron elastic scattering. The analysis threshold was successfully lowered to 3.5 MeV (recoil electron kinetic energy) in SK-IV. To date SK has observed solar neutrinos for 18 years. An analysis regarding possible correlations between the solar neutrino flux and the 11 year solar activity cycle is shown. With large statistics, SK searches for distortions of the solar neutrino energy spectrum caused by the MSW resonance in the core of the sun. SK also searches for a day/night solar neutrino flux asymmetry induced by the matter in the Earth. The Super-Kamiokande Gd (SK-Gd) project is the upgrade of the SK detector via the addition of water-soluble gadolinium (Gd) salt. This modification will enable it to efficiently identify low energy anti-neutrinos. SK-Gd will pursue low energy physics currently inaccessible to SK due to backgrounds. The most important will be the world’s first observation of the diffuse supernova neutrino background. The main R&D program towards SK-Gd is EG ADS: a 200 ton, fully instrumented tank built in a new cavern in the Kamioka mine.

  7. A low energy electron magnetometer

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Wood, G. M., Jr.; Rayborn, G. H.; White, F. A.

    1979-01-01

    The concept of a highly sensitive magnetometer based on the deflection of low energy electron beams in magnetic fields is analyzed. Because of its extremely low mass and consequently high e/m ratio, a low energy electron is easily deflected in a magnetic field, thus providing a basis for very low field measurement. Calculations for a specific instrument design indicate that a low energy electron magnetometer (LEEM) can measure magnetic fields as low as 1000 nT. The anticipated performance of LEEM is compared with that of the existing high resolution magnetometers in selected applications. The fast response time of LEEM makes it especially attractive as a potential instrument for magnetic signature analysis in large engineering systems.

  8. Scattering of low-energy neutrinos on atomic shells

    SciTech Connect

    Babič, Andrej; Šimkovic, Fedor

    2015-10-28

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.

  9. Scattering of low-energy neutrinos on atomic shells

    NASA Astrophysics Data System (ADS)

    Babič, Andrej; Šimkovic, Fedor

    2015-10-01

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.

  10. Low Energy Schools in Ireland

    ERIC Educational Resources Information Center

    Heffernan, Martin

    2004-01-01

    Out of a commitment to reducing carbon dioxide emissions, Ireland's Department of Education and Science has designed and constructed two low energy schools, in Tullamore, County Offaly, and Raheen, County Laois. With energy use in buildings responsible for approximately 55% of the CO[subscript 2] released into the atmosphere and a major…

  11. Towards Low Energy Atrial Defibrillation.

    PubMed

    Walsh, Philip; Kodoth, Vivek; McEneaney, David; Rodrigues, Paola; Velasquez, Jose; Waterman, Niall; Escalona, Omar

    2015-09-03

    A wireless powered implantable atrial defibrillator consisting of a battery driven hand-held radio frequency (RF) power transmitter (ex vivo) and a passive (battery free) implantable power receiver (in vivo) that enables measurement of the intracardiac impedance (ICI) during internal atrial defibrillation is reported. The architecture is designed to operate in two modes: Cardiac sense mode (power-up, measure the impedance of the cardiac substrate and communicate data to the ex vivo power transmitter) and cardiac shock mode (delivery of a synchronised very low tilt rectilinear electrical shock waveform). An initial prototype was implemented and tested. In low-power (sense) mode, >5 W was delivered across a 2.5 cm air-skin gap to facilitate measurement of the impedance of the cardiac substrate. In high-power (shock) mode, >180 W (delivered as a 12 ms monophasic very-low-tilt-rectilinear (M-VLTR) or as a 12 ms biphasic very-low-tilt-rectilinear (B-VLTR) chronosymmetric (6ms/6ms) amplitude asymmetric (negative phase at 50% magnitude) shock was reliably and repeatedly delivered across the same interface; with >47% DC-to-DC (direct current to direct current) power transfer efficiency at a switching frequency of 185 kHz achieved. In an initial trial of the RF architecture developed, 30 patients with AF were randomised to therapy with an RF generated M-VLTR or B-VLTR shock using a step-up voltage protocol (50-300 V). Mean energy for successful cardioversion was 8.51 J ± 3.16 J. Subsequent analysis revealed that all patients who cardioverted exhibited a significant decrease in ICI between the first and third shocks (5.00 Ω (SD(σ) = 1.62 Ω), p < 0.01) while spectral analysis across frequency also revealed a significant variation in the impedance-amplitude-spectrum-area (IAMSA) within the same patient group (|∆(IAMSAS1-IAMSAS3)[1 Hz - 20 kHz] = 20.82 Ω-Hz (SD(σ) = 10.77 Ω-Hz), p < 0.01); both trends being absent in all patients that failed to cardiovert. Efficient

  12. Towards Low Energy Atrial Defibrillation

    PubMed Central

    Walsh, Philip; Kodoth, Vivek; McEneaney, David; Rodrigues, Paola; Velasquez, Jose; Waterman, Niall; Escalona, Omar

    2015-01-01

    A wireless powered implantable atrial defibrillator consisting of a battery driven hand-held radio frequency (RF) power transmitter (ex vivo) and a passive (battery free) implantable power receiver (in vivo) that enables measurement of the intracardiacimpedance (ICI) during internal atrial defibrillation is reported. The architecture is designed to operate in two modes: Cardiac sense mode (power-up, measure the impedance of the cardiac substrate and communicate data to the ex vivo power transmitter) and cardiac shock mode (delivery of a synchronised very low tilt rectilinear electrical shock waveform). An initial prototype was implemented and tested. In low-power (sense) mode, >5 W was delivered across a 2.5 cm air-skin gap to facilitate measurement of the impedance of the cardiac substrate. In high-power (shock) mode, >180 W (delivered as a 12 ms monophasic very-low-tilt-rectilinear (M-VLTR) or as a 12 ms biphasic very-low-tilt-rectilinear (B-VLTR) chronosymmetric (6ms/6ms) amplitude asymmetric (negative phase at 50% magnitude) shock was reliably and repeatedly delivered across the same interface; with >47% DC-to-DC (direct current to direct current) power transfer efficiency at a switching frequency of 185 kHz achieved. In an initial trial of the RF architecture developed, 30 patients with AF were randomised to therapy with an RF generated M-VLTR or B-VLTR shock using a step-up voltage protocol (50–300 V). Mean energy for successful cardioversion was 8.51 J ± 3.16 J. Subsequent analysis revealed that all patients who cardioverted exhibited a significant decrease in ICI between the first and third shocks (5.00 Ω (SD(σ) = 1.62 Ω), p < 0.01) while spectral analysis across frequency also revealed a significant variation in the impedance-amplitude-spectrum-area (IAMSA) within the same patient group (|∆(IAMSAS1-IAMSAS3)[1 Hz − 20 kHz] = 20.82 Ω-Hz (SD(σ) = 10.77 Ω-Hz), p < 0.01); both trends being absent in all patients that failed to cardiovert. Efficient

  13. The problem of low energy particle measurements in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Whipple, E. C., Jr.

    1978-01-01

    The accurate measurement of low energy (less than 100 eV) particle properties in the magnetosphere has been difficult, partly because of the low density of such particles, but more particularly because of spacecraft interference effects. Some early examples of how these phenomena have affected particle measurements on an OGO spacecraft are presented. Data obtained with the UCSD particle detectors on ATS-6 are then presented showing how some of these difficulties have been partially overcome. Future measurements of low energy particles in the magnetosphere can be improved by: (1) improving the low energy resolution of detectors; (2) building electrostatically clean spacecraft; (3) controlling spacecraft potential; and (4) using auxiliary measurements, particularly wave data.

  14. The low energy signaling network.

    PubMed

    Tomé, Filipa; Nägele, Thomas; Adamo, Mattia; Garg, Abhroop; Marco-Llorca, Carles; Nukarinen, Ella; Pedrotti, Lorenzo; Peviani, Alessia; Simeunovic, Andrea; Tatkiewicz, Anna; Tomar, Monika; Gamm, Magdalena

    2014-01-01

    Stress impacts negatively on plant growth and crop productivity, caicultural production worldwide. Throughout their life, plants are often confronted with multiple types of stress that affect overall cellular energy status and activate energy-saving responses. The resulting low energy syndrome (LES) includes transcriptional, translational, and metabolic reprogramming and is essential for stress adaptation. The conserved kinases sucrose-non-fermenting-1-related protein kinase-1 (SnRK1) and target of rapamycin (TOR) play central roles in the regulation of LES in response to stress conditions, affecting cellular processes and leading to growth arrest and metabolic reprogramming. We review the current understanding of how TOR and SnRK1 are involved in regulating the response of plants to low energy conditions. The central role in the regulation of cellular processes, the reprogramming of metabolism, and the phenotypic consequences of these two kinases will be discussed in light of current knowledge and potential future developments.

  15. The low energy signaling network

    PubMed Central

    Tomé, Filipa; Nägele, Thomas; Adamo, Mattia; Garg, Abhroop; Marco-llorca, Carles; Nukarinen, Ella; Pedrotti, Lorenzo; Peviani, Alessia; Simeunovic, Andrea; Tatkiewicz, Anna; Tomar, Monika; Gamm, Magdalena

    2014-01-01

    Stress impacts negatively on plant growth and crop productivity, caicultural production worldwide. Throughout their life, plants are often confronted with multiple types of stress that affect overall cellular energy status and activate energy-saving responses. The resulting low energy syndrome (LES) includes transcriptional, translational, and metabolic reprogramming and is essential for stress adaptation. The conserved kinases sucrose-non-fermenting-1-related protein kinase-1 (SnRK1) and target of rapamycin (TOR) play central roles in the regulation of LES in response to stress conditions, affecting cellular processes and leading to growth arrest and metabolic reprogramming. We review the current understanding of how TOR and SnRK1 are involved in regulating the response of plants to low energy conditions. The central role in the regulation of cellular processes, the reprogramming of metabolism, and the phenotypic consequences of these two kinases will be discussed in light of current knowledge and potential future developments. PMID:25101105

  16. Low-energy neutrino factory design

    SciTech Connect

    Ankenbrandt, C.; Bogacz, S.A.; Bross, A.; Geer, S.; Johnstone, C.; Neuffer, D.; Popovic, M.; /Fermilab

    2009-07-01

    The design of a low-energy (4 GeV) neutrino factory (NF) is described, along with its expected performance. The neutrino factory uses a high-energy proton beam to produce charged pions. The {pi}{sup {+-}} decay to produce muons ({mu}{sup {+-}}), which are collected, accelerated, and stored in a ring with long straight sections. Muons decaying in the straight sections produce neutrino beams. The scheme is based on previous designs for higher energy neutrino factories, but has an improved bunching and phase rotation system, and new acceleration, storage ring, and detector schemes tailored to the needs of the lower energy facility. Our simulations suggest that the NF scheme we describe can produce neutrino beams generated by {approx} 1.4 x 10{sup 21} {mu}{sup +} per year decaying in a long straight section of the storage ring, and a similar number of {mu}{sup -} decays.

  17. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  18. Fusion reactions at low energy

    SciTech Connect

    Beckerman, M.

    1985-01-01

    Fusion measurement methods at low energies are briefly described, and experimental and theoretical fusion cross sections for /sup 58/Ni + /sup 58/Ni, /sup 58/Ni + /sup 64/Ni and /sup 64/Ni + /sup 64/Ni reactions are discussed. It is shown that quantal tunneling calculations do not describe the near- and sub-barrier behavior of the fusion data. Instead, the WKB predictions fall progressively further blow the experimental results as the energy is lowered. At far subbarrier energies the measured cross sections exceed the WKB predictions by more than three orders of magnitude. The unexpectedly strong dependence of the fusion probability upon the nuclear valence structure is illustrated and discussed. The relationship of channel coupling and quantal tunneling is discussed. In conclusion, it was established that atomic nuclei fuse far more readily at low energies that would be expected from quantal tunneling considerations alone. It was found that the behavior of the cross sections for fusion depends strongly upon the valence structure of the collision partners. This structural dependence extends from light 1p-shell systems to systems involving nearly 200 nucleons. These new phenomena may be viewed as characterizing the tunneling of a quantal system with many degrees of freedom. The failure of standard tunneling models may be understood as resulting from the ability of the dinuclear system to tunnel into the classically forbidden region by means of couplings to intrinsic degrees of freedom. 38 refs. (WHK)

  19. Oscillations of very low energy atmospheric neutrinos

    SciTech Connect

    Peres, Orlando L. G.; Smirnov, A. Yu.

    2009-06-01

    There are several new features in the production, oscillations, and detection of the atmospheric neutrinos of low energies E < or approx. 100 MeV. The flavor ratio r of muon to electron neutrino fluxes is substantially smaller than 2 and decreases with energy, a significant part of events is due to the decay of invisible muons at rest, etc. Oscillations in a two-layer medium (atmosphere-Earth) should be taken into account. We derive analytical and semianalytical expressions for the oscillation probabilities of these 'sub-sub-GeV' neutrinos. The energy spectra of the e-like events in water Cherenkov detectors are computed, and the dependence of the spectra on the 2-3 mixing angle {theta}{sub 23}, the 1-3 mixing, and the CP-violation phase are studied. We find that variations of {theta}{sub 23} in the presently allowed region change the number of e-like events by about 15%-20% as well as lead to distortion of the energy spectrum. The 1-3 mixing and CP violation can lead to {approx}10% effects. Detailed study of the sub-sub-GeV neutrinos will be possible in future megaton-scale detectors.

  20. Low-Energy Proton Testing Methodology

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Marshall, Paul W.; Heidel, David F.; Schwank, James R.; Shaneyfelt, Marty R.; Xapsos, M.A.; Ladbury, Raymond L.; LaBel, Kenneth A.; Berg, Melanie; Kim, Hak S.; Phan, Anthony; Friendlich, M.R.; Rodbell, Kenneth P.; Hakey, Mark C.; Dodd, Paul E.; Reed, Robert A.; Weller, Robert A.; Mendenhall, Marcus H.; Sierawski, B.D.

    2009-01-01

    Use of low-energy protons and high-energy light ions is becoming necessary to investigate current-generation SEU thresholds. Systematic errors can dominate measurements made with low-energy protons. Range and energy straggling contribute to systematic error. Low-energy proton testing is not a step-and-repeat process. Low-energy protons and high-energy light ions can be used to measure SEU cross section of single sensitive features; important for simulation.

  1. Performance assessment of a 2D array of plastic scintillation detectors for IMRT quality assurance

    NASA Astrophysics Data System (ADS)

    Guillot, Mathieu; Gingras, Luc; Archambault, Louis; Beddar, Sam; Beaulieu, Luc

    2013-07-01

    The purposes of this work are to assess the performance of a 2D plastic scintillation detectors array prototype for quality assurance in intensity-modulated radiation therapy (IMRT) and to determine its sensitivity and specificity to positioning errors of one multileaf collimator (MLC) leaf and one MLC leaf bank by applying the principles of signal detection theory. Ten treatment plans (step-and-shoot delivery) and one volumetric modulated arc therapy plan were measured and compared to calculations from two treatment-planning systems (TPSs) and to radiochromic films. The averages gamma passing rates per beam found for the step-and-shoot plans were 95.8% for the criteria (3%, 2 mm), 97.8% for the criteria (4%, 2 mm), and 98.1% for the criteria (3%, 3 mm) when measurements were compared to TPS calculations. The receiver operating characteristic curves for the one leaf errors and one leaf bank errors were determined from simulations (theoretical upper limits) and measurements. This work concludes that arrays of plastic scintillation detectors could be used for IMRT quality assurance in clinics. The use of signal detection theory could improve the quality of dosimetric verifications in radiation therapy by providing optimal discrimination criteria for the detection of different classes of errors.

  2. Is there a low energy enhancement in the photon strength function in molybdenum?

    SciTech Connect

    Sheets, S A

    2008-01-30

    Recent claims of a low energy enhancement in the photon strength function of {sup 96}Mo are investigated. Using the DANCE detector the gamma-ray spectra following resonance neutron capture was measured. The spectrum fitting method was used to indirectly extract a photon strength function from the gamma-ray spectra. No strong low energy enhancement in the photon strength function was found.

  3. Determination of the radial gradient in the region 0.81-1.0 AU using both high- and low-energy /more than 10-GeV and more than 52-MeV/ detectors for the 1-AU monitor. [solar quiet measurements of alpha particles and protons

    NASA Technical Reports Server (NTRS)

    Sheldon, W. R.; Bukata, R. P.; Rao, U. R.

    1974-01-01

    A determination of the radial gradient for alpha particles (31-46 MeV/nuc) and protons with energies above 7.5 MeV and 44-77 MeV in the region 1.0-0.81 AU is presented for the solar-quiet year 1966. The determinations are based on data from the Pioneer 6 space probe. Two different detectors are used: the Deep River neutron monitor and measurements of low energy protons made on the IMP-C satellite. The average energy response of the Deep River monitor is 16 GeV, whereas the IMP-C data is for protons with energies above 50 MeV. The resulting radial gradient is found to be nearly zero for the alpha particles and slightly negative for the protons. The same qualitative results were found using the IMP-C data and the Deep River neutron monitor to measure the temporal variation in the cosmic ray intensity. The present analysis indicates that detectors over a wide range of energies are suitable for measuring the radial gradient, providing sufficient statistical precision is obtained to evaluate short-term modulation and the azimuthal separation of the detectors is not great.

  4. Intense low energy positron beams

    SciTech Connect

    Lynn, K.G.; Jacobsen, F.M.

    1993-12-31

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e{sup +} beams exist producing of the order of 10{sup 8} {minus} 10{sup 9} e{sup +}/sec. Several laboratories are aiming at high intensity, high brightness e{sup +} beams with intensities greater than 10{sup 9} e{sup +}/sec and current densities of the order of 10{sup 13} {minus} 10{sup 14} e{sup +} sec{sup {minus}} {sup 1}cm{sup {minus}2}. Intense e{sup +} beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B{sup +} moderators or by increasing the available activity of B{sup +} particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e{sup +} collisions with atoms and molecules. Within solid state physics high intensity, high brightness e{sup +} beams are in demand in areas such as the re-emission e{sup +} microscope, two dimensional angular correlation of annihilation radiation, low energy e{sup +} diffraction and other fields. Intense e{sup +} beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies.

  5. Low energy cosmic ray studies from a lunar base

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, Mark E.

    1990-01-01

    Studies of cosmic ray nuclei with energies less than about 7 GeV/nucleon in low earth orbit are hampered by the geomagnetic field. Even in high inclination orbits these effects can be significant. The lunar surface (or lunar orbit) provides an attractive site for carrying out low energy cosmic ray studies which require large detectors. The rationale and requirements for this type of experiment are described.

  6. Low energy cosmic ray studies from a lunar base

    SciTech Connect

    Wiedenbeck, M.E. Department of Physics, University of Chicago, Chicago, IL )

    1990-03-15

    Studies of cosmic ray nuclei with energies {approx lt}7 GeV/nucleon in low Earth orbit are hampered by the geomagnetic field. Even in high inclination orbits these effects can be significant. The lunar surface (or lunar orbit) provides an attractive site for carrying out low energy cosmic ray studies which require large detectors. The rationale and requirements for this type of experiment are described.

  7. Development of multichannel low-energy neutron spectrometer

    SciTech Connect

    Arikawa, Y. Nagai, T.; Abe, Y.; Kojima, S.; Sakata, S.; Inoue, H.; Utsugi, M.; Iwasa, Y.; Sarukura, N.; Nakai, M.; Shiraga, H.; Fujioka, S.; Azechi, H.; Murata, T.

    2014-11-15

    A multichannel low-energy neutron spectrometer for down-scattered neutron (DSN) measurements in inertial confinement fusion (ICF) experiments has been developed. Our compact-size 256-channel lithium-glass-scintillator-based spectrometer has been implemented and tested in ICF experiments with the GEKKO XII laser. We have performed time calibration of the 256-channel analog-to-digital convertor system used for DSN measurements via X-ray pulse signals. We have clearly observed the DD-primary fusion neutron signal and have successfully studied the detector's impulse response. Our detector is soon to be implemented in future ICF experiments.

  8. The MAJORANA Demonstrator Low-Energy Rare Event Search

    NASA Astrophysics Data System (ADS)

    Wiseman, Clinton; Majorana Collaboration

    2016-09-01

    The extremely low backgrounds of the MAJORANA DEMONSTRATOR neutrinoless double beta decay experiment, combined with the excellent energy resolution of its high-purity germanium (HPGe) detectors, provide an opportunity for a dark matter search at low energy (<100 keV). The DEMONSTRATOR is in the final stages of construction at the 4850-ft. level of the Sanford Underground Research Facility in Lead, SD. The first detector module, consisting of 16.8 kg of HPGe enriched to 88% 76Ge and 5.7 kg of natural HPGe, took 100.6 live days of commissioning data before going blind on April 14th, 2016, and the second module is nearing completion at the time of this writing. The enriched detectors have particularly low levels of cosmogenic activation from their specialized manufacturing process. These ultra-low background designs are suited to rare event searches at low energies, including light WIMPs (<10 GeV/c2) and solar axions. In this talk an update of the MAJORANA low-energy research program will be presented. This material is based upon work supported by the U.S. DOE, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.

  9. Low-Energy Sputtering Research

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1999-01-01

    An experimental study is described to measure low-energy (less than 600 eV) sputtering yields of molybdenum with xenon ions using Rutherford backscattering spectroscopy (RBS) and secondary neutral mass spectroscopy (SNMS). An ion gun was used to generate the ion beam. The ion current density at the target surface was approximately 30 (micro)A/sq cm. For RBS measurements, the sputtered material was collected on a thin aluminum strip which was mounted on a semi-circular collector plate. The target was bombarded with 200 and 500 eV xenon ions at normal incidence. The differential sputtering yields were measured using the RBS method with 1 MeV helium ions. The differential yields were fitted with a cosine fitting function and integrated with respect to the solid angle to provide the total sputtering yields. The sputtering yields obtained using the RBS method are in reasonable agreement with those measured by other researchers using different techniques. For the SNMS measurements, 150 to 600 eV xenon ions were used at 50deg angle of incidence. The SNMS spectra were converted to sputtering yields for perpendicular incidence by normalizing SNMS spectral data at 500 eV with the yield measured by Rutherford backscattering spectrometry. Sputtering yields as well as the shape of the yield-energy curve obtained in this manner are in reasonable agreement with those measured by other researchers using different techniques. Sputtering yields calculated by using two semi-spherical formulations agree reasonably well with measured data. The isotopic composition of secondary ions were measured by bombarding copper with xenon ions at energies ranging from 100 eV to 1.5 keV. The secondary ion flux was found to be enriched in heavy isotopes at low incident ion energies. The heavy isotope enrichment was observed to decrease with increasing impact energy. Beyond 700 eV, light isotopes were sputtered preferentially with the enrichment remaining nearly constant.

  10. Low energy stable plasma calibration facility.

    PubMed

    Frederick-Frost, K M; Lynch, K A

    2007-07-01

    We have designed and fabricated a low energy plasma calibration facility for testing and calibration of rocket-borne charged-particle detectors and for the investigation of plasma sheath formation in an environment with ionospheric plasma energies, densities, and Debye lengths. We describe the vacuum system and associated plasma source, which was modified from a Naval Research Laboratory design [Bowles et al. Rev. Sci. Instrum. 67, 455 (1996)]. Mechanical and electrical modifications to this cylindrical microwave resonant source are outlined together with a different method of operating the magnetron that achieves a stable discharge. This facility produces unmagnetized plasmas with densities from 1x10(3)/cm(3) to 6x10(5)/cm(3), electron temperatures from 0.1 to 1.7 eV, and plasma potentials from 0.5 to 8 V depending on varying input microwave power and neutral gas flow. For the range of input microwave power explored (350-600 W), the energy density of the plasma remains constant because of an inverse relationship between density and temperature. This relationship allows a wide range of Debye lengths (0.3-8.4 cm) to be investigated, which is ideal for simulating the ionospheric plasma sheaths we explore.

  11. Measurements of charge distributions of the fragments in the low energy fission reaction

    NASA Astrophysics Data System (ADS)

    Wang, Taofeng; Han, Hongyin; Meng, Qinghua; Wang, Liming; Zhu, Liping; Xia, Haihong

    2013-01-01

    The measurement for charge distributions of fragments in spontaneous fission 252Cf has been performed by using a unique style of detector setup consisting of a typical grid ionization chamber and a ΔΕ-Ε particle telescope, in which a thin grid ionization chamber served as the ΔΕ-section and the E-section was an Au-Si surface barrier detector. The typical physical quantities of fragments, such as mass number and kinetic energies as well as the deposition in the gas ΔΕ detector and E detector were derived from the coincident measurement data. The charge distributions of the light fragments for the fixed mass number A2* and total kinetic energy (TKE) were obtained by the least-squares fits for the response functions of the ΔΕ detector with multi-Gaussian functions representing the different elements. The results of the charge distributions for some typical fragments are shown in this article which indicates that this detection setup has the charge distribution capability of Ζ:ΔΖ>40:1. The experimental method developed in this work for determining the charge distributions of fragments is expected to be employed in the neutron induced fissions of 232Th and 238U or other low energy fission reactions.

  12. Conceptual design of a 2 tesla superconducting solenoid for the Fermilab D{O} detector upgrade

    SciTech Connect

    Brzezniak, J.; Fast, R.W.; Krempetz, K.

    1994-05-01

    This paper presents a conceptual design of a superconducting solenoid to be part of a proposed upgrade for the D0 detector. This detector was completed in 1992, and has been taking data since then. The Fermilab Tevatron had scheduled a series of luminosity enhancements prior to the startup of this detector. In response to this accelerator upgrade, efforts have been underway to design upgrades for D0 to take advantage of the new luminosity, and improvements in detector technology. This magnet is conceived as part of the new central tracking system for D0, providing a radiation-hard high-precision magnetic tracking system with excellent electron identification.

  13. A 2×2 array of EMCCD-based solid state x-ray detectors.

    PubMed

    Sharma, P; Swetadri Vasan, S N; Titus, A H; Cartwright, A N; Bednarek, D R; Rudin, S

    2012-01-01

    We have designed and developed a new solid-state x-ray imaging system that consists of a 2×2 array of electron multiplying charge coupled devices (EMCCDs). This system is intended for fluoroscopic and angiographic medical imaging. The key components are the four 1024 × 1024 pixel EMCCDs with a pixel size of 13 × 13 µm(2). Each EMCCD is bonded to a fiber optic plate (FOP), and optically coupled to a 350 µm thick micro-columnar CsI(TI) scintillator via a 3.22∶1 fiber optic taper (FOT). The detector provides x-ray images of 9 line pairs/mm resolution at 15 frames/sec and real-time live video at 30 frames/sec with binning at a lower resolution, independent of the electronic gain applied to the EMCCD. The total field of view (FOV) of the array is 8.45 cm × 8.45 cm. The system is designed to also provide the ability to do region-of- interest imaging (ROI) by selectively enabling individual modules of the array.

  14. Neutrino Detectors: Challenges and Opportunities

    SciTech Connect

    Soler, F. J. P.

    2011-10-06

    This paper covers possible detector options suitable at future neutrino facilities, such as Neutrino Factories, Super Beams and Beta Beams. The Magnetised Iron Neutrino Detector (MIND), which is the baseline detector at a Neutrino Factory, will be described and a new analysis which improves the efficiency of this detector at low energies will be shown. Other detectors covered include the Totally Active Scintillating Detectors (TASD), particularly relevant for a low energy Neutrino Factory, emulsion detectors for tau detection, liquid argon detectors and megaton scale water Cherenkov detectors. Finally the requirements of near detectors for long-baseline neutrino experiments will be demonstrated.

  15. Solar-assisted low energy dwellings

    SciTech Connect

    Esbensen, T V

    1980-02-01

    The Zero Energy House Group was formed as a subproject of the CCMS Solar Energy Pilot Study in 1974 by seven participating countries experimenting with solar-assisted low-energy dwellings for temperate and northern European climatic conditions. A Zero Energy House is one in which solar energy is used to meet the reduced energy needs of buildings incorporating various thermal energy conservation features. This final report of the Zero Energy House Group includes brief descriptions of 13 major low-energy dwellings in the participating CCMS countries. An overall assessment of the state-of-the-art in solar-assisted low-energy dwellings is also included.

  16. Single track nanodosimetry of low energy electrons

    NASA Astrophysics Data System (ADS)

    Bantsar, A.; Grosswendt, B.; Pszona, S.; Kula, J.

    2009-02-01

    Auger-electron-emitting radionuclides (for instance, 125I) with a predominant energy spectrum below 3 keV are an active area of research towards the clinical application of radiopharmaceuticals. Hence, the necessity for an adequate description of the effects of radiation by low-energy electrons on nanometric biological targets seems to be unquestionable. Experimental nanodosimetry for low-energy electrons has been accomplished with a device named JET COUNTER. The present paper describes, for the first time, nanodosimetric experiments in nanometer-sized cavities of nitrogen using low energy electrons ranging from 100 eV to 2 keV.

  17. Low energy ghosts and the Jeans' instability

    NASA Astrophysics Data System (ADS)

    Gümrükçüoǧlu, A. Emir; Mukohyama, Shinji; Sotiriou, Thomas P.

    2016-09-01

    We show that a massless canonical scalar field minimally coupled to general relativity can become a tachyonic ghost at low energies around a background in which the scalar's gradient is spacelike. By performing a canonical transformation we demonstrate that this low energy ghost can be recast, at the level of the action, in a form of a fluid that undergoes a Jeans-like instability affecting only modes with large wavelength. This illustrates that low energy tachyonic ghosts do not lead to a catastrophic quantum vacuum instability, unlike the usual high-energy ghost degrees of freedom.

  18. The Mini-SPT (Space Particle Telescope) for dual use: Precision flux measurement of low energy proton electron and heavy ion with tracking capability and A compact, low-cost realtime local radiation hazard/alarm detector to be used on board a satellite

    NASA Astrophysics Data System (ADS)

    Alpat, Behcet; Ergin, Tulun; Kalemci, Emrah

    2016-07-01

    The Mini-SPT project is the first, and most important, step towards the ambitious goal of creating a low-cost, compact, radiation hardened and high performance space particle telescope that can be mounted, in the near future, as standard particle detector on any satellite. Mini-SPT will be capable of providing high quality physics data on local space environment. In particular high precision flux measurement and tracking of low energy protons and electrons on different orbits with same instrumentation is of paramount importance for studies as geomagnetically trapped fluxes and space weather dynamics, dark matter search, low energy proton anisotropy and its effects on ICs as well as the solar protons studies. In addition, it will provide real-time "differentiable warnings" about the local space radiation hazard to other electronics systems on board the hosting satellite, including different criticality levels and alarm signals to activate mitigation techniques whenever this is strictly necessary to protect them from temporary/permanent failures. A real-time warning system will help satellite subsystems to save significant amount of power and memory with respect to other conventional techniques where the "mitigation" solutions are required to be active during entire mission life. The Mini-SPT will combine the use of technologies developed in cutting-edge high energy physics experiments (including technology from CMS experiments at CERN) and the development of new charged particle detecting systems for their use for the first time in space. The Mini-SPT essential objective is, by using for the first time in space SIPMs (Silicon Photomultipliers) technology for TOF and energy measurements, the production of high quality data with a good time, position and energy resolutions. The mini-SPT will consists of three main sub-units: a- A tracking and dE/dX measuring sub-detector which will be based on silicon pixel detectors (SPD) coupled to the rad-hard chip ROC-DIG (Read

  19. Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform

    NASA Astrophysics Data System (ADS)

    Liu, Bao-Lei; Yang, Zhao-Hua; Liu, Xia; Wu, Ling-An

    2017-02-01

    We propose and demonstrate a computational imaging technique that uses structured illumination based on a two-dimensional discrete cosine transform to perform imaging with a single-pixel detector. A scene is illuminated by a projector with two sets of orthogonal patterns, then by applying an inverse cosine transform to the spectra obtained from the single-pixel detector a full-color image is retrieved. This technique can retrieve an image from sub-Nyquist measurements, and the background noise is easily canceled to give excellent image quality. Moreover, the experimental setup is very simple.

  20. Is there a low-energy enhancement in the photon strength function in molybdenum?

    SciTech Connect

    Sheets, S. A.

    2008-04-17

    Recent claims of a low-energy enhancement in the photon strength function of {sup 96}Mo are investigated. Using the DANCE detector the gamma-ray spectra following resonance neutron capture was measured. The spectrum fitting method was used to indirectly extract a photon strength function from the gamma-ray spectra. No strong low energy enhancement in the photon strength function was found.

  1. Low energy neutral atom imaging: Remote observations of the magnetosphere

    SciTech Connect

    Funsten, H.O.; McComas, D.J.; Scime, E.E.; Moore, K.R.

    1995-02-01

    Recent developments in detection of neutral atom imaging should enable imaging the global structure and dynamics of the terrestrial magnetosphere. The inherent technical challenge of imaging low energy neutral atoms (LENAs) with energy < 30 keV is their separation from the tremendous UV background, to which LENA detectors are sensitive, without loss of information of LENA trajectory and energy. Three instrument concepts for separating LENAs from the background UV are presented: LENA charge conversion via transmission through an ultrathin carbon foil and subsequent electrostatic deflection, EUV grating polarizers and attenuators, and high frequency shutters. Each of these concepts can be mated to a detector section that provides both LENA imaging capability and coincidence/time-of-flight.

  2. Assessing internal contamination after the detonation of a radiological dispersion device using a 2x2-inch sodium iodide detector.

    PubMed

    Dewji, S; Hertel, N; Ansari, A

    2013-07-01

    The detonation of a radiological dispersion device may result in a situation where individuals inhale radioactive materials and require rapid assessment of internal contamination. The feasibility of using a 2×2-inch sodium-iodide detector to determine the committed effective dose to an individual following acute inhalation of gamma-emitting radionuclides was investigated. Experimental configurations of point sources with a polymethyl methacrylate slab phantom were used to validate Monte Carlo simulations. The validated detector model was used to simulate the responses for four detector positions on six different anthropomorphic phantoms. The nuclides examined included (241)Am, (60)Co, (137)Cs, (131)I and (192)Ir. Biokinetic modelling was employed to determine the distributed activity in the body as a function of post-inhalation time. The simulation and biokinetic data were used to determine time-dependent count-rate values at optimal detector locations on the body for each radionuclide corresponding to a target committed effective dose (E50) value of 250 mSv.

  3. Response of plastic scintillators to low-energy photons.

    PubMed

    Peralta, Luis; Rêgo, Florbela

    2014-08-21

    Diagnostic radiology typically uses x-ray beams between 25 and 150 kVp. Plastic scintillation detectors (PSDs) are potentially successful candidates as field dosimeters but careful selection of the scintillator is crucial. It has been demonstrated that they can suffer from energy dependence in the low-energy region, an undesirable dosimeter characteristic. This dependence is partially due to the nonlinear light yield of the scintillator to the low-energy electrons set in motion by the photon beam. In this work, PSDs made of PMMA, PVT or polystyrene were studied for the x-ray beam range 25 to 100 kVp. For each kVp data has been acquired for additional aluminium filtrations of 0.5, 1.0, 2.0 and 4.0 mm. Absolute dose in the point of measurement was obtained with an ionization chamber calibrated to dose in water. From the collected data, detector sensitivities were obtained as function of the beam kVp and additional filtration. Using Monte Carlo simulations relative scintillator sensitivities were computed. For some of the scintillators these sensitivities show strong energy-dependence for beam average energy below 35 keV for each additional filtration but fair constancy above. One of the scintillators (BC-404) has smaller energy-dependence at low photon average energy and could be considered a candidate for applications (like mammography) where beam energy has small span.

  4. MARLEY: Model of Argon Reaction Low Energy Yields

    NASA Astrophysics Data System (ADS)

    Gardiner, Steven; Bilton, Kyle; Grant, Christopher; Pantic, Emilija; Svoboda, Robert

    2015-10-01

    Core-collapse supernovae are sources of tremendous numbers of neutrinos with energies of up to about 50 MeV. In recent years, there has been growing interest in building detectors that are sensitive to supernova neutrinos. Such detectors can provide information about the initial stages of stellar collapse, early warning signals for light emission from supernovae, and opportunities to study neutrino oscillation physics over astronomical distances. In an effort to enable supernova neutrino detection in next-generation experiments like DUNE, the CAPTAIN collaboration plans to make the first direct measurement of cross sections for neutrino interactions on argon in the supernova energy regime. To help predict neutrino event signatures in the CAPTAIN liquid argon time projection chamber (LArTPC), we have developed a first-of-its-kind Monte Carlo event generator called MARLEY (Model of Argon Reaction Low Energy Yields). This generator attempts to model the complicated nuclear structure dependence of low-energy neutrino-nucleus reactions in sufficient detail for use in LArTPC simulations. In this talk we present some preliminary results calculated using MARLEY and discuss how the current version of the generator may be improved and expanded.

  5. Studies in Low-Energy Nuclear Science

    SciTech Connect

    Carl R. Brune; Steven M. Grimes

    2010-01-13

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

  6. Parity violation in low-energy

    SciTech Connect

    Martin Savage

    2001-12-01

    Parity violation in low-energy nuclear observables is included in the pionless effective field theory. The model-independent relation between the parity-violating asymmetry in polarized np -> d gamma and the non-nucleon part of the deuteron anapole moment is discussed. The asymmetry in np -> d gamma computed with KSW power-counting, and recently criticized by Desplanques, is discussed.

  7. A 2-D Array of Superconducting Magnesium Diboride (MgB2) Far-IR Thermal Detectors for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Lakew, Brook

    2009-01-01

    A 2-D array of superconducting Magnesium Diboride(MgB2) far IR thermal detectors has been fabricated. Such an array is intended to be at the focal plane of future generation thermal imaging far-IR instruments that will investigate the outer planets and their icy moons. Fabrication and processing of the pixels of the array as well as noise characterization of architectured MgB2 thin films will be presented. Challenges and solutions for improving the performance of the array will be discussed.

  8. Low-energy electron collisions with thiophene.

    PubMed

    da Costa, R F; Varella, M T do N; Lima, M A P; Bettega, M H F

    2013-05-21

    We report on elastic integral, momentum transfer, and differential cross sections for collisions of low-energy electrons with thiophene molecules. The scattering calculations presented here used the Schwinger multichannel method and were carried out in the static-exchange and static-exchange plus polarization approximations for energies ranging from 0.5 eV to 6 eV. We found shape resonances related to the formation of two long-lived π∗ anion states. These resonant structures are centered at the energies of 1.00 eV (2.85 eV) and 2.82 eV (5.00 eV) in the static-exchange plus polarization (static-exchange) approximation and belong to the B1 and A2 symmetries of the C2v point group, respectively. Our results also suggest the existence of a σ∗ shape resonance in the B2 symmetry with a strong d-wave character, located at around 2.78 eV (5.50 eV) as obtained in the static-exchange plus polarization (static-exchange) calculation. It is worth to mention that the results obtained at the static-exchange plus polarization level of approximation for the two π∗ resonances are in good agreement with the electron transmission spectroscopy results of 1.15 eV and 2.63 eV measured by Modelli and Burrow [J. Phys. Chem. A 108, 5721 (2004)]. The existence of the σ∗ shape resonance is in agreement with the observations of Dezarnaud-Dandiney et al. [J. Phys. B 31, L497 (1998)] based on the electron transmission spectra of dimethyl(poly)sulphides. A comparison among the resonances of thiophene with those of pyrrole and furan is also performed and, altogether, the resonance spectra obtained for these molecules point out that electron attachment to π∗ molecular orbitals is a general feature displayed by these five-membered heterocyclic compounds.

  9. Low-energy electron collisions with thiophene

    NASA Astrophysics Data System (ADS)

    da Costa, R. F.; Varella, M. T. do N.; Lima, M. A. P.; Bettega, M. H. F.

    2013-05-01

    We report on elastic integral, momentum transfer, and differential cross sections for collisions of low-energy electrons with thiophene molecules. The scattering calculations presented here used the Schwinger multichannel method and were carried out in the static-exchange and static-exchange plus polarization approximations for energies ranging from 0.5 eV to 6 eV. We found shape resonances related to the formation of two long-lived π* anion states. These resonant structures are centered at the energies of 1.00 eV (2.85 eV) and 2.82 eV (5.00 eV) in the static-exchange plus polarization (static-exchange) approximation and belong to the B1 and A2 symmetries of the C2v point group, respectively. Our results also suggest the existence of a σ* shape resonance in the B2 symmetry with a strong d-wave character, located at around 2.78 eV (5.50 eV) as obtained in the static-exchange plus polarization (static-exchange) calculation. It is worth to mention that the results obtained at the static-exchange plus polarization level of approximation for the two π* resonances are in good agreement with the electron transmission spectroscopy results of 1.15 eV and 2.63 eV measured by Modelli and Burrow [J. Phys. Chem. A 108, 5721 (2004), 10.1021/jp048759a]. The existence of the σ* shape resonance is in agreement with the observations of Dezarnaud-Dandiney et al. [J. Phys. B 31, L497 (1998), 10.1088/0953-4075/31/11/004] based on the electron transmission spectra of dimethyl(poly)sulphides. A comparison among the resonances of thiophene with those of pyrrole and furan is also performed and, altogether, the resonance spectra obtained for these molecules point out that electron attachment to π* molecular orbitals is a general feature displayed by these five-membered heterocyclic compounds.

  10. The MUNU experiment on low energy overlineνee- scattering

    NASA Astrophysics Data System (ADS)

    Broggini, C.; MUNU Collaboration

    2002-07-01

    We built a low background detector to measure the overlineνee- elastic cross section at low energy. The detector has been installed close to a nuclear reactor in Bugey and it is running since almost 2 years. After having reduced the electron background by more than three orders of magnitude we have now the evidence, for the first time, of the overlineνe peak from the reactor.

  11. The low-energy program of the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Massarczyk, Ralph; MAJORANA Collaboration

    2017-01-01

    The MAJORANA Collaboration constructed an ultra-low background, modular high-purity Ge detector array to search for neutrinoless double-beta decay in 76Ge. Located at the 4850-ft level of the Sanford Underground Research Facility, the DEMONSTRATOR detector assembly has the goal to show that it is possible to achieve background rates necessary for future ton-scale experiments. The ultra-clean assembly in combination with low-noise p-type point contact detectors allows measurements with thresholds in the keV range. The talk will give an overview of the low-energy physics and recent achievements made since the completed DEMONSTRATOR array started data taking in mid 2016. Recent results from campaign will be presented, including new limits on bosonic dark matter interaction rates. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  12. Photon strength and the low-energy enhancement

    NASA Astrophysics Data System (ADS)

    Wiedeking, M.; Bernstein, L. A.; Krtička, M.; Bleuel, D. L.; Allmond, J. M.; Basunia, M. S.; Burke, J. T.; Fallon, P.; Firestone, R. B.; Goldblum, B. L.; Hatarik, R.; Lake, P. T.; Lee, I.-Y.; Lesher, S. R.; Paschalis, S.; Petri, M.; Phair, L.; Scielzo, N. D.

    2014-08-01

    Several measurements in medium mass nuclei have reported a low-energy enhancement in the photon strength function. Although, much effort has been invested in unraveling the mysteries of this effect, its physical origin is still not conclusively understood. Here, a completely model-independent experimental approach to investigate the existence of this enhancement is presented. The experiment was designed to study statistical feeding from the quasi-continuum (below the neutron separation energy) to individual low-lying discrete levels in 95Mo produced in the (d, p) reaction. A key aspect to successfully study gamma decay from the region of high-level density is the detection and extraction of correlated particle-gamma-gamma events which was accomplished using an array of Clover HPGe detectors and large area annular silicon detectors. The entrance channel excitation energy into the residual nucleus produced in the reaction was inferred from the detected proton energies in the silicon detectors. Gating on gamma-transitions originating from low-lying discrete levels specifies the state fed by statistical gamma-rays. Any particle-gamma-gamma event in combination with specific energy sum requirements ensures a clean and unambiguous determination of the initial and final state of the observed gamma rays. With these requirements the statistical feeding to individual discrete levels is extracted on an event-by-event basis. The results are presented and compared to 95Mo photon strength function data measured at the University of Oslo.

  13. Low-energy break in the spectrum of Galactic cosmic rays.

    PubMed

    Neronov, A; Semikoz, D V; Taylor, A M

    2012-02-03

    Measurements of the low-energy spectrum of Galactic cosmic rays (GCRs) by detectors on or near Earth are affected by solar modulation. To overcome this difficulty, we consider nearby molecular clouds as GCR detectors outside the Solar System. Using γ-ray observations of the clouds by the Fermi telescope, we derive the spectrum of GCRs in the clouds from the observed γ-ray emission spectrum. We find that the GCR spectrum has a low-energy break with the spectral slope hardening by ΔΓ=1.1±0.3 at an energy of E=9±3  GeV. Detection of a low-energy break enables a measurement of GCR energy density in the interstellar space U=0.9±0.3  eV/cm{3}.

  14. Soft X-ray bremsstrahlung and fluorescent line production in the atmosphere by low energy electrons

    NASA Technical Reports Server (NTRS)

    Kraushaar, W. L.

    1974-01-01

    The effect of low energy quasi-trapped or precipitating electrons which impact on the counter windows of soft X-ray detectors are discussed. The errors caused by X-rays produced in the residual atmosphere above a rocket-borne detector because of the resemblance to X-rays of cosmic origin are examined. The design and development of counter windows which make it possible to identify the atmospherically produced X-rays are described. Curves are presented to show the following: (1) preliminary low energy electron data from Atmospheric Explorer C, (2) X-ray flux in electron-excited nitrogen and oxygen, (3) typical proportional counter response to low energy cosmic rays, and (4) proportional counter response to X-radiation produced by electrons incident upon a gas of oxygen to nitrogen number of 0.4.

  15. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1985-01-01

    The author built and tested a low energy cyclotron for radiocarbon dating similar to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. The author found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. The author shows how a conventional carbon negative ion source located outside the cyclotron magnet, would produce sufficient beam and provide for quick sample changing to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  16. Unitarization and low-energy scattering data

    NASA Astrophysics Data System (ADS)

    Magalhães, P. C.; Robilotta, M. R.

    2014-07-01

    A procedure based on the well-known K-matrix formalism is presented, which makes patterns in inelastic regions of low-energy scattering data considerably more transparent. It relies on the use of an empirical kernel, obtained by eliminating elastic loops from the experimental amplitude. This allows structures associated with resonances, such as locations, widths, and heights, to become visible with the naked eye. The method is illustrated with a study of the P-wave Kπ amplitude.

  17. PHYSICS WITH ULTRA-LOW ENERGY ANTIPROTONS

    SciTech Connect

    M. HOLZSCHEITER

    2001-02-01

    In this report the author describes the current status of the antiproton deceleration (AD) facility at CERN, and highlights the physics program with ultra-low energy antiproton at this installation. He also comments on future possibilities provided higher intensity antiproton beams become available at Fermilab, and review possibilities for initial experiments using direct degrading of high energy antiprotons in material has been developed and proven at CERN.

  18. Low energy {bar p} physics at FNAL

    SciTech Connect

    Hsueh, S.Y.

    1992-12-01

    The charmonium formation experiment is the only low energy {bar p} experiment at FNAL. This paper describes the performance of the Fermilab {bar p} Accumulator during fixed target run for the experiment and the planned upgrades. We also discuss the proposal for the direct CP violation search in {bar p} + p {yields} {bar {Lambda}} + {Lambda} {yields} {bar p}{pi}{sup +} + p{pi}{sup {minus}}.

  19. Low-energy sterile neutrinos: Theory

    NASA Astrophysics Data System (ADS)

    Palazzo, Antonio

    2013-04-01

    Several experimental anomalies seem to point towards the existence of light sterile neutrinos. We focus on the low-energy anomalous results (the so-called gallium and reactor anomalies), which indicate a non-zero admixture U of the electron neutrino with a fourth (mostly) sterile mass eigenstate ν4. We point out that solar sector data, in combination with the precision measurement of θ13, provide the constraint |<0.041 (90% C.L.), independent of the reactor flux determinations.

  20. Simulations of low energy e{sup +}e{sup {minus}} particle backgrounds

    SciTech Connect

    Ronan, M.T.

    1993-08-01

    A progress report on simulations of low-energy e{sup +}e{sup {minus}} backgrounds from the beam-beam interaction at future linear colliders is given. Characteristics of the primary particles and detailed calculations of the backgrounds fron backscattering into the detector volume are presented.

  1. Long GRB with Additional High Energy Maxima after the End of the Low Energy T90 Intervals

    NASA Astrophysics Data System (ADS)

    Irene, Arkhangelskaja; Alexander, Zenin; Dmitry, Kirin; Elena, Voevodina

    2013-01-01

    Now GRB high energy γ-emission was observed mostly by detectors onboard Fermi and Agile satellites. During most part of GRB high energy γ-emission registered some later than low energy trigger and lasts several hundreds of seconds, but its maxima are within low energy t90 intervals both for short and long bursts. But GRB090323, GRB090328 and GRB090626 temporal profiles have additional maxima after low energy t90 intervals finished. These bursts temporal profile analysis have shown that faint peaks in low energy bands close to the ends of low energy t90 intervals preceded such maxima. Moreover, these events low energy spectral index β behavior differs from usual GRB one according to preliminary analysis. We suppose that these GRB could be separated as different GRB type. In presented article this new GRB type properties are discussed.

  2. Targeting Low-Energy Ballistic Lunar Transfers

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.

    2010-01-01

    Numerous low-energy ballistic transfers exist between the Earth and Moon that require less fuel than conventional transfers, but require three or more months of transfer time. An entirely ballistic lunar transfer departs the Earth from a particular declination at some time in order to arrive at the Moon at a given time along a desirable approach. Maneuvers may be added to the trajectory in order to adjust the Earth departure to meet mission requirements. In this paper, we characterize the (Delta)V cost required to adjust a low-energy ballistic lunar transfer such that a spacecraft may depart the Earth at a desirable declination, e.g., 28.5(white bullet), on a designated date. This study identifies the optimal locations to place one or two maneuvers along a transfer to minimize the (Delta)V cost of the transfer. One practical application of this study is to characterize the launch period for a mission that aims to launch from a particular launch site, such as Cape Canaveral, Florida, and arrive at a particular orbit at the Moon on a given date using a three-month low-energy transfer.

  3. Neutrino phenomenology of very low-energy seesaw scenarios

    SciTech Connect

    Gouvea, Andre de; Jenkins, James; Vasudevan, Nirmala

    2007-01-01

    The standard model augmented by the presence of gauge-singlet right-handed neutrinos proves to be an ideal scenario for accommodating nonzero neutrino masses. Among the new parameters of this 'new standard model' are right-handed neutrino Majorana masses M. Theoretical prejudice points to M much larger than the electroweak symmetry breaking scale, but it has recently been emphasized that all M values are technically natural and should be explored. Indeed, M around 1-10 eV can accommodate an elegant oscillation solution to the liquid scintillator neutrino detector (LSND) anomaly, while other M values lead to several observable consequences. We consider the phenomenology of low-energy (M < or approx. 1 keV) seesaw scenarios. By exploring such a framework with three right-handed neutrinos, we can consistently fit all oscillation data--including those from LSND--while partially addressing several astrophysical puzzles, including anomalous pulsar kicks, heavy element nucleosynthesis in supernovae, and the existence of warm dark matter. In order to accomplish all of this, we find that a nonstandard cosmological scenario is required. Finally, low-energy seesaws - regardless of their relation to the LSND anomaly - can also be tested by future tritium beta-decay experiments, neutrinoless double-beta decay searches, and other observables. We estimate the sensitivity of such probes to M.

  4. Very Low Energy Protons From the Beta Decay of Proton Rich Nuclei For Nuclear Astrophysics

    SciTech Connect

    Simmons, E.; Trache, L.; Banu, A.; McCleskey, M.; Roeder, B.; Spiridon, A.; Tribble, R. E.; Saastamoinen, A.; Aysto, J.; Davinson, T.; Woods, P. J.; Lotay, G. J.

    2010-03-01

    We have developed a new experimental technique to measure very low energy protons from beta-delayed p-decay of proton-rich nuclei produced and separated with the MARS recoil spectrometer at TAMU. Recently we have investigated the beta-delayed p-decays of {sup 23}Al and {sup 31}Cl and obtained information on the resonances in the reactions {sup 22}Na(p,gamma){sup 23}Mg and {sup 30}P(p,gamma){sup 31}S, respectively. These reactions are important in explosive H-burning in Novae. A simple setup consisting of a telescope made of a thin double sided Si strip detector (p-detector) backed or sandwiched between two thick Si detectors (beta-detectors) was designed. We studied two different p-detectors and found that the thinner detectors with a small cell size are best to measure proton energies as low as 2-300 keV.

  5. RHIC CHALLENGES FOR LOW ENERGY OPERATIONS

    SciTech Connect

    SATOGATA,T.; BRENNAN, J.M.; DREES, A.; FEDOTOV, A.; ROSER, T.; TSOUPAS, N.

    2007-06-25

    There is significant interest in RHIC heavy ion collisions at {radical}s =5-50 GeV/u, motivated by a search for the QCD phase transition critical point. The lowest energies are well below the nominal RHIC gold injection {radical}s = 19.6 GeV/u. There are several challenges that face RHIC operations in this regime, including longitudinal acceptance, magnet field quality, lattice control, and luminosity monitoring. We report on the status of work to address these challenges, including results from beam tests of low energy RHIC operations with protons and gold.

  6. Low Energy Ion-Molecule Reactions

    SciTech Connect

    James M. Farrar

    2004-05-01

    This objective of this project is to study the dynamics of the interactions of low energy ions important in combustion with small molecules in the gas phase and with liquid hydrocarbon surfaces. The first of these topics is a long-standing project in our laboratory devoted to probing the key features of potential energy surfaces that control chemical reactivity. The project provides detailed information on the utilization of specific forms of incident energy, the role of preferred reagent geometries, and the disposal of total reaction energy into product degrees of freedom. We employ crossed molecular beam methods under single collision conditions, at collision energies from below one eV to several eV, to probe potential surfaces over a broad range of distances and interaction energies. These studies allow us to test and validate dynamical models describing chemical reactivity. Measurements of energy and angular distributions of the reaction products with vibrational state resolution provide the key data for these studies. We employ the crossed beam low energy mass spectrometry methods that we have developed over the last several years.

  7. Low energy antiproton possibilities at BNL

    SciTech Connect

    Lee, Y.Y.; Lowenstein, D.I.

    1987-01-01

    Antinuclear physics in the energy range of 0 to 20 GeV has long been a mainstay of the high energy physics program at BNL. The emphasis of the experimental program in the last couple of years has however moved to other areas as new facilities in the world have come on line. The initiatives stimulated by the USAF has caused a renewed interest in the low energy capabilities at BNL, which are still very competitive and considerable for the production of low energy antiprotons. A synopsis is given of the present BNL accelerator plans and the near term possibilities for a high yield antiproton production experiment. This paper does not address the longer term facility possibilities of producing ''large'' amounts of antimatter. Parenthetically, even though several aspects of the program are of little interest for this audience, such as the Relativistic Heavy Ion Collider (RHIC) and the Stretcher, it is important to understand their parameters and impact upon various possible antinucleon initiatives at BNL.

  8. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  9. Performance monitoring of low energy house, Macclesfield

    NASA Astrophysics Data System (ADS)

    Stephen, F. R.

    1980-01-01

    The monitoring of the energy balance of a very well insulated low-energy house in Macclesfield, England is discussed. The house is an existing dwelling which had been converted into a low-energy-requiring house by the reduction of heat loss through a high level of thermal insulation and the collection of solar energy by a water cascade solar panel with warm water storage. Measurements of house temperatures, radiation, off-peak electricity consumption and hot water and heating using were performed from January to August, 1978 and reveal that the house used less than 22,000 kWh electricity during that period, compared to 55,000 kWh expected if the house had been constructed to average insulation levels. Solar energy is found to contribute only 2% of house energy requirements, with the use of a heat pump combined with the solar panel leading to greater efficiency and thus utilization. In addition, the large thermal mass and good insulation are found to improve comfort by reducing temperature fluctuations, and the ventilation and low-temperature water return system employed provided satisfactory results.

  10. Foil optimization for low energy neutral atom imaging

    SciTech Connect

    Funsten, H.O.; McComas, D.J.; Barraclough, B.L.

    1992-01-01

    Magnetospheric imaging has been proposed using remote detection of low energy neutral atoms (LENAs) of magnetospheric origin. In the detector, LENAs can be removed from the immense ambient EUV by charge modification (ionization) using a carbon stripping foil and can be subsequently deflected into an E/q analysis section. The detector sensitivity efficiency of LENAs is highly dependent on the ionization probability of neutrals as they transit the carbon foil. In this study, we present equilibrium charge state distributions and scatter distributions for 1-30 keV atomic hydrogen and oxygen transiting 0.5 {mu}g cm{sup {minus}2} carbon foils. The fraction of hydrogen exiting a foil as H{sup +} ranges from approximately 5% at 1 keV to 41% at 30 keV. The fraction of oxygen exiting the foil as O{sup +} ranges from 2% at 10 keV to 8% at 30 keV. Results obtained after coating the exit surface of foils with either aluminum (which forms aluminum oxide when exposed to air) or gold suggests that the exit surface chemistry has no effect on the charge state distributions due to foil contamination from exposure to air. Scattering resulting from the atom-foil interaction is shown to be independent of the charge state distribution, suggesting that the interaction mechanisms resulting in charge exchange and scattering are distinctly different.

  11. The effect of induced charges on low-energy particle trajectories near conducting and semiconducting plates

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria N.; Moore, Thomas E.

    1992-01-01

    The effect of the induced charge was found on particles less than 1 eV as they passed through simulated parallel, grounded channels that are comparable in dimension to those that are presently in space plasma instruments which measure the flux of low-energy ions. Applications were made to both conducting and semiconducting channels that ranged in length from 0.1 to 50 mm and in aspect ratio from 1 to 100. The effect of the induced charge on particle trajectories from simple straight lines. Several configurations of channel aspect ratio and detector locations are considered. The effect is important only at very low energies with small dimensions.

  12. Low energy ion-molecule reactions

    SciTech Connect

    Farrar, J.M.

    1993-12-01

    This project is concerned with elucidating the dynamics of elementary ion-molecule reactions at collision energies near and below 1 eV. From measurements of the angular and energy distributions of the reaction products, one can infer intimathe details about the nature of collisions leading to chemical reaction, the geometries and lifetimes of intermediate complexes that govern the reaction dynamics, and the collision energy dependence of these dynamical features. The author employs crossed-beam low energy mass spectrometry technology developed over the last several years, with the focus of current research on proton transfer and hydrogen atom transfer reactions of te O{sup {minus}} ion with species such as HF, H{sub 2}O, and NH{sub 3}.

  13. Low energy dislocation structures in epitaxy

    NASA Technical Reports Server (NTRS)

    Van Der Merwe, Jan H.; Woltersdorf, J.; Jesser, W. A.

    1986-01-01

    The principle of minimum energy was applied to epitaxial interfaces to show the interrelationship beteen misfit, overgrowth thickness and misfit dislocation spacing. The low energy dislocation configurations were presented for selected interfacial geometries. A review of the interfacial energy calculations was made and a critical assessment of the agreement between theory and experiment was presented. Modes of misfit accommodation were presented with emphasis on the distinction between kinetic effects and equilibrium conditions. Two-dimensional and three-dimensional overgrowths were treated together with interdiffusion-modified interfaces, and several models of interfacial structure were treated including the classical and the current models. The paper is concluded by indicating areas of needed investigation into interfacial structure.

  14. Low-energy pion-nucleon scattering

    SciTech Connect

    Gibbs, W.R.; Ai, L.; Kaufmann, W.B.

    1998-02-01

    An analysis of low-energy charged pion-nucleon data from recent {pi}{sup {plus_minus}}p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f{sup 2}=0.0756{plus_minus}0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P{sub 31} and P{sub 13} partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the {Sigma} term. Off-shell amplitudes are also provided. {copyright} {ital 1998} {ital The American Physical Society}

  15. Low-energy pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Gibbs, W. R.; Ai, Li; Kaufmann, W. B.

    1998-02-01

    An analysis of low-energy charged pion-nucleon data from recent π+/-p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f2=0.0756+/-0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P31 and P13 partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the Σ term. Off-shell amplitudes are also provided.

  16. Low-energy dynamics of gravitation

    NASA Astrophysics Data System (ADS)

    Torma, Tibor

    The present status of theories of quantum gravity are reviewed from the low energy point of view. String theory relates classical black-hole type solutions of Einstein- like equations (e.g. axidilaton gravity) to the string vacuum. Several such solutions are proposed and their properties are investigated, including their behavior under supersymmetry transformations. A general feature of all possible quantum theories of gravitation is that they lead to a field theory description at low (as compared to the Planck mass) energies. The theoretical consistency, uniqueness and consequences of such an effective theory are investigated. I show that a power counting theorem allows for the momentum expansion that defines the effective theory even in the presence of large masses. I also show that graviton-graviton scattering is free of potential infrared and collinear divergencies that plague perturbative discussions of Yang-Mills theories.

  17. Low energy consumption spintronics using multiferroic heterostructures.

    PubMed

    Trassin, Morgan

    2016-01-27

    We review the recent progress in the field of multiferroic magnetoelectric heterostructures. The lack of single phase multiferroic candidates exhibiting simultaneously strong and coupled magnetic and ferroelectric orders led to an increased effort into the development of artificial multiferroic heterostructures in which these orders are combined by assembling different materials. The magnetoelectric coupling emerging from the created interface between the ferroelectric and ferromagnetic layers can result in electrically tunable magnetic transition temperature, magnetic anisotropy or magnetization reversal. The full potential of low energy consumption magnetic based devices for spintronics lies in our understanding of the magnetoelectric coupling at the scale of the ferroic domains. Although the thin film synthesis progresses resulted into the complete control of ferroic domain ordering using epitaxial strain, the local observation of magnetoelectric coupling remains challenging. The ability to imprint ferroelectric domains into ferromagnets and to manipulate those solely using electric fields suggests new technological advances for spintronics such as magnetoelectric memories or memristors.

  18. Low-energy irradiation effects in cellulose

    SciTech Connect

    Polvi, Jussi; Nordlund, Kai

    2014-01-14

    Using molecular dynamics simulations, we determined the threshold energy for creating defects as a function of the incident angle for all carbon and oxygen atoms in the cellulose monomer. Our analysis shows that the damage threshold energy is strongly dependent on the initial recoil direction and on average slightly higher for oxygen atoms than for carbon atoms in cellulose chain. We also performed cumulative bombardment simulations mimicking low-energy electron irradiation (such as TEM imaging) on cellulose. Analyzing the results, we found that formation of free molecules and broken glucose rings were the most common forms of damage, whereas cross-linking and chain scission were less common. Pre-existing damage was found to increase the probability of cross-linking.

  19. Low-energy neutral-atom spectrometer

    SciTech Connect

    Voss, D.E.; Cohen, S.A.

    1982-04-01

    The design, calibration, and performance of a low energy neutral atom spectrometer are described. Time-of-flight analysis is used to measure the energy spectrum of charge-exchange deuterium atoms emitted from the PLT tokamak plasma in the energy range from 20 to 1000 eV. The neutral outflux is gated on a 1 ..mu..sec time scale by a slotted rotating chopper disc, supported against gravity in vacuum by magnetic levitation, and is detected by secondary electron emission from a Cu-Be plate. The energy dependent detection efficiency has been measured in particle beam experiments and on the tokamak so that the diagnostic is absolutely calibrated, allowing quantitative particle fluxes to be determined with 200 ..mu..sec time resolution. In addition to its present application as a plasma diagnostic, the instrument is capable of making a wide variety of measurements relevant to atomic and surface physics.

  20. RHIC low energy tests and initial operations

    SciTech Connect

    Satogata,T.; Ahrens, L.; Bai, M.; Brennan, J.M.; Bruno, D.; Butler, J.; Drees, A.; Fedotov, A.; Fischer, W.; Harvey, M.; Hayes, T.; Jappe, W.; Lee, R.C.; Mackay, W.W.; Malitsky, N.; Marr, G.; Michnoff, R.; Oerter, B.; Pozdeyev, E.; Roser, T.; Severino, F.; Smith, K.; Tepikian, S.; Tsoupas, N.

    2009-05-04

    Future Relativistic Heavy Ion Collider (RHIC) runs, including a portion of FY10 heavy ion operations, will explore collisions at center of mass energies of 5-50 GeV/n (GeV/nucleon). Operations at these energies is motivated by a search for the QCD phase transition critical point. The lowest end of this energy range is nearly a factor of four below the nominal RHIC injection center of mass energy of {radical} s = 20.8 GeV/n. There are several operational challenges in the RHIC low-energy regime, including harmonic number changes, small longitudinal acceptance, lowered magnet field quality, nonlinear orbit control, and luminosity monitoring. We report on the experience with some of these challenges during beam tests with gold in March 2008, including first RHIC operations at {radical}s = 9.18 GeV/n and first beam experience at {radical}s = 5 GeV/n.

  1. Spin polarized low-energy positron source

    NASA Astrophysics Data System (ADS)

    Petrov, V. N.; Samarin, S. N.; Sudarshan, K.; Pravica, L.; Guagliardo, P.; Williams, J. F.

    2015-06-01

    This paper presents an investigation of spin polarization of positrons from a source based on the decay of 22Na isotopes. Positrons are moderated by transmission through a tungsten film and electrostatically focussed and transported through a 90 deg deflector to produce a slow positron beam with polarization vector normal to the linear momentum. The polarization of the beam was determined to be about 10% by comparison with polarized electron scattering asymmetries from a thin Fe film on W(110) at 10-10 Torr. Low energy electron emission from Fe layer on W(100) surfaces under positron impact is explored. It is shown that the intensity asymmetry of the electron emission as a function of the incident positron energy can be used to estimate the polarization of the positron beam. Also several materials with long mean free paths for spin relaxation are considered as possible moderators with increased polarization of the emergent positrons.

  2. Low energy demonstration accelerator technical area 53

    SciTech Connect

    1996-04-01

    As part of the Department of Energy`s (DOE) need to maintain the capability of producing tritium in support of its historic and near-term stewardship of the nation`s nuclear weapons stockpile, the agency has recently completed a Programmatic Environmental Impact Statement for Tritium Supply and Recycling. The resulting Record of Decision (ROD) determined that over the next three years the DOE would follow a dual-track acquisition strategy that assures tritium production for the nuclear weapon stockpile in a rapid, cost effective, and safe manner. Under this strategy the DOE will further investigate and compare two options for producing tritium: (1) purchase of an existing commercial light-water reactor or irradiation services with an option to purchase the reactor for conversion to a defense facility; and (2) design, build, and test critical components of a system for accelerator production of tritium (APT). The final decision to select the primary production option will be made by the Secretary of Energy in the October 1998 time frame. The alternative not chosen as the primary production method, if feasible, would be developed as a back-up tritium supply source. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if the DOE were to design, build, and test critical prototypical components of the accelerator system for tritium production, specifically the front-end low-energy section of the accelerator, at Los Alamos National Laboratory. The Low Energy Demonstration Accelerator (LEDA) would be incrementally developed and tested in five separate stages over the next seven years. The following issues were evaluated for the proposed action: utility demands, air, human health, environmental restoration, waste management, transportation, water, threatened and endangered species, wetlands, cultural resources, and environmental justice.

  3. Low energy AMS of americium and curium

    NASA Astrophysics Data System (ADS)

    Christl, Marcus; Dai, Xiongxin; Lachner, Johannes; Kramer-Tremblay, Sheila; Synal, Hans-Arno

    2014-07-01

    Accelerator mass spectrometry (AMS) has evolved over the past years as one of the most sensitive, selective, and robust techniques for actinide analyses. While analyses of U and Pu isotopes have already become routine at the ETH Zurich 0.5 MV AMS system "Tandy", there is an increasing demand for highly sensitive analyses of the higher actinides such as Am and Cm for bioassay applications and beyond. In order to extend the actinide capabilities of the compact ETH Zurich AMS system and to develop new, more sensitive bioassay routines, a pilot study was carried out. The aim was to investigate and document the performance and the potential background of Am and Cm analyses with low energy AMS. Our results show that 241Am and Cm isotopes can be determined relative to a 243Am tracer if samples and AMS standards are prepared identically with regard to the matrix elements, in which the sample is dispersed. In this first test, detection limits for Cm and Am isotopes are all in the sub-femtogram range and even below 100 ag for Cm isotopes. In a systematic background study in the mass range of the Cm isotopes, two formerly unknown metastable triply charged Th molecules were found on amu(244) and amu(248). The presence of such a background is not a principal problem for AMS if the stripper pressure is increased accordingly. Based on our first results, we conclude that ultra-trace analyses of Am and Cm isotopes for bioassay are very well possible with low energy AMS.

  4. The Low Energy Effective Area of the Chandra Low Energy Transmission Grating Spectrograph

    NASA Technical Reports Server (NTRS)

    Pease, D.; Drake, J. J.; Johnson, C. O.; Kashya, V.; Ratzlaff, P. W.; Wargelin, B. J.; Brinkman, A. C.; Kaastra, J. S.; vanderMeer, R.; Paerels, F. B.

    2000-01-01

    The Chandra X-ray Observatory was successfully launched on July 23, 1999, and subsequently began an intensive calibration phase. We present the preliminary results from the in-flight calibration of the low energy response of the High Resolution Camera spectroscopic readout (HRC-S) combined with the Low Energy Transmission Grating (LETG) aboard Chandra. These instruments comprise the Low Energy Transmission Grating Spectrograph (LETGS). For this calibration study, we employ a pure hydrogen non-LTE white dwarf emission model (T = 25000 K and log g = 9.0) for comparison with the Chandra observations of Sirius B. The pre-flight calibration of the LETGS effective area only covered wavelengths shortward of 44 A (E less than 277 eV). Our Sirius B analysis shows that the HRC-S quantum efficiency (QE) model assumed for longer wavelengths leads to an overestimate of the effective area by an average factor of about 1.6. We derive a correction to the low energy HRC-S QE model to match the predicted and observed Sirius B spectra over the wavelength range of 44-185 A. We make an independent test of our results by the comparison of a Chandra LETGS observation of HZ 43 with pure hydrogen model atmosphere predictions and find good agreement.

  5. Low energy ion distribution around the Moon

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Yokota, S.; Tanaka, T.; Asamura, K.; Nishino, M. N.; Yamamoto, T.; Tsunakawa, H.

    2009-04-01

    More than a year has passed since MAP-PACE onboard KAGUYA (SELENE) started continuous observation of the low energy charged particles around the Moon from 100km-altitude polar orbit. MAP (MAgnetic field and Plasma experiment) was developed for the comprehensive measurement of the magnetic field and three-dimensional plasma around the Moon. MAP consists of MAP-LMAG (Lunar MAGnetometer) and MAP-PACE (Plasma energy Angle and Composition Experiment). MAP-PACE consists of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). Since each sensor has hemispherical field of view, two electron sensors and two ion sensors that are installed on the spacecraft panels opposite to each other can make full 3-dimensional measurements of low energy electrons and ions. One of the ion sensors IMA is an energy mass spectrometer. IMA measures mass identified ion energy spectra that have never been obtained at 100km altitude around the Moon. Low energy charged particles around the Moon were vigorously observed by Moon orbiting satellites and plasma instrumentation placed on the lunar surface in 1960s and 1970s. Though there were some satellites that explored the Moon afterwards, most of them were dedicated to the global mapping of the lunar surface. There has been almost no new information about the low energy charged particles around the Moon except the low energy electron measurement by Lunar Prospector, the lunar wake plasma data obtained by WIND during its Moon fly-by, and reports on remote detection of the lunar ions, lunar electrons and ULF waves generated by electron beams around the lunar wake. The newly observed data show characteristic ion distributions around the Moon. Besides the solar wind, MAP-PACE-IMA discovered four clearly distinguishable ion distributions: 1) Solar wind ions reflected/scattered at the lunar surface, 2) Solar wind ions reflected by magnetic anomalies on the lunar surface, 3) Ions that are

  6. Oscillation of Very Low Energy Atmospheric Neutrinos

    SciTech Connect

    Peres, Orlando L. G.

    2010-03-30

    We discuss the oscillation effects of sub-sub-GeV atmospheric neutrinos, the sample with energies E < or approx. 100 MeV. The energy spectra of the e-like events in water Cherenkov detectors are computed and dependence of the spectra on the 2-3 mixing angle, theta{sub 23}, the 1-3 mixing and CP-violation phase are studied.

  7. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  8. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  9. Low energy excitations of the neutron star core

    NASA Astrophysics Data System (ADS)

    Reddy, Sanjay

    2017-01-01

    I will summarize recent work on low energy excitations in cold dense matter and its implications for thermal and transport properties, and seismology of neutron stars. I argue that a low energy Lagrangian with a handful of low energy constants (LECs) provides an adequate framework for calculations. The LECs can be related to the equation of state of dense matter at zero temperature.

  10. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  11. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  12. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  13. A Ring Artifact Correction Method: Validation by Micro-CT Imaging with Flat-Panel Detectors and a 2D Photon-Counting Detector

    PubMed Central

    Eldib, Mohamed Elsayed; Hegazy, Mohamed; Mun, Yang Ji; Cho, Myung Hye; Cho, Min Hyoung; Lee, Soo Yeol

    2017-01-01

    We introduce an efficient ring artifact correction method for a cone-beam computed tomography (CT). In the first step, we correct the defective pixels whose values are close to zero or saturated in the projection domain. In the second step, we compute the mean value at each detector element along the view angle in the sinogram to obtain the one-dimensional (1D) mean vector, and we then compute the 1D correction vector by taking inverse of the mean vector. We multiply the correction vector with the sinogram row by row over all view angles. In the third step, we apply a Gaussian filter on the difference image between the original CT image and the corrected CT image obtained in the previous step. The filtered difference image is added to the corrected CT image to compensate the possible contrast anomaly that may appear due to the contrast change in the sinogram after removing stripe artifacts. We applied the proposed method to the projection data acquired by two flat-panel detectors (FPDs) and a silicon-based photon-counting X-ray detector (PCXD). Micro-CT imaging experiments of phantoms and a small animal have shown that the proposed method can greatly reduce ring artifacts regardless of detector types. Despite the great reduction of ring artifacts, the proposed method does not compromise the original spatial resolution and contrast. PMID:28146088

  14. A Ring Artifact Correction Method: Validation by Micro-CT Imaging with Flat-Panel Detectors and a 2D Photon-Counting Detector.

    PubMed

    Eldib, Mohamed Elsayed; Hegazy, Mohamed; Mun, Yang Ji; Cho, Myung Hye; Cho, Min Hyoung; Lee, Soo Yeol

    2017-01-30

    We introduce an efficient ring artifact correction method for a cone-beam computed tomography (CT). In the first step, we correct the defective pixels whose values are close to zero or saturated in the projection domain. In the second step, we compute the mean value at each detector element along the view angle in the sinogram to obtain the one-dimensional (1D) mean vector, and we then compute the 1D correction vector by taking inverse of the mean vector. We multiply the correction vector with the sinogram row by row over all view angles. In the third step, we apply a Gaussian filter on the difference image between the original CT image and the corrected CT image obtained in the previous step. The filtered difference image is added to the corrected CT image to compensate the possible contrast anomaly that may appear due to the contrast change in the sinogram after removing stripe artifacts. We applied the proposed method to the projection data acquired by two flat-panel detectors (FPDs) and a silicon-based photon-counting X-ray detector (PCXD). Micro-CT imaging experiments of phantoms and a small animal have shown that the proposed method can greatly reduce ring artifacts regardless of detector types. Despite the great reduction of ring artifacts, the proposed method does not compromise the original spatial resolution and contrast.

  15. Calcification content quantification by dual-energy x-ray absorptiometry with a 2D digital radiographic detector

    NASA Astrophysics Data System (ADS)

    Dinten, Jean M.; Robert-Coutant, Christine; Darboux, Michel; Gonon, Georges; Bordy, Thomas

    2003-06-01

    In a previous paper (SPIE Medical Imaging 2001), a dual energy method for bone densitometry using a 2D digital radiographic detector has been presented. In this paper, calcium content quantification performance of the approach is precised. The main challenge is to achieve quantification using scatter-corrected dual energy acquisitions. Therefore a scatter estimation approach, based on an expression of scatter as a functional of the primary flux, has been developed. This expression is derived from the Klein and Nishina equation and includes tabulated scatter level values. The calcium quantification performances are validated on two configurations. A first one is issued from criteria developed by the French "Groupe de Recherche et d'Information sur les Osteoporoses." It is based on the use of a phantom made of five 3mm thick PVC sheets in the form of five steps, representing five different bone mineral density values, included in a lucite container filled with water. Additional lucite plates can be put over the phantom. This phantom has been used for evaluation of quantification robustness versus patient thickness and composition variations, and for accuracy evaluation. The second configuration, composed of small calcified objects (representative of lung nodules), is used for evaluating capacities to differentiate calcified from non calcified nodules and to test calcium content quantification performance.

  16. RHIC low-energy challenges and plans

    SciTech Connect

    Satogata,T.; Ahrens, L.; Bai, M.; Brennan, J.M.; Bruno, D.; Butler, J.; Drees, A.; Fedotov, A.; Fischer, W.; Harvey, M.; Hayes, T.; Jappe, W.; Lee, R.C.; MacKay, W.W.; Malitsky, N.; Marr, G.; Michnoff, R.; Oerter, B.; Pozdeyev, E.; Roser, T.; Schoefer, V.; Severino, F.; Smith, K.; Tepikian, S.; Tsoupas, N.

    2009-06-08

    Future Relativistic Heavy Ion Collider (RHIC) runs, including a portion of FY10 heavy ion operations, will explore collisions at center of mass energies of 5-50 GeV/n (GeV/nucleon). Operations at these energies is motivated by the search for a possible QCD phase transition critical point. The lowest end of this energy range is nearly a factor of four below the nominal RHIC injection center of mass energy {radical}s = 19.6 GeV/n. There are several operational challenges in the RHIC low-energy regime, including harmonic number changes, small longitudinal acceptance, lowered magnet field quality, nonlinear orbit control, and luminosity monitoring. We report on the experience with these challenges during beam tests with gold beams in March 2008. This includes first operations at {radical}s = 9.18 GeV/n, first beam experience at {radical}s = 5 GeV/n, and luminosity projections for near-term operations.

  17. Low Energy Electron Impact Excitation of Water

    NASA Astrophysics Data System (ADS)

    Ralphs, Kevin; Serna, Gabriela; Hargreaves, Leigh R.; Khakoo, Murtadha A.; Winstead, Carl; McKoy, B. Vincent

    2011-10-01

    We present normalized absolute differential and integral cross-section measurements for the low energy electron impact excitation of the lowest dissociative 3B1, 1B1,3A1 and 1A1 states of H2O. The DCS were taken at incident energies of 9 eV, 10 eV, 12 eV, 15 eV and 20 eV and scattering angles of 15° to 130° and normalized to the elastic electron scattering measurements of. The DCS were obtained after a sophisticated unfolding of the electron energy loss spectrum of water using photoabsorption data in the literature as investigated by Thorn et al.. Our measurements extend those of to near-threshold energies. We find both important agreements and differences between our DCS and those of. Comparison to our theory (multi-channel Schwinger) and that of earlier work will also be presented. Funded by an NSF grant # RUI-PHY 0968874.

  18. Low energy CMOS for space applications

    NASA Technical Reports Server (NTRS)

    Panwar, Ramesh; Alkalaj, Leon

    1992-01-01

    The current focus of NASA's space flight programs reflects a new thrust towards smaller, less costly, and more frequent space missions, when compared to missions such as Galileo, Magellan, or Cassini. Recently, the concept of a microspacecraft was proposed. In this concept, a small, compact spacecraft that weighs tens of kilograms performs focused scientific objectives such as imaging. Similarly, a Mars Lander micro-rover project is under study that will allow miniature robots weighing less than seven kilograms to explore the Martian surface. To bring the microspacecraft and microrover ideas to fruition, one will have to leverage compact 3D multi-chip module-based multiprocessors (MCM) technologies. Low energy CMOS will become increasingly important because of the thermodynamic considerations in cooling compact 3D MCM implementations and also from considerations of the power budget for space applications. In this paper, we show how the operating voltage is related to the threshold voltage of the CMOS transistors for accomplishing a task in VLSI with minimal energy. We also derive expressions for the noise margins at the optimal operating point. We then look at a low voltage CMOS (LVCMOS) technology developed at Stanford University which improves the power consumption over conventional CMOS by a couple of orders of magnitude and consider the suitability of the technology for space applications by characterizing its SEU immunity.

  19. Low energy neutral atom imaging techniques

    SciTech Connect

    Funsten, H.O. McComas, D.J.; Scime, E.E.

    1993-01-01

    The potential scientific return from low energy neutral atom (LENA) imaging of the magnetosphere is extraordinary. The technical challenges of LENA detection include (1) removal of LENAs from the tremendous ambient UV without losing information of their incident trajectories, (2) quantification of their trajectories, and (3) obtaining high sensitivity measurements. Two techniques that have been proposed for this purpose are based on fundamentally different atomic interaction mechanisms between LENAs and a solid: LENA transmission through an ultrathin foil and LENA reflection from a solid surface. Both of these methods provide LENA ionization (for subsequent removal from the UV by electrostatic deflection) and secondary electron emission (for start pulse generation for time-of-flight and/or coincidence). We present a comparative study of the transmission and reflection techniques based on differences in atomic interactions with solids and surfaces. We show that transmission methods yield an order of magnitude greater secondary electron emission than reflection methods. Transmission methods are shown to be sufficient for LENA energies of approximately 1 keV to greater than 30 keV. Reflection methods using low work function surfaces could be employed for LENA ionization for energies less than several keV.

  20. Optimal Low Energy Earth-Moon Transfers

    NASA Technical Reports Server (NTRS)

    Griesemer, Paul Ricord; Ocampo, Cesar; Cooley, D. S.

    2010-01-01

    The optimality of a low-energy Earth-Moon transfer is examined for the first time using primer vector theory. An optimal control problem is formed with the following free variables: the location, time, and magnitude of the transfer insertion burn, and the transfer time. A constraint is placed on the initial state of the spacecraft to bind it to a given initial orbit around a first body, and on the final state of the spacecraft to limit its Keplerian energy with respect to a second body. Optimal transfers in the system are shown to meet certain conditions placed on the primer vector and its time derivative. A two point boundary value problem containing these necessary conditions is created for use in targeting optimal transfers. The two point boundary value problem is then applied to the ballistic lunar capture problem, and an optimal trajectory is shown. Additionally, the ballistic lunar capture trajectory is examined to determine whether one or more additional impulses may improve on the cost of the transfer.

  1. Low-energy electron scattering from cyanamide

    NASA Astrophysics Data System (ADS)

    Wang, Kedong; Guo, Shuangcheng; Meng, Ju; Huang, Xiaotian; Wang, Yongfeng

    2016-09-01

    The low-energy electron collisions with cyanamide molecule are investigated by using the UK molecular R -matrix codes for electron energies ranging from 0.01 eV to 10 eV. Three models including static-exchange, static-exchange plus polarization, and close-coupling (CC) approximations are employed to reveal the dynamic interaction. Elastic (integrated and differential), momentum-transfer, and excitation cross sections from the ground state to the three low-lying electron excited states have been presented. Two shape resonances, two core-excited resonances, and two Feshbach resonances are detected in the CC approximation. The role of active space in the target and scattering problem including the resonances is discussed. The precise resonance parameters are found to be sensitive to the treatment of polarization effects employed. These resonances may be responsible for the fragments observed in a recent experiment of the dissociative electron attachments to cyanamide. Since the cyanamide molecule has a large permanent dipole moment, a Born closure procedure is used to account for the contribution of partial waves higher than l =4 to obtain converged cross sections.

  2. Low Energy Electron Scattering from Fuels

    NASA Astrophysics Data System (ADS)

    Lopes, M. Cristina A.

    2012-06-01

    We report an investigation of processes that occur during the ignition of the plasma and its consequences in post-discharge time for an internal combustion engine, in order to find the appropriate parameters to be used in cars that operate with lean mixtures air-fuel. The relevance of this theme has attracted much attention, and has been one of the subjects of collaboration between experimental and theoretical groups in the USA and Brazil. We have produced some basic information necessary to modeling spark ignition in alcohol- fuelled engines. Total cross sections of electron scattering by methanol and ethanol molecules were obtained, using the linear transmission method based on the Beer-Lambert law to first approximation. Measurements and calculations of differential cross sections for low-energy (rotationally unresolved) electron scattering were also obtained, for scattering angles of 5 --130 . The measurements were taken using the relative flow method with an aperture source, and calculations using two different implementations of the Schwinger multichannel method, one that takes all electrons into account and is adapted for parallel computers, and another that uses pseudopotentials and considers only the valence electrons. Additionally to these, computer simulation studies of electronic discharge in mixtures of ethanol were performed, using a Zero-Dimensional Plasma Kinetic solver. Previous reported models for combustion of ethanol and cross sections data for momentum transfer of electron collisions with ethanol were used. The time evolutions of the main species densities are reported and the ignition time delay discussed.

  3. Low Energy Electron Scattering from Fuels

    NASA Astrophysics Data System (ADS)

    Lopes, M. C. A.; Silva, D. G. M.; Bettega, M. H. F.; da Costa, R. F.; Lima, M. A. P.; Khakoo, M. A.; Winstead, C.; McKoy, V.

    2012-11-01

    In order to understand and optimize processes occurring during the ignition of plasma and its consequences in post-discharge for an internal combustion engine, especially considering the spark plug, we have produced in this work some basic information necessary to modeling spark ignition in alcohol- fuelled engines. Total cross sections of electron scattering by methanol and ethanol molecules in the energy range from 60 to 500 eV are reported, using the linear transmission method based on the Beer-Lambert law to first approximation. Aditionally to that, measurements and calculations of differential cross sections for elastic low-energy (rotationally unresolved) electron scattering were also discussed, for impact energies of 1, 2, 5, 10, 15, 20, 30, 50, and 100 eV and for scattering angles of 5°-130°. The measurements were obtained using the relative flow method with an aperture source, and calculations using two different implementations of the Schwinger multichannel method, one that takes all electrons into account and is adapted for parallel computers, and another that uses pseudopotentials and considers only the valence electrons.

  4. Method, apparatus and system for low-energy beta particle detection

    DOEpatents

    Akers, Douglas W.; Drigert, Mark W.

    2012-09-25

    An apparatus, method, and system relating to radiation detection of low-energy beta particles are disclosed. An embodiment includes a radiation detector with a first scintillator and a second scintillator operably coupled to each other. The first scintillator and the second scintillator are each structured to generate a light pulse responsive to interaction with beta particles. The first scintillator is structured to experience full energy deposition of low-energy beta particles, and permit a higher-energy beta particle to pass therethrough and interact with the second scintillator. The radiation detector further includes a light-to-electrical converter operably coupled to the second scintillator and configured to convert light pulses generated by the first scintillator and the second scintillator into electrical signals. The first scintillator and the second scintillator have at least one mutually different characteristic to enable an electronic system to determine whether a given light pulse is generated in the first scintillator or the second scintillator.

  5. Performance of IRD-WBC HPGe detection system for low energy photon emitters in lungs.

    PubMed

    Azeredo, A M G F; Lourenço, M C; Dantas, A L A; Dantas, B M

    2003-01-01

    The Whole Body Counter Facility (WBC) of IRD-CNEN in Brazil has been operating since 1986. The first system installed to perform in vivo measurements of low energy photon emitters radionuclides used Phoswich detectors. In 1998, the WBC unit was upgraded by the installation of an array of four low energy high purity germanium detectors. The performance and suitability of the detection system for lung measurements were evaluated by comparison with the annual dose limits and the detection limits obtained for 238U, 235U, 226Ra and 241Am. This evaluation determined whether the in vivo measurements are adequate. In order to compare the dose limit of 20 mSv y(-1), recommended by the International Commission on Radiological Protection (ICRP), with the in vivo monitoring technique, the minimum detectable intake (MDI) was calculated using the appropriate biokinetic models described in the ICRP Publications. The results were obtained for a single intake through inhalation. The AMAD considered was 5 microm.

  6. Low Energy Solar Neutrino Spectroscopy:. Results from the Borexino Experiment

    NASA Astrophysics Data System (ADS)

    D'Angelo, D.

    2011-03-01

    Till very recent the real-time solar neutrino experiments were detecting the tiny fraction of about 0.01% of the total neutrino flux above some MeV energy, the sub-MeV region remained explored only by radiochemical experiments without spectroscopical capabilities. The Borexino experiment, an unsegmented large volume liquid scintillator detector located in the Gran Sasso National Laboratory in central Italy, is at present the only experiment in the world acquiring the real-time solar neutrino data in the low-energy region, via the elastic scattering on electrons in the target mass. The data taking campaign started in 2007 and rapidly lead to the first independent measurement of the mono-cromatic line of 7Be of the solar neutrino spectrum at 862keV, which is of special interest because of the very loose limits coming from existing experiments. The latest measurement, after 41.3t · yr of exposure, is (49 ± 3stat ± 4syst)c/(day · 100t) and leaves the hypothesis of no oscillation inconsistent with data at 4σ level. It also represents the first direct measurement of the survival probability for solar ν e (P{7 Be}ee = 0.56 ± 0.10) in the vacuum-dominates oscillation regime. Recently Borexino was also able to measure of the 8B solar neutrinos interaction rate down to the threshold energy of 3 MeV, the lowest achieved so far. The inferred electron neutrino flux is Φ {8 B}ES = (2.7 ± 0.4stat ± 0.1syst ) × 106 cm{ - 2} s{ - 1} . The corresponding mean electron neutrino survival probability, is P{8 B}ee = 0.29 ± 0.10 at the effective energy of 8.9 MeV. Both measurements are in good agreement with other existing measurements and with predictions from the SSM in the hypothesis of MSW-LMA oscillation scenario. For the first time, thanks to the unprecedented radio-purity of the Borexino target and construction materials, we confirm with a single detector, the presence of a transition between the low energy vacuum-dominated and the high-energy matter-enhanced solar

  7. Design Considerations Of A Compton Camera For Low Energy Medical Imaging

    NASA Astrophysics Data System (ADS)

    Harkness, L. J.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Grint, A. N.; Lazarus, I.; Judson, D. S.; Nolan, P. J.; Oxley, D. C.; Simpson, J.

    2009-12-01

    Development of a Compton camera for low energy medical imaging applications is underway. The ProSPECTus project aims to utilize position sensitive detectors to generate high quality images using electronic collimation. This method has the potential to significantly increase the imaging efficiency compared with mechanically collimated SPECT systems, a highly desirable improvement on clinical systems. Design considerations encompass the geometrical optimisation and evaluation of image quality from the system which is to be built and assessed.

  8. Electromagnetic properties of massive neutrinos in low-energy elastic neutrino-electron scattering

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2017-03-01

    A thorough account of electromagnetic interactions of massive neutrinos in the theoretical formulation of low-energy elastic neutrino-electron scattering is given. The formalism of neutrino charge, magnetic, electric, and anapole form factors defined as matrices in the mass basis is employed under the assumption of three-neutrino mixing. The flavor change of neutrinos traveling from the source to the detector is taken into account and the role of the source-detector distance is inspected. The effects of neutrino flavor-transition millicharges and charge radii in the scattering experiments are pointed out.

  9. Low energy beam transport system developments

    SciTech Connect

    Dudnikov, V.; Han, B.; Stockli, M.; Welton, R.; Dudnikova, G.

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup −} beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup −} beams, but such gas densities cause unacceptably high H{sup −} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup −} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  10. Radiochromic film dosimetry of a low energy proton beam.

    PubMed

    Piermattei, A; Miceli, R; Azario, L; Fidanzio, A; delle Canne, S; De Angelis, C; Onori, S; Pacilio, M; Petetti, E; Raffaele, L; Sabini, M G

    2000-07-01

    In this work some dosimetric characteristics of MD-55-2 GafChromic films were studied in a low energy proton beam (21.5 MeV) directly in a water phantom. The nonlinearity of the optical density was quantified by a factor P(lin). A correction factor P(en), that accounts for optical density dependence on the energy, was empirically determined. The effects of detector thickness in depth dose measurements and of the film orientation with respect to beam direction were investigated. The results show that the MD-55-2 films provide dose measurements with the films positioned perpendicularly to the proton beam. A dosimetric formalizm is proposed to determine the dose to water at depth d, with films oriented perpendicularly to the beam axis. This formalism uses a calibration factor of the radiochromic film determined directly on the proton beam at a reference depth in water, and the P(lin) factor, that takes into account the nonlinearity of the calibration curve and the P(en) factor that, in turn takes into account the change of proton beam energy in water. The MD-55-2 films with their high spatial resolution and the quasiwater equivalent material are attractive, positioned perpendicularly along the beam axis, for the absolute dose determination of very small beam sizes and modulated proton beams.

  11. Interaction between Low Energy Ions and the Complicated Organism

    NASA Astrophysics Data System (ADS)

    Yu, Zeng-liang

    1999-12-01

    Low energy ions exist widely in natural world, but people pay a little attention on the interaction between low energy ions and matter, it is even more out of the question of studying on the relation of low energy ions and the complicated organism. The discovery of bioeffect induced by ion implantation has, however, opened a new branch in the field of ion beam application in life sciences. This paper reports recent advances in research on the role of low energy ions in chemical synthesis of the biomolecules and application in genetic modification.

  12. Development of a Low-energy Trigger for VERITAS

    SciTech Connect

    Kildea, J.

    2008-12-24

    During the 2007/2008 observing season a low-energy trigger configuration was developed and tested for VERITAS. The configuration makes uses of the small ({approx}35 m) baseline between two of the VERITAS telescopes and employs a much lower discriminator threshold and tighter coincidence window compared to the standard VERITAS trigger. Five hours of Crab Nebula ON/OFF observations were obtained in low-energy mode and were used to test new low-energy analysis algorithms. We present some details of the VERITAS low-energy trigger and the associated data analysis.

  13. Low-Energy Ballistic Transfers to Lunar Halo Orbits

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.

    2009-01-01

    Recent lunar missions have begun to take advantage of the benefits of low-energy ballistic transfers between the Earth and the Moon rather than implementing conventional Hohmann-like lunar transfers. Both Artemis and GRAIL plan to implement low-energy lunar transfers in the next few years. This paper explores the characteristics and potential applications of many different families of low-energy ballistic lunar transfers. The transfers presented here begin from a wide variety of different orbits at the Earth and follow several different distinct pathways to the Moon. This paper characterizes these pathways to identify desirable low-energy lunar transfers for future lunar missions.

  14. Understanding Low Energy Gamma Emission from Fission and Capture with DANCE

    NASA Astrophysics Data System (ADS)

    Wilburn, Grey; Couture, Aaron; Mosby, Shea

    2012-10-01

    Los Alamos National Laboratory's Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 barium fluoride (BaF2) detectors in a 4π array used to study cross-section measurements from neutron capture reactions. Further, recent studies have taken advantage of DANCE to study the gamma emission from fission, which is not well characterized. Neutron capture is studied because of its relevance to nuclear astrophysics (almost all elements heavier than iron are formed via neutron capture) and nuclear energy, where neutron capture is a poison in the reactor. Gamma ray cascades following neutron capture and fission include photons with energies between 100 keV and 10 MeV. DANCE uses a ^6LiH sphere to attenuate scattered neutrons, the primary background in DANCE. Unfortunately, it also attenuates low energy gamma rays. In order to quantify this effect and validate simulations, direct measurements of low energy gammas were made with a high purity germanium (HPGe) crystal. HPGe's allow for high resolution measurements of low energy gamma rays that are not possible using the BaF2 crystals. The results and their agreement with simulations will be discussed.

  15. LEIC - A Polarized Low Energy Electron-ion Collider at Jefferson Lab

    SciTech Connect

    Derbenev, Yaroslav S.; Hutton, Andrew M.; Krafft, Geoffrey A.; Li, Rui; Lin, Fanglei; Morozov, Vasiliy; Nissen, Edward W.; Yunn, Byung C.; Zhang, He; Sullivan, Michael K.; Zhang, Yuhong

    2013-06-01

    A polarized electron-ion collider is envisioned as the future nuclear science program at JLab beyond the 12 GeV CEBAF. Presently, a medium energy collider (MEIC) is set as an immediate goal with options for a future energy upgrade. A comprehensive design report for MEIC has been released recently. The MEIC facility could also accommodate electron and proton/ion collisions in a low CM energy range, covering proton energies from 10 to 25 GeV and ion energies with a similar magnetic rigidity, for additional science reach. In this paper, we present a conceptual design of this low energy collider, LEIC, showing its luminosity can reach above 10{sup 33} cm{sup -2}s{sup -1}. The design specifies that the large booster of the MEIC is converted to a low energy ion collider ring with an interaction region and an electron cooler integrated into it. The design provides options for either sharing the detector with the MEIC or a dedicated low energy detector in a third collision point, with advantages of either a minimum cost or extra detection parallel to the MEIC operation, respectively. The LEIC could be positioned as the first and low cost phase of a multi-stage approach to realize the full MEIC.

  16. Reconstructing supernova-neutrino spectra using low-energy beta beams.

    PubMed

    Jachowicz, N; McLaughlin, G C

    2006-05-05

    Neutrinos are the principal messengers reaching us from the center of a supernova. Terrestrial neutrino telescopes can provide precious information about the processes in the core of the star. But the information that a neutrino detector can supply is restricted by the fact that little experimental data on the neutrino-nucleus cross sections exist and by the uncertainties in theoretical calculations. In this Letter, we propose a novel procedure that determines the response of a target nucleus in a supernova-neutrino detector, by using low-energy beta beams. We show that fitting "synthetic" spectra, constructed by taking linear combinations of beta-beam spectra, to the original supernova-neutrino spectra reproduces the folded differential cross sections very accurately. Comparing the response in a detector to these synthetic responses provides a direct way to determine the main parameters of the supernova-neutrino energy distribution.

  17. Measurement Over Large Solid Angle of Low Energy Cosmic Ray Muon Flux

    NASA Astrophysics Data System (ADS)

    Schreiner, H. F., III; Schwitters, R. F.

    2015-12-01

    Recent advancements in portable muon detectors have made cosmic ray imaging practical for many diverse applications. Working muon attenuation detectors have been built at the University of Texas and are already successfully being used to image tunnels, structures, and Mayan pyramids. Most previous studies have focused on energy measurements of the cosmic ray spectrum from of 1 GeV or higher. We have performed an accurate measurement of the ultra-low energy (<2 GeV in E cos θ) muon spectrum down to the acceptance level of our detector, around one hundred MeV. Measurements include angular dependence, with acceptance approaching horizontal. Measurements were made underwater using a custom enclosure in Lake Travis, Austin, TX. This measurement will allow more accurate predictions and simulations of attenuation for small (<5 m) targets for muon tomography.

  18. What is a low-energy house and who cares?

    SciTech Connect

    Litt, B.R.

    1994-12-01

    Most energy analysts view low-energy houses as good things, yet differ in their expectations of what exactly a low energy house is. There are two intertwining threads to this report. The first is an evaluation of 50 buildings that have been claimed to be low-energy residences, for which monitored energy performance data have been collected. These data represent the preliminary effort in the ongoing update of the Buildings Energy-Use Compilation and Analysis (BECA) data base for new residences. The second thread concerns the definition of a low-energy house. After the elements of a definition are presented, their implications for actors involved in providing housing are identified. Several more tractable definitions are applied to the houses in this compilation. The outcomes illustrate ways in which different interests are served by various definitions. Different definitions can yield very different energy rankings. No single definition of a low-energy house is universally applicable.

  19. Asymmetric Reconnection at the Magnetopause Under the Presence of Low-Energy Ions of Magnetospheric Origin

    NASA Astrophysics Data System (ADS)

    Toledo Redondo, S.; Vaivads, A.; Andre, M.; Khotyaintsev, Y. V.

    2014-12-01

    Magnetic reconnection at the magnetopause is characterized by asymmetry of the plasmas involved. On one side, there is the shocked plasma of the sheath coming from the solar wind, and, on the other, the energetic plasma drifting from the magnetosphere towards the magnetopause. Recent studies have pointed that, in addition to the high-energy (~104 eV) ions from the latter plasma, relevant amounts of positive low-energy ions (with energies below the equivalent spacecraft potential, i.e. below ~5-10 eV) are frequently present on the magnetospheric side of reconnection layer. These ions have small enough gyroradius to ExB drift inside the thin separatrix layer, and can modify processes in the layer. We use Cluster observations near the subsolar point to study the role of these low-energy ions at the magnetopause when reconnection is occurring. The presence of low-energy ions can be detected by observing a local wake electric field caused by a supersonic flow of low-energy ions passed a charged spacecraft. The density of these ions can be estimated by comparing the total density obtained from the plasma frequency or the spacecraft potential with observations by particle detectors of ions with high enough energy to reach the spacecraft. The dataset employed (2008) permits to resolve the current at scales below the ion inertial length (c/ωpi) in the direction normal to the magnetopause. The terms jxB/en, -vxB and ∇ pe/en are compared in the thin layers with strong En fields observed during the magnetopause crossings. It is clear that the presence of low-energy ions modifies the reconnection process, since in some cases they are able to balance the whole En term via the -vxB drift without the need of jxB/en.

  20. Study of silicon PIN diode responses to low energy gamma-rays

    NASA Astrophysics Data System (ADS)

    Lee, S. C.; Jeon, H. B.; Kang, K. H.; Park, H.

    2016-11-01

    Low energy gamma-ray detectors play an important role in diagnosis in nuclear medicine, in detection of gamma-ray bursts for gravitational wave research and in detection of underground nuclear tests. The silicon positive-intrinsic-negative (PIN) diode detector is useful for detection of low energy gamma radiation without using a scintillator because it generates a high signal in a small active volume, has a fast response time and has good intrinsic energy resolution. We measured the detector responses, energy resolutions and signal-to-noise ratios for various gamma energies by using manufactured silicon PIN diode and photodiodes. Radioactive gamma sources, 241Am, 133Ba, and 57Co, providing gamma-rays with energies between 14.4 keV and 136.5 keV are used for the measurements. The energy resolution and the signal-to-noise ratio for 14.4 keV gamma-ray are measured to be 17.1 % and 12.8 for a 500 μm thick silicon diode. The energy resolutions measured at the FWHM for 59.5 keV and 122.1 keV gamma-rays by using the silicon diode are better by up to two times compared to those obtained using the NaI:Tl or the BGO scintillator with a photomultiplier tube. The dependence of detection speeds of the signals on the diode's thickness is also measured.

  1. Development and characterization of a 2D scintillation detector for quality assurance in scanned carbon ion beams

    NASA Astrophysics Data System (ADS)

    Tamborini, A.; Raffaele, L.; Mirandola, A.; Molinelli, S.; Viviani, C.; Spampinato, S.; Ciocca, M.

    2016-04-01

    At the Centro Nazionale di Adroterapia Oncologica (CNAO Foundation), a two-dimensional high resolution scintillating dosimetry system has been developed and tested for daily Quality Assurance measurements (QA) in carbon ion radiotherapy with active scanning technique, for both single pencil beams and scanned fields produced by a synchrotron accelerator. The detector consists of a thin plane organic scintillator (25×25 cm2, 2 mm thick) coupled with a high spatial resolution CCD camera (0.25 mm) in a light-tight box. A dedicated Labview software was developed for image acquisition triggered with the beam extraction, data post-processing and analysis. The scintillator system was preliminary characterized in terms of short-term reproducibility (found to be within±0.5%), linearity with the number of particles (linear fit χ2 = 0.996) and dependence on particle flux (measured to be < 1.5 %). The detector was then tested for single beam spot measurements (Full Width at Half Maximum and position) and for 6×6 cm2 reference scanned field (determination of homogeneity) for carbon ions with energy from 115 MeV/u up to 400 MeV/u. No major differences in the investigated beam parameters measured with scintillator system and the radiochromic EBT3 reference films were observed. The system allows therefore real-time monitoring of the carbon ion beam relevant parameters, with a significant daily time saving with respect to films currently used. The results of this study show the suitability of the scintillation detector for daily QA in a carbon ion facility with an active beam delivery system.

  2. Parity violation in low-energy neutron-deuteron scattering

    SciTech Connect

    Song, Young-Ho; Gudkov, Vladimir; Lazauskas, Rimantas

    2011-01-15

    Parity-violating effects for low-energy elastic neutron deuteron scattering are calculated for Desplanques, Donoghue, and Holstein (DDH) and effective field theory types of weak potentials in a distorted-wave Born approximation, using realistic hadronic strong interaction wave functions, obtained by solving three-body Faddeev equations in configuration space. The resulting relation between physical observables and low-energy constants can be used to fix low-energy constants from experiments. Potential model dependencies of parity-violating effects are discussed.

  3. A 2D 4×4 Channel Readout ASIC for Pixelated CdTe Detectors for Medical Imaging Applications

    PubMed Central

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Martínez, Ricardo; Puigdengoles, Carles

    2015-01-01

    We present a 16-channel readout integrated circuit (ROIC) with nanosecond-resolution time to digital converter (TDC) for pixelated Cadmium Telluride (CdTe) gamma-ray detectors. The 4 × 4 pixel array ROIC is the proof of concept of the 10 × 10 pixel array readout ASIC for positron-emission tomography (PET) scanner, positron-emission mammography (PEM) scanner, and Compton gamma camera. The electronics of each individual pixel integrates an analog front-end with switchable gain, an analog to digital converter (ADC), configuration registers, and a 4-state digital controller. For every detected photon, the pixel electronics provides the energy deposited in the detector with 10-bit resolution, and a fast trigger signal for time stamp. The ASIC contains the 16-pixel matrix electronics, a digital controller, five global voltage references, a TDC, a temperature sensor, and a band-gap based current reference. The ASIC has been fabricated with TSMC 0.25 μm mixed-signal CMOS technology and occupies an area of 5.3 mm × 6.8 mm. The TDC shows a resolution of 95.5 ps, a precision of 600 ps at full width half maximum (FWHM), and a power consumption of 130 μW. In acquisition mode, the total power consumption of every pixel is 200 μW. An equivalent noise charge (ENC) of 160 e−RMS at maximum gain and negative polarity conditions has been measured at room temperature. PMID:26744545

  4. A 2D 4×4 Channel Readout ASIC for Pixelated CdTe Detectors for Medical Imaging Applications.

    PubMed

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Martínez, Ricardo; Puigdengoles, Carles

    2015-10-01

    We present a 16-channel readout integrated circuit (ROIC) with nanosecond-resolution time to digital converter (TDC) for pixelated Cadmium Telluride (CdTe) gamma-ray detectors. The 4 × 4 pixel array ROIC is the proof of concept of the 10 × 10 pixel array readout ASIC for positron-emission tomography (PET) scanner, positron-emission mammography (PEM) scanner, and Compton gamma camera. The electronics of each individual pixel integrates an analog front-end with switchable gain, an analog to digital converter (ADC), configuration registers, and a 4-state digital controller. For every detected photon, the pixel electronics provides the energy deposited in the detector with 10-bit resolution, and a fast trigger signal for time stamp. The ASIC contains the 16-pixel matrix electronics, a digital controller, five global voltage references, a TDC, a temperature sensor, and a band-gap based current reference. The ASIC has been fabricated with TSMC 0.25 μm mixed-signal CMOS technology and occupies an area of 5.3 mm × 6.8 mm. The TDC shows a resolution of 95.5 ps, a precision of 600 ps at full width half maximum (FWHM), and a power consumption of 130 μW. In acquisition mode, the total power consumption of every pixel is 200 μW. An equivalent noise charge (ENC) of 160 e(-)RMS at maximum gain and negative polarity conditions has been measured at room temperature.

  5. Study of heliospheric effects on galactic cosmic ray fluxes near Earth using low energy modes of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Saleh, Ahmed; Pierre Auger Collaboration

    2016-04-01

    Surface detector array (SD) of the Pierre Auger Observatory has the capability to observe variations in the flux of low energy secondary cosmic ray particles. Flux rates of low energy particles can be obtained either from particle count rates (scaler mode) or from charge distribution of the pulses (histogram mode), detected by individual water Cherenkov detectors (WCD). In scaler mode, SD is sensitive to particles that deposit energy between ~15 MeV and ~100 MeV in a WCD, while in histogram mode the deposited energy range can be extended up to ~1 GeV. These two low energy detection modes are excellent tools for monitoring modulations of the galactic cosmic ray flux, related to solar activity, such as Forbush decreases (with typical duration of several hours to weeks) and Solar cycle (with a duration of several years), as they provide fluxes of cosmic rays with different energies at the same detector. In this contribution we present an analysis of the effects of space weather and space climate on low energy mode data collected by the Pierre Auger Observatory in the period between 2006 and 2013. In particular, we focus on the long term trend of the cosmic ray flux. In addition to the standard corrections for atmospheric effects such as pressure, the analysis takes into account also the corrections for the long term evolution of the response of the surface detectors. Results show good correlation of the corrected low energy mode Auger data with neutron flux measurements by the global neutron monitoring network (NMDB).

  6. Biological assessments for the low energy demonstration accelerator, 1996

    SciTech Connect

    Cross, S.

    1997-03-01

    This report discusses the biological impact to the area around the Los Alamos National Laboratory of the Low Energy Demonstration Accelerator. In particular the impact to the soils, water quality, vegetation, and wildlife are discussed.

  7. Past, present and future low energy antiproton facilities at CERN

    NASA Astrophysics Data System (ADS)

    Bartmann, W.; Belochitskii, P.; Breuker, H.; Butin, F.; Carli, C.; Eriksson, T.; Maury, S.; Oelert, W.; Pasinelli, S.; Tranquille, G.

    2014-05-01

    Low energy antiprotons are available for physics experiments at CERN since the 1980s and have been used by a large variety of experiments. The Low Energy Antiproton Ring LEAR has been constructed as a complementary use of antiprotons available at that time for high energy physics and delivered beam to experiments mainly using slow extraction. After completion of LEAR exploitation, the Antiproton Decelerator (AD) was constructed (adaptation of the existing Antiproton Collector, AC) to allow for a simpler low energy antiproton scheme (only one accelerator operated with Antiprotons) with fast extraction well suited for trap experiments. The Extra Low ENergy Antiproton ring ELENA is a small synchrotron presently constructed to further decelerate antiprotons from the AD in a controlled manner, and to reduce emittances with the help of an electron cooler to improve the capture efficiencies of existing experiments and allow for additional ones.

  8. Radial Flux Distribution of Low-Energy Neutrons.

    ERIC Educational Resources Information Center

    Higinbotham, J.

    1979-01-01

    Describes an experiment designed to illustrate the basic principle involved in the process of moderation of fast neutrons by water, and the monitoring of the low-energy neutron flux using indium as a probe. (GA)

  9. Beam lifetime and limitations during low-energy RHIC operation

    SciTech Connect

    Fedotov, A.V.; Bai, M.; Blaskiewicz, M.; Fischer, W.; Kayran, D.; Montag, C.; Satogata, T.; Tepikian, S.; Wang, G.

    2011-03-28

    The low-energy physics program at the Relativistic Heavy Ion Collider (RHIC), motivated by a search for the QCD phase transition critical point, requires operation at low energies. At these energies, large nonlinear magnetic field errors and large beam sizes produce low beam lifetimes. A variety of beam dynamics effects such as Intrabeam Scattering (IBS), space charge and beam-beam forces also contribute. All these effects are important to understand beam lifetime limitations in RHIC at low energies. During the low-energy RHIC physics run in May-June 2010 at beam {gamma} = 6.1 and {gamma} = 4.1, gold beam lifetimes were measured for various values of space-charge tune shifts, transverse acceptance limitation by collimators, synchrotron tunes and RF voltage. This paper summarizes our observations and initial findings.

  10. Evidence for confinement of low-energy cosmic rays ahead of interplanetary shock waves.

    NASA Technical Reports Server (NTRS)

    Palmeira, R. A. R.; Allum, F. R.

    1973-01-01

    Short-lived (about 15 min), low-energy proton increases associated with the passage of interplanetary shock waves have been previously reported. In the present paper, we have examined in a fine time scale (about 1 min) the concurrent particle and magnetic field data, taken by detectors on Explorer 34, for four of these events. Our results further support the view that these impulsive events are due to confinement of the solar cosmic-ray particles in the region just ahead (about 1,000,000 km) of the advancing shock front.

  11. On scattering effects for volume sources in low-energy photon spectrometry.

    PubMed

    Lépy, Marie-Christine; Brondeau, Laurine; Ferreux, Laurent; Pierre, Sylvie

    2013-11-01

    In this study, different aspects of the Compton scattering inside volume sources are illustrated using experimental approach and Monte Carlo simulation. For the low-energy range (below 100 keV) scattered events represents around 30% of the whole spectrum. Influence of the source-detector geometry is discussed. The scattering effects induce strong differences in spectrum shape for different geometrical conditions. This should influence efficiency transfer factors. A new approach is proposed, including the scattered events, to avoid complex peak area determination.

  12. Scintillation efficiency of liquid argon in low energy neutron-argon scattering

    NASA Astrophysics Data System (ADS)

    Creus, W.; Allkofer, Y.; Amsler, C.; Ferella, A. D.; Rochet, J.; Scotto-Lavina, L.; Walter, M.

    2015-08-01

    Experiments searching for weak interacting massive particles with noble gases such as liquid argon require very low detection thresholds for nuclear recoils. A determination of the scintillation efficiency is crucial to quantify the response of the detector at low energy. We report the results obtained with a small liquid argon cell using a monoenergetic neutron beam produced by a deuterium-deuterium fusion source. The light yield relative to electrons was measured for six argon recoil energies between 11 and 120 keV at zero electric drift field.

  13. Strong flux of low-energy neutrons produced by thunderstorms.

    PubMed

    Gurevich, A V; Antonova, V P; Chubenko, A P; Karashtin, A N; Mitko, G G; Ptitsyn, M O; Ryabov, V A; Shepetov, A L; Shlyugaev, Yu V; Vildanova, L I; Zybin, K P

    2012-03-23

    We report here for the first time about the registration of an extraordinary high flux of low-energy neutrons generated during thunderstorms. The measured neutron count rate enhancements are directly connected with thunderstorm discharges. The low-energy neutron flux value obtained in our work is a challenge for the photonuclear channel of neutron generation in thunderstorm: the estimated value of the needed high-energy γ-ray flux is about 3 orders of magnitude higher than that one observed.

  14. Surface Passivation and Junction Formation Using Low Energy Hydrogen Implants

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.

    1985-01-01

    New applications for high current, low energy hydrogen ion implants on single crystal and polycrystal silicon grain boundaries are discussed. The effects of low energy hydrogen ion beams on crystalline Si surfaces are considered. The effect of these beams on bulk defects in crystalline Si is addressed. Specific applications of H+ implants to crystalline Si processing are discussed. In all of the situations reported on, the hydrogen beams were produced using a high current Kaufman ion source.

  15. The Trapping of Low-Energy Particles by Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Al Dayeh, M.; Dwyer, J.; Rassoul, H.; Mason, G.; Mazur, J.; Desai, M.

    2007-12-01

    Using ~0.045-10 MeV/nucleon ion data from ACE/ULEIS, we have found that a substantial number of shock- associated solar energetic particle events (20 events) have significant delays in the arrival of the low-energy component beyond what is expected from the travel time of energetic particles from the sun to the earth at 1 AU. Indeed, for some events, after correcting for the velocity dispersion, the low energy component (E < 0.1 MeV/nucleon) is almost completely absent while the high-energy component (E > 1 MeV/nucleon) has very large enhancements. SEP events with the most dramatic initial depletion of low-energy particles are accompanied by large proton fluxes and have large enhancements of the low-energy particles later, in coincidence with the arrival of the interplanetary shock, a day or two after the start of the event. In addition, these events show Fe/O enhancements during the periods in which the low-energy component is depleted and lower Fe/O values once the shock arrives. These new observations appear to be explained by the trapping of particles with low energy-to-charge (E/Q) ratios in the vicinity of the shock by magnetohydrodynamic waves, possibly generated by high energy protons streaming along the magnetic field lines.

  16. BATSE Observations of Gamma-Ray Burst Spectra. Part 3; Low-Energy Behavior of Time-Averaged Spectra

    NASA Technical Reports Server (NTRS)

    Preece, R. D.; Briggs, M. S.; Pendleton, G. N.; Paciesas, W. S.; Matteson, J. L.; Band, D. L.; Skelton, R. T.; Meegan, C. A.

    1996-01-01

    We analyze time-averaged spectra from 86 bright gamma-ray bursts from the first 5 years of the Burst And Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory to determine whether the lowest energy data are consistent with a standard spectra form fit to the data at all energies. The BATSE Spectroscopy Detectors have the capability to observe photons as low as 5 keV. Using the gamma-ray burst locations obtained with the BATSE Large Area Detectors, the Spectroscopy Detectors' low-energy response can be modeled accurately. This, together with a postlaunch calibration of the lowest energy Spectroscopy Detector discriminator channel, which can lie in the range 5-20 keV, allows spectral deconvolution over a broad energy range, approx. 5 keV to 2 MeV. The additional coverage allows us to search for evidence of excess emission, or for a deficit, below 20 keV. While no burst has a significant (greater than or equal to 3 sigma) deficit relative to a standard spectra model, we find that 12 bursts have excess low-energy emission, ranging between 1.2 and 5.8 times the model flux, that exceeds 5 sigma in significance. This is evidence for an additional low-energy spectral component in at least some bursts, or for deviations from the power-law spectral form typically used to model gamma-ray bursts at energies below 100 keV.

  17. Image acquisition, geometric correction and display of images from a 2×2 x-ray detector array based on Electron Multiplying Charge Coupled Device (EMCCD) technology.

    PubMed

    Vasan, S N Swetadri; Sharma, P; Ionita, Ciprian N; Titus, A H; Cartwright, A N; Bednarek, D R; Rudin, S

    2013-03-06

    A high resolution (up to 11.2 lp/mm) x-ray detector with larger field of view (8.5 cm × 8.5 cm) has been developed. The detector is a 2 × 2 array of individual imaging modules based on EMCCD technology. Each module outputs a frame of size 1088 × 1037 pixels, each 12 bits. The frames from the 4 modules are acquired into the processing computer using one of two techniques. The first uses 2 CameraLink communication channels with each carrying information from two modules, the second uses a application specific custom integrated circuits, the Multiple Module Multiplexer Integrated Circuit (MMMIC), 3 of which are used to multiplex the data from 4 modules into one CameraLink channel. Once the data is acquired using either of the above mentioned techniques, it is decoded in the graphics processing unit (GPU) to form one single frame of size 2176 × 2074 pixels each 16 bits. Each imaging module uses a fiber optic taper coupled to the EMCCD sensor. To correct for mechanical misalignment between the sensors and the fiber optic tapers and produce a single seamless image, the images in each module may be rotated and translated slightly in the x-y plane with respect to each other. To evaluate the detector acquisition and correction techniques, an aneurysm model was placed over an anthropomorphic head phantom and a coil was guided into the aneurysm under fluoroscopic guidance using the detector array. Image sequences before and after correction are presented which show near-seamless boundary matching and are well suited for fluoroscopic imaging.

  18. Low-energy photon spectroscopy data in support of ASTM method development

    SciTech Connect

    Dry, D. E.; Boone, S.

    2002-01-01

    The Isotope and Nuclear Chemistry (C-INC) Radioassay Facility at Los Alamos National Laboratory (LANL) has been in operation since 1948 to measure fission-product and actinide activities from the U.S. weapons testing program. Since the cessation of testing in 1992, the facility has remained in continuous operation by analyzing samples for environmental, bioassay and research projects. In addition to the many gamma spectroscopy systems, two independent planar germanium detectors are employed for measurement of x-rays and low-energy gsunma rays. 'These counters were used to collect data of select isotopes to support the development of a new ASTM standard, 'Standard Practice for High-Resolution Low-Energy Photon Spectrometry of Water'. This standard is being developed by ASTM Subcommittee D19.04 as a tool for measurement of low-energy gamma-rays and x-rays fiom approximately 4 keV to 150 keV. This work describes empirical counting results obtained fkom traceable sources covering the energy range of interest. Specifically, the isotopes used were 5%i, 55Fe, Am, I, Cd, and 57C0 which provide a range of 5.9 to 136 keV. Mixed nuclide sources were also counted for the purpose of providing data for coincidence summing effects. All data is presented in hardcopy and accompanying electronic form.

  19. A highly sensitive CaF2:Dy nanophosphor as an efficient low energy ion dosimetry

    NASA Astrophysics Data System (ADS)

    Bhadane, Mahesh S.; Hareesh, K.; Dahiwale, S. S.; Sature, K. R.; Patil, B. J.; Asokan, K.; Kanjilal, D.; Bhoraskar, V. N.; Dhole, S. D.

    2016-11-01

    Dysprosium doped calcium fluoride (CaF2:Dy) powers synthesized by co-precipitation method were irradiated with low energy ion beams (LEIB) viz. 100 keV H, 200 keV Ar and 350 keV N beams at different fluences and demonstrated for low energy ion dosimetric application. X-ray Diffraction and Transmission electron microscopy revealed the formation of highly crystalline cubic structured particles with size ∼45-50 nm. FTIR spectra of the CaF2:Dy samples show changes of some bonds such as N-O asymmetric, C-F bonding and C-H aromatic contain stretching mode after LEIB irradiation. The thermoluminescence (TL) glow curve peaks were observed at 207 °C for Ar ion, at 203 °C for H ion and at 216 °C and 270 °C for N ion. It has been found that CaF2:Dy nanophosphor shows a linear response with minimum fading for all the ion species. Computerized Glow Curve Deconvolution was performed for TL curve of high fluence ion irradiated nanophosphor to estimate the trapping parameters and the respective figure of merit (FOM) found to be very appropriate for all the nanophosphor. These results indicated that the CaF2:Dy can be used as a low energy ion detector or dose.

  20. The ISPM experiment for spectral, composition and anistropy measurements of charged particles at low energie

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Gold, R. E.; Anderson, K. A.; Armstrong, T. P.; Lin, R. P.; Krimigis, S. M.; Pick, M.; Roelof, E. C.; Sarris, E. T.; Simnett, G. M.

    1983-01-01

    The Heliosphere Instrument for Spectral, Composition, and Anisotropy at Low Energies (HI-SCALE) designed to measure interplanetary ions and electrons is described. Ions and electrons are detected by five separate solid-state detector telescopes oriented to give complete pitch angle coverage from the spinning spacecraft. Ion elemental abundances are determined by a telescope using a thin front detector element in a three-element telescope. Experiment operation is controlled by a microprocessor-based data system. Inflight calibration is provided by radioactive sources mounted on closable telescope covers. Ion and electron spectral information is determined using broad-energy-range rate channels, and a pulse-height analyzer for more detailed spectra. The instrument weighs 5.775 kg and uses 4.0 W power.

  1. Measurement of Low Energy Electronic Recoil Response and Electronic/Nuclear Recoils Discrimination in XENON100

    NASA Astrophysics Data System (ADS)

    Ye, Jingqiang; Xenon Collaboration

    2017-01-01

    The XENON100 detector uses liquid xenon time projection chamber to search for nuclear recoils(NR) caused by hypothetical Weakly Interacting Massive Particles (WIMPs). The backgrounds are mostly electronic recoils(ER), thus it's crucial to distinguish NR from ER. Using high statistical calibration data from tritiated methane, AmBe and other sources in XENON100, the ER/NR discrimination under different electric fields are measured. The Photon yield and recombination fluctuation of low energy electronic recoils under different fields will also be presented and compared to results from NEST and other experiments, which is crucial to understanding the response of liquid xenon detectors in the energy regime of searching dark matter.

  2. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  3. Measuring Neutron-Proton Radiative Capture Cross-section at Low Energy

    NASA Astrophysics Data System (ADS)

    Yu, To Chin; Kovash, Michael; Matthews, June; Yang, Hongwei; Yang, Yunjie

    2015-10-01

    The experiment aims to fill in a gap in our data for the cross-section of neutron-proton radiative capture (p(n,d γ)) at energies below 500 keV. Current measurements in this energy range are scarce and inconsistent with theoretical predictions and with each other. A well-determined cross-section of the capture reaction in the low energy range is useful in nuclear physics due to its fundamental nature. The measurement is also of interest in cosmology. Big Bang Nucleosynthesis (BBN), the process by which light elements are formed in early universe, is very sensitive to the p(n,d γ) cross-section in the low energy range. The measurement enables us to put tighter constraints on the theoretical predictions of BBN. We have conducted preliminary measurements in the van de Graaff accelerator facility at the University of Kentucky. Our array of detectors consists of three plastic scintillators to serve as proton targets and deuteron detectors, and five BGO scintillators to detect γ-rays. The combination results in an over-determination of reaction kinematics that discriminates against scattering processes and other backgrounds. We have obtained some early results which show promise for the precise measurement of the p(n,d γ) cross-section.

  4. Impact of low-energy photons on the characteristics of prompt fission γ -ray spectra

    NASA Astrophysics Data System (ADS)

    Oberstedt, A.; Billnert, R.; Hambsch, F.-J.; Oberstedt, S.

    2015-07-01

    In this paper we report on a new study of prompt γ -rays from the spontaneous fission of 252Cf . Photons were measured in coincidence with fission fragments by employing four different lanthanide halide scintillation detectors. Together with results from a previous work of ours, we determined characteristic parameters with high precision, such as the average γ -ray multiplicity ν¯γ=(8.29 ±0.13 ), the average energy per photon ɛγ=(0.80 ±0.02 ) MeV, and the total γ -ray energy release per fission Eγ ,tot=(6.65 ±0.10 ) MeV. The excellent agreement between the individual results obtained in all six measurements proves the good repeatability of the applied experimental technique. The impact of low-energy photons, i.e., below 500 keV, on prompt fission γ -ray spectra characteristics has been investigated as well by comparing our results with those taken with the DANCE detector system, which appears to suffer from absorption effects in the low-energy region. Correction factors for this effect were estimated, giving results comparable to ours as well as to historical ones. From this we demonstrate that the different techniques of determining the average γ -ray multiplicity, either from a properly measured and normalized spectrum or a measured multiplicity distribution, give equivalent and consistent results.

  5. Search for Low-Energy Events with CUORE-0 and CUORE

    NASA Astrophysics Data System (ADS)

    Lim, Kyungeun; Cuore Collaboration

    2015-10-01

    CUORE-0 is a cryogenic detector that uses an array of tellurium dioxide bolometers with the primary physics goal of searching for neutrinoless double-beta decay of 130Te. The detector consists of 52 natTeO2 crystal bolometers, which amounts to a total 130Te mass of 11kg, held in a ultra-pure copper frame. It was assembled using new low-background techniques developed for CUORE. The first results on the search for neutrinoless double-beta decay with CUORE-0 combined with Cuoricinio, a predecessor to CUORE-0, set the most stringent limit on the half-life of 130Te. Successful background mitigation, along with continuous data acquisition make CUORE-0 also suitable for other low-energy, rare event searches such as dark matter. I will discuss the status of the low-energy event search with CUORE-0 and prospects for CUORE. CUORE is in the final stages of construction and scheduled to begin data-taking in late 2015.

  6. MagicPlate-512: A 2D silicon detector array for quality assurance of stereotactic motion adaptive radiotherapy

    SciTech Connect

    Petasecca, M. Newall, M. K.; Aldosari, A. H.; Fuduli, I.; Espinoza, A. A.; Porumb, C. S.; Guatelli, S.; Metcalfe, P.; Lerch, M. L. F.; Rosenfeld, A. B.; Booth, J. T.; Colvill, E.; Duncan, M.; Cammarano, D.; Carolan, M.; Oborn, B.; Perevertaylo, V.; Keall, P. J.

    2015-06-15

    , no motion, and motion with MLC tracking profiles agreed within 1 and 0.4 mm, respectively, for all field sizes tested. Use of electromagnetic tracking system generates a fluctuation of the detector baseline up to 10% of the full scale signal requiring a proper shielding strategy. MagicPlate-512 is also able to reconstruct the dose variation pulse-by-pulse in each pixel of the detector. An analysis of the dose transients with motion and motion with tracking shows that the tracking feedback algorithm used for this experiment can compensate effectively only the effect of the slower transient components. The fast changing components of the organ motion can contribute only to discrepancy of the order of 15% in penumbral region while the slower components can change the dose profile up to 75% of the expected dose. Conclusions: MagicPlate-512 is shown to be, potentially, a valid alternative to film or 2D ionizing chambers for quality assurance dosimetry in SRS or SBRT. Its high spatial and temporal resolutions allow for accurate reconstruction of the profile in any conditions with motion and with tracking of the motion. It shows excellent performance to reconstruct the dose deposition in real time or retrospectively as a function of time for detailed analysis of the effect of motion in a specific pixel or area of interest.

  7. A G/NARRLI Effort. Measuring the Ionization Yield of Low-Energy Nuclear Recoils in Liquid Argon

    SciTech Connect

    Joshi, Tenzing Henry Yatish

    2014-01-01

    Liquid argon has long been used for particle detection due to its attractive drift properties, ample abundance, and reasonable density. The response of liquid argon to lowenergy O(102 -1044 eV) interactions is, however, largely unexplored. Weakly interacting massive particles such as neutrinos and hypothetical dark-matter particles (WIMPs) are predicted to coherently scatter on atomic nuclei, leaving only an isolated low-energy nuclear recoil as evidence. The response of liquid argon to low-energy nuclear recoils must be studied to determine the sensitivity of liquid argon based detectors to these unobserved interactions. Detectors sensitive to coherent neutrino-nucleus scattering may be used to monitor nuclear reactors from a distance, to detect neutrinos from supernova, and to test the predicted behavior of neutrinos. Additionally, direct detection of hypothetical weakly interacting dark matter would be a large step toward understanding the substance that accounts for nearly 27% of the universe. In this dissertation I discuss a small dual-phase (liquid-gas) argon proportional scintillation counter built to study the low-energy regime and several novel calibration and characterization techniques developed to study the response of liquid argon to low-energy O(102 -104 eV) interactions.

  8. SU-D-12A-04: Investigation of a 2D Antiscatter Grid for Flat Panel Detectors

    SciTech Connect

    Altunbas, C; Kavanagh, B; Miften, M; Zhong, Y; Shaw, C

    2014-06-01

    Purpose: To improve CT number accuracy and contrast sensitivity, a novel 2D antiscatter grid (ASG) for flat panel detector (FPD) based CBCT imaging was evaluated. Experiments were performed to characterize the scatter rejection and contrast sensitivity performance of ASG. The reduction in primary transmission for various ASG geometries was also evaluated by a computational model. Methods: The 2D ASG design was based on multi-hole collimators used in Nuclear Medicine. It consisted of abutted hexagon shaped apertures with 2.5 mm pitch and 32 mm height, and separated by 0.25 mm thick lead septa. Scatter-to-primary ratio (SPR), contrast-to-noise ratio (CNR), and mean primary transmission were measured using a benchtop FPD/x-ray source system. Acrylic slabs of varying thicknesses were imaged with a contrast-detail phantom to measure CNR and SPR under different scatter conditions. Primary transmission was also measured by averaging pixel values in flood field images without the phantom. We additionally explored variation of primary transmission with pitch and septum thickness using a computational model of our ASG. Results: Our 2D ASG reduced the SPR from 3.3 to 0.12, and improved CNR by 50% in 20 cm thick slab phantom projections acquired at 120 kVp. While the measured primary transmission was 72.8%, our simulations show that primary transmission can be increased to 86% by reducing the septum thickness to 0.1 mm. Primary transmission further increases to 93% if septum thickness of 0.1 mm is used in conjunction with an increased pitch of 4 mm. Conclusion: The 2D ASG appears to be a promising scatter rejection device, offering both superior scatter rejection and improved contrast sensitivity. Though its lead footprint reduced primary transmission, our work shows that optimization of aperture pitch and septum thickness can significantly improve the primary transmission.

  9. Optical and chemical behaviors of CR-39 and Makrofol plastics under low-energy electron beam irradiation

    NASA Astrophysics Data System (ADS)

    El-Saftawy, Ashraf Ali; Abd El Aal, Saad Ahmed; Hassan, Nabil Mohamed; Abdelrahman, Moustafa Mohamed

    2016-07-01

    In this study, CR-39 and Makrofol plastic nuclear track detectors were irradiated with low-energy electron beams to study the effect of the induced changes on their optical and chemical properties. Surface chemical changes were recorded by Fourier transform infrared (FTIR) spectroscopy, which showed successive degradation and crosslinking for CR-39 and decomposition for Makrofol. The optical band gap was determined by UV-vis spectroscopy. Also, the parameters of carbon cluster formation and disordering (Urbach’s energy) occurring on plastic surfaces were examined. The intrinsic viscosity changes were investigated as well. As a result, low-energy electron beams were found to be useful for the control of many properties of the surfaces of the investigated detectors.

  10. Calculation of astrophysical S factor at low energy levels

    NASA Astrophysics Data System (ADS)

    Andic, Halil Ibrahim; Ozer, Okan

    2017-02-01

    Nuclear reactions are very important for the structure, evolution, nucleosynthesis and various observational manifestations of main-sequence stars, white dwarfs and neutron stars. For astrophysical applications, one needs to know value of S-factor for many reactions at low energies. The experimental measurements of cross-sections at such low energies are essentially not easily available since the Coulomb barrier. Theoretical calculations are model dependent, so that nuclear physics uncertainties of calculated S-factor can be substantial. Using the supersymmetric quantum mechanics one can obtain the supersymmetric partner potential that can vary by several orders of magnitude in the energy range of a given reaction in the calculation of S factor. Since the determination of reaction rates requires accurate values of cross sections at very low energies, then in order to eliminate the main part of the energy dependence of these cross sections one makes use of the astrophysical S-factor in Taylor Expansion series about zero-energy.

  11. Coulomb effects in low-energy nuclear fragmentation

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Chun, Sang Y.; Badavi, Francis F.; John, Sarah

    1993-01-01

    Early versions of the Langley nuclear fragmentation code NUCFRAG (and a publicly released version called HZEFRG1) assumed straight-line trajectories throughout the interaction. As a consequence, NUCFRAG and HZEFRG1 give unrealistic cross sections for large mass removal from the projectile and target at low energies. A correction for the distortion of the trajectory by the nuclear Coulomb fields is used to derive fragmentation cross sections. A simple energy-loss term is applied to estimate the energy downshifts that greatly alter the Coulomb trajectory at low energy. The results, which are far more realistic than prior versions of the code, should provide the data base for future transport calculations. The systematic behavior of charge-removal cross sections compares favorably with results from low-energy experiments.

  12. Low energy analyzing powers in pion-proton elastic scattering

    NASA Astrophysics Data System (ADS)

    Meier, R.; Cröni, M.; Bilger, R.; van den Brandt, B.; Breitschopf, J.; Clement, H.; Comfort, J. R.; Denz, H.; Erhardt, A.; Föhl, K.; Friedman, E.; Gräter, J.; Hautle, P.; Hofman, G. J.; Konter, J. A.; Mango, S.; Pätzold, J.; Pavan, M. M.; Wagner, G. J.; von Wrochem, F.

    2004-05-01

    Analyzing powers of pion-proton elastic scattering have been measured at PSI with the Low Energy Pion Spectrometer LEPS and a novel polarized scintillator target. Angular distributions between 40 and 120 deg (c.m.) were taken at 45.2, 51.2, 57.2, 68.5, 77.2, and 87.2 MeV incoming pion kinetic energy for π+p scattering, and at 67.3 and 87.2 MeV for π-p scattering. These new measurements constitute a substantial extension of the polarization data base at low energies. Predictions from phase shift analyses are compared with the experimental results, and deviations are observed at low energies.

  13. Light element production by low energy nuclei from massive stars

    NASA Technical Reports Server (NTRS)

    Vangioni-Flam, E.; Casse, M.; Ramaty, R.

    1997-01-01

    The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.

  14. Low-energy physics of high-temperature superconductors

    SciTech Connect

    Emery, V.J. . Physics Dept.); Kivelson, S.A. . Dept. of Physics)

    1992-01-01

    It is argued that the low-energy properties of high temperature superconductors are dominated by the interaction between the mobile holes and a particular class of collective modes, corresponding to local large-amplitude low-energy fluctuations in the hole density. The latter are a consequence of the competition between the effects of long-range Coulomb interactions and the tendency of a low concentration of holes in an antiferromagnet to phase separate. The low-energy behavior of the system is governed by the same fixed point as the two-channel Kondo problem, which accounts for the universality'' of the properties of the cuprate superconductors. Predictions of the optical properties and the spin dynamics are compared with experiment. The pairing resonance of the two Kondo problem gives a mechanism of high temperature superconductivity with an unconventional symmetry of the order parameter.

  15. Low-energy physics of high-temperature superconductors

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1992-09-01

    It is argued that the low-energy properties of high temperature superconductors are dominated by the interaction between the mobile holes and a particular class of collective modes, corresponding to local large-amplitude low-energy fluctuations in the hole density. The latter are a consequence of the competition between the effects of long-range Coulomb interactions and the tendency of a low concentration of holes in an antiferromagnet to phase separate. The low-energy behavior of the system is governed by the same fixed point as the two-channel Kondo problem, which accounts for the ``universality`` of the properties of the cuprate superconductors. Predictions of the optical properties and the spin dynamics are compared with experiment. The pairing resonance of the two Kondo problem gives a mechanism of high temperature superconductivity with an unconventional symmetry of the order parameter.

  16. EVOLUTION OF THE CRAB NEBULA IN A LOW ENERGY SUPERNOVA

    SciTech Connect

    Yang, Haifeng; Chevalier, Roger A. E-mail: rac5x@virginia.edu

    2015-06-20

    The nature of the supernova leading to the Crab Nebula has long been controversial because of the low energy that is present in the observed nebula. One possibility is that there is significant energy in extended fast material around the Crab but searches for such material have not led to detections. An electron capture supernova model can plausibly account for the low energy and the observed abundances in the Crab. Here, we examine the evolution of the Crab pulsar wind nebula inside a freely expanding supernova and find that the observed properties are most consistent with a low energy event. Both the velocity and radius of the shell material, and the amount of gas swept up by the pulsar wind point to a low explosion energy (∼10{sup 50} erg). We do not favor a model in which circumstellar interaction powers the supernova luminosity near maximum light because the required mass would limit the freely expanding ejecta.

  17. Evolution of the Crab Nebula in a Low Energy Supernova

    NASA Astrophysics Data System (ADS)

    Yang, Haifeng; Chevalier, Roger A.

    2015-06-01

    The nature of the supernova leading to the Crab Nebula has long been controversial because of the low energy that is present in the observed nebula. One possibility is that there is significant energy in extended fast material around the Crab but searches for such material have not led to detections. An electron capture supernova model can plausibly account for the low energy and the observed abundances in the Crab. Here, we examine the evolution of the Crab pulsar wind nebula inside a freely expanding supernova and find that the observed properties are most consistent with a low energy event. Both the velocity and radius of the shell material, and the amount of gas swept up by the pulsar wind point to a low explosion energy (∼1050 erg). We do not favor a model in which circumstellar interaction powers the supernova luminosity near maximum light because the required mass would limit the freely expanding ejecta.

  18. Electron polarimetry at low energies in Hall C at JLab

    NASA Astrophysics Data System (ADS)

    Gaskell, D.

    2013-11-01

    Although the majority of Jefferson Lab experiments require multi-GeV electron beams, there have been a few opportunities to make electron beam polarization measurements at rather low energies. This proceedings will discuss some of the practical difficulties encountered in performing electron polarimetry via Mo/ller scattering at energies on the order of a few hundred MeV. Prospects for Compton polarimetry at very low energies will also be discussed. While Mo/ller scattering is likely the preferred method for electron polarimetry at energies below 500 MeV, there are certain aspects of the polarimeter and experiment design that must be carefully considered.

  19. Electron polarimetry at low energies in Hall C at JLab

    SciTech Connect

    Gaskell, D.

    2013-11-07

    Although the majority of Jefferson Lab experiments require multi-GeV electron beams, there have been a few opportunities to make electron beam polarization measurements at rather low energies. This proceedings will discuss some of the practical difficulties encountered in performing electron polarimetry via Mo/ller scattering at energies on the order of a few hundred MeV. Prospects for Compton polarimetry at very low energies will also be discussed. While Mo/ller scattering is likely the preferred method for electron polarimetry at energies below 500 MeV, there are certain aspects of the polarimeter and experiment design that must be carefully considered.

  20. Diffuse Galactic low energy gamma ray continuum emission

    NASA Technical Reports Server (NTRS)

    Skibo, J. G.; Ramaty, R.

    1993-01-01

    We investigate the origin of diffuse low-energy Galactic gamma-ray continuum down to about 30 keV. We calculate gamma-ray emission via bremsstrahlung and inverse Compton scattering by propagating an unbroken electron power law injection spectrum and employing a Galactic emmissivity model derived from COSB observations. To maintain the low energy electron population capable of producing the observed continuum via bremsstrahlung, a total power input of 4 x 10 exp 41 erg/s is required. This exceeds the total power supplied to the nuclear cosmic rays by about an order of magnitude.

  1. The LEM Experiment:. Measurement of Low Energy Spectrum at J-PARC On-Axis Neutrino Beam

    NASA Astrophysics Data System (ADS)

    Kaji, H.

    2013-03-01

    The LEM experiment measures the flux of J-PARC neutrino beam. We newly constructed the neutrino monitor, LEM, and installed at the J-PARC ND280 hall. We measure neutrino flux in the low energy part of on-axis direction. This part of the neutrino beam cannot be measured by any of T2K detectors. Therefore we can help further understandings of the J-PARC neutrino flux. The detailed design of detector is shown. In addition, the status of construction and installation at the ND280 hall is reported.

  2. A whole body counter for an emergency and occupational monitoring of an internal contamination with low energy photon emitters

    NASA Astrophysics Data System (ADS)

    Fantínová, K.; Fojtík, P.; Pfeiferová, V.

    2015-11-01

    A whole-body counter in SÚRO (NRPI) Prague, Czech Republic has been upgraded recently with the goal to enhance its capability of a safe, smooth, accurate and reproducible positioning of detectors for whole- and partial-body counting. The counter is intended especially for counting of low energy gamma emitters in various organs and tissues of the human body. Counting efficiency calibration of a four-detector system installed in the shielded room has been performed by means of physical and voxel phantoms. The consistency of in vivo bioassay data of three internal contamination cases long-term monitored in the Institute is shown.

  3. Compton imager using room temperature silicon detectors

    NASA Astrophysics Data System (ADS)

    Kurfess, James D.; Novikova, Elena I.; Phlips, Bernard F.; Wulf, Eric A.

    2007-08-01

    We have been developing a multi-layer Compton Gamma Ray Imager using position-sensitive, intrinsic silicon detectors. Advantages of this approach include room temperature operation, reduced Doppler broadening, and use of conventional silicon fabrication technologies. We have obtained results on the imaging performance of a multi-layer instrument where each layer consists of a 2×2 array of double-sided strip detectors. Each detector is 63 mm×63 mm×2 mm thick and has 64 strips providing a strip pitch of approximately 0.9 mm. The detectors were fabricated by SINTEF ICT (Oslo Norway) from 100 mm diameter wafers. The use of large arrays of silicon detectors appears especially advantageous for applications that require excellent sensitivity, spectral resolution and imaging such as gamma ray astrophysics, detection of special nuclear materials, and medical imaging. The multiple Compton interactions (three or more) in the low-Z silicon enable the energy and direction of the incident gamma ray to be determined without full deposition of the incident gamma-ray energy in the detector. The performance of large volume instruments for various applications are presented, including an instrument under consideration for NASA's Advanced Compton Telescope (ACT) mission and applications to Homeland Security. Technology developments that could further extend the sensitivity and performance of silicon Compton Imagers are presented, including the use of low-energy (few hundred keV) electron tracking within novel silicon detectors and the potential for a wafer-bonding approach to produce thicker, position-sensitive silicon detectors with an associated reduction of required electronics and instrument cost.

  4. Rotational excitation of physisorbed H2 by low-energy electron scattering

    NASA Astrophysics Data System (ADS)

    Berlinsky, A. J.

    1982-07-01

    The inelastic-scattering spectrum for pure rotational transitions (J, m)=(0, 0)-->(2, m) by low-energy electrons (2a 2θ potential, and scattering is assumed to be dominated by the 2Σ+u resonance. Comparison is made to the recent experimental results of Avouris, Schmeisser, and Demuth for H2 on Ag.

  5. Enhanced production of low energy electrons by alpha particle impact.

    PubMed

    Kim, Hong-Keun; Titze, Jasmin; Schöffler, Markus; Trinter, Florian; Waitz, Markus; Voigtsberger, Jörg; Sann, Hendrik; Meckel, Moritz; Stuck, Christian; Lenz, Ute; Odenweller, Matthias; Neumann, Nadine; Schössler, Sven; Ullmann-Pfleger, Klaus; Ulrich, Birte; Fraga, Rui Costa; Petridis, Nikos; Metz, Daniel; Jung, Annika; Grisenti, Robert; Czasch, Achim; Jagutzki, Ottmar; Schmidt, Lothar; Jahnke, Till; Schmidt-Böcking, Horst; Dörner, Reinhard

    2011-07-19

    Radiation damage to living tissue stems not only from primary ionizing particles but to a substantial fraction from the dissociative attachment of secondary electrons with energies below the ionization threshold. We show that the emission yield of those low energy electrons increases dramatically in ion-atom collisions depending on whether or not the target atoms are isolated or embedded in an environment. Only when the atom that has been ionized and excited by the primary particle impact is in immediate proximity of another atom is a fragmentation route known as interatomic Coulombic decay (ICD) enabled. This leads to the emission of a low energy electron. Over the past decade ICD was explored in several experiments following photoionization. Most recent results show its observation even in water clusters. Here we show the quantitative role of ICD for the production of low energy electrons by ion impact, thus approaching a scenario closer to that of radiation damage by alpha particles: We choose ion energies on the maximum of the Bragg peak where energy is most efficiently deposited in tissue. We compare the electron production after colliding He(+) ions on isolated Ne atoms and on Ne dimers (Ne(2)). In the latter case the Ne atom impacted is surrounded by a most simple environment already opening ICD as a deexcitation channel. As a consequence, we find a dramatically enhanced low energy electron yield. The results suggest that ICD may have a significant influence on cell survival after exposure to ionizing radiation.

  6. MEIC Proton Beam Formation with a Low Energy Linac

    SciTech Connect

    Zhang, Yuhong

    2015-09-01

    The MEIC proton and ion beams are generated, accumulated, accelerated and cooled in a new green-field ion injector complex designed specifically to support its high luminosity goal. This injector consists of sources, a linac and a small booster ring. In this paper we explore feasibility of a short ion linac that injects low-energy protons and ions into the booster ring.

  7. Mirrored low-energy channel for the MiniXRD

    SciTech Connect

    Dutra, Eric; MacNeil, Lawrence; Raphaelian, Mark; Compton, Steve; Jacoby, Barry

    2015-10-08

    X-ray Diodes (XRDs) are currently used for spectroscopic measurements, measuring X-ray flux, and estimating spectral shape of the VUV to soft X-ray spectrum. A niche exists for an inexpensive, robust X-ray diode that can be used for experiments in hostile environments on multiple platforms, including explosively driven experiments that have the potential for destroying the diode during the experiment. A multiple channel stacked filtered array was developed with a small field of view where a wider parallel array could not be used, but filtered channels for energies lower than 1000 eV were too fragile to deploy under normal conditions. To achieve both the robustness and the required low-energy detection ability, the researchers designed a small low-energy mirrored channel with a spectral sensitivity from 30 to 1000 eV. The stacked MiniXRD X-ray diode system design incorporates the mirrored low-energy channel on the front of the stacked filtered channels to allow the system to work within a small field of view. We will present results that demonstrate this is a promising solution for low-energy spectrum measurements.

  8. Nuclear phenomena in low-energy nuclear reaction research.

    PubMed

    Krivit, Steven B

    2013-09-01

    This is a comment on Storms E (2010) Status of Cold Fusion, Naturwissenschaften 97:861-881. This comment provides the following remarks to other nuclear phenomena observed in low-energy nuclear reactions aside from helium-4 make significant contributions to the overall energy balance; and normal hydrogen, not just heavy hydrogen, produces excess heat.

  9. Study of Intrabeam Scattering in Low Energy Electron Rings

    SciTech Connect

    Venturini, Marco

    2002-08-08

    The paper contains a study of intrabeam scattering in a low energy electron storage ring to be used as part of a Compton back-scattering x-ray source. We discuss time evolution of emittance and dependence of IBS growth rates on lattice parameters.

  10. Low Energy Transfer Reactions With {sup 11}Be

    SciTech Connect

    Johansen, Jacob

    2009-08-26

    The low-energy transfer reaction {sup 11}Be(d,p){sup 12}Be gives us the opportunity to investigate single particle excitations in {sup 12}Be. The breaking of the magic number N = 8 for {sup 12}Be can be studied by comparing spectroscopic data with theoretical predictions.

  11. ELECTRON COOLING SIMULATIONS FOR LOW-ENERGY RHIC OPERATION.

    SciTech Connect

    FEDOTOV,A.V.; BEN-ZVI, I.; CHANG, X.; KAYRAN, D.; SATOGATA, T.

    2007-09-10

    Recently, a strong interest emerged in running the Relativistic Heavy Ion Collider (RHIC) at low beam total energies of 2.5-25 GeV/nucleon, substantially lower than the nominal beam total energy of 100 GeV/nucleon. Collisions in this low energy range are motivated by one of the key questions of quantum chromodynamics (QCD) about the existence and location of critical point on the QCD phase diagram. Applying electron cooling directly at these low energies in RHIC would result in significant luminosity increase and long beam stores for physics. Without direct cooling in RHIC at these low energies, beam lifetime and store times are very short, limited by strong transverse and longitudinal intrabeam scattering (IBS). In addition, for the lowest energies of the proposed energy scan, the longitudinal emittance of ions injected from the AGS into RHIC may be too big to fit into the RHIC RF bucket. An improvement in the longitudinal emittance of the ion beam can be provided by an electron cooling system at the AGS injection energy. Simulations of electron cooling both for direct cooling at low energies in RHIC and for injection energy cooling in the AGS were performed and are summarized in this report.

  12. String-Loop Effect in Low-Energy Effective Theory

    NASA Astrophysics Data System (ADS)

    Saadat, H.; Tanabchi, B. P.; Saadat, A. M.

    2010-05-01

    In this short article we are going to obtain the equations of motion from the low-energy effective action in the string cosmology. In the first time we consider the string-loop effect in the dilaton gravity and obtain the equations of motion, and obtain solution of them under some assumption for the specific potential.

  13. Physics overview of the Fermilab Low Energy Antiproton Facility Workshop

    SciTech Connect

    Chanowitz, M.S.

    1986-05-01

    A physics overview is presented of the Fermilab workshop to consider a possible high flux, low energy antiproton facility that would use cooled antiprotons from the accumulator ring of the Tevatron collider. Two examples illustrate the power of each a facility to produce narrow states at high rates. Physics topics to which such a facility may be applied are reviewed.

  14. Low energy physics and properties of extra space

    NASA Astrophysics Data System (ADS)

    Rubin, Sergey G.

    2013-02-01

    The mechanism of low energy physics formation in the framework of multidimensional gravity is discussed. It is shown that a wide set of parameters of a primary theory could lead to the observable Universe. Quantum fluctuations of extra space metric and its consequent classical evolution play an important role in this process.

  15. Potential for luminosity improvement for low-energy RHIC operation

    SciTech Connect

    Fedotov A. V.

    2012-05-20

    At the Brookhaven National Laboratory, a physics program, motivated by the search of the QCD phase transition critical point, requires operation of the Relativistic Heavy Ion Collider (RHIC) with heavy ions at very low beam energies corresponding to 2.5-20 GeV/n. Several physics runs were already successfully performed at these low energies. However, the luminosity is very low at lowest energies of interest (< 10 GeV/n) limited by the intra-beam scattering and space-charge, as well as by machine nonlinearities. At these low energies, electron cooling could be very effective in counteracting luminosity degradation due to the IBS, while it is less effective against other limitations. Overall potential luminosity improvement for low-energy RHIC operation from cooling is summarized for various energies, taking into account all these limitations as well as beam lifetime measured during the low-energy RHIC runs. We also explore a possibility of further luminosity improvement under the space-charge limitation.

  16. Low Energy Defibrillation in Human Cardiac Tissue: A Simulation Study

    PubMed Central

    Morgan, Stuart W.; Plank, Gernot; Biktasheva, Irina V.; Biktashev, Vadim N.

    2009-01-01

    We aim to assess the effectiveness of feedback-controlled resonant drift pacing as a method for low energy defibrillation. Antitachycardia pacing is the only low energy defibrillation approach to have gained clinical significance, but it is still suboptimal. Low energy defibrillation would avoid adverse side effects associated with high voltage shocks and allow the application of implantable cardioverter defibrillator (ICD) therapy, in cases where such therapy is not tolerated today. We present results of computer simulations of a bidomain model of cardiac tissue with human atrial ionic kinetics. Reentry was initiated and low energy shocks were applied with the same period as the reentry, using feedback to maintain resonance. We demonstrate that such stimulation can move the core of reentrant patterns, in the direction that depends on the location of the electrodes and the time delay in the feedback. Termination of reentry is achieved with shock strength one-order-of-magnitude weaker than in conventional single-shock defibrillation. We conclude that resonant drift pacing can terminate reentry at a fraction of the shock strength currently used for defibrillation and can potentially work where antitachycardia pacing fails, due to the feedback mechanisms. Success depends on a number of details that these numerical simulations have uncovered. PMID:19217854

  17. Low-energy plasma observations at synchronous orbit

    NASA Technical Reports Server (NTRS)

    Lennartsson, W.; Reasoner, D. L.

    1978-01-01

    The University of California at San Diego Auroral Particles Experiment on the ATS 6 satellite in synchronous orbit has detected a low-energy plasma population which is separate and distinct from both the ring current and the plasma sheet populations. The density and temperature of this low-energy population are highly variable, with temperatures in the range kT = 1-30 eV and densities ranging from less than 1 per cu cm to more than 10 per cu cm. The occurrence of a dense low-energy plasma is most likely in the afternoon and dusk local time sectors, whereas n greater than 1 per cu cm is seen in the local night sector only during magnetically quiet periods. These observations suggest that this plasma is the outer zone of the plasmasphere. During magnetically active periods this low-energy plasma is often observed flowing sunward. In the dusk sector, strong sunward plasma flow is often observed for 1-2 hours prior to the onset of a substorm-associated particle injection.

  18. Bulk NaI(Tl) scintillation low energy events selection with the ANAIS-0 module

    NASA Astrophysics Data System (ADS)

    Cuesta, C.; Amaré, J.; Cebrián, S.; García, E.; Ginestra, C.; Martínez, M.; Oliván, M. A.; Ortigoza, Y.; de Solórzano, A. Ortiz; Pobes, C.; Puimedón, J.; Sarsa, M. L.; Villar, J. A.; Villar, P.

    2014-11-01

    Dark matter particles scattering off target nuclei are expected to deposit very small energies in form of nuclear recoils (below 100 keV). Because of the low scintillation efficiency for nuclear recoils as compared to electron recoils, in most of the scintillating targets considered in the search for dark matter, the region below 10 keVee (electron equivalent energy) concentrates most of the expected dark matter signal. For this reason, very low energy threshold (at or below 2 keVee) and very low background are required to be competitive in the search for dark matter with such detection technique. This is the case of Annual modulation with NaI Scintillators (ANAIS), which is an experiment to be carried out at the Canfranc Underground Laboratory. A good knowledge of the detector response function for real scintillation events in the active volume, a good characterization of other anomalous or noise event populations contributing in that energy range, and the development of convenient filtering procedures for the latter are mandatory in order to achieve the required low background at such a low energy. In this work we present the characteristics of different types of events observed in large size NaI(Tl) detectors, and the event-type identification techniques developed. Such techniques allow distinguishing among events associated with bulk NaI scintillation, and events related to muon interactions in the detectors or shielding, photomultiplier origin events, and analysis event fakes. We describe the specific protocols developed to build bulk scintillation events spectra from the raw data and we apply them to data obtained with one of the ANAIS prototypes, ANAIS-0. Nuclear recoil type events were also explored using data from a neutron calibration; however pulse shape cuts were found not to be effective to discriminate them from electron recoil events. The effect of the filtering procedures developed in this nuclear recoils population has been analyzed in order to

  19. P13, the EMBL macromolecular crystallography beamline at the low-emittance PETRA III ring for high- and low-energy phasing with variable beam focusing

    PubMed Central

    Cianci, Michele; Bourenkov, Gleb; Pompidor, Guillaume; Karpics, Ivars; Kallio, Johanna; Bento, Isabel; Roessle, Manfred; Cipriani, Florent; Fiedler, Stefan; Schneider, Thomas R.

    2017-01-01

    The macromolecular crystallography P13 beamline is part of the European Molecular Biology Laboratory Integrated Facility for Structural Biology at PETRA III (DESY, Hamburg, Germany) and has been in user operation since mid-2013. P13 is tunable across the energy range from 4 to 17.5 keV to support crystallographic data acquisition exploiting a wide range of elemental absorption edges for experimental phase determination. An adaptive Kirk­patrick–Baez focusing system provides an X-ray beam with a high photon flux and tunable focus size to adapt to diverse experimental situations. Data collections at energies as low as 4 keV (λ = 3.1 Å) are possible due to a beamline design minimizing background and maximizing photon flux particularly at low energy (up to 1011 photons s−1 at 4 keV), a custom calibration of the PILATUS 6M-F detector for use at low energies, and the availability of a helium path. At high energies, the high photon flux (5.4 × 1011 photons s−1 at 17.5 keV) combined with a large area detector mounted on a 2θ arm allows data collection to sub-atomic resolution (0.55 Å). A peak flux of about 8.0 × 1012 photons s−1 is reached at 11 keV. Automated sample mounting is available by means of the robotic sample changer ‘MARVIN’ with a dewar capacity of 160 samples. In close proximity to the beamline, laboratories have been set up for sample preparation and characterization; a laboratory specifically equipped for on-site heavy atom derivatization with a library of more than 150 compounds is available to beamline users. PMID:28009574

  20. Low-energy proton increases associated with interplanetary shock waves.

    NASA Technical Reports Server (NTRS)

    Palmeira, R. A. R.; Allum, F. R.; Rao, U. R.

    1971-01-01

    Impulsive increases in the low energy proton flux observed by the Explorer 34 satellite, in very close time association with geomagnetic storm sudden commencements are described. It is shown that these events are of short duration (20-30 min) and occur only during the decay phase of a solar cosmic-ray flare event. The differential energy spectrum and the angular distribution of the direction of arrival of the particles are discussed. Two similar increases observed far away from the earth by the Pioneer 7 and 8 deep-space probes are also presented. These impulsive increases are compared with Energetic Storm Particle events and their similarities and differences are discussed. A model is suggested to explain these increases, based on the sweeping and trapping of low energy cosmic rays of solar origin by the advancing shock front responsible for the sudden commencement detected on the earth.

  1. Ionization cooling in a low-energy proton storage ring

    SciTech Connect

    Neuffer, David V.; /Fermilab

    2006-03-01

    At the FFAG05 meeting, Mori and Okabe presented a scenario in which the lifetime of protons in a low-energy storage ring ({approx}10 MeV) is extended by energy-loss in a wedge foil, and this enables greater neutron production from the foil. The lifetime extension is due to the cooling effect of this energy loss. We have previously analyzed ionization cooling for muons at optimal cooling energies. The same equations, with appropriate adaptations, can be used to analyze the dynamic situation for proton-material interactions at low energies. In this note we discuss this extension and calculate cooling and heating effects at these very different parameters. The ring could provide a practical application of ionization cooling methods.

  2. Influence of Packing on Low Energy Vibrations of Densified Glasses

    NASA Astrophysics Data System (ADS)

    Carini, Giovanni, Jr.; Carini, Giuseppe; D'Angelo, Giovanna; Tripodo, Gaspare; Di Marco, Gaetano; Vasi, Cirino; Gilioli, Edmondo

    2013-12-01

    A comparative study of Raman scattering and low temperature specific heat capacity has been performed on samples of B2O3, which have been high-pressure quenched to go through different glassy phases having growing density to the crystalline state. It has revealed that the excess volume characterizing the glassy networks favors the formation of specific glassy structural units, the boroxol rings, which produce the boson peak, a broad band of low energy vibrational states. The decrease of boroxol rings with increasing pressure of synthesis is associated with the progressive depression of the excess low energy vibrations until their full disappearance in the crystalline phase, where the rings are missing. These observations prove that the additional soft vibrations in glasses arise from specific units whose formation is made possible by the poor atomic packing of the network.

  3. Beam dynamics limits for low-energy RHIC operation

    SciTech Connect

    Fedotov,A.V.; Ben-Zvi, I.; Chang, X.; Kayran, D.; Litvinenko, V.N.; Pozdeyev, E.; Satogata, T.

    2008-08-25

    There is a strong interest in low-energy RHIC operations in the single-beam total energy range of 2.5-25 GeV/nucleon [1-3]. Collisions in this energy range, much of which is below nominal RHIC injection energy, will help to answer one of the key questions in the field of QCD about the existence and location of a critical point on the QCD phase diagram [4]. There have been several short test runs during 2006-2008 RHIC operations to evaluate RHIC operational challenges at these low energies [5]. Beam lifetimes observed during the test runs were limited by machine nonlinearities. This performance limit can be improved with sufficient machine tuning. The next luminosity limitation comes from transverse and longitudinal Intra-beam Scattering (IBS), and ultimately from the space-charge limit. Here we summarize dynamic effects limiting beam lifetime and possible improvement with electron cooling.

  4. Low-energy dipole modes in unstable nuclei

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Sagawa, H.

    2001-01-01

    Enhancement of electric dipole (E1) strength at low energy is investigated in light neutron and proton drip-line nuclei with halo or skin by large scale shell model calculations. Large E1 strength are found in low excitation energy region below 5 MeV in 11Li, 12Be and 13O. Both the effects of extended halo or skin wave functions and the coherence in the transition amplitudes are important to enhance the E1 strength. The particle (hole)- vibration coupling model is shown to explain the splitting of the low energy E1 strength in 11Li and 13O. Melting of the shell magicity at N=8 and Z=8 is pointed out. Pigmy resonances in oxygen isotopes are also studied. The pigmy strength below E x = 15 MeV are shown to have about 10 % of the Thomas- Reiche-Kuhn (TRK) sum rule and more than 40 % of the cluster sum rule.

  5. Polarimeter for Low Energy X-ray Astrophysical Sources (PLEXAS)

    NASA Technical Reports Server (NTRS)

    Murray, Stephen S.; Pierce, David L. (Technical Monitor)

    2002-01-01

    The Polarimeter for Low Energy X-ray Astrophysical Sources (PLEXAS) is an astrophysics mission concept for measuring the polarization of X-ray sources at low energies below the C-K band (less than 277 eV). PLEXAS uses the concept of variations in the reflectivity of a multilayered X-ray telescope as a function of the orientation of an X-rays polarization vector with respect to the reflecting surface of the optic. By selecting an appropriate multilayer, and rotating the X-ray telescope while pointing to a source, there will be a modulation in the source intensity, as measured at the focus of the telescope, which is proportional to the degree of polarization in the source.

  6. HIGH POWER OPERATIONS AT THE LOW ENERGY DEMONSTRATION ACCELERATOR (LEDA)

    SciTech Connect

    M. DURAN; V. R. HARRIS

    2001-01-01

    Recently, the Low-Energy Demonstration Accelerator (LEDA) portion of the Accelerator Production of Tritium (APT) project reached its 100-mA, 8-hr continuous wave (CW) beam operation milestone. The LEDA accelerator is a prototype of the low-energy front-end of the linear accelerator (linac) that would have been used in an APT plant. LEDA consists of a 75-keV proton injector, 6.7-MeV, 350-MHz CW radio-frequency quadrupole (RFQ) with associated high-power and low-level RF systems, a short high-energy beam transport (HEBT) and high-power (670-kW CW) beam dump. Details of the LEDA design features will be discussed along with the operational health physics experiences that occurred during the LEDA commissioning phase.

  7. Antineutron and antiproton nuclear interactions at very low energies

    NASA Astrophysics Data System (ADS)

    Friedman, E.

    2014-05-01

    Experimental annihilation cross sections of antineutrons and antiprotons at very low energies are compared. Features of Coulomb focusing are observed for pbar annihilation on protons. Direct comparisons for heavier targets are not straightforward due to lack of overlap between targets and energies of experimental results for pbar and nbar. Nevertheless, the annihilation cross sections for nbar on nuclei cannot be described by an optical potential that fits well all the available data on pbar interactions with nuclei. Comparisons made with the help of this potential reveal in the nbar data features similar to Coulomb focusing. Direct comparisons between nbar and pbar annihilations at very low energies would be possible when pbar cross sections are measured on the same targets and at the same energies as the available cross sections for nbar. Such measurements may be possible in the foreseeable future.

  8. Steering continuum electron dynamics by low-energy attosecond streaking

    NASA Astrophysics Data System (ADS)

    Geng, Ji-Wei; Xiong, Wei-Hao; Xiao, Xiang-Ru; Gong, Qihuang; Peng, Liang-You

    2016-08-01

    A semiclassical model is developed to understand the electronic dynamics in the low-energy attosecond streaking. Under a relatively strong infrared (IR) pulse, the low-energy part of photoelectrons initialized by a single attosecond pulse (SAP) can either rescatter with the ionic core and induce interferences structures in the momentum spectra of the ionized electrons or be recaptured into the Rydberg states. The Coulomb potential plays essential roles in both the electron rescattering and recapturing processes. We find that by changing the time delay between the SAP and the IR pulse, the photoelectrons yield or the population of the Rydberg states can be effectively controlled. The present study demonstrates a fascinating way to steer the electron motion in the continuum.

  9. Surface modification using low energy ground state ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1990-01-01

    A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.

  10. Low energy overlineKN interaction in nuclear matter

    NASA Astrophysics Data System (ADS)

    Waas, T.; Kaiser, N.; Weise, W.

    1996-02-01

    We investigate the low-energy overlineKN interaction in nuclear matter including Pauli blocking, Fermi motion and binding effects. We use a coupled-channel approach based on the Chiral SU(3) Effective Lagrangian which describes all available low energy data of the coupled overlineKN, πΣ, πΛ system. Due to the dynamics of the Λ (1405) resonance we find a strong non-linear density dependence of the K -p scattering amplitude in nuclear matter. The real part of the K -p scattering length changes sign already at a small fraction of nuclear matter density, less than 0.2 po. This may explain the striking behaviour of the K - -nuclear optical potential found in the analysis of kaonic atom data.

  11. Unparticle searches through low energy parity violating asymmetry

    SciTech Connect

    Ozansoy, K. O.

    2008-11-01

    In this paper, we study the effects of the unparticles on the parity violating asymmetry for the low energy electron-electron scattering, e{sup -}e{sup -}{yields}e{sup -}e{sup -}. Using the data from the E158 experiment at SLAC we extract the limits on the unparticle coupling {lambda}{sub AV}, and on the energy scale {lambda} at 95% C.L. for various values of the scaling dimension d.

  12. Full QED+QCD low-energy constants through reweighting.

    PubMed

    Ishikawa, Tomomi; Blum, Thomas; Hayakawa, Masashi; Izubuchi, Taku; Jung, Chulwoo; Zhou, Ran

    2012-08-17

    The effect of sea quark electromagnetic charge on meson masses is investigated, and first results for full QED+QCD low-energy constants are presented. The electromagnetic charge for sea quarks is incorporated in quenched QED+full QCD lattice simulations by a reweighting method. The reweighting factor, which connects quenched and unquenched QED, is estimated using a stochastic method on 2+1 flavor dynamical domain-wall quark ensembles.

  13. Pin diode calibration - beam overlap monitoring for low energy cooling

    SciTech Connect

    Drees, A.; Montag, C.; Thieberger, P.

    2015-09-30

    We were trying to address the question whether or not the Pin Diodes, currently installed approximately 1 meter downstream of the RHIC primary collimators, are suitable to monitor a recombination signal from the future RHIC low energy cooling section. A maximized recombination signal, with the Au+78 ions being lost on the collimator, will indicate optimal Au-electron beam overlap as well as velocity matching of the electron beam in the cooling section.

  14. Selected Papers on Low-Energy Antiprotons and Possible Applications

    SciTech Connect

    Noble, Robert

    1998-09-19

    The only realistic means by which to create a facility at Fermilab to produce large amounts of low energy antiprotons is to use resources which already exist. There is simply too little money and manpower at this point in time to generate new accelerators on a time scale before the turn of the century. Therefore, innovation is required to modify existing equipment to provide the services required by experimenters.

  15. Strangeness-conserving hadronic parity violation at low energies

    NASA Astrophysics Data System (ADS)

    Liu, C.-P.

    2007-05-01

    The parity-violating nucleaon interacton is the key to understanding the strangeness-conserving hadronic weak interaction at low energies. In this brief talk, I review the past accomplishement in and current status of this subject, and outline a new joint effort between experiment and theory that that tries to address the potential problems in the past by focusing on parity violation in few-nucleon systems and using the language of effective field theory.

  16. Low-energy structures in strong-field ionization

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Nam, Chang Hee; Kim, Kyung Taec

    2016-04-01

    We show that the Gabor transform provides a convenient tool allowing one to study the origin of the low-energy structures (LES) in the process of the strong-field ionization. The classical trajectories associated with the stationary points of the Gabor transform enable us to explicate the role of the forward scattering process in forming LES. Our approach offers a fully quantum mechanical description of LES, which can also be applied for other strong-field processes.

  17. Exchange and relaxation effects in low-energy radiationless transitions

    NASA Technical Reports Server (NTRS)

    Chen, M. H.; Crasemann, B.; Aoyagi, M.; Mark, H.

    1978-01-01

    The effect on low-energy atomic inner-shell Coster-Kronig and super Coster-Kronig transitions that is produced by relaxation and by exchange between the continuum electron and bound electrons was examined and illustrated by specific calculations for transitions that deexcite the 3p vacancy state of Zn. Taking exchange and relaxation into account is found to reduce, but not to eliminate, the discrepancies between theoretical rates and measurements.

  18. Nuclear suppression at low energy in relativistic heavy ion collisions

    SciTech Connect

    Das, Santosh K.; Alam, Jan-e; Mohanty, Payal; Sinha, Bikash

    2010-04-15

    The effects of nonzero baryonic chemical potential on the drag and diffusion coefficients of heavy quarks propagating through a baryon-rich quark-gluon plasma have been studied. The nuclear suppression factor R{sub AA} for nonphotonic single-electron spectra resulting from the semileptonic decays of hadrons containing heavy flavors has been evaluated for low-energy collisions. The effect of nonzero baryonic chemical potential on R{sub AA} is highlighted.

  19. Heavy Meson Production at a Low-Energy Photon Collider

    SciTech Connect

    Asztalos, S

    2004-04-15

    A low-energy {gamma}{gamma} collider has been discussed in the context of a testbed for a {gamma}{gamma} interaction region at the Next Linear Collider(NLC). We consider the production of heavy mesons at such a testbed using Compton-backscattered photons and demonstrate that their production rivals or exceeds those by BELLE, BABAR or LEP where they are produced indirectly via virtual {gamma}{gamma} luminosities.

  20. Modern Theories of Low-Energy Astrophysical Reactions

    SciTech Connect

    Rocco Schiavilla

    2004-02-01

    We summarize recent ab initio studies of low-energy electroweak reactions of astrophysical interest, relevant for both big bang nucleosynthesis and solar neutrino production. The calculational methods include direct integration for np radiative and pp weak capture, correlated hyperspherical harmonics for reactions of A=3,4 nuclei, and variational Monte Carlo for A=6,7 nuclei. Realistic nucleon-nucleon and three-nucleon interactions and consistent current operators are used as input.

  1. Negative ions as a source of low energy neutral beams

    SciTech Connect

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems.

  2. Topical problems in low-energy neutrino physics

    NASA Astrophysics Data System (ADS)

    Smirnov, O. Yu.

    2013-12-01

    New data on solar-neutrino flux measurements are presented, and their compatibility with the Mikheev-Smirnov-Wolfenstein oscillation model is discussed. A review is given to topical problems in low-energy neutrino physics, such as the accurate measurement of the CNO-cycle neutrino flux, which is dictated by the data conflict about the chemical composition of the Sun, and a possibility of neutrino oscillations that do not fit into the three-flavor model.

  3. Low energy supersymmetry from the heterotic string landscape.

    PubMed

    Lebedev, Oleg; Nilles, Hans-Peter; Raby, Stuart; Ramos-Sánchez, Saúl; Ratz, Michael; Vaudrevange, Patrick K S; Wingerter, Akin

    2007-05-04

    We study possible correlations between properties of the observable and hidden sectors in heterotic string theory. Specifically, we analyze the case of the Z6-II orbifold compactification which produces a significant number of models with the spectrum of the supersymmetric standard model. We find that requiring realistic features does affect the hidden sector such that hidden sector gauge group factors SU(4) and SO(8) are favored. In the context of gaugino condensation, this implies low energy supersymmetry breaking.

  4. A study of low-energy type II supernovae

    NASA Astrophysics Data System (ADS)

    Lisakov, Sergey M.; Dessart, Luc; Hillier, D. John; Waldman, Roni; Livne, Eli

    2015-08-01

    All stars with an initial mass greater than 8Msun, but not massive enough to encounter the pair-production instability, eventually form a degenerate core and collapse to form a compact object, either a neutron star or a black hole.At the lower mass end, these massive stars die as red-supergiant stars and give rise to Type II supernovae (SNe). The diversity of observed properties of SNe II suggests a range of progenitor mass, radii, but also explosion energy.We have performed a large grid simulations designed to cover this range of progenitor and explosion properties. Using MESA STAR, we compute a set of massive star models (12-30Msun) from the main sequence until core collapse. We then generate explosions with V1D to produce ejecta with a range of explosion energies and yields. Finally, all ejecta are evolved with CMFGEN to generate multi-band light curves and spectra.In this poster, we focus our attention on the properties of low-energy explosions that give rise to low-luminosity Type II Plateau (II-P) SNe. In particular, we present a detailed study of SN 2008bk, but also include other notorious low-energy SNe II-P like 2005cs, emphasising their non-standard properties by comparing to models that match well events like SN 1999em. Such low-energy explosions, characterised by low ejecta expansion rates, are more suitable for reliable spectral line identifications.Based on our models, we discuss the distinct signatures of low-energy explosions in lower and higher mass models. One important goal is to identify whether there is a progenitor-mass bias leading to such events.

  5. Surface conversion techniques for low energy neutral atom imagers

    NASA Technical Reports Server (NTRS)

    Quinn, J. M.

    1995-01-01

    This investigation has focused on development of key technology elements for low energy neutral atom imaging. More specifically, we have investigated the conversion of low energy neutral atoms to negatively charged ions upon reflection from specially prepared surfaces. This 'surface conversion' technique appears to offer a unique capability of detecting, and thus imaging, neutral atoms at energies of 0.01 - 1 keV with high enough efficiencies to make practical its application to low energy neutral atom imaging in space. Such imaging offers the opportunity to obtain the first instantaneous global maps of macroscopic plasma features and their temporal variation. Through previous in situ plasma measurements, we have a statistical picture of large scale morphology and local measurements of dynamic processes. However, with in situ techniques it is impossible to characterize or understand many of the global plasma transport and energization processes. A series of global plasma images would greatly advance our understanding of these processes and would provide the context for interpreting previous and future in situ measurements. Fast neutral atoms, created from ions that are neutralized in collisions with exospheric neutrals, offer the means for remotely imaging plasma populations. Energy and mass analysis of these neutrals provides critical information about the source plasma distribution. The flux of neutral atoms available for imaging depends upon a convolution of the ambient plasma distribution with the charge exchange cross section for the background neutral population. Some of the highest signals are at relatively low energies (well below 1 keV). This energy range also includes some of the most important plasma populations to be imaged, for example the base of the cleft ion fountain.

  6. (Studies of nuclear reaction at very low energies): Technical progress report

    SciTech Connect

    Cecil, F.E.

    1988-12-14

    We summarize the accomplishments of the first full year's operation of the Colorado School of Mines low energy nuclear physics project utilizing the General Ionex Model 1545 low energy, high current particle accelerator. The projects which we have completed which were explicity included in the original contract proposal include the measurement of the gamma ray branching ratios of the p + /sup 6/Li, p + /sup 7/Li, and p + /sup 11/B reactions as well as the absolute yield of the reaction /sup 9/Be(p,..gamma..)/sup 10/B between proton laboratory energies of about 40 to 180 keV. in the course of these measurements we have demonstrated the associated gamma ray technique for Germanium detector efficiency calibration at gamma ray energies up to 12 MeV using very low energy proton beams. We have, in addition, pursued a fairly comprehensive investigation of an extremely interesting and totally surprising phenomenon in which we see a yield of the d-d fusion reaction during bombardment of deuterated polyethylene by light to medium ion and molecular beams which is greatly enhanced over the yield expected from a straight-forward secondary ion reaction calculation. This enhanced yield is seen to correlate with the beam line pressure, suggesting target heating effects to be the source of the enhancement. In conjunction with a parallel contract with the Applied Plasma Physics Program in the DOE Office of Fusion Energy, we have developed an eight channel fast gamma ray spectrometer utilizing the fluorocarbon liquid scintillator NE226. The system has been operated at total gamma ray count rates up to 2.5 MHz with good energy resolution and with no measured dead-time and acceptable levels of pulse pile-up.

  7. Electron cooling for low-energy RHIC program

    SciTech Connect

    Fedotov, A.; Ben-Zvi, I.; Chang, X.; Kayran, D.; Litvinenko, V.N.; Pendzick, A.; Satogata, T.

    2009-08-31

    Electron cooling was proposed to increase luminosity of the RHIC collider for heavy ion beam energies below 10 GeV/nucleon. Providing collisions at such energies, termed RHIC 'low-energy' operation, will help to answer one of the key questions in the field of QCD about existence and location of critical point on the QCD phase diagram. The electron cooling system should deliver electron beam of required good quality over energies of 0.9-5 MeV. Several approaches to provide such cooling were considered. The baseline approach was chosen and design work started. Here we describe the main features of the cooling system and its expected performance. We have started design work on a low-energy RHIC electron cooler which will operate with kinetic electron energy range 0.86-2.8 (4.9) MeV. Several approaches to an electron cooling system in this energy range are being investigated. At present, our preferred scheme is to transfer the Fermilab Pelletron to BNL after Tevatron shutdown, and to use it for DC non-magnetized cooling in RHIC. Such electron cooling system can significantly increase RHIC luminosities at low-energy operation.

  8. Interpretation of low-energy electron-CO2 scattering

    NASA Astrophysics Data System (ADS)

    Vanroose, W.; McCurdy, C. W.; Rescigno, T. N.

    2002-09-01

    Recent ab initio calculations of low-energy electron-CO2 scattering [Rescigno et al., Phys. Rev. A 65, 032716 (2002)] are interpreted using an analytically solvable model. The model, which treats two partial-wave Hamiltonians with different l values coupled by a long-range (d/r2) interaction, is a generalization of similar single-channel models that have previously been used to interpret the low-energy behavior of electron scattering by polar diatomic molecules. The present model is used to track the pole trajectories of both resonances and virtual states, both of which figure prominently in low-energy electron-CO2 scattering, in the plane of complex momentum. The connection between resonant and virtual states is found to display a different topology in the case of a polyatomic molecule than it does in diatomic molecules. In a polyatomic molecule, these states may have a conical intersection and consequently acquire a Berry phase along closed paths in two-dimensional vibrational motion. The analytic behavior of the S matrix is further modified by the presence of a geometry-dependent dipole moment.

  9. Saturation of low-energy antiproton annihilation on nuclei

    NASA Astrophysics Data System (ADS)

    Gal, A.; Friedman, E.; Batty, C. J.

    2000-10-01

    Recent measurements of very low-energy (pL<100 MeV//c) /p¯ annihilation on light nuclei reveal apparent suppression of annihilation upon increasing the atomic charge /Z and mass number /A. Using /p¯-nucleus optical potentials Vopt, fitted to /p¯-atom energy-shifts and -widths, we resolve this suppression as due to the strong effective repulsion produced by the very absorptive Vopt. The low-energy /p¯-nucleus wavefunction is kept substantially outside the nuclear surface and the resulting reaction cross section saturates as function of the strength of ImVopt. This feature, for /E>0, parallels the recent prediction, for /E<0, that the level widths of /p¯ atoms saturate and, hence, that /p¯ deeply bound atomic states are relatively narrow. Antiproton annihilation cross sections are calculated at pL=57 MeV//c across the periodic table, and their dependence on /Z and /A is classified and discussed with respect to the Coulomb focussing effect at very low energies.

  10. A Low energy neutrino factory for large theta(13)

    SciTech Connect

    Geer, Steve; Mena, Olga; Pascoli, Silvia; /Durham U., IPPP

    2007-01-01

    If the value of {theta}{sub 13} is within the reach of the upcoming generation of long-baseline experiments, T2K and NOvA, they show that a low-energy neutrino factory, with peak energy in the few GeV range, would provide a sensitive tool to explore CP-violation and the neutrino mass hierarchy. They consider baselines with typical length 1000-1500 km. The unique performance of the low energy neutrino factory is due to the rich neutrino oscillation pattern at energies between 1 and 4 GeV at baselines {Omicron}(1000) km. They perform both a semi-analytical study of the sensitivities and a numerical analysis to explore how well this setup can measure {theta}{sub 13}, CP-violation, and determine the type of mass hierarchy and the {theta}{sub 23} quadrant. A low energy neutrino factory provides a powerful tool to resolve ambiguities and make precise parameter determinations, for both large and fairly small values of the mixing parameter {theta}{sub 13}.

  11. Advances in low energy neutral atom imaging techniques

    SciTech Connect

    Scime, E.E.; Funsten, H.O.; McComas, D.J.; Moore, K.R. ); Gruntman, M. . Space Sciences Center)

    1993-01-01

    Recently proposed low energy neutral atom (LENA) imaging techniques use a collisional process to convert the low energy neutrals into ions before detection. At low energies, collisional processes limit the angular resolution and conversion efficiencies of these devices. However, if the intense ultraviolet light background can be suppressed, direct LENA detection is possible. We present results from a series of experiments designed to develop a novel filtering structure based on free-standing transmission gratings. If the grating period is sufficiently small, free standing transmission gratings can be employed to substantially polarize ultraviolet (UV) light in the wavelength range 300 [Angstrom] to 1500 [Angstrom]. If a second grating is placed behind the first grating with its axis of polarization oriented at a right angle to the first's, a substantial attenuation of UV radiation is achievable. ne neutrals will pass through the remaining open area of two gratings and be detected without UV background complications. We have obtained nominal 2000 [Angstrom] period (1000 [Angstrom] bars with 1000 [Angstrom] slits) free standing, gold transmission gratings and measured their UV and atomic transmission characteristics. The geometric factor of a LENA imager based on this technology is comparable to that of other proposed LENA imagers. In addition, this of imager does not distort the neutral trajectories, allowing for high angular resolution.

  12. Colorado School of Mines low energy nuclear physics project

    SciTech Connect

    Cecil, F.E.

    1991-01-02

    A major accomplishment of this project in the past year is the completion of a fairly comprehensive paper describing the survey of radiative capture reactions of protons on light nuclei at low energies. In addition we have completed a preliminary set of measurements of (d,p)/(d,{alpha}) cross section ratios on the charge symmetric nuclei {sup 6}Li and {sup 10}B as a test of the Oppenheimer-Phillips effect. While the {sup 6}Li data remain inconclusive, the {sup 10}B data show solid evidence for the Oppenheimer-Phillips enhancement of the (d,p) reaction relative to the (d,{alpha}) reaction for deuteron bombarding energies below about 100 keV. We have continued our investigation of fusion reaction products from deuterium-metal systems at room temperatures with the startling observation of intense burst of energetic charged particles from deuterium gas loaded thin titaium foils subject to non-equilibrium thermal and electrical conditions. We have completed two projects involving the application of the low energy particle accelerator to material science problems; firstly a study of the transformation of crystalline to amorphous Fe-Zr systems by proton irradiation and secondly the effects of ion bombardment on the critical temperature of YBCO high-temperature superconductors. Finally we have made progress in several instrumentation projects which will be used in some of the up-coming measurements of nuclear cross sections at very low energies.

  13. Low energy description of quantum gravity and complementarity

    NASA Astrophysics Data System (ADS)

    Nomura, Yasunori; Varela, Jaime; Weinberg, Sean J.

    2014-06-01

    We consider a framework in which low energy dynamics of quantum gravity is described preserving locality, and yet taking into account the effects that are not captured by the naive global spacetime picture, e.g. those associated with black hole complementarity. Our framework employs a "special relativistic" description of gravity; specifically, gravity is treated as a force measured by the observer tied to the coordinate system associated with a freely falling local Lorentz frame. We identify, in simple cases, regions of spacetime in which low energy local descriptions are applicable as viewed from the freely falling frame; in particular, we identify a surface called the gravitational observer horizon on which the local proper acceleration measured in the observer's coordinates becomes the cutoff (string) scale. This allows for separating between the "low-energy" local physics and "trans-Planckian" intrinsically quantum gravitational (stringy) physics, and allows for developing physical pictures of the origins of various effects. We explore the structure of the Hilbert space in which the proposed scheme is realized in a simple manner, and classify its elements according to certain horizons they possess. We also discuss implications of our framework on the firewall problem. We conjecture that the complementarity picture may persist due to properties of trans-Planckian physics.

  14. PREFACE: 7th International Symposium on Large TPCs for Low-Energy Rare Event Detection

    NASA Astrophysics Data System (ADS)

    Colas, P.; Giomataris, I.; Irastorza, I.; Patzak, Th

    2015-11-01

    The seventh "International Symposium on Large TPCs for Low-Energy Rare Event Detection", took place in Paris between the 15th and 17th of December 2014 at the Institute of Astroparticle Physics (APC) campus - Paris Diderot University. As usual the conference was organized during the week before Christmas, which seems to be convenient for most of the people and occurs every two years with almost 120 participants attending. Many people contributed to the success of the conference, but the organizers would particularly like to thank the management of APC for providing the nice Buffon auditorium and infrastructure. We also acknowledge the valuable support of DSM-Irfu and the University of Zaragoza. The scientific program consisted of plenary sessions including the following topics with theoretical and experimental lectures: • Low energy neutrino physics • Neutrinoless double beta decay process • Dark matter searches • Axion and especially solar axion searches • Space experiments and gamma-ray polarimetry • New detector R&D and future experiments

  15. PREFACE: Sixth Symposium on Large TPCs for Low Energy Rare Event Detection

    NASA Astrophysics Data System (ADS)

    Irastorza, Igor G.; Colas, Paul; Giomataris, Ioannis

    2013-10-01

    For the sixth time the International Symposium on large TPCs for Low-Energy Rare-Event Detection has been organized in Paris on 17-19 December 2012. As for the previous conference, we were welcomed in the Astroparticle and Cosmology Laboratory (APC). Around one hundred physicists from all over the world gathered to discuss progress in the dark matter and low-energy neutrino search. The new results from the LHC were also widely discussed. The Higgs discovery at 125 GeV, without any sign of other new heavy particles, does not provide us with any information on the nature of dark mater. Alternatives to the favored SUSY model, in which the role of the WIMP is played by a stable neutralino, predict low mass candidates below a few GeV. Developing low threshold detectors at sub-keV energies becomes mandatory, and interest for Axion or Axion-like particles as dark matter is revived. We have seen increasing activity in the field and new infrastructures for these searches have been developed. We heard news of activities in the Canfranc laboratory in Spain, Jinping in China, SURF in the USA and about the extension project of Fréjus (LSM) laboratory. We would like to thank the organizing and advisory committees as well as the session chairpersons: J Zinn-Justin, G Wormser, D Nygren, G Chardin, F Vannucci, D Attié, T Patzak and S Jullian. I Giomataris, P Colas and I G Irastorza Group picture

  16. Low-energy neutral-current neutrino scattering on {sup 128,130}Te isotopes

    SciTech Connect

    Tsakstara, V.; Kosmas, T. S.

    2011-05-15

    Differential, total, and cumulative cross section calculations for neutral current neutrino scattering on {sup 128,130}Te isotopes are performed in the context of the quasiparticle random phase approximation by utilizing realistic two-nucleon forces. These isotopes are the main contents of detectors of ongoing experiments with multiple neutrino physics goals (COBRA and CUORE at Gran Sasso), including potential low-energy astrophysical neutrino (solar, supernova, geoneutrinos) detection. The incoming neutrino energy range adopted in our calculations ({epsilon}{sub {nu}{<=}1}00 MeV) covers the low-energy {beta}-beam neutrinos and the pion-muon stopped neutrino beams existing or planned to be conducted at future neutron spallation sources. The aim of these facilities is to measure neutrino-nucleus cross sections at low and intermediate neutrino energies with the hope of shedding light on open problems in neutrino-induced reactions on nuclei and neutrino astrophysics. Such probes motivate theoretical studies on weak responses of various nuclear systems; thus the evaluated cross sections may be useful in this direction.

  17. A Low Energy Measurement of the 13C(α,n) Reaction

    NASA Astrophysics Data System (ADS)

    Toomey, Rebecca; Febbraro, Michael; Pain, Steven; Cizewski, Jolie

    2016-09-01

    The slow neutron capture process (s process) is a key mechanism in heavy-element synthesis, reaching up to 209Bi. The s process creates elements along the line of beta-stability via neutron capture and beta decay in a low neutron flux environment in AGB stars. The dominant source of neutrons for the s process is the 13C(α,n) reaction. At the low energies occurring in these stellar conditions, this reaction cross section is very low, making direct measurement of the reaction rate difficult. Currently the state-of-the-art measurements using high-efficiency moderated neutron counter detectors have constrained this cross section down to approximately 300 keV - still well above stellar conditions, therefore requiring extrapolation of the S factor into the Gamow window ( 140-230 keV). This talk will focus on the motivation and preparation for low-energy measurements of the 13C(α,n) reaction using a neutron spectroscopic technique with the aim of reducing uncertainties in current measurements, and also attempt measurements at lower energies. Background measurements and the characterisation of the experimental set up from the measurement of 13C(α,n) at higher energies at the University of Notre Dame will be presented. This work is supported in part by the U.S. Department of Energy and National Science Foundation.

  18. Directional detector of gamma rays

    DOEpatents

    Cox, Samson A.; Levert, Francis E.

    1979-01-01

    A directional detector of gamma rays comprises a strip of an electrical cuctor of high atomic number backed with a strip of a second electrical conductor of low atomic number. These elements are enclosed within an electrical conductor that establishes an electrical ground, maintains a vacuum enclosure and screens out low-energy gamma rays. The detector exhibits a directional sensitivity marked by an increased output in the favored direction by a factor of ten over the output in the unfavored direction.

  19. First observation of low-energy γ-ray enhancement in the rare-earth region

    SciTech Connect

    Simon, Anna; Guttormsen, M.; Larsen, A. C.; Beausang, C. W.; Humby, P.; Burke, J. T.; Casperson, R. J.; Hughes, R. O.; Ross, T. J.; Allmond, James M.; Chyzh, R.; Dag, M.; Koglin, J.; McCleskey, E.; McCleskey, M.; Ota, S.; Saastamoinen, A.

    2016-03-04

    Here, the γ-ray strength function and level density in the quasi-continuum of 151,153Sm have been measured using bismuth germanate shielded Ge clover detectors of the STARLiTeR system. The Compton shields allow an extraction of the γ strength down to unprecedentedly low γ energies of ≈ 500 keV. For the first time an enhanced low-energy γ-ray strength has been observed in the rare-earth region. In addition, for the first time both the upbend and the well-known scissors resonance have been observed simultaneously for the same nucleus. Hauser-Feshbach calculations show that this strength enhancement at low γ energies could have an impact of 2 3 orders of magnitude on the (n, γ) reaction rates for r-process nucleosynthesis.

  20. Observations of unstained biological specimens using a low-energy, high-resolution STEM.

    PubMed

    Takaoka, Akio; Hasegawa, Toshiaki

    2006-06-01

    Low-energy, high-resolution scanning transmission electron microscopy (STEM) is introduced as a convenient method for observing unstained biological specimens. By reducing the electron energy, the cross section for light elements becomes comparable to that of conventional electron microscopy observations. The STEM mode exhibited the advantage that the induced energy loss and charge build-up in the sample affected the image to a lesser extent than in the TEM or SEM mode. Furthermore, the efficiency of an STEM detector is high, and the total radiation damage can be reduced if thermal damage due to localized heating at a slow scan operation can be overcome. We applied this method for observations of biological samples that were in the form of thin slices, fine fibers and small particles. When the supporting film for samples is absent, the resolution and the contrast of STEM images can be maintained similar to SEM and TEM images, respectively.

  1. Development of bubble chambers with enhanced stability and sensitivity to low-energy nuclear recoils

    SciTech Connect

    Bolte, W.J.; Collar, Juan I.; Crisler, M.; Hall, J.; Holmgren, D.; Nakazawa, D.; Odom, B.; O'Sullivan, K.; Plunkett, R.; Ramberg, E.; Raskin, A.; Sonnenschein, A.; Vieira, J.D.; /Chicago U., EFI /KICP, Chicago /Fermilab

    2005-03-01

    The viability of using a Bubble Chamber for rare event searches and in particular for the detection of dark matter particle candidates is considered. Techniques leading to the deactivation of inhomogeneous nucleation centers and subsequent enhanced stability in such a detector are described. Results from prototype trials indicate that sensitivity to low-energy nuclear recoils like those expected from Weakly Interacting Massive Particles can be obtained in conditions of near total insensitivity to minimum ionizing backgrounds. An understanding of the response of superheated heavy refrigerants to these recoils is demonstrated within the context of existing theoretical models. We comment on the prospects for the detection of supersymmetric dark matter particles with a large CF{sub 3}I chamber.

  2. First observation of low-energy γ-ray enhancement in the rare-earth region

    DOE PAGES

    Simon, Anna; Guttormsen, M.; Larsen, A. C.; ...

    2016-03-04

    Here, the γ-ray strength function and level density in the quasi-continuum of 151,153Sm have been measured using bismuth germanate shielded Ge clover detectors of the STARLiTeR system. The Compton shields allow an extraction of the γ strength down to unprecedentedly low γ energies of ≈ 500 keV. For the first time an enhanced low-energy γ-ray strength has been observed in the rare-earth region. In addition, for the first time both the upbend and the well-known scissors resonance have been observed simultaneously for the same nucleus. Hauser-Feshbach calculations show that this strength enhancement at low γ energies could have an impactmore » of 2 3 orders of magnitude on the (n, γ) reaction rates for r-process nucleosynthesis.« less

  3. Room-temperature mercuric iodide spectrometry for low-energy X-rays

    NASA Technical Reports Server (NTRS)

    Kusmiss, J. H.; Barton, J. B.; Huth, G. C.; Economou, T. E.; Turkevich, A. L.; Iwanczyk, J. S.; Dabrowski, A. J.

    1982-01-01

    A discussion of the limits of energy resolution in different energy ranges is given. The energy resolution of a spectrometer is analyzed in terms of the parameters characterizing the crystal, the detector, and the amplification electronics. A high-resolution room-temperature HgI2 spectrometry system was used to measure low-energy X-ray fluorescence spectra. For the MgK-alpha X-ray line the measured resolution was 245 eV (fwhm); the electronic noise linewidth of the system was 225 eV. Alpha-particles were used to excite X-ray fluorescence from low-Z elements separately or in combination. The shape of the photopeaks in the spectra is discussed.

  4. Set-up and demonstration of a Low Energy Electron Magnetometer (LEEM)

    NASA Technical Reports Server (NTRS)

    Rayborn, G. H.

    1986-01-01

    Described are the design, construction and test results of a Low Energy Electron Magnetometer (LEEM). The electron source is a commercial electron gun capable of providing several microamperes of electron beam. These electrons, after acceleration through a selected potential difference of 100-300 volts, are sent through two 30 degree second-order focussing parallel plate electrostatic analyzers. The first analyzer acts as a monochromator located in the field-free space. It is capable of providing energy resolution of better than 10 to the -3 power. The second analyzer, located in the test field region, acts as the detector for electrons deflected by the test field. The entire magnetometer system is expected to have a resolution of 1 part in 1000 or better.

  5. Low energy electron/recoil discrimination for directional Dark Matter detection

    SciTech Connect

    Billard, J.; Mayet, F.; Santos, D. E-mail: mayet@lpsc.in2p3.fr

    2012-07-01

    Directional detection is a promising Dark Matter search strategy. Even though it could accommodate to a sizeable background contamination, electron/recoil discrimination remains a key and challenging issue as for direction-insensitive detectors. The measurement of the 3D track may be used to discriminate electrons from nuclear recoils. While a high rejection power is expected above 20 keV ionization, a dedicated data analysis is needed at low energy. After identifying discriminant observables, a multivariate analysis, namely a Boosted Decision Tree, is proposed, enabling an efficient event tagging for Dark Matter search. We show that it allows us to optimize rejection while keeping a rather high efficiency which is compulsory for rare event search.With respect to a sequential analysis, the rejection is about ∼ 20 times higher with a multivariate analysis, for the same Dark Matter exclusion limit.

  6. Low-energy neutron detector based upon lithium lanthanide borate scintillators

    DOEpatents

    Czirr, John B.

    1998-01-01

    An apparatus for detecting neutrons includes a cerium activated scintillation crystal containing .sup.10 B, with the scintillation crystal emitting light in response to .alpha. particles emitted from the .sup.10 B(n,.alpha.)Li* reaction. The apparatus also includes a gamma scintillator positioned adjacent the crystal and which generates light in response to gamma rays emitted from the decay of Li*. The apparatus further includes a first and a second light-to-electronic signal converter each positioned to respectively receive light from the crystal and the gamma scintillator, and each respectively outputting first and second electronic signals representative of .alpha. particles from the .sup.10 B(n,.alpha.)Li* reaction and gamma rays from the .sup.10 B(n,.alpha.)Li* reaction. The apparatus includes a coincidence circuit connected to receive the first and second signals and which generates a coincidence signal when the first and second signals coincide. The apparatus also includes a data analyzer for receiving an additional signal from at least one of the first and second converters, and for operating in response to the coincidence signal.

  7. Magnetometer Application for GAMMA-400 Telescope Switching into the Mode with Increased Low Energy Charged Particles Intensity Registration

    NASA Astrophysics Data System (ADS)

    Khyzhniak, E. V.; Arkhangelskaja, I. V.; Chasovikov, E. N.; Arkhangelskiy, A. I.; Topchiev, N. P.

    GAMMA-400 is an international project of a high apogee orbital astrophysical observatory for studying the characteristics of high-energy gamma-emission, electrons/positrons and light nuclei fluxes. The energy range for γ-rays and electrons/positrons registration in the main aperture is from ∼0.1 GeV to ∼3.0 TeV. Also, this aperture allows high energy light nuclei fluxes characteristics investigation. Moreover, special aperture configuration allows registering of gamma-quanta, electrons (positrons) and light nuclei from the lateral directions too. The spacecraft GAMMA-400 orbit will be located in the Earth's magnetosphere and will pass front shock wave from magnetosphere interaction with the solar wind, turbulent-transition region, magnetopause and so on. During the satellite's movement through various Earth's magnetosphere regions its anticoincidence detectors will register high intensity fluxes of low energy charged particles captured by the magnetic field. The working area sections of GAMMA-400 detector systems used as anticoincidence shield are about 1 m2 each. The high intensity low energy charged particles flux influence on anticoincidence detectors should be taken into account during particle identification. This article presents a comparison between Earth's magnetosphere theoretical model according to SPENVIIS package and real data measured by detectors onboard THEMIS series satellites. The differences between these two datasets indicate that the calculated data are not sufficient to make short time predictions of variations of magnetic induction in the outer magnetosphere. A special trigger marker flag will be produced by GAMMA-400 counting and triggers signals formation system accordingly to the data of two onboard magnetometers. This flag's presence leads to special algorithms execution start, putting the plastic detectors into a dedicated working mode taking into account possible high count rates of external detector layers.

  8. Construction of a new type of low-energy scanning electron microscope with atomic resolution

    NASA Astrophysics Data System (ADS)

    Eastham, D. A.; Edmondson, P.; Donnelly, S.; Olsson, E.; Svensson, K.; Bleloch, A.

    2009-05-01

    energies the elastic backscattering is sensitive to the atomic species and so these can be identified directly without any energy discrimination on the detector. Furthermore it is also possible to use the microscope to do low energy electron diffraction which, because the scattering cross-section is large, can be carried out on single molecules. If these are biological samples such as DNA, proteins and viruses then the low energy means that the radiation damage is minimised. Some possibilities for mounting these samples, which can reduce radiation damage, are discussed. Finally we show a system for producing holograms of single protein molecules.

  9. Response of a LaBr3(Ce) Detector to 2-11 MeV Gamma Rays

    SciTech Connect

    Not Available

    2006-10-01

    The development of lanthanum halide scintillation detectors has great potential application in field-portable prompt-gamma neutron activation analysis systems. Because the low-energy response of these detectors has already been well-characterized [1[-[2], we have measured their response to higher energy gamma rays in the region between 2 and 11 MeV. We have measured the response of a 2-inch (5.08 cm) by 2-inch long LaBr3(Ce) detector to high energy gamma rays produced by neutron interactions on chlorine, hydrogen, iron, nitrogen, phosphorous, and sulfur. The response of the LaBr3(Ce) detector is compared to that of HPGe and NaI(Tl) detectors.

  10. The FIDIAS project: Development of a Micromegas TPC for the detection of low-energy heavy ions

    NASA Astrophysics Data System (ADS)

    Iguaz, Francisco José; Panebianco, Stefano; Axiotis, Michael; Druillole, Frédéric; Fanourakis, George; Geralis, Theodoros; Giomataris, Ioannis; Harissopulos, Sotirios; Lagoyannis, Anastasios; Papaevangelou, Thomas

    2014-01-01

    Time Projection Chambers are widely used since many years for tracking and identification of charged particles in high energy physics. We present here a new R&D project, called FIDIAS, meant to investigate the feasibility of a Micromegas TPC for low energy heavy ions detection. In this framework, a TPC prototype based on Micromegas bulk technique has been extensively tested with spontaneous fission source. A deep analysis of the experimental results has been realized leading to a full characterization of the prototype in terms of gain, energy resolution and track reconstruction as a function of three working gas: helium, neon and argon. The encouraging results have also been compared to simulations, showing the Micromegas TPC is a very well suited detector for the detection of heavy ions in nuclear reactions at low energy.

  11. Developing effective rockfall protection barriers for low energy impacts

    NASA Astrophysics Data System (ADS)

    Mentani, Alessio; Giacomini, Anna; Buzzi, Olivier; Govoni, Laura; Gottardi, Guido; Fityus, Stephen

    2016-04-01

    Recently, important progresses have been made towards the development of high capacity rockfall barriers (100 kJ - 8000 kJ). The interest of researchers and practitioners is now turning to the development of fences of minor capacity, whose use becomes essential in areas where rockfall events generally have low intensity and the use of high capacity barriers would be accompanied by excessive costs and high environmental impact. Low energy barriers can also provide a cost-effective solution even in areas where high energies events are expected. Results of full-scale tests are vital to any investigation on the behaviour of these structures. An experimental set-up has been developed at The University of Newcastle (AUS), to investigate the response of low energy rockfall barrier prototypes to low energy impacts. The Australian territory, and in particular New South Wales, is in fact characterised by rockfall events of low-to-medium intensity (50 kJ - 500 kJ) and the need of protection structures working within such energy range, is particularly felt [1]. The experiments involved the impact of a test block onto three spans, low energy barrier prototypes, made of steel structural posts, fully fixed at the base, side cables and a steel meshwork constituted by a double twist hexagonal wire net [2]. Test data enabled the development, calibration and assessment of FE models [3], on which non-linear and dynamic analyses have been performed addressing the effect of the block size. Results have shown that the response of the structure is strongly governed by the net. Data from tests conducted on the sole net and on the entire barrier showed in fact a similar trend, different to what typically observed for high capacity barriers, whose behaviour is also led by the presence of uphill cables and brakes. In particular, the numerical analyses have demonstrated a dependence of the net performance on the block size. In particular, a loss of capacity in the order of 50% occurred as the

  12. Low Energy Electrons in the Mars Plasma Environment

    NASA Technical Reports Server (NTRS)

    Link, Richard

    2001-01-01

    The ionosphere of Mars is rather poorly understood. The only direct measurements were performed by the Viking 1 and 2 landers in 1976, both of which carried a Retarding Potential Analyzer. The RPA was designed to measure ion properties during the descent, although electron fluxes were estimated from changes in the ion currents. Using these derived low-energy electron fluxes, Mantas and Hanson studied the photoelectron and the solar wind electron interactions with the atmosphere and ionosphere of Mars. Unanswered questions remain regarding the origin of the low-energy electron fluxes in the vicinity of the Mars plasma boundary. Crider, in an analysis of Mars Global Surveyor Magnetometer/Electron Reflectometer measurements, has attributed the formation of the magnetic pile-up boundary to electron impact ionization of exospheric neutral species by solar wind electrons. However, the role of photoelectrons escaping from the lower ionosphere was not determined. In the proposed work, we will examine the role of solar wind and ionospheric photoelectrons in producing ionization in the upper ionosphere of Mars. Low-energy (< 4 keV) electrons will be modeled using the two-stream electron transport code of Link. The code models both external (solar wind) and internal (photoelectron) sources of ionization, and accounts for Auger electron production. The code will be used to analyze Mars Global Surveyor measurements of solar wind and photoelectrons down to altitudes below 200 km in the Mars ionosphere, in order to determine the relative roles of solar wind and escaping photoelectrons in maintaining plasma densities in the region of the Mars plasma boundary.

  13. Low-energy lunar transfers using spatial transit orbits

    NASA Astrophysics Data System (ADS)

    Ren, Yuan; Shan, Jinjun

    2014-03-01

    This paper is concerned with natural and artificial low-energy lunar transfers in three-dimensional space. The main contribution of this paper is that the limitations of the planar manifold assumption, which is adopted in previous low-energy orbit design methods, are avoided by describing the transfer orbits with more realistic spatial transit and non-transit orbits. To start, the limitations of the previous design methods for the low-energy trajectories are highlighted, and the boundaries of the spatial transit orbits, which can enter into or escape from the potential well near the Moon through the L1 or L2 bottleneck regions of the zero velocity surface, are defined on a Poincaré section by using the necessary and sufficient condition of transition. Next, by considering the dominant gravity bodies in different orbit segments the motion near the Moon is analyzed in the Earth-Moon circular restricted three-body problem (CR3BP). For natural celestial bodies, the statistical characteristics of the lunar collision trajectories are studied. For the artificial celestial bodies, the investigation is focused on the achievable range of inclination and height of the low lunar orbit (LLO). Then, the motion between the Earth and the Moon is studied in the Earth-Moon based Sun-perturbed bicircular four-body problem (B4BP). For natural and artificial celestial bodies, the Earth-origin trajectories and the trajectories from the low Earth orbits are analyzed. Compared to the current planar manifold based design methods, the technique introduced in this paper can evaluate the lunar transfer orbits more accurately. Also, some lunar transfer trajectories which do not exist in the manifold based models can be found, and the heights and inclinations of the parking orbits around the Earth and the Moon can also be analyzed.

  14. Low-energy tetrahedral polymorphs of carbon, silicon, and germanium

    NASA Astrophysics Data System (ADS)

    Mujica, Andrés; Pickard, Chris J.; Needs, Richard J.

    2015-06-01

    Searches for low-energy tetrahedral polymorphs of carbon and silicon have been performed using density functional theory computations and the ab initio random structure searching approach. Several of the hypothetical phases obtained in our searches have enthalpies that are lower or comparable to those of other polymorphs of group 14 elements that have either been experimentally synthesized or recently proposed as the structure of unknown phases obtained in experiments, and should thus be considered as particularly interesting candidates. A structure of P b a m symmetry with 24 atoms in the unit cell was found to be a low-energy, low-density metastable polymorph in carbon, silicon, and germanium. In silicon, P b a m is found to have a direct band gap at the zone center with an estimated value of 1.4 eV, which suggests applications as a photovoltaic material. We have also found a low-energy chiral framework structure of P 41212 symmetry with 20 atoms per cell containing fivefold spirals of atoms, whose projected topology is that of the so-called Cairo-type two-dimensional pentagonal tiling. We suggest that P 41212 is a likely candidate for the structure of the unknown phase XIII of silicon. We discuss P b a m and P 41212 in detail, contrasting their energetics and structures with those of other group 14 elements, particularly the recently proposed P 42/n c m structure, for which we also provide a detailed interpretation as a network of tilted diamondlike tetrahedra.

  15. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, J.R.; Reich, M.; Ludewig, H.; Todosow, M.

    1999-02-09

    A particle accelerator generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer and a neutron filter are also used for preferentially degrading the secondary particles into a lower energy range if desired. 18 figs.

  16. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, James R.; Reich, Morris; Ludewig, Hans; Todosow, Michael

    1999-02-09

    A particle accelerator (12) generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target (14) is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target (14) produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer (44) and a neutron filter (42) are also used for preferentially degrading the secondary particles into a lower energy range if desired.

  17. Low-energy scattering of electrons and positrons in liquids

    NASA Technical Reports Server (NTRS)

    Schrader, D. M.

    1990-01-01

    The scattering of low energy electrons and positrons is described for the liquid phase and compared and contrasted with that for the gas phase. Similarities as well as differences are noted. The loci of scattering sites, called spurs in the liquid phase, are considered in detail. In particular, their temporal and spatial evolution is considered from the point of view of scattering. Two emphases are made: one upon the stochastic calculation of the distribution of distances required for slowing down to thermal velocities, and the other upon the calculation of cross sections for energy loss by means of quantum mechanics.

  18. Study on electron beam in a low energy plasma focus

    SciTech Connect

    Khan, Muhammad Zubair; Ling, Yap Seong; San, Wong Chiow

    2014-03-05

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device.

  19. Wavelet modulation: An alternative modulation with low energy consumption

    NASA Astrophysics Data System (ADS)

    Chafii, Marwa; Palicot, Jacques; Gribonval, Rémi

    2017-02-01

    This paper presents wavelet modulation, based on the discrete wavelet transform, as an alternative modulation with low energy consumption. The transmitted signal has low envelope variations, which induces a good efficiency for the power amplifier. Wavelet modulation is analyzed and compared for different wavelet families with orthogonal frequency division multiplexing (OFDM) in terms of peak-to-average power ratio (PAPR), power spectral density (PSD) properties, and the impact of the power amplifier on the spectral regrowth. The performance in terms of bit error rate and complexity of implementation are also evaluated, and several trade-offs are characterized. xml:lang="fr"

  20. The Compton-Getting effect for low energy particles

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.

    1974-01-01

    It was found that the traditional first-order Compton-Getting effect, which relates particle distributions as observed in two frames of reference moving with constant relative velocity, is inadequate for the description of low energy particles (less than a few hundred keV/nucleon) in the solar system. An exact procedure is given for recovering both isotropic and anisotropic distributions in the solar wind frame from observations made in a spacecraft frame. The method was illustrated by analyzing a particle event observed on IPM-7.

  1. Low-energy K- optical potentials: deep or shallow?

    NASA Astrophysics Data System (ADS)

    Cieplý, A.; Friedman, E.; Gal, A.; Mareš, J.

    2001-12-01

    The K- optical potential in the nuclear medium is evaluated self consistently from a free-space K-Nt matrix constructed within a coupled-channel chiral approach. The fit of model parameters gives a good description of the low-energy data plus the available K- atomic data. The resulting optical potential is relatively `shallow' in contradiction to the potentials obtained from phenomenological analysis. The calculated (Kstop-,π) hypernuclear production rates are very sensitive to the details of kaonic bound state wave function. The (Kstop-,π) reaction could thus serve as a suitable tool to distinguish between shallow and deep K- optical potentials.

  2. Low Energy Charged Particle Measurement by Japanese Lunar Orbiter SELENE

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Yokota, S.; Asamura, K.; Mukai, T.

    2004-12-01

    SELENE (SELenological and Engineering satellite) is a Japanese lunar orbiter that will be launched in 2006. The main purpose of this satellite is to study the origin and evolution of the moon by means of global mapping of element abundances, mineralogical composition, and surface geographical mapping from 100km altitude. PACE (Plasma energy Angle and Composition Experiment) is one of the scientific instruments onboard the SELENE satellite. PACE consists of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). ESA-S1 and S2 measure three-dimensional distribution function of low energy electrons below 17keV. ESA basically employs a method of a top hat electrostatic analyzer with angular scanning deflectors at the entrance and toroidal electrodes inside. IMA and IEA measure the three-dimensional distribution function of low energy ions below 28keV/q. IMA has an ability to discriminate the ion mass with high mass resolution. IMA consists of an energy analyzer that is basically the same as ESA and an LEF (Linear Electric Field) TOF (Time Of Flight) ion mass analyzer. IEA consists of only an energy analyzer that is the same as the energy analyzer of IMA. Each sensor has hemi-spherical field of view (FOV). With two pairs of sensors ESA-S1 & IMA, and ESA-S2 & IEA, which are installed on the +Z and -Z surface of the spacecraft, three-dimensional distribution function of low energy electrons and ions are observed. The scientific objectives of PACE are 1) to measure the ions sputtered from the lunar surface and the lunar atmosphere, 2) to measure the magnetic anomaly on the lunar surface using two ESAs and a magnetometer onboard SELENE simultaneously as an electron reflectometer, 3) to resolve the moon - solar wind interaction, 4) to resolve the moon - Earth's magnetosphere interaction, and 5) to observe the Earth's magnetotail. Sputtered ions from the lunar surface will be measured for the first time. Recently, ground

  3. Dynamics of Low Energy Electron Attachment to Formic Acid

    SciTech Connect

    Rescigno, Thomas N.; Trevisan, Cynthia S.; Orel, Ann E.

    2006-04-03

    Low-energy electrons (<2 eV) can fragment gas phaseformic acid (HCOOH) molecules through resonant dissociative attachmentprocesses. Recent experiments have shown that the principal reactionproducts of such collisions are formate ions (HCOO-) and hydrogen atoms.Using first-principles electron scattering calculations, we haveidentified the responsible negative ion state as a transient \\pi* anion.Symmetry considerations dictate that the associated dissociation dynamicsare intrinsically polyatomic: a second anion surface, connected to thefirst by a conical intersection, is involved in the dynamics and thetransient anion must necessarily deform to non-planar geometries beforeit can dissociate to the observed stable products.

  4. Targeting Low-Energy Transfers to Low Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.; Anderson, Rodney L.

    2011-01-01

    A targeting scheme is presented to build trajectories from a specified Earth parking orbit to a specified low lunar orbit via a low-energy transfer and up to two maneuvers. The total transfer delta V (velocity) is characterized as a function of the Earth parking orbit inclination and the departure date for transfers to each given low lunar orbit. The transfer delta V (velocity) cost is characterized for transfers constructed to low lunar polar orbits with any longitude of ascending node and for transfers that arrive at the Moon at any given time during a month.

  5. Low energy process of producing gasoline-ethanol mixtures

    SciTech Connect

    Kyle, B.G.

    1981-10-27

    Gasoline-ethanol mixtures useable as motor fuel are produced by a relatively low energy process comprising interrelated distillation and extraction steps. In the first step, aqueous ethanol, such as an ethanol fermentation beer, is subjected to fractional distillation to produce a distillate of at least 75 weight percent ethanol, which is then subjected to extraction with gasoline under conditions producing an extract containing the desired amount of ethanol, such as 8 to 14% by weight. The aqueous phase raffinate from the extraction is returned to the fractionation column for redistillation.

  6. Modelling low energy electron interactions for biomedical uses of radiation

    NASA Astrophysics Data System (ADS)

    Fuss, M.; Muñoz, A.; Oller, J. C.; Blanco, F.; Limão-Vieira, P.; Huerga, C.; Téllez, M.; Hubin-Fraskin, M. J.; Nixon, K.; Brunger, M.; García, G.

    2009-11-01

    Current radiation based medical applications in the field of radiotherapy, radio-diagnostic and radiation protection require modelling single particle interactions at the molecular level. Due to their relevance in radiation damage to biological systems, special attention should be paid to include the effect of low energy secondary electrons. In this study we present a single track simulation procedure for photons and electrons which is based on reliable experimental and theoretical cross section data and the energy loss distribution functions derived from our experiments. The effect of including secondary electron interactions in this model will be discussed.

  7. Low-Energy Hot Plasma and Particles in Saturn's Magnetosphere.

    PubMed

    Krimigis, S M; Armstrong, T P; Axford, W I; Bostrom, C O; Gloeckler, G; Keath, E P; Lanzerotti, L J; Carbary, J F; Hamilton, D C; Roelof, E C

    1982-01-29

    The low-energy charged particle instrument on Voyager 2 measured low-energy electrons and ions (energies greater, similar 22 and greater, similar 28 kiloelectron volts, respectively) in Saturn's magnetosphere. The magnetosphere structure and particle population were modified from those observed during the Voyager 1 encounter in November 1980 but in a manner consistent with the same global morphology. Major results include the following. (i) A region containing an extremely hot ( approximately 30 to 50 kiloelectron volts) plasma was identified and extends from the orbit of Tethys outward past the orbit of Rhea. (ii) The low-energy ion mantle found by Voyager 1 to extend approximately 7 Saturn radii inside the dayside magnetosphere was again observed on Voyager 2, but it was considerably hotter ( approximately 30 kiloelectron volts), and there was an indication of a cooler ( < 20 kiloelectron volts) ion mantle on the nightside. (iii) At energies greater, similar 200 kiloelectron volts per nucleon, H(1), H(2), and H(3) (molecular hydrogen), helium, carbon, and oxygen are important constituents in the Saturnian magnetosphere. The presence of both H(2) and H(3) suggests that the Saturnian ionosphere feeds plasma into the magnetosphere, but relative abundances of the energetic helium, carbon, and oxygen ions are consistent with a solar wind origin. (iv) Low-energy ( approximately 22 to approximately 60 kiloelectron volts) electron flux enhancements observed between the L shells of Rhea and Tethys by Voyager 2 on the dayside were absent during the Voyager 1 encounter. (v) Persistent asymmetric pitch-angle distributions of electrons of 60 to 200 kiloelectron volts occur in the outer magnetosphere in conjunction with the hot ion plasma torus. (vi) The spacecraft passed within approximately 1.1 degrees in longitude of the Tethys flux tube outbound and observed it to be empty of energetic ions and electrons; the microsignature of Enceladus inbound was also observed. (vii

  8. Low energy sputtering of cobalt by cesium ions

    NASA Technical Reports Server (NTRS)

    Handoo, A.; Ray, Pradosh K.

    1989-01-01

    An experimental facility to investigate low energy (less than 500 eV) sputtering of metal surfaces with ions produced by an ion gun is described. Results are reported on the sputtering yield of cobalt by cesium ions in the 100 to 500 eV energy range at a pressure of 1 times 10(exp -6) Torr. The target was electroplated on a copper substrate. The sputtered atoms were collected on a cobalt foil surrounding the target. Co-57 was used as a tracer to determine the sputtering yield.

  9. Low Energy Continuum and Lattice Effective Field Theories

    NASA Astrophysics Data System (ADS)

    Elhatisari, Serdar

    In this thesis we investigate several constraints and their impacts on the short-range potentials in the low-energy limits of quantum mechanics.We also present lattice Monte Carlo calculations using the adiabatic projection method. In the first part we consider the constraints of causality and unitarity for the low-energy interactions of particles. We generalize Wigner's causality bound to the case of non-vanishing partial-wave mixing. Specifically we analyze the system of the low-energy interactions between protons and neutrons. We derive a general theorem that non-vanishing partial-wave mixing cannot be reproduced with zero-range interactions without violating causality or unitarity. We also analyze low-energy scattering for systems with arbitrary short-range interactions plus an attractive 1/ralpha tail for alpha ≥ 2. In particular, we focus on the case of alpha = 6 and we derive the constraints of causality and unitarity also for these systems and find that the van derWaals length scale dominates over parameters characterizing the short-distance physics of the interaction. This separation of scales suggests a separate universality class for physics characterizing interactions with an attractive 1{r6 tail. We argue that a similar universality class exists for any attractive potential 1/ralpha for alpha ≥ 2. In the second part of the thesis we present lattice Monte Carlo calculations of fermion-dimer scattering in the limit of zero-range interactions using the adiabatic projection method. The adiabatic projection method uses a set of initial cluster states and Euclidean time projection to give a systematically improvable description of the low-lying scattering cluster states in a finite volume. We use Luscher's finite-volume relations to determine the s-wave, p-wave, and d-wave phase shifts. For comparison, we also compute exact lattice results using Lanczos iteration and continuum results using the Skorniakov-Ter-Martirosian equation. For our Monte Carlo

  10. Materials for Low-Energy Neutron Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C., Jr.; Thibeault, Sheila A.

    2000-01-01

    Various candidate aircraft and spacecraft materials were analyzed and compared in a low-energy neutron environment using the Monte Carlo N-Particle (MCNP) transport code with an energy range up to 20 MeV. Some candidate materials have been tested in particle beams, and others seemed reasonable to analyze in this manner before deciding to test them. The two metal alloys analyzed are actual materials being designed into or used in aircraft and spacecraft today. This analysis shows that hydrogen-bearing materials have the best shielding characteristics over the metal alloys. It also shows that neutrons above 1 MeV are reflected out of the face of the slab better by larger quantities of carbon in the material. If a low-energy absorber is added to the material, fewer neutrons are transmitted through the material. Future analyses should focus on combinations of scatterers and absorbers to optimize these reaction channels and on the higher energy neutron component (above 50 MeV).

  11. Development of Low Energy Gap and Fully Regioregular Polythienylenevinylene Derivative

    DOE PAGES

    David, Tanya M. S.; Zhang, Cheng; Sun, Sam-Shajing

    2014-01-01

    Low energy gap and fully regioregular conjugated polymers find its wide use in solar energy conversion applications. This paper will first briefly review this type of polymers and also report synthesis and characterization of a specific example new polymer, a low energy gap, fully regioregular, terminal functionalized, and processable conjugated polymer poly-(3-dodecyloxy-2,5-thienylene vinylene) or PDDTV. The polymer exhibited an optical energy gap of 1.46 eV based on the UV-vis-NIR absorption spectrum. The electrochemically measured highest occupied molecular orbital (HOMO) level is −4.79 eV, resulting in the lowest unoccupied molecular orbital (LUMO) level of −3.33 eV based on optical energy gap. The polymer wasmore » synthesized via Horner-Emmons condensation and is fairly soluble in common organic solvents such as tetrahydrofuran and chloroform with gentle heating. DSC showed two endothermic peaks at 67°C and 227°C that can be attributed to transitions between crystalline and liquid states. The polymer is thermally stable up to about 300°C. This polymer appears very promising for cost-effective solar cell applications.« less

  12. Low-Energy Electron Scattering by Sugarcane Lignocellulosic Biomass Molecules

    NASA Astrophysics Data System (ADS)

    Oliveira, Eliane; Sanchez, Sergio; Bettega, Marcio; Lima, Marco; Varella, Marcio

    2012-06-01

    The use of second generation (SG) bioethanol instead of fossil fuels could be a good strategy to reduce greenhouse gas emissions. However, the efficient production of SG bioethanol has being a challenge to researchers around the world. The main barrier one must overcome is the pretreatment, a very important step in SG bioethanol aimed at breaking down the biomass and facilitates the extraction of sugars from the biomass. Plasma-based treatment, which can generate reactive species, could be an interesting possibility since involves low-cost atmospheric-pressure plasma. In order to offer theoretical support to this technique, the interaction of low-energy electrons from the plasma with biomass is investigated. This study was motived by several works developed by Sanche et al., in which they understood that DNA damage arises from dissociative electron attachment, a mechanism in which electrons are resonantly trapped by DNA subunits. We will present elastic cross sections for low-energy electron scattering by sugarcane biomass molecules, obtained with the Schwinger multichannel method. Our calculations indicate the formation of π* shape resonances in the lignin subunits, while a series of broad and overlapping σ* resonances are found in cellulose and hemicellulose subunits. The presence of π* and σ* resonances could give rise to direct and indirect dissociation pathways in biomass. Then, theoretical resonance energies can be useful to guide the plasma-based pretreatment to break down specific linkages of interest in biomass.

  13. Study of chirally motivated low-energy K - optical potentials

    NASA Astrophysics Data System (ADS)

    Cieplý, A.; Friedman, E.; Gal, A.; Mareš, J.

    2001-12-01

    The K - optical potential in the nuclear medium is evaluated self consistently from a free-space K -N t matrix constructed within a coupled-channel chiral approach to the low-energy K¯N data. The chiral-model parameters are fitted to a select subset of the low-energy data plus the K - atomic data throughout the periodic table. The resulting attractive K - optical potentials are relatively 'shallow', with central depth of the real part about 55 MeV, for a fairly reasonable reproduction of the atomic data with χ2/ N≈2.2. Relatively 'deep' attractive potentials of depth about 180 MeV, which result in other phenomenological approaches with χ2/ N≈1.5, are ruled out within chirally motivated models. Different physical data input is required to distinguish between shallow and deep K - optical potentials. The (K -stop, π) reaction could provide such a test, with exclusive rates differing by over a factor of three for the two classes of potentials. Finally, forward (K -,p) differential cross sections for the production of relatively narrow deeply bound K -nuclear states are evaluated for deep K - optical potentials, yielding values considerably lower than those estimated before.

  14. Low Energy Charged Particle Measurement by Japanese Lunar Orbiter SELENE

    NASA Astrophysics Data System (ADS)

    Saito, Yu.; Yokota, S.; Asamura, K.; Tanaka, T.; Mukai, T.

    SELenological and ENgineering Explorer (SELENE) is a Japanese lunar orbiter that will be launched in 2007. The main purpose of this satellite is to study the origin and evolution of the Moon by means of global mapping of element abundances, mineralogical composition, and surface geographical mapping from 100 km altitude. Plasma energy Angle and Composition Experiment (PACE) is one of the scientific instruments onboard the SELENE satellite. The scientific objectives of PACE are (1) to measure the ions sputtered from the lunar surface and the lunar atmosphere, (2) to measure the magnetic anomaly on the lunar surface using two electron spectrum analyzers (ESAs) and a magnetometer onboard SELENE simultaneously as an electron reflectometer, (3) to resolve the Moon-solar wind interaction, (4) to resolve the Moon-Earth's magnetosphere interaction, and (5) to observe the Earth's magnetotail. PACE consists of four sensors: ESA-S1, ESA-S2, ion mass analyzer (IMA), and ion energy analyzer (IEA). ESA-S1 and S2 measure the three-dimensional distribution function of low energy electrons below 15 keV, while IMA and IEA measure the three-dimensional distribution function of low energy ions below 28 keV/q.

  15. Cross sections for low-energy inelastic H + Na collisions

    SciTech Connect

    Belyaev, A. K.; Barklem, P. S.; Dickinson, A. S.; Gadea, F. X.

    2010-03-15

    Full quantum-scattering calculations are reported for low-energy near-threshold inelastic collision cross sections for H+Na. The calculations include transitions between all levels up to and including the ionic state (ion-pair production) for collision energies from the threshold up to 10 eV. These results are important for astrophysical modeling of spectra in stellar atmospheres. Results for the 3s-3p excitation are carefully examined using three different quantum chemistry input data sets, and large differences are found near the threshold. The differences are found to be predominantly due to differences in the radial coupling rather than potentials and are also found not to relate to differences in couplings in a simple manner. In fact, of the three input couplings, the two that are most similar give the cross sections with the largest differences. The 3s-3p cross sections show orbiting resonances which have been seen in earlier studies, while Feshbach resonances associated with closed channels were also found to be present in the low-energy cross sections for some transitions.

  16. Formation of a high intensity low energy positron string

    NASA Astrophysics Data System (ADS)

    Donets, E. D.; Donets, E. E.; Syresin, E. M.; Itahashi, T.; Dubinov, A. E.

    2004-05-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5×109 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production.

  17. Radiative neutralino production in low energy supersymmetric models

    SciTech Connect

    Basu, Rahul; Sharma, Chandradew; Pandita, P. N.

    2008-06-01

    We study the production of the lightest neutralinos in the radiative process e{sup +}e{sup -}{yields}{chi}-tilde{sub 1}{sup 0}{chi}-tilde{sub 1}{sup 0}{gamma} in low energy supersymmetric models for the International Linear Collider energies. This includes the minimal supersymmetric standard model as well as its extension with an additional chiral Higgs singlet superfield, the nonminimal supersymmetric standard model. We compare and contrast the dependence of the signal cross section on the parameters of the neutralino sector of the minimal and nonminimal supersymmetric standard model. We also consider the background to this process coming from the standard model process e{sup +}e{sup -}{yields}{nu}{nu}{gamma}, as well as from the radiative production of the scalar partners of the neutrinos (sneutrinos) e{sup +}e{sup -}{yields}{nu}-tilde{nu}-tilde*{gamma}, which can be a background to the radiative neutralino production when the sneutrinos decay invisibly. In low energy supersymmetric models radiative production of the lightest neutralinos may be the only channel to study supersymmetric partners of the standard model particles at the first stage of a linear collider, since heavier neutralinos, charginos, and sleptons may be too heavy to be pair produced at a e{sup +}e{sup -} machine with {radical}(s)=500 GeV.

  18. Very low energy supernovae and their resulting transients

    NASA Astrophysics Data System (ADS)

    Lovegrove, Elizabeth

    Core-collapse supernovae play a key role in many of astrophysical processes, but the details of how these explosive events work remain elusive. Many questions about the CCSN explosion mechanism and progenitor stars could be answered by either detecting very-low-energy supernovae (VLE SNe) or alternately placing a tight upper bound on their fraction of the CCSN population. However, VLE SNe are by definition dim events. Many VLE SNe result from the failure of the standard CCSN explosion mechanism, meaning that any observable signature must be created by secondary processes either before or during the collapse. In this dissertation I examine alternate means of producing transients in otherwise-failed CCSNe and consider the use of shock breakout flashes to both detect VLE SNe and retrieve progenitor star information. I begin by simulating neutrino-mediated mass loss in CCSNe progenitors to show that a dim, unusual, but still observable transient can be produced. I then simulate shock breakout flashes in VLE SNe for both the purposes of detection as well as extracting information about the exploding star. I discuss particular challenges of modeling shock breakout at low energies and behaviors unique to this regime, in particular the behavior of the spectral temperature. All simulations in this dissertation were done with the CASTRO radiation-hydrodynamic code.

  19. TOPICAL REVIEW: RBE of low energy electrons and photons

    NASA Astrophysics Data System (ADS)

    Nikjoo, Hooshang; Lindborg, Lennart

    2010-05-01

    Relative biological effectiveness (RBE) compares the severity of damage induced by a radiation under test at a dose D relative to the reference radiation Dx for the same biological endpoint. RBE is an important parameter in estimation of risk from exposure to ionizing radiation (IR). The present work provides a review of the recently published data and the knowledge of the RBE of low energy electrons and photons. The review presents RBE values derived from experimental data and model calculations including cell inactivation, chromosome aberration, cell transformation, micronuclei formation and induction of double-strand breaks. Biophysical models, including physical features of radiation track, and microdosimetry parameters are presented, analysed and compared with experimental data. The biological effects of low energy electrons and photons are of particular interest in radiation biology as these are strongly absorbed in micrometer and sub-micrometer layers of tissue. RBE values not only depend on the electron and photon energies but also on the irradiation condition, cell type and experimental conditions.

  20. Low Energy Nuclear Structure Modeling: Can It Be Improved?

    NASA Astrophysics Data System (ADS)

    Stone, Jirina R.

    Since the discovery of the atomic nucleus in 1911 generations of physicists have devoted enormous effort to understand low energy nuclear structure. Properties of nuclei in their ground state, including mass, binding energy and shape, provide vital input to many areas of sub-atomic physics as well as astrophysics and cosmology. Low energy excited states are equally important for understanding nuclear dynamics. Yet, no consensus exists as to what is the best path to a theory which would not only consistently reproduce a wide variety of experimental data but also have enough predictive power to yield credible predictions in areas where data are still missing. In this contribution some of the main obstacles preventing building such a theory are discussed. These include modification of the free nucleon-nucleon force in the nuclear environment and effects of the sub-nucleon (quark) structure of the nucleon. Selected classes of nuclear models, mean-field, shell and ab-initio models are briefly outlined. Finally, suggestions are made for, at least partial, progress that can be achieved with the quark-meson coupling model, as reported in recent publication [1].

  1. Low energy charged particles interacting with amorphous solid water layers

    SciTech Connect

    Horowitz, Yonatan; Asscher, Micha

    2012-04-07

    The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 {mu}A) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 {+-} 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.

  2. Low Energy Laser Biostimulation: New Prospects For Medical Applications

    NASA Astrophysics Data System (ADS)

    Castel, John C.; Abergel, R. Patrick; Willner, Robert E.; Baumann, James G.

    1987-03-01

    The therapeutic benefits of light-energy is not a new concept to the modern world. Documented applications from ancient times tell of the therapeutic effects of ordinary sun-light to treat such common ailments as painful body joints, wounds, compound fractures and tetanus. The discovery of laser light in the 1960's, opened up new prospects for the medical use of light. Laser light differs from other forms of electromagnetic spectrum in that a single wavelength rather than a spectrum of wavelengths is emitted. Since the early 1970's, low-energy laser radiation has been reported to enhance wound healing rates, reduce edema, and relieve musculoskeletal pain. There is no detectable thermal effect of this laser on the tissue being treated. The effects are considered to occur as a result of photochemical, non thermal effects of the laser beam. Photons are absorbed by the tissue being treated and, in turn, produce positive therapeutic effects such as reduction of pain and edema. Pre-clinical and clinical evaluations are, presently, underway to document the safety and efficacy of low energy laser therapy, which represents a significant advance in the non-invasive treatment of pain.

  3. Low energy probes of PeV scale sfermions

    SciTech Connect

    Altmannshofer, Wolfgang; Harnik, Roni; Zupan, Jure

    2013-11-27

    We derive bounds on squark and slepton masses in mini-split supersymmetry scenario using low energy experiments. In this setup gauginos are at the TeV scale, while sfermions are heavier by a loop factor. We cover the most sensitive low energy probes including electric dipole moments (EDMs), meson oscillations and charged lepton flavor violation (LFV) transitions. A leading log resummation of the large logs of gluino to sfermion mass ratio is performed. A sensitivity to PeV squark masses is obtained at present from kaon mixing measurements. A number of observables, including neutron EDMs, mu->e transitions and charmed meson mixing, will start probing sfermion masses in the 100 TeV-1000 TeV range with the projected improvements in the experimental sensitivities. We also discuss the implications of our results for a variety of models that address the flavor hierarchy of quarks and leptons. We find that EDM searches will be a robust probe of models in which fermion masses are generated radiatively, while LFV searches remain sensitive to simple-texture based flavor models.

  4. Low energy ion beam assisted growth of metal multilayers

    NASA Astrophysics Data System (ADS)

    Quan, Junjie

    Vapor deposited metal multilayers have attracted a great deal of interest in recent years because they offer extraordinary strength, hardness, heat resistance, and unexpected new properties like high reflectivity and spin-dependent conductivity. The giant magnetoresistance effects discovered in Fe/Cr artificial superstructures in 1988 stimulated a large number of studies on the electronic transport properties of spintronic materials because of their important applications in highly sensitive magnetic sensors, nonvolatile random access memories, and the data storage industry in general. Magnetic multilayers allow exploitation of unique micromagnetic, magnetooptic, and magnetoelectronic phenomena that cannot be realized using conventional materials. For example, if ferromagnetic layers (such as CoFe) with a thicknesses of 5-7 nm are separated by a non-magnetic spacer (such as Cu or AlOx) of an appropriate thickness (1-3 nm), they can exhibit large changes in their electrical resistance when a magnetic field is applied. These changes are caused mainly by spin-dependent conduction electron scattering at magnetic multilayer interfaces. Many experimental and theoretical works have sought to promote a basic understanding of the effect of atomic structure in thin film multilayers upon spin dependent transport. It has been found that interfacial imperfections, such as interfacial roughness and interlayer mixing, dramatically reduce the properties exploited for spintronic applications. A combination of computer modeling and experiments has been used to discover more effective ways to control the interfacial structures of metal multilayers. Earlier atomic simulations had indicated that it is very important to control adatom energy during deposition in order to improve interface properties. Based on these ideas, this dissertation has investigated the effects of low energy ion assistance during metal multilayer deposition. Using molecular dynamics modeling, the effects of ion

  5. Bubble Chamber : A novel technique for measuring thermonuclear rates at low energies

    NASA Astrophysics Data System (ADS)

    Talwar, R.; Benesh, J.; Digiovine, B.; Grames, J.; Holt, R. J.; Kharashvili, G.; Meekins, D.; Moser, D.; Poelkar, M.; Rehm, K. E.; Robinson, A.; Sonnenschein, A.; Stutzman, M.; Suleiman, R.; Tennant, C.; Ugalde, C.

    2016-03-01

    Adopting ideas from dark matter search experiments, we have found that a superheated liquid in a bubble detector is sensitive to recoils produced by γ-ray beams impinging on the nuclei in the liquid. Such a target-detector system has a density factor of four orders of magnitude higher than conventional gas targets and is practically insensitive to the γ-ray beam itself. Also, since photodisintegration reactions have approximately two orders of magnitude higher cross-sections than direct particle capture reactions, such a technique can pave the way towards measuring these reactions within the stellar Gamow window. In an effort to study the 16O(γ , α)12C system using the bubble chamber technique, the first test of the superheated N2O liquid with a low-energy bremsstrahlung beam at JLab has been completed. This test has been performed to understand the background contributions from 17O and 18O nuclei in N2O. The experimental technique, results and future plans will be presented. This work has been supported by US DOE (DE-AC02-06CH11357) and Jefferson Science Associations, LLC (DE-AC05-06OR23177).

  6. Sub-micron alignment for nuclear emulsion plates using low energy electrons caused by radioactive isotopes

    NASA Astrophysics Data System (ADS)

    Miyamoto, S.; Ariga, A.; Fukuda, T.; Kazuyama, M.; Komatsu, M.; Nakano, T.; Niwa, K.; Sato, O.; Takahashi, S.

    2007-06-01

    Nuclear emulsion plates are employed in three-dimensional charged particle detectors that have sub-micron position resolution over 1 m2 with no dead space and no dead time. These detectors are suitable for the study of short-lived particle decays, and direct detection of neutrino interactions of all flavors. Typically emulsion plates are used in a stacked structure. Precise alignment between plates is required for physics analysis. The most accurate alignment method is to use tracks passing through the emulsion plates. The accuracy is about 0.2 μm. However, in an experiment with low track density alignment accuracy decreases to 20 μm because of plate distortion and it becomes more difficult to perform the analysis. This paper describes a new alignment method between emulsion plates by using trajectories of low energy electrons originating from environmental radioactive isotopes. As a trial emulsion plates were exposed to β-rays and γ-rays from K40. The trajectories which passed through emulsion layers were detected by a fully automated emulsion readout system. Using this method, the alignment between emulsion plates is demonstrated to be sub-micron. This method can be applied to many nuclear emulsion experiments. For example, the location of neutrino interaction vertices in the OPERA experiment can benefit from this new technique.

  7. Milagro: A low energy threshold extensive air shower array

    SciTech Connect

    Sinnis, C.

    1994-12-31

    Observations of high-energy gamma rays from astronomical sources have revolutionized our view of the cosmos. Gamma rays with energies up to {approximately}10 GeV can be observed directly with space-based instruments. Above 100 GeV the low flux of gamma rays requires one to utilize ground-based instruments. Milagro is a new type of gamma-ray detector based on water Cerenkov technology. This new design will enable to continuously observe the entire overhead sky, and be sensitive to cosmic rays with energies above {approximately}250 GeV. These attributes make Milagro an ideal detector for the study of high-energy transient phenomenon.

  8. The GAPS Experiment: A Search for Dark Matter Using Low Energy Antiprotons and Antideuterons [University of Hawaii Co-I

    NASA Astrophysics Data System (ADS)

    von Doetinchem, Philip

    This is a Co-I proposal in support of the PI lead proposal entitled "The GAPS experiment: a search for dark matter using low energy antiprotons and antideuterons" submitted by Prof. Charles Hailey, Columbia University. Our proposed program would support the Umiversity of Hawaii at Manoa tasks on the GAPS experiment as detailed in our task statement. The primary focus of this work is the calibration and test of the Si(Li) detector modules, instrument simulation and support of the flight program and scientific analysis.

  9. Assessing the role of the (n, γ f) process in the low-energy fission of actinides

    NASA Astrophysics Data System (ADS)

    Talou, Patrick; Lynn, J. E.; Kawano, T.; Mosby, S.; Couture, A.; Bouland, O.

    2016-06-01

    We review the role of the (n, γ f) process in the low-energy neutron-induced fission reaction of 239Pu. Recent measurements of the average total γ-ray energy released in this reaction were performed with the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos. Significant fluctuations of this quantity in the resonance region below 100 eV can be interpreted by invoking the presence of the indirect (n, γ f) process. Modern calculations of the probability for such an event to occur are presented.

  10. Tissue modeling schemes in low energy breast brachytherapy

    NASA Astrophysics Data System (ADS)

    Afsharpour, Hossein; Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank

    2011-11-01

    Breast tissue is heterogeneous and is mainly composed of glandular (G) and adipose (A) tissues. The proportion of G versus A varies considerably among the population. The absorbed dose distributions in accelerated partial breast irradiation therapy with low energy photon brachytherapy sources are very sensitive to tissue heterogeneities. Current clinical algorithms use the recommendations of the AAPM TG43 report which approximates the human tissues by unit density water. The aim of this study is to investigate various breast tissue modeling schemes for low energy brachytherapy. A special case of breast permanent seed implant is considered here. Six modeling schemes are considered. Uniform and non-uniform water breast (UWB and NUWB) consider the density but neglect the effect of the composition of tissues. The uniform and the non-uniform G/A breast (UGAB and NUGAB) as well the age-dependent breast (ADB) models consider the effect of the composition. The segmented breast tissue (SBT) method uses a density threshold to distinguish between G and A tissues. The PTV D90 metric is used for the analysis and is based on the dose to water (D90(w,m)). D90(m,m) is also reported for comparison to D90(w,m). The two-month post-implant D90(w,m) averaged over 38 patients is smaller in NUWB than in UWB by about 4.6% on average (ranging from 5% to 13%). Large average differences of G/A breast models with TG43 (17% and 26% in UGAB and NUGAB, respectively) show that the effect of the chemical composition dominates the effect of the density on dose distributions. D90(w,m) is 12% larger in SBT than in TG43 when averaged. These differences can be as low as 4% or as high as 20% when the individual patients are considered. The high sensitivity of dosimetry on the modeling scheme argues in favor of an agreement on a standard tissue modeling approach to be used in low energy breast brachytherapy. SBT appears to generate the most geometrically reliable breast tissue models in this report. This

  11. Small area silicon diffused junction x-ray detectors

    SciTech Connect

    Walton, J.T.; Pehl, R.H.; Larsh, A.E.

    1981-10-01

    The low temperature performance of silicon diffused junction detectors in the measurement of low energy x-rays is reported. The detectors have an area of 0.04 cm/sup 2/ and a thickness of 100 ..mu..m. The spectral resolutions of these detectors were found to be in close agreement with expected values indicating that the defects introduced by the high temperature processing required in the device fabrication were not deleteriously affecting the detection of low energy x-rays. Device performance over a temperature range of 77 to 150/sup 0/K is given. These detectors were designed to detect low energy x-rays in the presence of minimum ionizing electrons. The successful application of silicon diffused junction technology to x-ray detector fabrication may facilitate the development of other novel silicon x-ray detector designs.

  12. The low energy spectra of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.; Lamb, F. K.

    1982-01-01

    The implications of observed gamma-ray burst spectra for the physical conditions and geometries of the sources are examined. It is noted that an explanation of the continua in terms of optically thin thermal bremsstrahlung requires a relatively large area but a fairly shallow depth. On the other hand, a spectrum similar to that observed could be produced by rapid flickering of sources with less extreme geometries if each flicker emits a Comptonized thermal spectrum. Either field inhomogeneities or plasma motions are required to interpret the low energy features as cyclotron extinction. An alternative explanation is photoelectric absorption by heavy atoms; this requires a field strength high enough to make one-photon electron positron annihilation possible. Observational tests of these possibilities are proposed

  13. Theoretical Study of Low Energy Scattering from Metal Nuclei.

    NASA Astrophysics Data System (ADS)

    Gomez, Bernadette; Hira, Ajit; Duran, Joe; Jaramillo, Danelle

    2015-04-01

    We continue our interest in the interactions between different nuclear species with a computational study of the scattering of the low-energy nuclei of H through F atoms (Z <= 9 ) from Silver, Palladium and other metals. Recent work has shown that neutron scattering can be used to record holographic images of materials. We have developed a FORTRAN computer program to compute stopping cross sections and scattering angles in Ag and other metals for the small nuclear projectiles, using Monte Carlo calculation. This code allows for different angles of incidence. Next, simulations were done in the energy interval from 50 to 210 keV. The computational results thus obtained are compared with relevant experimental data. The data are further analyzed to identify periodic trends in terms of the atomic number of the projectile. Such studies have potential applications in nuclear physics and in nuclear medicine.

  14. Low energy electron magnetometer using a monoenergetic electron beam

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Wood, G. M.; Rayborn, G. H.; White, F. A. (Inventor)

    1983-01-01

    A low energy electron beam magnetometer utilizes near-monoenergetic electrons thereby reducing errors due to electron energy spread and electron nonuniform angular distribution. In a first embodiment, atoms in an atomic beam of an inert gas are excited to a Rydberg state and then electrons of near zero energy are detached from the Rydberg atoms. The near zero energy electrons are then accelerated by an electric field V(acc) to form the electron beam. In a second embodiment, a filament emits electrons into an electrostatic analyzer which selects electrons at a predetermined energy level within a very narrow range. These selected electrons make up the electron beam that is subjected to the magnetic field being measured.

  15. Opportunistic Sensor Data Collection with Bluetooth Low Energy.

    PubMed

    Aguilar, Sergio; Vidal, Rafael; Gomez, Carles

    2017-01-23

    Bluetooth Low Energy (BLE) has gained very high momentum, as witnessed by its widespread presence in smartphones, wearables and other consumer electronics devices. This fact can be leveraged to carry out opportunistic sensor data collection (OSDC) in scenarios where a sensor node cannot communicate with infrastructure nodes. In such cases, a mobile entity (e.g., a pedestrian or a vehicle) equipped with a BLE-enabled device can collect the data obtained by the sensor node when both are within direct communication range. In this paper, we characterize, both analytically and experimentally, the performance and trade-offs of BLE as a technology for OSDC, for the two main identified approaches, and considering the impact of its most crucial configuration parameters. Results show that a BLE sensor node running on a coin cell battery can achieve a lifetime beyond one year while transferring around 10 Mbit/day, in realistic OSDC scenarios.

  16. A New Instrument Design for Imaging Low Energy Neutral Atoms

    NASA Technical Reports Server (NTRS)

    Keller, John W.; Collier, Michael R.; Chornay, Dennis; Rozmarynowski, Paul; Getty, Stephanie; Cooper, John F.; Smith, Billy

    2007-01-01

    The MidSTAR-2 satellite, to be built at the US Naval Academy as a follow-on to the successful MidSTAR-1 satellite (http://web.ew.usna.edu/midstar/), will launch in 2011 and carry three Goddard Space Flight Center (GSFC) experiments developed under Goddard's Internal Research and Development (IRAD) program. One of these GSFC instruments, the Miniature Imager for Neutral Ionospheric atoms and Magnetospheric Electrons (MINI-ME) builds on the heritage of the Goddard-developed Low-Energy Neutral Atom (LENA) imager launched on the IMAGE spacecraft in 2000. MINI-ME features a Venetian-blind conversion surface assembly that improves both light rejection and conversion efficiency in a smaller and lighter package than LENA making this an highly effective instrument for viewing solar wind charge exchange with terrestrial and planetary exospheres. We will describe the MINI-ME prototyping effort and its science targets.

  17. Low-energy structure of four-dimensional superstrings

    SciTech Connect

    Zwirner, F.

    1988-05-01

    The N = 1, d = 4 supergravity theories derived as the low-energy limit of four-dimensional superstrings are discussed, focusing on the properties of their effective potentials. Gauge symmetry breaking is possible along several flat directions. A class of superpotential modifications is introduced, which describes supersymmetry breaking with vanishing cosmological constant and Str M{sup 2} = 0 at any minimum of the tree level potential. Under more restrictive assumptions, there are minima with broken supersymmetry at which also Str f(M{sup 2}) = 0 for any function f, so that the whole one-loop cosmological constant vanishes. This result is interpreted in terms of a new discrete boson-fermion symmetry, relating particles whose helicities differ by 3/2, e.g., the graviton and the dilatino.' 21 refs.

  18. Contamination control and plume assessment of low-energy thrusters

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1993-01-01

    Potential contamination of a spacecraft cryogenic surface by a xenon (Xe) ion generator was evaluated. The analysis involves the description of the plume exhausted from the generator with its relative component fluxes on the spacecraft surfaces, and verification of the conditions for condensation, adsorption, and sputtering at those locations. The data describing the plume fluxes and their effects on surfaces were obtained from two sources: the tests carried out with the Xe generator in a small vacuum chamber to indicate deposits and sputter on monitor slides; and the extensive tests with a mercury (Hg) ion thruster in a large vacuum chamber. The Hg thruster tests provided data on the neutrals, on low-energy ion fluxes, on high-energy ion fluxes, and on sputtered materials at several locations within the plume.

  19. Molecular ion sources for low energy semiconductor ion implantation (invited)

    NASA Astrophysics Data System (ADS)

    Hershcovitch, A.; Gushenets, V. I.; Seleznev, D. N.; Bugaev, A. S.; Dugin, S.; Oks, E. M.; Kulevoy, T. V.; Alexeyenko, O.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Vizir, A.; Yushkov, G. Yu.

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described.

  20. Molecular ion sources for low energy semiconductor ion implantation (invited).

    PubMed

    Hershcovitch, A; Gushenets, V I; Seleznev, D N; Bugaev, A S; Dugin, S; Oks, E M; Kulevoy, T V; Alexeyenko, O; Kozlov, A; Kropachev, G N; Kuibeda, R P; Minaev, S; Vizir, A; Yushkov, G Yu

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4(+) ion beams were extracted. Results from devices and some additional concepts are described.

  1. Quantifying Low Energy Proton Damage in Multijunction Solar Cells

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Burke, Edward A.; Walters, Robert J.; Warner, Jeffrey H.; Summers, Geoffrey P.; Lorentzen, Justin R.; Morton, Thomas L.; Taylor, Steven J.

    2007-01-01

    An analysis of the effects of low energy proton irradiation on the electrical performance of triple junction (3J) InGaP2/GaAs/Ge solar cells is presented. The Monte Carlo ion transport code (SRIM) is used to simulate the damage profile induced in a 3J solar cell under the conditions of typical ground testing and that of the space environment. The results are used to present a quantitative analysis of the defect, and hence damage, distribution induced in the cell active region by the different radiation conditions. The modelling results show that, in the space environment, the solar cell will experience a uniform damage distribution through the active region of the cell. Through an application of the displacement damage dose analysis methodology, the implications of this result on mission performance predictions are investigated.

  2. Opportunistic Sensor Data Collection with Bluetooth Low Energy

    PubMed Central

    Aguilar, Sergio; Vidal, Rafael; Gomez, Carles

    2017-01-01

    Bluetooth Low Energy (BLE) has gained very high momentum, as witnessed by its widespread presence in smartphones, wearables and other consumer electronics devices. This fact can be leveraged to carry out opportunistic sensor data collection (OSDC) in scenarios where a sensor node cannot communicate with infrastructure nodes. In such cases, a mobile entity (e.g., a pedestrian or a vehicle) equipped with a BLE-enabled device can collect the data obtained by the sensor node when both are within direct communication range. In this paper, we characterize, both analytically and experimentally, the performance and trade-offs of BLE as a technology for OSDC, for the two main identified approaches, and considering the impact of its most crucial configuration parameters. Results show that a BLE sensor node running on a coin cell battery can achieve a lifetime beyond one year while transferring around 10 Mbit/day, in realistic OSDC scenarios. PMID:28124987

  3. Structure Change of PTFE by Low Energy Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Watari, Kunio; Iwao, Toru; Yumoto, Motoshige

    The authors irradiate low energy nitrogen ion (100eV) on PTFE (poly-tetra-fluoro-ethylene) for surface modification. However, PTFE cannot anticipate adhesive strength improvement because it is collapse type polymer and weariness of surface occurs by ion irradiation. We paid attention to cross-linked structure to solve this problem. By this study introduce below, PTFE was changed collapse type polymer into cross-linked type polymer by rising temperature above the glass transition in the case of ion irradiation. As a result, the formation of the CF3 combination was restrained and collapse phenomenon was prevented by ion irradiation above the glass transition. In addition, it was suggested that cross-linked structure is effective for adhesive strength improvement by convolution of C1s spectrum and density profile.

  4. NRV web knowledge base on low-energy nuclear physics

    NASA Astrophysics Data System (ADS)

    Karpov, V.; Denikin, A. S.; Alekseev, A. P.; Zagrebaev, V. I.; Rachkov, V. A.; Naumenko, M. A.; Saiko, V. V.

    2016-09-01

    Principles underlying the organization and operation of the NRV web knowledge base on low-energy nuclear physics (http://nrv.jinr.ru) are described. This base includes a vast body of digitized experimental data on the properties of nuclei and on cross sections for nuclear reactions that is combined with a wide set of interconnected computer programs for simulating complex nuclear dynamics, which work directly in the browser of a remote user. Also, the current situation in the realms of application of network information technologies in nuclear physics is surveyed. The potential of the NRV knowledge base is illustrated in detail by applying it to the example of an analysis of the fusion of nuclei that is followed by the decay of the excited compound nucleus formed.

  5. Low Energy p-bar+ H Collisions in Hyperspheroidal Coordinates

    SciTech Connect

    Matveenko, A.V.; Fukuda, Hiroshi; Alt, E.O.

    2005-10-26

    Recently, Esry and Sadeghpour (2003), and Hesse, Le and Lin (2004), have reported calculations of protonium formation in p-bar+ H collisions at low energies, using hyperspherical coordinates in a hyperradial adiabatic approach. In order to make the problem tractable both groups were forced to introduce an artificial proton mass (m{sub p}{sup '} = 17.824 a.u. and m{sub p}{sup '} = 100 a.u., respectively) which raises doubts as to the physical relevance of their results and conclusions. Here we make use of the hyperspheroidal coordinates in order to attack the same problem in basically the same approach but without need for changing the physical particle masses.

  6. Coulomb path'' interference in low energy He sup + + He collisions

    SciTech Connect

    Swenson, J.K. ); Burgdoerfer, J. ); Meyer, F.W.; Havener, C.C.; Gregory, D.C.; Stolterfoht, N. )

    1990-01-01

    A new interference mechanism, analogous to classic'' double-slit electron scattering, has been identified in low energy ion-atom collisions. This Coulomb path'' interference results from the existence of two trajectories, indistinguishable with respect to laboratory energy and emission angle, along which ejected autoionizing electrons may be scattered by the attractive Coulomb potential of the slowly receding spectator ion. We present a simple semi-classical model for this effect in which we account for the path dependence of the amplitude of the ejected electron following decay of the autoionizing state. Calculated model lineshapes are found to be in excellent agreement with strong angular dependence of the interference structure observed in the He target 2s{sup 2} {sup 1}S autoionizing lineshape measured near 0{degree} following 10 keV He{sup +} + He collisions.

  7. Low-energy antinucleon-nucleus interaction revisited

    NASA Astrophysics Data System (ADS)

    Friedman, E.

    2015-08-01

    Annihilation cross sections of antiprotons and antineutrons on the proton between 50 and 400 MeV/c show Coulomb focusing below 200 MeV/c and almost no charge-dependence above 200 MeV/c. Similar comparisons for heavier targets are not possible for lack of overlap between nuclear targets studied with and beams. Interpolating between -nucleus annihilation cross sections with the help of an optical potential to compare with -nucleus annihilation cross sections reveal unexpected features of Coulomb interactions in the latter. Direct comparisons between -nucleus and -nucleus annihilations at very low energies could be possible if cross sections are measured on the same targets and at the same energies as the available cross sections for . Such measurements may be feasible in the foreseeable future.

  8. Maximum Likelihood Analysis of Low Energy CDMS II Germanium Data

    SciTech Connect

    Agnese, R.

    2015-03-30

    We report on the results of a search for a Weakly Interacting Massive Particle (WIMP) signal in low-energy data of the Cryogenic Dark Matter Search experiment using a maximum likelihood analysis. A background model is constructed using GEANT4 to simulate the surface-event background from Pb210decay-chain events, while using independent calibration data to model the gamma background. Fitting this background model to the data results in no statistically significant WIMP component. In addition, we also perform fits using an analytic ad hoc background model proposed by Collar and Fields, who claimed to find a large excess of signal-like events in our data. Finally, we confirm the strong preference for a signal hypothesis in their analysis under these assumptions, but excesses are observed in both single- and multiple-scatter events, which implies the signal is not caused by WIMPs, but rather reflects the inadequacy of their background model.

  9. ULTRA-LOW-ENERGY HIGH-CURRENT ION SOURCE

    SciTech Connect

    Anders, Andre; Yushkov, Georgy Yu.; Baldwin, David A.

    2009-11-20

    The technical objective of the project was to develop an ultra-low-energy, high-intensity ion source (ULEHIIS) for materials processing in high-technology fields including semiconductors, micro-magnetics and optics/opto-electronics. In its primary application, this ion source can be incorporated into the 4Wave thin-film deposition technique called biased target ion-beam deposition (BTIBD), which is a deposition technique based on sputtering (without magnetic field, i.e., not the typical magnetron sputtering). It is a technological challenge because the laws of space charge limited current (Child-Langmuir) set strict limits of how much current can be extracted from a reservoir of ions, such as a suitable discharge plasma. The solution to the problem was an innovative dual-discharge system without the use of extraction grids.

  10. Ignitor with stable low-energy thermite igniting system

    DOEpatents

    Kelly, Michael D.; Munger, Alan C.

    1991-02-05

    A stable compact low-energy igniting system in an ignitor utilizes two components, an initiating charge and an output charge. The initiating charge is a thermite in ultra-fine powder form compacted to 50-70% of theoretical maximum density and disposed in a cavity of a header of the ignitor adjacent to an electrical ignition device, or bridgewire, mounted in the header cavity. The initiating charge is ignitable by operation of the ignition device in a hot-wire mode. The output charge is a thermite in high-density consoladated form compacted to 90-99% of theoretical maximum density and disposed adjacent to the initiating charge on an opposite end thereof from the electrical ignition device and ignitable by the initiating charge. A sleeve is provided for mounting the output charge to the ignitor header with the initiating charge confined therebetween in the cavity.

  11. Status report on the Low Energy Neutron Source for 2015

    NASA Astrophysics Data System (ADS)

    Baxter, D. V.; Rinckel, T.

    2016-11-01

    The Low Energy Neutron Source at Indiana University first produced cold neutrons in April of 2005. Ten years after first reaching this milestone, the facility has three instruments in operation on its cold target station, and a second target station is devoted to thermal and fast neutron physics offers capabilities in radiation effects research (single-event effects in electronics) and radiography. Key elements in our success over these last ten years have been the diversity of activities we have been able maintain (which often involves using each of our instruments for multiple different activities), the close relationship we have developed with a number of major sources, and the focus we have had on innovation in neutron instrumentation. In this presentation, we will introduce some of the highlights from our most recent activities, provide an update on some of our technical challenges, and describe some of our ideas for the future.

  12. HIGH INTENSITY LOW-ENERGY POSITRON SOURCE AT JEFFERSON

    SciTech Connect

    Serkan Golge, Bogdan Wojtsekhowski, Branislav Vlahovic

    2012-07-01

    We present a novel concept of a low-energy e{sup +} source with projected intensity on the order of 10{sup 10} slow e{sup +}/s. The key components of this concept are a continuous wave e{sup -} beam, a rotating positron-production target, a synchronized raster/anti-raster, a transport channel, and extraction of e{sup +} into a field-free area through a magnetic plug for moderation in a cryogenic solid. Components were designed in the framework of GEANT4-based (G4beamline) Monte Carlo simulation and TOSCA magnetic field calculation codes. Experimental data to demonstrate the effectiveness of the magnetic plug is presented.

  13. Inelastic low energy electron diffraction at metal surfaces

    NASA Astrophysics Data System (ADS)

    Nazarov, V. U.; Nishigaki, S.

    2001-06-01

    The role of incident electrons penetration under a metal surface in electron energy loss spectroscopy is considered within the fully quantum-mechanical approach. The stabilized jellium model of the surface in the semi-infinite geometry and the time-dependent local density approximation for the dynamical response are used. The travel of the projectile electron inside the target metal is treated within the kinematic low energy electron diffraction theory. Confirming our simplified hard-wall reflection model results [Phys. Rev. B 59 (1999) 9866], the dramatic enhancement of the multipole plasmon peak as compared with the dipole-mode calculations is obtained for Na and Cs, which is in a qualitative agreement with the experiment. However, for K the calculation fails to explain the experiment, which discrepancy is discussed and the future improvements of the method are outlined.

  14. Low-energy lepton violation from supersymmetric flipped SU(5)

    NASA Astrophysics Data System (ADS)

    Brahm, David E.; Hall, Lawrence J.

    1989-10-01

    We construct a supersymmetric flipped SU(5)⊗U(1) model which violates R parity and electron number at low energies, through a superpotential term (1/2CijkLiLjEck. Rotation of the electron and Higgs superfields makes this term also responsible for charged-lepton masses. The model employs a missing-partners mechanism for the Higgs fields and a seesaw mechanism for the neutrinos. It correctly predicts the approximate electron mass and several mass relations, as well as numerical values for the grand unification scale and the Cijk coefficients. The electron-neutrino Majorana mass is close to experimental limits, and provides constraints. Interesting Z0 decays are predicted: e.g., Z0-->e-μ+e+μ- with invariant-mass peaks in the (e,μ) channels.

  15. Low-energy dissociative recombination in small polyatomic molecules.

    PubMed

    Jungen, Ch; Pratt, S T

    2010-12-07

    Indirect dissociative recombination of low-energy electrons and molecular ions often occurs through capture into vibrationally excited Rydberg states. Properties of vibrational autoionization, the inverse of this capture mechanism, are used to develop some general ideas about the indirect recombination process, and these ideas are illustrated by examples from the literature. In particular, the Δv = -1 propensity rule for vibrational autoionization, i.e., that vibrational autoionization occurs by the minimum energetically allowed change in vibrational quantum numbers, leads to the prediction of thresholds in the dissociative recombination cross sections and rates at the corresponding vibrational thresholds. Capture into rotationally excited Rydberg states is also discussed in terms of recent low-temperature studies of the dissociative recombination of H(3)(+).

  16. Low energy neutral atoms in the earth's magnetosphere: Modeling

    SciTech Connect

    Moore, K.R.; McComas, D.J.; Funsten, H.O.; Thomsen, M.F.

    1992-01-01

    Detection of low energy neutral atoms (LENAs) produced by the interaction of the Earth's geocorona with ambient space plasma has been proposed as a technique to obtain global information about the magnetosphere. Recent instrumentation advances reported previously and in these proceedings provide an opportunity for detecting LENAs in the energy range of <1 keV to {approximately}50 keV. In this paper, we present results from a numerical model which calculates line of sight LENA fluxes expected at a remote orbiting spacecraft for various magnetospheric plasma regimes. This model uses measured charge exchange cross sections, either of two neural hydrogen geocorona models, and various empirical modes of the ring current and plasma sheet to calculate the contribution to the integrated directional flux from each point along the line of sight of the instrument. We discuss implications for LENA imaging of the magnetosphere based on these simulations. 22 refs.

  17. Low-energy electron rescattering in laser-induced ionization

    NASA Astrophysics Data System (ADS)

    Becker, W.; Goreslavski, S. P.; Milošević, D. B.; Paulus, G. G.

    2014-10-01

    The low-energy structure (LES) in the energy spectrum of above-threshold ionization of rare-gas atoms is reinvestigated from three different points of view. First, the role of forward rescattering in the completely classical simple-man model (SMM) is considered. Then, the corresponding classical electronic trajectories are retrieved in the quantum-mechanical ionization amplitude derived in the strong-field approximation augmented to allow for rescattering. Third, classical trajectories in the presence of both the laser field and the Coulomb field are scrutinized in order to see how they are related to the LES. It is concluded that the LES is already rooted in the SMM. The Coulomb field enhances the structure so that it can successfully compete with other contributions and become visible in the total spectrum.

  18. Origins of the low energy relativistic interplanetary electrons

    NASA Technical Reports Server (NTRS)

    Eraker, J. H.; Simpson, J. A.

    1981-01-01

    Electron measurements in the energy range 2-25 MeV on the Pioneer 10 spacecraft are studied from 1 to 21.5 AU. It is found that in this radial range, interplanetary low energy electron fluxes are of Jovian origin, based on the decreasing electron intensity from about 6 to 21.5 AU, a negative gradient from about 11 to 21.5 AU, and the constant spectral index observed from 1 to 21.5 AU. The upper limit of the galactic flux is estimated at 12 MeV and standard assumptions are applied to solar modulation. It is found that at 1 AU, the expected flux of galactic origin is a factor 300 or more below the observed quiet time flux, and the extrapolated interstellar flux level is consistent with estimates based on galactic diffuse radio and gamma-ray emissions.

  19. Low Dose, Low Energy 3d Image Guidance during Radiotherapy

    NASA Astrophysics Data System (ADS)

    Moore, C. J.; Marchant, T.; Amer, A.; Sharrock, P.; Price, P.; Burton, D.

    2006-04-01

    Patient kilo-voltage X-ray cone beam volumetric imaging for radiotherapy was first demonstrated on an Elekta Synergy mega-voltage X-ray linear accelerator. Subsequently low dose, reduced profile reconstruction imaging was shown to be practical for 3D geometric setup registration to pre-treatment planning images without compromising registration accuracy. Reconstruction from X-ray profiles gathered between treatment beam deliveries was also introduced. The innovation of zonal cone beam imaging promises significantly reduced doses to patients and improved soft tissue contrast in the tumour target zone. These developments coincided with the first dynamic 3D monitoring of continuous body topology changes in patients, at the moment of irradiation, using a laser interferometer. They signal the arrival of low dose, low energy 3D image guidance during radiotherapy itself.

  20. First evidence of low energy enhancement in Ge isotopes

    NASA Astrophysics Data System (ADS)

    Renstrøm, T.; Nyhus, H.-T.; Utsunomiya, H.; Larsen, A. C.; Siem, S.; Guttormsen, M.; Filipescu, D. M.; Gheorghe, I.; Goriely, S.; Bernstein, L. A.; Bleuel, D. L.; Glodariu, T.; Görgen, A.; Hagen, T. W.; Lui, Y.-W.; Negi, D.; Ruud, I. E.; Şahin, E.; Schwengner, R.; Shima, T.; Takahisa, K.; Tesileanu, O.; Tornyi, T. G.; Tveten, G. M.; Wiedeking, M.

    2015-05-01

    The γ-strength functions and level densities of 73,74Ge have been extracted from particle-γ coincidence data using the Oslo method. In addition the γ-strength function of 74Ge above the neutron separation threshold, Sn = 10.196 MeV has been extracted from photoneutron measurements. When combined, these two experiments give a γ-strength function covering the energy range of ˜1-13 MeV for 74Ge. This thorough investigation of 74Ge is a part of an international campaign to study the previously reported low energy enhancement in this mass region in the γ-strength function from ˜3MeV towards lower γ energies. The obtained data show that both 73,74Ge display an increase in strength at low γ energies.

  1. Elastic positron-cadmium scattering at low energies

    SciTech Connect

    Bromley, M. W. J.; Mitroy, J.

    2010-05-15

    The elastic and annihilation cross sections for positron-cadmium scattering are reported up to the positronium-formation threshold (at 2.2 eV). The low-energy phase shifts for the elastic scattering of positrons from cadmium were derived from the bound and pseudostate energies of a very large basis configuration-interaction calculation of the e{sup +}-Cd system. The s-wave binding energy is estimated to be 126{+-}42 meV, with a scattering length of A{sub scat}=(14.2{+-}2.1)a{sub 0}, while the threshold annihilation parameter, Z{sub eff}, was 93.9{+-}26.5. The p-wave phase shift exhibits a weak shape resonance that results in a peak Z{sub eff} of 91{+-}17 at a collision energy of about 490{+-}50 meV.

  2. Low-energy ion implantation: Large mass fractionation of argon

    NASA Technical Reports Server (NTRS)

    Ponganis, K. V.; Graf, TH.; Marti, K.

    1993-01-01

    The isotropic signatures of noble gases in the atmospheres of the Earth and other planets are considerably evolved when compared to signatures observed in the solar wind. The mechanisms driving the evolution of planetary volatiles from original compositions in the solar accretion disk are currently poorly understood. Modeling of noble-gas compositional histories requires knowledge of fractionating processes that may have operated through the evolutionary stages. Since these gases are chemically inert, information on noble-gas fractionation processes can be used as probes. The importance of understanding these processes extends well beyond 'noble-gas planetology.' Trapped argon acquired by low-energy implantation (approximately less than 100 eV) into solids is strongly mass fractionated (approximately greater than or equal to 3 percent/amu). This has potential implications for the origin and evolution of terrestrial planet atmospheres.

  3. Low-Energy Properties of Aperiodic Quantum Spin Chains

    NASA Astrophysics Data System (ADS)

    Vieira, André P.

    2005-02-01

    We investigate the low-energy properties of antiferromagnetic quantum XXZ spin chains with couplings following two-letter aperiodic sequences, by an adaptation of the Ma-Dasgupta-Hu renormalization-group method. For a given aperiodic sequence, we argue that, in the easy-plane anisotropy regime, intermediate between the XX and Heisenberg limits, the general scaling form of the thermodynamic properties is essentially given by the exactly known XX behavior, providing a classification of the effects of aperiodicity on XXZ chains. As representative illustrations, we present analytical and numerical results for the low-temperature thermodynamics and the ground-state correlations for couplings following the Fibonacci quasiperiodic structure and a binary Rudin-Shapiro sequence, whose geometrical fluctuations are similar to those induced by randomness.

  4. Low-energy dissociative electron attachment to CF2

    NASA Astrophysics Data System (ADS)

    Chourou, S. T.; Larson, Ã.; Orel, A. E.

    2015-08-01

    We present the results of a theoretical study of dissociative electron attachment (DEA) of low-energy electrons to CF2. We carried out electron scattering calculations using the complex Kohn variational method at the static-exchange and relaxed self-consistent field (SCF) level at the equilibrium geometry and compare our differential cross sections to other results. We then repeated these calculations as a function of the three internal degrees of freedom to obtain the resonance energy surfaces and autoionization widths. We use this data as input to form the Hamiltonian relevant to the nuclear dynamics. The multidimensional wave equation is solved using the multiconfiguration time-dependent Hartree (MCTDH) approach within the local approximation.

  5. Low-energy properties of aperiodic quantum spin chains.

    PubMed

    Vieira, André P

    2005-02-25

    We investigate the low-energy properties of antiferromagnetic quantum XXZ spin chains with couplings following two-letter aperiodic sequences, by an adaptation of the Ma-Dasgupta-Hu renormalization-group method. For a given aperiodic sequence, we argue that, in the easy-plane anisotropy regime, intermediate between the XX and Heisenberg limits, the general scaling form of the thermodynamic properties is essentially given by the exactly known XX behavior, providing a classification of the effects of aperiodicity on XXZ chains. As representative illustrations, we present analytical and numerical results for the low-temperature thermodynamics and the ground-state correlations for couplings following the Fibonacci quasiperiodic structure and a binary Rudin-Shapiro sequence, whose geometrical fluctuations are similar to those induced by randomness.

  6. Space charge effects in the SSC Low Energy Booster

    SciTech Connect

    Machida, S.; Bourianoff, G.; Mahale, N.K.; Mehta, N.; Pilat, F.; Talman, R.; York, R.C.

    1991-05-01

    By means of multi-particle tracking, we explore space charge effects in the Low Energy Booster (LEB) which has a strong requirement for small transverse emittance. Macro-particles are tracked in a self-consistent manner in six dimensional phase space with transverse space charge kicks so that the emittance evolution as well as the particle distribution are simulated as a function of time. Among recent improvements of the code, the longitudinal motion, i.e. synchrotron oscillations as well as acceleration, makes it possible to simulate the capture process of linac microbunches. The code was calibrated by comparing with the experimental results at the Fermilab Booster. Preliminary results of the LEB show slow emittance growth due to the space charge. 5 refs., 5 figs., 1 tab.

  7. Advanced satellite sensors: Low Energy Neutral Atom (LENA) imager

    SciTech Connect

    Funsten, H.O.; McComas, D.J.

    1996-09-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Imaging of low energy neutral atoms (LENDs) created by electron capture by magnetospheric plasma ions from interactions with cold geocoronal neutrals promises to be a revolutionary technique for providing unprecedented information about the global structure and dynamics of the terrestrial magnetosphere. This has significant implications in space weather forecasting, weather-induced satellite upset diagnostics, and revolutionary insights into global magnetospheric physics. The Los Alamos Space and Atmospheric Sciences Group has completed extensive neutral atom simulations and detailed instrument definition, and we designed a proof-of-concept demonstration prototype and have obtained externally- funded programs for full instrument development

  8. Spectroscopy of low energy solar neutrinos by MOON

    NASA Astrophysics Data System (ADS)

    Hazama, R.; Doe, P.; Ejiri, H.; Elliott, S. R.; Engel, J.; Finger, M.; Formaggio, J. A.; Fushimi, K.; Gehman, V.; Gorin, A.; Greenfield, M.; Ichihara, K.; Ikegami, Y.; Ishii, H.; Itahashi, T.; Kavitov, P.; Kekelidze, V.; Kuroda, K.; Kutsalo, V.; Manouilov, I.; Matsuoka, K.; Nakamura, H.; Nomachi, M.; Para, A.; Rielage, K.; Rjazantsev, A.; Robertson, R. G. H.; Shichijo, Y.; Shima, T.; Shimada, Y.; Shirkov, G.; Sissakian, A.; Sugaya, Y.; Titov, A.; Vatulin, V.; Vilches, O. E.; Voronov, V.; Wilkerson, J. F.; Will, D. I.; Yoshida, S.

    2005-01-01

    The MOON (Molybdenum Observatory Of Neutrinos) project aims at high sensitive studies of the double beta (ββ) decays with sensitivity to Majorana ν mass of the order of ˜0.03 eV and the charged-current (CC) neutrino spectroscopy of the major components of the pp and 7Be solar ν's. The present status of MOON for the low energy solar ν experiment is briefly discussed. The inverse β rays from solar-ν captures of 100Mo are measured in delayed coincidence with the subsequent β decay of 100Tc. MOON's exclusive CC value by 7Be solar ν, together with the GNO CC data, will provide the pp solar ν flux with good accuracy.

  9. Bluetooth low energy: wireless connectivity for medical monitoring.

    PubMed

    Omre, Alf Helge

    2010-03-01

    Electronic wireless sensors could cut medical costs by enabling physicians to remotely monitor vital signs such as blood pressure, blood glucose, and blood oxygenation while patients remain at home. According to the IDC report "Worldwide Bluetooth Semiconductor 2008-2012 Forecast," published November 2008, a forthcoming radio frequency communication ("wireless connectivity") standard, Bluetooth low energy, will link wireless sensors via radio signals to the 70% of cell phones and computers likely to be fitted with the next generation of Bluetooth wireless technology, leveraging a ready-built infrastructure for data transmission. Analysis of trends indicated by this data can help physicians better manage diseases such as diabetes. The technology also addresses the concerns of cost, compatibility, and interoperability that have previously stalled widespread adoption of wireless technology in medical applications.

  10. Modeling of human movement monitoring using Bluetooth Low Energy technology.

    PubMed

    Mokhtari, G; Zhang, Q; Karunanithi, M

    2015-01-01

    Bluetooth Low Energy (BLE) is a wireless communication technology which can be used to monitor human movements. In this monitoring system, a BLE signal scanner scans signal strength of BLE tags carried by people, to thus infer human movement patterns within its monitoring zone. However to the extent of our knowledge one main aspect of this monitoring system which has not yet been thoroughly investigated in literature is how to build a sound theoretical model, based on tunable BLE communication parameters such as scanning time interval and advertising time interval, to enable the study and design of effective and efficient movement monitoring systems. In this paper, we proposed and developed a statistical model based on Monte-Carlo simulation, which can be utilized to assess impacts of BLE technology parameters in terms of latency and efficiency, on a movement monitoring system, and can thus benefit a more efficient system design.

  11. Flux tube spectra from approximate integrability at low energies

    NASA Astrophysics Data System (ADS)

    Dubovsky, S.; Flauger, R.; Gorbenko, V.

    2015-03-01

    We provide a detailed introduction to a method we recently proposed for calculating the spectrum of excitations of effective strings such as QCD flux tubes. The method relies on the approximate integrability of the low-energy effective theory describing the flux tube excitations and is based on the thermodynamic Bethe ansatz. The approximate integrability is a consequence of the Lorentz symmetry of QCD. For excited states, the convergence of the thermodynamic Bethe ansatz technique is significantly better than that of the traditional perturbative approach. We apply the new technique to the lattice spectra for fundamental flux tubes in gluodynamics in D = 3 + 1 and D = 2 + 1, and to k-strings in gluodynamics in D = 2 + 1. We identify a massive pseudoscalar resonance on the worldsheet of the confining strings in SU(3) gluodynamics in D = 3 + 1, and massive scalar resonances on the worldsheet of k = 2.3 strings in SU(6) gluodynamics in D = 2 + 1.

  12. Low-energy Coulomb excitation of Sr,9896 beams

    NASA Astrophysics Data System (ADS)

    Clément, E.; Zielińska, M.; Péru, S.; Goutte, H.; Hilaire, S.; Görgen, A.; Korten, W.; Doherty, D. T.; Bastin, B.; Bauer, C.; Blazhev, A.; Bree, N.; Bruyneel, B.; Butler, P. A.; Butterworth, J.; Cederkäll, J.; Delahaye, P.; Dijon, A.; Ekström, A.; Fitzpatrick, C.; Fransen, C.; Georgiev, G.; Gernhäuser, R.; Hess, H.; Iwanicki, J.; Jenkins, D. G.; Larsen, A. C.; Ljungvall, J.; Lutter, R.; Marley, P.; Moschner, K.; Napiorkowski, P. J.; Pakarinen, J.; Petts, A.; Reiter, P.; Renstrøm, T.; Seidlitz, M.; Siebeck, B.; Siem, S.; Sotty, C.; Srebrny, J.; Stefanescu, I.; Tveten, G. M.; Van de Walle, J.; Vermeulen, M.; Voulot, D.; Warr, N.; Wenander, F.; Wiens, A.; De Witte, H.; Wrzosek-Lipska, K.

    2016-11-01

    The structure of neutron-rich Sr,9896 nuclei was investigated by low-energy safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN, with the MINIBALL spectrometer. A rich set of transitional and diagonal E 2 matrix elements, including those for non-yrast structures, has been extracted from the differential Coulomb-excitation cross sections. The results support the scenario of a shape transition at N =60 , giving rise to the coexistence of a highly deformed prolate and a spherical configuration in 98Sr, and are compared to predictions from several theoretical calculations. The experimental data suggest a significant contribution of the triaxal degree of freedom in the ground state of both isotopes. In addition, experimental information on low-lying states in 98Rb has been obtained.

  13. Low energy electron collisions with He 2+ molecules

    NASA Astrophysics Data System (ADS)

    McLaughlin, B. M.; Gillan, C. J.; Burke, P. G.; Dahler, J. S.

    1991-04-01

    The R-matrix method is used in an ab initio study of low energy elastic scattering by He 2+ molecular ions. SCF and correlated CI wavefunctions have been used in a two state approximation, which retains the lowest two states, 2∑ u+ and 2∑ g+, of the He 2+ molecular ion in the scattering basis. Cross section calculations have been performed at two fixed internuclear separations, 1.8 and 2.0625 a0. At the equilibrium bond separation we have detected and fitted the lowest lying n pσ 3Σ u+ resonances in the 3Σ +u scattering symmetry. In addition, bound state calculations have also been carried out for the He 2 (1 σg+1 σu2s a 3Σu+) state at these two internuclear separations and are seen to compare favorably with MCSCF and SOCI results.

  14. Linac4 low energy beam measurements with negative hydrogen ions

    NASA Astrophysics Data System (ADS)

    Scrivens, R.; Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T.

    2014-02-01

    Linac4, a 160 MeV normal-conducting H- linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H- beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  15. Linac4 low energy beam measurements with negative hydrogen ions

    SciTech Connect

    Scrivens, R. Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T.

    2014-02-15

    Linac4, a 160 MeV normal-conducting H{sup −} linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H{sup −} beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  16. ECR Based Low Energy Ion Beam Facility at VECC, Kolkata

    NASA Astrophysics Data System (ADS)

    Taki, G. S.; Chakraborty, D. K.; Ghosh, Subhash; Majhi, S.; Pal, Gautam; Mallik, C.; Bhandari, R. K.; Krishna, J. B. M.; Dey, K.; Sinha, A. K.

    2012-11-01

    A low energy heavy ion irradiation/implantation facility has been developed at VECC, Kolkata for materials science and atomic physics research, utilizing indigenously developed 6.4 GHz ECR ion source. The facility provides high charge state ion beams of N, O, Ne, Ar, S, Kr, Xe, Fe, Ti, Hf etc. up to a few micro amperes to an energy of 10 keV per charge state.The beam energy can be further enhanced by floating the target at a negative potential (up to 25 kV). The ion beam is focused to a spot of about 2 mm diameter on the target using a set of glaser lenses. A x-y scanner is used to scan the beam over a target area of 10 mm x 10 mm to obtain uniform implantation. The recently commissioned multi facility sample chamber has provision for mounting multiple samples on indigenously developed disposable beam viewers for insitu beam viewing during implantation. The ionization chamber of ECR source is mainly pumped by ECR plasma. An additional pumping speed has been provided through extraction hole and pumping slots to obtain low base pressure. In the ion source, base pressure of 1x10-7 Torr in injector stage and ~5x10-8 Torr in extraction chamber have been routinely obtained. The ultra-high vacuum multi facility experimental chamber is generally kept at ~ 1x10-7 Torr during implantation on the targets. This facility is a unique tool for studying fundamental and technologically important problems of materials science and atomic physics research. High ion flux available from this machine is suitable for generating high defect densities i.e. high value of displacement-per-atom (dpa). Recently this facility has been used for studies like "Tunability of dielectric constant of conducting polymer Polyaniline (PANI) by low energy Ar9+ irradiation" and "Fe10+ implantation in ZnO for synthesis of dilute magnetic semiconductor".

  17. Low-Energy Impacts onto Lunar Regolith Simulant

    NASA Astrophysics Data System (ADS)

    Seward, Laura M.; Colwell, J.; Mellon, M.; Stemm, B.

    2012-10-01

    Low-Energy Impacts onto Lunar Regolith Simulant Laura M. Seward1, Joshua E. Colwell1, Michael T. Mellon2, and Bradley A. Stemm1, 1Department of Physics, University of Central Florida, Orlando, Florida, 2Southwest Research Institute, Boulder, Colorado. Impacts and cratering in space play important roles in the formation and evolution of planetary bodies. Low-velocity impacts and disturbances to planetary regolith are also a consequence of manned and robotic exploration of planetary bodies such as the Moon, Mars, and asteroids. We are conducting a program of laboratory experiments to study low-velocity impacts of 1 to 5 m/s into JSC-1 lunar regolith simulant, JSC-Mars-1 Martian regolith simulant, and silica targets under 1 g. We use direct measurement of ejecta mass and high-resolution video tracking of ejecta particle trajectories to derive ejecta mass velocity distributions. Additionally, we conduct similar experiments under microgravity conditions in a laboratory drop tower and on parabolic aircraft with velocities as low as 10 cm/s. We wish to characterize and understand the collision parameters that control the outcome of low-velocity impacts into regolith, including impact velocity, impactor mass, target shape and size distribution, regolith depth, target relative density, and crater depth, and to experimentally determine the functional dependencies of the outcomes of low-velocity collisions (ejecta mass and ejecta velocities) on the controlling parameters of the collision. We present results from our ongoing study showing the positive correlation between impact energy and ejecta mass. The total ejecta mass is also dependent on the packing density (porosity) of the regolith. We find that ejecta mass velocity fits a power-law or broken power-law distribution. Our goal is to understand the physics of ejecta production and regolith compaction in low-energy impacts and experimentally validate predictive models for dust flow and deposition. We will present our

  18. Low energy ion beam dynamics of NANOGAN ECR ion source

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  19. Restrained dark U (1 )d at low energies

    NASA Astrophysics Data System (ADS)

    Correia, Fagner C.; Fajfer, Svjetlana

    2016-12-01

    We investigate a spontaneously broken U (1 )d gauge symmetry with a muon-specific dark Higgs. Our first goal is to verify how the presence of a new dark Higgs, ϕ , and a dark gauge boson, V , can simultaneously face the anomalies from the muon magnetic moment and the proton charge radius. Second, by assuming that V must decay to an electron-positron pair, we explore the corresponding parameter space determined with the low-energy constraints coming from K →μ X , electron (g -2 )e, K →μ νμe+e-, K →μ νμμ+μ-, and τ →ντμ νμe+e-. We focus on the scenario where the V mass is below ˜2 mμ and the ϕ mass runs from few MeV to 250 MeV, with V -photon mixing of the order ˜O (10-3). Among weak process at low energies, we check the influence of the new light vector on kaon decays as well as on the scattering e+e-→μ+μ-e+e- and discuss the impact of the dark Higgs on e+e-→μ+μ-μ+μ-. Finally, we consider contributions of the V -photon mixing in the decays π0→γ e+e-, η →γ e+e-, ρ →π e+e-, K*→K e+e-, and ϕ (1020 )→η e+e-.

  20. Detection of cold gas releases in space via low energy neutral atom imaging

    SciTech Connect

    McComas, D.J.; Funsten, H.O.; Moore, K.R.; Scime, E.E.; Thomsen, M.F.

    1993-01-01

    Low energy neutral atoms (LENAs) are produced in space plasmas by charge exchange between the ambient magnetospheric plasma ions and cold neutral atoms. Under normal conditions these cold neutrals come from the terrestrial geocorona, a shroud of few-ev hydrogen atoms surrounding the Earth. As a consequence of this charge exchange, it has become possible to remotely image many regions of the magnetosphere for the first time utilizing recently developed LENA imaging technology. In addition to the natural hydrogen geocorona, conventional explosions and maneuvering thruster firings can also introduce large amounts of cold gas into the space environment. In this paper we examine whether such potentially clandestine activities could also be remotely observed for the first time via LENA imaging. First, we examine the fluxes of LENAs produced in the space environment from a conventional explosion. Then we review the present state of the art in the emerging field of LENA detection and imaging. Recent work has shown that LENAs can be imaged by first converting the neutrals to ions with ultra-thin (10s of [Angstrom]) foils and then electrostatically analyzing these newly created ions to reject the large (>10[sup 10] cm[sup [minus]2] [sup [minus]1]) UV background to which the low energy detectors are sensitive. We conclude that the sensitivities for present LENA imager designs may be just adequate for detecting some man-made releases. With additional improvements in LENA detection capabilities, this technique could become an important new method for monitoring for conventional explosions, as well as other man-made neutral releases, in the space environment.

  1. Detection of cold gas releases in space via low energy neutral atom imaging

    SciTech Connect

    McComas, D.J.; Funsten, H.O.; Moore, K.R.; Scime, E.E.; Thomsen, M.F.

    1993-04-01

    Low energy neutral atoms (LENAs) are produced in space plasmas by charge exchange between the ambient magnetospheric plasma ions and cold neutral atoms. Under normal conditions these cold neutrals come from the terrestrial geocorona, a shroud of few-ev hydrogen atoms surrounding the Earth. As a consequence of this charge exchange, it has become possible to remotely image many regions of the magnetosphere for the first time utilizing recently developed LENA imaging technology. In addition to the natural hydrogen geocorona, conventional explosions and maneuvering thruster firings can also introduce large amounts of cold gas into the space environment. In this paper we examine whether such potentially clandestine activities could also be remotely observed for the first time via LENA imaging. First, we examine the fluxes of LENAs produced in the space environment from a conventional explosion. Then we review the present state of the art in the emerging field of LENA detection and imaging. Recent work has shown that LENAs can be imaged by first converting the neutrals to ions with ultra-thin (10s of {Angstrom}) foils and then electrostatically analyzing these newly created ions to reject the large (>10{sup 10} cm{sup {minus}2} {sup {minus}1}) UV background to which the low energy detectors are sensitive. We conclude that the sensitivities for present LENA imager designs may be just adequate for detecting some man-made releases. With additional improvements in LENA detection capabilities, this technique could become an important new method for monitoring for conventional explosions, as well as other man-made neutral releases, in the space environment.

  2. Low energy X-ray spectra measured with a mercuric iodide energy dispersive spectrometer in a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Dabrowski, A. J.; Huth, G. C.; Bradley, J. G.; Conley, J. M.

    1986-01-01

    A mercuric iodide energy dispersive X-ray spectrometer, with Peltier cooling provided for the detector and input field effect transistor, has been developed and tested in a scanning electron microscope. X-ray spectra were obtained with the 15 keV electron beam. An energy resolution of 225 eV (FWHM) for Mn-K(alpha) at 5.9 keV and 195 eV (FWHM) for the Mg-K line at 1.25 keV has been measured. Overall system noise level was 175 eV (FWHM). The detector system characterization with a carbon target demonstrated good energy sensitivity at low energies and lack of significant spectral artifacts at higher energies.

  3. White paper on nuclear astrophysics and low-energy nuclear physics, Part 2: Low-energy nuclear physics

    DOE PAGES

    Carlson, Joe; Carpenter, Michael P.; Casten, Richard; ...

    2017-05-01

    In preparation for the 2015 NSAC Long Range Plan (LRP), the DNP town meetings on Nuclear Astrophysics and Low-Energy Nuclear Physics were held at the Mitchell Center on the campus of Texas A&M University August 21–23, 2014. Participants met in a number of topic-oriented working groups to discuss progress since the 2007 LRP, compelling science opportunities, and the resources needed to advance them. These considerations were used to determine priorities for the next five to ten years. In addition, approximately 270 participants attended the meetings, coming from US national laboratories, a wide range of US universities and other research institutionsmore » and universities abroad.« less

  4. Absolute calorimetric calibration of low energy brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Stump, Kurt E.

    In the past decade there has been a dramatic increase in the use of permanent radioactive source implants in the treatment of prostate cancer. A small radioactive source encapsulated in a titanium shell is used in this type of treatment. The radioisotopes used are generally 125I or 103Pd. Both of these isotopes have relatively short half-lives, 59.4 days and 16.99 days, respectively, and have low-energy emissions and a low dose rate. These factors make these sources well suited for this application, but the calibration of these sources poses significant metrological challenges. The current standard calibration technique involves the measurement of ionization in air to determine the source air-kerma strength. While this has proved to be an improvement over previous techniques, the method has been shown to be metrologically impure and may not be the ideal means of calbrating these sources. Calorimetric methods have long been viewed to be the most fundamental means of determining source strength for a radiation source. This is because calorimetry provides a direct measurement of source energy. However, due to the low energy and low power of the sources described above, current calorimetric methods are inadequate. This thesis presents work oriented toward developing novel methods to provide direct and absolute measurements of source power for low-energy low dose rate brachytherapy sources. The method is the first use of an actively temperature-controlled radiation absorber using the electrical substitution method to determine total contained source power of these sources. The instrument described operates at cryogenic temperatures. The method employed provides a direct measurement of source power. The work presented here is focused upon building a metrological foundation upon which to establish power-based calibrations of clinical-strength sources. To that end instrument performance has been assessed for these source strengths. The intent is to establish the limits of

  5. Low-energy Model for Strongly Correlated Oxides

    NASA Astrophysics Data System (ADS)

    Liu, Shiu

    We provide a detailed derivation of the low-energy model for site-diluted strongly correlated oxides, an example being Zn-diluted La2CuO 4, in the limit of low doping together with a study of the ground-state properties of that model. The generally complicated Hamiltonian on the energy scale of the most relevant atomic orbitals is systematically downfolded to an effective model containing only spin-spin interactions using several techniques. In our study, beginning with the site-diluted three-band Hubbard model for La2ZnxCu(1- x)O4, we first determine the hybridized electronic states of CuO4 and ZnO4 plaquettes within the CuO2 planes utilizing Wannier-orthogonalization of oxygen orbitals and cell-perturbation of the Hamiltonian of each plaquett. Qualitatively, we find that the hybridization of zinc and oxygen orbitals can result in an impurity state with the energy epsilon, which is lower than the effective Hubbard gap U. Then we apply canonical transformation in the limit of the effective hopping integral t << epsilon, U, to obtain the low-energy, spin-only Hamiltonian, which includes terms of the order t2/U, t4/epsilon3, and t 4/Uepsilon2. In other words, besides the usual diluted nearest-neighbor superexchange J-terms of order t2/U, the low-energy model contains impurity-mediated, further-neighbor frustrating interactions among the Cu spins surrounding Zn-sites in an otherwise unfrustrated antiferromagnetic background. These terms, denoted as J'Zn and J''Zn , are of order t4/epsilon3 and can be substantial when epsilon ˜ U/2, the latter value corresponding to the realistic CuO2 parameters. The other further-neighbor Cu spin interactions are of order t 4/U3, which are neglected in both pure and diluted systems, because they are much lesser than J'Zn and J''Zn and independent of impurity concentration. In order to verify this spin-only model, we subsequently apply the T-matrix approach to study the effect of impurities on the antiferromagnetic order parameter

  6. In-medium nuclear interactions of low-energy hadrons

    NASA Astrophysics Data System (ADS)

    Friedman, E.; Gal, A.

    2007-11-01

    Exotic atoms provide a unique laboratory for studying strong interactions and nuclear medium effects at zero kinetic energy. Experimental and theoretical developments of the last decade in the study of exotic atoms and some related low-energy reactions are reviewed. The exotic atoms considered are of π-,K-,pbar,Σ-, and also the so far unobserved Ξ- atoms. The analysis of these atomic systems consists of fitting density-dependent optical potentials Vopt=t(ρ)ρ to comprehensive sets of data of strong-interaction level shifts, widths and yields across the periodic table. These provide information on the in-medium hadron-nucleon t matrix t(ρ) over a wide range of densities up to central nuclear densities. For pions, the review focuses on the extraction of the πN in-medium s-wave interaction from pionic atoms, which include also the deeply bound π- atomic states recently observed at GSI in isotopes of Sn and Pb. Also included are recent measurements at PSI of elastic scattering of π± on Si, Ca, Ni and Zr at 21.5 MeV. The experimental results are analyzed in the context of chirally motivated π-nuclear potentials, and the evidence for partial restoration of chiral symmetry in dense nuclear matter is critically discussed. For antikaons, we review the evidence from K- atoms, and also from low-energy K-p scattering and reaction data for and against a deepKbar-nucleus potential of 150-200 MeV attraction at nuclear matter density. The case for relatively narrow deeply bound K-atomic states is made, essentially independent of the potential-depth issue. Recent experimental suggestions from KEK and DA ΦNE (Frascati) for signals of Kbar-nuclear deeply bound states are reviewed, and dynamical models for calculating binding energies and widths of Kbar- nuclear states are discussed. For kaons we review the evidence, from K+ total and reaction cross section measurements at the AGS (BNL) on Li, C, Si and Ca at plab=500-700 MeV/c, for significant absorptivity of t

  7. Low-energy theory for the graphene twist bilayer

    NASA Astrophysics Data System (ADS)

    Weckbecker, D.; Shallcross, S.; Fleischmann, M.; Ray, N.; Sharma, S.; Pankratov, O.

    2016-01-01

    The graphene twist bilayer represents the prototypical system for investigating the stacking degree of freedom in few-layer graphenes. The electronic structure of this system changes qualitatively as a function of angle, from a large-angle limit in which the two layers are essentially decoupled—with the exception of a 28-atom commensuration unit cell for which the layers are coupled on an energy scale of ≈8 meV —to a small-angle strong-coupling limit. Despite sustained investigation, a fully satisfactory theory of the twist bilayer remains elusive. The outstanding problems are (i) to find a theoretically unified description of the large- and small-angle limits, and (ii) to demonstrate agreement between the low-energy effective Hamiltonian and, for instance, ab initio or tight-binding calculations. In this article, we develop a low-energy theory that in the large-angle limit reproduces the symmetry-derived Hamiltonians of Mele [Phys. Rev. B 81, 161405 (2010), 10.1103/PhysRevB.81.161405], and in the small-angle limit shows almost perfect agreement with tight-binding calculations. The small-angle effective Hamiltonian is that of Bistritzer and MacDonald [Proc. Natl. Acad. Sci. (U.S.A.) 108, 12233 (2011), 10.1073/pnas.1108174108], but with the momentum scale Δ K , the difference of the momenta of the unrotated and rotated special points, replaced by a coupling momentum scale g(c )=8/π √{3 }a sinθ/2 . Using this small-angle Hamiltonian, we are able to determine the complete behavior as a function of angle, finding a complex small-angle clustering of van Hove singularities in the density of states (DOS) that after a "zero-mode" peak regime between 0 .90°<θ <0 .15° limits θ <0 .05° to a DOS that is essentially that of a superposition DOS of all bilayer stacking possibilities. In this regime, the Dirac spectrum is entirely destroyed by hybridization for -0.25

  8. Study on astrophysical reactions using low-energy RI beams

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hidetoshi

    2009-10-01

    In recent years, low-energy RI beams can be produced in a good intensity and they have been used for studying many astrophysical reactions. One of the facilities producing low-energy RI beams is CRIB (CNS Radio-Isotope Beam separator) [1,2], an RI-beam separator of Center for Nuclear Study, University of Tokyo. Taking CRIB as an example, recent improvements on the RI-beam production and experimental results on astrophysical studies are presented. Several experimental approaches have been taken for the studies on astrophysical reactions.The feature of each method are discussed based on real measurements performed at CRIB. One is the direct method, applied for measurements of reactions such as (α,p) [3]. Another is the measurement of proton/alpha resonance scattering using the thick target method in inverse kinematics, by which we can obtain information on the resonances relevant in astrophysical reactions [4,5]. A recent fruitful result was from a measurement of proton resonance scattering using a ^7Be beam [5]. The energy level structure of ^8B, revealed by the experiment, is especially of interest as it is related with the ^7Be(p,γ) ^8B reaction, responsible for the production of ^8B neutrinos in the sun. We successfully determined parameters of resonances in ^8B below 6.7 MeV, which may affect the ^7Be(p,γ)^8B reaction rate at the solar temparature. Indirect methods, such as ANC and the Trojan Horse Method, were also used in some of the measurements.[4pt] [1] S. Kubono et al., Eur. Phys. J. A13 (2002) 217.[0pt] [2] Y. Yanagisawa et al., Nucl. Instrum. Meth. Phys. Res., Sect. A 539 (2005) 74.[0pt] [3] M. Notani et al., Nucl. Phys. A 764 (2004) 113c.[0pt] [4] T. Teranishi et al., Phys. Lett. B 650 (2007) 129.[0pt] [5] H. Yamaguchi et al., Phys. Lett. B 672 (2009) 230.

  9. Testing SO(10)-inspired leptogenesis with low energy neutrino experiments

    SciTech Connect

    Bari, Pasquale Di; Riotto, Antonio E-mail: Antonio.Riotto@cern.ch

    2011-04-01

    We extend the results of a previous analysis of ours showing that, when both heavy and light flavour effects are taken into account, successful minimal (type I + thermal) leptogenesis with SO(10)-inspired relations is possible. Barring fine tuned choices of the parameters, these relations enforce a hierarchical RH neutrino mass spectrum that results into a final asymmetry dominantly produced by the next-to-lightest RH neutrino decays (N{sub 2} dominated leptogenesis). We present the constraints on the whole set of low energy neutrino parameters. Allowing a small misalignment between the Dirac basis and the charged lepton basis as in the quark sector, the allowed regions enlarge and the lower bound on the reheating temperature gets relaxed to values as low as ∼ 10{sup 10} GeV. It is confirmed that for normal ordering (NO) there are two allowed ranges of values for the lightest neutrino mass: m{sub 1} ≅ (1−5) × 10{sup −3} eV and m{sub 1} ≅ (0.03−0.1) eV. For m{sub 1}∼<0.01 eV the allowed region in the plane θ{sub 13}-θ{sub 23} is approximately given by θ{sub 23}∼<49°+0.65 (θ{sub 13}−5°), while the neutrinoless double beta decay effective neutrino mass falls in the range m{sub ee} = (1−3) × 10{sup −3} eV for θ{sub 13} = (6°−11.5°). For m{sub 1}∼>0.01 eV, one has quite sharply m{sub ee} ≅ m{sub 1} and an upper bound θ{sub 23}∼<46°. These constraints will be tested by low energy neutrino experiments during next years. We also find that inverted ordering (IO), though quite strongly constrained, is not completely ruled out. In particular, we find approximately θ{sub 23} ≅ 43°+12° log (0.2 eV/m{sub 1}), that will be fully tested by future experiments.

  10. Low-energy photons in high-energy photon fields--Monte Carlo generated spectra and a new descriptive parameter.

    PubMed

    Chofor, Ndimofor; Harder, Dietrich; Willborn, Kay; Rühmann, Antje; Poppe, Björn

    2011-09-01

    The varying low-energy contribution to the photon spectra at points within and around radiotherapy photon fields is associated with variations in the responses of non-water equivalent dosimeters and in the water-to-material dose conversion factors for tissues such as the red bone marrow. In addition, the presence of low-energy photons in the photon spectrum enhances the RBE in general and in particular for the induction of second malignancies. The present study discusses the general rules valid for the low-energy spectral component of radiotherapeutic photon beams at points within and in the periphery of the treatment field, taking as an example the Siemens Primus linear accelerator at 6 MV and 15 MV. The photon spectra at these points and their typical variations due to the target system, attenuation, single and multiple Compton scattering, are described by the Monte Carlo method, using the code BEAMnrc/EGSnrc. A survey of the role of low energy photons in the spectra within and around radiotherapy fields is presented. In addition to the spectra, some data compression has proven useful to support the overview of the behaviour of the low-energy component. A characteristic indicator of the presence of low-energy photons is the dose fraction attributable to photons with energies not exceeding 200 keV, termed P(D)(200 keV). Its values are calculated for different depths and lateral positions within a water phantom. For a pencil beam of 6 or 15 MV primary photons in water, the radial distribution of P(D)(200 keV) is bellshaped, with a wide-ranging exponential tail of half value 6 to 7 cm. The P(D)(200 keV) value obtained on the central axis of a photon field shows an approximately proportional increase with field size. Out-of-field P(D)(200 keV) values are up to an order of magnitude higher than on the central axis for the same irradiation depth. The 2D pattern of P(D)(200 keV) for a radiotherapy field visualizes the regions, e.g. at the field margin, where changes of

  11. Low-energy neutral-atom imaging techniques

    NASA Astrophysics Data System (ADS)

    Funsten, Herbert O.; McComas, David J.; Scime, Earl E.

    1993-07-01

    The potential scientific return from low energy neutral atom (LENA) imaging of the magnetosphere is extraordinary. The technical challenges of LENA detection include (1) removal of LENAs from the tremendous ambient UV without losing information of their incident trajectories, (2) quantification of their trajectories, and (3) obtaining high sensitivity measurements. Two techniques that have been proposed for this purpose are based on fundamentally different atomic interaction mechanisms between LENAs and a solid: LENA transmission through an ultrathin foil and LENA reflection from a solid surface. Both of these methods provide LENA ionization (for subsequent removal from the UV by electrostatic deflection) and secondary electron emission (for start pulse generation for time-of-flight and/or coincidence). We present a comparative study of the transmission and reflection techniques based on differences in atomic interactions with solids and surfaces. We show that transmission yield an order of magnitude greater secondary electron emission than reflection methods. Transmission methods are shown to be sufficient for LEAN energies of approximately 1 keV to greater than 30 keV.

  12. Symmetry Energy Effects on Low Energy Dissipative Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Rizzo, C.; Baran, V.; Colonna, M.; Di Toro, M.; Odsuren, M.

    2011-02-01

    We investigate the reaction path followed by Heavy Ion Collisions with exotic nuclear beams at low energies. We focus on the interplay between reaction mechanisms, fusion vs. break-up (fast-fission, deep-inelastic), that in exotic systems is expected to be influenced by the symmetry energy term at densities around the normal value. The method described here, based on the event by event evolution of phase space quadrupole collective modes, will nicely allow to extract the fusion probability at relatively early times, when the transport results are reliable. Fusion probabilities for reactions induced by 132Sn on 64,58Ni targets at 10 AMeV are evaluated. We obtain larger fusion cross sections for the more n-rich composite system, and, for a given reaction, with a soft symmetry term above saturation. A collective charge equilibration mechanism (the Dynamical Dipole Resonance, DDR) is revealed in both fusion and break-up events, depending on the stiffness of the symmetry term just below saturation. Finally we investigate the effect of the mass asymmetry in the entrance channel for systems with the same overall isospin content and similar initial charge asymmetry. As expected we find reduced fusion probabilities for the more mass symmetric case, while the DDR strength appears not much affected. This is a nice confirmation of the prompt nature of such collective isovector mode.

  13. Seeking to Improve Low Energy Neutral Atom Detection in Space

    NASA Technical Reports Server (NTRS)

    Shappirio, M.; Coplan, M.; Chornay, D.; Collier, M.; Herrero, F.; Ogilvie, K.; Williams, E.

    2007-01-01

    The detection of energetic neutral atoms allows for the remote examination of the interactions between plasmas and neutral populations in space. Before these neutral atoms can be measured, they must first be converted to ions. For the low energy end of this spectrum, interaction with a conversion surface is often the most efficient method to convert neutrals into ions. It is generally thought that the most efficient surfaces are low work functions materials. However, by their very nature, these surfaces are highly reactive and unstable, and therefore are not suitable for space missions where conditions cannot be controlled as they are in a laboratory. We therefore are looking to optimize a stable surface for conversion efficiency. Conversion efficiency can be increased either by changing the incident angle of the neutral particles to be grazing incidence and using stable surfaces with high conversion efficiencies. We have examined how to increase the angle of incidence from -80 degrees to -89 degrees, while maintaining or improving the total active conversion surface area without increasing the overall volume of the instrument. We are developing a method to micro-machine silicon, which will reduce the volume to surface area ratio by a factor of 60. We have also examined the material properties that affect the conversion efficiency of the surface for stable surfaces. Some of the parameters we have examined are work function, smoothness, and bond structure. We find that for stable surfaces, the most important property is the smoothness of the surface.

  14. Low-energy fusion caused by an interference

    NASA Astrophysics Data System (ADS)

    Ivlev, Boris

    2013-04-01

    Fusion of two deuterons of room temperature energy is discussed. The nuclei are in vacuum with no connection to any external source(electric or magnetic field, illumination, surrounding matter, traps, etc.) which may accelerate them. The energy of two nuclei is conserved and remains small during the motion through the Coulomb barrier. The penetration through this barrier, which is the main obstacle for low-energy fusion, strongly depends on a form of the incident flux on the Coulomb center at large distances from it. In contrast to the usual scattering, the incident wave is not a single plane wave but the certain superposition of plane waves of the same energy and various directions, for example, a conergent conical wave. The wave function close to the Coulomb center is determined by cusp caustic which is probed by de Broglie waves. The particle flux gets away from the cusp and moves to the Coulomb center providing a not small probability of fusion (cusp driven tunneling). Getting away from a caustic cusp also occurs in optics and acoustics. arXiv:1211.1243

  15. Dynamic MC simulation of low-energy ion implantation

    NASA Astrophysics Data System (ADS)

    Yamamura, Y.

    1999-06-01

    In order to investigate the ion fluence effect in the depth profiles of the dynamic Monte Carlo code, ACAT-DIFFUSE, is applied to the calculation of depth profiles due to low-energy B ion implantation, where 1 and 5 keV B ions are implanted into an amorphized silicon target. As the ion fluence increases, the dopant B atoms are accumulated in solids and the target must be considered as a two-component material composed of the original target atoms and trapped implanted ions. This results in the radiation-induced-diffusion and the self-sputtering of trapped implanted ions. It is found that the peak locations of the dopant B depth profiles at 1 keV B ion bombardment shifted to the surface due to radiation-induced diffusion as ion increased and we observe the near-the-surface enhancement in the dopant B depth profiles due to 5 keV B ion bombardment. The self-sputtering also becomes important with increasing ion fluence. The retention ratios of the implanted B atoms are about 0.89 and 0.94 for 1 and 5 keV B ions, respectively, at 3.0 × 10 13 B ions/cm 2.

  16. Biophysics behavior of acupuncture points irradiated with low energy lasers.

    PubMed

    Moldovan, C

    2007-01-01

    This work describes the Low Energy Laser (LEL) coherent light interaction with the skin cover on acupuncture loci for the purpose of detecting and measuring the spatial and temporal alteration of the thermal, electric and optical properties of the LI4 (HEGU) acupoint, irradiated with a 685 nm, 30 mW, III.B Laser. Novel electrostatic imaging technique, an original Acupuncture 3-D Thermal and Electric Mapping Technique and an original Method for Laser-Skin Reflectance, were used in the study. The results indicate that the visible laser light, with low frequency and low power, specifically modify the 3-D pattern of the temperature, electric potential and electric impedance outline of an acupuncture point, meanwhile with a significant decrease of the laser reflectance index, all measured on a 27 apparently healthy subject lot (48 years mean age, 54% male), when comparing with a non-active, non-acupunctural skin area, placed on the volar side of the same hand. The biophysical method presented, combines in a complex way and reproducible the electro stasis exploration (bioelectric homeostasis), with cutaneous thermodynamic exploration and photo-optical exploration of the derma and provides information that can be appreciated in dynamics and compared depending on the exploration target.

  17. [Progress of low-energy shockwave therapy in clinical application].

    PubMed

    Xin, Zhong-cheng; Liu, Jing; Wang, Lin; Li, Hui-xi

    2013-08-18

    A shock wave is a transient pressure disturbance that propagates rapidly in three-dimensional space. It is associated with a sudden rise from ambient pressure to its maximum pressure. Shock wave therapy in urology is primarily used to disintegrate urolithiasis. Recently, low-energy shock wave therapy (LESWT), which is a novel convenient and cost-effective therapeutic modality, is extended to treat other pathological conditions including coronary heart disease, musculoskeletal disorders and erectile dysfunction. However, the exact therapeutic mechanisms and clinical safety and efficacy of LESWT remain to be investigated. Based on the results of previous studies, it is suggested that LESWT could regulate angiogenesis-related growth factors expression including endothelial nitric oxide synthase (eNOS), vessel endothelial growth factor (VEGF) and proliferating cell nuclear antigen (PCNA), which might induce the ingrowth of neovascularization that improves blood supply and increases cell proliferation and eventual tissue regeneration for restore pathological changes. The further studies on cellular and molecular biological changes by LESWT for clarification its mechanism and clinical safety and efficacy studies are recommended.

  18. Vacancy-Induced Low-Energy States in Undoped Graphene

    NASA Astrophysics Data System (ADS)

    Sanyal, Sambuddha; Damle, Kedar; Motrunich, Olexei I.

    2016-09-01

    We demonstrate that a nonzero concentration nv of static, randomly placed vacancies in graphene leads to a density w of zero-energy quasiparticle states at the band center ɛ =0 within a tight-binding description with nearest-neighbor hopping t on the honeycomb lattice. We show that w remains generically nonzero in the compensated case (exactly equal number of vacancies on the two sublattices) even in the presence of hopping disorder and depends sensitively on nv and correlations between vacancy positions. For low, but not-too-low, |ɛ |/t in this compensated case, we show that the density of states ρ (ɛ ) exhibits a strong divergence of the form ρDyson(ɛ )˜|ɛ |-1/[log (t /|ɛ |)](y+1 ), which crosses over to the universal low-energy asymptotic form (modified Gade-Wegner scaling) expected on symmetry grounds ρGW(ɛ )˜|ɛ |-1e-b [log (t /|ɛ |)]2/3 below a crossover scale ɛc≪t . ɛc is found to decrease rapidly with decreasing nv, while y decreases much more slowly.

  19. Collisions of low-energy electrons with cyclohexane

    SciTech Connect

    Barbosa, Alessandra Souza; Bettega, Márcio H. F.

    2014-12-28

    We report calculated cross sections for elastic scattering of low-energy electrons by cyclohexane (c-C{sub 6}H{sub 12}). We employed the Schwinger multichannel method implemented with norm-conserving pseudopotentials in the static-exchange and static-exchange plus polarization approximations, for impact energies up to 30 eV. We compare our calculated integral cross section with experimental total cross sections available in the literature. We also compare our calculated differential cross sections (DCSs) with experimental results for benzene and experimental and theoretical results for 1,4-dioxane, in order to investigate the similarities between those molecules under electron collisions. Although benzene is a cyclic six-carbon molecule, as cyclohexane, we found that the differential cross sections of the latter are more similar to those of 1,4-dioxane than those of benzene. These similarities suggest that the geometry may play an important role in the behavior of the DCSs of these molecules. Our integral cross section displays a broad structure at around 8.5 eV, in agreement with the total cross section experimental data of 8 eV and vibrational excitation data of 7.5 eV. The present integral cross section also shows the presence of a Ramsauer-Townsend minimum at around 0.12 eV. In general, our integral cross section shows a qualitative agreement with the experimental total cross section.

  20. Very Low Energy Electron Scattering from Ozone and Chlorine Dioxide

    NASA Astrophysics Data System (ADS)

    Gulley, R. J.; Field, T. A.; Steer, W. A.; Mason, N. J.; Ziesel, J. P.; Lunt, S. L.; Field, D.

    1998-10-01

    Total cross-sections are reported for the scattering of electrons from ozone (O_3) and chlorine dioxide (OClO) for energies in the range of 9 meV to 10 eV. The measurements were made in transmission experiments using a synchrotron photoionization apparatus with an energy resolution in the incident electron beam of ~ 3.5 meV (FWHM). The cross section for O3 shows strong rotational scattering at low energy, through the presence of the permanent dipole moment of O_3. Superposed on this strong scattering signal, there is evidence of a weak structure around 50 meV associated with dissociative attachment. A shape resonance, known from earlier work at ~ 4 meV, is also observed. Electron scattering from OClO is dominated by rotationally inelastic scattering decreasing from a peak at essentially zero eV to an energy of 40 meV, where p-wave attachment becomes more important, peaking at 50--60 meV and extending to several hundred meV.

  1. Addressing Kitchen Contaminants for Healthy, Low-Energy Homes

    SciTech Connect

    Stratton, J. Chris; Singer, Brett C.

    2014-01-01

    Cooking and cooking burners emit pollutants that can adversely affect indoor air quality in residences and significantly impact occupant health. Effective kitchen exhaust ventilation can reduce exposure to cooking-related air pollutants as an enabling step to healthier, low-energy homes. This report by Lawrence Berkeley National Laboratory identifies barriers to the widespread adoption of kitchen exhaust ventilation technologies and practice and proposes a suite of strategies to overcome these barriers. The recommendations have been vetted by a group of industry, regulatory, health, and research experts and stakeholders who convened for two meetings and provided input and feedback to early drafts of this document. The most fundamental barriers are (1) the common misconception, based on a sensory perception of risk, that kitchen exhaust when cooking is unnecessary and (2) the lack of a code requirement for kitchen ventilation in most U.S. locations. Highest priority objectives include the following: (1) Raise awareness among the public and the building industry of the need to install and routinely use kitchen ventilation; (2) Incorporate kitchen exhaust ventilation as a requirement of building codes and improve the mechanisms for code enforcement; (3) Provide best practice product and use-behavior guidance to ventilation equipment purchasers and installers, and; (4) Develop test methods and performance targets to advance development of high performance products. A specific, urgent need is the development of an over-the-range microwave that meets the airflow and sound requirements of ASHRAE Standard 62.2.

  2. Review of lattice results concerning low-energy particle physics

    SciTech Connect

    Aoki, S.; Aoki, Y.; Bernard, C.; Blum, T.; Colangelo, G.; Della Morte, M.; Dürr, S.; El-Khadra, A. X.; Fukaya, H.; Horsley, R.; Jüttner, A.; Kaneko, T.; Laiho, J.; Lellouch, L.; Leutwyler, H.; Lubicz, V.; Lunghi, E.; Necco, S.; Onogi, T.; Pena, C.; Sachrajda, C. T.; Sharpe, S. R.; Simula, S.; Sommer, R.; Van de Water, R. S.; Vladikas, A.; Wenger, U.; Wittig, H.

    2014-09-01

    We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0), arising in semileptonic K -> pi transition at zero momentum transfer, as well as the decay constant ratio fK/fpi of decay constants and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)LxSU(2)R and SU(3)LxSU(3)R Chiral Perturbation Theory and review the determination of the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, for this review, we focus on D- and B-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant alpha_s.

  3. Collisions of low-energy electrons with formamide

    NASA Astrophysics Data System (ADS)

    Bettega, Márcio H. F.

    2010-06-01

    We present integral and momentum transfer cross sections for elastic scattering of low-energy electrons by formamide (HCONH2) from 1 to 12 eV. To calculate the cross sections we employed the Schwinger multichannel method with pseudopotentials in the static-exchange and in the static-exchange-polarization approximations. We found a π* shape resonance belonging to the A″ symmetry which is located at around 4.5 eV in the static-exchange approximation, and at around 2.5 eV in the static-exchange-polarization approximation. This result is in close agreement with the observations of Seydou [Eur. Phys. J. DEPJDF61434-606010.1140/epjd/e2005-00089-5 35, 199 (2005)] which reported the value of 2.05 eV to the vertical electron attachment energy, and is lower than the value of 3.77 eV computed by Goumans [J. Chem. Theory Comp.JPCBFK1549-961810.1021/ct800379h 5, 217 (2009)]. We carried out additional minimal basis set electronic structure calculations to help in the interpretation of our results. Our results support the conclusions of Goumans , namely, that this resonance may initiate the indirect dissociation mechanism of formamide by electron impact.

  4. Addressing Kitchen Contaminants for Healthy, Low-Energy Homes

    SciTech Connect

    Stratton, J. Chris; Singer, Brett C.

    2014-01-01

    Cooking and cooking burners emit pollutants that can adversely affect indoor air quality in residences and significantly impact occupant health. Effective kitchen exhaust ventilation can reduce exposure to cooking-related air pollutants as an enabling step to healthier, low-energy homes. This report identifies barriers to the widespread adoption of kitchen exhaust ventilation technologies and practice and proposes a suite of strategies to overcome these barriers. The recommendations have been vetted by a group of industry, regulatory, health, and research experts and stakeholders who convened for two web-based meetings and provided input and feedback to early drafts of this document. The most fundamental barriers are (1) the common misconception, based on a sensory perception of risk, that kitchen exhaust when cooking is unnecessary and (2) the lack of a code requirement for kitchen ventilation in most US locations. Highest priority objectives include the following: (1) Raise awareness among the public and the building industry of the need to install and routinely use kitchen ventilation; (2) Incorporate kitchen exhaust ventilation as a requirement of building codes and improve the mechanisms for code enforcement; (3) Provide best practice product and use-behavior guidance to ventilation equipment purchasers and installers, and; (4) Develop test methods and performance targets to advance development of high performance products. A specific, urgent need is the development of an over-the-range microwave that meets the airflow and sound requirements of ASHRAE Standard 62.2.

  5. Maximum Likelihood Analysis of Low Energy CDMS II Germanium Data

    DOE PAGES

    Agnese, R.

    2015-03-30

    We report on the results of a search for a Weakly Interacting Massive Particle (WIMP) signal in low-energy data of the Cryogenic Dark Matter Search experiment using a maximum likelihood analysis. A background model is constructed using GEANT4 to simulate the surface-event background from Pb210decay-chain events, while using independent calibration data to model the gamma background. Fitting this background model to the data results in no statistically significant WIMP component. In addition, we also perform fits using an analytic ad hoc background model proposed by Collar and Fields, who claimed to find a large excess of signal-like events in ourmore » data. Finally, we confirm the strong preference for a signal hypothesis in their analysis under these assumptions, but excesses are observed in both single- and multiple-scatter events, which implies the signal is not caused by WIMPs, but rather reflects the inadequacy of their background model.« less

  6. Review of lattice results concerning low-energy particle physics

    DOE PAGES

    Aoki, S.; Aoki, Y.; Bernard, C.; ...

    2014-09-01

    We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0), arising in semileptonic K -> pi transition at zero momentum transfer, as well as the decay constant ratio fK/fpi of decay constants and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)LxSU(2)R and SU(3)LxSU(3)R Chiral Perturbation Theory and review the determination ofmore » the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, for this review, we focus on D- and B-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant alpha_s.« less

  7. Evolving landscape of low-energy nuclear physics publications

    SciTech Connect

    Pritychenko, B.

    2016-10-01

    Evolution of low-energy nuclear physics publications over the last 120 years has been analyzed using nuclear physics databases. An extensive study of Nuclear Science References, Experimental Nuclear Reaction Data (EXFOR), and Evaluated Nuclear Structure Data File (ENSDF) contents provides a unique picture of refereed and non-refereed nuclear physics references. Significant fractional contributions of non-refereed reports, private communications and conference proceedings in EXFOR and ENSDF databases in the 1970’s reflect extensive experimental campaigns and an insufficient number of research journals. This trend has been reversed in recent years because the number of measurements is much lower, while number of journals is higher. In addition, nuclear physics results are mainly published in a limited number of journals, such as Physical Review C and Nuclear Physics A. In the present work, historic publication trends and averages have been extracted and analyzed using nuclear data mining techniques. Lastly, the results of this study and implications are discussed and conclusions presented.

  8. Evolving landscape of low-energy nuclear physics publications

    DOE PAGES

    Pritychenko, B.

    2016-10-01

    Evolution of low-energy nuclear physics publications over the last 120 years has been analyzed using nuclear physics databases. An extensive study of Nuclear Science References, Experimental Nuclear Reaction Data (EXFOR), and Evaluated Nuclear Structure Data File (ENSDF) contents provides a unique picture of refereed and non-refereed nuclear physics references. Significant fractional contributions of non-refereed reports, private communications and conference proceedings in EXFOR and ENSDF databases in the 1970’s reflect extensive experimental campaigns and an insufficient number of research journals. This trend has been reversed in recent years because the number of measurements is much lower, while number of journals ismore » higher. In addition, nuclear physics results are mainly published in a limited number of journals, such as Physical Review C and Nuclear Physics A. In the present work, historic publication trends and averages have been extracted and analyzed using nuclear data mining techniques. Lastly, the results of this study and implications are discussed and conclusions presented.« less

  9. A new look at low-energy nuclear reaction research.

    PubMed

    Krivit, Steven B; Marwan, Jan

    2009-10-01

    This paper presents a new look at low-energy nuclear reaction research, a field that has developed from one of the most controversial subjects in science, "cold fusion." Early in the history of this controversy, beginning in 1989, a strong polarity existed; many scientists fiercely defended the claim of new physical effects as well as a new process in which like-charged atomic nuclei overcome the Coulomb barrier at normal temperatures and pressures. Many other scientists considered the entire collection of physical observations-along with the hypothesis of a "cold fusion"--entirely a mistake. Twenty years later, some people who had dismissed the field in its entirety are considering the validity of at least some of the reported experimental phenomena. As well, some researchers in the field are wondering whether the underlying phenomena may be not a fusion process but a neutron capture/absorption process. In 2002, a related tabletop form of thermonuclear fusion was discovered in the field of acoustic inertial confinement fusion. We briefly review some of this work, as well.

  10. Low-energy electron scattering by cellulose and hemicellulose components.

    PubMed

    de Oliveira, Eliane M; da Costa, Romarly F; Sanchez, Sergio d'A; Natalense, Alexandra P P; Bettega, Márcio H F; Lima, Marco A P; Varella, Márcio T do N

    2013-02-07

    We report elastic integral, differential and momentum transfer cross sections for low-energy electron scattering by the cellulose components β-D-glucose and cellobiose (β(1 → 4) linked glucose dimer), and the hemicellulose component β-D-xylose. For comparison with the β forms, we also obtain results for the amylose subunits α-D-glucose and maltose (α(1 → 4) linked glucose dimer). The integral cross sections show double peaked broad structures between 8 eV and 20 eV similar to previously reported results for tetrahydrofuran and 2-deoxyribose, suggesting a general feature of molecules containing furanose and pyranose rings. These broad structures would reflect OH, CO and/or CC σ* resonances, where inspection of low-lying virtual orbitals suggests significant contribution from anion states. Though we do not examine dissociation pathways, these anion states could play a role in dissociative electron attachment mechanisms, in case they were coupled to the long-lived π* anions found in lignin subunits [de Oliveira et al., Phys. Rev. A, 2012, 86, 020701(R)]. Altogether, the resonance spectra of lignin, cellulose and hemicellulose components establish a physical-chemical basis for electron-induced biomass pretreatment that could be applied to biofuel production.

  11. Vacuum polarization corrections to low energy quark effective couplings

    NASA Astrophysics Data System (ADS)

    Paulo, Ademar; Braghin, Fabio L.

    2014-07-01

    In this work corrections to low energy punctual effective quark couplings up to the eighth order are calculated by considering vacuum polarization effects with the scalar quark-antiquark condensate. The departing point is a QCD-based Nambu-Jona-Lasinio model. By separating the quark field into two components, one that condenses and another one for interacting quarks, the former is integrated out with the help of usual auxiliary fields and an effective action in terms of interacting quark fields is found. The scalar auxiliary field reduces to the quark-antiquark condensate in the vacuum and the determinant is expanded in powers of the quark-antiquark bilinears generating chiral invariant effective 2N-quark interactions (N =2,3…). The corresponding coupling constants and effective masses are estimated, and the general trend is that for increasing the effective gluon mass the values of the effective coupling constants decrease. All the values are in good agreement with phenomenological fits.

  12. Low energy, high power hydrogen neutral beam for plasma heating

    SciTech Connect

    Deichuli, P.; Davydenko, V.; Ivanov, A. Mishagin, V.; Sorokin, A.; Stupishin, N.; Korepanov, S.; Smirnov, A.

    2015-11-15

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  13. Molecular ion sources for low energy semiconductor ion implantation (invited)

    SciTech Connect

    Hershcovitch, A.; Gushenets, V. I.; Bugaev, A. S.; Oks, E. M.; Vizir, A.; Yushkov, G. Yu.; Seleznev, D. N.; Kulevoy, T. V.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Dugin, S.; Alexeyenko, O.

    2016-02-15

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.

  14. Review of lattice results concerning low-energy particle physics.

    PubMed

    Aoki, S; Aoki, Y; Bernard, C; Blum, T; Colangelo, G; Della Morte, M; Dürr, S; El-Khadra, A X; Fukaya, H; Horsley, R; Jüttner, A; Kaneko, T; Laiho, J; Lellouch, L; Leutwyler, H; Lubicz, V; Lunghi, E; Necco, S; Onogi, T; Pena, C; Sachrajda, C T; Sharpe, S R; Simula, S; Sommer, R; Van de Water, R S; Vladikas, A; Wenger, U; Wittig, H

    We review lattice results related to pion, kaon, [Formula: see text]- and [Formula: see text]-meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the light-quark masses, the form factor [Formula: see text], arising in semileptonic [Formula: see text] transition at zero momentum transfer, as well as the decay-constant ratio [Formula: see text] of decay constants and its consequences for the CKM matrix elements [Formula: see text] and [Formula: see text]. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of [Formula: see text] and [Formula: see text] Chiral Perturbation Theory and review the determination of the [Formula: see text] parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, we focus here on [Formula: see text]- and [Formula: see text]-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant [Formula: see text].

  15. Low energy electrons and swift ion track structure in PADC

    SciTech Connect

    Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; Champion, Christophe

    2015-05-27

    The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d’Ions Lourds Dans l’Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particular incident energies located on both sides of the Bragg-peak position. Lastly, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.

  16. Electronic excitation of molecular hydrogen by low-energy electrons

    NASA Astrophysics Data System (ADS)

    Hargreaves, Leigh

    2016-09-01

    Molecular hydrogen is the most abundant element in the universe, particularly in interstellar plasmas such as atmospheres of gas giant planets and stars. Electron collision data for hydrogen is critical to interpreting the spectroscopy of interstellar objects, as well as being of applied value for modelling technological plasmas. Hydrogen is also fundamentally interesting, as while highly accurate wave functions for this simple molecule are available, providing an accurate, ab initio, treatment the collision dynamics has proven challenging, on account of the need to have a complete description of channel coupling and polarization effects. To date, no single theoretical approach has been able to replicate experimental results across all transitions and incident energies, while the experimental database that is available is far from complete and not all available measurements are in satisfactory agreement. In this talk, we present differential and integral cross section measurements for electronic excitation cross sections for molecular hydrogen by low-energy electron impact. The data were measured at incident energies below 20eV, using a well-tested crossed beam apparatus and employing a moveable gas source approach to ensure that background contributions to the scattering are accurately accounted for. These measurements are compared with new theoretical results employing the convergent close coupling approach.

  17. Low-energy gamma ray attenuation characteristics of aviation fuels

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Shen, Chih-Ping; Sprinkle, Danny R.

    1990-01-01

    Am241 (59.5 keV) gamma ray attenuation characteristics were investigated in 270 aviation fuel (Jet A and Jet A-1) samples from 76 airports around the world as a part of world wide study to measure the variability of aviation fuel properties as a function of season and geographical origin. All measurements were made at room temperature which varied from 20 to 27 C. Fuel densities (rho) were measured concurrently with their linear attenuation coefficients (mu), thus providing a measure of mass attenuation coefficient (mu/rho) for the test samples. In 43 fuel samples, rho and mu values were measured at more than one room temperature, thus providing mu/rho values for them at several temperatures. The results were found to be independent of the temperature at which mu and rho values were measured. It is noted that whereas the individual mu and rho values vary considerably from airport to airport as well as season to season, the mu/rho values for all samples are constant at 0.1843 + or - 0.0013 cu cm/gm. This constancy of mu/rho value for aviation fuels is significant since a nuclear fuel quantity gauging system based on low energy gamma ray attenuation will be viable throughout the world.

  18. Surface analysis of catalysts by low-energy ion scattering

    NASA Astrophysics Data System (ADS)

    Vanleerdam, Gerrit Cornelis

    1991-01-01

    The characterization of catalyst surfaces using Low Energy Ion Scattering (LEIS) is described. The structure of a catalyst is generally described in conjunction with the different spectroscopic techniques used to characterize them. LEIS is discussed in detail. The importance of the different mechanisms for a number of elements is discussed and related to the total shape of a LEIS spectrum. The consequences for quantitative surface composition analysis are addressed. The absence of signals for tetragonally coordinated cations in the surface of gamma Al2O3 is argued to be due to the preferential exposure of crystallographic planes which contain exclusively octahedral sites. The insight makes it possible to propose a detailed model for the surface structure of gamma Al2O3 and the position of deposited metaloxides there upon. The location of molybdenum strongly depends on the amount deposited and the calcination temperature. The addition of lanthanum making gamma Al2O3 more thermostable is investigated. A series of silica supported molybdenum oxide catalysts is investigated toexplain the remarkable behavior to the selective oxidation of ammonia.

  19. Projectile - Mass asymmetry systematics for low energy incomplete fusion

    NASA Astrophysics Data System (ADS)

    Singh, Pushpendra P.; Yadav, Abhishek; Sharma, Vijay R.; Sharma, Manoj K.; Kumar, Pawan; Sahoo, Rudra N.; Kumar, R.; Singh, R. P.; Muralithar, S.; Singh, B. P.; Bhowmik, R. K.; Prasad, R.

    2015-06-01

    In the present work, low energy incomplete fusion (ICF) in which only a part of projectile fuses with target nucleus has been investigated in terms of various entrance channel parameters. The ICF strength function has been extracted from the analysis of experimental excitation functions (EFs) measured for different projectile-target combinations from near- to well above- barrier energies in 12C,16O(from 1.02Vb to 1.64Vb)+169Tm systems. Experimental EFs have been analysed in the framework statistical model code PACE4 based on the idea of equilibrated compound nucleus decay. It has been found that the value of ICF fraction (FICF) increases with incident projectile energy. A substantial fraction of ICF (FICF ≈ 7 %) has been accounted even at energy as low as ≈ 7.5% above the barrier (at relative velocity νrel ≈0.027) in 12C+169Tm system, and FICF ≈ 10 % at νrel ≈0.014 in 16O+169Tm system. The probability of ICF is discussed in light of the Morgenstern's mass-asymmetry systematics. The value of FICF for 16O+169Tm systems is found to be 18.3 % higher than that observed for 12C+169Tm systems. Present results together with the re-analysis of existing data for nearby systems conclusively demonstrate strong competition of ICF with CF even at slightly above barrier energies, and strong projectile dependence that seems to supplement the Morgenstern's systematics.

  20. Low energy electrons and swift ion track structure in PADC

    NASA Astrophysics Data System (ADS)

    Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; Champion, Christophe

    2015-10-01

    The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d'Ions Lourds Dans l'Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particular incident energies located on both sides of the Bragg-peak position. Finally, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.

  1. Low-energy Cathodoluminescence for (Oxy)Nitride Phosphors

    PubMed Central

    Cho, Yujin; Dierre, Benjamin; Sekiguchi, Takashi; Suehiro, Takayuki; Takahashi, Kohsei; Takeda, Takashi; Xie, Rong-Jun; Yamamoto, Yoshinobu; Hirosaki, Naoto

    2016-01-01

    Nitride and oxynitride (Sialon) phosphors are good candidates for the ultraviolet and visible emission applications. High performance, good stability and flexibility of their emission properties can be achieved by controlling their composition and dopants. However, a lot of work is still required to improve their properties and to reduce the production cost. A possible approach is to correlate the luminescence properties of the Sialon particles with their local structural and chemical environment in order to optimize their growth parameters and find novel phosphors. For such a purpose, the low-voltage cathodoluminescence (CL) microscopy is a powerful technique. The use of electron as an excitation source allows detecting most of the luminescence centers, revealing their luminescence distribution spatially and in depth, directly comparing CL results with the other electron-based techniques, and investigating the stability of their luminescence properties under stress. Such advantages for phosphors characterization will be highlighted through examples of investigation on several Sialon phosphors by low-energy CL. PMID:27911365

  2. A compact, versatile low-energy electron beam ion source

    SciTech Connect

    Zschornack, G.; König, J.; Schmidt, M.; Thorn, A.

    2014-02-15

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  3. A compact, versatile low-energy electron beam ion source.

    PubMed

    Zschornack, G; König, J; Schmidt, M; Thorn, A

    2014-02-01

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  4. Low energy electrons and swift ion track structure in PADC

    DOE PAGES

    Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; ...

    2015-05-27

    The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d’Ions Lourds Dans l’Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particularmore » incident energies located on both sides of the Bragg-peak position. Lastly, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.« less

  5. DISCO: a low-energy multipurpose beamline at synchrotron SOLEIL.

    PubMed

    Giuliani, Alexandre; Jamme, Frédéric; Rouam, Valérie; Wien, Frank; Giorgetta, Jean-Luc; Lagarde, Bruno; Chubar, Oleg; Bac, Stéphane; Yao, Isabelle; Rey, Solène; Herbeaux, Christian; Marlats, Jean-Louis; Zerbib, Daniel; Polack, François; Réfrégiers, Matthieu

    2009-11-01

    DISCO, a novel low-energy beamline covering the spectrum range from the VUV to the visible, has received its first photons at the French synchrotron SOLEIL. In this article the DISCO design and concept of three experimental stations serving research communities in biology and chemistry are described. Emphasis has been put on high flux generation and preservation of polarization at variable energy resolutions. The three experiments include a completely new approach for microscopy and atmospheric pressure experiments as well as a ;classical' synchrotron radiation circular dichroism station. Preliminary tests of the optical design and technical concept have been made. Theoretical predictions of the beam have been compared with the first images produced by the first photons originating from the large-aperture bending-magnet source. Results are also reported concerning the cold finger used to absorb hard X-ray radiation in the central part of the synchrotron beam and to avoid heavy thermal load on the following optics. Wavelength selection using monochromators with different gratings for each experimental set-up as well as beam propagation and conditioning throughout the optical system are detailed. First photons comply very well with the theoretical calculations.

  6. Low-Energy Elastic Electron Scattering by Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Zatsarinny O.; Bartschat, K.; Tayal, S. S.

    2006-01-01

    The B-spline R-matrix method is employed to investigate the low-energy elastic electron scattering by atomic oxygen. Flexible non-orthogonal sets of radial functions are used to construct the target description and to represent the scattering functions. A detailed investigation regarding the dependence of the predicted partial and total cross sections on the scattering model and the accuracy of the target description is presented. The predicted angle-integrated elastic cross sections are in good agreement with experiment, whereas significant discrepancies are found in the angle-differential elastic cross sections near the forward direction. .The near-threshold results are found to strongly depend on the treatment of inner-core short-range correlation effects in the target description, as well as on a proper account of the target polarizability. A sharp increase in the elastic cross sections below 1 eV found in some earlier calculations is judged to be an artifact of an unbalanced description of correlation in the N-electron target structure and the (N+l)-electron-collision problems.

  7. Rydberg phases of Hydrogen and low energy nuclear reactions

    NASA Astrophysics Data System (ADS)

    Olafsson, Sveinn; Holmlid, Leif

    2016-03-01

    For over the last 26 years the science of cold fusion/LENR has been researched around the world with slow pace of progress. Modest quantity of excess heat and signatures of nuclear transmutation and helium production have been confirmed in experiments and theoretical work has only resulted in a large flora of inadequate theoretical scenarios. Here we review current state of research in Rydberg matter of Hydrogen that is showing strong signature of nuclear processes. In the presentation experimental behavior of Rydberg matter of hydrogen is described. An extensive collaboration effort of surface physics, catalysis, atomic physics, solid state physics, nuclear physics and quantum information is need to tackle the surprising experimental results that have so far been obtained. Rydberg matter of Hydrogen is the only known state of matter that is able to bring huge collection of protons to so short distances and for so long time that tunneling becomes a reasonable process for making low energy nuclear reactions. Nuclear quantum entanglement can also become realistic process at theses conditions.

  8. Analysis of latency performance of bluetooth low energy (BLE) networks.

    PubMed

    Cho, Keuchul; Park, Woojin; Hong, Moonki; Park, Gisu; Cho, Wooseong; Seo, Jihoon; Han, Kijun

    2014-12-23

    Bluetooth Low Energy (BLE) is a short-range wireless communication technology aiming at low-cost and low-power communication. The performance evaluation of classical Bluetooth device discovery have been intensively studied using analytical modeling and simulative methods, but these techniques are not applicable to BLE, since BLE has a fundamental change in the design of the discovery mechanism, including the usage of three advertising channels. Recently, there several works have analyzed the topic of BLE device discovery, but these studies are still far from thorough. It is thus necessary to develop a new, accurate model for the BLE discovery process. In particular, the wide range settings of the parameters introduce lots of potential for BLE devices to customize their discovery performance. This motivates our study of modeling the BLE discovery process and performing intensive simulation. This paper is focused on building an analytical model to investigate the discovery probability, as well as the expected discovery latency, which are then validated via extensive experiments. Our analysis considers both continuous and discontinuous scanning modes. We analyze the sensitivity of these performance metrics to parameter settings to quantitatively examine to what extent parameters influence the performance metric of the discovery processes.

  9. The low energy kaon program at the celsius storage ring

    NASA Astrophysics Data System (ADS)

    Badalà, A.; Barbera, R.; Gulino, M.; Librizzi, F.; Mascali, A.; Nicotra, D.; Palmeri, A.; Pappalardo, G. S.; Riggi, F.; Russo, A. C.; Russo, G.; Santoro, A.; Turrisi, R.; Dunin, V.; Ekström, C.; Ericsson, G.; Höistad, B.; Johansson, J.; Johansson, T.; Westerberg, L.; Zlomaczhuk, J.

    1997-02-01

    The CLAMSUD spectrometer has been recently installed at the jet-target position of the CELSIUS ring at "THE SVEDBERG LABORATORY." The physical purpose is the study of kaon production at energies below the N-N threshold. Due to the low cross-section and short lifetime of kaons we increased the solid angle by means of two quadrupoles positioned at the entrance of the dipole. The experimental quality of the measurements due both to the beam characteristics and to the CLAMSUD detector will be shown.

  10. A novel approach to microbial breeding--low-energy ion implantation.

    PubMed

    Gu, Shao-Bin; Li, Shi-Chang; Feng, Hui-Yun; Wu, Ying; Yu, Zeng-Liang

    2008-02-01

    Low-energy ions exist widely in the natural world. People had neglected the interaction between low-energy ions and material; it was even more out of the question to study the relation of low-energy ions and the complicated organism until the biological effects of low-energy ion implantation were discovered in 1989. Nowadays, the value of low-energy ion beam implantation, as a new breeding way, has drawn extensive attention of biologists and breeding experts. In this review, the understanding and utilization of microbial breeding by low-energy ion beam irradiation is summarized, including the characteristics of an ion beam bioengineering facility, present status of the technology of low-energy ions for microbial breeding, and new insights into microbial biotechnology.

  11. Modeling ionization and recombination from low energy nuclear recoils in liquid argon

    SciTech Connect

    Foxe, Michael P.; Hagmann, Chris; Jovanovic, Igor; Bernstein, A.; Joshi, T.; Kazkaz, K.; Mozin, Vladimir V.; Pereverzev, S. V.; Sangiorgio, Samuele; Sorensen, Peter F.

    2015-09-01

    Coherent neutrino-nucleus scattering (CNNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model. CNNS is a flavor-blind interaction, which offers potential benefits for its use in nonproliferation (nuclear reactor monitoring) and astrophysics (supernova and solar neutrinos) applications. One challenge with detecting CNNS is the low energy deposition associated with a typical CNNS nuclear recoil. In addition, nuclear recoils are predicted to result in lower ionization yields than those produced by electron recoils of the same energy. This ratio of nuclear- and electron-induced ionization, known as the nuclear quenching factor, is unknown at energies typical for CNNS interactions in liquid xenon (LXe) and liquid argon (LAr), detector media being considered for CNNS detection. While there have been recent measurements [1] of the ionization yield from nuclear recoils in LAr, there is no universal model for nuclear quenching and ionization yield. For this reason, a Monte Carlo simulation has been developed to predict the ionization yield at sub-10 keV energies. The local ionization yield of a recoiling atom in the medium is calculated first. The ejected electrons are subsequently tracked in the electric field resulting from both the local electric charges and the externally applied drift field. The dependence of the ionization yield on the drift electric field is obtained by combining the calculated ionization yield for the initial collision cascade with the electron escape probability. An updated estimate of the CNNS signal expected in a LAr detector operated near a nuclear power reactor is presented.

  12. Low-Energy Electrons Emitted in Ion Collisions with Thin Foils

    NASA Astrophysics Data System (ADS)

    Kraemer, Michael; Kozhuharov, Christophor; Durante, Marco; Hagmann, Siegbert; Kraft, Gerhard; Lineva, Natallia

    The realistic description of radiation damage after charged particle passage is an ongoing issue for both radiotherapy as well as space applications. In both areas of applied radiological science, living as well as nonliving matter is exposed to ionizing radiation, and it is of vital interest to predict the responses of structures like cells, detectors or electronic devices. In ion beam radiotherapy, for example, the Local Effect Model (LEM) is being used to calculate radiobiological effects with so far unprecedented versatility. This has been shown in the GSI radiotherapy pilot project and consequently this model has become the "industry standard" for treatment planning in subsequent commercial ion radiotherapy sites. The model has also been extended to nonliving matter, i.e. to describe the response of solid state detectors such as TLDs and films. A prerequisite for this model (and possibly similar ones) is the proper description of microscopic track structure and energy deposition. In particular, the area at a very low distance (¡20 nm) from the ion path needs special attention due to the locally very high dose and the rather limited experimental evidence for the shape of the dose distribution. The dose distribution at low distances is inevitably associated with the creation and transport of low-energy (sub-keV) electrons. While some data, elementary cross sections as well as dose distributions, exist for gaseous media, i.e. under single collision conditions, experimental data for the condensed phase are scarce. We have, therefore, launched a project aimed at systematic research of the energy and angular distributions of low-energy (sub-keV) electrons emitted from solids. These investigations com-prise creation as well as transport of low-energy electrons under multiple collision conditions and hence require accounting for the properties of the target, both bulk and surface, i.e. for the inherent inhomogeneity of the thickness and for the surface roughness. To

  13. Screening in Low Energy Nuclear Reactions of Importance to Astrophysics

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Hora, Heinz; Luo, Nie

    2004-05-01

    Recent experiments in the LUNAR (Laboratory for Underground Nuclear Astrophysics) project have shown anonymously high electron screening may occur during acceleration driven low energy (<400 kV) ion bombardment of solid targets [1]. These effects become particularly important for E/ Ue < 100 (here E= ion energy and Ue = electron-screening potential energy). Thus these effects become significant for the understanding of reactions involved in nucleosynthesis of the elements and the interpretation of astrophysical data [1]. Another example of the behavior is the surprising threshold behavior near 18 keV for deuterons stopping in 3He gas at energies below the Bragg peak [2]. As pointed out in ref [1], the theoretical explanation for these effects is still under debate. Several researchers have proposed variations of the Trojan Horse Method (THM) to explain these effects [3]. In this paper, we propose an alternate mechanism associated with electron charge accumulation around the target atoms arising from the solid-state structure of the host. This concept will be explained in terms of density functional calculations of charge density profiles in a target undergoing ion dynamic effects [4]. REFERENCES [1] F. Strieder, et al., Naturwissenschaften (2000)88:461-467 [2] A. Formicola, et al., (2000) Eur Phys J. A 8:443-446 [3] S. Typel and H H Wolter, (2000) Few-Body System 29:75-93 [4] G. Miley and H. Hora, (2000) Nuclear Reactions in Solids, APS mtg. Lansing, MI [5] G. Miley, A. Lipson, N. Luo, and H. Hora, (2003) IEEE NSS/MIC Conf., Portland, OR

  14. Nanoscale Dynamics of Radiosensitivity: Role of Low Energy Electrons

    NASA Astrophysics Data System (ADS)

    Sanche, Léon

    This chapter addresses the nanoscale dynamics involved in the sensitization of biological cells to ionizing radiation. More specifically, it describes the role of low energy electrons (LEE) in radiosensitization by gold nanoparticles and chemotherapeutic agents, as well as potential applications to radiotherapy. The basic mechanisms of action of the LEE generated within nanoscopic volumes by ionizing radiation are described in solid water ice and various forms of DNA. These latter include the subunits (i.e., a base, a sugar or the phosphate group), short single strands (i.e., oligonucleotides) and plasmid and linear DNA. By comparing the results from experiments with the different forms of the DNA molecule and theory, it is possible to determine fundamental mechanisms that are involved in the dissociation of the subunits, base release and the production of single, double-strand breaks and cross-links. Below 15 eV, LEE localize on DNA subunits to form transient negative ions. Such states can damage DNA by dissociating into a stable anion and radical fragment(s), via dissociative electron attachment, or by decaying into dissociative electronically excited states. LEE can also transfer from one DNA subunit to another, particularly from a base to the phosphate group, where they can induce cleavage of the C-O bond (i.e., break a strand). DNA damage and the corresponding nanoscale dynamics are found to be modified in the presence of other cellular constituents. For example, condensing on DNA the most abundant cellular molecule, H2O, induces the formation of a new type of transient anion whose parent is a H2O-DNA complex.

  15. [Cardioversion of atrial fibrillation with low energy internal electric shock].

    PubMed

    Ricard, P; Socas, A G; Taramasco, V; Guenoun, M; Lévy, S

    1997-12-01

    The efficacy and safety of low internal cardioversion for the reduction of atrial fibrillation was assessed prospectively in 104 consecutive patients. Sixty-two patients had chronic atrial fibrillation (Group I). 16 patients had paroxysmal atrial fibrillation (Group II) and 26 patients had induced atrial fibrillation (Group III). The average duration of the current episode of atrial fibrillation was 9 +/- 19 months in Group I, 4 +/- 2 days in Group II and 18 +/- 7 minutes in Group III. Two intracardiac defibrillation catheters were used, one (the cathode) in the right atrium and the other in the coronary sinus or left branch of the pulmonary artery (anode). These catheters were connected to an external defibrillator delivering biphasic 3/3 ms shocks with a voltage which could be programmed from 10 to 400 volts. The shocks were synchronised on the R wave. Sinus rhythm was restored in 44 of the 62 patients in Group I (70%), 12 of the 16 patients in Group II (75%) and 20 of the 26 patients in Group III (77%). The average voltages and energies restoring sinus rhythm were 300 +/- 68 volts and 3.5 +/- 1.5 joules respectively in Group I, 245 +/- 72 volts and 2.0 +/- 2.9 joules in Group II, and 270 +/- 67 volts and 2.6 +/- 1.2 joules in Group III. These results show that the energy required to restore sinus rhythm is significantly greater in patients with chronic atrial fibrillation than in patients with paroxysmal or induced atrial fibrillation. There were no ventricular proarrhythmic effects in the 686 shocks synchronised on the R wave. This study shows that internal cardioversion of atrial fibrillation is feasible with low energies under simple sedation. These results support the concept of an implantable atrial defibrillator.

  16. Low energy secondary cosmic ray flux (gamma rays) monitoring and its constrains

    NASA Astrophysics Data System (ADS)

    Raghav, Anil; Bhaskar, Ankush; Yadav, Virendra; Bijewar, Nitinkumar

    2015-02-01

    Temporal variation of secondary cosmic rays (SCR) flux was measured during the full and new moon and days close to them at Department of Physics, University of Mumbai, Mumbai (Geomagnetic latitude: 10.6 °N), India. The measurements were done by using NaI (Tl) scintillation detector with energy threshold of 200 keV. The SCR flux showed sudden enhancement for approximately about 2 hour during few days out of all observations. The maximum enhancement in SCR flux is about 200 % as compared to the diurnal trend of SCR temporal variations. Weather parameters (temperature and relative humidity) were continuously monitored during all observations. The influences of geomagnetic field, interplanetary parameters and tidal effect on SCR flux have been considered. Summed spectra corresponding to enhancement duration indicates appearance of atmospheric radioactivity which shows single gamma ray line. Detail investigation revealed the presence of radioactive Ar41. Present study indicates origin of Ar41 could be due to anthropogenic source or due to gravitational tidal forces. This measurements point out limitations on low energy SCR flux monitoring. This study will help many researchers in measurements of SCR flux during eclipses and to find unknown mechanism behind decrease/increase in SCR flux during solar/lunar eclipse.

  17. Study of induced thermoluminescence in CVD diamond film by low-energy X-rays.

    PubMed

    Liu, Chi-Chang; Lin, Jao-Perng; Chu, Tieh-Chi

    2003-07-01

    For diamond film the one-hit model that is used to interpret low-energy X-ray thermoluminescence (TL) will require some modifications. After the films were irradiated with a superficial X-ray machine with different peak voltages, a two-compartment model with three parameters, the target size, the microscopic saturation factor and the high-LET saturation factor, was used to more precisely describe the TL response to X-ray with energies down to 10 kV. The microdosimetric distribution was calculated using single-event Monte Carlo code developed by authors together with EEDL cross-section data library. Some mechanistic insight into the physical aspect of radiation interaction with solid detectors can be obtained. The sensitive size in diamond was found to be about 15 nm. The saturation of one group of sublevels combined with the activation of another group of sublevels caused the relative efficiency to have a local minimum near 20 keV. The relative efficiency becomes higher below 10 keV, which is similar to the increasing relative biological effectiveness when the linear energy transfer passing through a biological system increases. The similarity made this material to be a molecular-scale dosimeter in the future.

  18. Low energy ions in the heavy ions in space (HIIS) experiment on LDEF.

    PubMed

    Kleis, T; Tylka, A J; Boberg, P R; Adams, J H; Beahm, L P

    1996-01-01

    We present data from the Lexan top stacks in the Heavy Ions In Space (HIIS) experiment which was flown for six years (April 1984-Jan 1990) onboard the LDEF spacecraft in 28.5 degrees orbit at about 476 km altitude. HIIS was built of passive (i.e. no timing resolution) plastic track detectors which collected particles continuously over the entire mission. In this paper we present data on low energy heavy ions (10 < or = Z, 20MeV/nuc < E < 200 MeV/nuc). These ions are far below the geomagnetic cutoff for fully ionized ions in the LDEF orbit even after taking into account the severe cutoff suppression caused by occasional large geomagnetic storms during the LDEF mission. Our preliminary results indicate an unusual elemental composition of trapped particles in the inner magnetosphere during the LDEF mission, including both trapped anomalous cosmic ray species (Ne, Ar) and other elements (such as Mg and Fe) which are not found in the anomalous component of cosmic rays. The origin of the non-anomalous species is not understood, but they may be associated with the solar energetic particle events and geomagnetic disturbances of 1989.

  19. Low-energy Coulomb excitation of neutron-rich zinc isotopes

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Aksouh, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Pantea, M.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; Duppen, P. Van; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.

    2009-01-01

    At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,21+→01+) values in Zn74-80, B(E2,41+→21+) values in Zn74,76 and the determination of the energy of the first excited 21+ states in Zn78,80. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of U238, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondary target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, including a recent empirical residual interaction constructed to describe the present experimental data up to 2004 in this region of the nuclear chart.

  20. Experimental Observations of Nuclear Activity in Deuterated Materials Subjected to a Low-Energy Photon Beam

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Benyo, Theresa L.; Pines, Vladimir; Pines, Marianna; Forsley, Lawrence P.; Westmeyer, Paul A.; Chait, Arnon; Becks, Michael D.; Martin, Richard E.; Hendricks, Robert C.; Penney, Nicholas; Marsolais, Annette M.; Kamm, Tracy R.

    2017-01-01

    Exposure of highly deuterated materials to a low-energy (nom. 2 MeV) photon beam resulted in nuclear activity of both the parent metals of hafnium and erbium and a witness material (molybdenum) mixed with the reactants. Gamma spectral analysis of all deuterated materials, ErD2.8+C36D74+Mo and HfD2+C36D74+Mo, showed that nuclear processes had occurred as shown by unique gamma signatures. For the deuterated erbium specimens, posttest gamma spectra showed evidence of radioisotopes of erbium ((163)Er and (171)Er) and of molybdenum ((99)Mo and (101)Mo) and by beta decay, technetium (99mTc and 101Tc). For the deuterated hafnium specimens, posttest gamma spectra showed evidence of radioisotopes of hafnium (180mHf and 181Hf) and molybdenum ((99)Mo and (101)Mo), and by beta decay, technetium ((99m)Tc and (101)Tc). In contrast, when either the hydrogenated or non-gas-loaded erbium or hafnium materials were exposed to the gamma flux, the gamma spectra revealed no new isotopes. Neutron activation materials showed evidence of thermal and epithermal neutrons. CR-39 solid-state nuclear track detectors showed evidence of fast neutrons with energies between 1.4 and 2.5 MeV and several instances of triple tracks, indicating (is) greater than 10 MeV neutrons. Further study is required to determine the mechanism causing the nuclear activity.

  1. Compensated bismuth-loaded plastic scintillators for neutron detection using low-energy pseudo-spectroscopy

    NASA Astrophysics Data System (ADS)

    Dumazert, Jonathan; Coulon, Romain; Bertrand, Guillaume H. V.; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu

    2016-05-01

    Gadolinium-covered modified plastic scintillators show a high potential for the deployment of cost-effective neutron detectors. Taking advantage of the low-energy photon and electron signature of thermal neutron captures in gadolinium-155 and gadolinium-157 however requires a background correction. In order to display a trustable rate, dual compensation schemes appear as an alternative to Pulse Shape Discrimination. This paper presents the application of such a compensation scheme to a two-bismuth loaded plastic scintillator system. A detection scintillator interacts with incident photon and fast neutron radiations and is covered with a gadolinium converter to become thermal neutron-sensitive as well. In the meantime, an identical compensation scintillator, covered with terbium, solely interacts with the photon and fast neutron part of incident radiations. After the acquisition and the treatment of the counting signals from both sensors, a hypothesis test determines whether the resulting count rate after subtraction falls into statistical fluctuations or provides a robust image of neutron activity. A laboratory prototype is tested under both photon and neutron radiations, allowing us to investigate the performance of the overall compensation system. The study reveals satisfactory results in terms of robustness to a cesium-137 background and in terms of sensitivity in presence of a californium-252 source.

  2. Double-electron capture by highly-ionized atoms isolated at very low energy

    NASA Astrophysics Data System (ADS)

    Fogwell Hoogerheide, Shannon; Dreiling, Joan M.; Sahiner, Arda; Tan, Joseph N.

    2016-05-01

    Charge exchange with background gases, also known as electron capture processes, is important in the study of comets, controlled fusion energy, anti-matter atoms, and proposed one-electron ions in Rydberg states. However, there are few experiments in the very low energy regime that could be useful for further theoretical development. At NIST, highly-charged ions extracted from an electron-beam ion trap can be isolated with energy < 10 eV in a compact Penning trap. By controlling the background gas pressure and composition, the charge exchange rates can be studied. Fully stripped neon or other ions are held in the trap for varying lengths of time and allowed to interact with different background gases at multiple pressures. The ions are then pulsed to a time-of-flight detector to count the population of each charge state. Analysis using a system of rate equations yields information about the ion cloud expansion and single-electron capture rates. A substantial amount of double-electron capture is also observed. We present the relative rates and discuss the error budget. SFH and JMD were funded by National Research Council Research Associateship Awards during some of this work.

  3. Position-sensitive superconductor detectors

    NASA Astrophysics Data System (ADS)

    Kurakado, M.; Taniguchi, K.

    2016-12-01

    Superconducting tunnel junction (STJ) detectors and superconducting transition- edge sensors (TESs) are representative superconductor detectors having energy resolutions much higher than those of semiconductor detectors. STJ detectors are thin, thereby making it suitable for detecting low-energy X rays. The signals of STJ detectors are more than 100 times faster than those of TESs. By contrast, TESs are microcalorimeters that measure the radiation energy from the change in the temperature. Therefore, signals are slow and their time constants are typically several hundreds of μs. However, TESs possess excellent energy resolutions. For example, TESs have a resolution of 1.6 eV for 5.9-keV X rays. An array of STJs or TESs can be used as a pixel detector. Superconducting series-junction detectors (SSJDs) comprise multiple STJs and a single-crystal substrate that acts as a radiation absorber. SSJDs are also position sensitive, and their energy resolutions are higher than those of semiconductor detectors. In this paper, we give an overview of position-sensitive superconductor detectors.

  4. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  5. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  6. MCP detector development for use in Nab detector characterization

    NASA Astrophysics Data System (ADS)

    Klassen, Wolfgang; Nab Collaboration

    2016-09-01

    The ``Nab'' collaboration will perform a precise measurement of the neutron beta decay parameters ``a'' and ``b'', which constitutes a test for physics beyond the standard model. The experiment makes use of the fundamental physics cold neutron beamline at the Spallation Neutron Source at the Fundamental Neutron Physics Beam Line. This experiment requires very efficient and precise detection of low energy (30 keV) protons with large area Si detectors. To this end, a 30 keV proton source has been built at the University of Manitoba to characterize the Si detector with respect to a custom large area (150mm x 150mm) microchannel plate detector, with know detection efficiency. This poster will present the development of the microchannel plate detector, the theory behind its operation, and its implementation at the University of Manitoba.

  7. Low Energy Electrons as Probing Tool for Astrochemical Reaction Mechanisms

    NASA Astrophysics Data System (ADS)

    Hendrik Bredehöft, Jan; Swiderek, Petra; Hamann, Thorben

    hitting anything solid, they will create secondary electrons. These electrons are in fact the energy source needed to run interstellar chemistry. Slow electrons can in principle trigger three different primary processes in a molecule. The first is ionisation by electron impact (EI), which is used to create ions in mass spectrometry. In this process an electron hits a molecule M and knocks an outer shell electron to create a cation. This occurs whenever the electron energy is above the ionisation threshold of the target molecule. Another possibility is the attachment of a slow electron to a molecule to create an anion. This can occur at sharply defined resonance energies specific to the molecule M. A third possibility is to excite the molecule M to a neutral state M∗ .[9] M + e- -> M+ + 2 e- (Electron impact ionisation) M + e- -> M- (Electron attachment) M + e- -> M∗ + e- (Neutral excitation) The created states M+ , M- and M∗ are usually not stable states so they very often dissociate into ions and radicals, which can then further react with neighbouring molecules to form new chemical species. In these chemical reactions some products can be formed even at very low temperatures that would otherwise require a lot of thermal energy and/or special catalysts. The formation of ethylamine from ethylene and ammonia by hydroamination is one such example. The reaction is characterized by a high activation barrier caused by the electronic repulsion between the electron density rich C=C double bound and the lone pair electrons of ammo-nia. The reaction also has a highly negative entropy, so it becomes less favourable at higher temperatures, ruling out heat as a means to facilitate the reaction. In classical chemistry this problem is overcome by the use of catalysts. Unfortunately there still is no general catalyst for this kind of reaction. Recently it was shown that the reaction can efficiently be induced by low energy electron radiation.[10] One of the reaction partners is

  8. Meta-analysis on intravascular low energy laser therapy

    NASA Astrophysics Data System (ADS)

    Zhao, Shu-Dong; Liu, Timon Cheng-Yi; Wang, Yan-Fang; Liu, Song-Hao

    2008-12-01

    Intravascular low energy laser therapy (ILELT) was put forward for cardiocirculatory diseases in USA in 1982, was popular in Russia in 1980s, and then in China in 1990s. The therapeutic effects of ILELT and drugs in comparison with drugs only on Chinese patients and their blood parameters were analyzed with meta-analyses and reported as (OR, 95%CI) for patient improvement and (WMD, 95% CI) for blood parameter improvement, where 95%CI, OR and WMD denoted 95% confidence intervals, odds ratio and weighted mean difference, respectively. It was found that the patients of cerebral infarction (2.39, 2.09~2.74) and cerebrovascular diseases (2.97, 1.69~2.53) were cured, respectively, (P < 0.01), and the symptom improvement of patients of cerebral infarction, cerebrovascular diseases and diabetes were significant (3.13, 2.79~3.51), (4.92, 3.39~7.14) , and (3.80, 2.79~5.18), and mild (3.66, 3.15~4.24), (4.95, 2.77~8.84), and (7.11, 4.54~11.13), respectively, (P < 0.01). It was also found that the blood parameters such as cholesterol (-0.78, -1.32~-0.24), total cholesterol (-1.08, -1.80~-0.36), low density lipoprotein cholesterol (-0.6, -1.01~-0.19), triacylglycerol (0.63, -0.83~-0.42), high density lipoprotein (0.34, 0.10~0.59), erythrocyte aggregation index (-0.24, -0.27~-0.21), erythrocyte Sedimentation Rate (-4.57, -7.26~-1.89), fibrinogen (-0.76, -1.31~-0.21), whole blood contrast viscosity (-0.40, -0.69~-0.12), low cut blood viscosity (-1.2, -1.93~-0.48), high cut blood viscosity (-0.62, -0.92~-0.32), whole blood viscosity(-1.2, -1.85~-0.54) and plasma blood contrast viscosity(-0.07, -0.12~-0.03) were found improved (P < 0.05). It is concluded that the patients of cerebral infarction, cerebrovascular diseases and diabetes might be improved with ILELT, which might be mediated by blood parameter improvement.

  9. Photon Strength and the Low-Energy Enhancement

    SciTech Connect

    Wiedeking, M; Bernstein, L A; Krticka, M; Bleuel, D L; Allmond, J M; Basunia, M S; Burke, J T; Fallon, P; Firestone, R B; Goldblum, B L; Hatarik, R; Lake, P T; Lee, I Y; Lesher, S R; Paschalis, S; Petri, M; Phair, L; Scielzo, N D

    2012-02-22

    The ability of atomic nuclei to emit and absorb photons with energy E{sub {gamma}} is known as the photon strength function f(E{sub {gamma}}). It has direct relevance to astrophysical element formation via neutron capture processes due to its central role in nuclear reactions. Studies of f(E{sub {gamma}}) have benefited from a wealth of data collected in neutron capture and direct reactions but also from newly commissioned inelastic photon scattering facilities. The majority of these experimental methods, however, rely on the use of models because measured {gamma}-ray spectra are simultaneously sensitive to both the nuclear level density and f(E{sub {gamma}}). As excitation energy increases towards the particle separation energies, the level density increases rapidly, creating the quasi-continuum. Nuclear properties in this excitation energy region are best characterized using statistical quantities, such as f(E{sub {gamma}}). A point of contention in studies of the quasi-continuum has been an unexpected and unexplained increase in f(E{sub {gamma}}) at low {gamma}-ray energies (i.e. below E{sub {gamma}} {approx}3 MeV) in a subset of light-to-medium mass nuclei. Ideally, a new model-independent experimental technique is required to address questions regarding the existence and origin of this low-energy enhancement in f(E{sub {gamma}}). Here such a model-independent approach is presented for determining the shape of f(E{sub {gamma}}) over a wide range of energies. The method involves the use of coupled high-resolution particle and {gamma}-ray spectroscopy to determine the emission of {gamma} rays from the quasi-continuum in a nucleus with defined excitation energy to individual discrete levels of known spins and parities. This method shares characteristics of two neutron capture-based techniques: the Average Resonance Capture (ARC) and the Two-Step Cascade analysis (TSC). The power of the new technique lies in the additional ability to positively identify primary

  10. On the low energy end of the QCD spectrum

    NASA Astrophysics Data System (ADS)

    Leutwyler, H.

    2009-01-01

    The experimental results on the K and K3π decays, those on pionic atoms and recent work on the lattice confirm the predictions obtained on the basis of χPT. As a result, the energy gap of QCD is now understood very well and there is no doubt that the expansion in powers of the two lightest quark masses does represent a very useful tool for the analysis of the low energy structure. Concerning the expansion in powers of m, however, the current situation leaves much to be desired. While some of the lattice results indicate, for instance, that the violations of the Okubo-Iizuka-Zweig rule in the quark condensate and in the decay constants are rather modest, others point in the opposite direction. In view of the remarkable progress being made with the numerical simulation of light quarks, I am confident that the dust will settle soon, so that the effective coupling constants that govern the dependence of the various quantities of physical interest on m can reliably be determined, to next-to-next-to-leading order of the chiral expansion. The range of validity of χPT can be extended by means of dispersive methods. The properties of the physical states occurring in the spectrum of QCD below KK¯ threshold can reliably be investigated on this basis. In particular, as shown only rather recently, general principles of quantum field theory lead to an exact formula that expresses the mass and width of resonances in terms of observable quantities. The formula removes the ambiguities inherent in the analytic continuation from the real axis into the complex plane, which plagued previous determinations of the pole positions of broad resonances. The application to the ππ partial wave amplitude with I=ℓ=0 shows that there is a resonance in this channel, at M-i/2Γ≃441-i272 MeV: the lowest resonance of QCD carries the quantum numbers of the vacuum.

  11. Smartphone-Based Indoor Localization with Bluetooth Low Energy Beacons.

    PubMed

    Zhuang, Yuan; Yang, Jun; Li, You; Qi, Longning; El-Sheimy, Naser

    2016-04-26

    Indoor wireless localization using Bluetooth Low Energy (BLE) beacons has attracted considerable attention after the release of the BLE protocol. In this paper, we propose an algorithm that uses the combination of channel-separate polynomial regression model (PRM), channel-separate fingerprinting (FP), outlier detection and extended Kalman filtering (EKF) for smartphone-based indoor localization with BLE beacons. The proposed algorithm uses FP and PRM to estimate the target's location and the distances between the target and BLE beacons respectively. We compare the performance of distance estimation that uses separate PRM for three advertisement channels (i.e., the separate strategy) with that use an aggregate PRM generated through the combination of information from all channels (i.e., the aggregate strategy). The performance of FP-based location estimation results of the separate strategy and the aggregate strategy are also compared. It was found that the separate strategy can provide higher accuracy; thus, it is preferred to adopt PRM and FP for each BLE advertisement channel separately. Furthermore, to enhance the robustness of the algorithm, a two-level outlier detection mechanism is designed. Distance and location estimates obtained from PRM and FP are passed to the first outlier detection to generate improved distance estimates for the EKF. After the EKF process, the second outlier detection algorithm based on statistical testing is further performed to remove the outliers. The proposed algorithm was evaluated by various field experiments. Results show that the proposed algorithm achieved the accuracy of <2.56 m at 90% of the time with dense deployment of BLE beacons (1 beacon per 9 m), which performs 35.82% better than <3.99 m from the Propagation Model (PM) + EKF algorithm and 15.77% more accurate than <3.04 m from the FP + EKF algorithm. With sparse deployment (1 beacon per 18 m), the proposed algorithm achieves the accuracies of <3.88 m at 90% of the

  12. FOREWORD: 3rd Symposium on Large TPCs for Low Energy Event Detection

    NASA Astrophysics Data System (ADS)

    Irastorza, Igor G.; Colas, Paul; Gorodetzky, Phillippe

    2007-05-01

    The Third International Symposium on large TPCs for low-energy rare-event detection was held at Carré des sciences, Poincaré auditorium, 25 rue de la Montagne Ste Geneviève in Paris on 11 12 December 2006. This prestigious location belonging to the Ministry of Research is hosted in the former Ecole Polytechnique. The meeting, held in Paris every two years, gathers a significant community of physicists involved in rare event detection. Its purpose is an extensive discussion of present and future projects using large TPCs for low energy, low background detection of rare events (low-energy neutrinos, dark matter, solar axions). The use of a new generation of Micro-Pattern Gaseous Detectors (MPGD) appears to be a promising way to reach this goal. The program this year was enriched by a new session devoted to the detection challenge of polarized gamma rays, relevant novel experimental techniques and the impact on particle physics, astrophysics and astronomy. A very particular feature of this conference is the large variety of talks ranging from purely theoretical to purely experimental subjects including novel technological aspects. This allows discussion and exchange of useful information and new ideas that are emerging to address particle physics experimental challenges. The scientific highlights at the Symposium came on many fronts: Status of low-energy neutrino physics and double-beta decay New ideas on double-beta decay experiments Gamma ray polarization measurement combining high-precision TPCs with MPGD read-out Dark Matter challenges in both axion and WIMP search with new emerging ideas for detection improvements Progress in gaseous and liquid TPCs for rare event detection Georges Charpak opened the meeting with a talk on gaseous detectors for applications in the bio-medical field. He also underlined the importance of new MPGD detectors for both physics and applications. There were about 100 registered participants at the symposium. The successful

  13. Direct measurement of low-energy 22Ne(p ,γ )23Na resonances

    NASA Astrophysics Data System (ADS)

    Depalo, R.; Cavanna, F.; Aliotta, M.; Anders, M.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; Bruno, C. G.; Caciolli, A.; Ciani, G. F.; Corvisiero, P.; Davinson, T.; Di Leva, A.; Elekes, Z.; Ferraro, F.; Formicola, A.; Fülöp, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, Gy.; Imbriani, G.; Junker, M.; Menegazzo, R.; Mossa, V.; Pantaleo, F. R.; Piatti, D.; Prati, P.; Straniero, O.; Szücs, T.; Takács, M. P.; Trezzi, D.; LUNA Collaboration

    2016-11-01

    Background: The 22Ne(p ,γ )23Na reaction is the most uncertain process in the neon-sodium cycle of hydrogen burning. At temperatures relevant for nucleosynthesis in asymptotic giant branch stars and classical novae, its uncertainty is mainly due to a large number of predicted but hitherto unobserved resonances at low energy. Purpose: A new direct study of low-energy 22Ne(p ,γ )23Na resonances has been performed at the Laboratory for Underground Nuclear Astrophysics (LUNA), in the Gran Sasso National Laboratory, Italy. Method: The proton capture on 22Ne was investigated in direct kinematics, delivering an intense proton beam to a 22Ne gas target. γ rays were detected with two high-purity germanium detectors enclosed in a copper and lead shield suppressing environmental radioactivity. Results: Three resonances at 156.2 keV [ω γ =(1.48 ±0.10 ) ×10-7 eV], 189.5 keV [ω γ =(1.87 ±0.06 ) ×10-6 eV] and 259.7 keV [ω γ =(6.89 ±0.16 ) ×10-6 eV] proton beam energy, respectively, have been observed for the first time. For the levels at Ex=8943.5 , 8975.3, and 9042.4 keV excitation energy corresponding to the new resonances, the γ -decay branching ratios have been precisely measured. Three additional, tentative resonances at 71, 105, and 215 keV proton beam energy, respectively, were not observed here. For the strengths of these resonances, experimental upper limits have been derived that are significantly more stringent than the upper limits reported in the literature. Conclusions: Based on the present experimental data and also previous literature data, an updated thermonuclear reaction rate is provided in tabular and parametric form. The new reaction rate is significantly higher than previous evaluations at temperatures of 0.08-0.3 GK.

  14. The Marshall Space Flight Center Low-Energy Ion Facility: A preliminary report

    NASA Technical Reports Server (NTRS)

    Biddle, A. P.; Reynolds, J. W.; Chisholm, W. L., Jr.; Hunt, R. D.

    1983-01-01

    The Low-Energy Ion Facility (LEIF) is designed for laboratory research of low-energy ion beams similar to those present in the magnetosphere. In addition, it provides the ability to develop and calibrate low-energy, less than 50 eV, plasma instrumentation over its full range of energy, mass, flux, and arrival angle. The current status of this evolving resource is described. It also provides necessary information to allow users to utilize it most efficiently.

  15. Monthly Variations of Low-Energy Ballistic Transfers to Lunar Halo Orbits

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.

    2010-01-01

    The characteristics of low-energy transfers between the Earth and Moon vary from one month to the next largely due to the Earth's and Moon's non-circular, non-coplanar orbits in the solar system. This paper characterizes those monthly variations as it explores the trade space of low-energy lunar transfers across many months. Mission designers may use knowledge of these variations to swiftly design desirable low-energy lunar transfers in any given month.

  16. Associated charmonium production in low energy pp annihilation

    SciTech Connect

    Barnes, T.; Li, X.

    2007-03-01

    The QCD mechanisms underlying the exclusive strong decays and hadronic production amplitudes of charmonium remain poorly understood, despite decades of study and an increasingly detailed body of experimental information. One set of hadronic channels of special interest are those that include baryon-antibaryon states. These are being investigated experimentally at BES and CLEO-c in terms of their baryon resonance content, and are also of interest for the future PANDA experiment, in which charmonium and charmonium hybrids will be produced in pp annihilation in association with light mesons. In this paper we develop a simple initial-state light meson emission model of the near-threshold associated charmonium production processes pp{yields}{pi}{sup 0}{psi}, and evaluate the differential and total cross sections for these reactions in this model. (Here we consider the states {psi}={eta}{sub c}, J/{psi}, {psi}{sup '}, {chi}{sub 0} and {chi}{sub 1}.) The predicted near-threshold cross section for pp{yields}{pi}{sup 0}J/{psi} is found to be numerically similar to two previous theoretical estimates, and is roughly comparable to the (sparse) existing data for this process. The theoretical charmonium angular distributions predicted by this model are far from isotropic, which may be of interest for PANDA detector design studies.

  17. A method for extraction of crystallography-related information from a data cube of very-low-energy electron micrographs.

    PubMed

    Knápek, Alexandr; Pokorná, Zuzana

    2015-01-01

    Scanning Low Energy Electron Microscopy (SLEEM) is an imaging technique which uses low energy electrons while providing a very good image resolution. Reflectivity of very slow electrons in the range 0-30 eV can be correlated with the electronic structure of the material, aiming at the determination of the local crystallographic orientation. Since SLEEM is a 2D imaging method, a suitable algorithm is needed to pre-process the image data depending on the beam energy as the third dimension. The crucial task is to detect grain boundaries in polycrystals and evaluate the image signal in connection to the energy of electron impact. Recent algorithms performing the task for the traditional EBSD method are not suitable as they do not address the side-effects of the SLEEM technique. We propose a method that detects the grain boundaries while correcting for image distortion caused by the variation of cathode lens strength, and for several other issues.

  18. Construction of the Soudan 2 detector

    NASA Technical Reports Server (NTRS)

    Ayres, D. S.; Barrett, W. L.; Dawson, J. W.; Fields, T. H.; Goodman, M. C.; Hoftiezer, J.; May, E. N.; Mondal, N. K.; Price, L. E.; Schlereth, J. L.

    1985-01-01

    Progress in the construction of the Soudan 2 nucleon decay detector which is being built at the Soudan iron mine in Minnesota is discussed. The expected event rate and characteristics of low energy neutrino events, muon events, multiple muon events, and other cosmic ray phenomena are discussed.

  19. Signal Processing and Its Effect on Scanning Efficiencies for a Field Instrument for Detecting Low-energy Radiation.

    PubMed

    Marianno, Craig M

    2015-07-01

    Signal processing within a radiation detector affects detection efficiency. Currently, organizations such as private industry, the U.S. Navy, Army, and Air Force are coupling some detector systems with data collection devices to survey large land areas for radioactive contamination. As detector technology has advanced and analog data collection has turned to digital, signal processing is becoming prevalent in some instruments. Using a NIST traceable (241)Am source, detection efficiency for a field instrument for detecting low-energy radiation (FIDLER) was examined for both a static and scanning mode. Experimental results were compared to Monte Carlo-generated efficiencies. Stationary data compared nicely to the theoretical results. Conversely, scanning detection efficiencies were considerably different from their theoretical counterparts. As speed increased, differences in detection efficiency approached two orders of magnitude. To account for these differences, a quasi time-dependent Monte Carlo simulation was created mimicking the signal processing undertaken by the FIDLER detection system. By including signal processing, experimental results fell within the bounds of the Monte Carlo-generated efficiencies, thus demonstrating the negative effects of such processing on detection efficiencies.

  20. PREFACE: Fourth Symposium on Large TPCs for Low Energy Rare Event Detection

    NASA Astrophysics Data System (ADS)

    Irastorza, Igor G.; Colas, Paul; Giomataris, Ioannis

    2009-07-01

    The Fourth International Symposium on large TPCs for low-energy rare-event detection was held at the Hermite auditorium of the Insitute Henri Poincaréte, 11 rue Pierre et Marie Curie in Paris on 18-19 December 2008. As in previous instances of the meeting, held always in Paris in 2006, 2004 and 2002, it gathered a significant community of physicists involved in rare event searches and/or development of time projection chambers (TPCs). The purpose of the meeting was to present and discuss the status of current experiments or projects involving the use of large TPCs for the search of rare events, like low-energy neutrinos, double beta decay, dark matter or axion experiments, as well as to discuss new results and ideas in the framework of the last developments of Micro Pattern Gaseous Detectors (MPGD), and how these are being - or could be - applied to the mentioned searches. The rapid evolvement of these devices and the relevance of their latest results need to be efficiently transferred to the rare event community. The creation of this series of meetings followed the motivation of bringing together both know-hows and it is proving to be a fruitful area of collaboration. Once more, the format of the meeting proved to be a success. A short (2 days) and relatively informal program with some recent highlighted results, rather than exhaustive reviews, attracted the interest of the audience. The symposium, fourth of the series, is becoming consolidated as a regular meeting place for the synergic interplay between the fields of rare events and TPC development. Apart from the usual topics central to the conference subject, like the status of some low-energy neutrino physics and double beta decay experiments, dark matter experiments (and in general physics in underground laboratories), axion searches, or development results, every year the conference programme is enriched with original slightly off-topic contributions that trigger the curiosity and stimulate further thought

  1. A small low energy cyclotron for radioisotope measurements

    SciTech Connect

    Bertsche, K.J.

    1989-11-01

    Direct detection of {sup 14}C by accelerator mass spectrometry has proved to be a much more sensitive method for radiocarbon dating than the decay counting method invented earlier by Libby. A small cyclotron (the cyclotrino'') was proposed for direct detection of radiocarbon in 1980. This combined the suppression of background through the use of negative ions, which had been used effectively in tandem accelerators, with the high intrinsic mass resolution of a cyclotron. Development of a small electrostatically-focused cyclotron for use as a mass spectrometer was previously reported but the sensitivity needed for detection of {sup 14}C at natural abundance was not achieved. The major contributions of this work are the integration of a high current external ion source with a small flat-field, electrostatically-focused cyclotron to comprise a system capable of measuring {sup 14}C at natural levels, and the analysis of ion motion in such a cyclotron, including a detailed analysis of phase bunching and its effect on mass resolution. A high current cesium sputter negative ion source generates a beam of carbon ions which is pre-separated with a Wien filter and is transported to the cyclotron via a series of electrostatic lenses. Beam is injected radially into the cyclotron using electrostatic deflectors and an electrostatic mirror. Axial focusing is entirely electrostatic. A microchannel plate detector is used with a phase-grated output. In its present form the system is capable of improving the sensitivity of detecting {sup 14}C in some biomedical experiments by a factor of 10{sup 4}. Modifications are discussed which could bring about an additional factor of 100 in sensitivity, which is important for archaeological and geological applications. Possibilities for measurements of other isotopes, such as {sup 3}H, and {sup 10}Be, and {sup 26}Al, are discussed. 70 refs.

  2. Ion Beam Emission within a Low Energy Focus Plasma (0.1 kJ) Operating with Hydrogen

    NASA Astrophysics Data System (ADS)

    El-Aragi, Gamal M.

    2010-07-01

    An investigation of energetic ion beam emission from a low energy plasma focus (0.1 kJ Mather type) device operating with hydrogen gas is studied. The ion beam emission is investigated using time-integrated and time-resolved detectors. The present plasma focus device is powered by a capacitor bank of 1 μF at 18 kV maximum charging voltage. The correlation of ion beam intensity with filling gas pressure indicates that the beam emission is maximized at the optimum pressure for the focus formation at peak current. Energy of ions is determined with a time-of-flight (TOF) method, taking into account distance from the center electrode to the detection plane.

  3. Low-Energy Study of Gamma-Ray Bursts Having Spectral Line Features

    NASA Technical Reports Server (NTRS)

    Pangia, Michael J.

    2003-01-01

    Gamma-ray bursts (GRBs) are energetic, short-duration emissions of gamma-rays. The Burst and Transient Source Experiment (BATSE) that was onboard NASA s Compton Gamma-Ray Observatory has done much to advance our understanding of GRBs. Perhaps foremost is to establish that GRBs originate from astronomical sources that exist well beyond our galaxy. Another area in which BATSE has been instrumental is to provide high-resolution data that can be used in spectral studies. Before BATSE, there were many reports of GRB spectra containing what appeared to be spectral absorption lines, whereas Briggs, after an extensive computer search of 117 bright BATSE GRBs, reported finding only one case that might be an absorption line and ten cases that might be emission lines. None of the eleven BATSE cases were definitively identified as spectral lines, and Briggs indicated reasons as to why the pre-BATSE reports should not be taken as conclusive. It remains an open question as to what these spectral-like features are, or if they are even real. The purpose of this work is, for the subset of the eleven BATSE GRBs for which low-energy data are available from two BATSE's Spectroscopy Detectors (SDs), to include these data in the spectral analysis. Such a study will provide additional constraints on the model spectral functions to better ascertain the reality of the line features. The spectral analysis program used was RMFIT. Of the six GRBs that met the selection criteria, the analysis was performed on only three of them due to a lack of time.

  4. Soft X-ray continuum radiation from low-energy pinch discharges of hydrogen

    NASA Astrophysics Data System (ADS)

    Mills, R.; Booker, R.; Lu, Y.; Lu

    2013-10-01

    Under a study contracted by GEN3 Partners, spectra of high current pinch discharges in pure hydrogen and helium were recorded in the extreme ultraviolet radiation region at the Harvard Smithsonian Center for Astrophysics (CfA) in an attempt to reproduce experimental results published by BlackLight Power, Inc. (BLP) showing predicted continuum radiation due to hydrogen in the 10-30 nm region (Mills, R. L. and Lu, Y. 2010 Hydrino continuum transitions with cutoffs at 22.8 nm and 10.1 nm. Int. J. Hydrog. Energy 35, 8446-8456, doi:10.1016?j.ijhydene.2010.05.098). Alternative explanations were considered to the claimed interpretation of the continuum radiation as being that emitted during transitions of H to lower-energy states (hydrinos). Continuum radiation was observed at CfA in the 10-30 nm region that matched BLP's results. Considering the low energy of 5.2 J per pulse, the observed radiation in the energy range of about 120-40 eV, reference experiments and analysis of plasma gases, cryofiltration to remove contaminants, and spectra of the electrode metal, no conventional explanation was found in the prior or present work to be plausible including contaminants, electrode metal emission, and Bremsstrahlung, ion recombination, molecular or molecular ion band radiation, and instrument artifacts involving radicals and energetic ions reacting at the charge-coupled device and H2 re-radiation at the detector chamber. Moreover, predicted selective extraordinarily high-kinetic energy H was observed by the corresponding Doppler broadening of the Balmer α line.

  5. Low Energy, Low Emissions: Sulfur Dioxide; Nitrogen Oxides, and Carbon Dioxide in Western Europe.

    ERIC Educational Resources Information Center

    Alcamo, Joseph; De Vries, Bert

    1992-01-01

    Links proposed low-energy scenarios for different Western European countries with the amount of pollutants that may result from these scenarios. Sulfur dioxide, nitrogen oxide, and carbon dioxide emissions are calculated for the 10 countries for which low-energy scenarios are available, resulting in reductions of 54%, 37%, and 40%, respectively.…

  6. A Feasibility Study of 50 nm Resolution with Low Energy Electron Beam Proximity Projection Lithography

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Masaki; Savas, T. A.

    2002-01-01

    Patterns of 50 nm lines and spaces were demonstrated by low energy electron beam proximity lithography using 47-nm-thick poly methyl methacrylate (PMMA) and stencil masks fabricated by achromatic interference lithography (AIL). The result indicates the validity of the resolution analysis previously reported and the resolution capabilities of low energy electron beam proximity projection lithography (LEEPL) as a 50 nm node technology.

  7. Study of the NLC Linac Optics Compatible with a Low Energy Scenario

    SciTech Connect

    Nosochkov, Yuri

    2002-02-27

    We explore the NLC linac optics compatible with a low energy scenario where initially only part of the full linac is installed. Optics modification suitable for a low energy beam running and upgrade to the nominal energy is discussed. Linac parameters and beam tolerances in the modified lattice are compared to the nominal design.

  8. Study of low-energy neutrino factory at the Fermilab to DUSEL baseline

    SciTech Connect

    Kyberd, Paul; Ellis, Malcolm; Bross, Alan; Geer, Steve; Mena, Olga; Long, Ken; Pascoli, Silvia; Fernandez Martinez, Enrique; McDonald, Kirk; Huber, Patrick; /Virginia Tech.

    2009-07-01

    This note constitutes a Letter of Interest to study the physics capabilities of, and to develop an implementation plan for, a neutrino physics program based on a Low-Energy Neutrino Factory at Fermilab providing a {nu} beam to a detector at the Deep Underground Science and Engineering Laboratory. It has been over ten years since the discovery of neutrino oscillations [1] established the existence of neutrino masses and leptonic mixing. Neutrino oscillations thus provide the first evidence of particle physics beyond the Standard Model. Most of the present neutrino oscillation data are well described by the 3{nu} mixing model. While a number of the parameters in this model have already been measured, there are several key parameters that are still unknown, namely, the absolute neutrino mass scale, the precise value of the mixing angles, the CP phase {delta} and hence the presence or absence of observable CP-violation in the neutrino sector. Future measurements of these parameters are crucial to advance our understanding of the origin of neutrino masses and of the nature of flavor in the lepton sector. The ultimate goal of a program to study neutrino oscillations goes beyond a first measurement of parameters, and includes a systematic search for clues about the underlying physics responsible for the tiny neutrino masses, and, hopefully, the origin of the observed flavor structure in the Standard Model, as well as the possible source of the observed matter-antimatter asymmetry in the Universe. To achieve this goal will almost certainly require precision measurements that go well beyond the presently foreseen program. One of the most promising experimental approaches to achieve some of the goals mentioned above is to build a Neutrino Factory and its corresponding detector. The Neutrino Factory produces neutrino beams from muons which have been accelerated to an energy of, for example, 25 GeV. The muons are stored in a race-track shaped decay ring and then decay along

  9. A fibre optic scintillator dosemeter for absorbed dose measurements of low-energy X-ray-emitting brachytherapy sources.

    PubMed

    Sliski, Alan; Soares, Christopher; Mitch, Michael G

    2006-01-01

    A newly developed dosemeter using a 0.5 mm diameter x 0.5 mm thick cylindrical plastic scintillator coupled to the end of a fibre optic cable is capable of measuring the absorbed dose rate in water around low-activity, low-energy X-ray emitters typically used in prostate brachytherapy. Recent tests of this dosemeter showed that it is possible to measure the dose rate as a function of distance in water from 2 to 30 mm of a (103)Pd source of air-kerma strength 3.4 U (1 U = 1 microGy m(2) h(-1)), or 97 MBq (2.6 mCi) apparent activity, with good signal-to-noise ratio. The signal-to-noise ratio is only dependent on the integration time and background subtraction. The detector volume is enclosed in optically opaque, nearly water-equivalent materials so that there is no polar response other than that due to the shape of the scintillator volume chosen, in this case cylindrical. The absorbed dose rate very close to commercial brachytherapy sources can be mapped in an automated water phantom, providing a 3-D dose distribution with sub-millimeter spatial resolution. The sensitive volume of the detector is 0.5 mm from the end of the optically opaque waterproof housing, enabling measurements at very close distances to sources. The sensitive detector electronics allow the measurement of very low dose rates, as exist at centimeter distances from these sources. The detector is also applicable to mapping dose distributions from more complex source geometries such as eye applicators for treating macular degeneration.

  10. Status of the PXIE Low Energy Beam Transport Line

    SciTech Connect

    Prost, Lionel; Andrews, Richard; Chen, Alex; Hanna, Bruce; Scarpine, Victor; Shemyakin, Alexander; Steimel, Jim; D'Arcy, Richard

    2014-07-01

    A CW-compatible, pulsed H- superconducting RF linac (a.k.a. PIP-II) is envisaged as a possible path for upgrading Fermilab’s injection complex [1]. To validate the concept of the front-end of such machine, a test accelerator (a.k.a. PXIE) [2] is under construction. The warm part of this accelerator comprises a 10 mA DC, 30 keV H- ion source, a 2m-long LEBT, a 2.1 MeV CW RFQ, and a MEBT that feeds the first cryomodule. In addition to operating in the nominal CW mode, the LEBT should be able to produce a pulsed beam for both PXIE commissioning and modelling of the front-end nominal operation in the pulsed mode. Concurrently, it needs to provide effective means of inhibiting beam as part of the overall machine protection system. A peculiar feature of the present LEBT design is the capability of using the ~1m-long section immediately preceding the RFQ in two regimes of beam transport dynamics: neutralized and space charge dominated. This paper introduces the PXIE LEBT, reports on the status of the ion source and LEBT installation, and presents the first beam measurements.

  11. Proposed low-energy absolute calibration of nuclear recoils in a dual-phase noble element TPC using D-D neutron scattering kinematics

    NASA Astrophysics Data System (ADS)

    Verbus, J. R.; Rhyne, C. A.; Malling, D. C.; Genecov, M.; Ghosh, S.; Moskowitz, A. G.; Chan, S.; Chapman, J. J.; de Viveiros, L.; Faham, C. H.; Fiorucci, S.; Huang, D. Q.; Pangilinan, M.; Taylor, W. C.; Gaitskell, R. J.

    2017-04-01

    We propose a new technique for the calibration of nuclear recoils in large noble element dual-phase time projection chambers used to search for WIMP dark matter in the local galactic halo. This technique provides an in situ measurement of the low-energy nuclear recoil response of the target media using the measured scattering angle between multiple neutron interactions within the detector volume. The low-energy reach and reduced systematics of this calibration have particular significance for the low-mass WIMP sensitivity of several leading dark matter experiments. Multiple strategies for improving this calibration technique are discussed, including the creation of a new type of quasi-monoenergetic neutron source with a minimum possible peak energy of 272 keV. We report results from a time-of-flight-based measurement of the neutron energy spectrum produced by an Adelphi Technology, Inc. DD108 neutron generator, confirming its suitability for the proposed nuclear recoil calibration.

  12. Munu as a Solar Neutrino Detector

    NASA Astrophysics Data System (ADS)

    Broggini, C.

    2001-01-01

    We built a low background detector based on a 1 m3 time projection chamber to measure the /line ν e e- elastic cross section at low energy. The detector has been installed close to a nuclear reactor in Bugey and it is running since about 1.5 years. After having reduced the electron background by almost 4 orders of magnitude we are now taking data to be sensitive to a neutrino magnetic moment in the region below 10-10 Bohr magnetons. The MUNU detector is the first one doing neutrino spectroscopy in the MeV region by measuring both the energy and the direction of the recoiling electron. Its potentialities as a low background prototype of a TPC for the spectroscopy of the low energy neutrinos from the Sun (pp and 7Be) are discussed.

  13. RADIATION DETECTOR

    DOEpatents

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  14. The role of low-energy (≤ 20 eV) electrons in astrochemistry

    NASA Astrophysics Data System (ADS)

    Boyer, Michael C.; Rivas, Nathalie; Tran, Audrey A.; Verish, Clarissa A.; Arumainayagam, Christopher R.

    2016-10-01

    UV photon-driven condensed phase cosmic ice reactions have been the main focus in understanding the extraterrestrial synthesis of complex organic molecules. Low-energy (≤ 20 eV) electron-induced reactions, on the other hand, have been largely ignored. In this article, we review studies employing surface science techniques to study low-energy electron-induced condensed phase reactions relevant to astrochemistry. In particular, we show that low-energy electron irradiation of methanol ices leads to the synthesis of many of the same complex molecules formed through UV irradiation. Moreover, our results are qualitatively consistent with the hypothesis that high-energy condensed phase radiolysis is mediated by low-energy electron-induced reactions. In addition, due to the numbers of available low-energy secondary electrons resulting from the interaction of high-energy radiation with matter as well as differences between electron- and photon-induced processes, low-energy electron-induced reactions are perhaps as, or even more, effective than photon-induced reactions in initiating condensed-phase chemical reactions in the interstellar medium. Consequently, we illustrate a need for astrochemical models to include the details of electron-induced reactions in addition to those driven by UV photons. Finally, we show that low-energy electron-induced reactions may lead to the production of unique molecular species that could serve as tracer molecules for electron-induced condensed phase reactions in the interstellar medium.

  15. Commissioning the SNO+ detector

    NASA Astrophysics Data System (ADS)

    Descamps, Freija; SNO+ Collaboration

    2016-09-01

    The SNO+ experiment is the successor to the Sudbury Neutrino Observatory (SNO), in which SNO's heavy water is replaced by approximately 780T of liquid scintillator (LAB). The combination of the 2km underground location, the use of ultra-clean materials and the high light-yield of the liquid scintillator means that a low background level and a low energy threshold can be achieved. This creates a new multipurpose neutrino detector with the potential to address a diverse set of physics goals, including the detection of reactor, solar, geo- and supernova neutrinos. A main physics goal of SNO+ is the search for neutrinoless double beta decay. By loading the liquid scintillator with 0.5% of natural Tellurium, resulting in about 1300kg of 130Te (isotopic abundance is slightly over 34%), a competitive sensitivity to the effective neutrino mass can be reached. This talk will present the status of the SNO+ detector, specifically the results and status of the detector commissioning with water.

  16. Can cellulite be treated with low-energy extracorporeal shock wave therapy?

    PubMed Central

    Angehrn, Fiorenzo; Kuhn, Christoph; Voss, Axel

    2007-01-01

    The present study investigates the effects of low-energy defocused extracorporeal generated shock waves on collagen structure of cellulite afflicted skin. Cellulite measurement using high-resolution ultrasound technology was performed before and after low-energy defocused extracorporeal shock wave therapy (ESWT) in 21 female subjects. ESWT was applied onto the skin at the lateral thigh twice a week for a period of six weeks. Results provide evidence that low-energy defocused ESWT caused remodeling of the collagen within the dermis of the tested region. Improving device-parameters and therapy regimes will be essential for future development of a scientific based approach to cellulite treatment. PMID:18225463

  17. Observations of the 3-D distribution of interplanetary electrons and ions from solar wind plasma to low energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Anderson, K. A.; Ashford, S.; Carlson, C.; Curtis, D.; Ergun, R.; Larson, D.; McFadden, J.; McCarthy, M.; Parks, G. K.

    1995-01-01

    The 3-D Plasma and Energetic Particle instrument on the GGS Wind spacecraft (launched November 1, 1994) is designed to make measurements of the full three-dimensional distribution of suprathermal electrons and ions from solar wind plasma to low energy cosmic rays, with high sensitivity, wide dynamic range, good energy and angular resolution, and high time resolution. Three pairs of double-ended telescopes, each with two or three closely sandwiched passivated ion implanted silicon detectors measure electrons and ions from approximately 20 keV to greater than or equal to 300 keV. Four top-hat symmetrical spherical section electrostatic analyzers with microchannel plate detectors, a large and a small geometric factor analyzer for electrons and a similar pair for ions, cover from approximately 3 eV to 30 keV. We present preliminary observations of the electron and ion distributions in the absence of obvious solar impulsive events and upstream particles. The quiet time electron energy spectrum shows a smooth approximately power law fall-off extending from the halo population at a few hundred eV to well above approximately 100 keV The quiet time ion energy spectrum also shows significant fluxes over this energy range. Detailed 3-D distributions and their temporal variations will be presented.

  18. New class of neutron detectors

    SciTech Connect

    Czirr, J.B.

    1997-09-01

    An optimized neutron scattering instrument design must include all significant components, including the detector. For example, useful beam intensity is limited by detector dead time; detector pixel size determines the optimum beam diameter, sample size, and sample to detector distance; and detector efficiency vs. wavelength determines the available energy range. As an example of the next generation of detectors that could affect overall instrumentation design, we will describe a new scintillator material that is potentially superior to currently available scintillators. We have grown and tested several small, single crystal scintillators based upon the general class of cerium-activated lithium lanthanide borates. The outstanding characteristic of these materials is the high scintillation efficiency-as much as five times that of Li-glass scintillators. This increase in light output permits the practical use of the exothermic B (n, alpha) reaction for low energy neutron detection. This reaction provides a four-fold increase in capture cross section relative to the Li (n, alpha) reaction, and the intriguing possibility of demanding a charged-particle/gamma ray coincidence to reduce background detection rates. These new materials will be useful in the thermal and epithermal energy ran at reactors and pulsed neutron sources.

  19. Recent Results from the Canfranc Dark Matter Search with Germanium Detectors

    NASA Astrophysics Data System (ADS)

    Irastorza, I. G.; Morales, A.; Aalseth, C. E.; Avignone, F. T., III; Brodzinski, R. L.; Cebrián, S.; Garciá, E.; González, D.; Hensley, W. K.; Miley, H. S.; Morales, J.; Ortiz de Solórzano, A.; Piumedón, J.; Reeves, J. H.; Sarsa, M. L.; Scopel, S.; Villar, J. A.

    Two germanium detectors are currently operating in the Canfranc Underground Laboratory at 2450 m.w.e looking for WIMP dark matter. One is a 2 kg 76Ge IGEX detectors (RG-2) which has an energy threshold of 4 keV and a low-energy background rate of about 0.3 c/keV/kg/day. The other is a small (234 g) natural abundance Ge detector (COSME), of low energy threshold (2.5 keV) and an energy resolution of 0.4 keV at 10 keV which is looking for WIMPs and for solar axions. The analysis of 73 kg-days of data taken by COSME in a search for solar axions via their photon Primakoff conversion and Bragg scattering in the Ge crystal yields a 95% C.L. limit for the axion-photon coupling gaγγ < 2.8 × 10-9 GeV-1. These data, analyzed for WIMP searches provide an exclusion plot for WIMP-nucleon spin-independent interaction which improves previous plots in the low mass region. On the other hand, the σ(m) exclusion plot derived from the 60 kg-days of data from the RG-2 IGEX detector improves the exclusion limits derived from other ionization (non thermal) germanium detector experiments in the region of WIMP masses from 30 to 100 GeV recently singled out by the reported DAMA annual modulation effect.

  20. Precision shape modification of nanodevices with a low-energy electron beam

    DOEpatents

    Zettl, Alex; Yuzvinsky, Thomas David; Fennimore, Adam

    2010-03-09

    Methods of shape modifying a nanodevice by contacting it with a low-energy focused electron beam are disclosed here. In one embodiment, a nanodevice may be permanently reformed to a different geometry through an application of a deforming force and a low-energy focused electron beam. With the addition of an assist gas, material may be removed from the nanodevice through application of the low-energy focused electron beam. The independent methods of shape modification and material removal may be used either individually or simultaneously. Precision cuts with accuracies as high as 10 nm may be achieved through the use of precision low-energy Scanning Electron Microscope scan beams. These methods may be used in an automated system to produce nanodevices of very precise dimensions. These methods may be used to produce nanodevices of carbon-based, silicon-based, or other compositions by varying the assist gas.