Science.gov

Sample records for a-2 low-energy detector

  1. HEAO 1 A-2 low-energy detector X-ray spectra of the Lupus Loop and SN 1006

    SciTech Connect

    Leahy, D.A.; Nousek, J.; Hamilton, A.J.S. Pennsylvania State University, University Park Joint Institute for Laboratory Astrophysics, Boulder, CO )

    1991-06-01

    The Lupus Loop and SN 1006 were observed by the A-2 low-energy detector proportional counters on the HEAO 1 satellite as part of the all-sky survey. As a result of a major advance in understanding of detector response and background accurate analysis of the data has become possible. Soft X-ray spectra for both supernova remnants were constructed from the PHA data taken during the scanning observations. Single-temperature and two-temperature Raymond-Smith models were fitted to the observed spectra. In addition, power-law and power-law plus one-temperature models were fitted to the spectrum of SN 1006. Only two-component models provide an adequate description for both Lupus Loop and SN 1006 spectra. The temperatures, column densities, and emission measures are significantly more accurate than previous results. 29 refs.

  2. HEAO 1 A-2 low-energy detector X-ray spectra of the Lupus Loop and SN 1006

    NASA Technical Reports Server (NTRS)

    Leahy, D. A.; Nousek, J.; Hamilton, A. J. S.

    1991-01-01

    The Lupus Loop and SN 1006 were observed by the A-2 low-energy detector proportional counters on the HEAO 1 satellite as part of the all-sky survey. As a result of a major advance in understanding of detector response and background accurate analysis of the data has become possible. Soft X-ray spectra for both supernova remnants were constructed from the PHA data taken during the scanning observations. Single-temperature and two-temperature Raymond-Smith models were fitted to the observed spectra. In addition, power-law and power-law plus one-temperature models were fitted to the spectrum of SN 1006. Only two-component models provide an adequate description for both Lupus Loop and SN 1006 spectra. The temperatures, column densities, and emission measures are significantly more accurate than previous results.

  3. The Simbol-X Low Energy Detector

    SciTech Connect

    Lechner, Peter

    2009-05-11

    For the Low Energy Detector of Simbol-X a new type of active pixel sensor based on the integrated amplifier DEPFET has been developed. This concept combines large area, scalable pixel size, low noise, and ultra-fast readout. Flight representative prototypes have been processed with a performance matching the Simbol-X specifications and demonstrating the technology readiness.

  4. Design and evaluation of a 2D array PIN photodiode bump bonded to readout IC for the low energy x-ray detector.

    PubMed

    Yuk, Sunwoo; Park, Shin-Woong; Yi, Yun

    2006-01-01

    A 2D array radiation sensor, consisting of an array of PIN photodiodes bump bonded to readout integrated circuit (IC), has been developed for operation with low energy X-rays. The PIN photodiode array and readout IC for this system have been fabricated. The main performance measurements are the following: a few pA-scale leakage current, 350 pF junction capacitance, 30 microm-depth depletion layer and a 250 microm intrinsic layer at zero bias. This PIN photodiode array and readout IC were fabricated using a PIN photodiode process and standard 0.35 microm CMOS technology, respectively. The readout circuit is operated from a 3.3 V single power supply. Finally, a 2D array radiation sensor has been developed using bump bonding between the PIN photodiode and the readout electronics. PMID:17946079

  5. Dual concentric crystal low energy photon detector

    DOEpatents

    Guilmette, R.A.

    A photon detector for biological samples includes a block of NaI(T1) having a hole containing a thin walled cylinder of CsI(T1). At least three photo multiplier tubes are evenly spaced around the parameter of the block. Biological samples are placed within the hole, and emissions which are sensed by at least two of the photo multipliers from only the NaI(T1) detector are counted.

  6. HEAO-1 analysis of Low Energy Detectors (LED)

    NASA Technical Reports Server (NTRS)

    Nousek, John A.

    1992-01-01

    The activities at Penn State University are described. During the period Oct. 1990 to Dec. 1991 work on HEAO-1 analysis of the Low Energy Detectors (LED) concentrated on using the improved detector spectral simulation model and fitting diffuse x-ray background spectral data. Spectral fitting results, x-ray point sources, and diffuse x-ray sources are described.

  7. The low energy detector of Simbol-X

    NASA Astrophysics Data System (ADS)

    Lechner, P.; Andricek, L.; Briel, U.; Hasinger, G.; Heinzinger, K.; Herrmann, S.; Huber, H.; Kendziorra, E.; Lauf, T.; Lutz, G.; Richter, R.; Santangelo, A.; Schaller, G.; Schnecke, M.; Schopper, F.; Segneri, G.; Strüder, L.; Treis, J.

    2008-07-01

    Simbol-X is a French-Italian-German hard energy X-ray mission with a projected launch in 2014. Being sensitive in the energy range from 500 eV to 80 keV it will cover the sensitivity gap beyond the energy interval of today's telescopes XMM-Newton and Chandra. Simbol-X will use an imaging telescope of nested Wolter-I mirrors. To provide a focal length of 20 m it will be the first mission of two independent mirror and detector spacecrafts in autonomous formation flight. The detector spacecraft's payload is composed of an imaging silicon low energy detector in front of a pixelated cadmium-telluride hard energy detector. Both have a sensitive area of 8 × 8 cm2 to cover a 12 arcmin field of view and a pixel size of 625 × 625 μm2 adapted to the telescope's resolution of 20 arcsec. The additional LED specifications are: high energy resolution, high quantum efficiency, fast readout and optional window mode, monolithic device with 100 % fill factor and suspension mounting, and operation at warm temperature. To match these requirements the low energy detector is composed of 'active macro pixels', combining the large, scalable area of a Silicon Drift Detector and the low-noise, on-demand readout of an integrated DEPFET amplifier. Flight representative prototypes have been processed at the MPI semiconductor laboratory, and the prototype's measured performance demonstrates the technology readiness.

  8. HgI2 low energy beta particle detector

    NASA Technical Reports Server (NTRS)

    Shah, K. S.; Squillante, M. R.; Entine, G.

    1990-01-01

    An HgI2 device structure was designed and tested which allows HgI2 to be used to make low-energy beta-particle detectors. The devices detected tritium beta particles with an efficiency of about 25 percent. A protective encapsulant has been developed which should protect the devices for up to 20 years and will attenuate only a small fraction of the beta particles. It is noted that the devices hold significant promise to provide a practical alternative to liquid scintillation counters and gas flow-through proportional counters.

  9. A directional low energy gamma-ray detector

    NASA Technical Reports Server (NTRS)

    Morfill, G.; Pieper, G. F.

    1973-01-01

    The sensitivity of a directional gamma ray detector, which relies on blocking a source to determine its direction and energy spectrum, is calculated and compared to the more conventional well shaped shielded detectors. It is shown that such an anticollimator detection system provides a basis for measuring the celestial diffuse gamma ray background, gamma ray sources and bursts with good energy, angular, and time resolution, and that additionally the system is 20 to 50 times as sensitive as conventional detectors when compared on a per unit mass basis.

  10. A directional low energy gamma-ray detector

    NASA Technical Reports Server (NTRS)

    Morfill, G.; Pieper, G. F.

    1973-01-01

    The sensitivity of a directional gamma ray detector, which relies on blocking a source to determine its direction and energy spectrum, is calculated and compared to the more conventional well-shaped shielded detectors. It is shown that such an anticollimator detection system provides a basis for measuring the celestial diffuse gamma ray background, gamma ray sources and bursts with good energy, angular, and time resolution, and that additionally the system is 20 to 50 times as sensitive as conventional detectors when compared on a per unit mass basis.

  11. Low-Energy Study of Gamma-Ray Bursts Using Two BATSE Spectroscopy Detectors

    NASA Technical Reports Server (NTRS)

    Pangia, Michael J.

    2002-01-01

    Gamma-ray bursts (GRBs) are energetic, short-duration emissions of gamma-rays from astronomical sources typically well beyond our galaxy. The Burst and Transient Source Experiment (BATSE) that was onboard NASA's Compton Gamma-Ray Observatory (CGRO) had detected an unprecedented 2704 GRBs during CGRO's nine-year mission. BATSE consisted of eight detector assemblies located at the corners of CGRO to give full sky coverage. Each assembly consisted of two detectors, a Large Area Detector (LAD) and a Spectroscopy Detector (SD). In determining the detail features of GRBs, the degree to which they possess a low-energy component (approx. 10 keV) is of interest. Preece has developed a method to study the low-energy characteristics and concluded that 14% of the 86 bright GRBs they studied had a definite low-energy component, referred to as a low-energy excess. Their study, and the present study as well, needed to use SD data, because it extends down to the low-energy range when operating in a high-gain mode. For their study, low-energy data was used from just one SD. To better quantify the low-energy behavior, this study will consider bursts for which two SDs satisfy the same criteria as used by Preece. The procedure developed by Preece to study the low-energy aspects of GRBs with BATSE data is to fit the data to a representative spectral function. In particular, two components are used, one corresponding to the low-energy component, and another representing the main part of the spectrum. The low-energy function used is the optically thin thermal bremsstrahlung (OTTB) model.

  12. High resolution, low energy avalanche photodiode X-ray detectors

    NASA Technical Reports Server (NTRS)

    Farrell, R.; Vanderpuye, K.; Entine, G.; Squillante, M. R.

    1991-01-01

    Silicon avalanche photodiodes have been fabricated, and their performance as X-ray detectors has been measured. Photon sensitivity and energy resolution were measured as a function of size and operating parameters. Noise thresholds as low as 212 eV were obtained at room temperature, and backscatter X-ray fluorescence data were obtained for aluminum and other light elements. It is concluded that the results with the X-ray detector are extremely encouraging, and the performance is challenging the best available proportional counters. While not at the performance level of either cryogenic silicon or HgI2, these device operate at room temperature and can be reproduced in large numbers and with much larger areas than typically achieved with HgI2. In addition, they are rugged and appear to be indefinitely stable.

  13. A low-energy gamma-ray imaging detector

    NASA Technical Reports Server (NTRS)

    Yin, L. I.; Trombka, J. I.; Seltzer, S. M.

    1979-01-01

    We describe a hard-X-ray/soft-gamma-ray imaging detector, incorporating a microchannel-plate (MCP) electron multiplier for possible use in future telescopes. In contrast to previous attempts using MCP's this approach promises to achieve high quantum detection efficiencies in addition to high spatial and temporal resolution. Preliminary results indicate not only the capability of simultaneous imaging and single-photon counting, but also coarse energy resolution.

  14. The soft X-ray diffuse background observed with the HEAO 1 low-energy detectors

    NASA Technical Reports Server (NTRS)

    Garmire, G. P.; Nousek, J. A.; Apparao, K. M. V.; Burrows, D. N.; Fink, R. L.; Kraft, R. P.

    1992-01-01

    Results of a study of the diffuse soft-X-ray background as observed by the low-energy detectors of the A-2 experiment aboard the HEAO 1 satellite are reported. The observed sky intensities are presented as maps of the diffuse X-ray background sky in several energy bands covering the energy range 0.15-2.8 keV. It is found that the soft X-ray diffuse background (SXDB) between 1.5 and 2.8 keV, assuming a power law form with photon number index 1.4, has a normalization constant of 10.5 +/- 1.0 photons/sq cm s sr keV. Below 1.5 keV the spectrum of the SXDB exceeds the extrapolation of this power law. The low-energy excess for the NEP can be fitted with emission from a two-temperature equilibrium plasma model with the temperatures given by log I1 = 6.16 and log T2 = 6.33. It is found that this model is able to account for the spectrum below 1 keV, but fails to yield the observed Galactic latitude variation.

  15. A Fast Event Preprocessor and Sequencer for the Simbol-X Low Energy Detector

    SciTech Connect

    Schanz, T.; Tenzer, C.; Maier, D.; Kendziorra, E.; Santangelo, A.

    2009-05-11

    The Simbol-X Low Energy Detector (LED), a 128x128 pixel DEPFET (Depleted Field Effect Transistor) array, will be read out at a very high rate (8000 frames/second) and, therefore, requires a very fast on board electronics. We present an FPGA-based LED camera electronics consisting of an Event Preprocessor (EPP) for on board data preprocessing and filtering of the Simbol-X low-energy detector and a related Sequencer (SEQ) to generate the necessary signals to control the readout.

  16. The scientific results of the low energy portion of A-2

    NASA Technical Reports Server (NTRS)

    Garmire, G.

    1979-01-01

    Galactic phenomena observed using the HEAO 1 detectors are discussed. A source map of the soft X-ray sky is presented. Specific topics covered include the optical outburst of U Geminorum, low energy RS CVn stars, and the dwarf nova SS Cygni. Aspects of the SS Cygni pulsations are analyzed.

  17. Principles and prospects of direct high resolution electron image acquisition with CMOS detectors at low energies

    NASA Astrophysics Data System (ADS)

    Faruqi, A. R.

    2009-08-01

    Two types of direct electron detectors, potentially useful in low energy electron microscopy and photoemission electron microscopy (LEEM/PEEM) experiments, are reviewed in this paper. Hybrid pixel detectors, using a silicon sensor and based on Medipix2 offer a high detective quantum efficiency, due to an essentially noiseless readout, but are technically challenging. Backthinned monolithic active pixel sensors (MAPS) are not noise-free but have other advantages as discussed in this review.

  18. AstroBox2 - Detector for low-energy β-delayed particle detection

    NASA Astrophysics Data System (ADS)

    Saastamoinen, A.; Pollacco, E.; Roeder, B. T.; Spiridon, A.; Daq, M.; Trache, L.; Pascovici, G.; De Oliveira, R.; Rodrigues, M. R. D.; Tribble, R. E.

    2016-06-01

    Efficient suppression of β-background is essential for studies of low-energy β-delayed charged particle decays of astrophysical interest. A promising method for such studies has been a micro pattern gas amplifier detector where the sample is implanted into the gas volume and the decays that follow are observed with high gain and signal to noise ratio. An upgraded version of the original AstroBox detector has been built and commissioned at Texas A&M University. Here a description of the new AstroBox2 detector is given, selected results from the commissioning tests are presented, and future perspectives discussed.

  19. A Compton-Vetoed Germanium Detector with Increased Sensitivity at Low Energies

    SciTech Connect

    Friedrich, S; Bates, C; Drury, O B; Burks, M; DiPrete, D

    2012-03-29

    The difficulty to directly detect plutonium in spent nuclear fuel due to the high Compton background of the fission products motivates the design of a Gamma detector with improved sensitivity at low energies. We have built such a detector by operating a thin high-purity Ge detector with a large scintillator Compton veto directly behind it. The Ge detector is thin to absorb just the low-energy Pu radiation of interest while minimizing Compton scattering of high energy radiation from the fission products. The subsequent scintillator is large so that forward scattered photons from the Ge detector interact in it at least once to provide an anti-coincidence veto for the Ge detector. For highest sensitivity, additional material in the line-of-sight is minimized, the radioactive sample is kept thin, and its radiation is collimated. We will discuss the instrument design, and demonstrate the feasibility of the approach with a prototype that employs two large CsI scintillator vetoes. Initial spectra of a thin Cs-137 calibration source show a background suppression of a factor of {approx}2.5 at {approx}100 keV, limited by an unexpectedly thick 4 mm dead layer in the Ge detector.

  20. Elemental Discrimination of Low-energy Ions Using Risetime Analysis of Silicon-strip Detector Signals

    SciTech Connect

    Bardayan, Daniel W; Moazen, Brian; Pain, Steven D; Smith, Michael Scott

    2009-01-01

    To make measurements with the intense (but often contaminated) radioactive beams available today, one often needs to identify the reaction products to determine the events of interest. The low energies required for many astrophysics measurements make impossible the use of traditional energy loss techniques, and additional constraints are required. We demonstrate a simple technique to measure the risetimes of silicon strip-detector signals and show partial discrimination can be obtained even at energies below 1 MeV/u.

  1. A Germanium Detector with Optimized Compton Veto for High Sensitivity at Low Energy

    SciTech Connect

    Friedrich, S

    2011-11-30

    We have built a prototype germanium detector with a Compton veto that is optimized for high sensitivity in the low-energy range around {approx}100 keV. It is specifically designed to address the problem to directly detect plutonium gamma emissions in spent nuclear fuel by non-destructive assay. This is not possible with current detectors due to the large low-energy background of Compton-scattered high-energy radiation from the fission products, whose gamma flux is at least 6 to 7 orders of magnitude higher than the Pu signal. Our instrument is designed to assess the feasibility to selectively suppress the background in the low-energy region around {approx}100 keV with the strongest Pu X-ray and gamma emissions lines. It employs a thin Ge detector with a large Compton veto directly behind it to suppress the background from forward-scattered radiation by anti-coincidence vetoing. This report summarizes the design considerations and the performance of the instrument.

  2. Low Energy Neutrino and Dark Matter Physics with sub-keV Germanium Detectors

    SciTech Connect

    Singh, L.; Singh, V.; Soma, A. K.; Singh, M. K.; Wong, H. T.

    2011-10-06

    A TEXONO collaboration research program on low energy neutrino and dark matter physics is going on at the Kuo-Sheng Neutrino Laboratory (KSNL). Collaboration main goals are to measure the neutrino-nucleus coherent scattering cross section, neutrino magnetic moments, and the searches of WIMP dark matter. To achieve these goals various prototype detectors and their sub-keV background are under study. A threshold of 220 eV was achieved with prototype detectors at the KSNL. New limits were set for WIMPs with mass between 3-6 GeV. Data are being taken with a 500 g Point Contact Germanium detector, where a threshold of {approx}350 eV was demonstrated. A 20 g ULEGe detector is taking data at CJPL in Sichuan, China.

  3. Neutrino Physics and Dark Matter Physics with Ultra-Low-Energy Germanium Detector

    SciTech Connect

    Shin-Ted, Lin

    2008-10-10

    The status and plans of the TEXONO Collaboration on the development of ultra-low-energy germanium detectors with sub-keV sensitivities are reported. We survey the scientific goals which include the observation of neutrino-nucleus coherent scattering, the studies of neutrino magnetic moments, as well as the searches of WIMP dark matter. In particular, an energy threshold of 220{+-}10 eV at an efficiency of 50% were achieved with a four-channel prototype detectors each of an active mass of 5 g. New limits were set for WIMPs with mass between 3-6 GeV. The prospects of the realization of full-scale experiments are discussed. This detector technique makes the unexplored sub-keV energy window accessible for new neutrino and dark matter experiments.

  4. Thick Silicon Double-Sided Strip Detectors for Low-Energy Small-Animal SPECT

    PubMed Central

    Shokouhi, Sepideh; McDonald, Benjamin S.; Durko, Heather L.; Fritz, Mark A.; Furenlid, Lars R.; Peterson, Todd E.

    2010-01-01

    This work presents characterization studies of thick silicon double-sided strip detectors for a high-resolution small-animal SPECT. The dimension of these detectors is 60.4 mm × 60.4 mm × 1 mm. There are 1024 strips on each side that give the coordinates of the photon interaction, with each strip processed by a separate ASIC channel. Our measurement shows that intrinsic spatial resolution equivalent to the 59 μm strip pitch is attainable. Good trigger uniformity can be achieved by proper setting of a 4-bit DAC in each ASIC channel to remove trigger threshold variations. This is particularly important for triggering at low energies. The thick silicon DSSD (Double-sided strip detector) shows high potential for small-animal SPECT. PMID:20686626

  5. A digital data acquisition framework for the Versatile Array of Neutron Detectors at Low Energy (VANDLE)

    NASA Astrophysics Data System (ADS)

    Paulauskas, S. V.; Madurga, M.; Grzywacz, R.; Miller, D.; Padgett, S.; Tan, H.

    2014-02-01

    Neutron energy measurements can be achieved using time-of-flight (ToF) techniques. A digital data acquisition system was developed for reliable ToF measurements with subnanosecond timing resolution based on digitizers with 10 ns and 4 ns sampling periods using pulse shape analysis algorithms. A validation procedure was developed to confirm the reliability. The response of the algorithm to photomultiplier signals was studied using a specially designed experimental system based on fast plastic scintillators. The presented developments enabled digital data acquisition systems to instrument the recently developed Versatile Array of Neutron Detectors at Low-Energy (VANDLE).

  6. Digital Electronics For The Versatile Array Of Neutron Detectors At Low Energies

    SciTech Connect

    Madurga, M.; Paulauskas, S.; Grzywacz, R.; Padgett, S. W.; Liddick, S. N.; Bardayan, D. W.; Batchelder, J. C.; Matei, C.; Peters, W. A.; Rasco, C.; Blackmon, J. C.; Cizewski, J. A.; O'Malley, P.; Goans, R. E.; Raiola, F.; Sarazin, F.

    2011-06-01

    A {chi}{sup 2} minimization algorithm has been developed to extract sub-sampling-time information from digitized waveforms, to be used to instrument the future Versatile Array of Neutron Detectors at Low energies. The algorithm performance has been characterized with a fast Arbitrary Function Generator, obtaining time resolution better than 1 ns for signals of amplitudes between 50 mV and 1V, with negligible walk in the whole range. The proof-of-principle measurement of the beta-delayed neutron emission from {sup 89}Br indicates a resolution of 1 ns can be achieved in realistic experimental conditions.

  7. Digital Electronics For The Versatile Array Of Neutron Detectors At Low Energies

    NASA Astrophysics Data System (ADS)

    Madurga, M.; Paulauskas, S.; Grzywacz, R.; Padgett, S. W.; Bardayan, D. W.; Batchelder, J. C.; Blackmon, J. C.; Cizewski, J. A.; Goans, R. E.; Liddick, S. N.; O'Malley, P.; Matei, C.; Peters, W. A.; Rasco, C.; Raiola, F.; Sarazin, F.

    2011-06-01

    A χ2 minimization algorithm has been developed to extract sub-sampling-time information from digitized waveforms, to be used to instrument the future Versatile Array of Neutron Detectors at Low energies. The algorithm performance has been characterized with a fast Arbitrary Function Generator, obtaining time resolution better than 1 ns for signals of amplitudes between 50 mV and 1V, with negligible walk in the whole range. The proof-of-principle measurement of the beta-delayed neutron emission from 89Br indicates a resolution of 1 ns can be achieved in realistic experimental conditions.

  8. A systematic characterization of the low-energy photon response of plastic scintillation detectors.

    PubMed

    Boivin, Jonathan; Beddar, Sam; Bonde, Chris; Schmidt, Daniel; Culberson, Wesley; Guillemette, Maxime; Beaulieu, Luc

    2016-08-01

    To characterize the low energy behavior of scintillating materials used in plastic scintillation detectors (PSDs), 3 PSDs were developed using polystyrene-based scintillating materials emitting in different wavelengths. These detectors were exposed to National Institute of Standards and Technology (NIST)-matched low-energy beams ranging from 20 kVp to 250 kVp, and to (137)Cs and (60)Co beams. The dose in polystyrene was compared to the dose in air measured by NIST-calibrated ionization chambers at the same location. Analysis of every beam quality spectrum was used to extract the beam parameters and the effective mass energy-absorption coefficient. Monte Carlo simulations were also performed to calculate the energy absorbed in the scintillators' volume. The scintillators' expected response was then compared to the experimental measurements and an energy-dependent correction factor was identified to account for low-energy quenching in the scintillators. The empirical Birks model was then compared to these values to verify its validity for low-energy electrons. The clear optical fiber response was below 0.2% of the scintillator's light for x-ray beams, indicating that a negligible amount of fluorescence contamination was produced. However, for higher-energy beams ((137)Cs and (60)Co), the scintillators' response was corrected for the Cerenkov stem effect. The scintillators' response increased by a factor of approximately 4 from a 20 kVp to a (60)Co beam. The decrease in sensitivity from ionization quenching reached a local minimum of about [Formula: see text] between 40 keV and 60 keV x-ray beam mean energy, but dropped by 20% for very low-energy (13 keV) beams. The Birks model may be used to fit the experimental data, but it must take into account the energy dependence of the kB quenching parameter. A detailed comprehension of intrinsic scintillator response is essential for proper calibration of PSD dosimeters for radiology. PMID:27384872

  9. A systematic characterization of the low-energy photon response of plastic scintillation detectors

    NASA Astrophysics Data System (ADS)

    Boivin, Jonathan; Beddar, Sam; Bonde, Chris; Schmidt, Daniel; Culberson, Wesley; Guillemette, Maxime; Beaulieu, Luc

    2016-08-01

    To characterize the low energy behavior of scintillating materials used in plastic scintillation detectors (PSDs), 3 PSDs were developed using polystyrene-based scintillating materials emitting in different wavelengths. These detectors were exposed to National Institute of Standards and Technology (NIST)-matched low-energy beams ranging from 20 kVp to 250 kVp, and to 137Cs and 60Co beams. The dose in polystyrene was compared to the dose in air measured by NIST-calibrated ionization chambers at the same location. Analysis of every beam quality spectrum was used to extract the beam parameters and the effective mass energy-absorption coefficient. Monte Carlo simulations were also performed to calculate the energy absorbed in the scintillators’ volume. The scintillators’ expected response was then compared to the experimental measurements and an energy-dependent correction factor was identified to account for low-energy quenching in the scintillators. The empirical Birks model was then compared to these values to verify its validity for low-energy electrons. The clear optical fiber response was below 0.2% of the scintillator’s light for x-ray beams, indicating that a negligible amount of fluorescence contamination was produced. However, for higher-energy beams (137Cs and 60Co), the scintillators’ response was corrected for the Cerenkov stem effect. The scintillators’ response increased by a factor of approximately 4 from a 20 kVp to a 60Co beam. The decrease in sensitivity from ionization quenching reached a local minimum of about 11%+/- 1% between 40 keV and 60 keV x-ray beam mean energy, but dropped by 20% for very low-energy (13 keV) beams. The Birks model may be used to fit the experimental data, but it must take into account the energy dependence of the kB quenching parameter. A detailed comprehension of intrinsic scintillator response is essential for proper calibration of PSD dosimeters for radiology.

  10. Digital data acquisition for the Low Energy Neutron Detector Array (LENDA)

    NASA Astrophysics Data System (ADS)

    Lipschutz, S.; Zegers, R. G. T.; Hill, J.; Liddick, S. N.; Noji, S.; Prokop, C. J.; Scott, M.; Solt, M.; Sullivan, C.; Tompkins, J.

    2016-04-01

    A digital data acquisition system (DDAS) has been implemented for the Low Energy Neutron Detector Array (LENDA). LENDA is an array of 24 BC-408 plastic-scintillator bars designed to measure low-energy neutrons with kinetic energies in the range of 100 keV-10 MeV from (p,n)-type charge-exchange reactions. Compared to the previous data acquisition (DAQ) system for LENDA, DDAS offers the possibility to lower the neutron detection threshold, increase the overall neutron-detection efficiency, decrease the dead time of the system, and allow for easy expansion of the array. The system utilized in this work was XIA's Digital Gamma Finder Pixie-16 250 MHz digitizers. A detector-limited timing resolution of 400 ps was achieved for a single LENDA bar. Using DDAS, the neutron detection threshold of the system was reduced compared to the previous analog system, now reaching below 100 keV. The new DAQ system was successfully used in a recent charge-exchange experiment using the 16C(p,n) reaction at the National Superconducting Cyclotron Laboratory (NSCL).

  11. Prediction of background in low-energy spectrum of Phoswich detector.

    PubMed

    Arun, B; Manohari, M; Mathiyarasu, R; Rajagopal, V; Jose, M T

    2014-12-01

    In vivo monitoring of actinides in occupational workers is done using Phoswich detector by measuring the low-energy X ray and gamma rays. Quantification of actinides like plutonium and americium in the lungs is extremely difficult due to higher background in the low-energy regions, which is from ambient background as well as from the subject. In the latter case, it is mainly due to the Compton scattering of body potassium, which varies person-to-person. Hence, an accurate prediction of subject-specific background counts in the lower-energy regions is an essential element in the in vivo measurement of plutonium and americium. Empirical equations are established for the prediction of background count rate in (239)Pu and (241)Am lower-energy regions, called 'target regions', as a function of count rate in the monitoring region (97-130 keV)/(40)K region in the high-energy spectrum, weight-to-height ratio of the subject (scattering parameter) and the gender. PMID:24300341

  12. Low energy response of the NICER detectors and "threshold efficiency" effect

    NASA Astrophysics Data System (ADS)

    Prigozhin, Gregory; Doty, John; LaMarr, Beverly; Malonis, Andrew; Remillard, Ronald A.; Scholze, Frank; Laubis, Christian; Krumrey, Michael

    2016-04-01

    The Neutron Star Interior Composition ExploreR (NICER) is an instrument that is planned to be installed on the International Space Station in 2016 to study time-resolved spectra of the rapidly changing celestial ojects. The focal plane of the instrument consists of 56 Silicon Drift Detectors (SDDs). Signal from each SDD is fed to shaping amplifiers and triggering circuits that determine both amplitude and time of arrival for each "event".Zero crossing timing circuit is used in order to suppress energy dependent "time walk". That is done with a chain producing a derivative of the shaped signal, and the same chain detects threshold crossings marking the arrival of an X-ray photon. Higher noise of the differentiated signal leads to a somewhat extended band of signal amplitudes close to the threshold value, for which detection efficiency is less than 100%. Detection efficiency in this area affects the low energy portion of the detector response, and is very well described by an error function. We will present accurate measurements of this effect, show the consequences for the instrument quantum efficiency and the shape of the response function and will describe the calibration procedures that would allow selection of optimal threshold values for each observation.

  13. A new detector for mass spectrometry: Direct detection of low energy ions using a multi-pixel photon counter

    SciTech Connect

    Wilman, Edward S.; Gardiner, Sara H.; Vallance, Claire; Nomerotski, Andrei; Turchetta, Renato; Brouard, Mark

    2012-01-15

    A new type of ion detector for mass spectrometry and general detection of low energy ions is presented. The detector consists of a scintillator optically coupled to a single-photon avalanche photodiode (SPAD) array. A prototype sensor has been constructed from a LYSO (Lu{sub 1.8}Y{sub 0.2}SiO{sub 5}(Ce)) scintillator crystal coupled to a commercial SPAD array detector. As proof of concept, the detector is used to record the time-of-flight mass spectra of butanone and carbon disulphide, and the dependence of detection sensitivity on the ion kinetic energy is characterised.

  14. Low-energy ionization yield in liquid argon for a coherent neutrino-nucleus scatter detector

    NASA Astrophysics Data System (ADS)

    Foxe, Michael P.

    ~ 4 e-- per keVr at 8 keVr. For gaseous Ar, the nuclear ionization quench factor is predicted to be ~ 0.13 at 10 keVr, which is the upper limit on this quantity obtained from the atomic collision model. In order to confidently apply the predictions of the ionization yield model, several experiments have been carried out for its validation. A single-phase Ar detector is used to both understand the processes occurring in the amplification region of a dual-phase Ar detector and to measure the nuclear ionization quench factor (ratio of the ionization signal produced in a nuclear recoil compared to that produced in an electron recoil of equal energy) in gaseous Ar. Using a portable neutron generator based on the 7Li(p,n)7 Be reaction, the nuclear ionization quench factor at 13 keVr was measured in gaseous Ar to be 0:138--0:012, which is in good agreement with the predictions of the ionization yield model. The absolute ionization yield was not measurable in gaseous Ar, because single ionization electron sensitivity has not been achieved in the single-phase Ar detector. The Gamma or Neutron Argon Recoils Resulting in Liquid Ionization (G/NARRLI) detector is a dual-phase Ar detector, which was developed to measure the ionization yield at energies below 10 keVr. While operating the G/NARRLI detector, high purity was achieved, extending the electron lifetime to ≈ 100 -- 200 micros. The ultimate sensitivity was achieved by detecting the single ionization electron peak. Detection of the single electron peak allowed absolutely calibrated spectroscopy to be performed using 55Fe to produce a 6 keV peak and 37Ar to produce a peak at 2.822 keV and a low-energy peak at 270 eV. Spectroscopic detection of the 270 eV peak represents the lowest energy measured to date in a dual-phase Ar detector. The electron yields for the 55Fe and 37Ar sources were used for the validation of the electron transport code, which was in good agreement with the modeling results. An effort was made to

  15. Ultra-low Energy Calibration of LUX detector using 127Xe Electron Capture

    NASA Astrophysics Data System (ADS)

    Huang, Dongqing; Large Underground Xenon (LUX) Collaboration

    2015-04-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. We present an absolute calibration of the liquid xenon electron recoil (ER) charge yield and fluctuations over an energy range 190 eVee to 33.2 keVee using low energy 127 Xe electron capture decay events from the LUX 85-day first WIMP search dataset. The sequence of gamma and X-ray cascade associated with 127 I produce clearly identified 2-vertex events in the LUX detector. We observe the K (33.2 keVee), L (5.2 keVee), M (1.1 keVee), and N (190 eVee) shell cascade events and verifiy the relative ratio of observed events for each shell. We extract both the mean and sigma of the charge signal yields (Qy) associated with the K, L, M, and N shell events. The N shell cascade analysis includes single extracted electron events, and represents the lowest energy ER in-situ measurements that have been explored in Xe.

  16. Results of low energy background measurements with the Liquid Scintillation Detector (LSD) of the Mont Blanc Laboratory

    NASA Technical Reports Server (NTRS)

    Aglietta, M.; Badino, G.; Bologna, G. F.; Castagnoli, C.; Fulgione, W.; Galeotti, P.; Saavedra, O.; Trinchero, G. C.; Vernetto, S.; Dadykin, V. L.

    1985-01-01

    The 90 tons liquid scintillation detector (LSD) is fully running since October 1984, at a depth of 5,200 hg/sq cm of standard rock underground. The main goal is to search for neutrino bursts from collapsing stars. The experiment is very sensitive to detect low energy particles and has a very good signature to gamma-rays from (n,p) reaction which follows the upsilon e + p yields n + e sup + neutrino capture. The analysis of data is presented and the preliminary results on low energy measurements are discussed.

  17. Delta-doped hybrid advanced detector for low energy particle detection

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J. (Inventor); Fossum, Eric R. (Inventor); Nikzad, Shouleh (Inventor); Pain, Bedabrata (Inventor); Soli, George A. (Inventor)

    2000-01-01

    A delta-doped hybrid advanced detector (HAD) is provided which combines at least four types of technologies to create a detector for energetic particles ranging in energy from hundreds of electron volts (eV) to beyond several million eV. The detector is sensitive to photons from visible light to X-rays. The detector is highly energy-sensitive from approximately 10 keV down to hundreds of eV. The detector operates with milliwatt power dissipation, and allows non-sequential readout of the array, enabling various advanced readout schemes.

  18. Delta-doped hybrid advanced detector for low energy particle detection

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J. (Inventor); Fossum, Eric R. (Inventor); Nikzad, Shouleh (Inventor); Pain, Bedabrata (Inventor); Soli, George A. (Inventor)

    2002-01-01

    A delta-doped hybrid advanced detector (HAD) is provided which combines at least four types of technologies to create a detector for energetic particles ranging in energy from hundreds of electron volts (eV) to beyond several million eV. The detector is sensitive to photons from visible light to X-rays. The detector is highly energy-sensitive from approximately 10 keV down to hundreds of eV. The detector operates with milliwatt power dissipation, and allows non-sequential readout of the array, enabling various advanced readout schemes.

  19. Early operating experience with large-area germanium detectors for detecting low-energy photons

    SciTech Connect

    Rieksts, G.A.; Lynch, T.P.; Olsen, P.C.

    1994-11-01

    Intrinsic germanium (Ge) planar detector arrays have been used at Hanford for lung counting since 1983. This paper describes a counting system using an array of only four detectors, larger than those used in the past, using larger dewars and a simplified detector-positioning system. Typical detector elements have been 51 mm in diameter and 20 mm thick, with a beryllium window thickness of 0.51 mm. The resolution of the detectors has been about 560 eV for 6.4-keV x-rays and 700 eV for 122-keV gamma rays. In the past, arrays of three, four, five, and six detectors have been employed. Six detectors have been the preferred configuration for lung counting. Up to 3,000 counts annually have been performed with these systems. When detectors fail and spares are not available, calibrations and calculational algorithms are maintained for four-detector configurations. For several years, both ``bucket`` and ``stovepipe`` designs have been used for the Dewars with the 15-liter dewars proving to be much more reliable than the ``stovepipe`` designs.

  20. CDMS detector fabrication improvements and low energy nuclear recoil measurements in germanium

    NASA Astrophysics Data System (ADS)

    Jastram, Andrew Karl

    As the CDMS (Cryogenic Dark Matter Search) experiment is scaled up to tackle new dark matter parameter spaces (lower masses and cross-sections), detector production efficiency and repeatability becomes ever more important. A dedicated facility has been commissioned for SuperCDMS detector fabrication at Texas A&M University (TAMU). The fabrication process has been carefully tuned using this facility and its equipment. Production of successfully tested detectors has been demonstrated. Significant improvements in detector performance have been made using new fabrication methods, equipment, and tuning of process parameters. This work has demonstrated the capability for production of next generation CDMS SNOLAB detectors. Additionally, as the dark matter parameter space is probed further, careful calibrations of detector response to nuclear recoil interactions must be performed in order to extract useful information (in relation to dark matter particle characterizations) from experimental results. A neutron beam of tunable energy is used in conjunction with a commercial radiation detector to characterize ionization energy losses in germanium during nuclear recoil events. Data indicates agreement with values predicted by the Lindhard equation, providing a best-fit k-value of 0.146.

  1. Fabrication and characterization of a co-planar detector in diamond for low energy single ion implantation

    DOE PAGESBeta

    Abraham, John Bishoy Sam; Pacheco, Jose L.; Aguirre, Brandon Adrian; Vizkelethy, Gyorgy; Bielejec, Edward S.

    2016-05-01

    We demonstrate low energy single ion detection using a co-planar detector fabricated on a diamond substrate and characterized by ion beam induced charge collection. Histograms are taken with low fluence ion pulses illustrating quantized ion detection down to a single ion with a signal-to-noise ratio of approximately 10. We anticipate that this detection technique can serve as a basis to optimize the yield of single color centers in diamond. In conclusion, the ability to count ions into a diamond substrate is expected to reduce the uncertainty in the yield of color center formation by removing Poisson statistics from the implantationmore » process.« less

  2. Fabrication and characterization of a co-planar detector in diamond for low energy single ion implantation

    NASA Astrophysics Data System (ADS)

    Abraham, J. B. S.; Aguirre, B. A.; Pacheco, J. L.; Vizkelethy, G.; Bielejec, E.

    2016-08-01

    We demonstrate low energy single ion detection using a co-planar detector fabricated on a diamond substrate and characterized by ion beam induced charge collection. Histograms are taken with low fluence ion pulses illustrating quantized ion detection down to a single ion with a signal-to-noise ratio of approximately 10. We anticipate that this detection technique can serve as a basis to optimize the yield of single color centers in diamond. The ability to count ions into a diamond substrate is expected to reduce the uncertainty in the yield of color center formation by removing Poisson statistics from the implantation process.

  3. Si(Li) detectors with thin dead layers for low energy x-ray detection

    SciTech Connect

    Rossington, C.S.; Walton, J.T.; Jaklevic, J.M.

    1990-10-01

    Regions of incomplete charge collection, or dead layers'', are compared for Si(Li) detectors fabricated with Au and Pd entrance window electrodes. The dead layers were measured by characterizing the detector spectral response to x-ray energies above and below the Si K{alpha} absorption edge. It was found that Si(Li) detectors with Pd electrodes exhibit consistently thinner effective Si dead layers than those with Au electrodes. Furthermore, it is demonstrated that the minimum thickness required for low resistivity Pd electrodes is thinner than that required for low resistivity Au electrodes, which further reduces the signal attenuation in Pd/Si(Li) detectors. A model, based on Pd compensation of oxygen vacancies in the SiO{sub 2} at the entrance window Si(Li) surface, is proposed to explain the observed differences in detector dead layer thickness. Electrode structures for optimum Si(Li) detector performance at low x-ray energies are discussed. 18 refs., 8 figs., 1 tab.

  4. Delta-doped CCD's as low-energy particle detectors and imagers

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Hoenk, Michael E. (Inventor); Hecht, Michael H. (Inventor)

    2002-01-01

    The back surface of a thinned charged-coupled device (CCD) is treated to eliminate the backside potential well that appears in a conventional thinned CCD during backside illumination. The backside of the CCD includes a delta layer of high-concentration dopant confined to less than one monolayer of the crystal semiconductor. The thinned, delta-doped CCD is used to detect very low-energy particles that penetrate less than 1.0 nm into the CCD, including electrons having energies less than 1000 eV and protons having energies less than 10 keV.

  5. Reducing radiation dose by application of optimized low-energy x-ray filters to K-edge imaging with a photon counting detector.

    PubMed

    Choi, Yu-Na; Lee, Seungwan; Kim, Hee-Joung

    2016-01-21

    K-edge imaging with photon counting x-ray detectors (PCXDs) can improve image quality compared with conventional energy integrating detectors. However, low-energy x-ray photons below the K-edge absorption energy of a target material do not contribute to image formation in the K-edge imaging and are likely to be completely absorbed by an object. In this study, we applied x-ray filters to the K-edge imaging with a PCXD based on cadmium zinc telluride for reducing radiation dose induced by low-energy x-ray photons. We used aluminum (Al) filters with different thicknesses as the low-energy x-ray filters and implemented the iodine K-edge imaging with an energy bin of 34-48 keV at the tube voltages of 50, 70 and 90 kVp. The effects of the low-energy x-ray filters on the K-edge imaging were investigated with respect to signal-difference-to-noise ratio (SDNR), entrance surface air kerma (ESAK) and figure of merit (FOM). The highest value of SDNR was observed in the K-edge imaging with a 2 mm Al filter, and the SDNR decreased as a function of the filter thicknesses. Compared to the K-edge imaging with a 2 mm Al filter, the ESAK was reduced by 66%, 48% and 39% in the K-edge imaging with a 12 mm Al filter for 50 kVp, 70 kVp and 90 kVp, respectively. The FOM values, which took into account the ESAK and SDNR, were maximized for 8, 6 to 8 and 4 mm Al filters at 50 kVp, 70 kVp and 90 kVp, respectively. We concluded that the use of an optimal low-energy filter thickness, which was determined by maximizing the FOM, could significantly reduce radiation dose while maintaining image quality in the K-edge imaging with the PCXD. PMID:26733235

  6. Reducing radiation dose by application of optimized low-energy x-ray filters to K-edge imaging with a photon counting detector

    NASA Astrophysics Data System (ADS)

    Choi, Yu-Na; Lee, Seungwan; Kim, Hee-Joung

    2016-01-01

    K-edge imaging with photon counting x-ray detectors (PCXDs) can improve image quality compared with conventional energy integrating detectors. However, low-energy x-ray photons below the K-edge absorption energy of a target material do not contribute to image formation in the K-edge imaging and are likely to be completely absorbed by an object. In this study, we applied x-ray filters to the K-edge imaging with a PCXD based on cadmium zinc telluride for reducing radiation dose induced by low-energy x-ray photons. We used aluminum (Al) filters with different thicknesses as the low-energy x-ray filters and implemented the iodine K-edge imaging with an energy bin of 34-48 keV at the tube voltages of 50, 70 and 90 kVp. The effects of the low-energy x-ray filters on the K-edge imaging were investigated with respect to signal-difference-to-noise ratio (SDNR), entrance surface air kerma (ESAK) and figure of merit (FOM). The highest value of SDNR was observed in the K-edge imaging with a 2 mm Al filter, and the SDNR decreased as a function of the filter thicknesses. Compared to the K-edge imaging with a 2 mm Al filter, the ESAK was reduced by 66%, 48% and 39% in the K-edge imaging with a 12 mm Al filter for 50 kVp, 70 kVp and 90 kVp, respectively. The FOM values, which took into account the ESAK and SDNR, were maximized for 8, 6 to 8 and 4 mm Al filters at 50 kVp, 70 kVp and 90 kVp, respectively. We concluded that the use of an optimal low-energy filter thickness, which was determined by maximizing the FOM, could significantly reduce radiation dose while maintaining image quality in the K-edge imaging with the PCXD.

  7. Improvements in the Low Energy Collection Efficiency of Si(Li) X-ray Detectors

    SciTech Connect

    Cox,C.; Fischer, D.; Schwartz, W.; Song, Y.

    2005-01-01

    Soft X-ray beam-line applications are of fundamental importance to material research, and commonly employ high-resolution Si(Li) detectors for energy dispersive spectroscopy. However, the measurement of X-rays below 1 keV is compromised by absorption in the material layers in front of the active crystal and a dead layer at the crystal surface. Various Schottky barrier type contacts were investigated resulting in a 40% reduction of the dead-layer thickness and a factor of two increased sensitivity at carbon K{sub {alpha}} compared to the standard Si(Li) detector. Si(Li) detectors were tested on the U7A soft X-ray beam-line at the National Synchrotron Light Source and on a scanning electron microscope (SEM).

  8. Proton calibration of low energy neutron detectors containing (6)LiF

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    The purpose of the present calibrations is to measure the proton response of the detectors with accelerated beams having energies within the region of maximum intensities in the trapped proton spectrum encountered in near-Earth orbit. This response is compared with the responses of the spaceflight detectors when related to proton exposures. All of the spaceflight neutron measurements have been accompanied by TLD absorbed doses measurements in close proximity within the spacecraft. For purposes of comparison, the spaceflight TLD doses are assumed to be proton doses.

  9. A new beam loss detector for low-energy proton and heavy-ion accelerators

    NASA Astrophysics Data System (ADS)

    Liu, Zhengzheng; Crisp, Jenna; Russo, Tom; Webber, Robert; Zhang, Yan

    2014-12-01

    The Facility for Rare Isotope Beams (FRIB) to be constructed at Michigan State University shall deliver a continuous, 400 kW heavy ion beam to the isotope production target. This beam is capable of inflicting serious damage on accelerator components, e.g. superconducting RF accelerating cavities. A Beam Loss Monitoring (BLM) System is essential for detecting beam loss with sufficient sensitivity and promptness to inform the machine protection system (MPS) and operations personnel of impending dangerous losses. Radiation transport simulations reveal shortcomings in the use of ionization chambers for the detection of beam losses in low-energy, heavy-ion accelerators. Radiation cross-talk effects due to the folded geometry of the FRIB LINAC pose further complications to locating specific points of beam loss. We propose a newly developed device, named the Loss Monitor Ring (LMR1

  10. Development of CDZNTE Detectors for Low-Energy Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Gehrels, N.

    1999-01-01

    Under this grant the UC Berkeley PI, K. Hurley, joined a Goddard-led effort to develop large area, multi-pixel Cadmium-Zinc-Telluride (CdZnTe, or CZT) detectors for gamma-ray astronomy. His task was to advise the project of new developments in the area of cosmic gamma-ray bursts, in order to focus the detector development effort on the construction of an instrument which could be deployed on a spacecraft to localize and measure the energy spectra of bursts with good angular and energy resolution, respectively. UC Berkeley had no hardware role in this proposal. The result of this effort was the production, at Goddard, of five CZT prototype modules. A proposal was written for SWIFT, a MIDEX mission to study cosmic gamma-ray bursts. One experiment aboard SWIFT is the Burst Arcminute Telescope (BAT), which consists of a 5200 sq cm hard X-ray detector and a coded mask. The detector comprises 256 CZT modules, each containing 128 4 x 4 x 2 mm CZT detectors. Each detector is read out using an ASIC. The angular resolution achieved with this mask/array combination is 22 arcminutes, and a strong gamma-ray burst can be localized to an accuracy of 4 arcminutes in under 10 seconds. The energy resolution is typically 5 keV FWHM at 60 keV, and the energy range is 10 - 150 keV. The BAT views 2 steradians, and its sensitivity is such that the instrument can detect 350 gamma-ray burst/year, localizing 320 of them to better than 4 arcminute accuracy. The BAT concept therefore met the science goals for gamma-ray bursts. The UCB effort in the SWIFT proposal included the scientific objectives for gamma-ray bursts, and the assembly of a team of optical and radio observers who would use the BAT data to perform rapid multi-wavelength searches for the counterparts to bursts. This proposal was submitted to NASA and peer-reviewed. In January 1999 it was one of five such proposals selected for a Phase A study. This study was completed in June, and SWIFT was formally presented to NASA in

  11. Characterization of a scintillating GEM detector with low energy x-rays.

    PubMed

    Seravalli, E; de Boer, M R; Geurink, F; Huizenga, J; Kreuger, R; Schippers, J M; van Eijk, C W E

    2008-11-01

    A two-dimensional position-sensitive dosimetry system based on a scintillating gas detector is being developed with the aim of using it for pre-treatment verification of dose distributions in charged particle therapy. The dosimetry system consists of a chamber filled with an Ar/CF(4) scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. In such a system, light quanta are emitted by the scintillating gas mixture during the electron avalanches in the GEM holes when radiation traverses the detector. The light intensity distribution is proportional to the energy deposited in the detector's sensitive volume by the beam. In the present work, we investigated the optimization of the scintillating GEM detector light yield. The light quanta are detected by means of a CCD camera or a photomultiplier tube coupled to a monochromator. The GEM charge signal is measured simultaneously. We have found that with 60 microm diameter double conical GEM holes, a brighter light signal and a higher electric signal are obtained than with 80 microm diameter holes. With an Ar + 8% CF(4) volume concentration, the highest voltage across the GEMs and the largest light and electric signals were reached. Moreover, we have found that the emission spectrum of Ar/CF(4) is independent of (1) the voltages applied across the GEMs, (2) the x-ray beam intensity and (3) the GEM hole diameter. On the other hand, the ratio of Ar to CF(4) peaks in the spectrum changes when the concentration of the latter gas is varied. PMID:18854612

  12. Alternative connection scheme for PMTs in large, low energy LXe detectors

    NASA Astrophysics Data System (ADS)

    Elsied, A. M. M.; Giboni, K. L.; Ji, X.

    2015-01-01

    In particle-astrophysics large liquid xenon detectors are used for Dark Matter Search, and these detectors seem continuously to grow in target mass. Specially developed PMTs fulfill all the requirements for an efficient light read out, however, as the number of PMTs increases the connection of the signal and HV lines to the outside world becomes more problematic; feedthroughs and connectors are difficult to realize within the limited space of a detector, and coaxial cables can trap many impurities afterwards to be released into the clean liquid. We propose the use of flexible Kapton strip lines combining the signals and anode HV from 32 PMTs in one 2" wide, 0.004" thick band. We compared a 1.5 m long, unshielded strip line with coaxial cable of the same length. Minimal changes to the base are required without any risk of additional impurities or radio activity. The quality of the signal is compatible. The HV connections can be easily realized without additional capacitors on the base by grounding the second but last dynode. This reduces the voltage on the anode to less than 300 V, compatible with the strip line specifications. All the cathodes are connected to one common negative HV. Such a scheme does not cause cross talk and preserves the possibility to adjust the gain of each PMT separately.

  13. Dosimetric calibration of solid state detectors with low energy β sources

    NASA Astrophysics Data System (ADS)

    Fidanzio, Andrea; Pia Toni, Maria; Capote, Roberto; Pena, Juan; Pasciuti, Katia; Bovi, Maurizio; Perrone, Franco; Azario, Luigi; Lazzeri, Mauro; Gaudino, Diego; Piermattei, Angelo

    2008-01-01

    A PTW Optidos plastic scintillation and a PTW natural diamond detectors were calibrated in terms of absorbed dose to water with β fields produced by 90Sr + 90Y and 85Kr reference sources. Each source was characterized at the Italian National Metrological Institute - the Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti of ENEA (ENEA-INMRI) - for two different series, 1 and 2, of ISO reference β-particle radiation fields. Beam flattening filters were used for the series 1 β fields to give uniform absorbed dose rates over a large area at a source-to-reference plane distance of 30 cm. The series 2 β fields were produced at source-to-reference plane distance of 10 cm, without the beam flattening filters, in order to obtain higher absorbed dose rates. The reference absorbed dose rate values were directly determined by the Italian national standard for β-particle dosimetry (a PTW extrapolation ionization chamber) for the series 1 β fields and by a calibrated transfer standard chamber, (a Capintec thin fixed-volume parallel plate ionization chamber) for the series 2 β fields. Finally the two solid state detectors were calibrated in terms of absorbed dose to water with the series 2 β field. The expanded uncertainties of the calibration coefficients obtained for the plastic scintillation dosimeter were 10% and 12% (2SD) for the 90Sr + 90Y and the 85Kr sources, respectively. The expanded uncertainties obtained for the diamond dosimeter were 10% (2SD) and 16% (2SD) for the 90Sr + 90Y and the 85Kr sources, respectively. The good results obtained with the 90Sr + 90Y and the 85Kr β sources encourage to implement this procedure to calibrate this type of detectors at shorter distances and with other β sources of interest in brachytherapy, for example the 106Ru source.

  14. Low-energy recoils and energy scale in liquid xenon detector for direct dark matter searches

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Mei, Dongming; Cubed Collaboration

    2015-04-01

    Liquid xenon has been proven to be a great detector medium for the direct search of dark matter. However, in the energy region of below 10 keV, the light yield and charge production are not fully understood due to the convolution of excitation, recombination and quenching. We have already studied a recombination model to explain the physics processes involved in liquid xenon. Work is continued on the average energy expended per electron-ion pair as a function of energy based on the cross sections for different type of scattering processes. In this paper, the results will be discussed in comparison with available experimental data using Birk's Law to understand how scintillation quenching contributes to the non-linear light yield for electron recoils with energy below 10 keV in liquid xenon. This work is supported by DOE Grant DE-FG02-10ER46709 and the state of South Dakota.

  15. First results of a novel Silicon Drift Detector array designed for low energy X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Rachevski, Alexandre; Ahangarianabhari, Mahdi; Bellutti, Pierluigi; Bertuccio, Giuseppe; Brigo, Elena; Bufon, Jernej; Carrato, Sergio; Castoldi, Andrea; Cautero, Giuseppe; Fabiani, Sergio; Giacomini, Gabriele; Gianoncelli, Alessandra; Giuressi, Dario; Guazzoni, Chiara; Kourousias, George; Liu, Chang; Menk, Ralf Hendrik; Montemurro, Giuseppe Vito; Picciotto, Antonino; Piemonte, Claudio; Rashevskaya, Irina; Shi, Yongbiao; Stolfa, Andrea; Vacchi, Andrea; Zampa, Gianluigi; Zampa, Nicola; Zorzi, Nicola

    2016-07-01

    We developed a trapezoidal shaped matrix with 8 cells of Silicon Drift Detectors (SDD) featuring a very low leakage current (below 180 pA/cm2 at 20 °C) and a shallow uniformly implanted p+ entrance window that enables sensitivity down to few hundreds of eV. The matrix consists of a completely depleted volume of silicon wafer subdivided into 4 square cells and 4 half-size triangular cells. The energy resolution of a single square cell, readout by the ultra-low noise SIRIO charge sensitive preamplifier, is 158 eV FWHM at 5.9 keV and 0 °C. The total sensitive area of the matrix is 231 mm2 and the wafer thickness is 450 μm. The detector was developed in the frame of the INFN R&D project ReDSoX in collaboration with FBK, Trento. Its trapezoidal shape was chosen in order to optimize the detection geometry for the experimental requirements of low energy X-ray fluorescence (LEXRF) spectroscopy, aiming at achieving a large detection angle. We plan to exploit the complete detector at the TwinMic spectromicroscopy beamline at the Elettra Synchrotron (Trieste, Italy). The complete system, composed of 4 matrices, increases the solid angle coverage of the isotropic photoemission hemisphere about 4 times over the present detector configuration. We report on the layout of the SDD matrix and of the experimental set-up, as well as the spectroscopic performance measured both in the laboratory and at the experimental beamline.

  16. Application of epithermal neutron activation in multielement analysis of silicate rocks employing both coaxial Ge(Li) and low energy photon detector systems

    USGS Publications Warehouse

    Baedecker, P.A.; Rowe, J.J.; Steinnes, E.

    1977-01-01

    The instrumental activation analysis of silicate rocks using epithermal neutrons has been studied using both high resolution coaxial Ge(Li) detectors and low energy photon detectors, and applied to the determination of 23 elements in eight new U.S.G.S. standard rocks. The analytical use X-ray peaks associated with electron capture or internal conversion processes has been evaluated. Of 28 elements which can be considered to be determinable by instrumental means, the epithermal activation approach is capable of giving improved sensitivity and precision in 16 cases, over the normal INAA procedure. In eleven cases the use of the low energy photon detector is thought to show advantages over convertional coaxial Ge(Li) spectroscopy. ?? 1977 Akade??miai Kiado??.

  17. A new detector system for low energy X-ray fluorescence coupled with soft X-ray microscopy: First tests and characterization

    NASA Astrophysics Data System (ADS)

    Gianoncelli, Alessandra; Bufon, Jernej; Ahangarianabhari, Mahdi; Altissimo, Matteo; Bellutti, Pierluigi; Bertuccio, Giuseppe; Borghes, Roberto; Carrato, Sergio; Cautero, Giuseppe; Fabiani, Sergio; Giacomini, Gabriele; Giuressi, Dario; Kourousias, George; Menk, Ralf Hendrik; Picciotto, Antonino; Piemonte, Claudio; Rachevski, Alexandre; Rashevskaya, Irina; Stolfa, Andrea; Vacchi, Andrea; Zampa, Gianluigi; Zampa, Nicola; Zorzi, Nicola

    2016-04-01

    The last decades have witnessed substantial efforts in the development of several detector technologies for X-ray fluorescence (XRF) applications. In spite of the increasing trend towards performing, cost-effective and reliable XRF systems, detectors for soft X-ray spectroscopy still remain a challenge, requiring further study, engineering and customization in order to yield effective and efficient systems. In this paper we report on the development, first characterization and tests of a novel multielement detector system based on low leakage current silicon drift detectors (SDD) coupled to ultra low noise custom CMOS preamplifiers for synchrotron-based low energy XRF. This new system exhibits the potential for improving the count rate by at least an order of magnitude resulting in ten-fold shorter dwell time at an energy resolution similar to that of single element silicon drift detectors.

  18. Possible low energy (E less than keV) nonthermal X-ray events. [analysis of proportional counter detector data from OGO-5

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.

    1973-01-01

    A search of the 3- to 30-keV data from the NRL proportional counter detector on the Orbiting Geophysical Observatory-5 (OGO-5) satellite has yielded several events which may be nearly completely nonthermal in the e greater than 3 and less than 10 keV range. In each case an impulsive hard X-ray burst accompained by an impulsive microwave burst was associated with a low energy X-ray burst whose profile was a simple rise and fall. The lack of a two component nature in the low energy range argues that the low energy X-ray flux is due to a single physical mechanism, in this case nonthermal bremsstrahlung from accelerated electrons. However, the spectra and time profiles are quite consistent with a thermal interpretation. Polarization measurements are probably necessary to resolve the physical origin of such bursts.

  19. Multipurpose Radiation Resistant Semiconductor Detectors for Alpha, Neutron & Low Energy Gamma Ray Measurements at High Temperatures in High-Intensity Gamma Ray

    SciTech Connect

    Ruddy, Frank H.

    2005-06-01

    Work scheduled under year two of DOE Grant DE-FG02-04ER63734 is on schedule and all year-two milestones have or will be met. Results to date demonstrate that unprecedented silicon carbide (SiC) energy resolution has been obtained, and that SiC detectors may achieve energy resolution that exceeds that obtainable with the best silicon alpha spectrometers. Fast-neutron energy spectrometry measurements indicate that recoil-ion energy spectrometry should be possible with SiC detectors. Furthermore, SiC detectors have been demonstrated to perform well even after gamma-ray exposures of 1.E09 Rad. This result and the previously demonstrated capability of SiC detectors to operate in elevated-temperature environments are very promising for potential DOE EMSP applications. A new class of multipurpose, radiation-resistant semiconductor detectors that can be used in elevated-temperature and high-radiation environments is being developed under this grant. These detectors, based on silicon carbide (SiC) semiconductor are designed to have larger active volumes than previously available SiC detectors, and are being tested for their response to alpha particles, X-rays and low energy gamma rays, and fast neutrons.

  20. The low energy particle detector sled (~30 keV-3.2 MeV) and its performance on the phobos mission to mars and its moons

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, S.; Afonin, V. V.; Gringauz, K. I.; Keppler, E.; Kirsch, E.; Richter, A.; Witte, M.; O'Sullivan, D.; Thompson, A.; Somogyi, A. J.; Szabo, L.; Varga, A.

    1990-05-01

    A low energy particle detector system (SLED) is described which was designed to measure the flux densities of electrons and ions in the energy range from ~30 keV to a few MeV in (a) the varying solar aspect angles and temperatures pertaining during the Cruise Phase of the Phobos Mission and (b) in the low temperature environment (reaching -25° C) pertaining during Mars Encounter. Representative data illustrating the excellent functioning of SLED during both phases of the mission are presented.

  1. Multipurpose Radiation Resistant Semiconductor Detectors for Alpha, Neutron & Low Energy Gamma Ray Measurements at High Temperatures in High-Intensity Gamma Ray

    SciTech Connect

    Ruddy, Frank H.

    2005-06-01

    Work scheduled under year two of DOE Grant DE-FG02-04ER63734 is on schedule and all year-two milestones have or will be met. Results to date demonstrate that unprecedented silicon carbide (SiC) energy resolution has been obtained, and that SiC detectors may achieve energy resolution that exceeds that obtainable with the best silicon alpha spectrometers. Fast-neutron energy spectrometry measurements indicate that recoil-ion energy spectrometry should be possible with SiC detectors. Furthermore, SiC detectors have been demonstrated to perform well even after gamma-ray exposures of 1.E09 Rad. This result and the previously demonstrated capability of SiC detectors to operate in elevated-temperature environments are very promising for potential DOE EMSP applications. A new class of multipurpose, radiation-resistant semiconductor detectors that can be used in elevated-temperature and high-radiation environments is being developed under this grant. These detectors, based on silicon carbide (SiC) semiconductor are designed to have larger active volumes than previously available SiC detectors, and are being tested for their response to alpha particles, X-rays and low energy gamma rays, and fast neutrons. Specifically, SiC radiation detectors with larger areas and 100-micrometer thick active regions have been designed and manufactured according to detector-design specifications. Detectors based on a Schottky diode design were specified in order to minimize the effects of the detector entrance window on alpha particle measurements. During manufacture of the Schottky diodes, the manufacturer also provided a set of large-volume SiC p-i-n diodes for testing Extensive alpha particle measurements have been carried out to test and quantify the response of the SiC Schottky diodes. Exposures to 148-Gd, 213-Po, 217-At, 221-Fr, 225-Ac, 237-Np, 238-Pu, 240-Pu, and 242-Pu sources were used to obtain detailed alpha response data in the alpha energy range from 3182.787 keV to 8375.9 ke

  2. Analysis of lateritic material from Cerro Impacto by instrumental neutron activation employing a low-energy photon semiconductor and a high-energy Ge(Li) detector

    SciTech Connect

    LaBrecque, J.J.; Beusen, J.M.; Van Grieken, R.E.

    1986-01-01

    Nineteen elements were determined in four different grain size fractions of a bulk geological material from Cerro Impacto for a study of the physical (mechanical) concentration process of different elements based upon the hardness of the different minerals. The analysis was performed by excitation of the sample with a high, slow neutron flux followed by gamma-ray spectroscopy with both a conventional Ge(Li) high-energy detector and a low-energy photon detector (LEPD). The accuracy of this method was studied with the use of two standard reference materials, SY-2 and SY-3, which are similar to the real samples. The values determined were also compared with a secondary target x-ray fluorescence method for all the elements that were suitable to both methods. Actually, the x-ray fluorescence method was found to be more complementary than competitive. 10 refs., 2 figs., 4 tabs.

  3. CdZnTe detector for hard x-ray and low energy gamma-ray focusing telescope

    NASA Astrophysics Data System (ADS)

    Natalucci, L.; Alvarez, J. M.; Barriere, N.; Caroli, E.; Curado da Silva, R. M.; Del Sordo, S.; Di Cosimo, S.; Frutti, M.; Hernanz, M.; Lozano, M.; Quadrini, E.; Pellegrini, G.; Stephen, J. B.; Ubertini, P.; Uslenghi, M. C.; Zoglauer, A.

    2008-07-01

    The science drivers for a new generation soft gamma-ray mission are naturally focused on the detailed study of the acceleration mechanisms in a variety of cosmic sources. Through the development of high energy optics in the energy energy range 0.05-1 MeV it will be possible to achieve a sensitivity about two orders of magnitude better than the currently operating gamma-ray telescopes. This will open a window for deep studies of many classes of sources: from Galactic X-ray binaries to magnetars, from supernova remnants to Galaxy clusters, from AGNs (Seyfert, blazars, QSO) to the determination of the origin of the hard X-/gamma-ray cosmic background, from the study of antimatter to that of the dark matter. In order to achieve the needed performance, a detector with mm spatial resolution and very high peak efficiency is needed. The instrumental characteristics of this device could eventually allow to detect polarization in a number of objects including pulsars, GRBs and bright AGNs. In this work we focus on the characteristics of the focal plane detector, based on CZT or CdTe semiconductor sensors arranged in multiple planes and viewed by a side detector to enhance gamma-ray absorption in the Compton regime. We report the preliminary results of an optimization study based on simulations and laboratory tests, as prosecution of the former design studies of the GRI mission which constitute the heritage of this activity.

  4. Characterization of imaging performance of a large-area CMOS active-pixel detector for low-energy X-ray imaging

    NASA Astrophysics Data System (ADS)

    Hwy Lim, Chang; Yun, Seungman; Chul Han, Jong; Kim, Ho Kyung; Farrier, Michael G.; Graeve Achterkirchen, Thorsten; McDonald, Mike; Cunningham, Ian A.

    2011-10-01

    We report the imaging characteristics of the recently developed large-area complementary metal-oxide-semiconductor (CMOS) active-pixel detector for low-energy digital X-ray imaging applications. The detector consists of a scintillator to convert X-ray into light and a photodiode pixel array made by the CMOS fabrication process to convert light into charge signals. Between two layers, we introduce a fiber-optic faceplate (FOP) to avoid direct absorption of X-ray photons in the photodiode array. A single pixel is composed of a photodiode and three transistors, and the pixel pitch is 96 μm. The imaging characteristics of the detector have been investigated in terms of modulation-transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). From the measured results, the MTF at the Nyquist frequency is about 20% and the DQE around zero-spatial frequency is about 40%. Simple cascaded linear-systems analysis has showed that the FOP prevents direct absorption of X-ray photons within the CMOS photodiode array, leading to a lower NPS and consequently improved DQE especially at high spatial frequencies.

  5. The sensitivity of LaBr3:Ce scintillation detectors to low energy neutrons: Measurement and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Tain, J. L.; Agramunt, J.; Algora, A.; Aprahamian, A.; Cano-Ott, D.; Fraile, L. M.; Guerrero, C.; Jordan, M. D.; Mach, H.; Martinez, T.; Mendoza, E.; Mosconi, M.; Nolte, R.

    2015-02-01

    The neutron sensitivity of a cylindrical ⊘1.5 in.×1.5 in. LaBr3:Ce scintillation detector was measured using quasi-monoenergetic neutron beams in the energy range from 40 keV to 2.5 MeV. In this energy range the detector is sensitive to γ-rays generated in neutron inelastic and capture processes. The experimental energy response was compared with Monte Carlo simulations performed with the Geant4 simulation toolkit using the so-called High Precision Neutron Models. These models rely on relevant information stored in evaluated nuclear data libraries. The performance of the Geant4 Neutron Data Library as well as several standard nuclear data libraries was investigated. In the latter case this was made possible by the use of a conversion tool that allowed the direct use of the data from other libraries in Geant4. Overall it was found that there was good agreement with experiment for some of the neutron data bases like ENDF/B-VII.0 or JENDL-3.3 but not with the others such as ENDF/B-VI.8 or JEFF-3.1.

  6. Gamma-ray detection efficiency of the microchannel plate installed as an ion detector in the low energy particle instrument onboard the GEOTAIL satellite

    SciTech Connect

    Tanaka, Y. T.; Yoshikawa, I.; Yoshioka, K.; Terasawa, T.; Saito, Y.; Mukai, T.

    2007-03-15

    A microchannel plate (MCP) assembly has been used as an ion detector in the low energy particle (LEP) instrument onboard the magnetospheric satellite GEOTAIL. Recently the MCP assembly has detected gamma rays emitted from an astronomical object and has been shown to provide unique information of gamma rays if they are intense enough. However, the detection efficiency for gamma rays was not measured before launch, and therefore we could not analyze the LEP data quantitatively. In this article, we report the gamma-ray detection efficiency of the MCP assembly. The measured efficiencies are 1.29%{+-}0.71% and 0.21%{+-}0.14% for normal incidence 60 and 662 keV gamma rays, respectively. The incident angle dependence is also presented. Our calibration is crucial to study high energy astrophysical phenomena by using the LEP.

  7. A study of intrinsic statistical variation for low-energy nuclear recoils in liquid xenon detector for dark matter searches

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Wei, Wenzhao; Mei, Dongming; Cubed Collaboration

    2015-10-01

    Noble liquid xenon experiments, such as XENON100, LUX, XENON 1-Ton, and LZ are large dark matter experiments directly searches for weakly interacting massive particles (WIMPs). One of the most important features is to discriminate nuclear recoils from electronic recoils. Detector response is generally calibrated with different radioactive sources including 83mKr, tritiated methane, 241AmBe, 252Cf, and DD-neutrons. The electronic recoil and nuclear recoil bands have been determined by these calibrations. However, the width of nuclear recoil band needs to be fully understood. We derive a theoretical model to understand the correlation of the width of nuclear recoil band and intrinsic statistical variation. In addition, we conduct experiments to validate the theoretical model. In this paper, we present the study of intrinsic statistical variation contributing to the width of nuclear recoil band. DE-FG02-10ER46709 and the state of South Dakota.

  8. Multipurpose Radiation Resistant Semiconductor Detectors for Alpha, Neutron & Low Energy Gamma Ray Measurements at High Temperatures in High-Intensity Gamma Ray

    SciTech Connect

    Ruddy, Frank H.

    2005-06-01

    Work scheduled under year two of DOE Grant DE-FG02-04ER63734 is on schedule and all year-two milestones have or will be met. Results to date demonstrate that unprecedented silicon carbide (SiC) energy resolution has been obtained, and that SiC detectors may achieve energy resolution that exceeds that obtainable with the best silicon alpha spectrometers. Fast-neutron energy spectrometry measurements indicate that recoil-ion energy spectrometry should be possible with SiC detectors. Furthermore, SiC detectors have been demonstrated to perform well even after gamma-ray exposures of 1.E09 Rad. This result and the previously demonstrated capability of SiC detectors to operate in elevated-temperature environments are very promising for potential DOE EMSP applications. A new class of multipurpose, radiation-resistant semiconductor detectors that can be used in elevated-temperature and high-radiation environments is being developed under this grant. These detectors, based on silicon carbide (SiC) semiconductor are designed to have larger active volumes than previously available SiC detectors, and are being tested for their response to alpha particles, X-rays and low energy gamma rays, and fast neutrons. Specifically, SiC radiation detectors with larger areas and 100-micrometer thick active regions have been designed and manufactured according to detector-design specifications. Detectors based on a Schottky diode design were specified in order to minimize the effects of the detector entrance window on alpha particle measurements. During manufacture of the Schottky diodes, the manufacturer also provided a set of large-volume SiC p-i-n diodes for testing Extensive alpha particle measurements have been carried out to test and quantify the response of the SiC Schottky diodes. Exposures to 148-Gd, 213-Po, 217-At, 221-Fr, 225-Ac, 237-Np, 238-Pu, 240-Pu, and 242-Pu sources were used to obtain detailed alpha response data in the alpha energy range from 3182.787 keV to 8375.9 ke

  9. Low-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Ludhova, Livia

    2016-05-01

    There exist several kinds of sources emitting neutrinos in the MeV energy range. These low-energy neutrinos from different sources can be often detected by the same multipurpose detectors. The status-of-art of the field of solar neutrinos, geoneutrinos, and the search for sterile neutrino with artificial neutrino sources is provided here; other neutrino sources, as for example reactor or high-energy neutrinos, are described elsewhere. For each of these three fields, the present-day motivation and open questions, as well as the latest experimental results and future perspectives are discussed.

  10. Optical performance assessment of a fluorescence detector for the telescope array low-energy extension experiment by using the interferometric simulation method

    NASA Astrophysics Data System (ADS)

    Jeong, In Seok; Lee, Jin Ho

    2016-07-01

    The fluorescence detector (FD) of the Telescope Array Low-Energy Extension (TALE) has been designed with different structures comprised of various materials. However, the cycle of expansion and contraction in these materials in response to thermal effects results in structural deformation. Furthermore, because the TALE-FD is exposed to high-temperature environments, significant light dispersion occurs as a result of the substantial deformation of the mirror (due to thermal expansion mismatch); this is considered to be an important issue that must be addressed in order to enhance the array performance and productivity. As the optical surface accuracy may be influenced by the structural deformation, an assessment of any significant structural deformations of the component materials is necessary to increase confidence in the array's operation. The primary purpose of this paper is to identify the relationship between temperature increases and changes in the surface accuracy of the TALE-FD large mirror. For this purpose, Cherenkov light emission and the fluorescence processes of ultra-high-energy cosmic rays (UHECRs) are emulated in order to assess the optical performance of the TALE-FD in practical situations. Additionally, the detection sensitivity of the TALE-FD large mirror is experimentally identified by measuring the distribution of the focused spot produced by incident light over the surface of a photomultiplier tube (PMT) sensor array.

  11. The Low Energy Neutrino Factory

    SciTech Connect

    Bross, Alan; Geer, Steve; Ellis, Malcolm; Fernandez Martinez, Enrique; Li, Tracey; Pascoli, Silvia; Mena, Olga

    2010-03-30

    We show that a low energy neutrino factory with a baseline of 1300 km and muon energy of 4.5 GeV has an excellent physics reach. The results of our optimisation studies demonstrate that such a setup can have remarkable sensitivity to theta{sub 13} and delta for sin{sup 2}(2theta{sub 13})>10{sup -4}, and to the mass hierarchy for sin{sup 2}(2theta{sub 13})>10{sup -3}. We also illustrate the power of the unique combination of golden and platinum channels accessible to the low energy neutrino factory. We have considered both a 20 kton totally active scintillating detector and a 100 kton liquid argon detector as possible detector technologies, finding that a liquid argon detector with very good background rejection can produce sensitivity to theta{sub 13} and delta with that of the International Design Study neutrino factory.

  12. Contribution of the electron-phonon interaction to Lindhard energy partition at low energy in Ge and Si detectors for astroparticle physics applications

    NASA Astrophysics Data System (ADS)

    Lazanu, Ionel; Lazanu, Sorina

    2016-02-01

    The influence of the transient thermal effects on the partition of the energy of selfrecoils in germanium and silicon into energy eventually given to electrons and to atomic recoils respectively is studied. The transient effects are treated in the frame of the thermal spike model, which considers the electronic and atomic subsystems coupled through the electron-phonon interaction. For low energies of selfrecoils, we show that the corrections to the energy partition curves due to the energy exchange during the transient processes modify the Lindhard predictions. These effects depend on the initial temperature of the target material, as the energies exchanged between electronic and lattice subsystems have different signs for temperatures lower and higher than about 15 K. Many of the experimental data reported in the literature support the model.

  13. Low energy p p physics

    SciTech Connect

    Amsler, C.; Crowe, K. . Inst. fuer Physik; Lawrence Berkeley Lab., CA )

    1989-02-01

    A detailed investigation of proton-antiproton interactions at low energy has become feasible with the commissioning of the LEAR facility in 1983. We shall shortly review the status of {bar p}p annihilation at rest and the physics motivations for second generation experiments with the Crystal Barrel detector. This type of detector would be adequate for the study of both Kp and {bar p}p interactions on an extracted beam of the KAON Factory. We shall conclude with a few remarks on the physics opportunities with {bar p}'s at the KAON Factory which, in our opinion, will not be covered by the present LEAR facility. 11 refs., 10 figs., 2 tabs.

  14. Solar wind iron charge states as identifiers of coronal mass ejections and the characterization of a new low energy particle detector

    NASA Astrophysics Data System (ADS)

    Lepri, Susan Therese

    2004-08-01

    We examine Fe charge state distributions in the solar wind. The ionic composition of the solar wind directly reflects corona conditions within 4 5 solar radii. Charge state information can be used to determine coronal electron temperatures of source region plasma. Examination of the Fe charge states obtained by the Solar Wind Ion Composition Spectrometer (SWICS) on the Advanced Composition Explorer (ACE), shows a high correlation of the abundance ratio of Fe≥16+/FeTot > 10% with interplanetary coronal mass ejections (ICMEs) observed at 1 A.U. We designate these as “hot ICMEs” due to their associated high charge states. We use the abundance ratio to develop a threshold average Fe charge state, threshold , applicable to charge state data from other spacecraft unable to determine charge state abundances. Applying the threshold to in-ecliptic data from ACE and data from Ulysses along its polar orbit, we identify hot ICMEs as a function of latitude. We find a factor of four fewer hot ICMEs at high latitude than in the ecliptic. After studying features on the Sun near the time of the ICME eruption, we determine that solar flares are likely the source of the observed high Fe charge states. This result has important implications in understanding the relationship between solar flares and CMEs. For years, a controversy has existed over the causal relationship between flares and CMEs. Now, through the work of this thesis, compositional data provides convincing evidence of an association of flares and CMEs. In addition, we also characterize a new delta-doped charge-coupled device (CCD). The new delta-doped CCD has a dead layer that is ˜1/10 th the thickness of previous SSDs used in ACE/SWIGS. Using this detector, we are able to detect H+ and N+ ions with energies ranging from 1 10 keV in the laboratory. This is a remarkable increase in sensitivity for solid-state particle detectors which currently can only detect particles with energies >30 keV. Application of

  15. Advanced light element and low energy X-ray line analysis using Energy Dispersive Spectrometry (EDS) with Silicon Drift Detectors (SDD)

    NASA Astrophysics Data System (ADS)

    Salge, T.; Palasse, L.; Berlin, J.; Hansen, B.; Terborg, R.; Falke, M.

    2013-12-01

    Introduction: Characterization at the micro- to nano-scale is crucial for understanding many processes in earth, planetary, material and biological sciences. The composition of thin electron transparent samples can be analyzed in the nm-range using transmission electron microscopes (TEM) or, specific sample holders provided, in the field emission scanning electron microscope (FE-SEM). Nevertheless both methods often require complex sample preparation. An alternative method is to analyze bulk samples with a FE-SEM. In order to decrease the excitation volume for generated X-rays, low accelerating voltages (HV<10) are required. Consequently, only low to intermediate energy X-ray lines can be evaluated and many peak overlaps have to be deconvoluted since the high energy range is not available. Methods: A BRUKER Quantax EDS system with an XFlash Silicon Drift Detector acquired EDS spectra in spectrum images. To separate overlapping peaks, an extended atomic database [1] was used. For single channel EDS the electron beam current, solid angle, take-off angle and exposure time can be optimized to investigate the element composition. Multiple SDD setups ensure an even higher efficiency and larger collection angles for the X-ray analysis than single channel detectors. Shadowing effects are minimized in element distribution maps so that samples can be investigated quickly and sometimes in a close to natural state, with little preparation. A new type of EDS detector, the annular four channel SDD (XFlash 5060F), is placed between the pole piece and sample. It covers a very large solid angle (1.1 sr) and allows sufficient data collection at low beam currents on beam sensitive samples with substantial surface topography. Examples of applications: Results demonstrate that SDD-based EDS analysis contributes essential information on the structure at the micro- to nano scale of the investigated sample types. These include stardust analogue impact experiments [2], Chicxulub asteroid

  16. Applying a low energy HPGe detector gamma ray spectrometric technique for the evaluation of Pu/Am ratio in biological samples.

    PubMed

    Singh, I S; Mishra, Lokpati; Yadav, J R; Nadar, M Y; Rao, D D; Pradeepkumar, K S

    2015-10-01

    The estimation of Pu/(241)Am ratio in the biological samples is an important input for the assessment of internal dose received by the workers. The radiochemical separation of Pu isotopes and (241)Am in a sample followed by alpha spectrometry is a widely used technique for the determination of Pu/(241)Am ratio. However, this method is time consuming and many times quick estimation is required. In this work, Pu/(241)Am ratio in the biological sample was estimated with HPGe detector based measurements using gamma/X-rays emitted by these radionuclides. These results were compared with those obtained from alpha spectroscopy of sample after radiochemical analysis and found to be in good agreement. PMID:26141295

  17. Low energy supersymmetry phenomenology

    SciTech Connect

    Baer, H.; Chen, C.H.; Bartl, A.; Feng, J.; Fujii, K.; Gunion, J.; Kamon, T.; Lopez, J.L.; Kao, C.

    1995-04-01

    The authors summarize the current status and future prospects for low energy (weak scale) supersymmetry. In particular, they evaluate the capabilities of various e{sup +}e{sup {minus}}, p{bar p} and pp colliders to discover evidence for supersymmetric particles. Furthermore, assuming supersymmetry is discovered, they discuss capabilities of future facilities to disentangle the anticipated spectrum of super-particles, and, via precision measurements, to test mass and coupling parameters for comparison with various theoretical expectations. The authors then comment upon the complementarity of proposed hadron and e{sup +}e{sup {minus}} machines for a comprehensive study of low energy supersymmetry.

  18. Low energy supersymmetry phenomenology

    SciTech Connect

    Baer, H.; Chen, C.H.; Bartl, A.

    1995-03-01

    The authors summarize the current status and future prospects for low energy (weak scale) supersymmetry. In particular, they evaluate the capabilities of various e{sup +}e{sup {minus}}, p{anti p} and pp colliders to discover evidence for supersymmetric particles. Furthermore, assuming supersymmetry is discovered, they discuss capabilities of future facilities to disentangle the anticipated spectrum of superparticles, and, via precision measurements, to test mass and coupling parameters for comparison with various theoretical expectations. They comment upon the complementarity of proposed hadron and e{sup +}e{sup {minus}} machines for a comprehensive study of low energy supersymmetry.

  19. LOW ENERGY COUNTING CHAMBERS

    DOEpatents

    Hayes, P.M.

    1960-02-16

    A beta particle counter adapted to use an end window made of polyethylene terephthalate was designed. The extreme thinness of the film results in a correspondingly high transmission of incident low-energy beta particles by the window. As a consequence, the counting efficiency of the present counter is over 40% greater than counters using conventional mica end windows.

  20. Analysis of low energy electrons

    NASA Technical Reports Server (NTRS)

    Sharp, R. D.

    1973-01-01

    Simultaneous observations of low energy electrons in the plasma sheet and in the auroral zone were analyzed. Data from the MIT plasma experiment on the OGO-3 satellite and from the Lockheed experiment on the OV1-18 satellite were processed and compared. The OV1-18 carried thirteen magnetic electron spectrometers designed to measure the intensity, angular, and energy distributions of the auroral electrons and protons in the energy range below 50 keV. Two computer programs were developed for reduction of the OV1-18 data. One program computed the various plasma properties at one second intervals as a function of Universal Time and pitch angle; the other program produced survey plots showing the outputs of the various detectors on the satellite as a function of time on a scale of approximately 100 seconds per cm. The OV1-18 data exhibit the high degree of variability associated with substorm controlled phenomena.

  1. Low energy antiproton beams

    NASA Astrophysics Data System (ADS)

    Klapisch, R.

    1992-04-01

    It was the invention of stochastic cooling by S. Van Meer that has allowed antiproton beams to become a powerful tool for the physicist. As a byproduct of the high energy proton-antiproton collider, a versatile low-energy facility, LEAR has been operating at CERN since 1984. The facility and its characteristics will be described as well as examples of its use for studying fundamental properties of the antiproton and for topics in atomic, nuclear and particle Physics.

  2. Low-energy Neutrino Astronomy in LENA

    NASA Astrophysics Data System (ADS)

    Wurm, M.; Bick, D.; Enqvist, T.; Hellgartner, D.; Kaiser, M.; Loo, K. K.; Lorenz, S.; Meloni, M.; Meyer, M.; Möllenberg, R.; Oberauer, L.; Soiron, M.; Smirnov, M.; Trzaska, W. H.; Wonsak, B.

    LENA (Low Energy Neutrino Astronomy) is a proposed next-generation neutrino detector based on 50 kilotons of liquid scintillator. The low detection threshold, good energy resolution and excellent background rejection inherent to the liquid-scintillator detectors make LENA a versatile observatory for low-energy neutrinos from astrophysical and terrestrial sources. In the framework of the European LAGUNA-LBNO design study, LENA is also considered as far detector for a very-long baseline neutrino beam from CERN to Pyhäsalmi (Finland). The present contribution gives an overview LENA's broad research program, highlighting the unique capabilities of liquid scintillator for the detection of low-energy neutrinos from astrophysical sources. In particular, it will focus on the precision measurement of the solar neutrino spectrum: The search for time modulations in the 7Be neutrino flux, the determination of the electron neutrino survival probability in the low-energy region of the 8B spectrum and the favorable detection conditions for neutrinos from the CNO fusion cycle.

  3. IONS (ANURADHA): Ionization states of low energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Biswas, S.; Chakraborti, R.; Cowsik, R.; Durgaprasad, N.; Kajarekar, P. J.; Singh, R. K.; Vahia, M. N.; Yadav, J. S.; Dutt, N.; Goswami, J. N.

    1987-01-01

    IONS (ANURADHA), the experimental payload designed specifically to determine the ionization states, flux, composition, energy spectra and arrival directions of low energy (10 to 100 MeV/amu) anomalous cosmic ray ions of helium to iron in near-Earth space, had a highly successful flight and operation Spacelab-3 mission. The experiment combines the accuracy of a highly sensitive CR-39 nuclear track detector with active components included in the payload to achieve the experimental objectives. Post-flight analysis of detector calibration pieces placed within the payload indicated no measurable changes in detector response due to its exposure in spacelab environment. Nuclear tracks produced by alpha-particles, oxygen group and Fe ions in low energy anomalous cosmic rays were identified. It is calculated that the main detector has recorded high quality events of about 10,000 alpha-particles and similar number of oxygen group and heavier ions of low energy cosmic rays.

  4. Low energy ion loss at Mars

    NASA Astrophysics Data System (ADS)

    Curry, S.; Liemohn, M.; Fang, X.; Ma, Y.

    2012-04-01

    Current data observations and modeling efforts have indicated that the low-energy pick-up ions on Mars significantly contribute to the overall escape rate. Due to the lack of a dipole magnetic field, the solar wind directly interacts with the dayside upper atmosphere causing particles to be stripped away. In this study, we use a 3-D Monte Carlo test particle simulation with virtual detectors to observe low energy ions (< 50 eV) in the Mars space environment. We will present velocity space distributions that can capture the asymmetric and non-gyrotropic features of particle motion. The effect of different solar conditions will also be discussed with respect to ion fluxes at various spatial locations as well as overall loss in order to robustly describe the physical processes controlling the distribution of planetary ions and atmospheric escape.

  5. Simulation of low-energy ion scattering

    NASA Astrophysics Data System (ADS)

    Langelaar, M. H.; Breeman, M.; Mijiritskii, A. V.; Boerma, D. O.

    A new simulation program `MATCH' has been developed for a detailed analysis of low-energy ion scattering (LEIS) and recoiling data. Instead of performing the full calculation of the three-dimensional trajectories through the sample from the ion source towards the detector, incoming trajectories as well as reversed-time outgoing trajectories are calculated, separately. Finally, these trajectories are matched to obtain the yield. The program has been tested for spectra and azimuthal scans of scattering and recoiling events of various sample species in different scattering geometries.

  6. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  7. Atomic ionization by neutrinos at low energies

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Pang

    2016-05-01

    It is well-known that neutrino-electron scattering at low recoil energies provides sensitivity gain in constraining neutrinos’ magnetic moments and their possible milli-charges. However, in detectors with sub-keV thresholds, the binding effects of electrons become significant. In this talk, we present our recent works of applying ab initio calculations to germanium ionization by neutrinos at low energies. Compared with the conventional differential cross section formulae that were used to derive current experimental bounds, our results with less theoretical uncertainties set a more reliable bound on the neutrino magnetic moment and a more stringent bound on the neutrino milli-charge with current reactor antineutrino data taken from germanium detectors.

  8. Scattering of low-energy neutrinos on atomic shells

    NASA Astrophysics Data System (ADS)

    Babič, Andrej; Šimkovic, Fedor

    2015-10-01

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.

  9. Scattering of low-energy neutrinos on atomic shells

    SciTech Connect

    Babič, Andrej; Šimkovic, Fedor

    2015-10-28

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.

  10. Low energy neutrinos in Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Sekiya, Hiroyuki

    2016-05-01

    Super-Kamiokande (SK), a 50 kton water Cherenkov detector, observes 8B solar neutrinos via neutrino-electron elastic scattering. The analysis threshold was successfully lowered to 3.5 MeV (recoil electron kinetic energy) in SK-IV. To date SK has observed solar neutrinos for 18 years. An analysis regarding possible correlations between the solar neutrino flux and the 11 year solar activity cycle is shown. With large statistics, SK searches for distortions of the solar neutrino energy spectrum caused by the MSW resonance in the core of the sun. SK also searches for a day/night solar neutrino flux asymmetry induced by the matter in the Earth. The Super-Kamiokande Gd (SK-Gd) project is the upgrade of the SK detector via the addition of water-soluble gadolinium (Gd) salt. This modification will enable it to efficiently identify low energy anti-neutrinos. SK-Gd will pursue low energy physics currently inaccessible to SK due to backgrounds. The most important will be the world’s first observation of the diffuse supernova neutrino background. The main R&D program towards SK-Gd is EG ADS: a 200 ton, fully instrumented tank built in a new cavern in the Kamioka mine.

  11. Conceptual design of a 2 tesla superconducting solenoid for the Fermilab D{O} detector upgrade

    SciTech Connect

    Brzezniak, J.; Fast, R.W.; Krempetz, K.

    1994-05-01

    This paper presents a conceptual design of a superconducting solenoid to be part of a proposed upgrade for the D0 detector. This detector was completed in 1992, and has been taking data since then. The Fermilab Tevatron had scheduled a series of luminosity enhancements prior to the startup of this detector. In response to this accelerator upgrade, efforts have been underway to design upgrades for D0 to take advantage of the new luminosity, and improvements in detector technology. This magnet is conceived as part of the new central tracking system for D0, providing a radiation-hard high-precision magnetic tracking system with excellent electron identification.

  12. Nucleus Z=126 with magic neutron number N=184 may be related to the measured Maruhn-Greiner maximum at A/2=155 from compound nuclei at low energy nuclear reactions

    NASA Astrophysics Data System (ADS)

    Prelas, M. A.; Hora, H.; Miley, G. H.

    2014-07-01

    Evaluation of nuclear binding energies from theory close to available measurements of a very high number of superheavy elements (SHE) based on α-decay energies Qα, arrived at a closing shell with a significant neutron number 184. Within the option of several discussed magic numbers for protons of around 120, Bagge's numbers 126 and 184 fit well and are supported by the element generation measurements by low energy nuclear reactions (LENR) discovered in deuterium loaded host metals. These measurements were showing a Maruhn-Greiner maximum from fission of compound nuclei in an excited state with double magic numbers for mutual confirmation.

  13. The problem of low energy particle measurements in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Whipple, E. C., Jr.

    1978-01-01

    The accurate measurement of low energy (less than 100 eV) particle properties in the magnetosphere has been difficult, partly because of the low density of such particles, but more particularly because of spacecraft interference effects. Some early examples of how these phenomena have affected particle measurements on an OGO spacecraft are presented. Data obtained with the UCSD particle detectors on ATS-6 are then presented showing how some of these difficulties have been partially overcome. Future measurements of low energy particles in the magnetosphere can be improved by: (1) improving the low energy resolution of detectors; (2) building electrostatically clean spacecraft; (3) controlling spacecraft potential; and (4) using auxiliary measurements, particularly wave data.

  14. Low Energy Schools in Ireland

    ERIC Educational Resources Information Center

    Heffernan, Martin

    2004-01-01

    Out of a commitment to reducing carbon dioxide emissions, Ireland's Department of Education and Science has designed and constructed two low energy schools, in Tullamore, County Offaly, and Raheen, County Laois. With energy use in buildings responsible for approximately 55% of the CO[subscript 2] released into the atmosphere and a major…

  15. Towards Low Energy Atrial Defibrillation

    PubMed Central

    Walsh, Philip; Kodoth, Vivek; McEneaney, David; Rodrigues, Paola; Velasquez, Jose; Waterman, Niall; Escalona, Omar

    2015-01-01

    A wireless powered implantable atrial defibrillator consisting of a battery driven hand-held radio frequency (RF) power transmitter (ex vivo) and a passive (battery free) implantable power receiver (in vivo) that enables measurement of the intracardiacimpedance (ICI) during internal atrial defibrillation is reported. The architecture is designed to operate in two modes: Cardiac sense mode (power-up, measure the impedance of the cardiac substrate and communicate data to the ex vivo power transmitter) and cardiac shock mode (delivery of a synchronised very low tilt rectilinear electrical shock waveform). An initial prototype was implemented and tested. In low-power (sense) mode, >5 W was delivered across a 2.5 cm air-skin gap to facilitate measurement of the impedance of the cardiac substrate. In high-power (shock) mode, >180 W (delivered as a 12 ms monophasic very-low-tilt-rectilinear (M-VLTR) or as a 12 ms biphasic very-low-tilt-rectilinear (B-VLTR) chronosymmetric (6ms/6ms) amplitude asymmetric (negative phase at 50% magnitude) shock was reliably and repeatedly delivered across the same interface; with >47% DC-to-DC (direct current to direct current) power transfer efficiency at a switching frequency of 185 kHz achieved. In an initial trial of the RF architecture developed, 30 patients with AF were randomised to therapy with an RF generated M-VLTR or B-VLTR shock using a step-up voltage protocol (50–300 V). Mean energy for successful cardioversion was 8.51 J ± 3.16 J. Subsequent analysis revealed that all patients who cardioverted exhibited a significant decrease in ICI between the first and third shocks (5.00 Ω (SD(σ) = 1.62 Ω), p < 0.01) while spectral analysis across frequency also revealed a significant variation in the impedance-amplitude-spectrum-area (IAMSA) within the same patient group (|∆(IAMSAS1-IAMSAS3)[1 Hz − 20 kHz] = 20.82 Ω-Hz (SD(σ) = 10.77 Ω-Hz), p < 0.01); both trends being absent in all patients that failed to cardiovert. Efficient

  16. Towards Low Energy Atrial Defibrillation.

    PubMed

    Walsh, Philip; Kodoth, Vivek; McEneaney, David; Rodrigues, Paola; Velasquez, Jose; Waterman, Niall; Escalona, Omar

    2015-01-01

    A wireless powered implantable atrial defibrillator consisting of a battery driven hand-held radio frequency (RF) power transmitter (ex vivo) and a passive (battery free) implantable power receiver (in vivo) that enables measurement of the intracardiac impedance (ICI) during internal atrial defibrillation is reported. The architecture is designed to operate in two modes: Cardiac sense mode (power-up, measure the impedance of the cardiac substrate and communicate data to the ex vivo power transmitter) and cardiac shock mode (delivery of a synchronised very low tilt rectilinear electrical shock waveform). An initial prototype was implemented and tested. In low-power (sense) mode, >5 W was delivered across a 2.5 cm air-skin gap to facilitate measurement of the impedance of the cardiac substrate. In high-power (shock) mode, >180 W (delivered as a 12 ms monophasic very-low-tilt-rectilinear (M-VLTR) or as a 12 ms biphasic very-low-tilt-rectilinear (B-VLTR) chronosymmetric (6ms/6ms) amplitude asymmetric (negative phase at 50% magnitude) shock was reliably and repeatedly delivered across the same interface; with >47% DC-to-DC (direct current to direct current) power transfer efficiency at a switching frequency of 185 kHz achieved. In an initial trial of the RF architecture developed, 30 patients with AF were randomised to therapy with an RF generated M-VLTR or B-VLTR shock using a step-up voltage protocol (50-300 V). Mean energy for successful cardioversion was 8.51 J ± 3.16 J. Subsequent analysis revealed that all patients who cardioverted exhibited a significant decrease in ICI between the first and third shocks (5.00 Ω (SD(σ) = 1.62 Ω), p < 0.01) while spectral analysis across frequency also revealed a significant variation in the impedance-amplitude-spectrum-area (IAMSA) within the same patient group (|∆(IAMSAS1-IAMSAS3)[1 Hz - 20 kHz] = 20.82 Ω-Hz (SD(σ) = 10.77 Ω-Hz), p < 0.01); both trends being absent in all patients that failed to cardiovert. Efficient

  17. Low-energy neutrino factory design

    SciTech Connect

    Ankenbrandt, C.; Bogacz, S.A.; Bross, A.; Geer, S.; Johnstone, C.; Neuffer, D.; Popovic, M.; /Fermilab

    2009-07-01

    The design of a low-energy (4 GeV) neutrino factory (NF) is described, along with its expected performance. The neutrino factory uses a high-energy proton beam to produce charged pions. The {pi}{sup {+-}} decay to produce muons ({mu}{sup {+-}}), which are collected, accelerated, and stored in a ring with long straight sections. Muons decaying in the straight sections produce neutrino beams. The scheme is based on previous designs for higher energy neutrino factories, but has an improved bunching and phase rotation system, and new acceleration, storage ring, and detector schemes tailored to the needs of the lower energy facility. Our simulations suggest that the NF scheme we describe can produce neutrino beams generated by {approx} 1.4 x 10{sup 21} {mu}{sup +} per year decaying in a long straight section of the storage ring, and a similar number of {mu}{sup -} decays.

  18. Phenomenological implications of low energy supersymmetry breaking

    SciTech Connect

    Dimopoulos, S. |; Dine, M.; Raby, S.; Thomas, S.; Wells, J.D.

    1996-07-01

    The experimental signatures for low energy supersymmetry breaking are presented. The lightest standard model superpartner is unstable and decays to its partner plus a Goldstino, G. For a supersymmetry breaking scale below a few 1,000 TeV this decay can take place within a detector, leading to very distinctive signatures. If a neutralino is the lightest standard model superpartner it decays by {chi}{sub 1}{sup 0} {r_arrow} {gamma} + G, and if kinematically accessible by {chi}{sub 1}{sup 0} {r_arrow} (Z{sup 0}, h{sup 0}, H{sup 0}, A{sup 0}) + G. These decays can give rise to displaced vertices. Alternately, if a slepton is the lightest standard model superpartner it decays by {tilde l} {r_arrow} l + G. This can be seen as a greater than minimum ionizing charged particle track, possibly with a kink to a minimum ionizing track.

  19. Physics with low energy hadrons

    SciTech Connect

    Guttierez, G.; Littenberg, L.

    1997-10-01

    The prospects for low energy hadron physics at the front end of a muon collider (FMC) are discussed. The FMC, as conceived for the purposes of this workshop, is pretty close to a classical idea of a koan factory. There is an order of magnitude advantage of the FMC front end over the AGS for K{sup {minus}} and {anti p} production below 5 GeV/c.

  20. A 2D smart pixel detector for time-resolved protein crystallography

    SciTech Connect

    Beuville, E.; Cork, C.; Earnest, T.

    1995-10-01

    A smart pixel detector is being developed for Time Resolved Crystallography for biological and material science applications. Using the Pixel detector presented here, the Laue method will enable the study of the evolution of structural changes that occur within the protein as a function of time. The x-ray pixellated detector is assembled to the integrated circuit through a bump bonding process. Within a pixel size of 150 x 150 {mu}m{sup 2}, a low noise preamplifier-shaper, a discriminator, a 3 bit counter and the readout logic are integrated. The readout, based on the Column Architecture principle, will accept hit rates above 5x10{sup 8}/cm{sup 2}/s with a maximum hit rate per pixel of 1 MHz. This detector will allow time resolved Laue crystallography to be performed in a frameless operation mode, without dead time. Target specifications, architecture, and preliminary results on the 8 x 8 front-end prototype and column readout are presented.

  1. Techniques and methods for the low-energy neutrino detection

    NASA Astrophysics Data System (ADS)

    Ranucci, Gioacchino

    2016-04-01

    Low-energy neutrino physics and astrophysics has been one of the most active field of particle physics research over the past two decades, achieving important and sometimes unexpected results, which have paved the way for a bright future of further exciting studies. The methods, the techniques and the technologies employed for the construction of the many experiments which acted as important players in this area of investigation have been crucial elements to reach the many accumulated physics successes. The topic covered in this review is, thus, the description of the main features of the set of methodologies at the basis of the design, construction and operation of low-energy neutrino detectors.

  2. Oscillations of very low energy atmospheric neutrinos

    SciTech Connect

    Peres, Orlando L. G.; Smirnov, A. Yu.

    2009-06-01

    There are several new features in the production, oscillations, and detection of the atmospheric neutrinos of low energies E < or approx. 100 MeV. The flavor ratio r of muon to electron neutrino fluxes is substantially smaller than 2 and decreases with energy, a significant part of events is due to the decay of invisible muons at rest, etc. Oscillations in a two-layer medium (atmosphere-Earth) should be taken into account. We derive analytical and semianalytical expressions for the oscillation probabilities of these 'sub-sub-GeV' neutrinos. The energy spectra of the e-like events in water Cherenkov detectors are computed, and the dependence of the spectra on the 2-3 mixing angle {theta}{sub 23}, the 1-3 mixing, and the CP-violation phase are studied. We find that variations of {theta}{sub 23} in the presently allowed region change the number of e-like events by about 15%-20% as well as lead to distortion of the energy spectrum. The 1-3 mixing and CP violation can lead to {approx}10% effects. Detailed study of the sub-sub-GeV neutrinos will be possible in future megaton-scale detectors.

  3. Neutrino Detectors: Challenges and Opportunities

    SciTech Connect

    Soler, F. J. P.

    2011-10-06

    This paper covers possible detector options suitable at future neutrino facilities, such as Neutrino Factories, Super Beams and Beta Beams. The Magnetised Iron Neutrino Detector (MIND), which is the baseline detector at a Neutrino Factory, will be described and a new analysis which improves the efficiency of this detector at low energies will be shown. Other detectors covered include the Totally Active Scintillating Detectors (TASD), particularly relevant for a low energy Neutrino Factory, emulsion detectors for tau detection, liquid argon detectors and megaton scale water Cherenkov detectors. Finally the requirements of near detectors for long-baseline neutrino experiments will be demonstrated.

  4. Determination of the radial gradient in the region 0.81-1.0 AU using both high- and low-energy /more than 10-GeV and more than 52-MeV/ detectors for the 1-AU monitor. [solar quiet measurements of alpha particles and protons

    NASA Technical Reports Server (NTRS)

    Sheldon, W. R.; Bukata, R. P.; Rao, U. R.

    1974-01-01

    A determination of the radial gradient for alpha particles (31-46 MeV/nuc) and protons with energies above 7.5 MeV and 44-77 MeV in the region 1.0-0.81 AU is presented for the solar-quiet year 1966. The determinations are based on data from the Pioneer 6 space probe. Two different detectors are used: the Deep River neutron monitor and measurements of low energy protons made on the IMP-C satellite. The average energy response of the Deep River monitor is 16 GeV, whereas the IMP-C data is for protons with energies above 50 MeV. The resulting radial gradient is found to be nearly zero for the alpha particles and slightly negative for the protons. The same qualitative results were found using the IMP-C data and the Deep River neutron monitor to measure the temporal variation in the cosmic ray intensity. The present analysis indicates that detectors over a wide range of energies are suitable for measuring the radial gradient, providing sufficient statistical precision is obtained to evaluate short-term modulation and the azimuthal separation of the detectors is not great.

  5. Is there a low energy enhancement in the photon strength function in molybdenum?

    SciTech Connect

    Sheets, S A

    2008-01-30

    Recent claims of a low energy enhancement in the photon strength function of {sup 96}Mo are investigated. Using the DANCE detector the gamma-ray spectra following resonance neutron capture was measured. The spectrum fitting method was used to indirectly extract a photon strength function from the gamma-ray spectra. No strong low energy enhancement in the photon strength function was found.

  6. Low Energy X-Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Woodruff, Wayne R.

    1981-10-01

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d=9.95Å) crystal. To preclude higher order (n≳1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than ˜1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surfaced photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminum light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any UV generated on or scattered by the crystal from illuminating the detector. High spectral enegy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni Lα1,2 lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy X-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable.

  7. Low energy x-ray spectrometer

    SciTech Connect

    Woodruff, W.R.

    1981-06-05

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d = 9.95A) crystal. To preclude higher order (n > 1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than approx. 1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surface photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminium light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any uv generated on or scattered by the crystal from illuminating the detector. High spectral energy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni L..cap alpha../sub 1/ /sub 2/ lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy x-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable. 16 figures.

  8. Interplanetary variability in particle fluxes recorded by the low energy charged particle detector SLED (about 30 keV to greater than 30 MeV) during the Cruise Phase of the PHOBOS Mission to Mars and its moons

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, S. M. P.; Afonin, V. V.; Gringauz, K. I.; Keppler, E.; Kirsch, E.; Richter, A. K.; Witte, M.; O'Sullivan, D.; Thompson, A.; Kecskemety, K.

    1991-05-01

    Two lightweight telescope detector systems, codenamed SLED-1 and SLED-2, with the capability to monitor electron and ion fluxes within an energy range spanning 34 keV to a few tens of MeV, were launched on the twin spacecraft of the Soviet Phobos Mission to Mars and its moons in July 1988. Solar-related particle enhancements recorded during the Cruise Phase, and also in the near Martian environment, over the interval 19 July 1988-27 March 1989 while the interplanetary medium was in course of changing over from solar-minimum to solar-maximum dominated conditions, are presented. In particular, examples of signatures characterizing events associated with each of these phenomenological states are provided in the context of attempting to elucidate how the solar interplanetary medium evolves from one condition to the other.

  9. Low-Energy Proton Testing Methodology

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Marshall, Paul W.; Heidel, David F.; Schwank, James R.; Shaneyfelt, Marty R.; Xapsos, M.A.; Ladbury, Raymond L.; LaBel, Kenneth A.; Berg, Melanie; Kim, Hak S.; Phan, Anthony; Friendlich, M.R.; Rodbell, Kenneth P.; Hakey, Mark C.; Dodd, Paul E.; Reed, Robert A.; Weller, Robert A.; Mendenhall, Marcus H.; Sierawski, B.D.

    2009-01-01

    Use of low-energy protons and high-energy light ions is becoming necessary to investigate current-generation SEU thresholds. Systematic errors can dominate measurements made with low-energy protons. Range and energy straggling contribute to systematic error. Low-energy proton testing is not a step-and-repeat process. Low-energy protons and high-energy light ions can be used to measure SEU cross section of single sensitive features; important for simulation.

  10. Low-Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Wiedenbeck, M. E.; ACE/CRIS Collaboration

    2002-12-01

    Cosmic rays with energies below about 10 GeV/nucleon have been measured with high precision as a result of experiments on the HEAO, Ulysses, and ACE spacecrafts. The observations provide energy spectra, elemental abundances, and isotopic composition for elements up through Z=30. They include both stable and radioactive nuclides that are synthesized in stars or are produced by nuclear fragmentation during diffusion at high energies through interstellar medium. From these data one obtains a rather detailed picture of the origin of low-energy cosmic rays. For refractory species, the cosmic-ray source composition closely resembles that of the Sun, suggesting that cosmic rays are accelerated from a well-mixed sample of interstellar matter. A chemical fractionation process has depleted the abundances of volatile elements relative to refractories. Using various radioactive clock isotopes it has been shown that particle acceleration occurs at least 105 years after supernova nucleosynthesis and that the accelerated particles diffuse in the Galaxy for approximately 15 Myr after acceleration. Energy spectra and secondary-to-primary ratios are reasonably well accounted for by models in which particles gain the bulk of their energy in a single encounter with a strong shock. Among the large number of species that have been measured, 22Ne stands out as the only nuclide with an abundance that is clearly much different than solar. To test models proposed to account for this anomaly, the data are being analyzed for predicted smaller effects on abundances of other nuclides. In addition to providing a detailed understanding of the origin and acceleration of low-energy cosmic rays, these data are providing constraints on the chemical evolution of interstellar matter. This work was supported by NASA at Caltech (under grant NAG5-6912), JPL, NASA/GSFC, and Washington U.

  11. Low energy cosmic ray studies from a lunar base

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, Mark E.

    1990-01-01

    Studies of cosmic ray nuclei with energies less than about 7 GeV/nucleon in low earth orbit are hampered by the geomagnetic field. Even in high inclination orbits these effects can be significant. The lunar surface (or lunar orbit) provides an attractive site for carrying out low energy cosmic ray studies which require large detectors. The rationale and requirements for this type of experiment are described.

  12. Development of multichannel low-energy neutron spectrometer.

    PubMed

    Arikawa, Y; Nagai, T; Abe, Y; Kojima, S; Sakata, S; Inoue, H; Utsugi, M; Iwasa, Y; Murata, T; Sarukura, N; Nakai, M; Shiraga, H; Fujioka, S; Azechi, H

    2014-11-01

    A multichannel low-energy neutron spectrometer for down-scattered neutron (DSN) measurements in inertial confinement fusion (ICF) experiments has been developed. Our compact-size 256-channel lithium-glass-scintillator-based spectrometer has been implemented and tested in ICF experiments with the GEKKO XII laser. We have performed time calibration of the 256-channel analog-to-digital convertor system used for DSN measurements via X-ray pulse signals. We have clearly observed the DD-primary fusion neutron signal and have successfully studied the detector's impulse response. Our detector is soon to be implemented in future ICF experiments. PMID:25430304

  13. Development of multichannel low-energy neutron spectrometer

    SciTech Connect

    Arikawa, Y. Nagai, T.; Abe, Y.; Kojima, S.; Sakata, S.; Inoue, H.; Utsugi, M.; Iwasa, Y.; Sarukura, N.; Nakai, M.; Shiraga, H.; Fujioka, S.; Azechi, H.; Murata, T.

    2014-11-15

    A multichannel low-energy neutron spectrometer for down-scattered neutron (DSN) measurements in inertial confinement fusion (ICF) experiments has been developed. Our compact-size 256-channel lithium-glass-scintillator-based spectrometer has been implemented and tested in ICF experiments with the GEKKO XII laser. We have performed time calibration of the 256-channel analog-to-digital convertor system used for DSN measurements via X-ray pulse signals. We have clearly observed the DD-primary fusion neutron signal and have successfully studied the detector's impulse response. Our detector is soon to be implemented in future ICF experiments.

  14. A 2-D Array of Superconducting Magnesium Diboride (MgB2) Far-IR Thermal Detectors for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Lakew, Brook

    2009-01-01

    A 2-D array of superconducting Magnesium Diboride(MgB2) far IR thermal detectors has been fabricated. Such an array is intended to be at the focal plane of future generation thermal imaging far-IR instruments that will investigate the outer planets and their icy moons. Fabrication and processing of the pixels of the array as well as noise characterization of architectured MgB2 thin films will be presented. Challenges and solutions for improving the performance of the array will be discussed.

  15. Intense low energy positron beams

    SciTech Connect

    Lynn, K.G.; Jacobsen, F.M.

    1993-12-31

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e{sup +} beams exist producing of the order of 10{sup 8} {minus} 10{sup 9} e{sup +}/sec. Several laboratories are aiming at high intensity, high brightness e{sup +} beams with intensities greater than 10{sup 9} e{sup +}/sec and current densities of the order of 10{sup 13} {minus} 10{sup 14} e{sup +} sec{sup {minus}} {sup 1}cm{sup {minus}2}. Intense e{sup +} beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B{sup +} moderators or by increasing the available activity of B{sup +} particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e{sup +} collisions with atoms and molecules. Within solid state physics high intensity, high brightness e{sup +} beams are in demand in areas such as the re-emission e{sup +} microscope, two dimensional angular correlation of annihilation radiation, low energy e{sup +} diffraction and other fields. Intense e{sup +} beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies.

  16. Low energy effective string cosmology

    SciTech Connect

    Copeland, E.J.; Lahiri, A.; Wands, D. )

    1994-10-15

    We give the general analytic solutions derived from the low energy string effective action for four-dimensional Friedmann-Robertson-Walker models with a dilaton and antisymmetric tensor field, considering both long and short wavelength modes of the [ital H] field. The presence of a homogeneous [ital H] field significantly modifies the evolution of the scale factor and dilaton. In particular it places a lower bound on the allowed value of the dilaton. The scale factor also has a lower bound but our solutions remain singular as they all contain regions where the spacetime curvature diverges signalling a breakdown in the validity of the effective action. We extend our results to the simplest Bianchi type I metric in higher dimensions with only two scale factors. We again give the general analytic solutions for long and short wavelength modes for the [ital H] field restricted to the three-dimensional space, which produces an anisotropic expansion. In the case of [ital H] field radiation (wavelengths within the Hubble length) we obtain the usual four-dimensional radiation-dominated FRW model as the unique late time attractor.

  17. Low energy stable plasma calibration facility

    NASA Astrophysics Data System (ADS)

    Frederick-Frost, K. M.; Lynch, K. A.

    2007-07-01

    We have designed and fabricated a low energy plasma calibration facility for testing and calibration of rocket-borne charged-particle detectors and for the investigation of plasma sheath formation in an environment with ionospheric plasma energies, densities, and Debye lengths. We describe the vacuum system and associated plasma source, which was modified from a Naval Research Laboratory design [Bowles et al. Rev. Sci. Instrum. 67, 455 (1996)]. Mechanical and electrical modifications to this cylindrical microwave resonant source are outlined together with a different method of operating the magnetron that achieves a stable discharge. This facility produces unmagnetized plasmas with densities from 1×103/cm3to6×105/cm3, electron temperatures from 0.1to1.7eV, and plasma potentials from 0.5to8V depending on varying input microwave power and neutral gas flow. For the range of input microwave power explored (350-600W), the energy density of the plasma remains constant because of an inverse relationship between density and temperature. This relationship allows a wide range of Debye lengths (0.3-8.4cm) to be investigated, which is ideal for simulating the ionospheric plasma sheaths we explore.

  18. Low-Energy Sputtering Research

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1999-01-01

    An experimental study is described to measure low-energy (less than 600 eV) sputtering yields of molybdenum with xenon ions using Rutherford backscattering spectroscopy (RBS) and secondary neutral mass spectroscopy (SNMS). An ion gun was used to generate the ion beam. The ion current density at the target surface was approximately 30 (micro)A/sq cm. For RBS measurements, the sputtered material was collected on a thin aluminum strip which was mounted on a semi-circular collector plate. The target was bombarded with 200 and 500 eV xenon ions at normal incidence. The differential sputtering yields were measured using the RBS method with 1 MeV helium ions. The differential yields were fitted with a cosine fitting function and integrated with respect to the solid angle to provide the total sputtering yields. The sputtering yields obtained using the RBS method are in reasonable agreement with those measured by other researchers using different techniques. For the SNMS measurements, 150 to 600 eV xenon ions were used at 50deg angle of incidence. The SNMS spectra were converted to sputtering yields for perpendicular incidence by normalizing SNMS spectral data at 500 eV with the yield measured by Rutherford backscattering spectrometry. Sputtering yields as well as the shape of the yield-energy curve obtained in this manner are in reasonable agreement with those measured by other researchers using different techniques. Sputtering yields calculated by using two semi-spherical formulations agree reasonably well with measured data. The isotopic composition of secondary ions were measured by bombarding copper with xenon ions at energies ranging from 100 eV to 1.5 keV. The secondary ion flux was found to be enriched in heavy isotopes at low incident ion energies. The heavy isotope enrichment was observed to decrease with increasing impact energy. Beyond 700 eV, light isotopes were sputtered preferentially with the enrichment remaining nearly constant.

  19. Low-energy nuclear physics with high-segmentation silicon arrays

    SciTech Connect

    Betts, R.R. |

    1994-12-01

    A brief history is given of silicon detectors leading up to the development of ion-implanted strip detectors. Two examples of their use in low energy nuclear physics are discussed; the search for exotic alpha-chain states in {sup 24}Mg and studies of anomalous positron-electron pairs produced in collisions of very heavy ions.

  20. The Mini-SPT (Space Particle Telescope) for dual use: Precision flux measurement of low energy proton electron and heavy ion with tracking capability and A compact, low-cost realtime local radiation hazard/alarm detector to be used on board a satellite

    NASA Astrophysics Data System (ADS)

    Alpat, Behcet; Ergin, Tulun; Kalemci, Emrah

    2016-07-01

    The Mini-SPT project is the first, and most important, step towards the ambitious goal of creating a low-cost, compact, radiation hardened and high performance space particle telescope that can be mounted, in the near future, as standard particle detector on any satellite. Mini-SPT will be capable of providing high quality physics data on local space environment. In particular high precision flux measurement and tracking of low energy protons and electrons on different orbits with same instrumentation is of paramount importance for studies as geomagnetically trapped fluxes and space weather dynamics, dark matter search, low energy proton anisotropy and its effects on ICs as well as the solar protons studies. In addition, it will provide real-time "differentiable warnings" about the local space radiation hazard to other electronics systems on board the hosting satellite, including different criticality levels and alarm signals to activate mitigation techniques whenever this is strictly necessary to protect them from temporary/permanent failures. A real-time warning system will help satellite subsystems to save significant amount of power and memory with respect to other conventional techniques where the "mitigation" solutions are required to be active during entire mission life. The Mini-SPT will combine the use of technologies developed in cutting-edge high energy physics experiments (including technology from CMS experiments at CERN) and the development of new charged particle detecting systems for their use for the first time in space. The Mini-SPT essential objective is, by using for the first time in space SIPMs (Silicon Photomultipliers) technology for TOF and energy measurements, the production of high quality data with a good time, position and energy resolutions. The mini-SPT will consists of three main sub-units: a- A tracking and dE/dX measuring sub-detector which will be based on silicon pixel detectors (SPD) coupled to the rad-hard chip ROC-DIG (Read

  1. Low-energy particle population. [in Jupiter magnetosphere

    NASA Technical Reports Server (NTRS)

    Krimigis, S. M.; Roelof, E. C.

    1983-01-01

    A review is conducted of the measurements of the intensities, energy spectra, angular variations, and composition characteristics of the low-energy ion population in and around the Jovian magnetosphere, taking into account data obtained by both Voyager spacecraft. A description is provided of some novel analysis techniques which have been employed to generate density, pressure, composition, and plasma flow profiles in the magnetosphere. The obtained results are compared with data reported in connection with other investigations related to the spacecraft. Attention is given to the Low-Energy Charged Particle investigation, the Voyager 1 and 2 trajectories within 1000 Jupiter radii, and a hot plasma model of the Jovian magnetosphere. The measurement of hot multispecies convected plasmas using energetic particle detectors is also discussed.

  2. Is there a low-energy enhancement in the photon strength function in molybdenum?

    SciTech Connect

    Sheets, S. A.

    2008-04-17

    Recent claims of a low-energy enhancement in the photon strength function of {sup 96}Mo are investigated. Using the DANCE detector the gamma-ray spectra following resonance neutron capture was measured. The spectrum fitting method was used to indirectly extract a photon strength function from the gamma-ray spectra. No strong low energy enhancement in the photon strength function was found.

  3. Low Energy Lorentz Violation from Modified Dispersion at High Energies.

    PubMed

    Husain, Viqar; Louko, Jorma

    2016-02-12

    Many quantum theories of gravity propose Lorentz-violating dispersion relations of the form ω=|k|f(|k|/M⋆), with recovery of approximate Lorentz invariance at energy scales much below M⋆. We show that a quantum field with this dispersion predicts drastic low energy Lorentz violation in atoms modeled as Unruh-DeWitt detectors, for any f that dips below unity somewhere. As an example, we show that polymer quantization motivated by loop quantum gravity predicts such Lorentz violation below current ion collider rapidities. PMID:26918976

  4. Single track nanodosimetry of low energy electrons

    NASA Astrophysics Data System (ADS)

    Bantsar, A.; Grosswendt, B.; Pszona, S.; Kula, J.

    2009-02-01

    Auger-electron-emitting radionuclides (for instance, 125I) with a predominant energy spectrum below 3 keV are an active area of research towards the clinical application of radiopharmaceuticals. Hence, the necessity for an adequate description of the effects of radiation by low-energy electrons on nanometric biological targets seems to be unquestionable. Experimental nanodosimetry for low-energy electrons has been accomplished with a device named JET COUNTER. The present paper describes, for the first time, nanodosimetric experiments in nanometer-sized cavities of nitrogen using low energy electrons ranging from 100 eV to 2 keV.

  5. Calcification content quantification by dual-energy x-ray absorptiometry with a 2D digital radiographic detector

    NASA Astrophysics Data System (ADS)

    Dinten, Jean M.; Robert-Coutant, Christine; Darboux, Michel; Gonon, Georges; Bordy, Thomas

    2003-06-01

    In a previous paper (SPIE Medical Imaging 2001), a dual energy method for bone densitometry using a 2D digital radiographic detector has been presented. In this paper, calcium content quantification performance of the approach is precised. The main challenge is to achieve quantification using scatter-corrected dual energy acquisitions. Therefore a scatter estimation approach, based on an expression of scatter as a functional of the primary flux, has been developed. This expression is derived from the Klein and Nishina equation and includes tabulated scatter level values. The calcium quantification performances are validated on two configurations. A first one is issued from criteria developed by the French "Groupe de Recherche et d'Information sur les Osteoporoses." It is based on the use of a phantom made of five 3mm thick PVC sheets in the form of five steps, representing five different bone mineral density values, included in a lucite container filled with water. Additional lucite plates can be put over the phantom. This phantom has been used for evaluation of quantification robustness versus patient thickness and composition variations, and for accuracy evaluation. The second configuration, composed of small calcified objects (representative of lung nodules), is used for evaluating capacities to differentiate calcified from non calcified nodules and to test calcium content quantification performance.

  6. The Science of Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    2007-03-01

    The large literature describing the anomalous behavior attributed to cold fusion or low energy nuclear reactions has been critically described in a recently published book. Over 950 publications are evaluated allowing the phenomenon to be understood. A new class of nuclear reactions has been discovered that are able to generate practical energy without significant radiation or radioactivity. Edmund K Storms, The Science of Low Energy Nuclear Reactions, in press (2006). Also see: http://www.lenr-canr.org/StudentsGuide.htm .

  7. Response of plastic scintillators to low-energy photons

    NASA Astrophysics Data System (ADS)

    Peralta, Luis; Rêgo, Florbela

    2014-08-01

    Diagnostic radiology typically uses x-ray beams between 25 and 150 kVp. Plastic scintillation detectors (PSDs) are potentially successful candidates as field dosimeters but careful selection of the scintillator is crucial. It has been demonstrated that they can suffer from energy dependence in the low-energy region, an undesirable dosimeter characteristic. This dependence is partially due to the nonlinear light yield of the scintillator to the low-energy electrons set in motion by the photon beam. In this work, PSDs made of PMMA, PVT or polystyrene were studied for the x-ray beam range 25 to 100 kVp. For each kVp data has been acquired for additional aluminium filtrations of 0.5, 1.0, 2.0 and 4.0 mm. Absolute dose in the point of measurement was obtained with an ionization chamber calibrated to dose in water. From the collected data, detector sensitivities were obtained as function of the beam kVp and additional filtration. Using Monte Carlo simulations relative scintillator sensitivities were computed. For some of the scintillators these sensitivities show strong energy-dependence for beam average energy below 35 keV for each additional filtration but fair constancy above. One of the scintillators (BC-404) has smaller energy-dependence at low photon average energy and could be considered a candidate for applications (like mammography) where beam energy has small span.

  8. Low-Energy Neutron Scattering from Heavy Nuclei

    NASA Astrophysics Data System (ADS)

    Horton, Christopher Adams

    Fast neutron inelastic scattering cross sections for the 44.9-keV level in ^{238} U and the 49.4-keV level in ^{232 }Th, and the elastic scattering cross sections of ^{209}Bi and ^{232}Th have been measured using the neutron time-of-flight technique, at an incident neutron energy of 127 keV at six scattering angles from 45 ^circ to 122.5^circ . Neutrons were produced by the ^7 Li(p,n)^7Be reaction. A detector using two photomultiplier tubes in fast coincidence was built for these low-energy measurements. The detector efficiency was determined by comparison with that of a ^{235}U fission chamber. Special attention was paid to determining the efficiency near the ^7Li(p,n)^7Be reaction threshold. The spectrum unfolding included the removal of tails on the peaks which were assumed to be exponential functions. The inelastic peaks were stripped from the elastic peaks by using the shape of the bismuth elastic peak as a standard. Corrections for neutron attenuation were computed analytically. Corrections for multiple scattering were determined using a Monte Carlo method. Results were normalized to the ^{238}U differential elastic scattering cross sections and angular distributions. The angular distributions and integrated cross sections are compared with the ENDF/B-VI evaluation cross sections and with results at similar energies from previous measurements. The use of iron neutron filters for measuring cross sections at low energies is also discussed.

  9. Milagro: A low energy threshold extensive air shower array

    NASA Astrophysics Data System (ADS)

    Sinnis, Gus

    1995-07-01

    Observations of gamma-ray bursts, active galactic nuclei, and radio pulsars by CGRO have revolutionized our view of the cosmos. Sources may pop into existence for a few milliseconds never to appear again and galaxies can change their luminosity by an order of magnitude within a few days. In addition to these space-based measurements, there have been at least 2 sources detected at even higher energies, ~1 TeV, using earth-bound detectors. To date, ground-based detectors of high-energy gamma rays with energy thresholds low enough to make credible detections have all had narrow fields of view and low duty factors. While these detectors are well suited to perform detailed studies of selected sources, they can not perform surveys of the entire sky with adequate sensitivity in a reasonable amount of time. We have designed a new type of ground-based gamma-ray detector with a low energy threshold, ~250 GeV, large aperture (~1 sr), and a duty factor greater than 90%-Milagro.

  10. Low energy aspects of circular accelerators

    SciTech Connect

    Holmes, S.D.

    1990-12-01

    Performance in circular accelerators can be limited by some of the same sorts of phenomena described by Miller and Wangler in their lectures on low energy behavior in linear accelerators. In general the strength of the perturbation required to degrade performance is reduced in circular accelerators due to the repetitive nature of the orbits. For example, we shall see that space-charge can severely limit performance in circular accelerators even when operating far from the space-charge dominated regime'' as defined in linear accelerators. We will be discussing two particular aspects of low energy operation in circular accelerators -- space-charge and transition. Low energy'' is defined within the context of these phenomena. We shall see that the phenomena are really only relevant in hadron accelerators.

  11. Recombination in liquid xenon for low-energy recoils

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Mei, Dongming; Cubed Collaboration

    2014-09-01

    Detector response to low-energy recoils in sub-keV region is critical to detection of low-mass dark matter particles-WIMPS (Weakly interacting massive particles). The role of electron-ion recombination is important to the interpretation of the relation between ionization yield and scintillation yield, which are in general anti-correlated. Recent experimental results show that ionization yield increases down to keV range. This phenomenon contradicts general understanding for low energy recoils in the keV range in which direct excitation dominates. The explanation is that recombination becomes much less efficient when the track length is smaller than the thermalization distance of electrons. However, recombination rate is also proportional to ionization density, which is very high for keV recoils. To understand how recombination rate behaves for keV recoils, we calculated both initial recombination rate and volume recombination rate for keV recoils in liquid xenon. In this paper, we show the results of the calculated recombination rate as a function of recoil energy for both electronic recoils and nuclear recoils. Detector response to low-energy recoils in sub-keV region is critical to detection of low-mass dark matter particles-WIMPS (Weakly interacting massive particles). The role of electron-ion recombination is important to the interpretation of the relation between ionization yield and scintillation yield, which are in general anti-correlated. Recent experimental results show that ionization yield increases down to keV range. This phenomenon contradicts general understanding for low energy recoils in the keV range in which direct excitation dominates. The explanation is that recombination becomes much less efficient when the track length is smaller than the thermalization distance of electrons. However, recombination rate is also proportional to ionization density, which is very high for keV recoils. To understand how recombination rate behaves for keV recoils

  12. What is a low-energy house?

    SciTech Connect

    Litt, B.R.; Meier, A.K.

    1994-08-01

    Traditionally, a ``low-energy`` house has been one that used little energy for space heating. But space heating typically accounts for less than half of the energy used by new US homes, and for low heating energy homes, space heating is often the third largest end use, behind water heating and appliances, and sometimes behind cooling. Low space heat alone cannot identify a low-energy house. To better understand the determinants of a low-energy house, we collected data on housing characteristics, incremental costs, and energy measurements from energy-efficient houses around the world and in a range of climates. We compare the energy required to provide thermal comfort as well as water heating, and other appliances. We do not have a single definition of a low-energy house, but through comparisons of actual buildings, we show how different definitions and quantitative indicators fail. In comparing the energy use of whole houses, weather normalization can be important, but for cases in which heating or cooling energy is surpassed by other end uses, other normalization methods must be used.

  13. Low energy strong electroweak sector with decoupling

    SciTech Connect

    Casalbuoni, R.; Dominici, D. |; Deandrea, A.; Gatto, R.; De Curtis, S.; Grazzini, M. |

    1996-05-01

    We discuss possible symmetries of effective theories describing spinless and spin-1 bosons, mainly to concentrate on an intriguing phenomenological possibility: that of a hardly noticeable strong electroweak sector at relatively low energies. Specifically, a model with both vector and axial vector strong interacting bosons may possess a discrete symmetry imposing degeneracy of the two sets of bosons (degenerate BESS model). In such a case its effects at low energies become almost invisible and the model easily passes all low energy precision tests. The reason lies essentially in the fact that the model automatically satisfies decoupling, contrary to models with only vectors. For large mass of the degenerate spin-one bosons the model becomes identical at the classical level to the standard model taken in the limit of infinite Higgs boson mass. For these reasons we have thought it worthwhile to fully develop the model, together with its possible generalizations, and to study the expected phenomenology. For instance, just because of its invisibility at low energy, it is conceivable that degenerate BESS has low mass spin-one states and gives quite visible signals at existing or forthcoming accelerators. {copyright} {ital 1996 The American Physical Society.}

  14. Parity violation in low-energy

    SciTech Connect

    Martin Savage

    2001-12-01

    Parity violation in low-energy nuclear observables is included in the pionless effective field theory. The model-independent relation between the parity-violating asymmetry in polarized np -> d gamma and the non-nucleon part of the deuteron anapole moment is discussed. The asymmetry in np -> d gamma computed with KSW power-counting, and recently criticized by Desplanques, is discussed.

  15. Low energy [bar p] physics at FNAL

    SciTech Connect

    Hsueh, S.Y.

    1992-12-01

    The charmonium formation experiment is the only low energy [bar p] experiment at FNAL. This paper describes the performance of the Fermilab [bar p] Accumulator during fixed target run for the experiment and the planned upgrades. We also discuss the proposal for the direct CP violation search in [bar p] + p [yields] [bar [Lambda

  16. Studies in Low-Energy Nuclear Science

    SciTech Connect

    Carl R. Brune; Steven M. Grimes

    2010-01-13

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

  17. The low energy atmospheric antiproton albedo

    NASA Technical Reports Server (NTRS)

    Cole, J. B.; Ormes, J. F.

    1989-01-01

    The flux of albedo antiprotons in the 100-1000 MeV kinetic energy range produced by the cosmic ray primaries in the atmosphere is calculated. It is shown that this is not a significant background to measurements of the low energy anti-proton cosmic ray flux.

  18. Simulations of low energy e{sup +}e{sup {minus}} particle backgrounds

    SciTech Connect

    Ronan, M.T.

    1993-08-01

    A progress report on simulations of low-energy e{sup +}e{sup {minus}} backgrounds from the beam-beam interaction at future linear colliders is given. Characteristics of the primary particles and detailed calculations of the backgrounds fron backscattering into the detector volume are presented.

  19. Low-energy electron collisions with thiophene

    NASA Astrophysics Data System (ADS)

    da Costa, R. F.; Varella, M. T. do N.; Lima, M. A. P.; Bettega, M. H. F.

    2013-05-01

    We report on elastic integral, momentum transfer, and differential cross sections for collisions of low-energy electrons with thiophene molecules. The scattering calculations presented here used the Schwinger multichannel method and were carried out in the static-exchange and static-exchange plus polarization approximations for energies ranging from 0.5 eV to 6 eV. We found shape resonances related to the formation of two long-lived π* anion states. These resonant structures are centered at the energies of 1.00 eV (2.85 eV) and 2.82 eV (5.00 eV) in the static-exchange plus polarization (static-exchange) approximation and belong to the B1 and A2 symmetries of the C2v point group, respectively. Our results also suggest the existence of a σ* shape resonance in the B2 symmetry with a strong d-wave character, located at around 2.78 eV (5.50 eV) as obtained in the static-exchange plus polarization (static-exchange) calculation. It is worth to mention that the results obtained at the static-exchange plus polarization level of approximation for the two π* resonances are in good agreement with the electron transmission spectroscopy results of 1.15 eV and 2.63 eV measured by Modelli and Burrow [J. Phys. Chem. A 108, 5721 (2004), 10.1021/jp048759a]. The existence of the σ* shape resonance is in agreement with the observations of Dezarnaud-Dandiney et al. [J. Phys. B 31, L497 (1998), 10.1088/0953-4075/31/11/004] based on the electron transmission spectra of dimethyl(poly)sulphides. A comparison among the resonances of thiophene with those of pyrrole and furan is also performed and, altogether, the resonance spectra obtained for these molecules point out that electron attachment to π* molecular orbitals is a general feature displayed by these five-membered heterocyclic compounds.

  20. Photon strength and the low-energy enhancement

    SciTech Connect

    Wiedeking, M.; Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Hatarik, R.; Lesher, S. R.; Scielzo, N. D.; Krtička, M.; Allmond, J. M.; Basunia, M. S.; Fallon, P.; Firestone, R. B.; Lake, P. T.; Lee, I-Y.; Paschalis, S.; Petri, M.; Phair, L.; Goldblum, B. L.

    2014-08-14

    Several measurements in medium mass nuclei have reported a low-energy enhancement in the photon strength function. Although, much effort has been invested in unraveling the mysteries of this effect, its physical origin is still not conclusively understood. Here, a completely model-independent experimental approach to investigate the existence of this enhancement is presented. The experiment was designed to study statistical feeding from the quasi-continuum (below the neutron separation energy) to individual low-lying discrete levels in {sup 95}Mo produced in the (d, p) reaction. A key aspect to successfully study gamma decay from the region of high-level density is the detection and extraction of correlated particle-gamma-gamma events which was accomplished using an array of Clover HPGe detectors and large area annular silicon detectors. The entrance channel excitation energy into the residual nucleus produced in the reaction was inferred from the detected proton energies in the silicon detectors. Gating on gamma-transitions originating from low-lying discrete levels specifies the state fed by statistical gamma-rays. Any particle-gamma-gamma event in combination with specific energy sum requirements ensures a clean and unambiguous determination of the initial and final state of the observed gamma rays. With these requirements the statistical feeding to individual discrete levels is extracted on an event-by-event basis. The results are presented and compared to {sup 95}Mo photon strength function data measured at the University of Oslo.

  1. Photon strength and the low-energy enhancement

    NASA Astrophysics Data System (ADS)

    Wiedeking, M.; Bernstein, L. A.; Krtička, M.; Bleuel, D. L.; Allmond, J. M.; Basunia, M. S.; Burke, J. T.; Fallon, P.; Firestone, R. B.; Goldblum, B. L.; Hatarik, R.; Lake, P. T.; Lee, I.-Y.; Lesher, S. R.; Paschalis, S.; Petri, M.; Phair, L.; Scielzo, N. D.

    2014-08-01

    Several measurements in medium mass nuclei have reported a low-energy enhancement in the photon strength function. Although, much effort has been invested in unraveling the mysteries of this effect, its physical origin is still not conclusively understood. Here, a completely model-independent experimental approach to investigate the existence of this enhancement is presented. The experiment was designed to study statistical feeding from the quasi-continuum (below the neutron separation energy) to individual low-lying discrete levels in 95Mo produced in the (d, p) reaction. A key aspect to successfully study gamma decay from the region of high-level density is the detection and extraction of correlated particle-gamma-gamma events which was accomplished using an array of Clover HPGe detectors and large area annular silicon detectors. The entrance channel excitation energy into the residual nucleus produced in the reaction was inferred from the detected proton energies in the silicon detectors. Gating on gamma-transitions originating from low-lying discrete levels specifies the state fed by statistical gamma-rays. Any particle-gamma-gamma event in combination with specific energy sum requirements ensures a clean and unambiguous determination of the initial and final state of the observed gamma rays. With these requirements the statistical feeding to individual discrete levels is extracted on an event-by-event basis. The results are presented and compared to 95Mo photon strength function data measured at the University of Oslo.

  2. Neutrino phenomenology of very low-energy seesaw scenarios

    SciTech Connect

    Gouvea, Andre de; Jenkins, James; Vasudevan, Nirmala

    2007-01-01

    The standard model augmented by the presence of gauge-singlet right-handed neutrinos proves to be an ideal scenario for accommodating nonzero neutrino masses. Among the new parameters of this 'new standard model' are right-handed neutrino Majorana masses M. Theoretical prejudice points to M much larger than the electroweak symmetry breaking scale, but it has recently been emphasized that all M values are technically natural and should be explored. Indeed, M around 1-10 eV can accommodate an elegant oscillation solution to the liquid scintillator neutrino detector (LSND) anomaly, while other M values lead to several observable consequences. We consider the phenomenology of low-energy (M < or approx. 1 keV) seesaw scenarios. By exploring such a framework with three right-handed neutrinos, we can consistently fit all oscillation data--including those from LSND--while partially addressing several astrophysical puzzles, including anomalous pulsar kicks, heavy element nucleosynthesis in supernovae, and the existence of warm dark matter. In order to accomplish all of this, we find that a nonstandard cosmological scenario is required. Finally, low-energy seesaws - regardless of their relation to the LSND anomaly - can also be tested by future tritium beta-decay experiments, neutrinoless double-beta decay searches, and other observables. We estimate the sensitivity of such probes to M.

  3. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1985-01-01

    The author built and tested a low energy cyclotron for radiocarbon dating similar to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. The author found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. The author shows how a conventional carbon negative ion source located outside the cyclotron magnet, would produce sufficient beam and provide for quick sample changing to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  4. First GEANT4-based simulation investigation of a Li-coated resistive plate chamber for low-energy neutrons

    NASA Astrophysics Data System (ADS)

    Rhee, J. T.; Jamil, M.; Jeon, Y. J.

    2013-08-01

    A simulation study of the performance of a single-gap resistive plate chamber coated with Li-layer for the detection of low energy neutrons was performed by means of GEANT4 Monte Carlo code. Low energy neutrons were detected via 7Li(n, α) 3He nuclear reaction. To make the detector sensitive to low energy neutrons, Li- coating was employed both on the forward and backward electrodes of the converter. Low energy neutrons were transported onto the Li-coating RPC by GEANT4 MC code. A detector with converter area of 5×5 cm2 was utilized for this work. The detection response was evaluated as a function of incident low energy neutrons in the range of 25 MeV-100 MeV. The evaluated results predicted higher detection response for the backward-coated converter detector than that of forward coated converter RPC setup. This type of detector can be useful for the detection of low energy neutrons.

  5. Experimental Measurement of Low Energy Neutrino Interactions

    SciTech Connect

    Scholberg, Kate

    2011-11-23

    Neutrino interactions in the few to few tens of MeV range are of importance for several physics topics, including solar, supernova and reactor neutrinos, as well as future proposed oscillation and Standard Model test experiments. Although interaction cross-sections for some simple targets are well understood, very little experimental data exist for interactions with nuclei. This talk will discuss the motivation for measuring low energy neutrino interactions, the state of knowledge, and possible future strategies.

  6. PHYSICS WITH ULTRA-LOW ENERGY ANTIPROTONS

    SciTech Connect

    M. HOLZSCHEITER

    2001-02-01

    In this report the author describes the current status of the antiproton deceleration (AD) facility at CERN, and highlights the physics program with ultra-low energy antiproton at this installation. He also comments on future possibilities provided higher intensity antiproton beams become available at Fermilab, and review possibilities for initial experiments using direct degrading of high energy antiprotons in material has been developed and proven at CERN.

  7. Neutrino factory in stages: Low energy, high energy, off-axis

    SciTech Connect

    Tang Jian; Winter, Walter

    2010-02-01

    We discuss neutrino oscillation physics with a neutrino factory in stages, including the possibility of upgrading the muon energy within the same program. We point out that a detector designed for the low energy neutrino factory may be used off axis in a high energy neutrino factory beam. We include the re-optimization of the experiment depending on the value of {theta}{sub 13} found. As upgrade options, we consider muon energy, additional baselines, a detector mass upgrade, an off-axis detector, and the platinum (muon to electron neutrino) channels. In addition, we test the impact of Daya Bay data on the optimization. We find that for large {theta}{sub 13} ({theta}{sub 13} discovered by the next generation of experiments), a low energy neutrino factory might be the most plausible minimal version to test the unknown parameters. However, if a higher muon energy is needed for new physics searches, a high energy version including an off-axis detector may be an interesting alternative. For small {theta}{sub 13} ({theta}{sub 13} not discovered by the next generation), a plausible program could start with a low energy neutrino factory, followed by energy upgrade, and then baseline or detector mass upgrade, depending on the outcome of the earlier phases.

  8. Low energy Skyrmion-Skyrmion scattering

    SciTech Connect

    Gisiger, T.; Paranjape, M.B. )

    1994-07-15

    We study the scattering of two Skyrmions at low energy and large separation. We use the method proposed by Manton for truncating the degrees of freedom of the system from infinite to a manageable finite number. This corresponds to identifying the manifold consisting of the union of the low energy critical points of the potential along with the gradient flow curves joining these together and by positing that the dynamics is restricted here. The kinetic energy provides an induced metric on this manifold while restricting the full potential energy to the manifold defines a potential. The low energy dynamics is now constrained to these finite number of degrees of freedom. For a large separation of the two Skyrmions the manifold is parametrized by the variables of the product ansatz. We find the interaction between two Skyrmions coming from the induced metric, which was independently found by Schroers. We find that the static potential is actually negligible in comparison to this interaction. Thus to lowest order, at large separation, the dynamics reduces to geodesic motion on the manifold. We consider the scattering to first order in the interaction using the perturbative method of Lagrange and find that the dynamics in the no spin or charge exchange sector reduces to the Kepler problem.

  9. Low energy Skyrmion-Skyrmion scattering

    NASA Astrophysics Data System (ADS)

    Gisiger, T.; Paranjape, M. B.

    1994-07-01

    We study the scattering of two Skyrmions at low energy and large separation. We use the method proposed by Manton for truncating the degrees of freedom of the system from infinite to a manageable finite number. This corresponds to identifying the manifold consisting of the union of the low energy critical points of the potential along with the gradient flow curves joining these together and by positing that the dynamics is restricted here. The kinetic energy provides an induced metric on this manifold while restricting the full potential energy to the manifold defines a potential. The low energy dynamics is now constrained to these finite number of degrees of freedom. For a large separation of the two Skyrmions the manifold is parametrized by the variables of the product ansatz. We find the interaction between two Skyrmions coming from the induced metric, which was independently found by Schroers. We find that the static potential is actually negligible in comparison to this interaction. Thus to lowest order, at large separation, the dynamics reduces to geodesic motion on the manifold. We consider the scattering to first order in the interaction using the perturbative method of Lagrange and find that the dynamics in the no spin or charge exchange sector reduces to the Kepler problem.

  10. Targeting Low-Energy Ballistic Lunar Transfers

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.

    2010-01-01

    Numerous low-energy ballistic transfers exist between the Earth and Moon that require less fuel than conventional transfers, but require three or more months of transfer time. An entirely ballistic lunar transfer departs the Earth from a particular declination at some time in order to arrive at the Moon at a given time along a desirable approach. Maneuvers may be added to the trajectory in order to adjust the Earth departure to meet mission requirements. In this paper, we characterize the (Delta)V cost required to adjust a low-energy ballistic lunar transfer such that a spacecraft may depart the Earth at a desirable declination, e.g., 28.5(white bullet), on a designated date. This study identifies the optimal locations to place one or two maneuvers along a transfer to minimize the (Delta)V cost of the transfer. One practical application of this study is to characterize the launch period for a mission that aims to launch from a particular launch site, such as Cape Canaveral, Florida, and arrive at a particular orbit at the Moon on a given date using a three-month low-energy transfer.

  11. Low-energy generation in nanostructured Si

    NASA Astrophysics Data System (ADS)

    Kuznicki, Zbigniew T.; Meyrueis, Patrick

    2008-04-01

    Solar photon energy can be better used when totally transformed on collectable free-carriers. The conversion of one energetic photon could result in more than one free-carrier pair if a low-energy mechanism is involved. Such PV conversion represents a multistage nonlinear process and requires especially dedicated low-energy centers. A cascade-like progression is induced by the primary/fundamental/interband absorption. As shown by us previously, the corresponding structure can be realized, for example, with nanostructured Si. The experimental devices convert 400 nm photons into collectable primary and secondary free-carriers. The excess carriers can be drawn out into the external electrical circuit even in a multiinterface architecture containing a carrier collection limit. The superficial effect seems to be totally independent of the presence or not of a buried amorphized layer. This is the first simple experimental evidence for low-energy generation. The performance is inversely proportional to the incident light intensity. The thermodynamic limit of conventional photovoltaic conversion is lower than 30%, while in the case of the mechanism reported here, it can be propelled above 60%. An optimization of the effect by a suitable conditioning and annealing should be possible, opening the way to different applications, especially in the areas of nanophotovoltaics and very high efficiency solar cells.

  12. Low energy nuclear recoils study in noble liquids for low-mass WIMPs

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Mei, Dongming

    2014-03-01

    Detector response to low-energy nuclear recoils is critical to the detection of low-mass dark matter particles-WIMPs (Weakly interacting massive particles). Although the detector response to the processes of low-energy nuclear recoils is subtle and direct experimental calibration is rather difficult, many studies have been performed for noble liquids, NEST is a good example. However, the response of low-energy nuclear recoils, as a critical issue, needs more experimental data, in particular, with presence of electric field. We present a new design using time of flight to calibrate the large-volume xenon detector, such as LUX-Zeplin (LZ) and Xenon1T, energy scale for low-energy nuclear recoils. The calculation and physics models will be discussed based on the available data to predict the performance of the calibration device and set up criteria for the design of the device. A small test bench is built to verify the concepts at The University of South Dakota. This work is supported by DOE grant DE-FG02-10ER46709 and the state of South Dakota.

  13. RHIC low energy beam loss projections

    SciTech Connect

    Satogata,T.

    2009-08-01

    For RHIC low-energy operations, we plan to collide Au beams with energies of E = 2:5-10 GeV/u in RHIC. Beams are injected into collision optics, and RHIC runs as a storage ring with no acceleration. At these low energies, observed beam lifetimes are minutes, with measured beam lifetimes of 3.5 min (fast) and 50 min (slow) at E=4.6 GeV/u in the March 2008 test run. With these lifetimes we can operate RHIC as a storage ring to produce reasonable integrated luminosity. This note estimates beam losses and collimator/dump energy deposition in normal injection modes of low energy operation. The main question is whether a normal injection run is feasible for an FY10 10-15 week operations run from a radiation safety perspective. A peripheral question is whether continuous injection operations is feasible from a radiation safety perspective. In continuous injection mode, we fill both rings, then continuously extract and reinject the oldest bunches that have suffered the most beam loss to increase the overall integrated luminosity. We expect to gain a factor of 2-3 in integrated luminosity from continuous injection at lowest energies if implemented[1]. Continuous injection is feasible by FY11 from an engineering perspective given enough effort, but the required extra safety controls and hardware dose risk make it unappealing for the projected luminosity improvement. Low-energy electron cooling will reduce beam losses by at least an order of magnitude vs normal low-energy operations, but low energy cooling is only feasible in the FY13 timescale and therefore beyond the scope of this note. For normal injection low energy estimates we assume the following: (1) RHIC beam total energies are E=2.5-10 GeV/u. (Continuous injection mode is probably unnecessary above total energies of E=7-8 GeV/u.); (2) RHIC operates only as a storage ring, with no acceleration; (3) 110 bunches of about 0.5-1.0 x 10{sup 9} initial bunch intensities (50-100% injection efficiency, likely conservative

  14. Development and characterization of a 2D scintillation detector for quality assurance in scanned carbon ion beams

    NASA Astrophysics Data System (ADS)

    Tamborini, A.; Raffaele, L.; Mirandola, A.; Molinelli, S.; Viviani, C.; Spampinato, S.; Ciocca, M.

    2016-04-01

    At the Centro Nazionale di Adroterapia Oncologica (CNAO Foundation), a two-dimensional high resolution scintillating dosimetry system has been developed and tested for daily Quality Assurance measurements (QA) in carbon ion radiotherapy with active scanning technique, for both single pencil beams and scanned fields produced by a synchrotron accelerator. The detector consists of a thin plane organic scintillator (25×25 cm2, 2 mm thick) coupled with a high spatial resolution CCD camera (0.25 mm) in a light-tight box. A dedicated Labview software was developed for image acquisition triggered with the beam extraction, data post-processing and analysis. The scintillator system was preliminary characterized in terms of short-term reproducibility (found to be within±0.5%), linearity with the number of particles (linear fit χ2 = 0.996) and dependence on particle flux (measured to be < 1.5 %). The detector was then tested for single beam spot measurements (Full Width at Half Maximum and position) and for 6×6 cm2 reference scanned field (determination of homogeneity) for carbon ions with energy from 115 MeV/u up to 400 MeV/u. No major differences in the investigated beam parameters measured with scintillator system and the radiochromic EBT3 reference films were observed. The system allows therefore real-time monitoring of the carbon ion beam relevant parameters, with a significant daily time saving with respect to films currently used. The results of this study show the suitability of the scintillation detector for daily QA in a carbon ion facility with an active beam delivery system.

  15. Low-Energy Dipole Modes of Excitation Below the Neutron Separation Energy

    SciTech Connect

    Tonchev, A. P.; Howell, C. R.; Tornow, W.; Angell, C.; Boswell, M.; Karwowski, H. J.; Kelley, J. H.; Tsoneva, N.

    2006-03-13

    The nuclear resonance fluorescence experiments have been performed at the High Intensity Gamma Source (HI{gamma}S) on 138Ba nuclei using four 60% efficient HPGe detectors. Excitation energies, spin, parities, and decay branching ratios were measured for the low-energy dipole modes of excitations. Experimental results on the parity measurement below the neutron separation energy shows that all dipole states in this energy region exhibit E1 excitation. These results are consistent with theoretical prediction of the collective isoscalar nature of this low-energy mode of excitation.

  16. A new absolute method for the standardization of radionuclides emitting low-energy radiation.

    PubMed

    Leblanc, E; de, Marcillac P; Coron, N; Leblanc, J; Loidl, M; Metge, J F; Bouchard, J

    2002-01-01

    Microcalorimeters (or bolometers) operated at temperatures below 100 mK allow individual counting of photons and electrons with a very low energy detection threshold. The physics is based on the pulse temperature increase of the target (or absorber) of the detector due to the complete absorption of both electrons and photons. Since this target can be constructed with a perfect 4-pi geometry, a bolometer offers potentially a new method for absolute activity measurements of radionuclides emitting low-energy radiation. In this paper we present our first results of a feasibility study of activity standardization of a 55Fe solution with a prototype 4-pi bolometer. PMID:11839023

  17. The effect of induced charges on low-energy particle trajectories near conducting and semiconducting plates

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria N.; Moore, Thomas E.

    1992-01-01

    The effect of the induced charge was found on particles less than 1 eV as they passed through simulated parallel, grounded channels that are comparable in dimension to those that are presently in space plasma instruments which measure the flux of low-energy ions. Applications were made to both conducting and semiconducting channels that ranged in length from 0.1 to 50 mm and in aspect ratio from 1 to 100. The effect of the induced charge on particle trajectories from simple straight lines. Several configurations of channel aspect ratio and detector locations are considered. The effect is important only at very low energies with small dimensions.

  18. A 2D 4×4 Channel Readout ASIC for Pixelated CdTe Detectors for Medical Imaging Applications

    PubMed Central

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Martínez, Ricardo; Puigdengoles, Carles

    2015-01-01

    We present a 16-channel readout integrated circuit (ROIC) with nanosecond-resolution time to digital converter (TDC) for pixelated Cadmium Telluride (CdTe) gamma-ray detectors. The 4 × 4 pixel array ROIC is the proof of concept of the 10 × 10 pixel array readout ASIC for positron-emission tomography (PET) scanner, positron-emission mammography (PEM) scanner, and Compton gamma camera. The electronics of each individual pixel integrates an analog front-end with switchable gain, an analog to digital converter (ADC), configuration registers, and a 4-state digital controller. For every detected photon, the pixel electronics provides the energy deposited in the detector with 10-bit resolution, and a fast trigger signal for time stamp. The ASIC contains the 16-pixel matrix electronics, a digital controller, five global voltage references, a TDC, a temperature sensor, and a band-gap based current reference. The ASIC has been fabricated with TSMC 0.25 μm mixed-signal CMOS technology and occupies an area of 5.3 mm × 6.8 mm. The TDC shows a resolution of 95.5 ps, a precision of 600 ps at full width half maximum (FWHM), and a power consumption of 130 μW. In acquisition mode, the total power consumption of every pixel is 200 μW. An equivalent noise charge (ENC) of 160 e−RMS at maximum gain and negative polarity conditions has been measured at room temperature. PMID:26744545

  19. Options for Production Staging for a Low Energy Neutrino Factory

    SciTech Connect

    Berg J. S.

    2011-10-26

    A low energy neutrino factory (LENF) is defined, for the purpose of this report, to accelerate a muon beam to a total energy in the range of 10-14 GeV, and store it in a decay ring directing a resulting neutrino beam to a detector 2200-2300 km distant. The machine should be ultimately capable of producing 10{sup 21} decays toward that detector per year of 10{sup 7} s. We consider such a neutrino factory to be the accelerator defined in the Interim Design Report (IDR) of the International Design Study for the Neutrino Factory (IDS-NF), modified to remove the final stage of acceleration, possibly modifying the remaining acceleration stages to adjust the final energy, and replacing the decay ring with one designed for the lower energy and shorter baseline. We discuss modifications to that design which would reduce the cost of the machine at the price of a reduction in neutrino production, down to as low as 10{sup 20} decays per year. These modifications will not preclude eventually upgrading the machine to the full production of 10{sup 21} decays per year. The eventual cost of a machine which achieves the full production through a series of lower-production stages should not exceed the cost of a machine which is immediately capable of the full production by more than a small fraction of the cost difference between the full production machine and the lowest production stage.

  20. The low energy booster project status

    SciTech Connect

    Tuttle, G.W.

    1993-05-01

    In order to achieve the required injection momentum, the Superconducting Super Collider (SSC) has an accelerator chain comprised of a Linear Accelerator and three synchrotrons. The Low Energy Booster (LEB) is the first synchrotron in this chain. The LEB project has made significant progress in the development of major subsystems and conventional construction. This paper briefly reviews the performance requirements of the LEB and describes significant achievements in each of the major subsystem areas. Highlighted among these achievements are the LEB foreign collaborations with the Budker Institute of Nuclear Physics (BINP) located in Novosibirsk, Russia.

  1. Low-energy ballistic lunar transfers

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey S.

    A systematic method is developed that uses dynamical systems theory to model, analyze, and construct low-energy ballistic lunar transfers (BLTs). It has been found that low-energy BLTs may be produced by intersecting the stable manifold of an unstable Earth-Moon three-body orbit with the Earth. A spacecraft following such a trajectory is only required to perform a single maneuver, namely, the Trans-Lunar Injection maneuver, in order to complete the transfer. After the Trans-Lunar Injection maneuver, the spacecraft follows an entirely ballistic trajectory that asymptotically approaches and arrives at the target lunar three-body orbit. Because these orbit transfers require no orbit insertion maneuver at the three-body orbit, the transfers may be used to send spacecraft 25--40% more massive than spacecraft sent to the same orbits via conventional, direct transfers. From the targeted three-body orbits, the spacecraft may transfer to nearly any region within the Earth-Moon system, including any location on the surface of the Moon. The systematic methods developed in this research allow low-energy BLTs to be characterized by six parameters. It has been found that BLTs exist in families, where a family of BLTs consists of transfers whose parameters vary in a continuous fashion from one end of the family to the other. The families are easily identified and studied using a BLT State Space Map (BLT Map). The present research studies BLT Maps and has surveyed a wide variety of BLTs that exist in the observed families. It has been found that many types of BLTs may be constructed between 185-km low Earth parking orbits and lunar three-body orbits that require less than 3.27 km/s and fewer than 120 days of transfer time. Under certain conditions, BLTs may be constructed that require less than 3.2 km/s and fewer than 100 days of transfer time. It has been found that BLTs may implement LEO parking orbits with nearly any combination of altitude and inclination; they may depart from

  2. Annihilation of Low Energy Antiprotons in Hydrogen

    SciTech Connect

    Ovchinnikov, S.Yu.; Macek, J.H.

    2003-08-26

    The cross sections for annihilation of antiprotons in hydrogen are very important for designing the High-Performance Antiproton Trap (HiPAT). When antiprotons are trapped they undergo atomic reactions with background gases which remove them from the trap. First, antiprotons are captured into highly excited bound states by ejecting the bound electrons, then they are radiationally deexcited and, finally, they annihilate by nuclear interaction. An understanding of these process require reliable cross sections for low-energy collisions of antiprotons with atoms. We have developed a theoretical technique for accurate calculations of these cross sections.

  3. Low Energy Nuclear Reactions: 2007 Update

    NASA Astrophysics Data System (ADS)

    Krivit, Steven B.

    2007-03-01

    This paper presents an overview of low energy nuclear reactions, a subset of the field of condensed matter nuclear science. Condensed matter nuclear science studies nuclear effects in and/or on condensed matter, including low energy nuclear reactions, an entirely new branch of science that gained widespread attention and notoriety beginning in 1989 with the announcement of a previously unrecognized source of energy by Martin Fleischmann and Stanley Pons that came to be known as cold fusion. Two branches of LENR are recognized. The first includes a set of reactions like those observed by Fleischmann and Pons that use palladium and deuterium and yield excess heat and helium-4. Numerous mechanisms have been proposed to explain these reactions, however there is no consensus for, or general acceptance of, any of the theories. The claim of fusion is still considered speculative and, as such, is not an ideal term for this work. The other branch is a wide assortment of nuclear reactions that may occur with either hydrogen or deuterium. Anomalous nuclear transmutations are reported that involve light as well as heavy elements. The significant questions that face this field of research are: 1) Are LENRs a genuine nuclear reaction? 2) If so, is there a release of excess energy? 3) If there is, is the energy release cost-effective?

  4. Modulation of low-energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Sari, J. W.

    1975-01-01

    The relation between the diffusion coefficient of cosmic rays in the solar wind and the power spectrum of interplanetary magnetic field fluctuations, established in recent theories, is tested directly for low energy protons (below 80 MeV). In addition, an attempt is made to determine whether the particles are scattered by magnetic field discontinuities or by fluctuations between discontinuities. Predictions of a perturbation solution of the Fokker-Planck equation are compared with observations of the cosmic ray radial gradient. It is found that at energies between 40 and 80 MeV, galactic cosmic ray protons respond to changes in the predicted diffusion coefficients (i.e., the relationship under consideration holds at these low energies). The relation between changes in the proton flux and modulation parameters is best when the contribution of discontinuities is subtracted, which means that scattering is caused by fluctuations between discontinuities. There appears to be no distinct relation between changes in the modulation parameters and changes in the intensity of 20 to 40 MeV protons.

  5. Low Energy Ion-Molecule Reactions

    SciTech Connect

    James M. Farrar

    2004-05-01

    This objective of this project is to study the dynamics of the interactions of low energy ions important in combustion with small molecules in the gas phase and with liquid hydrocarbon surfaces. The first of these topics is a long-standing project in our laboratory devoted to probing the key features of potential energy surfaces that control chemical reactivity. The project provides detailed information on the utilization of specific forms of incident energy, the role of preferred reagent geometries, and the disposal of total reaction energy into product degrees of freedom. We employ crossed molecular beam methods under single collision conditions, at collision energies from below one eV to several eV, to probe potential surfaces over a broad range of distances and interaction energies. These studies allow us to test and validate dynamical models describing chemical reactivity. Measurements of energy and angular distributions of the reaction products with vibrational state resolution provide the key data for these studies. We employ the crossed beam low energy mass spectrometry methods that we have developed over the last several years.

  6. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  7. Observations of low-energy plasma composition from the ISEE-1 and SCATHA satellites

    NASA Technical Reports Server (NTRS)

    Horwitz, J. L.; Chappell, C. R.; Reasoner, D. L.; Craven, P. D.; Green, J. L.; Baugher, C. R.

    1983-01-01

    This brief review is concerned with some of the initial measurements of low-energy ion properties conducted with the aid of ion composition detectors aboard the ISEE-1 and SCATHA satellites. ISEE-1 was launched in October 1977 into a highly elliptical orbit, while SCATHA was launched in January 1979 into a near geosynchronous orbit. Attention is given to the origin of low-energy plasma, the energization of ionospheric ions, the transport of ionospheric ions, and the loss of low-energy plasma from the magnetosphere. According to results obtained during the past several years, including the present ISEE-1 and SCATHA results, there are significant, and occasionally dominant, concentrations of He(+) and O(+) in various locations within the magnetosphere.

  8. Image acquisition, geometric correction and display of images from a 2×2 x-ray detector array based on Electron Multiplying Charge Coupled Device (EMCCD) technology

    PubMed Central

    Vasan, S.N Swetadri; Sharma, P.; Ionita, Ciprian N.; Titus, A.H.; Cartwright, A.N.; Bednarek, D.R; Rudin, S.

    2013-01-01

    A high resolution (up to 11.2 lp/mm) x-ray detector with larger field of view (8.5 cm × 8.5 cm) has been developed. The detector is a 2 × 2 array of individual imaging modules based on EMCCD technology. Each module outputs a frame of size 1088 × 1037 pixels, each 12 bits. The frames from the 4 modules are acquired into the processing computer using one of two techniques. The first uses 2 CameraLink communication channels with each carrying information from two modules, the second uses a application specific custom integrated circuits, the Multiple Module Multiplexer Integrated Circuit (MMMIC), 3 of which are used to multiplex the data from 4 modules into one CameraLink channel. Once the data is acquired using either of the above mentioned techniques, it is decoded in the graphics processing unit (GPU) to form one single frame of size 2176 × 2074 pixels each 16 bits. Each imaging module uses a fiber optic taper coupled to the EMCCD sensor. To correct for mechanical misalignment between the sensors and the fiber optic tapers and produce a single seamless image, the images in each module may be rotated and translated slightly in the x–y plane with respect to each other. To evaluate the detector acquisition and correction techniques, an aneurysm model was placed over an anthropomorphic head phantom and a coil was guided into the aneurysm under fluoroscopic guidance using the detector array. Image sequences before and after correction are presented which show near-seamless boundary matching and are well suited for fluoroscopic imaging. PMID:24353388

  9. Low Energy Antiproton Experiments - A Review

    SciTech Connect

    Jungmann, Klaus P.

    2005-10-19

    Low energy antiprotons offer excellent opportunities to study properties of fundamental forces and symmetries in nature. Experiments with them can contribute substantially to deepen our fundamental knowledge in atomic, nuclear and particle physics. Searches for new interactions can be carried out by studying discrete symmetries. Known interactions can be tested precisely and fundamental constants can be extracted from accurate measurements on free antiprotons (p-bar's) and bound two- and three-body systems such as antihydrogen (H-bar = p-bare-), the antprotonic helium ion (He++p-bar)+ and the antiprotonic atomcule (He++p-bare-) . The trapping of a single p-bar in a Penning trap, the formation and precise studies of antiprotonic helium ions and atoms and recently the production of H-bar have been among the pioneering experiments. They have led already to precise values for p-bar parameters, accurate tests of bound two- and three-body Quantum Electrodynamics (QED), tests of the CPT theorem and a better understanding of atom formation from their constituents. Future experiments promise more precise tests of the standard theory and have a robust potential to discover new physics. Precision experiments with low energy p-bar's share the need for intense particle sources and the need for time to develop novel instrumentation with all other experiments, which aim for high precision in exotic fundamental systems. The experimental programs - carried out in the past mostly at the former LEAR facility and at present at the AD facility at CERN - would benefit from intense future sources of low energy p-bar's. The highest possible p-bar fluxes should be aimed for at new facilities such as the planned FLAIR facility at GSI in order to maximize the potential of delicate precision experiments to influence model building. Examples of key p-bar experiments are discussed here and compared with other experiments in the field. Among the central issues is their potential to obtain

  10. Low energy dislocation structures in epitaxy

    NASA Technical Reports Server (NTRS)

    Van Der Merwe, Jan H.; Woltersdorf, J.; Jesser, W. A.

    1986-01-01

    The principle of minimum energy was applied to epitaxial interfaces to show the interrelationship beteen misfit, overgrowth thickness and misfit dislocation spacing. The low energy dislocation configurations were presented for selected interfacial geometries. A review of the interfacial energy calculations was made and a critical assessment of the agreement between theory and experiment was presented. Modes of misfit accommodation were presented with emphasis on the distinction between kinetic effects and equilibrium conditions. Two-dimensional and three-dimensional overgrowths were treated together with interdiffusion-modified interfaces, and several models of interfacial structure were treated including the classical and the current models. The paper is concluded by indicating areas of needed investigation into interfacial structure.

  11. Low energy consumption spintronics using multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Trassin, Morgan

    2016-01-01

    We review the recent progress in the field of multiferroic magnetoelectric heterostructures. The lack of single phase multiferroic candidates exhibiting simultaneously strong and coupled magnetic and ferroelectric orders led to an increased effort into the development of artificial multiferroic heterostructures in which these orders are combined by assembling different materials. The magnetoelectric coupling emerging from the created interface between the ferroelectric and ferromagnetic layers can result in electrically tunable magnetic transition temperature, magnetic anisotropy or magnetization reversal. The full potential of low energy consumption magnetic based devices for spintronics lies in our understanding of the magnetoelectric coupling at the scale of the ferroic domains. Although the thin film synthesis progresses resulted into the complete control of ferroic domain ordering using epitaxial strain, the local observation of magnetoelectric coupling remains challenging. The ability to imprint ferroelectric domains into ferromagnets and to manipulate those solely using electric fields suggests new technological advances for spintronics such as magnetoelectric memories or memristors.

  12. Low energy high pressure miniature screw valve

    DOEpatents

    Fischer, Gary J.; Spletzer, Barry L.

    2006-12-12

    A low energy high pressure screw valve having a valve body having an upper portion and a lower portion, said lower portion of said valve body defining an inlet flow passage and an outlet flow passage traversing said valve body to a valve seat, said upper portion of said valve body defining a cavity at said valve seat, a diaphragm restricting flow between said upper portion of said valve body and said lower portion, said diaphragm capable of engaging said valve seat to restrict fluid communication between said inlet passage and said outlet passage, a plunger within said cavity supporting said diaphragm, said plunger being capable of engaging said diaphragm with said valve seat at said inlet and outlet fluid passages, said plunger being in point contact with a drive screw having threads engaged with opposing threads within said upper portion of said valve body such engagement allowing motion of said drive screw within said valve body.

  13. Computational Study of Low Energy Nuclear Scattering

    NASA Astrophysics Data System (ADS)

    Salazar, Justin; Hira, Ajit; Brownrigg, Clifton; Pacheco, Jose

    2013-04-01

    We continue our interest in the interactions between different nuclear species with a computational study of the scattering of the low-energy nuclei of H through F atoms ( Z<=9 ) from Palladium and other metals. First, a FORTRAN computer program was developed to compute stopping cross sections and scattering angles in Pd and other metals for the small nuclear projectiles, using Monte Carlo calculation. This code allows for different angles of incidence. Next, simulations were done in the energy interval from 10 to 140kev. The computational results thus obtained are compared with relevant experimental data. The data are further analyzed to identify periodic trends in terms of the atomic number of the projectile. Such studies have potential applications in nuclear physics and in nuclear medicine.

  14. RHIC low energy tests and initial operations

    SciTech Connect

    Satogata,T.; Ahrens, L.; Bai, M.; Brennan, J.M.; Bruno, D.; Butler, J.; Drees, A.; Fedotov, A.; Fischer, W.; Harvey, M.; Hayes, T.; Jappe, W.; Lee, R.C.; Mackay, W.W.; Malitsky, N.; Marr, G.; Michnoff, R.; Oerter, B.; Pozdeyev, E.; Roser, T.; Severino, F.; Smith, K.; Tepikian, S.; Tsoupas, N.

    2009-05-04

    Future Relativistic Heavy Ion Collider (RHIC) runs, including a portion of FY10 heavy ion operations, will explore collisions at center of mass energies of 5-50 GeV/n (GeV/nucleon). Operations at these energies is motivated by a search for the QCD phase transition critical point. The lowest end of this energy range is nearly a factor of four below the nominal RHIC injection center of mass energy of {radical} s = 20.8 GeV/n. There are several operational challenges in the RHIC low-energy regime, including harmonic number changes, small longitudinal acceptance, lowered magnet field quality, nonlinear orbit control, and luminosity monitoring. We report on the experience with some of these challenges during beam tests with gold in March 2008, including first RHIC operations at {radical}s = 9.18 GeV/n and first beam experience at {radical}s = 5 GeV/n.

  15. Low-energy neutral-atom spectrometer

    SciTech Connect

    Voss, D.E.; Cohen, S.A.

    1982-04-01

    The design, calibration, and performance of a low energy neutral atom spectrometer are described. Time-of-flight analysis is used to measure the energy spectrum of charge-exchange deuterium atoms emitted from the PLT tokamak plasma in the energy range from 20 to 1000 eV. The neutral outflux is gated on a 1 ..mu..sec time scale by a slotted rotating chopper disc, supported against gravity in vacuum by magnetic levitation, and is detected by secondary electron emission from a Cu-Be plate. The energy dependent detection efficiency has been measured in particle beam experiments and on the tokamak so that the diagnostic is absolutely calibrated, allowing quantitative particle fluxes to be determined with 200 ..mu..sec time resolution. In addition to its present application as a plasma diagnostic, the instrument is capable of making a wide variety of measurements relevant to atomic and surface physics.

  16. Low-energy pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Gibbs, W. R.; Ai, Li; Kaufmann, W. B.

    1998-02-01

    An analysis of low-energy charged pion-nucleon data from recent π+/-p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f2=0.0756+/-0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P31 and P13 partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the Σ term. Off-shell amplitudes are also provided.

  17. Low-energy pion-nucleon scattering

    SciTech Connect

    Gibbs, W.R.; Ai, L.; Kaufmann, W.B.

    1998-02-01

    An analysis of low-energy charged pion-nucleon data from recent {pi}{sup {plus_minus}}p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f{sup 2}=0.0756{plus_minus}0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P{sub 31} and P{sub 13} partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the {Sigma} term. Off-shell amplitudes are also provided. {copyright} {ital 1998} {ital The American Physical Society}

  18. Low energy ion-molecule reactions

    SciTech Connect

    Farrar, J.M.

    1993-12-01

    This project is concerned with elucidating the dynamics of elementary ion-molecule reactions at collision energies near and below 1 eV. From measurements of the angular and energy distributions of the reaction products, one can infer intimathe details about the nature of collisions leading to chemical reaction, the geometries and lifetimes of intermediate complexes that govern the reaction dynamics, and the collision energy dependence of these dynamical features. The author employs crossed-beam low energy mass spectrometry technology developed over the last several years, with the focus of current research on proton transfer and hydrogen atom transfer reactions of te O{sup {minus}} ion with species such as HF, H{sub 2}O, and NH{sub 3}.

  19. Particle Settling in Low Energy Turbulence

    NASA Astrophysics Data System (ADS)

    Allen, Rachel; MacVean, Lissa; Tse, Ian; Mazzaro, Laura; Stacey, Mark; Variano, Evan

    2014-11-01

    Particle settling velocities can be altered by turbulence. In turbulence, dense particles may get trapped in convergent flow regions, and falling particles may be swept towards the downward side of turbulent eddies, resulting in enhanced settling velocities. The degree of velocity enhancement may depend on the Stokes number, the Rouse number, and the turbulent Reynolds number. In a homogeneous, isotropic turbulence tank, we tested the effects of particle size and type, suspended sediment concentration, and level of turbulence on the settling velocities of particles typically found in muddy estuaries. Two Acoustic Doppler Velocimeters (ADVs), separated vertically, measured turbulent velocities and suspended sediment concentrations, which yield condition dependent settling velocities, via ∂/á C ñ ∂ t = -∂/∂ z (ws á C ñ + á w ' C ' ñ) . These results are pertinent to fine sediment transport in estuaries, where high concentrations of suspended material are transported and impacted by low energy turbulence.

  20. Low energy particle signature of substorm dipolarization

    SciTech Connect

    Liu, C.; Perez, J.D. ); Moore, T.E.; Chappell, C.R. )

    1994-02-01

    The low energy particle signature of substorm dipolarization is exhibited through a case study of RIMS data on DE-1 at [approximately]2100 MLT, ILAT = 59[degrees][approximately]65[degrees], L = 3.8 [approximately] 5.4 R[sub E], and geocentric distances 2.6[approximately]2.9 R[sub E]. A strong cross-field-line, poleward outflow that lasts for a few minutes with a velocity that reaches at least 50 km/s is correlated with substorm activity evidenced in the AE index and the MAG-1 data. All the major species (H[sup +], He[sup +], O[sup +]) are observed to have the same bulk velocity. The parallel velocities are strongly correlated with the perpendicular velocities. The parallel acceleration is shown to result from the centrifugal force of the ExB drift induced by the dipolarizing perturbation of the magnetic field. 9 refs., 4 figs.

  1. Low energy demonstration accelerator technical area 53

    SciTech Connect

    1996-04-01

    As part of the Department of Energy`s (DOE) need to maintain the capability of producing tritium in support of its historic and near-term stewardship of the nation`s nuclear weapons stockpile, the agency has recently completed a Programmatic Environmental Impact Statement for Tritium Supply and Recycling. The resulting Record of Decision (ROD) determined that over the next three years the DOE would follow a dual-track acquisition strategy that assures tritium production for the nuclear weapon stockpile in a rapid, cost effective, and safe manner. Under this strategy the DOE will further investigate and compare two options for producing tritium: (1) purchase of an existing commercial light-water reactor or irradiation services with an option to purchase the reactor for conversion to a defense facility; and (2) design, build, and test critical components of a system for accelerator production of tritium (APT). The final decision to select the primary production option will be made by the Secretary of Energy in the October 1998 time frame. The alternative not chosen as the primary production method, if feasible, would be developed as a back-up tritium supply source. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if the DOE were to design, build, and test critical prototypical components of the accelerator system for tritium production, specifically the front-end low-energy section of the accelerator, at Los Alamos National Laboratory. The Low Energy Demonstration Accelerator (LEDA) would be incrementally developed and tested in five separate stages over the next seven years. The following issues were evaluated for the proposed action: utility demands, air, human health, environmental restoration, waste management, transportation, water, threatened and endangered species, wetlands, cultural resources, and environmental justice.

  2. Low energy AMS of americium and curium

    NASA Astrophysics Data System (ADS)

    Christl, Marcus; Dai, Xiongxin; Lachner, Johannes; Kramer-Tremblay, Sheila; Synal, Hans-Arno

    2014-07-01

    Accelerator mass spectrometry (AMS) has evolved over the past years as one of the most sensitive, selective, and robust techniques for actinide analyses. While analyses of U and Pu isotopes have already become routine at the ETH Zurich 0.5 MV AMS system "Tandy", there is an increasing demand for highly sensitive analyses of the higher actinides such as Am and Cm for bioassay applications and beyond. In order to extend the actinide capabilities of the compact ETH Zurich AMS system and to develop new, more sensitive bioassay routines, a pilot study was carried out. The aim was to investigate and document the performance and the potential background of Am and Cm analyses with low energy AMS. Our results show that 241Am and Cm isotopes can be determined relative to a 243Am tracer if samples and AMS standards are prepared identically with regard to the matrix elements, in which the sample is dispersed. In this first test, detection limits for Cm and Am isotopes are all in the sub-femtogram range and even below 100 ag for Cm isotopes. In a systematic background study in the mass range of the Cm isotopes, two formerly unknown metastable triply charged Th molecules were found on amu(244) and amu(248). The presence of such a background is not a principal problem for AMS if the stripper pressure is increased accordingly. Based on our first results, we conclude that ultra-trace analyses of Am and Cm isotopes for bioassay are very well possible with low energy AMS.

  3. A detection system for very low-energy protons from {beta}-delayed proton decay

    SciTech Connect

    Spiridon, A.; Pollacco, E.; Trache, L.; Simmons, E.; McCleskey, M.; Roeder, B. T.; Tribble, R. E.; Pascovici, G.; Riallot, M.; Mols, J. P.; Kebbiri, M.

    2012-11-20

    We have recently developed a gas based detection system called AstroBox, motivated by nuclear astrophysics studies. The goal was to detect very low-energy protons from {beta}-delayed p-decay with reduced beta background and improved energy resolution. The detector was tested using the {beta}-delayed proton-emitter 23Al previously studied with a set-up based on thin double-sided Si strip detectors. The proton spectrum obtained with AstroBox showed no beta background down to {approx}80 keV. The low energy (206 keV, 267 keV) proton peaks were positively identified, well separated, and the resolution was improved.

  4. Method, apparatus and system for low-energy beta particle detection

    DOEpatents

    Akers, Douglas W.; Drigert, Mark W.

    2012-09-25

    An apparatus, method, and system relating to radiation detection of low-energy beta particles are disclosed. An embodiment includes a radiation detector with a first scintillator and a second scintillator operably coupled to each other. The first scintillator and the second scintillator are each structured to generate a light pulse responsive to interaction with beta particles. The first scintillator is structured to experience full energy deposition of low-energy beta particles, and permit a higher-energy beta particle to pass therethrough and interact with the second scintillator. The radiation detector further includes a light-to-electrical converter operably coupled to the second scintillator and configured to convert light pulses generated by the first scintillator and the second scintillator into electrical signals. The first scintillator and the second scintillator have at least one mutually different characteristic to enable an electronic system to determine whether a given light pulse is generated in the first scintillator or the second scintillator.

  5. The Low Energy Effective Area of the Chandra Low Energy Transmission Grating Spectrograph

    NASA Technical Reports Server (NTRS)

    Pease, D.; Drake, J. J.; Johnson, C. O.; Kashya, V.; Ratzlaff, P. W.; Wargelin, B. J.; Brinkman, A. C.; Kaastra, J. S.; vanderMeer, R.; Paerels, F. B.

    2000-01-01

    The Chandra X-ray Observatory was successfully launched on July 23, 1999, and subsequently began an intensive calibration phase. We present the preliminary results from the in-flight calibration of the low energy response of the High Resolution Camera spectroscopic readout (HRC-S) combined with the Low Energy Transmission Grating (LETG) aboard Chandra. These instruments comprise the Low Energy Transmission Grating Spectrograph (LETGS). For this calibration study, we employ a pure hydrogen non-LTE white dwarf emission model (T = 25000 K and log g = 9.0) for comparison with the Chandra observations of Sirius B. The pre-flight calibration of the LETGS effective area only covered wavelengths shortward of 44 A (E less than 277 eV). Our Sirius B analysis shows that the HRC-S quantum efficiency (QE) model assumed for longer wavelengths leads to an overestimate of the effective area by an average factor of about 1.6. We derive a correction to the low energy HRC-S QE model to match the predicted and observed Sirius B spectra over the wavelength range of 44-185 A. We make an independent test of our results by the comparison of a Chandra LETGS observation of HZ 43 with pure hydrogen model atmosphere predictions and find good agreement.

  6. MagicPlate-512: A 2D silicon detector array for quality assurance of stereotactic motion adaptive radiotherapy

    SciTech Connect

    Petasecca, M. Newall, M. K.; Aldosari, A. H.; Fuduli, I.; Espinoza, A. A.; Porumb, C. S.; Guatelli, S.; Metcalfe, P.; Lerch, M. L. F.; Rosenfeld, A. B.; Booth, J. T.; Colvill, E.; Duncan, M.; Cammarano, D.; Carolan, M.; Oborn, B.; Perevertaylo, V.; Keall, P. J.

    2015-06-15

    , no motion, and motion with MLC tracking profiles agreed within 1 and 0.4 mm, respectively, for all field sizes tested. Use of electromagnetic tracking system generates a fluctuation of the detector baseline up to 10% of the full scale signal requiring a proper shielding strategy. MagicPlate-512 is also able to reconstruct the dose variation pulse-by-pulse in each pixel of the detector. An analysis of the dose transients with motion and motion with tracking shows that the tracking feedback algorithm used for this experiment can compensate effectively only the effect of the slower transient components. The fast changing components of the organ motion can contribute only to discrepancy of the order of 15% in penumbral region while the slower components can change the dose profile up to 75% of the expected dose. Conclusions: MagicPlate-512 is shown to be, potentially, a valid alternative to film or 2D ionizing chambers for quality assurance dosimetry in SRS or SBRT. Its high spatial and temporal resolutions allow for accurate reconstruction of the profile in any conditions with motion and with tracking of the motion. It shows excellent performance to reconstruct the dose deposition in real time or retrospectively as a function of time for detailed analysis of the effect of motion in a specific pixel or area of interest.

  7. SU-D-12A-04: Investigation of a 2D Antiscatter Grid for Flat Panel Detectors

    SciTech Connect

    Altunbas, C; Kavanagh, B; Miften, M; Zhong, Y; Shaw, C

    2014-06-01

    Purpose: To improve CT number accuracy and contrast sensitivity, a novel 2D antiscatter grid (ASG) for flat panel detector (FPD) based CBCT imaging was evaluated. Experiments were performed to characterize the scatter rejection and contrast sensitivity performance of ASG. The reduction in primary transmission for various ASG geometries was also evaluated by a computational model. Methods: The 2D ASG design was based on multi-hole collimators used in Nuclear Medicine. It consisted of abutted hexagon shaped apertures with 2.5 mm pitch and 32 mm height, and separated by 0.25 mm thick lead septa. Scatter-to-primary ratio (SPR), contrast-to-noise ratio (CNR), and mean primary transmission were measured using a benchtop FPD/x-ray source system. Acrylic slabs of varying thicknesses were imaged with a contrast-detail phantom to measure CNR and SPR under different scatter conditions. Primary transmission was also measured by averaging pixel values in flood field images without the phantom. We additionally explored variation of primary transmission with pitch and septum thickness using a computational model of our ASG. Results: Our 2D ASG reduced the SPR from 3.3 to 0.12, and improved CNR by 50% in 20 cm thick slab phantom projections acquired at 120 kVp. While the measured primary transmission was 72.8%, our simulations show that primary transmission can be increased to 86% by reducing the septum thickness to 0.1 mm. Primary transmission further increases to 93% if septum thickness of 0.1 mm is used in conjunction with an increased pitch of 4 mm. Conclusion: The 2D ASG appears to be a promising scatter rejection device, offering both superior scatter rejection and improved contrast sensitivity. Though its lead footprint reduced primary transmission, our work shows that optimization of aperture pitch and septum thickness can significantly improve the primary transmission.

  8. A statistical analysis of the low-energy geosynchronous plasma environment. I - Electrons. II - Ions

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.; Schwank, D. C.; Deforest, S. E.

    1981-01-01

    Data on the geosynchronous plasma environment between approximately 30 eV and 80 keV are analyzed statistically. Nearly 50 days of 10 minute averages of the first four moments of the distribution function from low-energy plasma detectors on the ATS-5 and ATS-6 geosynchronous satellites were used. The data were studied in terms of occurrence frequency, local time variations, and response to geomagnetic activity. These techniques revealed marked differences in the ATS-5 and ATS-6 data bases. When translated into a 2-Maxwellian representation, it was found that (1) the ATS-6 data covered an energy range not covered by ATS-5 (between 1 and 50 eV) and (2) there was a definite change in the ion plasma between the ATS-5 and ATS-6 measurements. Simple expressions are derived to simulate the relationship between the four moments, and a model is presented, which takes into account the ATS-5 and ATS-6 plasma variations. Despite the differences in the ion data, the accuracy of the four-moment representation was found valid for characterizing the geosynchronous electron population.

  9. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  10. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  11. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  12. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  13. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  14. Design Considerations Of A Compton Camera For Low Energy Medical Imaging

    SciTech Connect

    Harkness, L. J.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Grint, A. N.; Judson, D. S.; Nolan, P. J.; Oxley, D. C.; Lazarus, I.; Simpson, J.

    2009-12-02

    Development of a Compton camera for low energy medical imaging applications is underway. The ProSPECTus project aims to utilize position sensitive detectors to generate high quality images using electronic collimation. This method has the potential to significantly increase the imaging efficiency compared with mechanically collimated SPECT systems, a highly desirable improvement on clinical systems. Design considerations encompass the geometrical optimisation and evaluation of image quality from the system which is to be built and assessed.

  15. Mass spectrograph for imaging low-energy neutral atoms

    SciTech Connect

    Ghielmetti, A.G.; Shelley, E.G.; Fuselier, S.A. ); Wurz, P.; Bochsler, P. . Physikalisches Inst.); Herrero, F.A.; Smith, M.F. . NASA Goddard Space Flight Center); Stephen, T.S. . Physics Dept.)

    1994-02-01

    The authors describe an instrument concept for measuring low-energy neutral H and O atoms with kinetic energies ranging from about 10 eV to several hundred. The instrument makes use of a low work function surface to convert neutral atoms to negative ions. These ions are then accelerated away from the surface and brought to an intermediate focus by a large aperture lens. After deflection in a spherical electrostatic analyzer, the ions are postaccelerated to [approximately]25-keV final energy into a carbon-foil time-of-flight mass analyzer. Mass resolution is adequate to resolve H, D, He, and O. Energy and azimuth angle information is obtained by means of position imaging the secondary electrons produced at the carbon foil. A large geometric factor combined with simultaneous angle-energy-mass imaging that eliminates the need for duty cycles provide the necessary high sensitivity. From a spinning spacecraft this instrument is capable of producing a 2-D map of low-energy neutral atom fluxes.

  16. Oscillation of Very Low Energy Atmospheric Neutrinos

    SciTech Connect

    Peres, Orlando L. G.

    2010-03-30

    We discuss the oscillation effects of sub-sub-GeV atmospheric neutrinos, the sample with energies E < or approx. 100 MeV. The energy spectra of the e-like events in water Cherenkov detectors are computed and dependence of the spectra on the 2-3 mixing angle, theta{sub 23}, the 1-3 mixing and CP-violation phase are studied.

  17. Radiative Negative Pion Proton Capture and the Low Energy Theorem.

    NASA Astrophysics Data System (ADS)

    Liu, Kailin

    Four-point angular distributions of the differential cross section for the radiative capture reaction pi^-ptogamma n have been measured at pion laboratory energies of 9.8, 14.6 and 19.8 MeV. An undegraded pion beam was used, along with a bubble-free liquid hydrogen target of 1 cm thickness. The use of a high resolution NaI(Tl) spectrometer allowed us to resolve the in-flight capture gamma rays from those due to stopped pion capture at all pion beam energies and gamma-ray angles investigated. The lineshape response of the gamma-ray detector to ~130 MeV gamma rays was continuously measured over a broad energy range during the data collection with a second independent trigger. This allowed an accurate extraction of the in-flight capture yields and provided a precise measurement of the detector efficiency. From the measured angular distributions of cross section the electric dipole amplitude for capture of s-wave pions, E_{0+}, has been determined at each energy in a model-independent analysis. These data have been extrapolated to threshold by assuming an energy dependence given by the Born diagrams calculated with pseudovector coupling. The extrapolated E _{0+} value at threshold has been determined to be -34.7+/- 1.1 (10^ {-3}/m_pi) which is 9.4 +/- 3.2 percent larger in magnitude than the low energy theorem, which determines the threshold E_{0+} amplitude based upon the requirements of PCAC and electromagnetic gauge invariance.

  18. Low energy CMOS for space applications

    NASA Technical Reports Server (NTRS)

    Panwar, Ramesh; Alkalaj, Leon

    1992-01-01

    The current focus of NASA's space flight programs reflects a new thrust towards smaller, less costly, and more frequent space missions, when compared to missions such as Galileo, Magellan, or Cassini. Recently, the concept of a microspacecraft was proposed. In this concept, a small, compact spacecraft that weighs tens of kilograms performs focused scientific objectives such as imaging. Similarly, a Mars Lander micro-rover project is under study that will allow miniature robots weighing less than seven kilograms to explore the Martian surface. To bring the microspacecraft and microrover ideas to fruition, one will have to leverage compact 3D multi-chip module-based multiprocessors (MCM) technologies. Low energy CMOS will become increasingly important because of the thermodynamic considerations in cooling compact 3D MCM implementations and also from considerations of the power budget for space applications. In this paper, we show how the operating voltage is related to the threshold voltage of the CMOS transistors for accomplishing a task in VLSI with minimal energy. We also derive expressions for the noise margins at the optimal operating point. We then look at a low voltage CMOS (LVCMOS) technology developed at Stanford University which improves the power consumption over conventional CMOS by a couple of orders of magnitude and consider the suitability of the technology for space applications by characterizing its SEU immunity.

  19. Novel results on low energy neutrino physics

    NASA Astrophysics Data System (ADS)

    Bellini, Gianpaolo

    2012-07-01

    Many progresses have been achieved in the study of low energy neutrinos from Sun and Earth. In the solar neutrinos the flux from 7Be has been measured with a total error <5% (introducing strong constraints also on the pp flux), while the day/night effect in that energy region has been determined at 1%. The 8B neutrinos have been detected with a threshold down to 3 MeV, while the solar neutrinos flux from pep reaction has been measured together with a stringent limit on CNO. These results give the experimental proof of the neutrino oscillation in vacuum and the validation of the MSW-LMA model in that region, while the day/night allows the isolation of the LMA solution by means of the solar neutrinos only, without the assumption of CPT symmetry. The evidence of the antineutrinos produced within the Earth by radioactive decays is now very robust, but more statistics is needed to clearly estimate the radiogenic contribution to the terrestrial caloric energy.

  20. Low-energy positron interactions with xenon

    NASA Astrophysics Data System (ADS)

    Machacek, J. R.; Makochekanwa, C.; Jones, A. C. L.; Caradonna, P.; Slaughter, D. S.; McEachran, R. P.; Sullivan, J. P.; Buckman, S. J.; Bellm, S.; Lohmann, B.; Fursa, D. V.; Bray, I.; Mueller, D. W.; Stauffer, A. D.

    2011-12-01

    Low-energy interactions of positrons with xenon have been studied both experimentally and theoretically. The experimental measurements were carried out using a trap-based positron beam with an energy resolution of ˜80 meV, while the theoretical calculations were carried out using the convergent close-coupling method and the relativistic optical potential approach. Absolute values of the grand total, positronium formation and grand total minus positronium formation cross sections are presented over the energy range of 1-60 eV. Elastic differential cross sections (DCS), for selected energies, are also presented both below and above the positronium formation threshold. Fine energy-step measurements of the positronium formation cross section over the energy range of 4.4-8.4 eV, and measurements of the elastic DCS at the energies of 5.33 and 6.64 eV, have been carried out to investigate the ionization threshold regions corresponding to the 2P3/2 and 2P1/2 states of the Xe+ ion. The present results are compared with both experimental and theoretical values from the literature where available.

  1. Low energy scattering with a nontrivial pion

    SciTech Connect

    Fariborz, Amir H.

    2007-12-01

    An earlier calculation in a generalized linear sigma model showed that the well-known current algebra formula for low energy pion-pion scattering held even though the massless Nambu Goldstone pion contained a small admixture of a two-quark two-antiquark field. Here we turn on the pion mass and note that the current algebra formula no longer holds exactly. We discuss this small deviation and also study the effects of a SU(3) symmetric quark mass type term on the masses and mixings of the eight SU(3) multiplets in the model. We calculate the s-wave scattering lengths, including the beyond current algebra theorem corrections due to the scalar mesons, and observe that the effect of the scalar mesons is to improve the agreement with experiment. In the process, we uncover the way in which linear sigma models give controlled corrections (due to the presence of scalar mesons) to the current algebra scattering formula. Such a feature is commonly thought to exist only in the nonlinear sigma model approach.

  2. Studies in Low-Energy Nuclear Science

    SciTech Connect

    Brune, Carl R; Grimes, Steven M

    2006-03-30

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between 1 January 2003 and 31 December 2005 and supported by U.S. DOE grant number DE-FG03-03NA00074. Cross sections measured with high resolution have been subjected to an Ericson theory analysis to infer information about the nuclear level density. Other measurements were made of the spectral shape of particles produced in evaporation processes; these also yield level density information. A major project was the development of a new Hauser-Feshbach code for analyzing such spectra. Other measurements produced information on the spectra of gamma rays emitted in reactions on heavy nuclei and gave a means of refining our understanding of gamma-ray strength functions. Finally,reactions on light nuclei were studied and subjected to an R-matrix analysis. Cross sections fora network of nuclear reactions proceedingthrough a given compound nucleus shouldgreatly constrain the family of allowed parameters. Modifications to the formalism andcomputer code are also discussed.

  3. Low-energy electron collisions with biomolecules

    NASA Astrophysics Data System (ADS)

    Winstead, Carl; McKoy, Vincent

    2012-11-01

    We report recent progress in applying the Schwinger multichannel computational method to the interactions of slow electrons with biomolecules. Calculations on constituents of DNA, including nucleobases, phosphate esters, and models of the backbone sugar, have provided insight into the nature of the low-energy shape resonances, and thereby into possible sites and mechanisms for electron attachment that may lead to strand-breaking. At the same time, more approximate calculations on larger assemblies such as nucleosides and deoxyadenosine monophosphate indicate how the resonance properties of the subunits will or will not persist in DNA itself. We are pursuing a similar strategy for another major class of biomolecules, the proteins, by beginning with fixed-nuclei studies of the constituent amino acids; here we present preliminary results for the simplest amino acid, glycine. We also describe efforts directed at an improved understanding electron collisions with alcohols, which, in addition to basic scientific interest, may prove useful in the modeling of ignition and combustion within biofuel-powered engines.

  4. Optimal Low Energy Earth-Moon Transfers

    NASA Technical Reports Server (NTRS)

    Griesemer, Paul Ricord; Ocampo, Cesar; Cooley, D. S.

    2010-01-01

    The optimality of a low-energy Earth-Moon transfer is examined for the first time using primer vector theory. An optimal control problem is formed with the following free variables: the location, time, and magnitude of the transfer insertion burn, and the transfer time. A constraint is placed on the initial state of the spacecraft to bind it to a given initial orbit around a first body, and on the final state of the spacecraft to limit its Keplerian energy with respect to a second body. Optimal transfers in the system are shown to meet certain conditions placed on the primer vector and its time derivative. A two point boundary value problem containing these necessary conditions is created for use in targeting optimal transfers. The two point boundary value problem is then applied to the ballistic lunar capture problem, and an optimal trajectory is shown. Additionally, the ballistic lunar capture trajectory is examined to determine whether one or more additional impulses may improve on the cost of the transfer.

  5. Low energy beam transport system developments

    NASA Astrophysics Data System (ADS)

    Dudnikov, V.; Han, B.; Stockli, M.; Welton, R.; Dudnikova, G.

    2015-04-01

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H- beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H- beams, but such gas densities cause unacceptably high H- beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H- beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  6. Low energy spin excitations in chromium metal

    SciTech Connect

    Pynn, R.; Azuah, R.T.; Stirling, W.G.; Kulda, J.

    1997-12-31

    Neutron scattering experiments with full polarization analysis have been performed with a single crystal of chromium to study the low-energy spin fluctuations in the transverse spin density wave (TSDW) state. A number of remarkable results have been found. Inelastic scattering observed close to the TSDW satellite positions at (1 {+-} {delta},0,0) does not behave as expected for magnon scattering. In particular, the scattering corresponds to almost equally strong magnetization fluctuations both parallel and perpendicular to the ordered moments of the TSDW phase. As the Neel temperature is approached from below, scattering at the commensurate wavevector (1,0,0) increases in intensity as a result of critical scattering at silent satellites (1,0, {+-} {delta}) being included within the spectrometer resolution function. This effect, first observed by Sternlieb et al, does not account for all of the inelastic scattering around the (1,0,0) position, however, Rather, there are further collective excitations, apparently emanating from the TSDW satellites, which correspond to magnetic fluctuations parallel to the ordered TSDW moments. These branches have a group velocity that is close to that of (1,0,0) longitudinal acoustic (LA) phonons, but assigning their origin to magneto-elastic scattering raises other unanswered questions.

  7. Low Energy Electron Scattering from Fuels

    NASA Astrophysics Data System (ADS)

    Lopes, M. C. A.; Silva, D. G. M.; Bettega, M. H. F.; da Costa, R. F.; Lima, M. A. P.; Khakoo, M. A.; Winstead, C.; McKoy, V.

    2012-11-01

    In order to understand and optimize processes occurring during the ignition of plasma and its consequences in post-discharge for an internal combustion engine, especially considering the spark plug, we have produced in this work some basic information necessary to modeling spark ignition in alcohol- fuelled engines. Total cross sections of electron scattering by methanol and ethanol molecules in the energy range from 60 to 500 eV are reported, using the linear transmission method based on the Beer-Lambert law to first approximation. Aditionally to that, measurements and calculations of differential cross sections for elastic low-energy (rotationally unresolved) electron scattering were also discussed, for impact energies of 1, 2, 5, 10, 15, 20, 30, 50, and 100 eV and for scattering angles of 5°-130°. The measurements were obtained using the relative flow method with an aperture source, and calculations using two different implementations of the Schwinger multichannel method, one that takes all electrons into account and is adapted for parallel computers, and another that uses pseudopotentials and considers only the valence electrons.

  8. Low energy CMOS for space applications

    NASA Astrophysics Data System (ADS)

    Panwar, Ramesh; Alkalaj, Leon

    The current focus of NASA's space flight programs reflects a new thrust towards smaller, less costly, and more frequent space missions, when compared to missions such as Galileo, Magellan, or Cassini. Recently, the concept of a microspacecraft was proposed. In this concept, a small, compact spacecraft that weighs tens of kilograms performs focused scientific objectives such as imaging. Similarly, a Mars Lander micro-rover project is under study that will allow miniature robots weighing less than seven kilograms to explore the Martian surface. To bring the microspacecraft and microrover ideas to fruition, one will have to leverage compact 3D multi-chip module-based multiprocessors (MCM) technologies. Low energy CMOS will become increasingly important because of the thermodynamic considerations in cooling compact 3D MCM implementations and also from considerations of the power budget for space applications. In this paper, we show how the operating voltage is related to the threshold voltage of the CMOS transistors for accomplishing a task in VLSI with minimal energy. We also derive expressions for the noise margins at the optimal operating point. We then look at a low voltage CMOS (LVCMOS) technology developed at Stanford University which improves the power consumption over conventional CMOS by a couple of orders of magnitude and consider the suitability of the technology for space applications by characterizing its SEU immunity.

  9. MOS Circuitry Would Detect Low-Energy Charged Particles

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva; Wadsworth, Mark

    2003-01-01

    Metal oxide semiconductor (MOS) circuits for measuring spatially varying intensities of beams of low-energy charged particles have been developed. These circuits are intended especially for use in measuring fluxes of ions with spatial resolution along the focal planes of mass spectrometers. Unlike prior mass spectrometer focal-plane detectors, these MOS circuits would not be based on ion-induced generation of electrons, and photons; instead, they would be based on direct detection of the electric charges of the ions. Hence, there would be no need for microchannel plates (for ion-to-electron conversion), phosphors (for electron-to-photon conversion), and photodetectors (for final detection) -- components that degrade spatial resolution and contribute to complexity and size. The developmental circuits are based on linear arrays of charge-coupled devices (CCDs) with associated readout circuitry (see figure). They resemble linear CCD photodetector arrays, except that instead of a photodetector, each pixel contains a capacitive charge sensor. The capacitor in each sensor comprises two electrodes (typically made of aluminum) separated by a layer of insulating material. The exposed electrode captures ions and accumulates their electric charges during signal-integration periods.

  10. New Cooperative Mechanisms of Low-Energy Nuclear Reactions Using Super Low-Energy External Field

    NASA Astrophysics Data System (ADS)

    Gareev, F. A.; Zhidkova, I. E.

    We propose a new mechanism of LENR: cooperative processes in the whole system, nuclei + atoms + condensed matter, can occur at a smaller threshold energies than the corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low-energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of redistribution of inner energy of the whole system.

  11. Small animal bone density and morphometry analysis with a dual energy x-ray absorptiometry bone densitometer using a 2D digital radiographic detector

    NASA Astrophysics Data System (ADS)

    Boudousq, V.; Bordy, T.; Gonon, G.; Dinten, J. M.

    2005-04-01

    The LEXXOS (DMS, Montpellier, France) is the first axial and total body cone beam bone densitometer using a 2D digital radiographic detector. Technical principles and performances for BMD measurements have been presented in previous papers. Bone densitometers are also used on small animals for drug development. In this paper, we show how the LEXXOS system can be adapted to small animals examinations, and its performances are evaluated. At first, in order to take advantage of the whole area of the digital flat panel X-ray detector, the geometrical configuration has been adapted. Secondly, as small animals present low BMD, a specific dual energy calibration has been defined. This adapted system has then been evaluated on two sets of mice: six reference mice and six ovariectomized mice. Each month, these two populations have been examined and the total body BMD has been measured. This evaluation has shown that the right order of BMD magnitude has been obtained and, as expected, BMD increases on the two sets until age of puberty and after this period, decreases significantly for the ovariectomized set. Moreover, the bone image obtained by dual energy processing on LEXXOS presents a radiographic image quality providing with useful complementary information on bone morphometry and architecture.

  12. Low energy beam transport system developments

    SciTech Connect

    Dudnikov, V.; Han, B.; Stockli, M.; Welton, R.; Dudnikova, G.

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup −} beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup −} beams, but such gas densities cause unacceptably high H{sup −} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup −} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  13. Low-Energy Impacts onto Lunar Regolith

    NASA Astrophysics Data System (ADS)

    Seward, L. M.; Colwell, J. E.

    2011-12-01

    Collisions in space are vital to the formation and evolution of planetary bodies such as protoplanetary disks, planetary rings, the Kuiper belt, and the asteroid belt. Low-velocity impacts are common in planetary rings and protoplanetary disks. Saturn ring particles collide at speeds less than 1 m/s throughout most of the main rings, with more energetic collisions occurring in the dynamically stirred F ring. We are conducting a program of laboratory experiments to study low-velocity impacts of 1 to 5 m/s into regolith. We use direct measurement of ejecta mass and high resolution video tracking of ejecta particle trajectories to derive ejecta mass velocity distributions. We wish to characterize and understand the collision parameters that control the outcome of low-velocity impacts into regolith, including impact velocity, impactor mass, target size distribution, regolith depth, and target relative density, and to experimentally determine the functional dependencies of the outcomes of low-velocity collisions (ejecta mass and ejecta velocities) on the controlling parameters of the collision. Our goal is to understand the physics of ejecta production and regolith compaction in low-energy impacts and experimentally validate predictive models for dust flow and deposition. We present results from our ongoing study showing the positive correlation between impact energy and ejecta mass. Our results show that the production of ejecta mass increases as a function of impact kinetic energy. The production of mass also increases as a function of target relative density to a point of maximum ejecta production, beyond which the trend reverses.

  14. Precision measurement of quenching factors for low-energy nuclear recoils at TUNL

    NASA Astrophysics Data System (ADS)

    Rich, Grayson; Barbeau, Phil; Howell, Calvin; Karwowski, Hugon

    2014-03-01

    With detector technologies becoming increasingly sensitive to exotic events, a thorough understanding of signal yield as a function of deposited energy is required for appropriate interpretation of results from cutting edge detector systems. Elastic neutron scattering is a probe which has been used to mimic the nuclear recoils which may be produced in detection media by light-WIMP interactions or coherent neutrino-nucleus scattering (CNS). We have built at the Triangle Universities Nuclear Laboratory (TUNL) a facility which produces pulsed, collimated, low-energy, quasi-monoenergetic neutron beams using the 7Li(p,n) reaction, resulting in fluxes of ~ 1 neutrons / (s . cm2) at ~90 cm from the neutron-production target. The first precision results from this facility are reported for ultra-low-energy recoils in NaI(Tl) and CsI(Na) and future plans are outlined, including measurements on candidate materials for a CNS detector that can potentially be fielded at the Spallation Neutron Source of Oak Ridge National Laboratory as a part the Coherent Scatter Initiative (CSI). We discuss the implications of new, precise measurements of quenching factors on neutrino detectors and on current- and next-generation light-WIMP searches, particularly the DAMA experiment.

  15. The low-energy photon tagger NEPTUN

    NASA Astrophysics Data System (ADS)

    Savran, D.; Lindenberg, K.; Glorius, J.; Löher, B.; Müller, S.; Pietralla, N.; Schnorrenberger, L.; Simon, V.; Sonnabend, K.; Wälzlein, C.; Elvers, M.; Endres, J.; Hasper, J.; Zilges, A.

    2010-02-01

    A new photon tagging spectrometer was built at the superconducting Darmstadt electron linear accelerator (S-DALINAC). The system is designed for tagging photons in an energy range from 6 to 20 MeV with the emphasis on best possible energy resolution and intensity. The absolute energy resolution of photons at 10 MeV is expected to be about 20 keV. With scintillating fibres as focal-plane detectors a maximum rate of tagged photons of 104 keV -1s -1 will be achieved. Detailed design studies including Monte Carlo simulations are presented, as well as results for the measured tagged photon energy profile of the system realized so far. This photon-tagging facility will allow to determine the photon absorption cross-sections as a function of excitation energy and to study the decay patterns of nuclear photo-excitations in great detail.

  16. Interaction between Low Energy Ions and the Complicated Organism

    NASA Astrophysics Data System (ADS)

    Yu, Zeng-liang

    1999-12-01

    Low energy ions exist widely in natural world, but people pay a little attention on the interaction between low energy ions and matter, it is even more out of the question of studying on the relation of low energy ions and the complicated organism. The discovery of bioeffect induced by ion implantation has, however, opened a new branch in the field of ion beam application in life sciences. This paper reports recent advances in research on the role of low energy ions in chemical synthesis of the biomolecules and application in genetic modification.

  17. Low-Energy Ballistic Transfers to Lunar Halo Orbits

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.

    2009-01-01

    Recent lunar missions have begun to take advantage of the benefits of low-energy ballistic transfers between the Earth and the Moon rather than implementing conventional Hohmann-like lunar transfers. Both Artemis and GRAIL plan to implement low-energy lunar transfers in the next few years. This paper explores the characteristics and potential applications of many different families of low-energy ballistic lunar transfers. The transfers presented here begin from a wide variety of different orbits at the Earth and follow several different distinct pathways to the Moon. This paper characterizes these pathways to identify desirable low-energy lunar transfers for future lunar missions.

  18. Development of a Low-energy Trigger for VERITAS

    SciTech Connect

    Kildea, J.

    2008-12-24

    During the 2007/2008 observing season a low-energy trigger configuration was developed and tested for VERITAS. The configuration makes uses of the small ({approx}35 m) baseline between two of the VERITAS telescopes and employs a much lower discriminator threshold and tighter coincidence window compared to the standard VERITAS trigger. Five hours of Crab Nebula ON/OFF observations were obtained in low-energy mode and were used to test new low-energy analysis algorithms. We present some details of the VERITAS low-energy trigger and the associated data analysis.

  19. LEIC - A Polarized Low Energy Electron-ion Collider at Jefferson Lab

    SciTech Connect

    Derbenev, Yaroslav S.; Hutton, Andrew M.; Krafft, Geoffrey A.; Li, Rui; Lin, Fanglei; Morozov, Vasiliy; Nissen, Edward W.; Yunn, Byung C.; Zhang, He; Sullivan, Michael K.; Zhang, Yuhong

    2013-06-01

    A polarized electron-ion collider is envisioned as the future nuclear science program at JLab beyond the 12 GeV CEBAF. Presently, a medium energy collider (MEIC) is set as an immediate goal with options for a future energy upgrade. A comprehensive design report for MEIC has been released recently. The MEIC facility could also accommodate electron and proton/ion collisions in a low CM energy range, covering proton energies from 10 to 25 GeV and ion energies with a similar magnetic rigidity, for additional science reach. In this paper, we present a conceptual design of this low energy collider, LEIC, showing its luminosity can reach above 10{sup 33} cm{sup -2}s{sup -1}. The design specifies that the large booster of the MEIC is converted to a low energy ion collider ring with an interaction region and an electron cooler integrated into it. The design provides options for either sharing the detector with the MEIC or a dedicated low energy detector in a third collision point, with advantages of either a minimum cost or extra detection parallel to the MEIC operation, respectively. The LEIC could be positioned as the first and low cost phase of a multi-stage approach to realize the full MEIC.

  20. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  1. Low-energy electron experiment for Atmosphere Explorer-C and -D.

    NASA Technical Reports Server (NTRS)

    Hoffman, R. A.; Burch, J. L.; Janetzke, R. W.; Mcchesney, J. F.; Way, S. H.; Evans, D. S.

    1973-01-01

    The low-energy electron experiment will provide differential measurements of the energy influx and angular distributions of electrons and protons on the Atmosphere Explorer-C and -D missions. The detectors consist of cylindrical electrostatic analyzers for species and energy selection and Spiraltron electron multipliers as particle sensors. The C version will contain three detectors, two measuring electrons and protons from 0.2 to 25 keV in 16 logarithmically spaced steps and one measuring 5 keV electrons continuously. Angular distributions will be acquired utilizing the spin of the spacecraft. The D version will contain 19 detectors, one proton-stepped energy analyzer, and two electron-stepped energy analyzers at two different angles, again over the energy range 0.2 to 25 keV.

  2. Measurement of the Charge and Light Yield of Low Energy Nuclear Recoils in Liquid Xenon at Different Electric Fields

    NASA Astrophysics Data System (ADS)

    Anthony, Matthew; Aprile, Elena; de Perio, Patrick; Goetzke, Luke; Greene, Zach; Lin, Qing; Messina, Marcello; Plante, Guillaume; Rizzo, Alfio; Zhang, Yun

    2016-03-01

    Dual-phase liquid xenon detectors continue to lead in the search for the direct detection of dark matter. Characterization of the response of liquid xenon to low energy (<= 20 keV) nuclear recoils is essential to establish the sensitivity of these detectors to dark matter. The neriX detector at Columbia University is a dual-phase time projection chamber that is optimized for simultaneous measurements of light and charge from these low-energy interactions. A coincidence technique is employed to extract the light and charge yield from nuclear recoils in liquid xenon as a function of energy deposited and applied electric field. In this talk, we will present preliminary results from the light and charge yield measurements. We acknowledge continued support of the XENON Dark Matter program at Columbia University by the National Science Foundation.

  3. Measurement of the Field-Dependent Response of Liquid Xenon to Low-Energy Electronic Recoils

    NASA Astrophysics Data System (ADS)

    Goetzke, Luke; Anthony, Matthew; Aprile, Elena; de Perio, Patrick; Greene, Zach; Lin, Qing; Messina, Marcello; Plante, Guillaume; Rizzo, Alfio; Zhang, Yun

    2016-03-01

    The search for the direct detection of dark matter continues to be led by experiments employing liquid xenon (LXe) as the detection medium. Still, few measurements have been made of the response of LXe to low-energy interactions as a function of energy and electric field. The neriX detector at Columbia University is a dual-phase time projection chamber optimized for simultaneous measurements of light and charge from low-energy interactions in LXe. In this talk, we will present the results of measurements of the light and charge yield of electronic recoils in LXe using neriX. The Compton coincidence technique is employed to extract the yields as a function of energy deposited at different electric fields. We gratefully acknowledge the continued support of the XENON Dark Matter program at Columbia University by the National Science Foundation.

  4. Low-energy beam transport studies supporting the Spallation Neutron Source 1-MW beam operationa

    SciTech Connect

    Han, Baoxi; Kalvas, T.; Tarvainen, O.; Welton, Robert F; Murray Jr, S N; Pennisi, Terry R; Santana, Manuel; Stockli, Martin P

    2012-01-01

    The H- injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the Spallation Neutron Source 1-MW beam operation with ~38 mA beam current in the linac at 60 Hz with a pulse length of up to ~1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: 1) inconsistent dependence of the post-RFQ beam current on the ion source tilt angle, and 2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  5. Low-energy antiprotons physics and the FLAIR facility

    NASA Astrophysics Data System (ADS)

    Widmann, E.

    2015-11-01

    FLAIR, the Facility for low-energy antiproton and ion research has been proposed in 2004 as an extension of the planned FAIR facility at Darmstadt, Germany. FLAIR was not included into the modularized start version of FAIR, but the recent installation of the CRYRING storage ring at GSI Darmstadt has opened new perspectives for physics with low-energy antiprotons at FAIR.

  6. What is a low-energy house and who cares?

    SciTech Connect

    Litt, B.R.

    1994-12-01

    Most energy analysts view low-energy houses as good things, yet differ in their expectations of what exactly a low energy house is. There are two intertwining threads to this report. The first is an evaluation of 50 buildings that have been claimed to be low-energy residences, for which monitored energy performance data have been collected. These data represent the preliminary effort in the ongoing update of the Buildings Energy-Use Compilation and Analysis (BECA) data base for new residences. The second thread concerns the definition of a low-energy house. After the elements of a definition are presented, their implications for actors involved in providing housing are identified. Several more tractable definitions are applied to the houses in this compilation. The outcomes illustrate ways in which different interests are served by various definitions. Different definitions can yield very different energy rankings. No single definition of a low-energy house is universally applicable.

  7. Low-energy calculations for nuclear photodisintegration

    NASA Astrophysics Data System (ADS)

    Deflorian, S.; Efros, V. D.; Leidemann, W.

    2016-03-01

    In the Standard Solar Model a central role in the nucleosynthesis is played by reactions of the kind {}{Z_1}{A_1}{X_1} + {}{Z_2}{A_2}{X_2} to {}{Z_1 + {Z_2}}{A_1 + {A_2}}Y + γ , which enter the proton-proton chains. These reactions can also be studied through the inverse photodisintegration reaction. One option is to use the Lorentz Integral Transform approach, which transforms the continuum problem into a bound state-like one. A way to check the reliability of such methods is a direct calculation, for example using the Kohn Variational Principle to obtain the scattering wave function and then directly calculate the response function of the reaction.

  8. Thermal transport in amorphous nanostructures: the (enduring) role of low-energy phonons

    NASA Astrophysics Data System (ADS)

    Underwood, Jason

    2014-03-01

    Micromachined amorphous solid structures have proven to be ideal platforms for physicists to challenge their understanding of phonon transport. Such nanostructures have been exploited for early experimental demonstrations of the quantum of thermal conductance. These structures also serve important technological functions. Amorphous silicon nitride (SiNx) nanostructures, in particular, are increasingly critical to the operation of state-of-the-art low temperature detector arrays. Achieving control over which phonon modes propagate in a given structure -- phononics -- is a major goal for engineering better thermoelectric materials, for regulating heat flow in ever-shrinking microprocessors, and for the developing field of caloritronics. At very low temperatures, it is generally accepted that phonons with energy much lower than the Debye energy (i.e., ω <<1013 Hz) dominate thermal transport. At room temperature, the preponderance of higher energy modes is usually reason enough to assume that the low energy modes do not contribute substantially to the overall thermal conductance. While generally true for crystals, the efficient scattering of high-energy phonons in amorphous solids means that the remaining low-energy modes may acquire comparably long mean free paths. Recent measurements of SiNx nanostructures strongly suggest that this bias in mean free paths leads to the result that low-energy phonons may contribute up to 50% of the overall thermal conductance of the structure -- even at room temperature. After a brief review of thermal transport in the low-energy regime, I will discuss these results, as well as other recent experiments where low-energy phonons play an important role.

  9. Evidence for confinement of low-energy cosmic rays ahead of interplanetary shock waves.

    NASA Technical Reports Server (NTRS)

    Palmeira, R. A. R.; Allum, F. R.

    1973-01-01

    Short-lived (about 15 min), low-energy proton increases associated with the passage of interplanetary shock waves have been previously reported. In the present paper, we have examined in a fine time scale (about 1 min) the concurrent particle and magnetic field data, taken by detectors on Explorer 34, for four of these events. Our results further support the view that these impulsive events are due to confinement of the solar cosmic-ray particles in the region just ahead (about 1,000,000 km) of the advancing shock front.

  10. The AMADEUS experiment - precision measurements of low-energy antikaon nucleus/nucleon interactions

    NASA Astrophysics Data System (ADS)

    Zmeskal, J.; Bazzi, M.; Bragadireanu, M.; Bühler, P.; Cargnelli, M.; Curceanu, C.; Ghio, F.; Guaraldo, C.; Iliescu, M.; Ishiwatari, T.; Kienle, P.; Levi Sandri, P.; Marton, J.; Müllner, P.; Suzuki, K.; Okada, S.; Pietreanu, D.; Poli Lener, M.; Rizzo, A.; Vazquez Doce, O.; Romero Vidal, A.; Scordo, A.; Sirghi, F.; Sirghi, D.; d'Ufizzi, A.; Widmann, E.; Wünschek, B.

    2010-04-01

    The planned series of measurements with AMADEUS will provide a high precision data set to study antikaon nucleus/nucleon dynamics at low energy. To achieve these goals AMADEUS will make use of the KLOE detector system at LNF, which is ideally suited for our measurements due to their large drift chamber with excellent charge particle tracking and identification probability. An almost 4 π calorimeter is available for the detection of neutral particles. R&D work has already started to construct a dedicated target and trigger system for further improvements on kaon stopping efficiency and background suppression.

  11. Low Energy Neutrino Physics at the Kuo-Sheng Reactor Laboratory in Taiwan

    SciTech Connect

    Lin, S.-T.

    2006-11-17

    A laboratory has been constructed by the TEXONO Collaboration at the Kuo-Sheng Reactor Power Plant in Taiwan to study low energy neutrino physics. A limit on the neutrino magnetic moment of {mu}{nu}({nu}-bare) < 7.2 x 10-11 {mu}B at 90% confidence level has been achieved from measurements with a high-purity germanium detector, as well as the electron neutrinos ({nu}{sub e}) produced from nuclear power reactors has been studied. Other research program at Kuo-Sheng are surveyed.

  12. Parity violation in low-energy neutron-deuteron scattering

    SciTech Connect

    Song, Young-Ho; Gudkov, Vladimir; Lazauskas, Rimantas

    2011-01-15

    Parity-violating effects for low-energy elastic neutron deuteron scattering are calculated for Desplanques, Donoghue, and Holstein (DDH) and effective field theory types of weak potentials in a distorted-wave Born approximation, using realistic hadronic strong interaction wave functions, obtained by solving three-body Faddeev equations in configuration space. The resulting relation between physical observables and low-energy constants can be used to fix low-energy constants from experiments. Potential model dependencies of parity-violating effects are discussed.

  13. BATSE Observations of Gamma-Ray Burst Spectra. Part 3; Low-Energy Behavior of Time-Averaged Spectra

    NASA Technical Reports Server (NTRS)

    Preece, R. D.; Briggs, M. S.; Pendleton, G. N.; Paciesas, W. S.; Matteson, J. L.; Band, D. L.; Skelton, R. T.; Meegan, C. A.

    1996-01-01

    We analyze time-averaged spectra from 86 bright gamma-ray bursts from the first 5 years of the Burst And Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory to determine whether the lowest energy data are consistent with a standard spectra form fit to the data at all energies. The BATSE Spectroscopy Detectors have the capability to observe photons as low as 5 keV. Using the gamma-ray burst locations obtained with the BATSE Large Area Detectors, the Spectroscopy Detectors' low-energy response can be modeled accurately. This, together with a postlaunch calibration of the lowest energy Spectroscopy Detector discriminator channel, which can lie in the range 5-20 keV, allows spectral deconvolution over a broad energy range, approx. 5 keV to 2 MeV. The additional coverage allows us to search for evidence of excess emission, or for a deficit, below 20 keV. While no burst has a significant (greater than or equal to 3 sigma) deficit relative to a standard spectra model, we find that 12 bursts have excess low-energy emission, ranging between 1.2 and 5.8 times the model flux, that exceeds 5 sigma in significance. This is evidence for an additional low-energy spectral component in at least some bursts, or for deviations from the power-law spectral form typically used to model gamma-ray bursts at energies below 100 keV.

  14. Beam lifetime and limitations during low-energy RHIC operation

    SciTech Connect

    Fedotov, A.V.; Bai, M.; Blaskiewicz, M.; Fischer, W.; Kayran, D.; Montag, C.; Satogata, T.; Tepikian, S.; Wang, G.

    2011-03-28

    The low-energy physics program at the Relativistic Heavy Ion Collider (RHIC), motivated by a search for the QCD phase transition critical point, requires operation at low energies. At these energies, large nonlinear magnetic field errors and large beam sizes produce low beam lifetimes. A variety of beam dynamics effects such as Intrabeam Scattering (IBS), space charge and beam-beam forces also contribute. All these effects are important to understand beam lifetime limitations in RHIC at low energies. During the low-energy RHIC physics run in May-June 2010 at beam {gamma} = 6.1 and {gamma} = 4.1, gold beam lifetimes were measured for various values of space-charge tune shifts, transverse acceptance limitation by collimators, synchrotron tunes and RF voltage. This paper summarizes our observations and initial findings.

  15. Past, present and future low energy antiproton facilities at CERN

    NASA Astrophysics Data System (ADS)

    Bartmann, W.; Belochitskii, P.; Breuker, H.; Butin, F.; Carli, C.; Eriksson, T.; Maury, S.; Oelert, W.; Pasinelli, S.; Tranquille, G.

    2014-05-01

    Low energy antiprotons are available for physics experiments at CERN since the 1980s and have been used by a large variety of experiments. The Low Energy Antiproton Ring LEAR has been constructed as a complementary use of antiprotons available at that time for high energy physics and delivered beam to experiments mainly using slow extraction. After completion of LEAR exploitation, the Antiproton Decelerator (AD) was constructed (adaptation of the existing Antiproton Collector, AC) to allow for a simpler low energy antiproton scheme (only one accelerator operated with Antiprotons) with fast extraction well suited for trap experiments. The Extra Low ENergy Antiproton ring ELENA is a small synchrotron presently constructed to further decelerate antiprotons from the AD in a controlled manner, and to reduce emittances with the help of an electron cooler to improve the capture efficiencies of existing experiments and allow for additional ones.

  16. Radial Flux Distribution of Low-Energy Neutrons.

    ERIC Educational Resources Information Center

    Higinbotham, J.

    1979-01-01

    Describes an experiment designed to illustrate the basic principle involved in the process of moderation of fast neutrons by water, and the monitoring of the low-energy neutron flux using indium as a probe. (GA)

  17. Biological assessments for the low energy demonstration accelerator, 1996

    SciTech Connect

    Cross, S.

    1997-03-01

    This report discusses the biological impact to the area around the Los Alamos National Laboratory of the Low Energy Demonstration Accelerator. In particular the impact to the soils, water quality, vegetation, and wildlife are discussed.

  18. Bag-model quantum chromodynamics for hyperons at low energy

    NASA Astrophysics Data System (ADS)

    Weber, H. J.; Maslow, J. N.

    1980-09-01

    In a non-perturbative bag model framework, gluon exchange which mediates quark exchange scattering in conjunction with quark interchange is shown to be the basis of the OBE interactions of hyperons at low energy.

  19. Surface Passivation and Junction Formation Using Low Energy Hydrogen Implants

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.

    1985-01-01

    New applications for high current, low energy hydrogen ion implants on single crystal and polycrystal silicon grain boundaries are discussed. The effects of low energy hydrogen ion beams on crystalline Si surfaces are considered. The effect of these beams on bulk defects in crystalline Si is addressed. Specific applications of H+ implants to crystalline Si processing are discussed. In all of the situations reported on, the hydrogen beams were produced using a high current Kaufman ion source.

  20. Low-energy photon spectroscopy data in support of ASTM method development

    SciTech Connect

    Dry, D. E.; Boone, S.

    2002-01-01

    The Isotope and Nuclear Chemistry (C-INC) Radioassay Facility at Los Alamos National Laboratory (LANL) has been in operation since 1948 to measure fission-product and actinide activities from the U.S. weapons testing program. Since the cessation of testing in 1992, the facility has remained in continuous operation by analyzing samples for environmental, bioassay and research projects. In addition to the many gamma spectroscopy systems, two independent planar germanium detectors are employed for measurement of x-rays and low-energy gsunma rays. 'These counters were used to collect data of select isotopes to support the development of a new ASTM standard, 'Standard Practice for High-Resolution Low-Energy Photon Spectrometry of Water'. This standard is being developed by ASTM Subcommittee D19.04 as a tool for measurement of low-energy gamma-rays and x-rays fiom approximately 4 keV to 150 keV. This work describes empirical counting results obtained fkom traceable sources covering the energy range of interest. Specifically, the isotopes used were 5%i, 55Fe, Am, I, Cd, and 57C0 which provide a range of 5.9 to 136 keV. Mixed nuclide sources were also counted for the purpose of providing data for coincidence summing effects. All data is presented in hardcopy and accompanying electronic form.

  1. The ISPM experiment for spectral, composition and anistropy measurements of charged particles at low energie

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Gold, R. E.; Anderson, K. A.; Armstrong, T. P.; Lin, R. P.; Krimigis, S. M.; Pick, M.; Roelof, E. C.; Sarris, E. T.; Simnett, G. M.

    1983-01-01

    The Heliosphere Instrument for Spectral, Composition, and Anisotropy at Low Energies (HI-SCALE) designed to measure interplanetary ions and electrons is described. Ions and electrons are detected by five separate solid-state detector telescopes oriented to give complete pitch angle coverage from the spinning spacecraft. Ion elemental abundances are determined by a telescope using a thin front detector element in a three-element telescope. Experiment operation is controlled by a microprocessor-based data system. Inflight calibration is provided by radioactive sources mounted on closable telescope covers. Ion and electron spectral information is determined using broad-energy-range rate channels, and a pulse-height analyzer for more detailed spectra. The instrument weighs 5.775 kg and uses 4.0 W power.

  2. NPTool: a simulation and analysis framework for low-energy nuclear physics experiments

    NASA Astrophysics Data System (ADS)

    Matta, A.; Morfouace, P.; de Séréville, N.; Flavigny, F.; Labiche, M.; Shearman, R.

    2016-08-01

    The Nuclear Physics Tool (NPTool) is an open source data analysis and Monte Carlo simulation framework that has been developed for low-energy nuclear physics experiments with an emphasis on radioactive beam experiments. The NPTool offers a unified framework for designing, preparing and analyzing complex experiments employing multiple detectors, each of which may comprise some hundreds of channels. The framework has been successfully used for the analysis and simulation of experiments at facilities including GANIL, RIKEN, ALTO and TRIUMF, using both stable and radioactive beams. This paper details the NPTool philosophy together with an overview of the workflow. The framework has been benchmarked through the comparison of simulated and experimental data for a variety of detectors used in charged particle and gamma-ray spectroscopy.

  3. The elemental and isotopic composition of quiet time low energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Smith, B.; Mcdonald, F. B.

    1983-01-01

    Isotopic abundances during several periods of solar quiet times are derived from multidimensional analysis of double dE/dX modes made with two 150 micron dE detectors and a 3000 micron stopping E detector. The spectra of the low-energy cosmic rays suggest that all the primary species of elements exhibit flux enhancements. The flux increases of 5-12 MeV/N for C, Mg, Si, and Fe are different from the anomalous components and may result from solar contamination of the quiet time data or from interplanetary acceleration processes. They may be anomalous components (ACR), although to a lesser extent than He, N, O, and Ne. The isotopic data indicate that the ACR component is predominantly N-14, O-16, and Ne-20. The isotopic compositions require that the ACRs have traversed a very limited amount of material, suggesting a local origin for them.

  4. Instrument to measure energy and charge of low energy interplanetary particles

    NASA Technical Reports Server (NTRS)

    Tums, E.; Gloeckler, G.; Cain, J.; Sciambi, R.; Fan, C. Y.

    1974-01-01

    An experiment to measure the charge composition and energy spectra of ultra low energy charged particles in interplanetary space has been developed and launched on the IMP 8 (Explorer 50) satellite on Oct. 26, 1973. The instrument consists of two separate sensors sharing common electronics. One of these sensors uses a thin window gas proportional counter to measure the rate of energy loss and a totally depleted silicon surface barrier detector to measure total energy of incoming particles. The energy range for two dimensional analysis extends from 300 KeV to 2.5 MeV for protons and 60 KeV/nucleon to 25 MeV/nucleon for iron with excellent resolution of individual chemical elements. The other sensor combines electrostatic deflection with total energy measurements in silicon surface barrier detectors to give the ionic charge and kinetic energy of the particle.

  5. A G/NARRLI Effort. Measuring the Ionization Yield of Low-Energy Nuclear Recoils in Liquid Argon

    SciTech Connect

    Joshi, Tenzing Henry Yatish

    2014-01-01

    Liquid argon has long been used for particle detection due to its attractive drift properties, ample abundance, and reasonable density. The response of liquid argon to lowenergy O(102 -1044 eV) interactions is, however, largely unexplored. Weakly interacting massive particles such as neutrinos and hypothetical dark-matter particles (WIMPs) are predicted to coherently scatter on atomic nuclei, leaving only an isolated low-energy nuclear recoil as evidence. The response of liquid argon to low-energy nuclear recoils must be studied to determine the sensitivity of liquid argon based detectors to these unobserved interactions. Detectors sensitive to coherent neutrino-nucleus scattering may be used to monitor nuclear reactors from a distance, to detect neutrinos from supernova, and to test the predicted behavior of neutrinos. Additionally, direct detection of hypothetical weakly interacting dark matter would be a large step toward understanding the substance that accounts for nearly 27% of the universe. In this dissertation I discuss a small dual-phase (liquid-gas) argon proportional scintillation counter built to study the low-energy regime and several novel calibration and characterization techniques developed to study the response of liquid argon to low-energy O(102 -104 eV) interactions.

  6. Directional detector of gamma rays

    DOEpatents

    Cox, Samson A.; Levert, Francis E.

    1979-01-01

    A directional detector of gamma rays comprises a strip of an electrical cuctor of high atomic number backed with a strip of a second electrical conductor of low atomic number. These elements are enclosed within an electrical conductor that establishes an electrical ground, maintains a vacuum enclosure and screens out low-energy gamma rays. The detector exhibits a directional sensitivity marked by an increased output in the favored direction by a factor of ten over the output in the unfavored direction.

  7. Optical and chemical behaviors of CR-39 and Makrofol plastics under low-energy electron beam irradiation

    NASA Astrophysics Data System (ADS)

    El-Saftawy, Ashraf Ali; Abd El Aal, Saad Ahmed; Hassan, Nabil Mohamed; Abdelrahman, Moustafa Mohamed

    2016-07-01

    In this study, CR-39 and Makrofol plastic nuclear track detectors were irradiated with low-energy electron beams to study the effect of the induced changes on their optical and chemical properties. Surface chemical changes were recorded by Fourier transform infrared (FTIR) spectroscopy, which showed successive degradation and crosslinking for CR-39 and decomposition for Makrofol. The optical band gap was determined by UV–vis spectroscopy. Also, the parameters of carbon cluster formation and disordering (Urbach’s energy) occurring on plastic surfaces were examined. The intrinsic viscosity changes were investigated as well. As a result, low-energy electron beams were found to be useful for the control of many properties of the surfaces of the investigated detectors.

  8. Measuring Neutron-Proton Radiative Capture Cross-section at Low Energy

    NASA Astrophysics Data System (ADS)

    Yu, To Chin; Kovash, Michael; Matthews, June; Yang, Hongwei; Yang, Yunjie

    2015-10-01

    The experiment aims to fill in a gap in our data for the cross-section of neutron-proton radiative capture (p(n,d γ)) at energies below 500 keV. Current measurements in this energy range are scarce and inconsistent with theoretical predictions and with each other. A well-determined cross-section of the capture reaction in the low energy range is useful in nuclear physics due to its fundamental nature. The measurement is also of interest in cosmology. Big Bang Nucleosynthesis (BBN), the process by which light elements are formed in early universe, is very sensitive to the p(n,d γ) cross-section in the low energy range. The measurement enables us to put tighter constraints on the theoretical predictions of BBN. We have conducted preliminary measurements in the van de Graaff accelerator facility at the University of Kentucky. Our array of detectors consists of three plastic scintillators to serve as proton targets and deuteron detectors, and five BGO scintillators to detect γ-rays. The combination results in an over-determination of reaction kinematics that discriminates against scattering processes and other backgrounds. We have obtained some early results which show promise for the precise measurement of the p(n,d γ) cross-section.

  9. Search for Low-Energy Events with CUORE-0 and CUORE

    NASA Astrophysics Data System (ADS)

    Lim, Kyungeun; Cuore Collaboration

    2015-10-01

    CUORE-0 is a cryogenic detector that uses an array of tellurium dioxide bolometers with the primary physics goal of searching for neutrinoless double-beta decay of 130Te. The detector consists of 52 natTeO2 crystal bolometers, which amounts to a total 130Te mass of 11kg, held in a ultra-pure copper frame. It was assembled using new low-background techniques developed for CUORE. The first results on the search for neutrinoless double-beta decay with CUORE-0 combined with Cuoricinio, a predecessor to CUORE-0, set the most stringent limit on the half-life of 130Te. Successful background mitigation, along with continuous data acquisition make CUORE-0 also suitable for other low-energy, rare event searches such as dark matter. I will discuss the status of the low-energy event search with CUORE-0 and prospects for CUORE. CUORE is in the final stages of construction and scheduled to begin data-taking in late 2015.

  10. Impact of low-energy photons on the characteristics of prompt fission γ -ray spectra

    NASA Astrophysics Data System (ADS)

    Oberstedt, A.; Billnert, R.; Hambsch, F.-J.; Oberstedt, S.

    2015-07-01

    In this paper we report on a new study of prompt γ -rays from the spontaneous fission of 252Cf . Photons were measured in coincidence with fission fragments by employing four different lanthanide halide scintillation detectors. Together with results from a previous work of ours, we determined characteristic parameters with high precision, such as the average γ -ray multiplicity ν¯γ=(8.29 ±0.13 ), the average energy per photon ɛγ=(0.80 ±0.02 ) MeV, and the total γ -ray energy release per fission Eγ ,tot=(6.65 ±0.10 ) MeV. The excellent agreement between the individual results obtained in all six measurements proves the good repeatability of the applied experimental technique. The impact of low-energy photons, i.e., below 500 keV, on prompt fission γ -ray spectra characteristics has been investigated as well by comparing our results with those taken with the DANCE detector system, which appears to suffer from absorption effects in the low-energy region. Correction factors for this effect were estimated, giving results comparable to ours as well as to historical ones. From this we demonstrate that the different techniques of determining the average γ -ray multiplicity, either from a properly measured and normalized spectrum or a measured multiplicity distribution, give equivalent and consistent results.

  11. Design of low energy bunch compressors with space charge effects

    NASA Astrophysics Data System (ADS)

    He, A.; Willeke, F.; Yu, L. H.; Yang, L.; Shaftan, T.; Wang, G.; Li, Y.; Hidaka, Y.; Qiang, J.

    2015-01-01

    In this paper, we explore a method to manipulate low energy electron bunches in a space charge dominated regime, and we use this method to design low energy linac bunch compressors to compress electron bunches in a space charge dominated regime. In the method, we use the space charge effects instead of avoiding them; i.e., we use the space charge forces to generate the required energy chirp instead of the ordinary method which uses the rf accelerating system to generate the chirp. We redefine the concepts of the dispersion function and beta functions in a space charge dominated regime to guide the optimization. Using this method, we study the low energy (5-22 MeV) linac bunch compressor design to produce short (˜150 fs ) and small size (˜30 μ m ) bunches for the electron beam slicing project. The low energy linac bunch compressors work in a space charge dominated regime, and the bunches at the downstream of the gun have a negative energy chirp due to the space charge effects. To provide compression for the negative energy chirped bunch, we design a positive R56 dispersive section using a four-dipole chicane with several quadrupole magnets. We have designed low energy linac bunch compressors with different photocathode rf guns. For example, one linac bunch compressor with the BNL photocathode electron rf gun has achieved a low energy bunch with the 166 fs rms bunch length, 28 and 31 μ m rms beam size in the vertical and horizontal directions, respectively, at 5 MeV with 50 pC charge. Another example with LBNL's very-high frequency gun has achieved a low energy bunch with the 128 fs rms bunch length, 42 and 25 μ m rms beam size in the vertical and horizontal directions, respectively, at 22 MeV with 200 pC charge.

  12. A whole body counter for an emergency and occupational monitoring of an internal contamination with low energy photon emitters

    NASA Astrophysics Data System (ADS)

    Fantínová, K.; Fojtík, P.; Pfeiferová, V.

    2015-11-01

    A whole-body counter in SÚRO (NRPI) Prague, Czech Republic has been upgraded recently with the goal to enhance its capability of a safe, smooth, accurate and reproducible positioning of detectors for whole- and partial-body counting. The counter is intended especially for counting of low energy gamma emitters in various organs and tissues of the human body. Counting efficiency calibration of a four-detector system installed in the shielded room has been performed by means of physical and voxel phantoms. The consistency of in vivo bioassay data of three internal contamination cases long-term monitored in the Institute is shown.

  13. Large-scale liquid scintillation detectors for solar neutrinos

    NASA Astrophysics Data System (ADS)

    Benziger, Jay B.; Calaprice, Frank P.

    2016-04-01

    Large-scale liquid scintillation detectors are capable of providing spectral yields of the low energy solar neutrinos. These detectors require > 100 tons of liquid scintillator with high optical and radiopurity. In this paper requirements for low-energy neutrino detection by liquid scintillation are specified and the procedures to achieve low backgrounds in large-scale liquid scintillation detectors for solar neutrinos are reviewed. The designs, operations and achievements of Borexino, KamLAND and SNO+ in measuring the low-energy solar neutrino fluxes are reviewed.

  14. Spectroscopy of Light Nuclei with Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Lombardo, I.; Dell'Aquila, D.; Vigilante, M.

    2016-07-01

    We discuss new results concerning the investigation of the 19F(p,α 0)16O and 10B(p,α 0)7Be reactions at low energies. Both reactions are important for the nuclear spectroscopy of the formed compound nucleus, i.e. 20Ne and 11C respectively, and play a role in nuclear astrophysics. For the 10B(p,α 0)7Be case, a comprehensive analysis of our reaction data and other scattering data points out the possible presence of an unreported state in 11C at Ex ≈ 9.36 MeV. For the 19F(p,α 0)16O case, the study of the low energy angular distributions testifies the role played by low energy resonances in the S-factor, leading to an enhanced reaction rate at stellar energies.

  15. Engaging schools in the science of low-energy buildings.

    PubMed

    Charnley, Fiona; Fleming, Paul; Dowsett, Tony; Fleming, Margaret; Cook, Malcolm; Mill, Greig

    2012-10-01

    This article explores the relationship between the previous UK government's initiative to rebuild and renew secondary schools, and the requirement for improved education for sustainable development in the UK. The documented research utilized a number of mechanisms to engage with pupils in Leicester city schools to increase their awareness, knowledge and understanding of the science and engineering associated with the design and operation of low-energy school buildings. Workshops, discussions with energy and sustainable development experts and inspirational visits to existing low-energy buildings were employed to develop an appreciation for the importance of energy efficiency and best design practice. The results demonstrate an increase in pupils' knowledge and understanding of low-energy school design and additionally a rise in those pupils who are interested in science and would consider it as a career option. PMID:23832564

  16. Techniques of absolute low energy x-ray calibration

    SciTech Connect

    Day, R.H.

    1986-01-01

    Recent advances in pulsed plasma research, materials science, and astrophysics have required many new diagnostic instruments for use in the low energy x-ray regime. The characterization of these instruments has provided a challenge to instrument designers and provided the momentum to improve x-ray sources and dosimetry techniques. In this paper, the present state-of-the-art in low energy x-ray characterization techniques is reviewed. A summary is given of low energy x-ray generator technology and dosimetry techniques including a discussion of thin window proportional counters and ionization chambers. A review is included of the widely used x-ray data bases and a sample of ultrasoft x-ray measuring procedures, chopped x-ray source generators, phase sensitive detection of ultralow currents, and angular divergence measurements.

  17. Evolution of the Crab Nebula in a Low Energy Supernova

    NASA Astrophysics Data System (ADS)

    Yang, Haifeng; Chevalier, Roger A.

    2015-06-01

    The nature of the supernova leading to the Crab Nebula has long been controversial because of the low energy that is present in the observed nebula. One possibility is that there is significant energy in extended fast material around the Crab but searches for such material have not led to detections. An electron capture supernova model can plausibly account for the low energy and the observed abundances in the Crab. Here, we examine the evolution of the Crab pulsar wind nebula inside a freely expanding supernova and find that the observed properties are most consistent with a low energy event. Both the velocity and radius of the shell material, and the amount of gas swept up by the pulsar wind point to a low explosion energy (∼1050 erg). We do not favor a model in which circumstellar interaction powers the supernova luminosity near maximum light because the required mass would limit the freely expanding ejecta.

  18. Low-energy physics of high-temperature superconductors

    SciTech Connect

    Emery, V.J. . Physics Dept.); Kivelson, S.A. . Dept. of Physics)

    1992-01-01

    It is argued that the low-energy properties of high temperature superconductors are dominated by the interaction between the mobile holes and a particular class of collective modes, corresponding to local large-amplitude low-energy fluctuations in the hole density. The latter are a consequence of the competition between the effects of long-range Coulomb interactions and the tendency of a low concentration of holes in an antiferromagnet to phase separate. The low-energy behavior of the system is governed by the same fixed point as the two-channel Kondo problem, which accounts for the universality'' of the properties of the cuprate superconductors. Predictions of the optical properties and the spin dynamics are compared with experiment. The pairing resonance of the two Kondo problem gives a mechanism of high temperature superconductivity with an unconventional symmetry of the order parameter.

  19. Low-energy physics of high-temperature superconductors

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1992-09-01

    It is argued that the low-energy properties of high temperature superconductors are dominated by the interaction between the mobile holes and a particular class of collective modes, corresponding to local large-amplitude low-energy fluctuations in the hole density. The latter are a consequence of the competition between the effects of long-range Coulomb interactions and the tendency of a low concentration of holes in an antiferromagnet to phase separate. The low-energy behavior of the system is governed by the same fixed point as the two-channel Kondo problem, which accounts for the ``universality`` of the properties of the cuprate superconductors. Predictions of the optical properties and the spin dynamics are compared with experiment. The pairing resonance of the two Kondo problem gives a mechanism of high temperature superconductivity with an unconventional symmetry of the order parameter.

  20. Coulomb effects in low-energy nuclear fragmentation

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Chun, Sang Y.; Badavi, Francis F.; John, Sarah

    1993-01-01

    Early versions of the Langley nuclear fragmentation code NUCFRAG (and a publicly released version called HZEFRG1) assumed straight-line trajectories throughout the interaction. As a consequence, NUCFRAG and HZEFRG1 give unrealistic cross sections for large mass removal from the projectile and target at low energies. A correction for the distortion of the trajectory by the nuclear Coulomb fields is used to derive fragmentation cross sections. A simple energy-loss term is applied to estimate the energy downshifts that greatly alter the Coulomb trajectory at low energy. The results, which are far more realistic than prior versions of the code, should provide the data base for future transport calculations. The systematic behavior of charge-removal cross sections compares favorably with results from low-energy experiments.

  1. Light element production by low energy nuclei from massive stars

    NASA Technical Reports Server (NTRS)

    Vangioni-Flam, E.; Casse, M.; Ramaty, R.

    1997-01-01

    The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.

  2. Low energy particle composition. [cosmic rays produced in solar system

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.

    1975-01-01

    A review is given of current knowledge of low-energy cosmic ray particles produced in the solar system. It is argued that the notion that the sun alone can accelerate particles in the solar system must be abandoned in light of evidence that Jupiter and earth may be sources of observed low-energy particles. Measurements of the composition and energy spectra of low-energy particles during quiet times are examined, emphasizing the abundance of protons and helium and of anomalous N, O, and Ne. The abundance of heavy particles (B, C, N, O, Ne, Ca and Fe) of unknown origin in the earth magnetosphere is examined. Reported observations of Jovian electrons are discussed and solar particle events with anomalous compositions (He-3 rich events and Fe rich events) are treated in detail. Nuclear abundances of solar particles, emphasizing their temporal and spatial variations are considered together with the nature of nuclear reaction products in solar flares.

  3. Feasibility of Electron Cooling for Low-Energy RHIC Operation

    SciTech Connect

    Fedotov,A.; Ben-Zvi, I.; Chang, X.; Kayran, D.; Litvinenko, V.; Pozdeyev, E.; Satogata, T.

    2008-04-01

    A concrete interest in running RHIC at low energies in a range of 2.5-25 GeV/nucleon total energy of a single beam has recently emerged. Providing collisions in this energy range, which in the RHIC case is termed 'low-energy' operation, will help to answer one of the key questions in the field of QCD about existence and location of a critical point on the QCD phase diagram. However, luminosity projections are relatively low for the lowest energy points of interest. Luminosity improvement can be provided with electron cooling applied directly in RHIC at low energies. This report summarizes the expected luminosity improvement with electron cooling, possible technical approaches and various limitations.

  4. Strong flux of low-energy neutrons produced by thunderstorms.

    PubMed

    Gurevich, A V; Antonova, V P; Chubenko, A P; Karashtin, A N; Mitko, G G; Ptitsyn, M O; Ryabov, V A; Shepetov, A L; Shlyugaev, Yu V; Vildanova, L I; Zybin, K P

    2012-03-23

    We report here for the first time about the registration of an extraordinary high flux of low-energy neutrons generated during thunderstorms. The measured neutron count rate enhancements are directly connected with thunderstorm discharges. The low-energy neutron flux value obtained in our work is a challenge for the photonuclear channel of neutron generation in thunderstorm: the estimated value of the needed high-energy γ-ray flux is about 3 orders of magnitude higher than that one observed. PMID:22540588

  5. Modelling low energy electron and positron tracks for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sanz, A. G.; Fuss, M. C.; Roldán, A. M.; Oller, J. C.; Blanco, F.; Limão-Vieira, P.; Brunger, M. J.; Buckman, S. J.; García, G.

    2012-11-01

    In order to incorporate the effect of low energy electrons and positron in radiation damage models, the simulation method proposed here is based on experimental and theoretical cross section data and energy loss spectra we have previously derived. After a summary of the main techniques used to obtain reliable input data, the basis of a Low Energy Particle Track Simulation (LEPTS) procedure is established. Single electron and positron tracks in liquid water are presented and the possibility of using these results to develop tools for nanodosimetry is discussed.

  6. Diffuse Galactic low energy gamma ray continuum emission

    NASA Technical Reports Server (NTRS)

    Skibo, J. G.; Ramaty, R.

    1993-01-01

    We investigate the origin of diffuse low-energy Galactic gamma-ray continuum down to about 30 keV. We calculate gamma-ray emission via bremsstrahlung and inverse Compton scattering by propagating an unbroken electron power law injection spectrum and employing a Galactic emmissivity model derived from COSB observations. To maintain the low energy electron population capable of producing the observed continuum via bremsstrahlung, a total power input of 4 x 10 exp 41 erg/s is required. This exceeds the total power supplied to the nuclear cosmic rays by about an order of magnitude.

  7. Low energy antiprotons from supernova exploding in dense clouds

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.; Mauger, B. G.

    1984-01-01

    The antiproton spectrum resulting from a supernova, which exploded inside a dense cloud, is calculated by taking into account all energy loss processes including adiabatic deceleration during the expansion phase. The influence of various energy loss processes on the evolution of the spectrum as the supernova expands is investigated. It is shown that if about 25 percent of the cosmic ray nucleons are from such sources, the observed low energy antiprotons can be explained, provided the effect of solar modulation is not very large. The possibility of obtaining enhanced low energy spectrum by this process is also examined.

  8. Bulk NaI(Tl) scintillation low energy events selection with the ANAIS-0 module

    NASA Astrophysics Data System (ADS)

    Cuesta, C.; Amaré, J.; Cebrián, S.; García, E.; Ginestra, C.; Martínez, M.; Oliván, M. A.; Ortigoza, Y.; de Solórzano, A. Ortiz; Pobes, C.; Puimedón, J.; Sarsa, M. L.; Villar, J. A.; Villar, P.

    2014-11-01

    Dark matter particles scattering off target nuclei are expected to deposit very small energies in form of nuclear recoils (below 100 keV). Because of the low scintillation efficiency for nuclear recoils as compared to electron recoils, in most of the scintillating targets considered in the search for dark matter, the region below 10 keVee (electron equivalent energy) concentrates most of the expected dark matter signal. For this reason, very low energy threshold (at or below 2 keVee) and very low background are required to be competitive in the search for dark matter with such detection technique. This is the case of Annual modulation with NaI Scintillators (ANAIS), which is an experiment to be carried out at the Canfranc Underground Laboratory. A good knowledge of the detector response function for real scintillation events in the active volume, a good characterization of other anomalous or noise event populations contributing in that energy range, and the development of convenient filtering procedures for the latter are mandatory in order to achieve the required low background at such a low energy. In this work we present the characteristics of different types of events observed in large size NaI(Tl) detectors, and the event-type identification techniques developed. Such techniques allow distinguishing among events associated with bulk NaI scintillation, and events related to muon interactions in the detectors or shielding, photomultiplier origin events, and analysis event fakes. We describe the specific protocols developed to build bulk scintillation events spectra from the raw data and we apply them to data obtained with one of the ANAIS prototypes, ANAIS-0. Nuclear recoil type events were also explored using data from a neutron calibration; however pulse shape cuts were found not to be effective to discriminate them from electron recoil events. The effect of the filtering procedures developed in this nuclear recoils population has been analyzed in order to

  9. Potential for luminosity improvement for low-energy RHIC operation

    SciTech Connect

    Fedotov A. V.

    2012-05-20

    At the Brookhaven National Laboratory, a physics program, motivated by the search of the QCD phase transition critical point, requires operation of the Relativistic Heavy Ion Collider (RHIC) with heavy ions at very low beam energies corresponding to 2.5-20 GeV/n. Several physics runs were already successfully performed at these low energies. However, the luminosity is very low at lowest energies of interest (< 10 GeV/n) limited by the intra-beam scattering and space-charge, as well as by machine nonlinearities. At these low energies, electron cooling could be very effective in counteracting luminosity degradation due to the IBS, while it is less effective against other limitations. Overall potential luminosity improvement for low-energy RHIC operation from cooling is summarized for various energies, taking into account all these limitations as well as beam lifetime measured during the low-energy RHIC runs. We also explore a possibility of further luminosity improvement under the space-charge limitation.

  10. The low-energy ion range in DNA.

    PubMed

    Yu, L D; Kamwanna, T; Brown, I G

    2009-08-21

    In fundamental studies of low-energy ion irradiation effects on DNA, calculation of the low-energy ion range, an important basic physical parameter, is often necessary. However, up to now a unified model and approach for range calculation is still lacking, and reported data are quite divergent and thus unreliable. Here we describe an approach for calculation of the ion range, using a simplified mean-pseudoatom model of the DNA target. Based on ion stopping theory, for the case of low-energy (< or = a few keV) ion implantation into DNA, the stopping falls in the low reduced energy regime, which gives a cube-root energy dependence of the stopping (E(1/3)). Calculation formulas of the ion range in DNA are obtained and presented to unify the relevant calculations. The upper limits of the ion energy as a function of the atomic number of the bombarding ion species are proposed for the low-energy case to hold. Comparison of the results of this approach with the results of some widely used computer simulation codes and with results reported by other groups indicates that the approach described here provides convincing and dependable results. PMID:19652287

  11. Nuclear phenomena in low-energy nuclear reaction research.

    PubMed

    Krivit, Steven B

    2013-09-01

    This is a comment on Storms E (2010) Status of Cold Fusion, Naturwissenschaften 97:861-881. This comment provides the following remarks to other nuclear phenomena observed in low-energy nuclear reactions aside from helium-4 make significant contributions to the overall energy balance; and normal hydrogen, not just heavy hydrogen, produces excess heat. PMID:23949247

  12. MEIC Proton Beam Formation with a Low Energy Linac

    SciTech Connect

    Zhang, Yuhong

    2015-09-01

    The MEIC proton and ion beams are generated, accumulated, accelerated and cooled in a new green-field ion injector complex designed specifically to support its high luminosity goal. This injector consists of sources, a linac and a small booster ring. In this paper we explore feasibility of a short ion linac that injects low-energy protons and ions into the booster ring.

  13. Physics overview of the Fermilab Low Energy Antiproton Facility Workshop

    SciTech Connect

    Chanowitz, M.S.

    1986-05-01

    A physics overview is presented of the Fermilab workshop to consider a possible high flux, low energy antiproton facility that would use cooled antiprotons from the accumulator ring of the Tevatron collider. Two examples illustrate the power of each a facility to produce narrow states at high rates. Physics topics to which such a facility may be applied are reviewed.

  14. Procuring low-energy design and consulting services

    SciTech Connect

    1997-07-01

    This report presents information which aids in the design of low energy building elements. The proven strategies can dramatically reduce a building`s energy consumption for little or no added cost while improving it`s comfort, economy, and environmental performance.

  15. Isotopic fractionation in low-energy ion implantation

    NASA Astrophysics Data System (ADS)

    Ponganis, K. V.; Graf, T.; Marti, K.

    1997-08-01

    The evolutions of planetary atmospheres and other solar system reservoirs have been affected by a variety of fractionating mechanisms. It has been suggested that one of these mechanisms could be low-energy ion implantation. Bernatowicz and Hagee [1987] showed that Kr and Xe implanted at low energy onto tungsten are fractionated by approximately 1% per amu, favoring the heavy isotopes; we confirm these effects. We have extended these studies to Ar and Ne, using a modified Bayard-Alpert type implanter design of cylindrical symmetry with collector potentials of -40 to -100V, and observe systematically larger mass dependent isotopic fractionation for argon and neon, >=3% per amu and >=4% per amu, respectively. These fractionations scale approximately as Δm/m for all of the noble gases measured, consistent with the findings of Bernatowicz and coworkers. Experimental data at higher energies and predictions by TRIM (Transport of Ions in Matter) code simulations indicate that sticking probabilities may depend upon the mass ratios of projectile and target. Many natural environments for low-energy ion implantation existed in the early solar nebula, such as in dusty plasmas or in the interaction of the bipolar outflow with small grains or in the wind of the early active Sun with accreting planetesimals. Low-energy ions provide viable sources for gas loading onto nebular dust grains; the result is isotopic and elemental fractionation of the projectiles.

  16. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation

    SciTech Connect

    Han, B. X.; Welton, R. F.; Murray, S. N. Jr.; Pennisi, T. R.; Santana, M.; Stockli, M. P.; Kalvas, T.; Tarvainen, O.

    2012-02-15

    The H{sup -} injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with {approx}38 mA beam current in the linac at 60 Hz with a pulse length of up to {approx}1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  17. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation

    SciTech Connect

    Kalvas, T.; Welton, Robert F; Pennisi, Terry R

    2012-01-01

    The H{sup -} injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with {approx}38 mA beam current in the linac at 60 Hz with a pulse length of up to {approx}1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  18. Small area silicon diffused junction x-ray detectors

    SciTech Connect

    Walton, J.T.; Pehl, R.H.; Larsh, A.E.

    1981-10-01

    The low temperature performance of silicon diffused junction detectors in the measurement of low energy x-rays is reported. The detectors have an area of 0.04 cm/sup 2/ and a thickness of 100 ..mu..m. The spectral resolutions of these detectors were found to be in close agreement with expected values indicating that the defects introduced by the high temperature processing required in the device fabrication were not deleteriously affecting the detection of low energy x-rays. Device performance over a temperature range of 77 to 150/sup 0/K is given. These detectors were designed to detect low energy x-rays in the presence of minimum ionizing electrons. The successful application of silicon diffused junction technology to x-ray detector fabrication may facilitate the development of other novel silicon x-ray detector designs.

  19. In situ observation of reaction between metal and Si surface by low energy RBS/channeling

    NASA Astrophysics Data System (ADS)

    Hasegawa, Masataka; Kobayashi, Naoto

    1997-02-01

    We have developed a low energy Rutherford backscattering spectrometry (RBS)/ion channeling measurement system for the analysis of thin films and solid surfaces with the use of several tens keV hydrogen ions, and of a time-of-flight spectrometer which was originally developed by Mendenhall and Weller. The depth resolution of our system is better than that of conventional RBS system with MeV helium ions and silicon surface barrier detectors. This RBS/ion channeling system is small in size compared to the conventional RBS/ion channeling measurement system with the use of MeV He ions, because of the small ion accelerator for several tens keV ions. The analysis of crystalline thin films which utilizes ion channeling effect can be performed with this low energy RBS/ion channeling measurement system. The in situ observation of the thermal reaction between iron and silicon substrate with the use of this measurement system is demonstrated. The deposited Fe (3.3 ML) on Si(001) clean surface diffused into the substrate by 380 °C annealing, while on the hydrogen-terminated (dihydride) Si(001) the 480 °C annealing did not lead to the diffusion. Present results indicates that the hydrogen termination of Si(001) surface prevents the deposited Fe from diffusing into the substrate up to relatively high temperature compared to the clean surface.

  20. PREFACE: 7th International Symposium on Large TPCs for Low-Energy Rare Event Detection

    NASA Astrophysics Data System (ADS)

    Colas, P.; Giomataris, I.; Irastorza, I.; Patzak, Th

    2015-11-01

    The seventh "International Symposium on Large TPCs for Low-Energy Rare Event Detection", took place in Paris between the 15th and 17th of December 2014 at the Institute of Astroparticle Physics (APC) campus - Paris Diderot University. As usual the conference was organized during the week before Christmas, which seems to be convenient for most of the people and occurs every two years with almost 120 participants attending. Many people contributed to the success of the conference, but the organizers would particularly like to thank the management of APC for providing the nice Buffon auditorium and infrastructure. We also acknowledge the valuable support of DSM-Irfu and the University of Zaragoza. The scientific program consisted of plenary sessions including the following topics with theoretical and experimental lectures: • Low energy neutrino physics • Neutrinoless double beta decay process • Dark matter searches • Axion and especially solar axion searches • Space experiments and gamma-ray polarimetry • New detector R&D and future experiments

  1. A time-of-flight spectrometer for detection of low-energy hydrogen atoms

    NASA Astrophysics Data System (ADS)

    van Toledo, W.; de Bree, A. R.; van Buuren, R.; de Kluiver, H.; Donné, A. J. H.

    1990-01-01

    This article deals with an application of the technique of converting hydrogen atoms into negative ions on a low-work-function surface, which is similar to the method nowadays utilized in H- surface sources. This conversion technique is the basis for a time-of-flight spectrometer, for which a proof of principle has recently been established. The conversion takes place on a tungsten (110) crystal target that is covered with cesium. By mounting this target in the detector part of the spectrometer, this apparatus is made sensitive to hydrogen atoms that have energy in the range 10-1000 eV. This feature makes the spectrometer a very powerful and unique tool for detection of low-energy hydrogen atoms. It is, for instance, capable of detecting low-energy hydrogen atoms that are emitted from the edge of a tokamak plasma, and therefore it can yield information on the hydrogen recycling inside the tokamak and hence on the energy balance of the plasma. In the paper we discuss the principle of the detection method, along with a presentation of some time-of-flight spectra that have been obtained from a tokamak plasma.

  2. Low-energy neutral-current neutrino scattering on {sup 128,130}Te isotopes

    SciTech Connect

    Tsakstara, V.; Kosmas, T. S.

    2011-05-15

    Differential, total, and cumulative cross section calculations for neutral current neutrino scattering on {sup 128,130}Te isotopes are performed in the context of the quasiparticle random phase approximation by utilizing realistic two-nucleon forces. These isotopes are the main contents of detectors of ongoing experiments with multiple neutrino physics goals (COBRA and CUORE at Gran Sasso), including potential low-energy astrophysical neutrino (solar, supernova, geoneutrinos) detection. The incoming neutrino energy range adopted in our calculations ({epsilon}{sub {nu}{<=}1}00 MeV) covers the low-energy {beta}-beam neutrinos and the pion-muon stopped neutrino beams existing or planned to be conducted at future neutron spallation sources. The aim of these facilities is to measure neutrino-nucleus cross sections at low and intermediate neutrino energies with the hope of shedding light on open problems in neutrino-induced reactions on nuclei and neutrino astrophysics. Such probes motivate theoretical studies on weak responses of various nuclear systems; thus the evaluated cross sections may be useful in this direction.

  3. First observation of low-energy γ-ray enhancement in the rare-earth region

    DOE PAGESBeta

    Simon, Anna; Guttormsen, M.; Larsen, A. C.; Beausang, C. W.; Humby, P.; Burke, J. T.; Casperson, R. J.; Hughes, R. O.; Ross, T. J.; Allmond, James M.; et al

    2016-03-04

    Here, the γ-ray strength function and level density in the quasi-continuum of 151,153Sm have been measured using bismuth germanate shielded Ge clover detectors of the STARLiTeR system. The Compton shields allow an extraction of the γ strength down to unprecedentedly low γ energies of ≈ 500 keV. For the first time an enhanced low-energy γ-ray strength has been observed in the rare-earth region. In addition, for the first time both the upbend and the well-known scissors resonance have been observed simultaneously for the same nucleus. Hauser-Feshbach calculations show that this strength enhancement at low γ energies could have an impactmore » of 2 3 orders of magnitude on the (n, γ) reaction rates for r-process nucleosynthesis.« less

  4. Set-up and demonstration of a Low Energy Electron Magnetometer (LEEM)

    NASA Technical Reports Server (NTRS)

    Rayborn, G. H.

    1986-01-01

    Described are the design, construction and test results of a Low Energy Electron Magnetometer (LEEM). The electron source is a commercial electron gun capable of providing several microamperes of electron beam. These electrons, after acceleration through a selected potential difference of 100-300 volts, are sent through two 30 degree second-order focussing parallel plate electrostatic analyzers. The first analyzer acts as a monochromator located in the field-free space. It is capable of providing energy resolution of better than 10 to the -3 power. The second analyzer, located in the test field region, acts as the detector for electrons deflected by the test field. The entire magnetometer system is expected to have a resolution of 1 part in 1000 or better.

  5. Room-temperature mercuric iodide spectrometry for low-energy X-rays

    NASA Technical Reports Server (NTRS)

    Kusmiss, J. H.; Barton, J. B.; Huth, G. C.; Economou, T. E.; Turkevich, A. L.; Iwanczyk, J. S.; Dabrowski, A. J.

    1982-01-01

    A discussion of the limits of energy resolution in different energy ranges is given. The energy resolution of a spectrometer is analyzed in terms of the parameters characterizing the crystal, the detector, and the amplification electronics. A high-resolution room-temperature HgI2 spectrometry system was used to measure low-energy X-ray fluorescence spectra. For the MgK-alpha X-ray line the measured resolution was 245 eV (fwhm); the electronic noise linewidth of the system was 225 eV. Alpha-particles were used to excite X-ray fluorescence from low-Z elements separately or in combination. The shape of the photopeaks in the spectra is discussed.

  6. Development of bubble chambers with enhanced stability and sensitivity to low-energy nuclear recoils

    SciTech Connect

    Bolte, W.J.; Collar, Juan I.; Crisler, M.; Hall, J.; Holmgren, D.; Nakazawa, D.; Odom, B.; O'Sullivan, K.; Plunkett, R.; Ramberg, E.; Raskin, A.; Sonnenschein, A.; Vieira, J.D.; /Chicago U., EFI /KICP, Chicago /Fermilab

    2005-03-01

    The viability of using a Bubble Chamber for rare event searches and in particular for the detection of dark matter particle candidates is considered. Techniques leading to the deactivation of inhomogeneous nucleation centers and subsequent enhanced stability in such a detector are described. Results from prototype trials indicate that sensitivity to low-energy nuclear recoils like those expected from Weakly Interacting Massive Particles can be obtained in conditions of near total insensitivity to minimum ionizing backgrounds. An understanding of the response of superheated heavy refrigerants to these recoils is demonstrated within the context of existing theoretical models. We comment on the prospects for the detection of supersymmetric dark matter particles with a large CF{sub 3}I chamber.

  7. Improving the effectiveness of a low-energy Compton suppression system

    NASA Astrophysics Data System (ADS)

    Britton, R.; Burnett, J. L.; Davies, A. V.; Regan, P. H.

    2013-11-01

    A novel method for collecting and processing coincidence data from a Compton Suppressed Low Energy Photon Spectrometer (LEPS) is presented, greatly simplifying the current setup and extending the suppression abilities of the system. Offline analysis is used, eliminating the need to discard coincidence data when vetoing coincident events with fast-timing electronics. Additional coincident events are identified that are usually missed, and which represent interactions in the active NaI(Tl) shield prior to an interaction in the LEPS detector. By suppressing these events, the Compton Suppression factor was improved by 144% for the 661.66 keV decay line in a 137Cs source. The geometry used for this particular Compton suppression system is highly sensitive to these effects, however similar event profiles are expected in all coincidence systems.

  8. Anisotropic cross sections in low-energy electron-reflection spectroscopy on solids

    SciTech Connect

    Caron, L.G.; Robillard, S.; Vachon, G.; Gauthier, J. ); Michaud, M.; Sanche, L. )

    1991-01-15

    We discuss the experimental conditions for the detection of anisotropies in the elastic and inelastic cross sections of low-energy electrons (1--30 eV) backscattered from solid films. We use an {ital n}-flux matrix approach to study the electron transport in the bulk of the films. We find that anisotropic inelastic cross sections can sometimes be detected visually in the multiple-loss backscattered currents when there is but a single dominant loss mechanism. Better yet, anisotropy breaks the azimuthal symmetry of the backscattered current for non-normal incidence and can thus easily be detected by looking for a dependence of this (nonspecular) current on the angle between the incident and detection planes (planes including the direction normal to the film surface). The sensitivity is largest when the source and detector axis make a large angle with respect to the normal to the film.

  9. Low energy electron/recoil discrimination for directional Dark Matter detection

    SciTech Connect

    Billard, J.; Mayet, F.; Santos, D. E-mail: mayet@lpsc.in2p3.fr

    2012-07-01

    Directional detection is a promising Dark Matter search strategy. Even though it could accommodate to a sizeable background contamination, electron/recoil discrimination remains a key and challenging issue as for direction-insensitive detectors. The measurement of the 3D track may be used to discriminate electrons from nuclear recoils. While a high rejection power is expected above 20 keV ionization, a dedicated data analysis is needed at low energy. After identifying discriminant observables, a multivariate analysis, namely a Boosted Decision Tree, is proposed, enabling an efficient event tagging for Dark Matter search. We show that it allows us to optimize rejection while keeping a rather high efficiency which is compulsory for rare event search.With respect to a sequential analysis, the rejection is about ∼ 20 times higher with a multivariate analysis, for the same Dark Matter exclusion limit.

  10. First observation of low-energy γ -ray enhancement in the rare-earth region

    NASA Astrophysics Data System (ADS)

    Simon, A.; Guttormsen, M.; Larsen, A. C.; Beausang, C. W.; Humby, P.; Burke, J. T.; Casperson, R. J.; Hughes, R. O.; Ross, T. J.; Allmond, J. M.; Chyzh, R.; Dag, M.; Koglin, J.; McCleskey, E.; McCleskey, M.; Ota, S.; Saastamoinen, A.

    2016-03-01

    The γ -ray strength function and level density in the quasi-continuum of Sm,153151 have been measured using bismuth germanate shielded Ge clover detectors of the STARLiTeR system. The Compton shields allow an extraction of the γ strength down to unprecedentedly low γ energies of ≈500 keV. For the first time an enhanced low-energy γ -ray strength has been observed in the rare-earth region. In addition, for the first time both the upbend and the well-known scissors resonance have been observed simultaneously for the same nucleus. Hauser-Feshbach calculations show that this strength enhancement at low γ energies could have an impact of 2-3 orders of magnitude on the (n ,γ ) reaction rates for r -process nucleosynthesis.

  11. Low-energy neutron detector based upon lithium lanthanide borate scintillators

    DOEpatents

    Czirr, John B.

    1998-01-01

    An apparatus for detecting neutrons includes a cerium activated scintillation crystal containing .sup.10 B, with the scintillation crystal emitting light in response to .alpha. particles emitted from the .sup.10 B(n,.alpha.)Li* reaction. The apparatus also includes a gamma scintillator positioned adjacent the crystal and which generates light in response to gamma rays emitted from the decay of Li*. The apparatus further includes a first and a second light-to-electronic signal converter each positioned to respectively receive light from the crystal and the gamma scintillator, and each respectively outputting first and second electronic signals representative of .alpha. particles from the .sup.10 B(n,.alpha.)Li* reaction and gamma rays from the .sup.10 B(n,.alpha.)Li* reaction. The apparatus includes a coincidence circuit connected to receive the first and second signals and which generates a coincidence signal when the first and second signals coincide. The apparatus also includes a data analyzer for receiving an additional signal from at least one of the first and second converters, and for operating in response to the coincidence signal.

  12. Low energy gamma ray observations with the MPI-Compton telescope. [balloon-borne detectors

    NASA Technical Reports Server (NTRS)

    Graml, F.; Penningsfeld, F. P.; Schoenfelder, V.

    1978-01-01

    Although the evaluation of data from the first balloon-flight of a large area Compton telescope is incomplete, two preliminary results are discussed. From the measured background spectrum at float altitude, the sensitivity of the telescope for the detection of cosmic gamma ray lines is estimated. The energy spectra is determined for an enhanced gamma ray flux observed from the direction of the Seyfert galaxy NGC 4151. A schematic drawing of the telescope is presented and discussed.

  13. Low-energy proton increases associated with interplanetary shock waves.

    NASA Technical Reports Server (NTRS)

    Palmeira, R. A. R.; Allum, F. R.; Rao, U. R.

    1971-01-01

    Impulsive increases in the low energy proton flux observed by the Explorer 34 satellite, in very close time association with geomagnetic storm sudden commencements are described. It is shown that these events are of short duration (20-30 min) and occur only during the decay phase of a solar cosmic-ray flare event. The differential energy spectrum and the angular distribution of the direction of arrival of the particles are discussed. Two similar increases observed far away from the earth by the Pioneer 7 and 8 deep-space probes are also presented. These impulsive increases are compared with Energetic Storm Particle events and their similarities and differences are discussed. A model is suggested to explain these increases, based on the sweeping and trapping of low energy cosmic rays of solar origin by the advancing shock front responsible for the sudden commencement detected on the earth.

  14. Integrated control system for low-energy buildings

    SciTech Connect

    Lute, P.J.; van Paassen, D.H.C. )

    1990-01-01

    This paper presents a proposal for an integrated system for the control of lighting, ventilation, and indoor temperature of low-energy buildings. It also presents results of simulations with the proposed control system. The low energy consumption is achieved by using the outdoor climate as much as possible. The building has components, such as shading devices and ventilation windows., to regulate the influence of the outdoor climate on the indoor climate. These components have to be controlled to achieve an acceptable indoor climate throughout the year. Simulations have been done for two types of climate, moderate (Uccle, Belgium) and warm (Carpentras, France). The proposed integrated control system is compared with an on/off control system. The conclusion is that the integrated control system saves energy and provides a good indoor climate. In moderate climates, this can almost be achieved with only passive components. In warmer climates, overheating occurs during the summer because of the outdoor climate.

  15. Steering continuum electron dynamics by low-energy attosecond streaking

    NASA Astrophysics Data System (ADS)

    Geng, Ji-Wei; Xiong, Wei-Hao; Xiao, Xiang-Ru; Gong, Qihuang; Peng, Liang-You

    2016-08-01

    A semiclassical model is developed to understand the electronic dynamics in the low-energy attosecond streaking. Under a relatively strong infrared (IR) pulse, the low-energy part of photoelectrons initialized by a single attosecond pulse (SAP) can either rescatter with the ionic core and induce interferences structures in the momentum spectra of the ionized electrons or be recaptured into the Rydberg states. The Coulomb potential plays essential roles in both the electron rescattering and recapturing processes. We find that by changing the time delay between the SAP and the IR pulse, the photoelectrons yield or the population of the Rydberg states can be effectively controlled. The present study demonstrates a fascinating way to steer the electron motion in the continuum.

  16. Three dimensional calculation of flux of low energy atmospheric neutrinos

    NASA Technical Reports Server (NTRS)

    Lee, H.; Bludman, S. A.

    1985-01-01

    Results of three-dimensional Monte Carlo calculation of low energy flux of atmospheric neutrinos are presented and compared with earlier one-dimensional calculations 1,2 valid at higher neutrino energies. These low energy neutrinos are the atmospheric background in searching for neutrinos from astrophysical sources. Primary cosmic rays produce the neutrino flux peaking at near E sub=40 MeV and neutrino intensity peaking near E sub v=100 MeV. Because such neutrinos typically deviate by 20 approximately 30 from the primary cosmic ray direction, three-dimensional effects are important for the search of atmospheric neutrinos. Nevertheless, the background of these atmospheric neutrinos is negligible for the detection of solar and supernova neutrinos.

  17. Low energy overlineKN interaction in nuclear matter

    NASA Astrophysics Data System (ADS)

    Waas, T.; Kaiser, N.; Weise, W.

    1996-02-01

    We investigate the low-energy overlineKN interaction in nuclear matter including Pauli blocking, Fermi motion and binding effects. We use a coupled-channel approach based on the Chiral SU(3) Effective Lagrangian which describes all available low energy data of the coupled overlineKN, πΣ, πΛ system. Due to the dynamics of the Λ (1405) resonance we find a strong non-linear density dependence of the K -p scattering amplitude in nuclear matter. The real part of the K -p scattering length changes sign already at a small fraction of nuclear matter density, less than 0.2 po. This may explain the striking behaviour of the K - -nuclear optical potential found in the analysis of kaonic atom data.

  18. Surface modification using low energy ground state ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1990-01-01

    A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.

  19. HIGH POWER OPERATIONS AT THE LOW ENERGY DEMONSTRATION ACCELERATOR (LEDA)

    SciTech Connect

    M. DURAN; V. R. HARRIS

    2001-01-01

    Recently, the Low-Energy Demonstration Accelerator (LEDA) portion of the Accelerator Production of Tritium (APT) project reached its 100-mA, 8-hr continuous wave (CW) beam operation milestone. The LEDA accelerator is a prototype of the low-energy front-end of the linear accelerator (linac) that would have been used in an APT plant. LEDA consists of a 75-keV proton injector, 6.7-MeV, 350-MHz CW radio-frequency quadrupole (RFQ) with associated high-power and low-level RF systems, a short high-energy beam transport (HEBT) and high-power (670-kW CW) beam dump. Details of the LEDA design features will be discussed along with the operational health physics experiences that occurred during the LEDA commissioning phase.

  20. Developments in low energy electron beam machinery and processes

    NASA Astrophysics Data System (ADS)

    Nablo, S. V.; Chrusciel, J.; Cleghorn, D. A.; Rangwalla, I.

    2003-08-01

    The engineering and development of a new generation of low energy, high power electron beam equipment is presented. Operating voltages range from 80 to 125 kV at widths to 1.65 m. At 110 kV these systems deliver 1000 Mrad m min -1 at 110 kV. Equipment operating power levels and their impact on reducing equipment size and cost are reviewed. The advantages of electron curing at these reduced operating voltages are described. The principles of the electron beam fluidized bed process for the treatment of powders and particulates in high-speed pneumatic transport are discussed. Typical system performances for polymer dissociation and crosslinking, or for agroproduct disinfestation and disinfection are presented. A process for the sterilization of polymer food containers employing the injection of low energy electrons through the open mouth has been developed. Some of its sterilization capabilities for bottles up to 2 l capacity are described.

  1. Surface conversion techniques for low energy neutral atom imagers

    NASA Technical Reports Server (NTRS)

    Quinn, J. M.

    1995-01-01

    This investigation has focused on development of key technology elements for low energy neutral atom imaging. More specifically, we have investigated the conversion of low energy neutral atoms to negatively charged ions upon reflection from specially prepared surfaces. This 'surface conversion' technique appears to offer a unique capability of detecting, and thus imaging, neutral atoms at energies of 0.01 - 1 keV with high enough efficiencies to make practical its application to low energy neutral atom imaging in space. Such imaging offers the opportunity to obtain the first instantaneous global maps of macroscopic plasma features and their temporal variation. Through previous in situ plasma measurements, we have a statistical picture of large scale morphology and local measurements of dynamic processes. However, with in situ techniques it is impossible to characterize or understand many of the global plasma transport and energization processes. A series of global plasma images would greatly advance our understanding of these processes and would provide the context for interpreting previous and future in situ measurements. Fast neutral atoms, created from ions that are neutralized in collisions with exospheric neutrals, offer the means for remotely imaging plasma populations. Energy and mass analysis of these neutrals provides critical information about the source plasma distribution. The flux of neutral atoms available for imaging depends upon a convolution of the ambient plasma distribution with the charge exchange cross section for the background neutral population. Some of the highest signals are at relatively low energies (well below 1 keV). This energy range also includes some of the most important plasma populations to be imaged, for example the base of the cleft ion fountain.

  2. Exchange and relaxation effects in low-energy radiationless transitions

    NASA Technical Reports Server (NTRS)

    Chen, M. H.; Crasemann, B.; Aoyagi, M.; Mark, H.

    1978-01-01

    The effect on low-energy atomic inner-shell Coster-Kronig and super Coster-Kronig transitions that is produced by relaxation and by exchange between the continuum electron and bound electrons was examined and illustrated by specific calculations for transitions that deexcite the 3p vacancy state of Zn. Taking exchange and relaxation into account is found to reduce, but not to eliminate, the discrepancies between theoretical rates and measurements.

  3. Exotic low-energy separation in 1D quantum liquids

    SciTech Connect

    Carmelo, J.M.P.; Neto, A.H.C.; Campbell, D.K.

    1995-05-01

    We define the low-energy separation of the Hubbard chain in a magnetic field and chemical potential in terms of two {open_quotes}c{close_quotes} and {open_quotes}s{close_quotes} bosonic algebras. This generalizes the usual charge-spin separation, which is recovered in the limit of zero magnetization only. The corresponding pseudoparticle bosonization follows directly from the perturbative character of the pseudoparticle operator basis.

  4. Overview of Light Hydrogen-Based Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Shrestha, Prajakti J.

    This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading.

  5. Heavy Meson Production at a Low-Energy Photon Collider

    SciTech Connect

    Asztalos, S

    2004-04-15

    A low-energy {gamma}{gamma} collider has been discussed in the context of a testbed for a {gamma}{gamma} interaction region at the Next Linear Collider(NLC). We consider the production of heavy mesons at such a testbed using Compton-backscattered photons and demonstrate that their production rivals or exceeds those by BELLE, BABAR or LEP where they are produced indirectly via virtual {gamma}{gamma} luminosities.

  6. Low-energy structures in strong-field ionization

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Nam, Chang Hee; Kim, Kyung Taec

    2016-04-01

    We show that the Gabor transform provides a convenient tool allowing one to study the origin of the low-energy structures (LES) in the process of the strong-field ionization. The classical trajectories associated with the stationary points of the Gabor transform enable us to explicate the role of the forward scattering process in forming LES. Our approach offers a fully quantum mechanical description of LES, which can also be applied for other strong-field processes.

  7. Pin diode calibration - beam overlap monitoring for low energy cooling

    SciTech Connect

    Drees, A.; Montag, C.; Thieberger, P.

    2015-09-30

    We were trying to address the question whether or not the Pin Diodes, currently installed approximately 1 meter downstream of the RHIC primary collimators, are suitable to monitor a recombination signal from the future RHIC low energy cooling section. A maximized recombination signal, with the Au+78 ions being lost on the collimator, will indicate optimal Au-electron beam overlap as well as velocity matching of the electron beam in the cooling section.

  8. A study of low-energy type II supernovae

    NASA Astrophysics Data System (ADS)

    Lisakov, Sergey M.; Dessart, Luc; Hillier, D. John; Waldman, Roni; Livne, Eli

    2015-08-01

    All stars with an initial mass greater than 8Msun, but not massive enough to encounter the pair-production instability, eventually form a degenerate core and collapse to form a compact object, either a neutron star or a black hole.At the lower mass end, these massive stars die as red-supergiant stars and give rise to Type II supernovae (SNe). The diversity of observed properties of SNe II suggests a range of progenitor mass, radii, but also explosion energy.We have performed a large grid simulations designed to cover this range of progenitor and explosion properties. Using MESA STAR, we compute a set of massive star models (12-30Msun) from the main sequence until core collapse. We then generate explosions with V1D to produce ejecta with a range of explosion energies and yields. Finally, all ejecta are evolved with CMFGEN to generate multi-band light curves and spectra.In this poster, we focus our attention on the properties of low-energy explosions that give rise to low-luminosity Type II Plateau (II-P) SNe. In particular, we present a detailed study of SN 2008bk, but also include other notorious low-energy SNe II-P like 2005cs, emphasising their non-standard properties by comparing to models that match well events like SN 1999em. Such low-energy explosions, characterised by low ejecta expansion rates, are more suitable for reliable spectral line identifications.Based on our models, we discuss the distinct signatures of low-energy explosions in lower and higher mass models. One important goal is to identify whether there is a progenitor-mass bias leading to such events.

  9. Isospin breaking in low-energy pion-nucleon scattering

    SciTech Connect

    Gibbs, W.R.; Ai, L.; Kaufmann, W.B.

    1995-05-08

    We have analyzed low-energy pion-nucleon data for isospin invariance by comparing charge-exchange amplitudes derived from charge-exchange data with those predicted from recent {pi}{sup {plus_minus}}{ital p} elastic data through the application of isospin invariance. A discrepancy of the order of 7% is observed beyond the contributions of the {pi}{sup {plus_minus}}{ital p} Coulomb interaction and the hadronic mass differences.

  10. Low energy supersymmetry from the heterotic string landscape.

    PubMed

    Lebedev, Oleg; Nilles, Hans-Peter; Raby, Stuart; Ramos-Sánchez, Saúl; Ratz, Michael; Vaudrevange, Patrick K S; Wingerter, Akin

    2007-05-01

    We study possible correlations between properties of the observable and hidden sectors in heterotic string theory. Specifically, we analyze the case of the Z6-II orbifold compactification which produces a significant number of models with the spectrum of the supersymmetric standard model. We find that requiring realistic features does affect the hidden sector such that hidden sector gauge group factors SU(4) and SO(8) are favored. In the context of gaugino condensation, this implies low energy supersymmetry breaking. PMID:17501559

  11. Low-energy electron scattering by formic acid

    SciTech Connect

    Trevisan, C. S.; Orel, A. E.; Rescigno, T. N.

    2006-10-15

    We report the results of fixed-nuclei complex Kohn variational calculations of elastic electron scattering by formic acid, HCOOH. Momentum transfer and angular differential cross sections for incident electron energies ranging from 0.1 to 15 eV are presented and compared to available experimental data. The low-energy behavior of the cross section is analyzed and found to be consistent with the existence of a virtual state.

  12. Modern Theories of Low-Energy Astrophysical Reactions

    SciTech Connect

    Rocco Schiavilla

    2004-02-01

    We summarize recent ab initio studies of low-energy electroweak reactions of astrophysical interest, relevant for both big bang nucleosynthesis and solar neutrino production. The calculational methods include direct integration for np radiative and pp weak capture, correlated hyperspherical harmonics for reactions of A=3,4 nuclei, and variational Monte Carlo for A=6,7 nuclei. Realistic nucleon-nucleon and three-nucleon interactions and consistent current operators are used as input.

  13. A Low energy neutrino factory for large theta(13)

    SciTech Connect

    Geer, Steve; Mena, Olga; Pascoli, Silvia; /Durham U., IPPP

    2007-01-01

    If the value of {theta}{sub 13} is within the reach of the upcoming generation of long-baseline experiments, T2K and NOvA, they show that a low-energy neutrino factory, with peak energy in the few GeV range, would provide a sensitive tool to explore CP-violation and the neutrino mass hierarchy. They consider baselines with typical length 1000-1500 km. The unique performance of the low energy neutrino factory is due to the rich neutrino oscillation pattern at energies between 1 and 4 GeV at baselines {Omicron}(1000) km. They perform both a semi-analytical study of the sensitivities and a numerical analysis to explore how well this setup can measure {theta}{sub 13}, CP-violation, and determine the type of mass hierarchy and the {theta}{sub 23} quadrant. A low energy neutrino factory provides a powerful tool to resolve ambiguities and make precise parameter determinations, for both large and fairly small values of the mixing parameter {theta}{sub 13}.

  14. Low-energy trions in graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Cheng, H.-C.; Lue, N.-Y.; Chen, Y.-C.; Wu, G. Y.

    2014-06-01

    We investigate, within the envelope function approximation, the low-energy states of trions in graphene quantum dots (QDs). The presence of valley pseudospin in graphene as an electron degree of freedom apart from spin adds convolution to the interplay between exchange symmetry and the electron-electron interaction in the trion, leading to new states of trions as well as a low-energy trion spectrum different from those in semiconductors. Due to the involvement of valley pseudospin, it is found that the low-energy spectrum is nearly degenerate and consists of states all characterized by having an antisymmetric (pseudospin) ⊗ (spin) component in the wave function, with the spin (pseudospin) part being either singlet (triplet) or triplet (singlet), as opposed to the spectrum in a semiconductor whose ground state is known to be nondegenerate and always a spin singlet in the case of X- trions. We investigate trions in the various regimes determined by the competition between quantum confinement and electron-electron interaction, both analytically and numerically. The numerical work is performed within a variational method accounting for electron mass discontinuity across the QD edge. The result for electron-hole correlation in the trion is presented. Effects of varying quantum dot size and confinement potential strength on the trion binding energy are discussed. The "relativistic effect" on the trion due to the unique relativistic type electron energy dispersion in graphene is also examined.

  15. Low-Energy Monte Carlo and W-Values

    NASA Astrophysics Data System (ADS)

    Grosswendt, B.

    Electrons in the low-energy range of about 1 keV or less play an important role in many fields of radiation research for two reasons: firstly, they are created in large numbers during the passage of all kinds of ionizing radiation through matter, and secondly, they have a linear energy transfer comparable to that of low-energy protons and a-particles, and accordingly they are responsible for the greater part of radiation damage observable in any material. A detailed understanding of the action of low-energy electrons in matter therefore is required in many contexts. In the fields of dosimetry, for example, the determination of the absorbed dose in water or the air kerma is great practical importance, but in most experiments only the amount of ionization produced by secondary electrons within the sensitive volume of a dosimeter can be measured. The results of ionization measurements therefore must converted to quantities based on energy absorption or energy transfer, either by calibration or numerically using an appropriate conversion factor. The most frequently used conversion factor is the so-called W-value, which is the mean energy required to produce an ion pair upon complete slowing down of a charged particle. Its relation to the primary particle kinetic energy T, and to the mean n umber N i of ionizations produced (ionization yield), is given by

  16. Electron cooling for low-energy RHIC program

    SciTech Connect

    Fedotov, A.; Ben-Zvi, I.; Chang, X.; Kayran, D.; Litvinenko, V.N.; Pendzick, A.; Satogata, T.

    2009-08-31

    Electron cooling was proposed to increase luminosity of the RHIC collider for heavy ion beam energies below 10 GeV/nucleon. Providing collisions at such energies, termed RHIC 'low-energy' operation, will help to answer one of the key questions in the field of QCD about existence and location of critical point on the QCD phase diagram. The electron cooling system should deliver electron beam of required good quality over energies of 0.9-5 MeV. Several approaches to provide such cooling were considered. The baseline approach was chosen and design work started. Here we describe the main features of the cooling system and its expected performance. We have started design work on a low-energy RHIC electron cooler which will operate with kinetic electron energy range 0.86-2.8 (4.9) MeV. Several approaches to an electron cooling system in this energy range are being investigated. At present, our preferred scheme is to transfer the Fermilab Pelletron to BNL after Tevatron shutdown, and to use it for DC non-magnetized cooling in RHIC. Such electron cooling system can significantly increase RHIC luminosities at low-energy operation.

  17. Enhancement of surface processes with low energy ions

    SciTech Connect

    Chason, E.

    1995-05-01

    Continuing trends in device fabrication towards smaller feature sizes, lower thermal budgets and advanced device structures put greater emphasis on controlling the surface structure and reactivity during processing. Since the evolution of the semiconductor surface during processing is determined by the interaction of multiple surface processes, understanding how to control and modify these processes on the atomic level would enable us to exert greater control over the resulting morphology and composition. Low energy ions represent one method for bringing controlled amounts of energy to the surface to modify surface structure and kinetics. The kinetic energy deposited by the ions can break bonds and displace atoms, creating defect populations significantly in excess of the equilibrium concentration. Consequences of these non-equilibrium conditions include the enhancement of surface kinetic processes, increased surface reactivity and formation of metastable structures and compositions. These effects can be beneficial (ion enhanced mass transport can lead to surface smoothing) or they can be detrimental (residual defects can degrade electrical properties or lead to amorphization). The net results depend on a complex balance that depends on many parameters including ion mass, energy, flux and temperature. In the following section, we review progress both in our fundamental understanding of the production of low-energy ion-induced defects and in the use of low energy ions to enhance surface morphology, stimulate low temperature growth and obtain non-equilibrium structures and compositions.

  18. Colorado School of Mines low energy nuclear physics project

    SciTech Connect

    Cecil, F.E.

    1991-01-02

    A major accomplishment of this project in the past year is the completion of a fairly comprehensive paper describing the survey of radiative capture reactions of protons on light nuclei at low energies. In addition we have completed a preliminary set of measurements of (d,p)/(d,{alpha}) cross section ratios on the charge symmetric nuclei {sup 6}Li and {sup 10}B as a test of the Oppenheimer-Phillips effect. While the {sup 6}Li data remain inconclusive, the {sup 10}B data show solid evidence for the Oppenheimer-Phillips enhancement of the (d,p) reaction relative to the (d,{alpha}) reaction for deuteron bombarding energies below about 100 keV. We have continued our investigation of fusion reaction products from deuterium-metal systems at room temperatures with the startling observation of intense burst of energetic charged particles from deuterium gas loaded thin titaium foils subject to non-equilibrium thermal and electrical conditions. We have completed two projects involving the application of the low energy particle accelerator to material science problems; firstly a study of the transformation of crystalline to amorphous Fe-Zr systems by proton irradiation and secondly the effects of ion bombardment on the critical temperature of YBCO high-temperature superconductors. Finally we have made progress in several instrumentation projects which will be used in some of the up-coming measurements of nuclear cross sections at very low energies.

  19. Can inflation be connected to low energy particle physics?

    SciTech Connect

    Hertzberg, Mark P.

    2012-08-01

    It is an interesting question whether low energy degrees of freedom may be responsible for early universe inflation. To examine this, here we present a simple version of Higgs-inflation with minimal coupling to gravity and a quadratic inflationary potential. This quantitatively differs from the popular non-minimally coupled models, although it is qualitatively similar. In all such models, new heavy fields must enter in order for the theory to be well behaved in the UV. We show that in all cases the Higgs self coupling λ must be quite small in order to integrate out the heavy fields and use the resulting low energy effective field theory of the Higgs to describe inflation. For moderately sized λ, the UV completion is required and will, in general, determine the inflationary regime. We discuss the important issue of the arbitrariness of the Lagrangians used in all these setups by presenting a new class of such models, including a supergravity version. This suggests that the inflationary potential is disconnected from low energy physics.

  20. Cadmium zinc telluride (CZT) nanowire sensors for detection of low energy gamma-ray detection

    NASA Astrophysics Data System (ADS)

    Gandhi, T.; Raja, K. S.; Misra, M.

    2008-04-01

    Bulk single crystals of CdZnTe compound semiconductor is used for room temperature radiation detection in commercial radiation sensors. A large volume of detector material with low defect density is required for increasing the detection efficiency. Manufacture of such a bulky detector-quality material with low defect density is expensive. In this communication, synthesis of nanowires arrays of CdZnTe that can be used for detecting low energy radiation is reported for the first time. CdZnTe ternary compound semiconductor, referred as CZT, was electrodeposited in the form of nanowires onto a TiO II nanotubular template in non-aqueous electrolytes using a pulse-reverse process at 130 °C. Very high electrical resistivity of the CZT nanowires (in the order of 10 10 Ω-cm) was obtained. Such a high resistivity was attributed to the presence of deep defect states such as cadmium vacancies created by the anodic cycle of the pulse-reverse electrodeposition process. Stacks of series connected CZT nanowire arrays were impressed with different bias potentials. The leakage current was in the order of tens of PicoAmperes. When exposed to a radiation source (Am -241, 60 keV), the current flow in the circuit increased. The preliminary results indicate that the CZT nanowire arrays can be used as radiation detector materials at room temperature with a much low bias potential (0.7 - 2.3 V) as against 300 - 500 V applied to the bulk detector materials.

  1. Low-energy electron-induced reactions in condensed matter

    NASA Astrophysics Data System (ADS)

    Arumainayagam, Christopher R.; Lee, Hsiao-Lu; Nelson, Rachel B.; Haines, David R.; Gunawardane, Richard P.

    2010-01-01

    The goal of this review is to discuss post-irradiation analysis of low-energy (≤50 eV) electron-induced processes in nanoscale thin films. Because electron-induced surface reactions in monolayer adsorbates have been extensively reviewed, we will instead focus on low-energy electron-induced reactions in multilayer adsorbates. The latter studies, involving nanoscale thin films, serve to elucidate the pivotal role that the low-energy electron-induced reactions play in high-energy radiation-induced chemical reactions in condensed matter. Although electron-stimulated desorption (ESD) experiments conducted during irradiation have yielded vital information relevant to primary or initial electron-induced processes, we wish to demonstrate in this review that analyzing the products following low-energy electron irradiation can provide new insights into radiation chemistry. This review presents studies of electron-induced reactions in nanoscale films of molecular species such as oxygen, nitrogen trifluoride, water, alkanes, alcohols, aldehydes, ketones, carboxylic acids, nitriles, halocarbons, alkane and phenyl thiols, thiophenes, ferrocene, amino acids, nucleotides, and DNA using post-irradiation techniques such as temperature-programmed desorption (TPD), reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HREELS), gel electrophoresis, and microarray fluorescence. Post-irradiation temperature-programmed desorption, in particular, has been shown to be useful in identifying labile radiolysis products as demonstrated by the first identification of methoxymethanol as a reaction product of methanol radiolysis. Results of post-irradiation studies have been used not only to identify radiolysis products, but also to determine the dynamics of electron-induced reactions. For example, studies of the radiolysis yield as a function of incident electron energy have shown that dissociative

  2. Developing effective rockfall protection barriers for low energy impacts

    NASA Astrophysics Data System (ADS)

    Mentani, Alessio; Giacomini, Anna; Buzzi, Olivier; Govoni, Laura; Gottardi, Guido; Fityus, Stephen

    2016-04-01

    Recently, important progresses have been made towards the development of high capacity rockfall barriers (100 kJ - 8000 kJ). The interest of researchers and practitioners is now turning to the development of fences of minor capacity, whose use becomes essential in areas where rockfall events generally have low intensity and the use of high capacity barriers would be accompanied by excessive costs and high environmental impact. Low energy barriers can also provide a cost-effective solution even in areas where high energies events are expected. Results of full-scale tests are vital to any investigation on the behaviour of these structures. An experimental set-up has been developed at The University of Newcastle (AUS), to investigate the response of low energy rockfall barrier prototypes to low energy impacts. The Australian territory, and in particular New South Wales, is in fact characterised by rockfall events of low-to-medium intensity (50 kJ - 500 kJ) and the need of protection structures working within such energy range, is particularly felt [1]. The experiments involved the impact of a test block onto three spans, low energy barrier prototypes, made of steel structural posts, fully fixed at the base, side cables and a steel meshwork constituted by a double twist hexagonal wire net [2]. Test data enabled the development, calibration and assessment of FE models [3], on which non-linear and dynamic analyses have been performed addressing the effect of the block size. Results have shown that the response of the structure is strongly governed by the net. Data from tests conducted on the sole net and on the entire barrier showed in fact a similar trend, different to what typically observed for high capacity barriers, whose behaviour is also led by the presence of uphill cables and brakes. In particular, the numerical analyses have demonstrated a dependence of the net performance on the block size. In particular, a loss of capacity in the order of 50% occurred as the

  3. Low energy electrons in the inner Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Ganushkina, Natalia; Sillanpaa, Ilkka; Dugyagin, Stepan; Pitchford, David; Rodriguez, Juan; Runov, Andrei

    2016-04-01

    The fluxes of electrons with energies < 100 keV are not usually analyzed and modeled in details when studying the electron radiation belts. These fluxes constitute the low energy part of the seed population, which is critically important for radiation belt dynamics. Moreover, energetic electrons with energies less than about 100 keV are responsible for hazardous space-weather phenomena such as surface charging. The electron flux at these energies varies highly with geomagnetic activity and even during quiet-time periods. Significant variations in the low-energy electrons can be seen during isolated substorms, not related to any storm periods. Moreover, electron flux variations depend on the electron energy. Statistical analysis of AMC 12 CEASE II ESA instrument data (5-50 keV) and GOES MAGED data (40, 75, 150 keV) have revealed that electron fluxes increase by the same order of magnitude during isolated substorms with 200 nT of AE index and storm-time substorms with 1200 nT of AE index. If substorms are represented as electromagnetic pulses which transport and accelerate electrons additionally, how are their amplitudes determined, if not related directly to a substorm's strength? Another factor of crucial importance is the specification of boundary conditions in the electron plasma sheet. We developed a new model for electron number density and temperature in the plasma sheet as dependent on solar wind and IMF conditions based on THEMIS data analysis. We present observational and modeling results on low energy electrons in the inner magnetosphere with newly-developed, time-dependent boundary conditions with a special focus on the role of substorms for electron transport and acceleration.

  4. Magnetospheric imaging with low-energy neutral atoms.

    PubMed Central

    McComas, D J; Barraclough, B L; Elphic, R C; Funsten, H O; Thomsen, M F

    1991-01-01

    Global imaging of the magnetospheric charged particle population can be achieved by remote measurement of the neutral atoms produced when magnetospheric ions undergo charge exchange with cold exospheric neutral atoms. Previously suggested energetic neutral atom imagers were only able to measure neutral atoms with energies typically greater than several tens of keV. A laboratory prototype has been built and tested for a different type of space plasma neutral imaging instrument, which allows neutral atoms to be imaged down to <1 keV. Such low-energy measurements provide greater sensitivity for imaging the terrestrial magnetosphere and allow the bulk of the magnetospheric ion distribution, typically centered below 10 keV, to be observed rather than just the high-energy tail of the distribution. The low-energy neutral atom measurements are made possible by utilizing charge state modifications that occur when an initially neutral atom passes through an ultrathin carbon foil. Oxygen, for example, is highly electronegative, and for energies of approximately 10-30 keV, the O- yield is approximately 30%, essentially independent of the charge state of the incident oxygen atom. These ions are energy per charge analyzed, and the UV background is rejected by using an electrostatic analyzer. Imaging of other ion species, such as hydrogen, could also be accomplished by using ultrathin foil-induced charge state modifications. The technique described in this paper provides a method for imaging charge exchange neutrals from the terrestrial magnetosphere and would also have applications for similar imaging in other planetary or cometary environs. The Inner Magnetosphere Imaging Mission, which the National Aeronautics and Space Administration is presently considering, would provide a nearly ideal platform for low-energy neutral atom imaging, and such measurements would substantially enhance the scientific yield of this mission. PMID:11607229

  5. Investigation of the low energy kaons hadronic interactions in light nuclei by AMADEUS

    NASA Astrophysics Data System (ADS)

    Piscicchia, K.; Bazzi, M.; Berucci, C.; Bosnar, D.; Bragadireanu, A. M.; Cargnelli, M.; Clozza, A.; D'Uffizi, A.; Fabietti, L.; Fiorini, C.; Ghio, F.; Guaraldo, C.; Iliescu, M.; Ishiwatari, T.; Levi Sandri, P.; Marton, J.; Pietreanu, D.; Poli Lener, M.; Quaglia, R.; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D. L.; Sirghi, F.; Tatsuno, H.; Tucaković, I.; Vazquez Doce, O.; Widmann, E.; Zmeskal, J.

    2014-11-01

    The AMADEUS experiment has the aim to perform studies of the low energy hadronic interactions of negatively charged kaons with nucleons and nuclei, which are fundamental to solve longstanding open questions in the non-perturbative QCD in the strangeness sector. The DAΦNE collider provides a unique source of monochromatic low-momentum kaons, whose nuclear interaction with the materials of the KLOE detector (used as an active target) provide us excellent acceptance and resolution data for K- capture on H, 4He, 9Be and 12C, both at-rest and in-flight. AMADEUS step 0 consisted in the analysis of the 2004-2005 KLOE data. A second step consisted in the implementation in the central region of the KLOE detector of a pure graphite target, providing a high statistic sample of K- 12C nuclear captures at rest. For the future, new setups for various dedicated targets are under preparation. The aim of such investigations is to face the major open questions in hadron nuclear physics in the strangeness sector, such as the nature of the Λ(1405) state and the resonant versus non-resonant yield in nuclear K- capture, the possible existence of kaonic nuclear clusters, strongly related to a quantitative understanding of single versus multi-nucleon K- absorption.

  6. Bubble Chamber : A novel technique for measuring thermonuclear rates at low energies

    NASA Astrophysics Data System (ADS)

    Talwar, R.; Benesh, J.; Digiovine, B.; Grames, J.; Holt, R. J.; Kharashvili, G.; Meekins, D.; Moser, D.; Poelkar, M.; Rehm, K. E.; Robinson, A.; Sonnenschein, A.; Stutzman, M.; Suleiman, R.; Tennant, C.; Ugalde, C.

    2016-03-01

    Adopting ideas from dark matter search experiments, we have found that a superheated liquid in a bubble detector is sensitive to recoils produced by γ-ray beams impinging on the nuclei in the liquid. Such a target-detector system has a density factor of four orders of magnitude higher than conventional gas targets and is practically insensitive to the γ-ray beam itself. Also, since photodisintegration reactions have approximately two orders of magnitude higher cross-sections than direct particle capture reactions, such a technique can pave the way towards measuring these reactions within the stellar Gamow window. In an effort to study the 16O(γ , α)12C system using the bubble chamber technique, the first test of the superheated N2O liquid with a low-energy bremsstrahlung beam at JLab has been completed. This test has been performed to understand the background contributions from 17O and 18O nuclei in N2O. The experimental technique, results and future plans will be presented. This work has been supported by US DOE (DE-AC02-06CH11357) and Jefferson Science Associations, LLC (DE-AC05-06OR23177).

  7. Realizing Low-Energy Classification Systems by Implementing Matrix Multiplication Directly Within an ADC.

    PubMed

    Wang, Zhuo; Zhang, Jintao; Verma, Naveen

    2015-12-01

    In wearable and implantable medical-sensor applications, low-energy classification systems are of importance for deriving high-quality inferences locally within the device. Given that sensor instrumentation is typically followed by A-D conversion, this paper presents a system implementation wherein the majority of the computations required for classification are implemented within the ADC. To achieve this, first an algorithmic formulation is presented that combines linear feature extraction and classification into a single matrix transformation. Second, a matrix-multiplying ADC (MMADC) is presented that enables multiplication between an analog input sample and a digital multiplier, with negligible additional energy beyond that required for A-D conversion. Two systems mapped to the MMADC are demonstrated: (1) an ECG-based cardiac arrhythmia detector; and (2) an image-pixel-based facial gender detector. The RMS error over all multiplication performed, normalized to the RMS of ideal multiplication results is 0.018. Further, compared to idealized versions of conventional systems, the energy savings obtained are estimated to be 13× and 29×, respectively, while achieving similar level of performance. PMID:26849205

  8. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  9. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  10. Low energy sputtering of cobalt by cesium ions

    NASA Technical Reports Server (NTRS)

    Handoo, A.; Ray, Pradosh K.

    1989-01-01

    An experimental facility to investigate low energy (less than 500 eV) sputtering of metal surfaces with ions produced by an ion gun is described. Results are reported on the sputtering yield of cobalt by cesium ions in the 100 to 500 eV energy range at a pressure of 1 times 10(exp -6) Torr. The target was electroplated on a copper substrate. The sputtered atoms were collected on a cobalt foil surrounding the target. Co-57 was used as a tracer to determine the sputtering yield.

  11. Development of a spin polarized low energy electron diffraction system.

    PubMed

    Pradeep, A V; Roy, Arnab; Kumar, P S Anil; Kirschner, J

    2016-02-01

    We have designed and constructed a spin polarized low energy electron diffraction system working in the reflected electron pulse counting mode. This system is capable of measuring asymmetries due to spin-orbit and exchange interactions. Photoemission from a strained GaAs/GaAsP super lattice is used as the source of spin polarized electrons. Spin-orbit asymmetry is evaluated for Ir(100) single crystal at various energies. Subsequently, exchange asymmetry has been evaluated on 40 monolayer Fe deposited on Ir(100). This instrument proves to be useful in understanding structure and magnetism at surfaces. PMID:26931865

  12. Low-energy expansion of meson form factors

    NASA Astrophysics Data System (ADS)

    Gasser, J.; Leutwyler, H.

    We calculate the corrections to various low-energy theorems concerning the behaviour of the pseudoscalar meson form factors near t=0. In particular we discuss (i) the Ademollo-Gatto theorem, (ii) Sirlin's relation between the Kl3 form factor ƒ +Kπ (t) and the electromagnetic form factors, (iii) the Callan-Treiman relation, and (iv) the Dashen-Weinstein relation, which connects the slope λ0 of ƒ 0Kπ (t) with the ratio FK/ Fπ. Furthermore, we point out a remarkable isospin breaking effect which is clearly visible in the experimental rates of the decays K +→ π0e +ν, K 0→ π-e +ν.

  13. Low energy argon ion irradiation surface effects on triglycine sulfate

    NASA Astrophysics Data System (ADS)

    Aragó, Carmen; Plaza, José L.; Marqués, Manuel I.; Gonzalo, Julio A.

    2013-09-01

    An experimental study of the effects of low energy (1-2 keV) argon ion (Ar+) irradiation on Triglycine Sulfate (TGS) has been performed. Ferroelectric parameters, such as the Curie temperature TC determined from the dielectric constant peaks ɛ(T), or the remnant polarization Pr, and coercive field Ec, obtained from the hysteresis loops, show interesting differences between samples irradiated in ferroelectric and paraelectric phases, respectively. The radiation damage seems to be superficial, as observed by AFM microscope, and the surface alteration in both phases becomes eventually notorious when the radiation dosage increases.

  14. Electromagnetic production of vector mesons at low energies

    SciTech Connect

    Oh, Y.; Titov, A. I.; Lee, T.-S. H.

    2000-05-17

    The authors have investigated exclusive photoproduction of light vector mesons ({omega}, {rho} and {phi}) on the nucleon at low energies. In order to explore the questions concerning the so-called missing nucleon resonances, they first establish the predictions from a model based on the Pomeron and meson exchange mechanisms. They have also explored the contributions due to the mechanisms involving s- and u-channel intermediate nucleon state. Some discrepancies found at the energies near threshold and large scattering angles suggest a possibility of using this reaction to identify the nucleon resonances.

  15. Internal Conversion Coefficients for Low-Energy Nuclear Transitions

    NASA Astrophysics Data System (ADS)

    Band, I. M.; Trzhaskovskaya, M. B.

    1993-09-01

    Presented here are calculated internal conversion coefficients (ICCs) of gamma rays for 35 observed low-energy nuclear transitions having Eγ ≲ 3 keV. Additionally, the ICCs for 24 high-multipole-order transitions which have been measured extensively are also given. The ICC calculations have been performed using Dirac-Fock electron wave functions, the exchange terms of the Dirac-Fock equations being included wthout any approximations both for the interaction between bound electrons and the interaction between bound and free electrons. Our previous studies have shown that the Dirac-Fock method allows ICC values to be obtained in best agreement with experimental data.

  16. Quantum effects in low-energy photofission of heavy nuclei

    SciTech Connect

    Tsipenyuk, Y.M.; Ostapenko, Y.B.; Smirenkin, G.N.; Soldatov, A.S.

    1984-09-01

    The article is devoted to quantum effects in highly deformed nuclei and the related features of the fission mechanism in the low-energy photofission of heavy nuclei. The following questions are considered: the spectrum of transition states (fission channels), the symmetry of the nuclear configuration in the deformation process, the features of the passage through the barrier due to the existence in the second well of quasistationary states of fissile and nonfissile modes, the isomeric-shelf phenomenon in deep sub-barrier fission, and the relation between the fragment mass distribution and the structure of the fission barrier.

  17. Experimental limit on low energy antiprotons in the cosmic radiation

    NASA Technical Reports Server (NTRS)

    Streitmatter, R. E.; Stochaj, S. J.; Ormes, J. F.; Golden, R. L.; Stephens, S. A.

    1989-01-01

    Results are reported from the Low Energy Antiproton Experiment (LEAP), a balloon-borne instrument which was flown in August, 1987. No evidence of antiproton fluxes is found in the kinetic energy range of 120 MeV to 360 MeV, at the top of the atmosphere. The 90-percent is found confidence upper limit on the antiproton/proton ratio in this energy range is 3.5 x 10 to the -5th. In particular, this new experiment places an upper limit on the flux almost an order of magnitude below the reported flux of Buffington et al. (1981).

  18. RHIC RF Harmonic Numbers for Low Energy Operations

    SciTech Connect

    Satogata,T.

    2008-05-01

    There have been several test runs of RHIC operations to explore the feasibility of luminosity production at low energies. There is considerable international interest in the possible existence of a QCD phase diagram critical point in the RHIC gold-gold collision energy range of {radical}s{sub NN} = 5-50 GeV[l, 2, 3]. This paper reviews the RF harmonic number constraints for RHIC gold-gold collisions in this energy range, and concludes that optimal simultaneous collisions at both experiments are only feasible when the harmonic number is divisible by 9.

  19. Threshold LET for SEU induced by low energy ions

    SciTech Connect

    McNulty, P.J.; Roche, P.; Palau, J.M.; Gasiot, J.

    1999-12-01

    Simulations to determine the threshold LET as a function of the length of the ion track are consistent with there being two regions of charge collection. In the top layer which contains the depletion region all the charge generated is collected in time to upset the device. In the next layer, 10% to 20% of the charge generated is collected and contributes to upsetting the device. This second layer of partial charge collection may significantly impact the accuracy of SEU predictions involving low-energy neutrons and protons. A simple method of including this contribution in calculations is proposed.

  20. On the anisotropies of interplanetary low-energy proton intensities

    NASA Technical Reports Server (NTRS)

    Pesses, M. E.; Sarris, E. T.

    1975-01-01

    Explorer 35 proton anisotropic flux data (proton energies between 0.3 and 6.3 MeV) and simultaneous magnetic field measurements were used to supply more information on the propagation characteristics of low-energy protons in the interplanetary medium. During the rising portions of the proton events, large field-aligned anisotropies were observed. During the decaying part of the proton events, either radial anisotropy or near-isotropy was noticed. In addition, certain observations made during the decaying part of the proton events revealed anisotropies deviating significantly from the radial direction.

  1. Targeting Low-Energy Transfers to Low Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.; Anderson, Rodney L.

    2011-01-01

    A targeting scheme is presented to build trajectories from a specified Earth parking orbit to a specified low lunar orbit via a low-energy transfer and up to two maneuvers. The total transfer delta V (velocity) is characterized as a function of the Earth parking orbit inclination and the departure date for transfers to each given low lunar orbit. The transfer delta V (velocity) cost is characterized for transfers constructed to low lunar polar orbits with any longitude of ascending node and for transfers that arrive at the Moon at any given time during a month.

  2. Resonance formation in low energy electron scattering from uracil

    NASA Astrophysics Data System (ADS)

    Mašín, Zdeněk; Gorfinkiel, Jimena D.

    2014-05-01

    We present detailed ab initio results for resonance formation in low energy electron scattering from uracil obtained with the R-matrix method. We identify a larger number of resonances than any previous theoretical study. Most of these resonances have core-excited shape character and appear to be associated to the ring structure of the molecule. Their link to DEA spectra and to the resonances present in electron scattering from pyrimidine are discussed. Contribution to the Topical Issue "Electron and Positron Induced Processes", edited by Michael Brunger, Radu Campeanu, Masamitsu Hoshino, Oddur Ingólfsson, Paulo Limão-Vieira, Nigel Mason, Yasuyuki Nagashima and Hajime Tanuma.

  3. Low energy beam transport in the NSLS UV-FEL

    SciTech Connect

    Zhang, X.; Gallardo, J.C.

    1993-06-01

    A design of the injection low energy transport line for the proposed NSLS UV-FEL is presented. The main concern is to control the beam transverse emittance dilution due to space charge, energy spread and non-linear forces introduced by magnetic elements. The design considerations to optimize the transport line are discussed including the deleterious effects of space charge and energy spread as modeled by the particle code PARMELA. The results from PARMELA are analyzed, and the concept of slice emittance is used to examine the causes of emittance growth.

  4. Low energy beam transport in the NSLS UV-FEL

    SciTech Connect

    Zhang, X.; Gallardo, J.C.

    1993-01-01

    A design of the injection low energy transport line for the proposed NSLS UV-FEL is presented. The main concern is to control the beam transverse emittance dilution due to space charge, energy spread and non-linear forces introduced by magnetic elements. The design considerations to optimize the transport line are discussed including the deleterious effects of space charge and energy spread as modeled by the particle code PARMELA. The results from PARMELA are analyzed, and the concept of slice emittance is used to examine the causes of emittance growth.

  5. Study on electron beam in a low energy plasma focus

    SciTech Connect

    Khan, Muhammad Zubair; Ling, Yap Seong; San, Wong Chiow

    2014-03-05

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device.

  6. Modelling low-energy electron-molecule capture processes.

    PubMed

    Dashevskaya, E I; Litvin, I; Nikitin, E E; Troe, J

    2008-03-01

    Cross sections and rate coefficients for capture of low-energy electrons with polar and polarizable target molecules are calculated in the framework of Fabrikant and Hotop's extended version of the Vogt-Wannier model and an extension of this approach is given in the present article. Analytical approximations are derived in order to facilitate the application to experiments. A comparison with a selection of experimental electron attachment rate coefficients provides insight into the competition between anion formation through electron capture and scattering processes which do not follow this pathway. PMID:18292861

  7. Low Energy Continuum and Lattice Effective Field Theories

    NASA Astrophysics Data System (ADS)

    Elhatisari, Serdar

    In this thesis we investigate several constraints and their impacts on the short-range potentials in the low-energy limits of quantum mechanics.We also present lattice Monte Carlo calculations using the adiabatic projection method. In the first part we consider the constraints of causality and unitarity for the low-energy interactions of particles. We generalize Wigner's causality bound to the case of non-vanishing partial-wave mixing. Specifically we analyze the system of the low-energy interactions between protons and neutrons. We derive a general theorem that non-vanishing partial-wave mixing cannot be reproduced with zero-range interactions without violating causality or unitarity. We also analyze low-energy scattering for systems with arbitrary short-range interactions plus an attractive 1/ralpha tail for alpha ≥ 2. In particular, we focus on the case of alpha = 6 and we derive the constraints of causality and unitarity also for these systems and find that the van derWaals length scale dominates over parameters characterizing the short-distance physics of the interaction. This separation of scales suggests a separate universality class for physics characterizing interactions with an attractive 1{r6 tail. We argue that a similar universality class exists for any attractive potential 1/ralpha for alpha ≥ 2. In the second part of the thesis we present lattice Monte Carlo calculations of fermion-dimer scattering in the limit of zero-range interactions using the adiabatic projection method. The adiabatic projection method uses a set of initial cluster states and Euclidean time projection to give a systematically improvable description of the low-lying scattering cluster states in a finite volume. We use Luscher's finite-volume relations to determine the s-wave, p-wave, and d-wave phase shifts. For comparison, we also compute exact lattice results using Lanczos iteration and continuum results using the Skorniakov-Ter-Martirosian equation. For our Monte Carlo

  8. Fast self-attenuation determination of low energy gamma lines.

    PubMed

    Haddad, Kh

    2016-09-01

    Linear correlation between self-attenuation factor of 46.5keV ((210)Pb) and the 1764keV, 46.5 counts ratio has been developed in this work using triple superphosphate fertilizer samples. Similar correlation has been also developed for 63.3keV ((238)U). This correlation offers simple, fast, and accurate technique for self-attenuation determination of low energy gamma lines. Utilization of 46.5keV in the ratio has remarkably improved the technique sensitivity in comparison with other work, which used similar concept. The obtained results were used to assess the validity of transmission technique. PMID:27337648

  9. Studies in Low Energy Nuclear Science, Progress Report

    SciTech Connect

    Carl R. Brune; Steven M. Grimes; Thomas N. Massey

    2004-03-01

    OAK-B135 Research in the area of low-energy nuclear science is described. We report on studies of the Z dependence of nuclear level densities, the development of a new Hauser-Feshbach computer code, and plans to measure level densities in nuclei off the line of stability. We also discuss the development of our R-matrix fitting capabilities, including new codes and the application to the C-14 system. Plans for future measurements of the Be-9(alpha,n) and B-11(alpha,n) reactions are discussed.

  10. Straight low energy beam transport for intense uranium beams

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Groening, L.; Vormann, H.; Mickat, S.; Hollinger, R.; Adonin, A.; Orzhekhovskaya, A.; Maier, M.; Al-Omari, H.; Barth, W.; Kester, O. K.; Yaramyshev, S.

    2015-07-01

    A new high current uranium ion source and dedicated Low Energy Beam Transport (LEBT) will be built at the GSI High Current Injector (HSI). This LEBT will be integrated into the existing complex which already comprises two branches. The paper presents the design and dynamics simulation using the TRACE-3D and TRACK code. The simulation results illustrate that this straight LEBT can transport uranium beams over a wide range of space-charge compensation, and can provide 15.4 (14.2) mA U4+ inside of the effective acceptance of the subsequent RFQ assuming the space-charge is compensated to 100% (95%).

  11. Bosonization of the low energy excitations of Fermi liquids

    SciTech Connect

    Castro Neto, A.H.; Fradkin, E. )

    1994-03-07

    We bosonize the low energy excitations of Fermi liquids in any number of dimensions in the limit of long wavelengths. The bosons are a coherent superposition of electron-hole pairs and are related with the displacements of the Fermi surface in some arbitrary direction. A coherent-state path integral for the bosonized theory is derived and it is shown to represent histories of the shape of the Fermi surface. The Landau theory of Fermi liquids can be obtained from the formalism in the absence of nesting of the Fermi surface and singular interactions. We show that the Landau equation for sound waves is exact in the semiclassical approximation for the bosons.

  12. Development of a spin polarized low energy electron diffraction system

    NASA Astrophysics Data System (ADS)

    Pradeep, A. V.; Roy, Arnab; Kumar, P. S. Anil; Kirschner, J.

    2016-02-01

    We have designed and constructed a spin polarized low energy electron diffraction system working in the reflected electron pulse counting mode. This system is capable of measuring asymmetries due to spin-orbit and exchange interactions. Photoemission from a strained GaAs/GaAsP super lattice is used as the source of spin polarized electrons. Spin-orbit asymmetry is evaluated for Ir(100) single crystal at various energies. Subsequently, exchange asymmetry has been evaluated on 40 monolayer Fe deposited on Ir(100). This instrument proves to be useful in understanding structure and magnetism at surfaces.

  13. Low-energy scattering of electrons and positrons in liquids

    NASA Technical Reports Server (NTRS)

    Schrader, D. M.

    1990-01-01

    The scattering of low energy electrons and positrons is described for the liquid phase and compared and contrasted with that for the gas phase. Similarities as well as differences are noted. The loci of scattering sites, called spurs in the liquid phase, are considered in detail. In particular, their temporal and spatial evolution is considered from the point of view of scattering. Two emphases are made: one upon the stochastic calculation of the distribution of distances required for slowing down to thermal velocities, and the other upon the calculation of cross sections for energy loss by means of quantum mechanics.

  14. Spintronic switches for ultra low energy global interconnects

    SciTech Connect

    Sharad, Mrigank Roy, Kaushik

    2014-05-07

    We present ultra-low energy interconnect design using nano-scale spin-torque (ST) switches for global data-links. Emerging spin-torque phenomena can lead to ultra-low-voltage, high-speed current-mode magnetic-switches. ST-switches can simultaneously provide large trans-impedance gain by employing magnetic tunnel junctions, to convert current-mode signals into large-swing voltage levels. Such device-characteristics can be used in the design of energy-efficient current-mode global interconnects.

  15. Low-energy negative muon interaction with matter

    NASA Astrophysics Data System (ADS)

    Danev, Petar; Adamczak, Andrzej; Bakalov, Dimitar; Mocchiutti, Emiliano; Stoilov, Mihail; Vacchi, Andrea

    2016-03-01

    Using simulated data, obtained with the FLUKA code, we derive empirical regularities about the propagation and stopping of low-energy negative muons in hydrogen and selected solid materials. The results are intended to help the preliminary stages of the set-up design for experimental studies of muon capture and muonic atom spectroscopy. Provided are approximate expressions for the parameters of the the momentum, spatial and angular distribution of the propagating muons. In comparison with the available data on the stopping power and range of muons (with which they agree in the considered energy range) these results have the advantage to also describe the statistical spread of the muon characteristics of interest.

  16. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, J.R.; Reich, M.; Ludewig, H.; Todosow, M.

    1999-02-09

    A particle accelerator generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer and a neutron filter are also used for preferentially degrading the secondary particles into a lower energy range if desired. 18 figs.

  17. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, James R.; Reich, Morris; Ludewig, Hans; Todosow, Michael

    1999-02-09

    A particle accelerator (12) generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target (14) is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target (14) produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer (44) and a neutron filter (42) are also used for preferentially degrading the secondary particles into a lower energy range if desired.

  18. Low-Energy Hot Plasma and Particles in Saturn's Magnetosphere.

    PubMed

    Krimigis, S M; Armstrong, T P; Axford, W I; Bostrom, C O; Gloeckler, G; Keath, E P; Lanzerotti, L J; Carbary, J F; Hamilton, D C; Roelof, E C

    1982-01-29

    The low-energy charged particle instrument on Voyager 2 measured low-energy electrons and ions (energies greater, similar 22 and greater, similar 28 kiloelectron volts, respectively) in Saturn's magnetosphere. The magnetosphere structure and particle population were modified from those observed during the Voyager 1 encounter in November 1980 but in a manner consistent with the same global morphology. Major results include the following. (i) A region containing an extremely hot ( approximately 30 to 50 kiloelectron volts) plasma was identified and extends from the orbit of Tethys outward past the orbit of Rhea. (ii) The low-energy ion mantle found by Voyager 1 to extend approximately 7 Saturn radii inside the dayside magnetosphere was again observed on Voyager 2, but it was considerably hotter ( approximately 30 kiloelectron volts), and there was an indication of a cooler ( < 20 kiloelectron volts) ion mantle on the nightside. (iii) At energies greater, similar 200 kiloelectron volts per nucleon, H(1), H(2), and H(3) (molecular hydrogen), helium, carbon, and oxygen are important constituents in the Saturnian magnetosphere. The presence of both H(2) and H(3) suggests that the Saturnian ionosphere feeds plasma into the magnetosphere, but relative abundances of the energetic helium, carbon, and oxygen ions are consistent with a solar wind origin. (iv) Low-energy ( approximately 22 to approximately 60 kiloelectron volts) electron flux enhancements observed between the L shells of Rhea and Tethys by Voyager 2 on the dayside were absent during the Voyager 1 encounter. (v) Persistent asymmetric pitch-angle distributions of electrons of 60 to 200 kiloelectron volts occur in the outer magnetosphere in conjunction with the hot ion plasma torus. (vi) The spacecraft passed within approximately 1.1 degrees in longitude of the Tethys flux tube outbound and observed it to be empty of energetic ions and electrons; the microsignature of Enceladus inbound was also observed. (vii

  19. Assessing the role of the (n, γ f) process in the low-energy fission of actinides

    NASA Astrophysics Data System (ADS)

    Talou, Patrick; Lynn, J. E.; Kawano, T.; Mosby, S.; Couture, A.; Bouland, O.

    2016-06-01

    We review the role of the (n, γ f) process in the low-energy neutron-induced fission reaction of 239Pu. Recent measurements of the average total γ-ray energy released in this reaction were performed with the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos. Significant fluctuations of this quantity in the resonance region below 100 eV can be interpreted by invoking the presence of the indirect (n, γ f) process. Modern calculations of the probability for such an event to occur are presented.

  20. Low-energy control of electrical turbulence in the heart

    NASA Astrophysics Data System (ADS)

    Luther, Stefan; Fenton, Flavio H.; Kornreich, Bruce G.; Squires, Amgad; Bittihn, Philip; Hornung, Daniel; Zabel, Markus; Flanders, James; Gladuli, Andrea; Campoy, Luis; Cherry, Elizabeth M.; Luther, Gisa; Hasenfuss, Gerd; Krinsky, Valentin I.; Pumir, Alain; Gilmour, Robert F.; Bodenschatz, Eberhard

    2011-07-01

    Controlling the complex spatio-temporal dynamics underlying life-threatening cardiac arrhythmias such as fibrillation is extremely difficult, because of the nonlinear interaction of excitation waves in a heterogeneous anatomical substrate. In the absence of a better strategy, strong, globally resetting electrical shocks remain the only reliable treatment for cardiac fibrillation. Here we establish the relationship between the response of the tissue to an electric field and the spatial distribution of heterogeneities in the scale-free coronary vascular structure. We show that in response to a pulsed electric field, E, these heterogeneities serve as nucleation sites for the generation of intramural electrical waves with a source density ρ(E) and a characteristic time, τ, for tissue depolarization that obeys the power law τ~Eα. These intramural wave sources permit targeting of electrical turbulence near the cores of the vortices of electrical activity that drive complex fibrillatory dynamics. We show in vitro that simultaneous and direct access to multiple vortex cores results in rapid synchronization of cardiac tissue and therefore, efficient termination of fibrillation. Using this control strategy, we demonstrate low-energy termination of fibrillation in vivo. Our results give new insights into the mechanisms and dynamics underlying the control of spatio-temporal chaos in heterogeneous excitable media and provide new research perspectives towards alternative, life-saving low-energy defibrillation techniques.

  1. Low-Energy Electron Scattering by Sugarcane Lignocellulosic Biomass Molecules

    NASA Astrophysics Data System (ADS)

    Oliveira, Eliane; Sanchez, Sergio; Bettega, Marcio; Lima, Marco; Varella, Marcio

    2012-06-01

    The use of second generation (SG) bioethanol instead of fossil fuels could be a good strategy to reduce greenhouse gas emissions. However, the efficient production of SG bioethanol has being a challenge to researchers around the world. The main barrier one must overcome is the pretreatment, a very important step in SG bioethanol aimed at breaking down the biomass and facilitates the extraction of sugars from the biomass. Plasma-based treatment, which can generate reactive species, could be an interesting possibility since involves low-cost atmospheric-pressure plasma. In order to offer theoretical support to this technique, the interaction of low-energy electrons from the plasma with biomass is investigated. This study was motived by several works developed by Sanche et al., in which they understood that DNA damage arises from dissociative electron attachment, a mechanism in which electrons are resonantly trapped by DNA subunits. We will present elastic cross sections for low-energy electron scattering by sugarcane biomass molecules, obtained with the Schwinger multichannel method. Our calculations indicate the formation of π* shape resonances in the lignin subunits, while a series of broad and overlapping σ* resonances are found in cellulose and hemicellulose subunits. The presence of π* and σ* resonances could give rise to direct and indirect dissociation pathways in biomass. Then, theoretical resonance energies can be useful to guide the plasma-based pretreatment to break down specific linkages of interest in biomass.

  2. Diphoton excess, low energy theorem, and the 331 model

    NASA Astrophysics Data System (ADS)

    Cao, Qing-Hong; Liu, Yandong; Xie, Ke-Pan; Yan, Bin; Zhang, Dong-Ming

    2016-04-01

    We interpret the diphoton anomaly as a heavy scalar H3 in the so-called 331 model. The scalar is responsible for breaking the S U (3 )C⊗S U (3 )L⊗U (1 )X gauge symmetry down to the standard model electroweak gauge group. It mainly couples to the standard model gluons and photons through quantum loops involving heavy quarks and leptons. Those quarks and leptons, together with the SM quarks and leptons, form the fundamental representation of the 331 model. We use the low energy theorem to calculate the effective couplings of H3g g , H3γ γ , H3Z Z , H3W W and H3Z γ . The analytical results can be applied to new physics models satisfying the low energy theorem. We show that the heavy quark and lepton contribution cannot produce enough diphoton pairs. It is crucial to include the contribution of charged scalars to explain the diphoton excess. The extra neutral Z' boson could also explain the 2 TeV diboson excess observed at the LHC Run-I.

  3. New Mechanism of Low Energy Nuclear Reactions Using Superlow

    NASA Astrophysics Data System (ADS)

    Gareev, F. A.; Zhidkova, I. E.

    2006-03-01

    We proposed a new mechanism of LENR (low energy nuclear reactions) cooperative processes in the whole system - nuclei+atoms+condensed matter can occur at smaller threshold than the corresponding ones assoiciated with free constituents. The cooperative processes can be induced and enhanced by (``superlow energy'') external fields. The excess heat is the emission of internal energy, and transmutations from LENR are the result of redistribution of the internal energy of the whole system. A review of possible stimulation mechanisms of LENR is presented. We have concluded that transmutation of nuclei at low energies and excess heat are possible in the framework of the known fundamental physical laws: The universal resonance synchronization principle, and based on it, different enhancement mechanisms of reaction rates are responsible for these processes. The excitation and ionization of atoms may play the role of a trigger for LENR. F.A. Gareev, I.E. Zhidkova, E-print arXiv Nucl-th/0511092 v1 30 Nov 2005. F.A. Gareev, In: FPB-98, Novosibirsk, June 1998, p.92; F.A.Gareev, G.F. Gareeva, in: Novosibirsk, July 2000, p.161. F.A. Gareev, I.E. Zhidkova and Yu.L. Ratis, Preprint JINR P4-2004-68, Dubna, 2004. F.A. Gareev, I.E. Zhidkova, E-print arXiv Nucl-th/0505021 9 May 2005.

  4. Development of Low Energy Gap and Fully Regioregular Polythienylenevinylene Derivative

    DOE PAGESBeta

    David, Tanya M. S.; Zhang, Cheng; Sun, Sam-Shajing

    2014-01-01

    Low energy gap and fully regioregular conjugated polymers find its wide use in solar energy conversion applications. This paper will first briefly review this type of polymers and also report synthesis and characterization of a specific example new polymer, a low energy gap, fully regioregular, terminal functionalized, and processable conjugated polymer poly-(3-dodecyloxy-2,5-thienylene vinylene) or PDDTV. The polymer exhibited an optical energy gap of 1.46 eV based on the UV-vis-NIR absorption spectrum. The electrochemically measured highest occupied molecular orbital (HOMO) level is −4.79 eV, resulting in the lowest unoccupied molecular orbital (LUMO) level of −3.33 eV based on optical energy gap. The polymer wasmore » synthesized via Horner-Emmons condensation and is fairly soluble in common organic solvents such as tetrahydrofuran and chloroform with gentle heating. DSC showed two endothermic peaks at 67°C and 227°C that can be attributed to transitions between crystalline and liquid states. The polymer is thermally stable up to about 300°C. This polymer appears very promising for cost-effective solar cell applications.« less

  5. Low Energy Laser Biostimulation: New Prospects For Medical Applications

    NASA Astrophysics Data System (ADS)

    Castel, John C.; Abergel, R. Patrick; Willner, Robert E.; Baumann, James G.

    1987-03-01

    The therapeutic benefits of light-energy is not a new concept to the modern world. Documented applications from ancient times tell of the therapeutic effects of ordinary sun-light to treat such common ailments as painful body joints, wounds, compound fractures and tetanus. The discovery of laser light in the 1960's, opened up new prospects for the medical use of light. Laser light differs from other forms of electromagnetic spectrum in that a single wavelength rather than a spectrum of wavelengths is emitted. Since the early 1970's, low-energy laser radiation has been reported to enhance wound healing rates, reduce edema, and relieve musculoskeletal pain. There is no detectable thermal effect of this laser on the tissue being treated. The effects are considered to occur as a result of photochemical, non thermal effects of the laser beam. Photons are absorbed by the tissue being treated and, in turn, produce positive therapeutic effects such as reduction of pain and edema. Pre-clinical and clinical evaluations are, presently, underway to document the safety and efficacy of low energy laser therapy, which represents a significant advance in the non-invasive treatment of pain.

  6. Defect production and recombination during low-energy ion processing

    SciTech Connect

    Kellerman, B.K.; Floro, J.A.; Chason, E.; Brice, D.K.; Picraux, S.T.; White, J.M.

    1994-10-01

    Low-energy ion processing produces damaged, microroughened semiconductor surfaces due to the production of point defects. The authors present a study of point defect production and annealing on the Ge(001)-2x1 surface during low-energy inert ion bombardment as a function of ion energy, ion mass and substrate temperature. Ion-induced surface point defect production was quantified experimentally in real time using in situ Reflection High Energy Electron Diffraction. The observed surface defect yield decreased abruptly around room temperature as the substrate temperature was increased from 175 K to 475 K. The authors have developed Monte Carlo simulations of defect diffusion to model defect recombination both in the bulk and on the surface. Bulk defect production statistics generated by a binary collision simulator, TRIMRC, were coupled with our bulk diffusion simulator to predict the number of ion-induced surface defects. A comparison between the experimental results and the simulation predictions indicated that defects produced in the bulk may represent a significant contribution to the observed surface defect yield and suggested that TRIMRC may overestimate the depth distribution of the defects. The simulations further indicated that the abrupt drop in the experimental yield with increasing substrate temperature does not arise from bulk defect recombination. The Monte Carlo simulations of surface diffusion (applicable to any crystalline surface) support a defect annealing mechanism (at low ion fluxes) that involves surface recombination of defects generated within a single cascade.

  7. Low-energy-state dynamics of entanglement for spin systems

    SciTech Connect

    Jafari, R.

    2010-11-15

    We develop the ideas of the quantum renormalization group and quantum information by exploring the low-energy-state dynamics of entanglement resources of a system close to its quantum critical point. We demonstrate that low-energy-state dynamical quantities of one-dimensional magnetic systems can show a quantum phase transition point and show scaling behavior in the vicinity of the transition point. To present our idea, we study the evolution of two spin entanglements in the one-dimensional Ising model in the transverse field. The system is initialized as the so-called thermal ground state of the pure Ising model. We investigate the evolution of the generation of entanglement with increasing magnetic field. We obtain that the derivative of the time at which the entanglement reaches its maximum with respect to the transverse field diverges at the critical point and its scaling behaviors versus the size of the system are the same as the static ground-state entanglement of the system.

  8. Modeling low energy laser ignition of explosive and pyrotechnic powders

    SciTech Connect

    Glass, M.W.; Merson, J.A.; Salas, F.J.

    1992-01-01

    Laser diode ignition (LDI) of explosives and pyrotechnics is being developed at Sandia National Laboratories as a replacement for low energy hotwire devices. This technology offers significant improvements in device safety due to the insensitivity to electrostatic discharge (ESD) and electromagnetic radiation (EMR). The LDI system incorporates a laser diode source, a fiber optic cable to transmit the laser energy, and the energetic component. The laser energy is volumetrically absorbed by the explosive component causing its temperature to rise to its auto-ignition temperature. Substantial experimental work characterizing the optical ignition mechanism has been undertaken in support of the LDI development work. This work has primarily been focused on the explosive component, CP, 2-(5-cyanotetrazolato) pentaamminecobalt(III) perchlorate, doped with a small amount of carbon black to enhance the laser energy absorptance at the 850 nm wavelength of the laser diode. To support the experimental efforts, numerical modeling of the thermal response of CP to a low energy laser input has been undertaken.

  9. Modeling low energy laser ignition of explosive and pyrotechnic powders

    SciTech Connect

    Glass, M.W.; Merson, J.A.; Salas, F.J.

    1992-07-01

    Laser diode ignition (LDI) of explosives and pyrotechnics is being developed at Sandia National Laboratories as a replacement for low energy hotwire devices. This technology offers significant improvements in device safety due to the insensitivity to electrostatic discharge (ESD) and electromagnetic radiation (EMR). The LDI system incorporates a laser diode source, a fiber optic cable to transmit the laser energy, and the energetic component. The laser energy is volumetrically absorbed by the explosive component causing its temperature to rise to its auto-ignition temperature. Substantial experimental work characterizing the optical ignition mechanism has been undertaken in support of the LDI development work. This work has primarily been focused on the explosive component, CP, 2-(5-cyanotetrazolato) pentaamminecobalt(III) perchlorate, doped with a small amount of carbon black to enhance the laser energy absorptance at the 850 nm wavelength of the laser diode. To support the experimental efforts, numerical modeling of the thermal response of CP to a low energy laser input has been undertaken.

  10. Virtual Compton scattering off the nucleon at low energies

    SciTech Connect

    Scherer, S.; Korchin, A.Y.; Koch, J.H.

    1996-08-01

    We investigate the low-energy behavior of the four-point Green{close_quote}s function {Gamma}{sup {mu}{nu}} describing virtual Compton scattering off the nucleon. Using Lorentz invariance, gauge invariance, and crossing symmetry, we derive the leading terms of an expansion of the operator in the four-momenta {ital q} and {ital q}{sup {prime}} of the initial and final photon, respectively. The model-independent result is expressed in terms of the electromagnetic form factors of the free nucleon, i.e., on-shell information which one obtains from electron-nucleon scattering experiments. Model-dependent terms appear in the operator at {ital O}({ital q}{sub {alpha}}{ital q}{sub {beta}}{sup {prime}}), whereas the orders {ital O}({ital q}{sub {alpha}}{ital q}{sub {beta}}) and {ital O}({ital q}{sub {alpha}}{sup {prime}}{ital q}{sub {beta}}{sup {prime}}) are contained in the low-energy theorem for {Gamma}{sup {mu}{nu}}, i.e., no new parameters appear. We discuss the leading terms of the matrix element and comment on the use of on-shell equivalent electromagnetic vertices in the calculation of {open_quote}{open_quote}Born terms{close_quote}{close_quote} for virtual Compton scattering. {copyright} {ital 1996 The American Physical Society.}

  11. Radiative neutralino production in low energy supersymmetric models

    SciTech Connect

    Basu, Rahul; Sharma, Chandradew; Pandita, P. N.

    2008-06-01

    We study the production of the lightest neutralinos in the radiative process e{sup +}e{sup -}{yields}{chi}-tilde{sub 1}{sup 0}{chi}-tilde{sub 1}{sup 0}{gamma} in low energy supersymmetric models for the International Linear Collider energies. This includes the minimal supersymmetric standard model as well as its extension with an additional chiral Higgs singlet superfield, the nonminimal supersymmetric standard model. We compare and contrast the dependence of the signal cross section on the parameters of the neutralino sector of the minimal and nonminimal supersymmetric standard model. We also consider the background to this process coming from the standard model process e{sup +}e{sup -}{yields}{nu}{nu}{gamma}, as well as from the radiative production of the scalar partners of the neutrinos (sneutrinos) e{sup +}e{sup -}{yields}{nu}-tilde{nu}-tilde*{gamma}, which can be a background to the radiative neutralino production when the sneutrinos decay invisibly. In low energy supersymmetric models radiative production of the lightest neutralinos may be the only channel to study supersymmetric partners of the standard model particles at the first stage of a linear collider, since heavier neutralinos, charginos, and sleptons may be too heavy to be pair produced at a e{sup +}e{sup -} machine with {radical}(s)=500 GeV.

  12. Einstein - Cartan - Dirac theory in the low-energy limit

    NASA Astrophysics Data System (ADS)

    Singh, P.; Ryder, L. H.

    1997-12-01

    We look for manifestations of the effects of torsion in the low-energy limit in the context of Einstein - Cartan - Dirac theory (or any theory of gravity in which the torsion tensor is purely axial). To proceed, we introduce the mathematical law governing the transport of orthonormal bases or tetrads in a spacetime with torsion. This law is applied to compute the metric and connection in a rotating and accelerating frame, or laboratory. A spin-0264-9381/14/12/031/img1 particle is placed in this rotating and accelerating frame and the low-energy limit of the Dirac equation is taken by means of the Foldy - Wouthuysen transformation. In addition to obtaining the Bonse - Wroblewski phase shift due to acceleration, Sagnac-type effects, rotation - spin couplings of the Mashhoon type, redshift of the kinetic energy and the spin - orbit coupling term of Hehl and Ni, we also obtain several interesting and significant terms as a consequence of introducing torsion into spacetime. We give a detailed interpretation of these additional terms and discuss their observability in the light of current well-known experimental techniques.

  13. Low energy charged particles interacting with amorphous solid water layers

    SciTech Connect

    Horowitz, Yonatan; Asscher, Micha

    2012-04-07

    The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 {mu}A) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 {+-} 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.

  14. Formation of a high intensity low energy positron string

    NASA Astrophysics Data System (ADS)

    Donets, E. D.; Donets, E. E.; Syresin, E. M.; Itahashi, T.; Dubinov, A. E.

    2004-05-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5×109 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production.

  15. TOPICAL REVIEW: RBE of low energy electrons and photons

    NASA Astrophysics Data System (ADS)

    Nikjoo, Hooshang; Lindborg, Lennart

    2010-05-01

    Relative biological effectiveness (RBE) compares the severity of damage induced by a radiation under test at a dose D relative to the reference radiation Dx for the same biological endpoint. RBE is an important parameter in estimation of risk from exposure to ionizing radiation (IR). The present work provides a review of the recently published data and the knowledge of the RBE of low energy electrons and photons. The review presents RBE values derived from experimental data and model calculations including cell inactivation, chromosome aberration, cell transformation, micronuclei formation and induction of double-strand breaks. Biophysical models, including physical features of radiation track, and microdosimetry parameters are presented, analysed and compared with experimental data. The biological effects of low energy electrons and photons are of particular interest in radiation biology as these are strongly absorbed in micrometer and sub-micrometer layers of tissue. RBE values not only depend on the electron and photon energies but also on the irradiation condition, cell type and experimental conditions.

  16. Low energy x-ray spectra measured with a mercuric iodide energy dispersive spectrometer in a scanning electron microscope

    SciTech Connect

    Iwanczyk, J.S.; Dabrowski, A.J.; Huth, G.C.; Bradley, J.G.; Conley, J.M.; Albee, A.L.

    1985-01-01

    A mercuric iodide energy dispersive x-ray spectrometer, with Peltier cooling provided for the detector and input field effect transistor, has been developed and tested in a scanning electron microscope. X-ray spectra were obtained with the 15 keV electron beam. An energy resolution of 225 eV (FWHM) for Mn-K/sub ..cap alpha../ at 5.9 keV and 195 eV (FWHM) for Mg-K line at 1.25 keV has been measured. Overall system noise level was 175 eV (FWHM). The detector system characterization with a carbon target demonstrated good energy sensitivity at low energies and lack of significant spectral artifacts at higher energies. 16 refs., 5 figs.

  17. Low energy X-ray spectra measured with a mercuric iodide energy dispersive spectrometer in a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Dabrowski, A. J.; Huth, G. C.; Bradley, J. G.; Conley, J. M.

    1986-01-01

    A mercuric iodide energy dispersive X-ray spectrometer, with Peltier cooling provided for the detector and input field effect transistor, has been developed and tested in a scanning electron microscope. X-ray spectra were obtained with the 15 keV electron beam. An energy resolution of 225 eV (FWHM) for Mn-K(alpha) at 5.9 keV and 195 eV (FWHM) for the Mg-K line at 1.25 keV has been measured. Overall system noise level was 175 eV (FWHM). The detector system characterization with a carbon target demonstrated good energy sensitivity at low energies and lack of significant spectral artifacts at higher energies.

  18. Milagro: A low energy threshold extensive air shower array

    SciTech Connect

    Sinnis, C.

    1994-12-31

    Observations of high-energy gamma rays from astronomical sources have revolutionized our view of the cosmos. Gamma rays with energies up to {approximately}10 GeV can be observed directly with space-based instruments. Above 100 GeV the low flux of gamma rays requires one to utilize ground-based instruments. Milagro is a new type of gamma-ray detector based on water Cerenkov technology. This new design will enable to continuously observe the entire overhead sky, and be sensitive to cosmic rays with energies above {approximately}250 GeV. These attributes make Milagro an ideal detector for the study of high-energy transient phenomenon.

  19. Variations of Low-energy Ion Distributions Measured in the Heliosheath

    SciTech Connect

    Decker, R. B.; Roelof, E. C.; Hill, M. E.; Krimigis, S. M.

    2010-12-30

    This report is an update of low-energy ion intensities and angular distributions measured recently by the Low Energy Charged Particle instruments on the Voyager 1 and 2 spacecraft in the inner heliosheath.

  20. Summary of low-energy aspects of QCD and medium-energy hadron parallel sessions

    SciTech Connect

    McClelland, J.B.

    1991-01-01

    Two sessions were organized dealing with low energy aspects of QCD. The first dealt with the issue of QCD dibaryons. The second session centered on mostly low-energy tests of QCD. This report discusses experiments dealing with these sessions.

  1. Construction of the Soudan 2 detector

    NASA Technical Reports Server (NTRS)

    Ayres, D. S.; Barrett, W. L.; Dawson, J. W.; Fields, T. H.; Goodman, M. C.; Hoftiezer, J.; May, E. N.; Mondal, N. K.; Price, L. E.; Schlereth, J. L.

    1985-01-01

    Progress in the construction of the Soudan 2 nucleon decay detector which is being built at the Soudan iron mine in Minnesota is discussed. The expected event rate and characteristics of low energy neutrino events, muon events, multiple muon events, and other cosmic ray phenomena are discussed.

  2. Low-energy ion implantation: Large mass fractionation of argon

    NASA Technical Reports Server (NTRS)

    Ponganis, K. V.; Graf, TH.; Marti, K.

    1993-01-01

    The isotropic signatures of noble gases in the atmospheres of the Earth and other planets are considerably evolved when compared to signatures observed in the solar wind. The mechanisms driving the evolution of planetary volatiles from original compositions in the solar accretion disk are currently poorly understood. Modeling of noble-gas compositional histories requires knowledge of fractionating processes that may have operated through the evolutionary stages. Since these gases are chemically inert, information on noble-gas fractionation processes can be used as probes. The importance of understanding these processes extends well beyond 'noble-gas planetology.' Trapped argon acquired by low-energy implantation (approximately less than 100 eV) into solids is strongly mass fractionated (approximately greater than or equal to 3 percent/amu). This has potential implications for the origin and evolution of terrestrial planet atmospheres.

  3. Quantifying Low Energy Proton Damage in Multijunction Solar Cells

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Burke, Edward A.; Walters, Robert J.; Warner, Jeffrey H.; Summers, Geoffrey P.; Lorentzen, Justin R.; Morton, Thomas L.; Taylor, Steven J.

    2007-01-01

    An analysis of the effects of low energy proton irradiation on the electrical performance of triple junction (3J) InGaP2/GaAs/Ge solar cells is presented. The Monte Carlo ion transport code (SRIM) is used to simulate the damage profile induced in a 3J solar cell under the conditions of typical ground testing and that of the space environment. The results are used to present a quantitative analysis of the defect, and hence damage, distribution induced in the cell active region by the different radiation conditions. The modelling results show that, in the space environment, the solar cell will experience a uniform damage distribution through the active region of the cell. Through an application of the displacement damage dose analysis methodology, the implications of this result on mission performance predictions are investigated.

  4. pi+- p differential cross sections at low energies

    SciTech Connect

    H. Denz; P. Amaudruz; J.T. Brack; J. Breitschopf; P. Camerini; J.L. Clark; H. Clement; L. Felawka; E. Fragiacomo; E.F. Gibson; N. Grion; G.J. Hofman; B. Jamieson; E.L. Mathie; R. Meier; G. Moloney; D. Ottewell; O. Patarakin; J.D. Patterson; M.M. Pavan; S. Piano; K. Raywood; R.A. Ristinen; R. Rui; M.E. Sevior; G.R. Smith; J. Stahov; R. Tacik; G.J. Wagner; F. von Wrochem; D.M. Yeomans

    2005-12-03

    Differential cross sections for pi- p and pi+ p elastic scattering were measured at five energies between 19.9 and 43.3 MeV. The use of the CHAOS magnetic spectrometer at TRIUMF, supplemented by a range telescope for muon background suppression, provided simultaneous coverage of a large part of the full angular range, thus allowing very precise relative cross section measurements. The absolute normalization was determined with a typical accuracy of 5 %. This was verified in a simultaneous measurement of muon proton elastic scattering. The measured cross sections show some deviations from phase shift analysis predictions, in particular at large angles and low energies. From the new data we determine the real part of the isospin forward scattering amplitude.

  5. Low-energy electron scattering by carbon tetrachloride

    NASA Astrophysics Data System (ADS)

    Moreira, Giseli M.; Souza Barbosa, Alessandra; Pastega, Diego F.; Bettega, Márcio H. F.

    2016-02-01

    In this work we report calculated integral and differential elastic cross sections for the scattering of low-energy electrons by CCl4. We employ the Schwinger multichannel method with pseudopotentials to compute the cross sections in the static-exchange and static-exchange plus polarization approximations for energies up to 15 eV. We report two shape resonances located at 0.75 eV and 8 eV belonging to the T 2 and E symmetries of the T d group respectively. We also look at the s-wave contribution to the integral cross section and find no evidence of the presence of a Ramsauer-Townsend minimum. We compare our calculated cross sections with available experimental and theoretical results and find that in general the agreement is good.

  6. Effects of heavy sea quarks at low energies.

    PubMed

    Bruno, Mattia; Finkenrath, Jacob; Knechtli, Francesco; Leder, Björn; Sommer, Rainer

    2015-03-13

    We present a factorization formula for the dependence of light hadron masses and low energy hadronic scales on the mass M of a heavy quark: apart from an overall mass-independent factor Q, ratios such as r_{0}(M)/r_{0}(0) are computable in perturbation theory at large M. The perturbation theory part is stable concerning different loop orders. Our nonperturbative Monte Carlo results obtained in a model calculation, where a doublet of heavy quarks is decoupled, match quantitatively to the perturbative prediction. Upon taking ratios of different hadronic scales at the same mass, the perturbative function drops out and the ratios are given by the decoupled theory up to M^{-2} corrections. We verify-in the continuum limit-that the sea quark effects of quarks with masses around the charm mass are very small in such ratios. PMID:25815925

  7. Hierarchical fuzzy control of low-energy building systems

    SciTech Connect

    Yu, Zhen; Dexter, Arthur

    2010-04-15

    A hierarchical fuzzy supervisory controller is described that is capable of optimizing the operation of a low-energy building, which uses solar energy to heat and cool its interior spaces. The highest level fuzzy rules choose the most appropriate set of lower level rules according to the weather and occupancy information; the second level fuzzy rules determine an optimal energy profile and the overall modes of operation of the heating, ventilating and air-conditioning system (HVAC); the third level fuzzy rules select the mode of operation of specific equipment, and assign schedules to the local controllers so that the optimal energy profile can be achieved in the most efficient way. Computer simulation is used to compare the hierarchical fuzzy control scheme with a supervisory control scheme based on expert rules. The performance is evaluated by comparing the energy consumption and thermal comfort. (author)

  8. Maximum Likelihood Analysis of Low Energy CDMS II Germanium Data

    SciTech Connect

    Agnese, R.

    2015-03-30

    We report on the results of a search for a Weakly Interacting Massive Particle (WIMP) signal in low-energy data of the Cryogenic Dark Matter Search experiment using a maximum likelihood analysis. A background model is constructed using GEANT4 to simulate the surface-event background from Pb210decay-chain events, while using independent calibration data to model the gamma background. Fitting this background model to the data results in no statistically significant WIMP component. In addition, we also perform fits using an analytic ad hoc background model proposed by Collar and Fields, who claimed to find a large excess of signal-like events in our data. Finally, we confirm the strong preference for a signal hypothesis in their analysis under these assumptions, but excesses are observed in both single- and multiple-scatter events, which implies the signal is not caused by WIMPs, but rather reflects the inadequacy of their background model.

  9. Materials and neutronic research at the Low Energy Neutron Source

    NASA Astrophysics Data System (ADS)

    Baxter, David V.

    2016-04-01

    In the decade since the Low Energy Neutron Source (LENS) at Indiana University Center for Exploration of Energy and Matter (CEEM) produced its first neutrons, the facility has made important contributions to the international neutron scattering community. LENS employs a 13MeV proton beam at up to 4kW beam power onto one of two Be targets to produce neutrons for research in fields ranging from radiation effects in electronics to studies of the structure of fluids confined in nanoporous materials. The neutron source design at the heart of LENS facilitates relatively rapid hands-on access to most of its components which provides a foundation for a research program in experimental neutronics and affords numerous opportunities for novel educational experiences. We describe in some detail a number of the unique capabilities of this facility.

  10. Ignitor with stable low-energy thermite igniting system

    DOEpatents

    Kelly, Michael D.; Munger, Alan C.

    1991-02-05

    A stable compact low-energy igniting system in an ignitor utilizes two components, an initiating charge and an output charge. The initiating charge is a thermite in ultra-fine powder form compacted to 50-70% of theoretical maximum density and disposed in a cavity of a header of the ignitor adjacent to an electrical ignition device, or bridgewire, mounted in the header cavity. The initiating charge is ignitable by operation of the ignition device in a hot-wire mode. The output charge is a thermite in high-density consoladated form compacted to 90-99% of theoretical maximum density and disposed adjacent to the initiating charge on an opposite end thereof from the electrical ignition device and ignitable by the initiating charge. A sleeve is provided for mounting the output charge to the ignitor header with the initiating charge confined therebetween in the cavity.

  11. Low-energy electron-impact ionization of helium

    SciTech Connect

    Schow, E.; Hazlett, K.; Childers, J. G.; Medina, C.; Vitug, G.; Khakoo, M. A.; Bray, I.; Fursa, D. V.

    2005-12-15

    Normalized doubly differential cross sections for the electron-impact ionization of helium at low energies are presented. The data are taken at the incident electron energies of 26.3, 28.3, 30.3, 32.5, 34.3, 36.5, and 40.7 eV and for scattering angles of 10 deg. -130 deg. The measurements involve the use of the moveable target method developed at California State University Fullerton to accurately determine the continuum background in the energy-loss spectra. Normalization of experimental data is made on a relative scale to well-established experimental differential cross sections for excitation of the n=2 manifold of helium and then on an absolute scale to the well-established total ionization cross sections of Shah et al. [J. Phys. B 21, 2751 (1988)]. Comparisons are made with available experimental data and the results of the convergent close-coupling theory.

  12. ULTRA-LOW-ENERGY HIGH-CURRENT ION SOURCE

    SciTech Connect

    Anders, Andre; Yushkov, Georgy Yu.; Baldwin, David A.

    2009-11-20

    The technical objective of the project was to develop an ultra-low-energy, high-intensity ion source (ULEHIIS) for materials processing in high-technology fields including semiconductors, micro-magnetics and optics/opto-electronics. In its primary application, this ion source can be incorporated into the 4Wave thin-film deposition technique called biased target ion-beam deposition (BTIBD), which is a deposition technique based on sputtering (without magnetic field, i.e., not the typical magnetron sputtering). It is a technological challenge because the laws of space charge limited current (Child-Langmuir) set strict limits of how much current can be extracted from a reservoir of ions, such as a suitable discharge plasma. The solution to the problem was an innovative dual-discharge system without the use of extraction grids.

  13. Modeling of human movement monitoring using Bluetooth Low Energy technology.

    PubMed

    Mokhtari, G; Zhang, Q; Karunanithi, M

    2015-01-01

    Bluetooth Low Energy (BLE) is a wireless communication technology which can be used to monitor human movements. In this monitoring system, a BLE signal scanner scans signal strength of BLE tags carried by people, to thus infer human movement patterns within its monitoring zone. However to the extent of our knowledge one main aspect of this monitoring system which has not yet been thoroughly investigated in literature is how to build a sound theoretical model, based on tunable BLE communication parameters such as scanning time interval and advertising time interval, to enable the study and design of effective and efficient movement monitoring systems. In this paper, we proposed and developed a statistical model based on Monte-Carlo simulation, which can be utilized to assess impacts of BLE technology parameters in terms of latency and efficiency, on a movement monitoring system, and can thus benefit a more efficient system design. PMID:26737430

  14. Theoretical Study of Low Energy Scattering from Metal Nuclei.

    NASA Astrophysics Data System (ADS)

    Gomez, Bernadette; Hira, Ajit; Duran, Joe; Jaramillo, Danelle

    2015-04-01

    We continue our interest in the interactions between different nuclear species with a computational study of the scattering of the low-energy nuclei of H through F atoms (Z <= 9 ) from Silver, Palladium and other metals. Recent work has shown that neutron scattering can be used to record holographic images of materials. We have developed a FORTRAN computer program to compute stopping cross sections and scattering angles in Ag and other metals for the small nuclear projectiles, using Monte Carlo calculation. This code allows for different angles of incidence. Next, simulations were done in the energy interval from 50 to 210 keV. The computational results thus obtained are compared with relevant experimental data. The data are further analyzed to identify periodic trends in terms of the atomic number of the projectile. Such studies have potential applications in nuclear physics and in nuclear medicine.

  15. Computational Study of Low Energy Nuclear Scattering from Metal Nuclei

    NASA Astrophysics Data System (ADS)

    Jaramillo, Danelle; Hira, Ajit; Pacheco, Jose; Salazar, Justin

    2014-03-01

    We continue our interest in the interactions between different nuclear species with a computational study of the scattering of the low-energy nuclei of H through F atoms (Z <= 9) from Palladium, Nickel and other metals. First, a FORTRAN computer program was developed to compute stopping cross sections and scattering angles in Pd and other metals for the small nuclear projectiles, using Monte Carlo calculation. This code allows for different angles of incidence. Next, simulations were done in the energy interval from 10 to 140 keV. The computational results thus obtained are compared with relevant experimental data. The data are further analyzed to identify periodic trends in terms of the atomic number of the projectile. Such studies have potential applications in nuclear physics and in nuclear medicine.

  16. Contamination control and plume assessment of low-energy thrusters

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1993-01-01

    Potential contamination of a spacecraft cryogenic surface by a xenon (Xe) ion generator was evaluated. The analysis involves the description of the plume exhausted from the generator with its relative component fluxes on the spacecraft surfaces, and verification of the conditions for condensation, adsorption, and sputtering at those locations. The data describing the plume fluxes and their effects on surfaces were obtained from two sources: the tests carried out with the Xe generator in a small vacuum chamber to indicate deposits and sputter on monitor slides; and the extensive tests with a mercury (Hg) ion thruster in a large vacuum chamber. The Hg thruster tests provided data on the neutrals, on low-energy ion fluxes, on high-energy ion fluxes, and on sputtered materials at several locations within the plume.

  17. Low energy neutral atoms in the earth's magnetosphere: Modeling

    SciTech Connect

    Moore, K.R.; McComas, D.J.; Funsten, H.O.; Thomsen, M.F.

    1992-01-01

    Detection of low energy neutral atoms (LENAs) produced by the interaction of the Earth's geocorona with ambient space plasma has been proposed as a technique to obtain global information about the magnetosphere. Recent instrumentation advances reported previously and in these proceedings provide an opportunity for detecting LENAs in the energy range of <1 keV to {approximately}50 keV. In this paper, we present results from a numerical model which calculates line of sight LENA fluxes expected at a remote orbiting spacecraft for various magnetospheric plasma regimes. This model uses measured charge exchange cross sections, either of two neural hydrogen geocorona models, and various empirical modes of the ring current and plasma sheet to calculate the contribution to the integrated directional flux from each point along the line of sight of the instrument. We discuss implications for LENA imaging of the magnetosphere based on these simulations. 22 refs.

  18. Low Dose, Low Energy 3d Image Guidance during Radiotherapy

    NASA Astrophysics Data System (ADS)

    Moore, C. J.; Marchant, T.; Amer, A.; Sharrock, P.; Price, P.; Burton, D.

    2006-04-01

    Patient kilo-voltage X-ray cone beam volumetric imaging for radiotherapy was first demonstrated on an Elekta Synergy mega-voltage X-ray linear accelerator. Subsequently low dose, reduced profile reconstruction imaging was shown to be practical for 3D geometric setup registration to pre-treatment planning images without compromising registration accuracy. Reconstruction from X-ray profiles gathered between treatment beam deliveries was also introduced. The innovation of zonal cone beam imaging promises significantly reduced doses to patients and improved soft tissue contrast in the tumour target zone. These developments coincided with the first dynamic 3D monitoring of continuous body topology changes in patients, at the moment of irradiation, using a laser interferometer. They signal the arrival of low dose, low energy 3D image guidance during radiotherapy itself.

  19. Scintillation Efficiency of Liquid Xenon for Low Energy Nuclear Recoils

    NASA Astrophysics Data System (ADS)

    Wongjirad, Taritree; Ni, Kaixuan; Manzur, Angel; Kastens, Louis; McKinsey, Daniel

    2008-04-01

    In early 2006, the XENON and ZEPLIN collaborations announced highly stringent upper limits on the WIMP-nucleon cross-section. However, the dominant systematic uncertainty in these limits is due to the uncertainty in the nuclear recoil scintillation efficiency (NRSE) for liquid xenon. The NRSE is defined as the amount of scintillation produced by nuclear recoils, divided by the amount of scintillation produced by electron recoils, per unit energy. Though the NRSE has been measured by several groups, its value at the low energies most important for the liquid xenon WIMP searches has a large uncertainty. Furthermore, the NRSE may vary with the strength of the electric field in the liquid xenon. In an attempt to reduce these uncertainties, we have measured the NRSE down to 5 keV nuclear recoil energy for various electric fields.

  20. Bluetooth low energy: wireless connectivity for medical monitoring.

    PubMed

    Omre, Alf Helge

    2010-03-01

    Electronic wireless sensors could cut medical costs by enabling physicians to remotely monitor vital signs such as blood pressure, blood glucose, and blood oxygenation while patients remain at home. According to the IDC report "Worldwide Bluetooth Semiconductor 2008-2012 Forecast," published November 2008, a forthcoming radio frequency communication ("wireless connectivity") standard, Bluetooth low energy, will link wireless sensors via radio signals to the 70% of cell phones and computers likely to be fitted with the next generation of Bluetooth wireless technology, leveraging a ready-built infrastructure for data transmission. Analysis of trends indicated by this data can help physicians better manage diseases such as diabetes. The technology also addresses the concerns of cost, compatibility, and interoperability that have previously stalled widespread adoption of wireless technology in medical applications. PMID:20307407

  1. Quantum Aspects of Low-Energy Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Furman, W.

    2011-10-01

    A helicity representation for fission product channels with correctly defined parity is used to describe neutron induced fission with arbitrary spin density matrix in ingoing channel. Recently obtained data for ROT effect in binary fission give evidence for high accuracy of the helicity representation just at scission. A general expression for differential cross-section of (n,f)-reaction is obtained. In the framework of multilevel, many channel R-matrix theory the reduced S-matrix for JΠK effective channels rigorously derived. These channels include fission modes in natural way. Theoretical analysis of experimentally observed P-even and P-odd interference effects in low energy nuclear fission allows one to make some essential conclusions on basic mechanism of the process.

  2. A New Instrument Design for Imaging Low Energy Neutral Atoms

    NASA Technical Reports Server (NTRS)

    Keller, John W.; Collier, Michael R.; Chornay, Dennis; Rozmarynowski, Paul; Getty, Stephanie; Cooper, John F.; Smith, Billy

    2007-01-01

    The MidSTAR-2 satellite, to be built at the US Naval Academy as a follow-on to the successful MidSTAR-1 satellite (http://web.ew.usna.edu/midstar/), will launch in 2011 and carry three Goddard Space Flight Center (GSFC) experiments developed under Goddard's Internal Research and Development (IRAD) program. One of these GSFC instruments, the Miniature Imager for Neutral Ionospheric atoms and Magnetospheric Electrons (MINI-ME) builds on the heritage of the Goddard-developed Low-Energy Neutral Atom (LENA) imager launched on the IMAGE spacecraft in 2000. MINI-ME features a Venetian-blind conversion surface assembly that improves both light rejection and conversion efficiency in a smaller and lighter package than LENA making this an highly effective instrument for viewing solar wind charge exchange with terrestrial and planetary exospheres. We will describe the MINI-ME prototyping effort and its science targets.

  3. The low energy spectra of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.; Lamb, F. K.

    1982-01-01

    The implications of observed gamma-ray burst spectra for the physical conditions and geometries of the sources are examined. It is noted that an explanation of the continua in terms of optically thin thermal bremsstrahlung requires a relatively large area but a fairly shallow depth. On the other hand, a spectrum similar to that observed could be produced by rapid flickering of sources with less extreme geometries if each flicker emits a Comptonized thermal spectrum. Either field inhomogeneities or plasma motions are required to interpret the low energy features as cyclotron extinction. An alternative explanation is photoelectric absorption by heavy atoms; this requires a field strength high enough to make one-photon electron positron annihilation possible. Observational tests of these possibilities are proposed

  4. Molecular ion sources for low energy semiconductor ion implantation (invited).

    PubMed

    Hershcovitch, A; Gushenets, V I; Seleznev, D N; Bugaev, A S; Dugin, S; Oks, E M; Kulevoy, T V; Alexeyenko, O; Kozlov, A; Kropachev, G N; Kuibeda, R P; Minaev, S; Vizir, A; Yushkov, G Yu

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4(+) ion beams were extracted. Results from devices and some additional concepts are described. PMID:26932065

  5. Molecular Ion Beam Transportation for Low Energy Ion Implantation

    SciTech Connect

    Kulevoy, T. V.; Kropachev, G. N.; Seleznev, D. N.; Yakushin, P. E.; Kuibeda, R. P.; Kozlov, A. V.; Koshelev, V. A.; Hershcovitch, A.; Johnson, B. M.; Gushenets, V. I.; Oks, E. M.; Polozov, S. M.; Poole, H. J.

    2011-01-07

    A joint research and development of steady state intense boron ion sources for 100's of electron-volt ion implanters has been in progress for the past five years. Current density limitation associated with extracting and transporting low energy ion beams result in lower beam currents that in turn adversely affects the process throughput. The transport channel with electrostatic lenses for decaborane (B{sub 10}H{sub 14}) and carborane (C{sub 2}B{sub 10}H{sub 12}) ion beams transportation was developed and investigated. The significant increase of ion beam intensity at the beam transport channel output is demonstrated. The transport channel simulation, construction and experimental results of ion beam transportation are presented.

  6. Elastic scattering of low-energy electrons from toluene

    NASA Astrophysics Data System (ADS)

    Sakaamini, Ahmad; Hargreaves, L. R.; Khakoo, M. A.; Pastega, D. F.; Bettega, M. H. F.

    2016-04-01

    Theoretical and normalized experimental differential, momentum transfer, and integral cross sections for vibrationally elastic scattering of low-energy electrons from toluene (C6H5C H3 ) are presented. The differential cross sections are measured at incident energies from 1 to 20 eV and scattering angles from 15° to 130°. The calculated cross sections are obtained using the Schwinger multichannel method with pseudopotentials in the static-exchange plus polarization approximation. Comparisons are made between the present theory and measurements with earlier available measurements. In general, the agreement between the theory and the experiment is very good. We also discuss the resonance spectra of toluene, where we find three π* shape resonances whose locations agree well with the experiment. In addition, we compare the cross sections of toluene and benzene, since the former can be considered as a benzene derivative by the substitution of a hydrogen in benzene by a C H3 group in toluene.

  7. An intense low energy muon source for the muon collider

    SciTech Connect

    Taqqu, D.

    1996-05-01

    A scheme for obtaining an intense source of low energy muons is described. It is based on the production of pions in a high field magnetic bottle trap. By ensuring efficient slowing down and extraction of the decay muons an intense intermediate energy muon beam is obtained. For the specific case of negative muons a novel technique called frictional accumulation provides efficient conversion into a 10 keV{mu}{sup {minus}} beam whose emittance is then reduced in a configuration providing extended frictional cooling. The result is a beam of very small transverse and longitudinal emittance that can be used together with an equivalent {mu}{sup +} beam as compact intense muon source for the {mu}{sup +}{mu}{sup {minus}} collider. A final luminosity around 10{sup 34} cm{sup {minus}2}s{sup {minus}1} is expected to be obtained at 2 TeV. {copyright} {ital 1996 American Institute of Physics.}

  8. HIGH INTENSITY LOW-ENERGY POSITRON SOURCE AT JEFFERSON

    SciTech Connect

    Serkan Golge, Bogdan Wojtsekhowski, Branislav Vlahovic

    2012-07-01

    We present a novel concept of a low-energy e{sup +} source with projected intensity on the order of 10{sup 10} slow e{sup +}/s. The key components of this concept are a continuous wave e{sup -} beam, a rotating positron-production target, a synchronized raster/anti-raster, a transport channel, and extraction of e{sup +} into a field-free area through a magnetic plug for moderation in a cryogenic solid. Components were designed in the framework of GEANT4-based (G4beamline) Monte Carlo simulation and TOSCA magnetic field calculation codes. Experimental data to demonstrate the effectiveness of the magnetic plug is presented.

  9. Low-Energy Ions from Laser-Cooled Atoms

    NASA Astrophysics Data System (ADS)

    Shayeganrad, G.; Fioretti, A.; Guerri, I.; Tantussi, F.; Ciampini, D.; Allegrini, M.; Viteau, M.; Fuso, F.

    2016-05-01

    We report the features of an ion source based on two-color photoionization of a laser-cooled cesium beam outsourced from a pyramidal magneto-optical trap. The ion source operates in continuous or pulsed mode. At acceleration voltages below 300 V, it delivers some ten ions per bunch with a relative energy spread Δ Urms/U ≃0.032 , as measured through the retarding field-energy-analyzer approach. Space-charge effects are negligible thanks to the low ion density attained in the interaction volume. The performances of the ion beam in a configuration using focused laser beams are extrapolated on the basis of the experimental results. Calculations demonstrate that our low-energy and low-current ion beam can be attractive for the development of emerging technologies requiring the delivery of a small amount of charge, down to the single-ion level and its eventual focusing in the 10-nm range.

  10. Flux tube spectra from approximate integrability at low energies

    SciTech Connect

    Dubovsky, S. Flauger, R.; Gorbenko, V.

    2015-03-15

    We provide a detailed introduction to a method we recently proposed for calculating the spectrum of excitations of effective strings such as QCD flux tubes. The method relies on the approximate integrability of the low-energy effective theory describing the flux tube excitations and is based on the thermodynamic Bethe ansatz. The approximate integrability is a consequence of the Lorentz symmetry of QCD. For excited states, the convergence of the thermodynamic Bethe ansatz technique is significantly better than that of the traditional perturbative approach. We apply the new technique to the lattice spectra for fundamental flux tubes in gluodynamics in D = 3 + 1 and D = 2 + 1, and to k-strings in gluodynamics in D = 2 + 1. We identify a massive pseudoscalar resonance on the worldsheet of the confining strings in SU(3) gluodynamics in D = 3 + 1, and massive scalar resonances on the worldsheet of k = 2.3 strings in SU(6) gluodynamics in D = 2 + 1.

  11. Elastic positron-cadmium scattering at low energies

    SciTech Connect

    Bromley, M. W. J.; Mitroy, J.

    2010-05-15

    The elastic and annihilation cross sections for positron-cadmium scattering are reported up to the positronium-formation threshold (at 2.2 eV). The low-energy phase shifts for the elastic scattering of positrons from cadmium were derived from the bound and pseudostate energies of a very large basis configuration-interaction calculation of the e{sup +}-Cd system. The s-wave binding energy is estimated to be 126{+-}42 meV, with a scattering length of A{sub scat}=(14.2{+-}2.1)a{sub 0}, while the threshold annihilation parameter, Z{sub eff}, was 93.9{+-}26.5. The p-wave phase shift exhibits a weak shape resonance that results in a peak Z{sub eff} of 91{+-}17 at a collision energy of about 490{+-}50 meV.

  12. Subtalar dislocation secondary to a low energy injury.

    PubMed

    McKeag, Philip; Lyske, Jonathan; Reaney, Jonathan; Thompson, Neville

    2015-01-01

    An 18-year-old young man presented with an ankle injury, after landing on a supinated right foot following jumping while playing football. A plain X-ray revealed a medial subtalar dislocation. Despite obvious ankle deformity, the surrounding skin remained intact. Closed reduction of the subtalar joint was successfully performed under general anaesthesia in theatre. A CT of the ankle, after reduction, demonstrated a non-displaced fracture of the neck of the talus; no osteochondral defect was observed. This was successfully managed conservatively, with immobilisation of the ankle, in a non-weight bearing cast for 6 weeks. This case highlights that subtalar dislocation may follow a low-energy mechanism and that such injuries can be managed without open reduction. PMID:25650063

  13. Molecular ion sources for low energy semiconductor ion implantation (invited)

    NASA Astrophysics Data System (ADS)

    Hershcovitch, A.; Gushenets, V. I.; Seleznev, D. N.; Bugaev, A. S.; Dugin, S.; Oks, E. M.; Kulevoy, T. V.; Alexeyenko, O.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Vizir, A.; Yushkov, G. Yu.

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described.

  14. Low-energy dissociative electron attachment to CF2

    NASA Astrophysics Data System (ADS)

    Chourou, S. T.; Larson, Ã.; Orel, A. E.

    2015-08-01

    We present the results of a theoretical study of dissociative electron attachment (DEA) of low-energy electrons to CF2. We carried out electron scattering calculations using the complex Kohn variational method at the static-exchange and relaxed self-consistent field (SCF) level at the equilibrium geometry and compare our differential cross sections to other results. We then repeated these calculations as a function of the three internal degrees of freedom to obtain the resonance energy surfaces and autoionization widths. We use this data as input to form the Hamiltonian relevant to the nuclear dynamics. The multidimensional wave equation is solved using the multiconfiguration time-dependent Hartree (MCTDH) approach within the local approximation.

  15. Linac4 low energy beam measurements with negative hydrogen ions

    SciTech Connect

    Scrivens, R. Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T.

    2014-02-15

    Linac4, a 160 MeV normal-conducting H{sup −} linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H{sup −} beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  16. Low energy ion beam dynamics of NANOGAN ECR ion source

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  17. Transcanalicular laser dacryocystorhinostomy using low energy 810 nm diode laser

    PubMed Central

    Gupta, Sanjiv K.; Kumar, Ajai; Agarwal, Swati; Pandey, Paritosh

    2012-01-01

    Background: Hypertrophic scarring may be a cause of failure after transcanalicular laser dacryocystorhinostomy (DCR) surgery. This hypertrophic scarring results from tissue charring and excessive coagulation, which may be caused by the high laser energy. We have evaluated the use of low energy settings to prevent hypertrophic scarring, for a successful outcome. Aims: To perform and evaluate transcanalicular laser DCR using low energy 810 nm diode laser. Design: Interventional, non-comparative, case series. Materials and Methods: Patients with nasolacrimal duct obstruction and chronic dacryocystitis, who needed DCR, and were fit for surgery under local anesthesia, were recruited to undergo transcanalicular laser DCR using a 810 nm diode laser. The outcome was measured by the patency of the lacrimal passage, as indicated by the relief in the symptoms and the patency on syringing at the last follow-up. The surgical time and surgical complications were noted. Statistical Analysis Used: Descriptive analysis. Results: The study included 94 patients. The average age was 30.1 years (range 15 - 69 years). Seventy (74.4%) patients were female. Eight patients had failed external DCR. Per-operative patency of the passage was obtained in all the patients. Average surgical time was seven minutes (5 – 18 minutes). At the end of the study period of one year, a successful outcome was seen in 85 patients (90.5%). There were eight patients of previous failed DCR surgeries, and six of them achieved a cure at the end of follow-up. Conclusions: Transcanalicular Laser DCR can be safely performed using a low power 810 nm diode laser. The surgery is elegant, minimally invasive, allows fast rehabilitation, and has an excellent success rate. PMID:23439888

  18. Low-Energy Impacts onto Lunar Regolith Simulant

    NASA Astrophysics Data System (ADS)

    Seward, Laura M.; Colwell, J.; Mellon, M.; Stemm, B.

    2012-10-01

    Low-Energy Impacts onto Lunar Regolith Simulant Laura M. Seward1, Joshua E. Colwell1, Michael T. Mellon2, and Bradley A. Stemm1, 1Department of Physics, University of Central Florida, Orlando, Florida, 2Southwest Research Institute, Boulder, Colorado. Impacts and cratering in space play important roles in the formation and evolution of planetary bodies. Low-velocity impacts and disturbances to planetary regolith are also a consequence of manned and robotic exploration of planetary bodies such as the Moon, Mars, and asteroids. We are conducting a program of laboratory experiments to study low-velocity impacts of 1 to 5 m/s into JSC-1 lunar regolith simulant, JSC-Mars-1 Martian regolith simulant, and silica targets under 1 g. We use direct measurement of ejecta mass and high-resolution video tracking of ejecta particle trajectories to derive ejecta mass velocity distributions. Additionally, we conduct similar experiments under microgravity conditions in a laboratory drop tower and on parabolic aircraft with velocities as low as 10 cm/s. We wish to characterize and understand the collision parameters that control the outcome of low-velocity impacts into regolith, including impact velocity, impactor mass, target shape and size distribution, regolith depth, target relative density, and crater depth, and to experimentally determine the functional dependencies of the outcomes of low-velocity collisions (ejecta mass and ejecta velocities) on the controlling parameters of the collision. We present results from our ongoing study showing the positive correlation between impact energy and ejecta mass. The total ejecta mass is also dependent on the packing density (porosity) of the regolith. We find that ejecta mass velocity fits a power-law or broken power-law distribution. Our goal is to understand the physics of ejecta production and regolith compaction in low-energy impacts and experimentally validate predictive models for dust flow and deposition. We will present our

  19. Synthesis of sputtered thin films in low energy ion beams

    NASA Astrophysics Data System (ADS)

    Howson, R. P.

    1997-01-01

    Magnetron sputtering is a process which gives a highly energetic depositing species. The growing film can be further bombarded with ions of the heavy gas used for sputtering by directing a plasma of it onto the surface. This can be done quite simply by using an unbalanced magnetron. The immersion of an insulating or isolated substrate-film combination in this plasma leads to a self-bias of around 30 V appearing on it's surface and a bombardment of low energy ions of the sputtering gas of several milli-amps per square centimetre. If the residual gas contains a reactive component, to form a compound film, then the gas is made much more reactive and less is needed to form the stoichiometric film. This can take place in a continuously operating system made stable using partial pressure control of the reactive gas with plasma emission monitoring or something similar. It can also be operated when the process of deposition is separated in time from the process of reaction and is repeated to build the film. We have called this process successive-plasma-anodisation (SPA) and it can be achieved by mechanically transferring the substrate between two magnetrons, one to deposit the metal film and one, which is unbalanced, to provide an oxygen plasma. It can also be operated by pulsing the reactive gas under carefully controlled conditions. Examples are given of the synthesis of compound films using low energy ion bombardment with these techniques and it is demonstrated that excellent films of a large range of oxides and nitrides can be made.

  20. Measurement of the Charge and Light Yield of Low Energy Electronic and Nuclear Recoils in Liquid Xenon at Different Electric Fields

    NASA Astrophysics Data System (ADS)

    Anthony, Matthew; Aprile, Elena; Contreras, Hugo; Goetzke, Luke; Melgarejo, Antonio; Plante, Guillaume; Weber, Marc

    2015-04-01

    Liquid xenon detectors continue to lead in the search for the direct detection of dark matter. Still, very few measurements have studied the response of liquid xenon to low-energy interactions (<= 10 keV) at different applied electric fields. The neriX detector at Columbia University is a dual-phase time projection chamber that is optimized for simultaneous measurements of light and charge from these low-energy interactions. Coincidence techniques are employed to extract the light and charge yields from electronic and nuclear recoils in liquid xenon as a function of energy deposited and applied electric field. In this talk, we will discuss the results of the charge and light yield measurements. We acknowledge continued support of the XENON Dark Matter program at Columbia University by the National Science Foundation.

  1. Low-energy photons in high-energy photon fields--Monte Carlo generated spectra and a new descriptive parameter.

    PubMed

    Chofor, Ndimofor; Harder, Dietrich; Willborn, Kay; Rühmann, Antje; Poppe, Björn

    2011-09-01

    The varying low-energy contribution to the photon spectra at points within and around radiotherapy photon fields is associated with variations in the responses of non-water equivalent dosimeters and in the water-to-material dose conversion factors for tissues such as the red bone marrow. In addition, the presence of low-energy photons in the photon spectrum enhances the RBE in general and in particular for the induction of second malignancies. The present study discusses the general rules valid for the low-energy spectral component of radiotherapeutic photon beams at points within and in the periphery of the treatment field, taking as an example the Siemens Primus linear accelerator at 6 MV and 15 MV. The photon spectra at these points and their typical variations due to the target system, attenuation, single and multiple Compton scattering, are described by the Monte Carlo method, using the code BEAMnrc/EGSnrc. A survey of the role of low energy photons in the spectra within and around radiotherapy fields is presented. In addition to the spectra, some data compression has proven useful to support the overview of the behaviour of the low-energy component. A characteristic indicator of the presence of low-energy photons is the dose fraction attributable to photons with energies not exceeding 200 keV, termed P(D)(200 keV). Its values are calculated for different depths and lateral positions within a water phantom. For a pencil beam of 6 or 15 MV primary photons in water, the radial distribution of P(D)(200 keV) is bellshaped, with a wide-ranging exponential tail of half value 6 to 7 cm. The P(D)(200 keV) value obtained on the central axis of a photon field shows an approximately proportional increase with field size. Out-of-field P(D)(200 keV) values are up to an order of magnitude higher than on the central axis for the same irradiation depth. The 2D pattern of P(D)(200 keV) for a radiotherapy field visualizes the regions, e.g. at the field margin, where changes of

  2. Survey of caveats in low-energy particle measurements: Ulysses/HI-SCALE and ACE/EPAM Instruments

    NASA Astrophysics Data System (ADS)

    Marhavilas, P. K.; Malandraki, O. E.; Anagnostopoulos, G. C.

    2015-11-01

    "Heliosphere Instrument for Spectra, Composition, and Anisotropy at Low Energies" (HI-SCALE) onboard the ULYSSES spacecraft, and "Electron, Proton, and Alpha Monitor" (EPAM) onboard the ACE spacecraft, are very similar instruments and were designed to make measurements of ions and electrons over a broad range of energy and intensity. The ions (Ei≥50 keV) and electrons (Ee≥30 keV) are detected by five separate solid-state detector telescopes, oriented to provide essentially complete pitch-angle coverage from the spinning spacecraft. In this work, through detailed data-analysis (i) we perform a comprehensive quality assessment on, and (ii) depict a detailed survey of day-of-year (DOYs) with existing contamination in the high-resolution low-energy particle measurements recorded by the HI-SCALE and EPAM instruments, throughout the years 1991-2009 (i.e. during the total Ulysses mission lifetime) and 1997-2011, respectively. Two major types of contamination were revealed in our analysis: (i) "solar X-ray contamination" due to saturation (by solar photons) in two (of the four) detector sectors, during the telescope's direct exposure to the solar disk, and (ii) "cross-talk contamination" due to electrons being recorded as ions and vice versa. The results presented in this work will prove to be valuable to future users of these unique data sets and to designers of similar future instruments, supported by SEP validation and propagation models.

  3. Particle Detectors

    NASA Astrophysics Data System (ADS)

    Grupen, Claus; Shwartz, Boris

    2011-09-01

    Preface to the first edition; Preface to the second edition; Introduction; 1. Interactions of particles and radiation with matter; 2. Characteristic properties of detectors; 3. Units of radiation measurements and radiation sources; 4. Accelerators; 5. Main physical phenomena used for particle detection and basic counter types; 6. Historical track detectors; 7. Track detectors; 8. Calorimetry; 9. Particle identification; 10. Neutrino detectors; 11. Momentum measurement and muon detection; 12. Ageing and radiation effects; 13. Example of a general-purpose detector: Belle; 14. Electronics; 15. Data analysis; 16. Applications of particle detectors outside particle physics; 17. Glossary; 18. Solutions; 19. Resumé; Appendixes; Index.

  4. In-medium nuclear interactions of low-energy hadrons

    NASA Astrophysics Data System (ADS)

    Friedman, E.; Gal, A.

    2007-11-01

    Exotic atoms provide a unique laboratory for studying strong interactions and nuclear medium effects at zero kinetic energy. Experimental and theoretical developments of the last decade in the study of exotic atoms and some related low-energy reactions are reviewed. The exotic atoms considered are of π-,K-,pbar,Σ-, and also the so far unobserved Ξ- atoms. The analysis of these atomic systems consists of fitting density-dependent optical potentials Vopt=t(ρ)ρ to comprehensive sets of data of strong-interaction level shifts, widths and yields across the periodic table. These provide information on the in-medium hadron-nucleon t matrix t(ρ) over a wide range of densities up to central nuclear densities. For pions, the review focuses on the extraction of the πN in-medium s-wave interaction from pionic atoms, which include also the deeply bound π- atomic states recently observed at GSI in isotopes of Sn and Pb. Also included are recent measurements at PSI of elastic scattering of π± on Si, Ca, Ni and Zr at 21.5 MeV. The experimental results are analyzed in the context of chirally motivated π-nuclear potentials, and the evidence for partial restoration of chiral symmetry in dense nuclear matter is critically discussed. For antikaons, we review the evidence from K- atoms, and also from low-energy K-p scattering and reaction data for and against a deepKbar-nucleus potential of 150-200 MeV attraction at nuclear matter density. The case for relatively narrow deeply bound K-atomic states is made, essentially independent of the potential-depth issue. Recent experimental suggestions from KEK and DA ΦNE (Frascati) for signals of Kbar-nuclear deeply bound states are reviewed, and dynamical models for calculating binding energies and widths of Kbar- nuclear states are discussed. For kaons we review the evidence, from K+ total and reaction cross section measurements at the AGS (BNL) on Li, C, Si and Ca at plab=500-700 MeV/c, for significant absorptivity of t

  5. Testing SO(10)-inspired leptogenesis with low energy neutrino experiments

    SciTech Connect

    Bari, Pasquale Di; Riotto, Antonio E-mail: Antonio.Riotto@cern.ch

    2011-04-01

    We extend the results of a previous analysis of ours showing that, when both heavy and light flavour effects are taken into account, successful minimal (type I + thermal) leptogenesis with SO(10)-inspired relations is possible. Barring fine tuned choices of the parameters, these relations enforce a hierarchical RH neutrino mass spectrum that results into a final asymmetry dominantly produced by the next-to-lightest RH neutrino decays (N{sub 2} dominated leptogenesis). We present the constraints on the whole set of low energy neutrino parameters. Allowing a small misalignment between the Dirac basis and the charged lepton basis as in the quark sector, the allowed regions enlarge and the lower bound on the reheating temperature gets relaxed to values as low as ∼ 10{sup 10} GeV. It is confirmed that for normal ordering (NO) there are two allowed ranges of values for the lightest neutrino mass: m{sub 1} ≅ (1−5) × 10{sup −3} eV and m{sub 1} ≅ (0.03−0.1) eV. For m{sub 1}∼<0.01 eV the allowed region in the plane θ{sub 13}-θ{sub 23} is approximately given by θ{sub 23}∼<49°+0.65 (θ{sub 13}−5°), while the neutrinoless double beta decay effective neutrino mass falls in the range m{sub ee} = (1−3) × 10{sup −3} eV for θ{sub 13} = (6°−11.5°). For m{sub 1}∼>0.01 eV, one has quite sharply m{sub ee} ≅ m{sub 1} and an upper bound θ{sub 23}∼<46°. These constraints will be tested by low energy neutrino experiments during next years. We also find that inverted ordering (IO), though quite strongly constrained, is not completely ruled out. In particular, we find approximately θ{sub 23} ≅ 43°+12° log (0.2 eV/m{sub 1}), that will be fully tested by future experiments.

  6. Study on astrophysical reactions using low-energy RI beams

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hidetoshi

    2009-10-01

    In recent years, low-energy RI beams can be produced in a good intensity and they have been used for studying many astrophysical reactions. One of the facilities producing low-energy RI beams is CRIB (CNS Radio-Isotope Beam separator) [1,2], an RI-beam separator of Center for Nuclear Study, University of Tokyo. Taking CRIB as an example, recent improvements on the RI-beam production and experimental results on astrophysical studies are presented. Several experimental approaches have been taken for the studies on astrophysical reactions.The feature of each method are discussed based on real measurements performed at CRIB. One is the direct method, applied for measurements of reactions such as (α,p) [3]. Another is the measurement of proton/alpha resonance scattering using the thick target method in inverse kinematics, by which we can obtain information on the resonances relevant in astrophysical reactions [4,5]. A recent fruitful result was from a measurement of proton resonance scattering using a ^7Be beam [5]. The energy level structure of ^8B, revealed by the experiment, is especially of interest as it is related with the ^7Be(p,γ) ^8B reaction, responsible for the production of ^8B neutrinos in the sun. We successfully determined parameters of resonances in ^8B below 6.7 MeV, which may affect the ^7Be(p,γ)^8B reaction rate at the solar temparature. Indirect methods, such as ANC and the Trojan Horse Method, were also used in some of the measurements.[4pt] [1] S. Kubono et al., Eur. Phys. J. A13 (2002) 217.[0pt] [2] Y. Yanagisawa et al., Nucl. Instrum. Meth. Phys. Res., Sect. A 539 (2005) 74.[0pt] [3] M. Notani et al., Nucl. Phys. A 764 (2004) 113c.[0pt] [4] T. Teranishi et al., Phys. Lett. B 650 (2007) 129.[0pt] [5] H. Yamaguchi et al., Phys. Lett. B 672 (2009) 230.

  7. Low-energy theory for the graphene twist bilayer

    NASA Astrophysics Data System (ADS)

    Weckbecker, D.; Shallcross, S.; Fleischmann, M.; Ray, N.; Sharma, S.; Pankratov, O.

    2016-01-01

    The graphene twist bilayer represents the prototypical system for investigating the stacking degree of freedom in few-layer graphenes. The electronic structure of this system changes qualitatively as a function of angle, from a large-angle limit in which the two layers are essentially decoupled—with the exception of a 28-atom commensuration unit cell for which the layers are coupled on an energy scale of ≈8 meV —to a small-angle strong-coupling limit. Despite sustained investigation, a fully satisfactory theory of the twist bilayer remains elusive. The outstanding problems are (i) to find a theoretically unified description of the large- and small-angle limits, and (ii) to demonstrate agreement between the low-energy effective Hamiltonian and, for instance, ab initio or tight-binding calculations. In this article, we develop a low-energy theory that in the large-angle limit reproduces the symmetry-derived Hamiltonians of Mele [Phys. Rev. B 81, 161405 (2010), 10.1103/PhysRevB.81.161405], and in the small-angle limit shows almost perfect agreement with tight-binding calculations. The small-angle effective Hamiltonian is that of Bistritzer and MacDonald [Proc. Natl. Acad. Sci. (U.S.A.) 108, 12233 (2011), 10.1073/pnas.1108174108], but with the momentum scale Δ K , the difference of the momenta of the unrotated and rotated special points, replaced by a coupling momentum scale g(c )=8/π √{3 }a sinθ/2 . Using this small-angle Hamiltonian, we are able to determine the complete behavior as a function of angle, finding a complex small-angle clustering of van Hove singularities in the density of states (DOS) that after a "zero-mode" peak regime between 0 .90°<θ <0 .15° limits θ <0 .05° to a DOS that is essentially that of a superposition DOS of all bilayer stacking possibilities. In this regime, the Dirac spectrum is entirely destroyed by hybridization for -0.25

  8. A superconducting NbN detector for neutral nanoparticles

    NASA Astrophysics Data System (ADS)

    Marksteiner, Markus; Divochiy, Alexander; Sclafani, Michele; Haslinger, Philipp; Ulbricht, Hendrik; Korneev, Alexander; Semenov, Alexander; Gol'tsman, Gregory; Arndt, Markus

    2009-11-01

    We present a proof-of-principle study of superconducting single photon detectors (SSPD) for the detection of individual neutral molecules/nanoparticles at low energies. The new detector is applied to characterize a laser desorption source for biomolecules and allows retrieval of the arrival time distribution of a pulsed molecular beam containing the amino acid tryptophan, the polypeptide gramicidin as well as insulin, myoglobin and hemoglobin. We discuss the experimental evidence that the detector is actually sensitive to isolated neutral particles.

  9. Modeling ionization and recombination from low energy nuclear recoils in liquid argon

    SciTech Connect

    Foxe, Michael P.; Hagmann, Chris; Jovanovic, Igor; Bernstein, A.; Joshi, T.; Kazkaz, K.; Mozin, Vladimir V.; Pereverzev, S. V.; Sangiorgio, Samuele; Sorensen, Peter F.

    2015-09-01

    Coherent neutrino-nucleus scattering (CNNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model. CNNS is a flavor-blind interaction, which offers potential benefits for its use in nonproliferation (nuclear reactor monitoring) and astrophysics (supernova and solar neutrinos) applications. One challenge with detecting CNNS is the low energy deposition associated with a typical CNNS nuclear recoil. In addition, nuclear recoils are predicted to result in lower ionization yields than those produced by electron recoils of the same energy. This ratio of nuclear- and electron-induced ionization, known as the nuclear quenching factor, is unknown at energies typical for CNNS interactions in liquid xenon (LXe) and liquid argon (LAr), detector media being considered for CNNS detection. While there have been recent measurements [1] of the ionization yield from nuclear recoils in LAr, there is no universal model for nuclear quenching and ionization yield. For this reason, a Monte Carlo simulation has been developed to predict the ionization yield at sub-10 keV energies. The local ionization yield of a recoiling atom in the medium is calculated first. The ejected electrons are subsequently tracked in the electric field resulting from both the local electric charges and the externally applied drift field. The dependence of the ionization yield on the drift electric field is obtained by combining the calculated ionization yield for the initial collision cascade with the electron escape probability. An updated estimate of the CNNS signal expected in a LAr detector operated near a nuclear power reactor is presented.

  10. Low energy proton capture study of the 14N(p, gamma)15O reaction

    NASA Astrophysics Data System (ADS)

    Daigle, Stephen Michael

    The 14N(p,gamma)15O reaction regulates the rate of energy production for stars slightly more massive than the sun throughout stable hydrogen burning on the main sequence. The 14N(p,gamma)15O reaction rate also determines the luminosity for all stars after leaving the main sequence when their cores have exhausted hydrogen fuel, and later when they become red giant stars. The significant role that this reaction plays in stellar evolution has far-reaching consequences, from neutrino production in our Sun, to age estimates of globular clusters in our Galaxy. The weak cross section and inherent coincidence summing in the 15O gamma-ray decay scheme make a precision measurement of the astrophysical S-factor especially challenging, particularly for the ground-state transition. The present study, performed in the Laboratory for Experimental Nuclear Astrophysics (LENA), was aimed at measuring the ground-state transition at low energy by utilizing a new 24-element, position-sensitive, NaI(Tl) detector array. Because the array is highly segmented, the 14N( p,gamma)15O S-factor was evaluated for transitions to the ground, 5.18, 6.18, and 6.79 MeV states without the need for coincidence summing corrections. Additionally, the position-sensitivity of the detector was exploited to measure the angular correlation of the two-photon cascades. Software cuts were made to the data in order to identify single and coincident gamma-ray events and a fraction fit analysis technique was used to extract the characteristic 15O peaks from the composite gamma-ray spectrum. The results from the current work demonstrated a new approach to measuring weak nuclear cross sections near astrophysically relevant energies that, with refinements, has broader applications in gamma-ray spectroscopy.

  11. RADIATION DETECTOR

    DOEpatents

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  12. Low-Energy Electrons Emitted in Ion Collisions with Thin Foils

    NASA Astrophysics Data System (ADS)

    Kraemer, Michael; Kozhuharov, Christophor; Durante, Marco; Hagmann, Siegbert; Kraft, Gerhard; Lineva, Natallia

    The realistic description of radiation damage after charged particle passage is an ongoing issue for both radiotherapy as well as space applications. In both areas of applied radiological science, living as well as nonliving matter is exposed to ionizing radiation, and it is of vital interest to predict the responses of structures like cells, detectors or electronic devices. In ion beam radiotherapy, for example, the Local Effect Model (LEM) is being used to calculate radiobiological effects with so far unprecedented versatility. This has been shown in the GSI radiotherapy pilot project and consequently this model has become the "industry standard" for treatment planning in subsequent commercial ion radiotherapy sites. The model has also been extended to nonliving matter, i.e. to describe the response of solid state detectors such as TLDs and films. A prerequisite for this model (and possibly similar ones) is the proper description of microscopic track structure and energy deposition. In particular, the area at a very low distance (¡20 nm) from the ion path needs special attention due to the locally very high dose and the rather limited experimental evidence for the shape of the dose distribution. The dose distribution at low distances is inevitably associated with the creation and transport of low-energy (sub-keV) electrons. While some data, elementary cross sections as well as dose distributions, exist for gaseous media, i.e. under single collision conditions, experimental data for the condensed phase are scarce. We have, therefore, launched a project aimed at systematic research of the energy and angular distributions of low-energy (sub-keV) electrons emitted from solids. These investigations com-prise creation as well as transport of low-energy electrons under multiple collision conditions and hence require accounting for the properties of the target, both bulk and surface, i.e. for the inherent inhomogeneity of the thickness and for the surface roughness. To

  13. The Low Energy Neutron Source at Indiana University

    NASA Astrophysics Data System (ADS)

    Baxter, David

    2004-03-01

    The National Science Foundation has recently approved funding for construction of LENS (the Low Energy Neutron Source) at Indiana University and construction of this facility has begun. LENS represents a new paradigm for economically introducing neutron scattering into a university or industrial setting. Neutrons are produced in a long-pulse (1ms) mode through (p,n) reactions on a water-cooled Be target and supplied to three instrument beam lines. In this talk we will describe how LENS will use neutrons to fulfill its three-fold mission in education, materials research, and developing novel instrumentation. Of particular interest are the facility's ability to study cryogenic moderators at significantly lower temperatures than is possible at other facilities and the development of instruments that make use of the neutron spin to perform high-precision measurements of momentum transfer without significant collimation of the beam. The potential for these developments to expand significantly the range of problems amenable to exploration with neutron techniques will be discussed.

  14. Low-Energy Elastic Electron Scattering by Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Zatsarinny O.; Bartschat, K.; Tayal, S. S.

    2006-01-01

    The B-spline R-matrix method is employed to investigate the low-energy elastic electron scattering by atomic oxygen. Flexible non-orthogonal sets of radial functions are used to construct the target description and to represent the scattering functions. A detailed investigation regarding the dependence of the predicted partial and total cross sections on the scattering model and the accuracy of the target description is presented. The predicted angle-integrated elastic cross sections are in good agreement with experiment, whereas significant discrepancies are found in the angle-differential elastic cross sections near the forward direction. .The near-threshold results are found to strongly depend on the treatment of inner-core short-range correlation effects in the target description, as well as on a proper account of the target polarizability. A sharp increase in the elastic cross sections below 1 eV found in some earlier calculations is judged to be an artifact of an unbalanced description of correlation in the N-electron target structure and the (N+l)-electron-collision problems.

  15. A new look at low-energy nuclear reaction research.

    PubMed

    Krivit, Steven B; Marwan, Jan

    2009-10-01

    This paper presents a new look at low-energy nuclear reaction research, a field that has developed from one of the most controversial subjects in science, "cold fusion." Early in the history of this controversy, beginning in 1989, a strong polarity existed; many scientists fiercely defended the claim of new physical effects as well as a new process in which like-charged atomic nuclei overcome the Coulomb barrier at normal temperatures and pressures. Many other scientists considered the entire collection of physical observations-along with the hypothesis of a "cold fusion"--entirely a mistake. Twenty years later, some people who had dismissed the field in its entirety are considering the validity of at least some of the reported experimental phenomena. As well, some researchers in the field are wondering whether the underlying phenomena may be not a fusion process but a neutron capture/absorption process. In 2002, a related tabletop form of thermonuclear fusion was discovered in the field of acoustic inertial confinement fusion. We briefly review some of this work, as well. PMID:19809695

  16. Fragmentation efficiencies of peptide ions following low energy collisional activation

    NASA Astrophysics Data System (ADS)

    Summerfield, Scott G.; Gaskell, Simon J.

    1997-11-01

    Low energy fragmentations of protonated peptides in the gas phase are generally attributed to charge-directed processes. The extent and location of peptide backbone fragmentation is accordingly influenced by the extent to which charge is sequestered on amino acid side-chains. We describe systematic studies of the efficiencies of decomposition of peptide ions to assess in particular the influence of the presence of basic amino acid residues and of the protonation state. In a set of analogues containing two arginine, two histidine or two lysine residues, the extent of fragmentation of [M + 2H]2+ ions decreases with increased basicity, reflecting decreased backbone protonation. The collisionally activated dissociation of multiply protonated melittin ions shows an increase in fragmentation efficiency with higher charge state (using activation conditions which are similar for each charge state). For a single charge state, acetylation of primary amine groups increases fragmentation efficiency, consistent with the reduction in basicity of lysine side-chains. Conversion of arginine residues to the less basic dimethylpyrimidylornithine, however, decreases fragmentation efficiency, suggesting more effective sequestering of ionizing protons; the effect may be attributable to a disfavouring of proton-bridged structures but this hypothesis requires further study. Preliminary data for the decompositions of [M- 2H]2- ions derived from peptides containing two acidic residues suggest that the sequestration of charge away from the backbone is again detrimental to efficient fragmentation. Apparently diagnostic cleavages adjacent to aspartic acid residues are observed.

  17. Low energy, high power hydrogen neutral beam for plasma heating

    NASA Astrophysics Data System (ADS)

    Deichuli, P.; Davydenko, V.; Ivanov, A.; Korepanov, S.; Mishagin, V.; Smirnov, A.; Sorokin, A.; Stupishin, N.

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  18. Optical intraday variability studies of 10 low energy peaked blazars

    NASA Astrophysics Data System (ADS)

    Rani, Bindu; Gupta, Alok C.; Joshi, U. C.; Ganesh, S.; Wiita, Paul J.

    2011-05-01

    We have carried out optical (R band) intraday variability (IDV) monitoring of a sample of 10 bright low energy peaked blazars (LBLs). 40 photometric observations, of an average of ˜4 h each, were made between 2008 September and 2009 June using two telescopes in India. Measurements with good signal-to-noise ratios were typically obtained within 1-3 min, allowing the detection of weak, fast variations using N-star differential photometry. We employed both structure function and discrete correlation function analysis methods to estimate any dominant time-scales of variability and found that in most of the cases any such time-scales were longer than the duration of the observation. The calculated duty cycle of IDV in LBLs during our observing run is ˜52 per cent, which is low compared to many earlier studies; however, the relatively short periods for which each source was observed can probably explain this difference. We briefly discuss possible emission mechanisms for the observed variability.

  19. Inelastic pion scattering by /sup 13/C at low energies

    SciTech Connect

    Mitchell, J.H.

    1987-03-01

    Angular distributions for inelastically scattered pions were obtained for several states in /sup 13/C at an incident energy of 65 MeV. The data include results from both ..pi../sup +/ and ..pi../sup -/ measurements. In addition, ..pi../sup -/ measurements were made at T/sub ..pi../ = 50 MeV at one angle to give a two point fixed-q excitation function. The data are compared to theory and the data of others. As might be expected, medium corrections are shown to be considerably more important at low energies than at resonance. This is true for inelastic transitions of multipolarity 0,2 and 3. Parameters derived from an analysis of elastic pion scattering and SCX data also provide an adequate description of the inelastic transitions. The charge asymmetry in the cross sections for the 9/2/sup +/ state that was seen at resonance persists at these energies. This result is consistent with an impulse approximation treatment of the spin-flip amplitude. This is true even though the incoming energy of the pions is far below the range where the validity of an impulse treatment is expected. 65 refs., 45 figs.

  20. Review of lattice results concerning low-energy particle physics

    SciTech Connect

    Aoki, S.; Aoki, Y.; Bernard, C.; Blum, T.; Colangelo, G.; Della Morte, M.; Dürr, S.; El-Khadra, A. X.; Fukaya, H.; Horsley, R.; Jüttner, A.; Kaneko, T.; Laiho, J.; Lellouch, L.; Leutwyler, H.; Lubicz, V.; Lunghi, E.; Necco, S.; Onogi, T.; Pena, C.; Sachrajda, C. T.; Sharpe, S. R.; Simula, S.; Sommer, R.; Van de Water, R. S.; Vladikas, A.; Wenger, U.; Wittig, H.

    2014-09-01

    We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0), arising in semileptonic K -> pi transition at zero momentum transfer, as well as the decay constant ratio fK/fpi of decay constants and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)LxSU(2)R and SU(3)LxSU(3)R Chiral Perturbation Theory and review the determination of the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, for this review, we focus on D- and B-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant alpha_s.

  1. Dose controlled low energy electron irradiator for biomolecular films

    NASA Astrophysics Data System (ADS)

    Kumar, S. V. K.; Tare, Satej T.; Upalekar, Yogesh V.; Tsering, Thupten

    2016-03-01

    We have developed a multi target, Low Energy Electron (LEE), precise dose controlled irradiator for biomolecular films. Up to seven samples can be irradiated one after another at any preset electron energy and dose under UHV conditions without venting the chamber. In addition, one more sample goes through all the steps except irradiation, which can be used as control for comparison with the irradiated samples. All the samples are protected against stray electron irradiation by biasing them at -20 V during the entire period, except during irradiation. Ethernet based communication electronics hardware, LEE beam control electronics and computer interface were developed in house. The user Graphical User Interface to control the irradiation and dose measurement was developed using National Instruments Lab Windows CVI. The working and reliability of the dose controlled irradiator has been fully tested over the electron energy range of 0.5 to 500 eV by studying LEE induced single strand breaks to ΦX174 RF1 dsDNA.

  2. Addressing Kitchen Contaminants for Healthy, Low-Energy Homes

    SciTech Connect

    Stratton, J. Chris; Singer, Brett C.

    2014-01-01

    Cooking and cooking burners emit pollutants that can adversely affect indoor air quality in residences and significantly impact occupant health. Effective kitchen exhaust ventilation can reduce exposure to cooking-related air pollutants as an enabling step to healthier, low-energy homes. This report identifies barriers to the widespread adoption of kitchen exhaust ventilation technologies and practice and proposes a suite of strategies to overcome these barriers. The recommendations have been vetted by a group of industry, regulatory, health, and research experts and stakeholders who convened for two web-based meetings and provided input and feedback to early drafts of this document. The most fundamental barriers are (1) the common misconception, based on a sensory perception of risk, that kitchen exhaust when cooking is unnecessary and (2) the lack of a code requirement for kitchen ventilation in most US locations. Highest priority objectives include the following: (1) Raise awareness among the public and the building industry of the need to install and routinely use kitchen ventilation; (2) Incorporate kitchen exhaust ventilation as a requirement of building codes and improve the mechanisms for code enforcement; (3) Provide best practice product and use-behavior guidance to ventilation equipment purchasers and installers, and; (4) Develop test methods and performance targets to advance development of high performance products. A specific, urgent need is the development of an over-the-range microwave that meets the airflow and sound requirements of ASHRAE Standard 62.2.

  3. Addressing Kitchen Contaminants for Healthy, Low-Energy Homes

    SciTech Connect

    Stratton, J. Chris; Singer, Brett C.

    2014-01-01

    Cooking and cooking burners emit pollutants that can adversely affect indoor air quality in residences and significantly impact occupant health. Effective kitchen exhaust ventilation can reduce exposure to cooking-related air pollutants as an enabling step to healthier, low-energy homes. This report by Lawrence Berkeley National Laboratory identifies barriers to the widespread adoption of kitchen exhaust ventilation technologies and practice and proposes a suite of strategies to overcome these barriers. The recommendations have been vetted by a group of industry, regulatory, health, and research experts and stakeholders who convened for two meetings and provided input and feedback to early drafts of this document. The most fundamental barriers are (1) the common misconception, based on a sensory perception of risk, that kitchen exhaust when cooking is unnecessary and (2) the lack of a code requirement for kitchen ventilation in most U.S. locations. Highest priority objectives include the following: (1) Raise awareness among the public and the building industry of the need to install and routinely use kitchen ventilation; (2) Incorporate kitchen exhaust ventilation as a requirement of building codes and improve the mechanisms for code enforcement; (3) Provide best practice product and use-behavior guidance to ventilation equipment purchasers and installers, and; (4) Develop test methods and performance targets to advance development of high performance products. A specific, urgent need is the development of an over-the-range microwave that meets the airflow and sound requirements of ASHRAE Standard 62.2.

  4. Analysis of latency performance of bluetooth low energy (BLE) networks.

    PubMed

    Cho, Keuchul; Park, Woojin; Hong, Moonki; Park, Gisu; Cho, Wooseong; Seo, Jihoon; Han, Kijun

    2015-01-01

    Bluetooth Low Energy (BLE) is a short-range wireless communication technology aiming at low-cost and low-power communication. The performance evaluation of classical Bluetooth device discovery have been intensively studied using analytical modeling and simulative methods, but these techniques are not applicable to BLE, since BLE has a fundamental change in the design of the discovery mechanism, including the usage of three advertising channels. Recently, there several works have analyzed the topic of BLE device discovery, but these studies are still far from thorough. It is thus necessary to develop a new, accurate model for the BLE discovery process. In particular, the wide range settings of the parameters introduce lots of potential for BLE devices to customize their discovery performance. This motivates our study of modeling the BLE discovery process and performing intensive simulation. This paper is focused on building an analytical model to investigate the discovery probability, as well as the expected discovery latency, which are then validated via extensive experiments. Our analysis considers both continuous and discontinuous scanning modes. We analyze the sensitivity of these performance metrics to parameter settings to quantitatively examine to what extent parameters influence the performance metric of the discovery processes. PMID:25545266

  5. Sensitizing DNA Towards Low-Energy Electrons with 2-Fluoroadenine.

    PubMed

    Rackwitz, Jenny; Kopyra, Janina; Dąbkowska, Iwona; Ebel, Kenny; Ranković, MiloŠ Lj; Milosavljević, Aleksandar R; Bald, Ilko

    2016-08-22

    2-Fluoroadenine ((2F) A) is a therapeutic agent, which is suggested for application in cancer radiotherapy. The molecular mechanism of DNA radiation damage can be ascribed to a significant extent to the action of low-energy (<20 eV) electrons (LEEs), which damage DNA by dissociative electron attachment. LEE induced reactions in (2F) A are characterized both isolated in the gas phase and in the condensed phase when it is incorporated into DNA. Information about negative ion resonances and anion-mediated fragmentation reactions is combined with an absolute quantification of DNA strand breaks in (2F) A-containing oligonucleotides upon irradiation with LEEs. The incorporation of (2F) A into DNA results in an enhanced strand breakage. The strand-break cross sections are clearly energy dependent, whereas the strand-break enhancements by (2F) A at 5.5, 10, and 15 eV are very similar. Thus, (2F) A can be considered an effective radiosensitizer operative at a wide range of electron energies. PMID:27481662

  6. Maximum Likelihood Analysis of Low Energy CDMS II Germanium Data

    DOE PAGESBeta

    Agnese, R.

    2015-03-30

    We report on the results of a search for a Weakly Interacting Massive Particle (WIMP) signal in low-energy data of the Cryogenic Dark Matter Search experiment using a maximum likelihood analysis. A background model is constructed using GEANT4 to simulate the surface-event background from Pb210decay-chain events, while using independent calibration data to model the gamma background. Fitting this background model to the data results in no statistically significant WIMP component. In addition, we also perform fits using an analytic ad hoc background model proposed by Collar and Fields, who claimed to find a large excess of signal-like events in ourmore » data. Finally, we confirm the strong preference for a signal hypothesis in their analysis under these assumptions, but excesses are observed in both single- and multiple-scatter events, which implies the signal is not caused by WIMPs, but rather reflects the inadequacy of their background model.« less

  7. Low energy, high power hydrogen neutral beam for plasma heating.

    PubMed

    Deichuli, P; Davydenko, V; Ivanov, A; Korepanov, S; Mishagin, V; Smirnov, A; Sorokin, A; Stupishin, N

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction. PMID:26628137

  8. Low energy electron bombardment induced surface contamination of Ru mirrors

    NASA Astrophysics Data System (ADS)

    Al-Ajlony, A.; Kanjilal, A.; Catalfano, M.; Harilal, S. S.; Hassanein, A.; Rice, B.

    2012-03-01

    The impact of secondary electrons induced contamination of the Ru surface was investigated. Mirror-like Ru sample was bombarded with low energy (100 eV) electrons and the change in surface chemistry was investigated using X-ray photoelectron spectroscopy (XPS).Along with XPS studies the corresponding effect on in-situ EUV reflectivity was examined by exposing the Ru surface to photons at a wavelength of 13.5 nm in an ultrahigh vacuum chamber. Detailed XPS analyses showed a sudden increase in carbon concentrations on the Ru surface in the first 60 min, followed by a slow but linear growth in carbon concentration. In parallel, a noticeable decrease in water content was observed during the time of electrons irradiation along with slight oxidation of pure Ru surface. All chemical changes were discussed in terms of the electrons bombardment mediated dissociation of water and hydrocarbon molecules. A time dependent EUV reflectivity measurements show insignificant change in reflectivity up to 510 min of electrons bombardment. The impact of water molecules on the Ru surface and the accumulation of carbon through dissociation of residual hydrocarbons is discussed in details.

  9. Low energy electron attachment at sub-meV resolution

    NASA Astrophysics Data System (ADS)

    Kortyna, A.; Howe, P.-T.; Darrach, M.; Chutjian, A.

    2000-06-01

    Single-photon ionization of rare-gas atoms is used to produce low energy electrons for the study of electron attachment to SF_6. Vacuum ultraviolet laser radiation (λ ≈ 92 nm), produced by nonlinear up-conversion techniques and tunable near the Xe^+ ^2P^0_1/2 threshold, intersects a Xe beam to yield photoelectrons that scatter from SF6 target molecules admixed into the same beam. The photoelectron energy, ɛ, is scanned over the range 0 <= ɛ <= 84 meV. A Monte Carlo model of the attachment signal shows that the electron energy distribution width is <100 μeV and that the electron attachment cross section below 5 meV obeys the expected ɛ-1/2 energy dependence without the need to modify the Wigner threshold law. At ɛ = 45 ± 1 meV, a resonant structure reveals the opening of an inelastic attachment channel associated with the ω6 vibrational mode of SF6 whose excitation energy has been measured previously to be 44.0 ± 0.2 meV. Further investigations into the threshold behavior of the electron attachment cross section are underway. This work was carried out at JPL/Caltech and supported through agreement with NASA.

  10. Collisions of low-energy electrons with cyclohexane

    SciTech Connect

    Barbosa, Alessandra Souza; Bettega, Márcio H. F.

    2014-12-28

    We report calculated cross sections for elastic scattering of low-energy electrons by cyclohexane (c-C{sub 6}H{sub 12}). We employed the Schwinger multichannel method implemented with norm-conserving pseudopotentials in the static-exchange and static-exchange plus polarization approximations, for impact energies up to 30 eV. We compare our calculated integral cross section with experimental total cross sections available in the literature. We also compare our calculated differential cross sections (DCSs) with experimental results for benzene and experimental and theoretical results for 1,4-dioxane, in order to investigate the similarities between those molecules under electron collisions. Although benzene is a cyclic six-carbon molecule, as cyclohexane, we found that the differential cross sections of the latter are more similar to those of 1,4-dioxane than those of benzene. These similarities suggest that the geometry may play an important role in the behavior of the DCSs of these molecules. Our integral cross section displays a broad structure at around 8.5 eV, in agreement with the total cross section experimental data of 8 eV and vibrational excitation data of 7.5 eV. The present integral cross section also shows the presence of a Ramsauer-Townsend minimum at around 0.12 eV. In general, our integral cross section shows a qualitative agreement with the experimental total cross section.

  11. Analysis of Latency Performance of Bluetooth Low Energy (BLE) Networks

    PubMed Central

    Cho, Keuchul; Park, Woojin; Hong, Moonki; Park, Gisu; Cho, Wooseong; Seo, Jihoon; Han, Kijun

    2015-01-01

    Bluetooth Low Energy (BLE) is a short-range wireless communication technology aiming at low-cost and low-power communication. The performance evaluation of classical Bluetooth device discovery have been intensively studied using analytical modeling and simulative methods, but these techniques are not applicable to BLE, since BLE has a fundamental change in the design of the discovery mechanism, including the usage of three advertising channels. Recently, there several works have analyzed the topic of BLE device discovery, but these studies are still far from thorough. It is thus necessary to develop a new, accurate model for the BLE discovery process. In particular, the wide range settings of the parameters introduce lots of potential for BLE devices to customize their discovery performance. This motivates our study of modeling the BLE discovery process and performing intensive simulation. This paper is focused on building an analytical model to investigate the discovery probability, as well as the expected discovery latency, which are then validated via extensive experiments. Our analysis considers both continuous and discontinuous scanning modes. We analyze the sensitivity of these performance metrics to parameter settings to quantitatively examine to what extent parameters influence the performance metric of the discovery processes. PMID:25545266

  12. Low energy energetic neutral atom imaging in the Jovian system

    NASA Astrophysics Data System (ADS)

    Futaana, Yoshifumi; Wieser, Martin; Barabash, Stas

    2013-04-01

    We modeled low energy energetic neutral atoms fluxes originating from the interaction of Jovian magnetospheric plasma with the surface of Ganymede and from charge exchange reactions in the Io torus. We then calculated the instrument response of the Jovian Neutrals Analyzer instrument (JNA) to these fluxes. JNA is part of the proposed Particle Environment Package (PEP) for ESA's JUICE mission and is based on the Energetic Neutral Atom instrument (ENA) built for the BepiColombo Magnetospheric Orbiter. JNA is an imaging energetic neutral atom instrument for energies from 10eV to 3.3keV and it provides angular as well as mass resolution for major neutral species. Depending on magnetic field configuration magnetospheric plasma is able to precipitate onto the surface of Ganymede. The plasma surface interaction produces energetic neutral atoms by backscattering and/or sputtering that travel on ballistic trajectories. Imaging of the energetic neutral atoms fluxes allows to remotely study the precipitation pattern onto the surface, its dependence on magnetic field configuration and its evolution over time. Simulated JNA images are shown for typical conditions. Energetic neutral atoms are also generated by charge exchange reactions in the Io torus. Energetic neutral atoms allow us to study torus dynamics remotely. We show expected energetic neutral atoms fluxes and simulated JNA data from imaging the Io torus from a vantage point outside of Europa's orbit well reachable by the JUICE mission.

  13. A New Instrument Design for Imaging Low Energy Neutral Atoms

    NASA Astrophysics Data System (ADS)

    Keller, J. W.; Collier, M. R.; Chornay, D.; Roz, P.; Getty, S.; Cooper, J. F.; Smith, B.

    2007-12-01

    The MidSTAR-2 satellite, to be built at the US Naval Academy as a follow-on to the successful MidSTAR-1 satellite, will launch in 2011 and carry three Goddard Space Flight Center (GSFC) experiments developed under Goddard's Internal Research and Development (IRAD) program. One of these GSFC instruments, the Miniature Imager for Neutral Ionospheric atoms and Magnetospheric Electrons (MINI-ME) builds on the heritage of the Goddard-developed Low-Energy Neutral Atom (LENA) imager launched on the IMAGE spacecraft in 2000. MINI- ME features a Venetian-blind conversion surface assembly that improves both light rejection and conversion efficiency in a smaller and lighter package than LENA making this an highly effective instrument for viewing solar wind charge exchange with terrestrial and planetary exospheres. We will describe the MINI-ME prototyping effort and its science targets, also including time variability of ENA fluxes and charge-exchange interactions in the upper atmosphere from the terrestrial ring current source.

  14. Ultra-low-energy analog straintronics using multiferroic composites

    NASA Astrophysics Data System (ADS)

    Roy, Kuntal

    2014-03-01

    Multiferroic devices, i.e., a magnetostrictive nanomagnet strain-coupled with a piezoelectric layer, are promising as binary switches for ultra-low-energy digital computing in beyond Moore's law era [Roy, K. Appl. Phys. Lett. 103, 173110 (2013), Roy, K. et al. Appl. Phys. Lett. 99, 063108 (2011), Phys. Rev. B 83, 224412 (2011), Scientific Reports (Nature Publishing Group) 3, 3038 (2013), J. Appl. Phys. 112, 023914 (2012)]. We show here that such multiferroic devices, apart from performing digital computation, can be also utilized for analog computing purposes, e.g., voltage amplification, filter etc. The analog computing capability is conceived by considering that magnetization's mean orientation shifts gradually although nanomagnet's potential minima changes abruptly. Using tunneling magnetoresistance (TMR) measurement, a continuous output voltage while varying the input voltage can be produced. Stochastic Landau-Lifshitz-Gilbert (LLG) equation in the presence of room-temperature (300 K) thermal fluctuations is solved to demonstrate the analog computing capability of such multiferroic devices. This work was supported in part by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

  15. Resonant Electromagnetic Interaction in Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Chubb, Scott

    2008-03-01

    Basic ideas about how resonant electromagnetic interaction (EMI) can take place in finite solids are reviewed. These ideas not only provide a basis for conventional, electron energy band theory (which explains charge and heat transport in solids), but they also explain how through finite size effects, it is possible to create many of the kinds of effects envisioned by Giuliano Preparata. The underlying formalism predicts that the orientation of the external fields in the SPAWAR protocolootnotetextKrivit, Steven B., New Energy Times, 2007, issue 21, item 10. http://newenergytimes.com/news/2007/NET21.htm^,ootnotetextSzpak, S.; Mosier-Boss, P.A.; Gordon, F.E. Further evidence of nuclear reactions in the Pd lattice: emission of charged particles. Naturwissenschaften 94,511(2007)..has direct bearing on the emission of high-energy particles. Resonant EMI also implies that nano-scale solids, of a particular size, provide an optimal environment for initiating Low Energy Nuclear Reactions (LENR) in the PdD system.

  16. Theories of Variable Mass Particles and Low Energy Nuclear Phenomena

    NASA Astrophysics Data System (ADS)

    Davidson, Mark

    2014-02-01

    Variable particle masses have sometimes been invoked to explain observed anomalies in low energy nuclear reactions (LENR). Such behavior has never been observed directly, and is not considered possible in theoretical nuclear physics. Nevertheless, there are covariant off-mass-shell theories of relativistic particle dynamics, based on works by Fock, Stueckelberg, Feynman, Greenberger, Horwitz, and others. We review some of these and we also consider virtual particles that arise in conventional Feynman diagrams in relativistic field theories. Effective Lagrangian models incorporating variable mass particle theories might be useful in describing anomalous nuclear reactions by combining mass shifts together with resonant tunneling and other effects. A detailed model for resonant fusion in a deuterium molecule with off-shell deuterons and electrons is presented as an example. Experimental means of observing such off-shell behavior directly, if it exists, is proposed and described. Brief explanations for elemental transmutation and formation of micro-craters are also given, and an alternative mechanism for the mass shift in the Widom-Larsen theory is presented. If variable mass theories were to find experimental support from LENR, then they would undoubtedly have important implications for the foundations of quantum mechanics, and practical applications may arise.

  17. Rydberg phases of Hydrogen and low energy nuclear reactions

    NASA Astrophysics Data System (ADS)

    Olafsson, Sveinn; Holmlid, Leif

    2016-03-01

    For over the last 26 years the science of cold fusion/LENR has been researched around the world with slow pace of progress. Modest quantity of excess heat and signatures of nuclear transmutation and helium production have been confirmed in experiments and theoretical work has only resulted in a large flora of inadequate theoretical scenarios. Here we review current state of research in Rydberg matter of Hydrogen that is showing strong signature of nuclear processes. In the presentation experimental behavior of Rydberg matter of hydrogen is described. An extensive collaboration effort of surface physics, catalysis, atomic physics, solid state physics, nuclear physics and quantum information is need to tackle the surprising experimental results that have so far been obtained. Rydberg matter of Hydrogen is the only known state of matter that is able to bring huge collection of protons to so short distances and for so long time that tunneling becomes a reasonable process for making low energy nuclear reactions. Nuclear quantum entanglement can also become realistic process at theses conditions.

  18. Collisions of low-energy electrons with isopropanol

    SciTech Connect

    Bettega, M. H. F.; Winstead, C.; McKoy, V.; Jo, A.; Gauf, A.; Tanner, J.; Hargreaves, L. R.; Khakoo, M. A.

    2011-10-15

    We report measured and calculated cross sections for elastic scattering of low-energy electrons by isopropanol (propan-2-ol). The experimental data were obtained using the relative flow technique with helium as the standard gas and a thin aperture as the collimating target gas source, which permits use of this method without the restrictions imposed by the relative flow pressure conditions on helium and the unknown gas. The differential cross sections were measured at energies of 1.5, 2, 3, 5, 6, 8, 10, 15, 20, and 30 eV and for scattering angles from 10 deg. to 130 deg. The cross sections were computed over the same energy range employing the Schwinger multichannel method in the static-exchange plus polarization approximation. Agreement between theory and experiment is very good. The present data are compared with previously calculated and measured results for n-propanol, the other isomer of C{sub 3}H{sub 7}OH. Although the integral and momentum transfer cross sections for the isomers are very similar, the differential cross sections show a strong isomeric effect: In contrast to the f-wave behavior seen in scattering by n-propanol, d-wave behavior is observed in the cross sections of isopropanol. These results corroborate our previous observations in electron collisions with isomers of C{sub 4}H{sub 9}OH.

  19. Seeking to Improve Low Energy Neutral Atom Detection in Space

    NASA Technical Reports Server (NTRS)

    Shappirio, M.; Coplan, M.; Chornay, D.; Collier, M.; Herrero, F.; Ogilvie, K.; Williams, E.

    2007-01-01

    The detection of energetic neutral atoms allows for the remote examination of the interactions between plasmas and neutral populations in space. Before these neutral atoms can be measured, they must first be converted to ions. For the low energy end of this spectrum, interaction with a conversion surface is often the most efficient method to convert neutrals into ions. It is generally thought that the most efficient surfaces are low work functions materials. However, by their very nature, these surfaces are highly reactive and unstable, and therefore are not suitable for space missions where conditions cannot be controlled as they are in a laboratory. We therefore are looking to optimize a stable surface for conversion efficiency. Conversion efficiency can be increased either by changing the incident angle of the neutral particles to be grazing incidence and using stable surfaces with high conversion efficiencies. We have examined how to increase the angle of incidence from -80 degrees to -89 degrees, while maintaining or improving the total active conversion surface area without increasing the overall volume of the instrument. We are developing a method to micro-machine silicon, which will reduce the volume to surface area ratio by a factor of 60. We have also examined the material properties that affect the conversion efficiency of the surface for stable surfaces. Some of the parameters we have examined are work function, smoothness, and bond structure. We find that for stable surfaces, the most important property is the smoothness of the surface.

  20. Rashba scattering in the low-energy limit

    NASA Astrophysics Data System (ADS)

    Hutchinson, Joel; Maciejko, Joseph

    2016-06-01

    We study potential scattering in a two-dimensional electron gas with Rashba spin-orbit coupling in the limit that the energy of the scattering electron approaches the bottom of the lower spin-split band. Focusing on two spin-independent circularly symmetric potentials, an infinite barrier and a delta-function shell, we show that scattering in this limit is qualitatively different from both scattering in the higher spin-split band and scattering of electrons without spin-orbit coupling. The scattering matrix is purely off-diagonal with both off-diagonal elements equal to one, and all angular momentum channels contribute equally; the differential cross section becomes increasingly peaked in the forward and backward scattering directions; the total cross section exhibits quantized plateaus. These features are independent of the details of the scattering potentials, and we conjecture them to be universal. Our results suggest that Rashba scattering in the low-energy limit becomes effectively one-dimensional.

  1. Observation of Low Energy Raman Modes in Twisted Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    He, Rui; Chung, Ting-Fung; Delaney, Conor; Keiser, Courtney; Jauregui, Luis A.; Shand, Paul M.; Chancey, C. C.; Wang, Yanan; Bao, Jiming; Chen, Yong P.

    2013-08-01

    Two new Raman modes below 100 cm^-1 are observed in twisted bilayer graphene grown by chemical vapor deposition. The two modes are observed in a small range of twisting angle at which the intensity of the G Raman peak is strongly enhanced, indicating that these low energy modes and the G Raman mode share the same resonance enhancement mechanism, as a function of twisting angle. The 94 cm^-1 mode (measured with a 532 nm laser excitation) is assigned to the fundamental layer breathing vibration (ZO (prime) mode) mediated by the twisted bilayer graphene lattice, which lacks long-range translational symmetry. The dependence of this modes frequency and linewidth on the rotational angle can be explained by the double resonance Raman process which is different from the previously-identified Raman processes activated by twisted bilayer graphene superlattice. The dependence also reveals the strong impact of electronic-band overlaps of the two graphene layers. Another new mode at 52 cm^-1, not observed previously in the bilayer graphene system, is tentatively attributed to a torsion mode in which the bottom and top graphene layers rotate out-of-phase in the plane.

  2. Low energy electrons and swift ion track structure in PADC

    NASA Astrophysics Data System (ADS)

    Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; Champion, Christophe

    2015-10-01

    The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d'Ions Lourds Dans l'Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particular incident energies located on both sides of the Bragg-peak position. Finally, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.

  3. Low energy, high power hydrogen neutral beam for plasma heating

    SciTech Connect

    Deichuli, P.; Davydenko, V.; Ivanov, A. Mishagin, V.; Sorokin, A.; Stupishin, N.; Korepanov, S.; Smirnov, A.

    2015-11-15

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  4. Low-energy gamma ray attenuation characteristics of aviation fuels

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Shen, Chih-Ping; Sprinkle, Danny R.

    1990-01-01

    Am241 (59.5 keV) gamma ray attenuation characteristics were investigated in 270 aviation fuel (Jet A and Jet A-1) samples from 76 airports around the world as a part of world wide study to measure the variability of aviation fuel properties as a function of season and geographical origin. All measurements were made at room temperature which varied from 20 to 27 C. Fuel densities (rho) were measured concurrently with their linear attenuation coefficients (mu), thus providing a measure of mass attenuation coefficient (mu/rho) for the test samples. In 43 fuel samples, rho and mu values were measured at more than one room temperature, thus providing mu/rho values for them at several temperatures. The results were found to be independent of the temperature at which mu and rho values were measured. It is noted that whereas the individual mu and rho values vary considerably from airport to airport as well as season to season, the mu/rho values for all samples are constant at 0.1843 + or - 0.0013 cu cm/gm. This constancy of mu/rho value for aviation fuels is significant since a nuclear fuel quantity gauging system based on low energy gamma ray attenuation will be viable throughout the world.

  5. Review of lattice results concerning low-energy particle physics

    DOE PAGESBeta

    Aoki, S.; Aoki, Y.; Bernard, C.; Blum, T.; Colangelo, G.; Della Morte, M.; Dürr, S.; El-Khadra, A. X.; Fukaya, H.; Horsley, R.; et al

    2014-09-01

    We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0), arising in semileptonic K -> pi transition at zero momentum transfer, as well as the decay constant ratio fK/fpi of decay constants and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)LxSU(2)R and SU(3)LxSU(3)R Chiral Perturbation Theory and review the determination ofmore » the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, for this review, we focus on D- and B-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant alpha_s.« less

  6. Low energy inner zone protons{emdash}revisited

    SciTech Connect

    Vampola, A.L.

    1996-07-01

    Flux data from a two-element proton telescope flown on the S3-3 satellite in the 1976{endash}1979 time period were averaged to provide a low energy (80 keV to 3.2 MeV) proton model in the inner zone which is more realistic than the AP8 extrapolations. At {ital L}=1.35 and 1.85, S3-3 proton fluxes at 1.5 MeV and alpha particles at 4 MeV agree with published data. In the range {ital L}=1.35 to 1.85, the 1.5 to 3.2 MeV proton channel fluxes on S3-3 also agree with the AP8 model. But in this {ital L} range at 80 keV to 1.5 MeV, the S3-3 proton telescope measured higher fluxes than are present in the AP8 model. The discrepancy is maximum in the {ital L}=1.35 to 1.45 range and increases at lower energies, with the maximum discrepancy being three orders of magnitude in the 80 to 150 keV range at {ital L}=1.4. A model to supplement AP8 has been developed covering the energy range 80 keV to 3.2 MeV over the {ital L} range of 1.2 to 2.4. {copyright} {ital 1996 American Institute of Physics.}

  7. AES based secure low energy adaptive clustering hierarchy for WSNs

    NASA Astrophysics Data System (ADS)

    Kishore, K. R.; Sarma, N. V. S. N.

    2013-01-01

    Wireless sensor networks (WSNs) provide a low cost solution in diversified application areas. The wireless sensor nodes are inexpensive tiny devices with limited storage, computational capability and power. They are being deployed in large scale in both military and civilian applications. Security of the data is one of the key concerns where large numbers of nodes are deployed. Here, an energy-efficient secure routing protocol, secure-LEACH (Low Energy Adaptive Clustering Hierarchy) for WSNs based on the Advanced Encryption Standard (AES) is being proposed. This crypto system is a session based one and a new session key is assigned for each new session. The network (WSN) is divided into number of groups or clusters and a cluster head (CH) is selected among the member nodes of each cluster. The measured data from the nodes is aggregated by the respective CH's and then each CH relays this data to another CH towards the gateway node in the WSN which in turn sends the same to the Base station (BS). In order to maintain confidentiality of data while being transmitted, it is necessary to encrypt the data before sending at every hop, from a node to the CH and from the CH to another CH or to the gateway node.

  8. Low-energy electron scattering by cellulose and hemicellulose components.

    PubMed

    de Oliveira, Eliane M; da Costa, Romarly F; Sanchez, Sergio d'A; Natalense, Alexandra P P; Bettega, Márcio H F; Lima, Marco A P; Varella, Márcio T do N

    2013-02-01

    We report elastic integral, differential and momentum transfer cross sections for low-energy electron scattering by the cellulose components β-D-glucose and cellobiose (β(1 → 4) linked glucose dimer), and the hemicellulose component β-D-xylose. For comparison with the β forms, we also obtain results for the amylose subunits α-D-glucose and maltose (α(1 → 4) linked glucose dimer). The integral cross sections show double peaked broad structures between 8 eV and 20 eV similar to previously reported results for tetrahydrofuran and 2-deoxyribose, suggesting a general feature of molecules containing furanose and pyranose rings. These broad structures would reflect OH, CO and/or CC σ* resonances, where inspection of low-lying virtual orbitals suggests significant contribution from anion states. Though we do not examine dissociation pathways, these anion states could play a role in dissociative electron attachment mechanisms, in case they were coupled to the long-lived π* anions found in lignin subunits [de Oliveira et al., Phys. Rev. A, 2012, 86, 020701(R)]. Altogether, the resonance spectra of lignin, cellulose and hemicellulose components establish a physical-chemical basis for electron-induced biomass pretreatment that could be applied to biofuel production. PMID:23247550

  9. Low Energy Trauma in Older Persons: Where to Next?

    PubMed

    Chehade, Mellick; Gill, Tiffany K; Visvanathan, Renuka

    2015-01-01

    The global population is increasing rapidly with older persons accounting for the greatest proportion. Associated with this rise is an increased rate of injury, including polytrauma, for which low energy falls has become the main cause. The resultant growing impact on trauma resources represents a major burden to the health system. Frailty, with its related issues of cognitive dysfunction and sarcopenia, is emerging as the unifying concept that relates both to the initial event and subsequent outcomes. Strategies to better assess and manage frailty are key to both preventing injury and improving trauma outcomes in the older population and research that links measures of frailty to trauma outcomes will be critical to informing future directions and health policy. The introduction of "Geriatric Emergency Departments" and the development of "Fracture Units" for frail older people will facilitate increased involvement of Geriatricians in trauma care and aid in the education of other health disciplines in the core principles of geriatric assessment and management. Collectively these should lead to improved care and outcomes for both survivors and those requiring end of life decisions and palliation. PMID:26312120

  10. Low energy decomposition of carbon dioxide and other molecules

    NASA Astrophysics Data System (ADS)

    Pamfiloff, Eugene

    2013-05-01

    Since the observation of elevating quantities of atmospheric greenhouse gases, finding a practical method other than the capture-and-sequestration scheme for the reduction and disposal of carbon dioxide (CO2) has been an important objective. Recently, an efficient low-energy process has been developed allowing the selective molecular decomposition of CO2, CO, and other molecules. Thus, CO2 can be broken down into C + O + O. This permits the O2 molecules to be stored or released while the clean carbon atoms can be bagged and utilized in various industries. For the control of carbon dioxide or other gas emissions at their source, it can be scaled up for power plants or down for smaller facilities. The process also allows the production of a beam of exclusively positive ions or exclusively negative ions and contrary to other devices, excludes the probability of beam contamination by plasma or neutral particles, making it ideal for electronic thin-films manufacturing and spectroscopy systems. Because the system allows the simultaneous production of ion beams containing selectable ratios of positive to negative ions, it simplifies construction of favored or complex molecules through varied ionic bonds. Also discussed are several methods to apply the new technology as an upgrade to spectrometers and other devices. For further information contact the author: epamfiloff@mattertech.com.

  11. Shape resonances in low-energy-electron collisions with halopyrimidines

    SciTech Connect

    Barbosa, Alessandra Souza; Bettega, Márcio H. F.

    2013-12-07

    We report calculated cross sections for elastic collisions of low-energy electrons with halopyrimidines, namely, 2-chloro, 2-bromo, and 5-bromopyrimidine. We employed the Schwinger multichannel method with pseudopotentials to compute the cross sections in the static-exchange and static-exchange plus polarization levels of approximation for energies up to 10 eV. We found four shape resonances for each molecule: three of π* nature localized on the ring and one of σ* nature localized along the carbon–halogen bond. We compared the calculated positions of the resonances with the electron transmission spectroscopy data measured by Modelli et al. [J. Phys. Chem. A 115, 10775 (2011)]. In general the agreement between theory and experiment is good. In particular, our results show the existence of a π* temporary anion state of A{sub 2} symmetry for all three halopyrimidines, in agreement with the dissociative electron attachment spectra also reported by Modelli et al. [J. Phys. Chem. A 115, 10775 (2011)].

  12. Geometric features of string theory at low-energy

    NASA Astrophysics Data System (ADS)

    Lukic, Sergio

    In this thesis we study several differential-geometric aspects of the low energy limit of string theory. We focus on anomaly cancellation issues in M-theory on a manifold with boundary and background fluxes, and the computation of non-holomorphic quantities in Calabi-Yau compactifications. In the first chapter we introduce the motivation and the problems that we will study. In the second chapter we show how the coupling of gravitinos and gauginos to fluxes modifies anomaly cancellation in M-theory on a manifold with boundary. Anomaly cancellation continues to hold, after a shift of the definition of the gauge currents by a local gauge invariant expression in the curvatures and E8 fieldstrengths. We compute the first nontrivial correction of this kind. In the last chapter, we introduce methods to determine the form of the effective four-dimensional field theory corresponding to compactifications of string theory. More precisely, we develop iterative methods for finding solutions to the Ricci flat equations on a Calabi-Yau variety, and to the hermitian Yang-Mills equation on stable holomorphic vector bundles, following ideas developed by Donaldson. Finally, we show how these techniques can be understood using the language of geometric quantization of Kaehler manifolds, and suggest how one can use these ideas to explicitly construct additional geometric objects.

  13. Low Energy Trauma in Older Persons: Where to Next?

    PubMed Central

    Chehade, Mellick; Gill, Tiffany K; Visvanathan, Renuka

    2015-01-01

    The global population is increasing rapidly with older persons accounting for the greatest proportion. Associated with this rise is an increased rate of injury, including polytrauma, for which low energy falls has become the main cause. The resultant growing impact on trauma resources represents a major burden to the health system. Frailty, with its related issues of cognitive dysfunction and sarcopenia, is emerging as the unifying concept that relates both to the initial event and subsequent outcomes. Strategies to better assess and manage frailty are key to both preventing injury and improving trauma outcomes in the older population and research that links measures of frailty to trauma outcomes will be critical to informing future directions and health policy. The introduction of “Geriatric Emergency Departments” and the development of “Fracture Units” for frail older people will facilitate increased involvement of Geriatricians in trauma care and aid in the education of other health disciplines in the core principles of geriatric assessment and management. Collectively these should lead to improved care and outcomes for both survivors and those requiring end of life decisions and palliation. PMID:26312120

  14. Low-energy neutral-atom imaging techniques

    NASA Astrophysics Data System (ADS)

    Funsten, Herbert O.; McComas, David J.; Scime, Earl E.

    1993-07-01

    The potential scientific return from low energy neutral atom (LENA) imaging of the magnetosphere is extraordinary. The technical challenges of LENA detection include (1) removal of LENAs from the tremendous ambient UV without losing information of their incident trajectories, (2) quantification of their trajectories, and (3) obtaining high sensitivity measurements. Two techniques that have been proposed for this purpose are based on fundamentally different atomic interaction mechanisms between LENAs and a solid: LENA transmission through an ultrathin foil and LENA reflection from a solid surface. Both of these methods provide LENA ionization (for subsequent removal from the UV by electrostatic deflection) and secondary electron emission (for start pulse generation for time-of-flight and/or coincidence). We present a comparative study of the transmission and reflection techniques based on differences in atomic interactions with solids and surfaces. We show that transmission yield an order of magnitude greater secondary electron emission than reflection methods. Transmission methods are shown to be sufficient for LEAN energies of approximately 1 keV to greater than 30 keV.

  15. Low-energy theory of transport in Majorana wire junctions

    NASA Astrophysics Data System (ADS)

    Zazunov, A.; Egger, R.; Levy Yeyati, A.

    2016-07-01

    We formulate and apply a low-energy transport theory for hybrid quantum devices containing junctions of topological superconductor (TS) wires and conventional normal (N) or superconducting (S) leads. We model TS wires as spinless p -wave superconductors and derive their boundary Keldysh Green's function, capturing both the Majorana end state and continuum quasiparticle excitations in a unified manner. We also specify this Green's function for a finite-length TS wire. Junctions connecting different parts of the device are described by the standard tunneling Hamiltonian. Using this Hamiltonian approach, one also has the option to include many-body interactions in a systematic manner. For N-TS junctions, we provide the current-voltage (I -V ) characteristics at arbitrary junction transparency and give exact results for the shot-noise power and the excess current. For TS-TS junctions, analytical results for the thermal noise spectrum and for the I -V curve in the high-transparency low-bias regime are presented. For S-TS junctions, we compute the entire I -V curve and clarify the conditions for having a finite Josephson current.

  16. Defect formation in graphene during low-energy ion bombardment

    NASA Astrophysics Data System (ADS)

    Ahlberg, P.; Johansson, F. O. L.; Zhang, Z.-B.; Jansson, U.; Zhang, S.-L.; Lindblad, A.; Nyberg, T.

    2016-04-01

    This letter reports on a systematic investigation of sputter induced damage in graphene caused by low energy Ar+ ion bombardment. The integral numbers of ions per area (dose) as well as their energies are varied in the range of a few eV's up to 200 eV. The defects in the graphene are correlated to the dose/energy and different mechanisms for the defect formation are presented. The energetic bombardment associated with the conventional sputter deposition process is typically in the investigated energy range. However, during sputter deposition on graphene, the energetic particle bombardment potentially disrupts the crystallinity and consequently deteriorates its properties. One purpose with the present study is therefore to demonstrate the limits and possibilities with sputter deposition of thin films on graphene and to identify energy levels necessary to obtain defect free graphene during the sputter deposition process. Another purpose is to disclose the fundamental mechanisms responsible for defect formation in graphene for the studied energy range.

  17. Low energy electrons and swift ion track structure in PADC

    SciTech Connect

    Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; Champion, Christophe

    2015-05-27

    The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d’Ions Lourds Dans l’Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particular incident energies located on both sides of the Bragg-peak position. Lastly, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.

  18. Low energy electrons and swift ion track structure in PADC

    DOE PAGESBeta

    Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; Champion, Christophe

    2015-05-27

    The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d’Ions Lourds Dans l’Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particularmore » incident energies located on both sides of the Bragg-peak position. Lastly, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.« less

  19. Interaction of low energy electrons with platinum surface

    NASA Astrophysics Data System (ADS)

    Borka, D.; Tőkési, K.

    2015-07-01

    We present Monte Carlo simulation of low energy electrons backscattered from platinum (Pt) surface. We take into account both elastic and inelastic collisions during the simulation. For the case of the elastic scattering of electrons by Pt atoms we use the static field approximation with non-relativistic Schrödinger partial wave analysis. For the case of inelastic scattering we use the dielectric response formalism. In our simulations the primary electron energy is 250 eV and the incidence angle of the electron beam with respect to the surface is varied between 1° and 90°. The backscattered electron energy loss distributions for primary and as well for secondary electrons and the distribution of maximum electron penetration depths in the Pt sample were calculated using only the bulk and also the surface dielectric function. We found that the maximum attained depth of the electrons is around 20 Å, i.e. the electrons are at the vicinity of the surface. Therefore we expect that the experimental data will be close to our simulation using surface-excitations modes.

  20. Low energy ions in the heavy ions in space (HIIS) experiment on LDEF.

    PubMed

    Kleis, T; Tylka, A J; Boberg, P R; Adams, J H; Beahm, L P

    1996-01-01

    We present data from the Lexan top stacks in the Heavy Ions In Space (HIIS) experiment which was flown for six years (April 1984-Jan 1990) onboard the LDEF spacecraft in 28.5 degrees orbit at about 476 km altitude. HIIS was built of passive (i.e. no timing resolution) plastic track detectors which collected particles continuously over the entire mission. In this paper we present data on low energy heavy ions (10 < or = Z, 20MeV/nuc < E < 200 MeV/nuc). These ions are far below the geomagnetic cutoff for fully ionized ions in the LDEF orbit even after taking into account the severe cutoff suppression caused by occasional large geomagnetic storms during the LDEF mission. Our preliminary results indicate an unusual elemental composition of trapped particles in the inner magnetosphere during the LDEF mission, including both trapped anomalous cosmic ray species (Ne, Ar) and other elements (such as Mg and Fe) which are not found in the anomalous component of cosmic rays. The origin of the non-anomalous species is not understood, but they may be associated with the solar energetic particle events and geomagnetic disturbances of 1989. PMID:11540364

  1. Irradiator to study damage induced to large nonvolatile molecules by low-energy electrons

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Cloutier, Pierre; Wagner, J. Richard; Sanche, Léon

    2004-11-01

    We report on the design and performance of an irradiator to study the fragmentation of large nonvolatile molecules induced by low-energy electron impact under ultrahigh vacuum. The apparatus consists essentially of a new type of electron gun which can bombard molecules spin-coated on the inside surface of a cylinder. With this configuration, it is possible to irradiate a relatively large area (26 cm2) of a solid molecular film and thus, produce a sufficient amount of degraded material for subsequent analysis, outside vacuum, of the compounds remaining on the inner surface of the cylinder. The electron energy is tunable from 3 to 130±0.5 eV and the current density adjustable up to 2.6±0.5×1012 electron s-1 cm-2, respectively. Choosing thymidine as a model system for deoxyribose nucleic acid damage, we show that nonvolatile fragments produced by 5-100 eV electron irradiation can be characterized by high-pressure liquid chromatography/ultraviolet detector and gas chromatography/mass spectroscopy.

  2. Irradiator to study damage induced to large nonvolatile molecules by low-energy electrons

    SciTech Connect

    Zheng Yi; Cloutier, Pierre; Wagner, J. Richard; Sanche, Leon

    2004-11-01

    We report on the design and performance of an irradiator to study the fragmentation of large nonvolatile molecules induced by low-energy electron impact under ultrahigh vacuum. The apparatus consists essentially of a new type of electron gun which can bombard molecules spin-coated on the inside surface of a cylinder. With this configuration, it is possible to irradiate a relatively large area (26 cm{sup 2}) of a solid molecular film and thus, produce a sufficient amount of degraded material for subsequent analysis, outside vacuum, of the compounds remaining on the inner surface of the cylinder. The electron energy is tunable from 3 to 130{+-}0.5 eV and the current density adjustable up to 2.6{+-}0.5x10{sup 12} electron s{sup -1} cm{sup -2}, respectively. Choosing thymidine as a model system for deoxyribose nucleic acid damage, we show that nonvolatile fragments produced by 5-100 eV electron irradiation can be characterized by high-pressure liquid chromatography/ultraviolet detector and gas chromatography/mass spectroscopy.

  3. A pepper-pot emittance meter for low-energy heavy-ion beams

    SciTech Connect

    Kremers, H. R.; Beijers, J. P. M.; Brandenburg, S.

    2013-02-15

    A novel emittance meter has been developed to measure the four-dimensional, transverse phase-space distribution of a low-energy ion beam using the pepper-pot technique. A characteristic feature of this instrument is that the pepper-pot plate, which has a linear array of holes in the vertical direction, is scanned horizontally through the ion beam. This has the advantage that the emittance can also be measured at locations along the beam line where the beam has a large horizontal divergence. A set of multi-channel plates, scintillation screen, and ccd camera is used as a position-sensitive ion detector allowing a large range of beam intensities that can be handled. This paper describes the design, construction, and operation of the instrument as well as the data analysis used to reconstruct the four-dimensional phase-space distribution of an ion beam. Measurements on a 15 keV He{sup +} beam are used as an example.

  4. Low energy secondary cosmic ray flux (gamma rays) monitoring and its constrains

    NASA Astrophysics Data System (ADS)

    Raghav, Anil; Bhaskar, Ankush; Yadav, Virendra; Bijewar, Nitinkumar

    2015-02-01

    Temporal variation of secondary cosmic rays (SCR) flux was measured during the full and new moon and days close to them at Department of Physics, University of Mumbai, Mumbai (Geomagnetic latitude: 10.6 °N), India. The measurements were done by using NaI (Tl) scintillation detector with energy threshold of 200 keV. The SCR flux showed sudden enhancement for approximately about 2 hour during few days out of all observations. The maximum enhancement in SCR flux is about 200 % as compared to the diurnal trend of SCR temporal variations. Weather parameters (temperature and relative humidity) were continuously monitored during all observations. The influences of geomagnetic field, interplanetary parameters and tidal effect on SCR flux have been considered. Summed spectra corresponding to enhancement duration indicates appearance of atmospheric radioactivity which shows single gamma ray line. Detail investigation revealed the presence of radioactive Ar41. Present study indicates origin of Ar41 could be due to anthropogenic source or due to gravitational tidal forces. This measurements point out limitations on low energy SCR flux monitoring. This study will help many researchers in measurements of SCR flux during eclipses and to find unknown mechanism behind decrease/increase in SCR flux during solar/lunar eclipse.

  5. Double-electron capture by highly-ionized atoms isolated at very low energy

    NASA Astrophysics Data System (ADS)

    Fogwell Hoogerheide, Shannon; Dreiling, Joan M.; Sahiner, Arda; Tan, Joseph N.

    2016-05-01

    Charge exchange with background gases, also known as electron capture processes, is important in the study of comets, controlled fusion energy, anti-matter atoms, and proposed one-electron ions in Rydberg states. However, there are few experiments in the very low energy regime that could be useful for further theoretical development. At NIST, highly-charged ions extracted from an electron-beam ion trap can be isolated with energy < 10 eV in a compact Penning trap. By controlling the background gas pressure and composition, the charge exchange rates can be studied. Fully stripped neon or other ions are held in the trap for varying lengths of time and allowed to interact with different background gases at multiple pressures. The ions are then pulsed to a time-of-flight detector to count the population of each charge state. Analysis using a system of rate equations yields information about the ion cloud expansion and single-electron capture rates. A substantial amount of double-electron capture is also observed. We present the relative rates and discuss the error budget. SFH and JMD were funded by National Research Council Research Associateship Awards during some of this work.

  6. Evidence of Double-Electron Capture by Highly-ionized Atoms Isolated at Very Low Energy

    NASA Astrophysics Data System (ADS)

    Fogwell Hoogerheide, Shannon; Sahiner, Arda; Tan, Joseph N.

    2015-05-01

    Electron capture processes are important in the study of comets, controlled fusion energy, anti-matter atoms, and proposed one-electron ions in Rydberg states. There are few studies for low energy. At NIST, highly-charged ions extracted from an electron-beam ion trap can be isolated with <10 eV energy using a recently developed compact Penning trap. By controlling the background gas pressure and composition, the charge exchange rates can be studied. Fully stripped neon ions are held in the trap for varying lengths of time and allowed to interact with different background gases at multiple pressures. The ions are then pulsed to a time-of-flight detector, to count the population of each charge state. Analysis yields information about the trap loss and single-electron capture rates. Moreover, evidence of double-electron capture is observed at low background gas pressures. Related work involves the resonant charge exchange of fully-stripped neon ions with laser-excited rubidium atoms to produce highly-excited one-electron ions, enabling a new measurement of the Rydberg constant. SFH funded by a National Research Council Research Associateship Award

  7. Compensated bismuth-loaded plastic scintillators for neutron detection using low-energy pseudo-spectroscopy

    NASA Astrophysics Data System (ADS)

    Dumazert, Jonathan; Coulon, Romain; Bertrand, Guillaume H. V.; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu

    2016-05-01

    Gadolinium-covered modified plastic scintillators show a high potential for the deployment of cost-effective neutron detectors. Taking advantage of the low-energy photon and electron signature of thermal neutron captures in gadolinium-155 and gadolinium-157 however requires a background correction. In order to display a trustable rate, dual compensation schemes appear as an alternative to Pulse Shape Discrimination. This paper presents the application of such a compensation scheme to a two-bismuth loaded plastic scintillator system. A detection scintillator interacts with incident photon and fast neutron radiations and is covered with a gadolinium converter to become thermal neutron-sensitive as well. In the meantime, an identical compensation scintillator, covered with terbium, solely interacts with the photon and fast neutron part of incident radiations. After the acquisition and the treatment of the counting signals from both sensors, a hypothesis test determines whether the resulting count rate after subtraction falls into statistical fluctuations or provides a robust image of neutron activity. A laboratory prototype is tested under both photon and neutron radiations, allowing us to investigate the performance of the overall compensation system. The study reveals satisfactory results in terms of robustness to a cesium-137 background and in terms of sensitivity in presence of a californium-252 source.

  8. Low-energy point source searches with IceCube

    NASA Astrophysics Data System (ADS)

    Euler, Sebastian; Altmann, David; Ström, Rickard

    2016-04-01

    Due to the overwhelming background of atmospheric muons, the traditional IceCube point source search in the Southern Hemisphere is mainly sensitive to neutrinos with energies above 100TeV. A new approach focuses on events starting inside the instrumented volume. By utilizing different veto techniques we are able to significantly reduce the energy threshold and can now for the first time explore the entire Southern Hemisphere at neutrino energies as low as 100GeV. We present the results of two analyses targeting slightly different energy ranges. Both use one year of data taken with the completed IceCube detector in 2011/12.

  9. Low-energy Charged Particle Measurements in the Heliosheath

    NASA Astrophysics Data System (ADS)

    Decker, R. B.

    2011-12-01

    This talk will focus on recent measurements from the LECP instruments on Voyager 1 and Voyager 2. Voyager 1 (118 AU, N34 deg.) crossed the termination shock at 94.0 AU in Dec. 2004 and is roughly 24 AU into the inner heliosheath. Voyager 2 (96 AU, S30 deg) crossed the shock at 83.5 AU in Sep. 2007 and is roughly 13 AU into the heliosheath. Large variations in the intensities, energy spectra, and angular distributions of low-energy heliosheath ions and electrons have occurred during the past year, evidently in response to an increase in the number of solar active regions in January 2010. For example, starting around 2010.8, ion intensities at Voyager 1 began a two-step exponential decrease. The intensities of ions below 0.5 MeV fell by 40%, reaching minima around 2011.5 that were the lowest measured since mid-2005. During the intensity drop at Voyager 1 the ion energy spectrum evolved to a single power-law with an index -1.5. Similar intensity drops began somewhat earlier at Voyager 2, and the intensity minima of the low-energy ions occurred on 2011.2, one-third of a year earlier than at Voyager 1. In addition, after the ion intensities had recovered at Voyager 2, they were deficient at lower energies compared to the pre-drop levels, causing the energy spectrum to flatten with decreasing energy. During the intensity drop at Voyager 2, ion angular distributions evolved from convective-like, consistent with the measured plasma flow velocity, to azimuthal, more consistent with unidirectional streaming along the mean magnetic field. We will also summarize the heliosheath plasma flow velocity in the R-T (instrument scan) plane that is estimated using angular data from the three lowest energy Voyager 1 LECP ion channels, which cover 40-139 keV. The estimated radial component of flow decreased from about 60 km/s to about 0 km/s at a rate of -19 km/s/yr during 2008.7-2010.3, was consistent with 0 km/s from 2010.3-2011.0, and then went negative, averaging about -13 km

  10. Nanoscale Dynamics of Radiosensitivity: Role of Low Energy Electrons

    NASA Astrophysics Data System (ADS)

    Sanche, Léon

    This chapter addresses the nanoscale dynamics involved in the sensitization of biological cells to ionizing radiation. More specifically, it describes the role of low energy electrons (LEE) in radiosensitization by gold nanoparticles and chemotherapeutic agents, as well as potential applications to radiotherapy. The basic mechanisms of action of the LEE generated within nanoscopic volumes by ionizing radiation are described in solid water ice and various forms of DNA. These latter include the subunits (i.e., a base, a sugar or the phosphate group), short single strands (i.e., oligonucleotides) and plasmid and linear DNA. By comparing the results from experiments with the different forms of the DNA molecule and theory, it is possible to determine fundamental mechanisms that are involved in the dissociation of the subunits, base release and the production of single, double-strand breaks and cross-links. Below 15 eV, LEE localize on DNA subunits to form transient negative ions. Such states can damage DNA by dissociating into a stable anion and radical fragment(s), via dissociative electron attachment, or by decaying into dissociative electronically excited states. LEE can also transfer from one DNA subunit to another, particularly from a base to the phosphate group, where they can induce cleavage of the C-O bond (i.e., break a strand). DNA damage and the corresponding nanoscale dynamics are found to be modified in the presence of other cellular constituents. For example, condensing on DNA the most abundant cellular molecule, H2O, induces the formation of a new type of transient anion whose parent is a H2O-DNA complex.

  11. Three-Nucleon Low-Energy Constants from the Consistency of Interactions and Currents in Chiral Effective Field Theory

    SciTech Connect

    Gazit, Doron; Quaglioni, Sofia; Navratil, Petr

    2009-09-04

    The chiral low-energy constants c{sub D} and c{sub E} are constrained by means of accurate ab initio calculations of the A=3 binding energies and, for the first time, of the triton {beta} decay. We demonstrate that these low-energy observables allow a robust determination of the two undetermined constants, a result of the surprising fact that the determination of c{sub D} depends weakly on the short-range correlations in the wave functions. These two- plus three-nucleon interactions, originating in chiral effective field theory and constrained by properties of the A=2 system and the present determination of c{sub D} and c{sub E}, are successful in predicting properties of the A=3 and 4 systems.

  12. New class of neutron detectors

    SciTech Connect

    Czirr, J.B.

    1997-09-01

    An optimized neutron scattering instrument design must include all significant components, including the detector. For example, useful beam intensity is limited by detector dead time; detector pixel size determines the optimum beam diameter, sample size, and sample to detector distance; and detector efficiency vs. wavelength determines the available energy range. As an example of the next generation of detectors that could affect overall instrumentation design, we will describe a new scintillator material that is potentially superior to currently available scintillators. We have grown and tested several small, single crystal scintillators based upon the general class of cerium-activated lithium lanthanide borates. The outstanding characteristic of these materials is the high scintillation efficiency-as much as five times that of Li-glass scintillators. This increase in light output permits the practical use of the exothermic B (n, alpha) reaction for low energy neutron detection. This reaction provides a four-fold increase in capture cross section relative to the Li (n, alpha) reaction, and the intriguing possibility of demanding a charged-particle/gamma ray coincidence to reduce background detection rates. These new materials will be useful in the thermal and epithermal energy ran at reactors and pulsed neutron sources.

  13. FOREWORD: 3rd Symposium on Large TPCs for Low Energy Event Detection

    NASA Astrophysics Data System (ADS)

    Irastorza, Igor G.; Colas, Paul; Gorodetzky, Phillippe

    2007-05-01

    The Third International Symposium on large TPCs for low-energy rare-event detection was held at Carré des sciences, Poincaré auditorium, 25 rue de la Montagne Ste Geneviève in Paris on 11 12 December 2006. This prestigious location belonging to the Ministry of Research is hosted in the former Ecole Polytechnique. The meeting, held in Paris every two years, gathers a significant community of physicists involved in rare event detection. Its purpose is an extensive discussion of present and future projects using large TPCs for low energy, low background detection of rare events (low-energy neutrinos, dark matter, solar axions). The use of a new generation of Micro-Pattern Gaseous Detectors (MPGD) appears to be a promising way to reach this goal. The program this year was enriched by a new session devoted to the detection challenge of polarized gamma rays, relevant novel experimental techniques and the impact on particle physics, astrophysics and astronomy. A very particular feature of this conference is the large variety of talks ranging from purely theoretical to purely experimental subjects including novel technological aspects. This allows discussion and exchange of useful information and new ideas that are emerging to address particle physics experimental challenges. The scientific highlights at the Symposium came on many fronts: Status of low-energy neutrino physics and double-beta decay New ideas on double-beta decay experiments Gamma ray polarization measurement combining high-precision TPCs with MPGD read-out Dark Matter challenges in both axion and WIMP search with new emerging ideas for detection improvements Progress in gaseous and liquid TPCs for rare event detection Georges Charpak opened the meeting with a talk on gaseous detectors for applications in the bio-medical field. He also underlined the importance of new MPGD detectors for both physics and applications. There were about 100 registered participants at the symposium. The successful

  14. Low-energy neutron spectrometer using position sensitive proportional counter—Feasibility study based on numerical analysis

    NASA Astrophysics Data System (ADS)

    Murata, I.; Miyamaru, H.

    2008-05-01

    There is no direct technique to measure a neutron energy spectrum, particularly in the lower energy region, because the reaction Q value for detection is much larger than the neutron energy to be measured. However, such techniques are becoming a necessity, for example, in medical applications such as boron neutron capture therapy. In this study, a new spectrometer to measure low-energy neutrons (from thermal to 100 eV) is investigated numerically. We propose a unique approach of estimating the neutron energy spectrum by analyzing the distribution of neutron detection depths in the detector using an exact relation between the neutron energy and nuclear reaction cross-section. The proposed spectrometer has been established to be feasible to manufacture. The conversion performance of the neutron detection depth distribution to the neutron energy spectrum has also been proven to be acceptable, with the unfolding process based on Bayes' theorem, even though the detector response function is non-distinctive (without peaks or edges). The present spectrometer is now under development, and its practical performance will be reported as soon as the prototype detector is completed.

  15. Signal Processing and Its Effect on Scanning Efficiencies for a Field Instrument for Detecting Low-energy Radiation.

    PubMed

    Marianno, Craig M

    2015-07-01

    Signal processing within a radiation detector affects detection efficiency. Currently, organizations such as private industry, the U.S. Navy, Army, and Air Force are coupling some detector systems with data collection devices to survey large land areas for radioactive contamination. As detector technology has advanced and analog data collection has turned to digital, signal processing is becoming prevalent in some instruments. Using a NIST traceable (241)Am source, detection efficiency for a field instrument for detecting low-energy radiation (FIDLER) was examined for both a static and scanning mode. Experimental results were compared to Monte Carlo-generated efficiencies. Stationary data compared nicely to the theoretical results. Conversely, scanning detection efficiencies were considerably different from their theoretical counterparts. As speed increased, differences in detection efficiency approached two orders of magnitude. To account for these differences, a quasi time-dependent Monte Carlo simulation was created mimicking the signal processing undertaken by the FIDLER detection system. By including signal processing, experimental results fell within the bounds of the Monte Carlo-generated efficiencies, thus demonstrating the negative effects of such processing on detection efficiencies. PMID:26011500

  16. A low energy particle spectrometer with a large geometric factor

    NASA Astrophysics Data System (ADS)

    Urban, A.

    1981-12-01

    The design and calibration of a rocket-borne detector, using a channel electron multiplier (CEM) together with a spherical electrostatic analyzer, are described. The CEM characteristic equivalent energy bandwidths, opening angles and operating range are defined, and are given as functions of energies between 0.1 to 25 keV. The electronic parts include the analyzer deflection and the CEM acceleration high voltage components, measurement control unit, and data processing interfaces. Numerical analysis of the geometric factor from the calibration data is demonstrated. The energy and pitch angle distributions of energetic electrons using 30 and 90 deg sensors during a 150 to 176 sec flight time interval are analyzed. The 90 deg sensor shows a nearly constant energy spectrum throughout, while the 30 deg sensor exhibits large variations. Differences are attributed to changes in pitch angle distribution.

  17. Monthly Variations of Low-Energy Ballistic Transfers to Lunar Halo Orbits

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.

    2010-01-01

    The characteristics of low-energy transfers between the Earth and Moon vary from one month to the next largely due to the Earth's and Moon's non-circular, non-coplanar orbits in the solar system. This paper characterizes those monthly variations as it explores the trade space of low-energy lunar transfers across many months. Mission designers may use knowledge of these variations to swiftly design desirable low-energy lunar transfers in any given month.

  18. The Marshall Space Flight Center Low-Energy Ion Facility: A preliminary report

    NASA Technical Reports Server (NTRS)

    Biddle, A. P.; Reynolds, J. W.; Chisholm, W. L., Jr.; Hunt, R. D.

    1983-01-01

    The Low-Energy Ion Facility (LEIF) is designed for laboratory research of low-energy ion beams similar to those present in the magnetosphere. In addition, it provides the ability to develop and calibrate low-energy, less than 50 eV, plasma instrumentation over its full range of energy, mass, flux, and arrival angle. The current status of this evolving resource is described. It also provides necessary information to allow users to utilize it most efficiently.

  19. Low Energy Electrons as Probing Tool for Astrochemical Reaction Mechanisms

    NASA Astrophysics Data System (ADS)

    Hendrik Bredehöft, Jan; Swiderek, Petra; Hamann, Thorben

    hitting anything solid, they will create secondary electrons. These electrons are in fact the energy source needed to run interstellar chemistry. Slow electrons can in principle trigger three different primary processes in a molecule. The first is ionisation by electron impact (EI), which is used to create ions in mass spectrometry. In this process an electron hits a molecule M and knocks an outer shell electron to create a cation. This occurs whenever the electron energy is above the ionisation threshold of the target molecule. Another possibility is the attachment of a slow electron to a molecule to create an anion. This can occur at sharply defined resonance energies specific to the molecule M. A third possibility is to excite the molecule M to a neutral state M∗ .[9] M + e- -> M+ + 2 e- (Electron impact ionisation) M + e- -> M- (Electron attachment) M + e- -> M∗ + e- (Neutral excitation) The created states M+ , M- and M∗ are usually not stable states so they very often dissociate into ions and radicals, which can then further react with neighbouring molecules to form new chemical species. In these chemical reactions some products can be formed even at very low temperatures that would otherwise require a lot of thermal energy and/or special catalysts. The formation of ethylamine from ethylene and ammonia by hydroamination is one such example. The reaction is characterized by a high activation barrier caused by the electronic repulsion between the electron density rich C=C double bound and the lone pair electrons of ammo-nia. The reaction also has a highly negative entropy, so it becomes less favourable at higher temperatures, ruling out heat as a means to facilitate the reaction. In classical chemistry this problem is overcome by the use of catalysts. Unfortunately there still is no general catalyst for this kind of reaction. Recently it was shown that the reaction can efficiently be induced by low energy electron radiation.[10] One of the reaction partners is

  20. Photon Strength and the Low-Energy Enhancement

    SciTech Connect

    Wiedeking, M; Bernstein, L A; Krticka, M; Bleuel, D L; Allmond, J M; Basunia, M S; Burke, J T; Fallon, P; Firestone, R B; Goldblum, B L; Hatarik, R; Lake, P T; Lee, I Y; Lesher, S R; Paschalis, S; Petri, M; Phair, L; Scielzo, N D

    2012-02-22

    The ability of atomic nuclei to emit and absorb photons with energy E{sub {gamma}} is known as the photon strength function f(E{sub {gamma}}). It has direct relevance to astrophysical element formation via neutron capture processes due to its central role in nuclear reactions. Studies of f(E{sub {gamma}}) have benefited from a wealth of data collected in neutron capture and direct reactions but also from newly commissioned inelastic photon scattering facilities. The majority of these experimental methods, however, rely on the use of models because measured {gamma}-ray spectra are simultaneously sensitive to both the nuclear level density and f(E{sub {gamma}}). As excitation energy increases towards the particle separation energies, the level density increases rapidly, creating the quasi-continuum. Nuclear properties in this excitation energy region are best characterized using statistical quantities, such as f(E{sub {gamma}}). A point of contention in studies of the quasi-continuum has been an unexpected and unexplained increase in f(E{sub {gamma}}) at low {gamma}-ray energies (i.e. below E{sub {gamma}} {approx}3 MeV) in a subset of light-to-medium mass nuclei. Ideally, a new model-independent experimental technique is required to address questions regarding the existence and origin of this low-energy enhancement in f(E{sub {gamma}}). Here such a model-independent approach is presented for determining the shape of f(E{sub {gamma}}) over a wide range of energies. The method involves the use of coupled high-resolution particle and {gamma}-ray spectroscopy to determine the emission of {gamma} rays from the quasi-continuum in a nucleus with defined excitation energy to individual discrete levels of known spins and parities. This method shares characteristics of two neutron capture-based techniques: the Average Resonance Capture (ARC) and the Two-Step Cascade analysis (TSC). The power of the new technique lies in the additional ability to positively identify primary